七年级数学上册第2章有理数的运算2.4有理数的除法

合集下载

完整版)最新版浙教版数学七年级上册各章节重难点

完整版)最新版浙教版数学七年级上册各章节重难点

完整版)最新版浙教版数学七年级上册各章节重难点第一章有理数1.1 从自然数到有理数正数是指大于零的数,负数是指小于零的数,而零既不是正数也不是负数。

正整数、零和负整数统称为整数,而负分数和正分数则统称为分数。

整数和分数合在一起就是有理数。

1.2 数轴数轴是指规定了原点、单位长度和正方向的直线。

任何一个有理数都可以用数轴上的点来表示。

如果两个数符号不同,其中一个数称为另一个数的相反数。

在数轴上,互为相反数(零除外)的两个点位于原点的两侧,并且到原点的距离相等。

1.3 绝对值绝对值是指一个数在数轴上对应的点到原点的距离。

一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,而零的绝对值是它本身。

互为相反数的两个绝对值相等。

需要注意的是,任何数的绝对值都大于或等于零(非负数)。

1.4 有理数的大小比较一般地,我们可以得出以下结论:在数轴上表示的两个数,右边的数总比左边的数大。

正数都大于零,负数都小于零,正数大于负数。

两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。

第二章有理数的运算2.1 有理数的加法同号两数相加,取与加数相同的符号,并把绝对值相加。

异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加等于零,一个数与零相加仍得这个数。

在有理数运算中,加法的交换律和结合律仍然成立。

2.2 有理数的减法减去一个数,等于加上这个数的相反数。

有理数加减混合运算的一般步骤是先利用减法法则,将减法转换为加法,再利用加法的交换律和分配律,使计算简便。

2.3 有理数的乘法两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与零相乘,积为零。

若两个有理数的乘积为1,就称这两个有理数互为倒数。

在有理数的乘法中,乘法交换律、分配律和结合律仍然成立。

2.4 有理数的除法两数相除,同号得正,异号得负,并把绝对值相除。

零除以任何一个不为零的数都等于零。

代数式的值有时需要用“整体”代入的技巧来求解,特别是当无法求出字母的值时。

七年级数学上册第2章有理数的运算2.3有理数的乘法第1课时有理数的乘法说课稿(新版浙教版)

七年级数学上册第2章有理数的运算2.3有理数的乘法第1课时有理数的乘法说课稿(新版浙教版)

七年级数学上册第2章有理数的运算2.3有理数的乘法第1课时有理数的乘法说课稿(新版浙教版)一. 教材分析《浙教版七年级数学上册》第2章主要介绍有理数的运算,而2.3节则是有理数的乘法。

这一节内容是学生学习有理数运算的重要环节,也是有理数除法的基础。

在本节课中,学生将学习有理数乘法的法则,并能够运用这些法则进行计算。

二. 学情分析在进入本节课的学习之前,学生已经掌握了有理数的概念、加法和减法运算。

但是,对于有理数的乘法,学生可能还存在一定的困难。

因此,在教学过程中,教师需要引导学生通过实际操作,理解并掌握有理数乘法的法则。

三. 说教学目标1.知识与技能目标:学生能够理解有理数乘法的概念,掌握有理数乘法的法则,并能够运用这些法则进行计算。

2.过程与方法目标:通过小组合作、探究学习,学生能够培养自己的逻辑思维能力和问题解决能力。

3.情感态度与价值观目标:学生能够体验到数学与生活的紧密联系,培养对数学的兴趣和自信心。

四. 说教学重难点1.教学重点:有理数乘法的法则。

2.教学难点:理解并掌握有理数乘法的实质,能够灵活运用法则进行计算。

五. 说教学方法与手段在本节课的教学过程中,我将采用以下教学方法和手段:1.情境教学法:通过生活实例引入有理数乘法,让学生感受数学与生活的紧密联系。

2.小组合作学习:引导学生分组讨论,共同探究有理数乘法的法则。

3.动画演示:利用多媒体动画演示有理数乘法的过程,帮助学生直观理解。

4.练习巩固:设计有针对性的练习题,让学生在实践中掌握有理数乘法。

六. 说教学过程1.导入新课:通过生活实例,如长度的计算,引入有理数乘法。

2.探究学习:学生分组讨论,共同探究有理数乘法的法则。

3.动画演示:利用多媒体动画演示有理数乘法的过程,帮助学生直观理解。

4.讲解讲解:教师讲解有理数乘法的法则,并给出相关例题。

5.练习巩固:学生独立完成练习题,巩固所学知识。

6.课堂小结:教师引导学生总结有理数乘法的法则,并强调重点。

2024秋七年级数学上册第2章有理数及其运算2.8有理数的除法说课稿(新版)北师大版

2024秋七年级数学上册第2章有理数及其运算2.8有理数的除法说课稿(新版)北师大版
5.合作交流:学生分组讨论,共同解决合作交流题目,培养学生的合作意识和解决问题的能力。
6.总结提升:教师对课堂内容进行总结,强调重点和难点,帮助学生巩固知识。
四、作业布置
1.课后练习:学生完成课后练习题,巩固课堂所学知识。
2.拓展作业:学生选择一道实际问题进行解决,培养学生的应用能力。
五、教学反思
教师在课后对自己的教学进行反思,分析教学效果,针对学生的掌握情况,调整教学策略,以提高教学效果。
知识拓展:
介绍与有理数除法内容相关的拓展知识,拓宽学生的知识视野。
引导学生关注学科前沿动态,培养学生的创新意识和探索精神。
情感升华:
结合有理数除法内容,引导学生思考学科与生活的联系,培养学生的社会责任感。
鼓励学生分享学习有理数除法的心得和体会,增进师生之间的情感交流。
(六)课堂小结(预计用时:2分钟)
2024秋七年级数学上册 第2章 有理数及其运算2.8 有理数的除法说课稿(新版)北师大版
课题:
科目:
班级:
课时:计划1课时
教师:
单位:
一、课程基本信息
1.课程名称:七年级数学——有理数的除法
2.教学年级和班级:七年级一班
3.授课时间:2024年秋天
4.教学时数:45分钟
二、教学内容和目标
1.教学内容:
- 练习法:学生进行课堂练习和课后作业,巩固所学知识;
- 合作学习:学生分组讨论和合作解决实际问题;
- 反馈与评价:教师对学生的学习情况进行观察和评价,提供反馈。
五、教学流程
(一)课前准备(预计用时:5分钟)
学生预习:
发放预习材料,引导学生提前了解有理数除法的学习内容,标记出有疑问或不懂的地方。

浙教版数学七年级上册第二章《有理数的运算》复习教学设计

浙教版数学七年级上册第二章《有理数的运算》复习教学设计

浙教版数学七年级上册第二章《有理数的运算》复习教学设计一. 教材分析浙教版数学七年级上册第二章《有理数的运算》复习教学设计,主要涉及有理数的加法、减法、乘法、除法以及混合运算。

本章内容为学生提供了有理数运算的基本方法和规则,是进一步学习数学的基础。

教材通过丰富的例题和练习题,帮助学生掌握有理数运算的方法,培养学生的运算能力和逻辑思维能力。

二. 学情分析学生在学习本章内容前,已初步掌握了实数的概念,对加法、减法、乘法、除法有一定的了解。

但部分学生对有理数运算的规则和技巧还不够熟练,特别是在混合运算中,对运算顺序和运算法则的掌握程度不一。

因此,在复习教学中,需要针对学生的实际情况,重点巩固运算规则,提高学生的运算速度和准确性。

三. 教学目标1.掌握有理数的加法、减法、乘法、除法运算方法。

2.掌握混合运算的顺序和运算法则。

3.提高学生的运算能力和逻辑思维能力。

4.培养学生的团队合作精神和自主学习能力。

四. 教学重难点1.重难点:有理数的混合运算。

2.难点:运算顺序和运算法则的运用。

五. 教学方法1.采用问题驱动法,引导学生通过解决问题来掌握运算方法。

2.使用案例分析法,分析典型例题,让学生深刻理解运算规则。

3.运用合作学习法,分组讨论,培养学生的团队协作能力。

4.采用巩固练习法,通过适量练习,提高学生的运算速度和准确性。

六. 教学准备1.准备相关教案和教学PPT。

2.准备典型例题和练习题。

3.准备黑板和粉笔。

4.准备多媒体教学设备。

七. 教学过程1.导入(5分钟)回顾实数的概念,引导学生认识到有理数是实数的一部分。

通过提问方式,让学生回顾加法、减法、乘法、除法的基本概念和方法。

2.呈现(10分钟)利用PPT展示本章的主要内容和知识点,包括有理数的加法、减法、乘法、除法以及混合运算的规则。

引导学生对比实数和有理数的区别,明确有理数运算的重要性。

3.操练(10分钟)分组进行练习,每组选择一道混合运算的题目进行讨论和解答。

七年级数学上册第2章《有理数的除法》精品教案(北师大版)

七年级数学上册第2章《有理数的除法》精品教案(北师大版)

《2.8 有理数的除法》教案教学重点和难点教学重点:1.掌握有理数的除法法则,能够熟练地进行除法运算.2.通过将除法运算转化为乘法运算,培养学生的转化的思想.教学难点:寻找有理数除法转化为有理数乘法的方法和条件.学情分析认知基础:有理数除法的学习是在前面已学过有理数加、减、乘法的基础上进行的,这些运算的学习为学习有理数除法作了铺垫,学生已经开始熟悉“符号优先”的原则,即先确定符号,再求绝对值的算理.而除法在小学已经接触过,学生已掌握了倒数的意义,也知道除法是乘法的逆运算,知道0不能作除数的规定.活动经验基础:学生通过探索有理数的加、减、乘法的运算法则和运算律的过程,亲身经历了归纳、猜测、验证、推理、计算、交流等数学活动,理解了有理数的算理,初步体会了化归的思想方法,体验了数学与现实世界的密切联系及数学活动的探索性及创造性.教学目标1.经历根据除法是乘法的逆运算,归纳出有理数的除法法则的过程;掌握有理数的除法法则,并能够熟练地进行除法运算.2.通过将除法运算转化为乘法运算,培养学生的转化的思想.教学方法本节课采用“自学——辅导”的教学模式,将学生自主学习与教师辅导相结合.创设问题情境后,首先教师提出要求,引导学生带着与有理数的除法有关的问题自学,然后学生讨论交流,教师鉴疑讲解,最后通过练习巩固提高.这样有利于学生通过经历从具体情境中抽象出法则的过程,发现其中的规律,掌握必要的运算技能.在有理数除法运算的学习中继续发展数感,在符号法则的学习中增强符号感,从而在自学中学会学习,掌握学习方法.根据学生的认知水平,既要注重安排学生的自主探究活动,又要及时地加以引导、讲解,鼓励学生从学习中发现问题,并用所学知识解决它,从而激发学生的学习兴趣和参与数学活动的积极性.教学过程一、创设情境有四名同学参加数学测验,以90分为标准,超过的分数记为正数,不足的分数记为负数,评分记录如下:+5、-20、-19、-14.求:这四名同学的平均成绩是超过80分还是不足80分?引导学生独立思考,然后列式(+5-20-19-14)÷4,进一步化简得出:(-48)÷4=?(但不知如何计算)从而揭示本节课题.二、自学设计说明教师通过引导学生带着问题自学,不但有利于调动学生的积极性,而且能培养学生的自主意识,增强他们的自信心.请学生带着下面的问题自学本节教材内容:问题1:举例说明什么是倒数?如何求一个数的倒数?问题2:有理数的除法有几种算法?它们有什么相同与不同之处?问题3:怎样选择算法最简便?学生看书,边看边思考,时间大约为5分钟.教学说明在学生自学的过程中,教师要充分参与到学生的学习过程中去,同学生一起思考、计算、讨论、交流.要尊重学生的个体差异,尤其对于学习有困难的学生,及时予以关照与帮助,适当的点拨引导.根据学生的实际情况,自学时间可适当调整.三、讨论交流、鉴疑讲解1.总结乘法法则教师提问,引导学生自己归纳:问题1:乘积为1的两个数互为倒数.例如,2×12=1,所以2与12互为倒数. 又如,⎝⎛⎭⎫-23×⎝⎛⎭⎫-32=1,所以-23与-32互为倒数. 一般地,a ·1a =1,所以a 与1a互为倒数. 这里a ≠0,同小学一样在有理数范围内,0不能作除数,或者说0为分母时分数无意义. 整数可以看成分母是1的分数,求分数的倒数是把这个分数的分母与分子颠倒一下即可;求一个小数的倒数,可以先把这个小数化成分数,再求倒数;特殊的数π,它的倒数就可以表示成1π,或化成近似分数再求倒数. 问题2:有理数的除法有2种算法.法则1:两数相除,同号得正,异号得负,并把绝对值相除;0除以任何非0的数都得0.法则2:除以一个数,等于乘以这个数的倒数.它们的相同之处是都遵循“符号优先”原则,即先确定符号,再求绝对值.它们的不同之处是法则1确定符号后直接相除,法则2是将除法转化为乘法.问题3:一般能整除时用法则1,确定符号后直接除,在不能整除或有较复杂的分数及小数时采用法则2,将除法转化为乘法.教学说明 在解答两个问题的过程中,教师要尽可能地引导学生勇于发表自己的见解,并先请其他的学生予以评价.在学生思维的障碍点再适当的点拨引导,如研究两种法则的共性时可请学生思考两种法则都需要先算什么,后算什么,在两种法则的选择上可先举出几个具体的例子请学生思考用哪种方法合适,再进行规律的总结.2.例题分析设计说明本例题通过学生自己动手解决,不但能考查学生是否真正理解和掌握了两种法则的内在联系,而且能培养学生的自主意识,增强他们的自信心.例1 计算:(1)(-18)÷6;(2)(-12)÷⎝⎛⎭⎫-14;(3)⎝⎛⎭⎫-15÷⎝⎛⎭⎫-25;(4)625÷⎝⎛⎭⎫-45;(5)65÷⎝⎛⎭⎫-310. 解:(1)(-18)÷6=-18÷6=-3;(2)(-12)÷⎝⎛⎭⎫-14=+⎝⎛⎭⎫12÷14=48;(3)⎝⎛⎭⎫-15÷⎝⎛⎭⎫-25=+⎝⎛⎭⎫15×52=12; (4)625÷⎝⎛⎭⎫-45=-⎝⎛⎭⎫625×54=-310; (5)65÷⎝⎛⎭⎫-310=-⎝⎛⎭⎫65×103=-4. 先请学生观察、讨论几个小题用哪种法则比较适合,在学生口述的基础上,再请学生动手自己解决.设计说明本例题不但是对例1的深化,而且通过对多个数的乘除混合运算的分析,进一步寻找乘除法符号的一般规律,为今后研究有理数的混合运算打下基础.例2 计算:(1)-3.5÷78×⎝⎛⎭⎫-34;(2)⎝⎛⎭⎫-35×⎝⎛⎭⎫-312÷⎝⎛⎭⎫-114÷3. 解:(1)-3.5÷78×⎝⎛⎭⎫-34=72×87×34=3; (2)⎝⎛⎭⎫-35×⎝⎛⎭⎫-312÷⎝⎛⎭⎫-114÷3=-⎝⎛⎭⎫35×72×45×13=-1425. 首先引导学生联想多个有理数的乘法法则,因为除法可以转化为乘法,类比可以得出多个有理数的乘除混合运算的具有一般性的算法,即多个非零有理数的乘除混合运算,结果的符号由负因数的个数决定,负因数有奇数个时结果为负,负因数有偶数个时结果为正,结果的绝对值可由将除法转化为乘法求得.在学生独立解决本例题的基础上,请学生对比例1和例2,联系前面学习的有理数的乘法,得出乘除法的更具有一般性的算法,即不管是两个数还是多个非零有理数,不管是乘法、除法、还是乘除混合运算,结果的符号都由负因数的个数决定.3.课堂练习、巩固提高(1)写出下列各数的倒数:①-47;②0;③-5;④-1;⑤3.2. (2)计算:①84÷(-7);②(-65)÷0.13;③⎝⎛⎭⎫-35÷⎝⎛⎭⎫-25;④0.25÷⎝⎛⎭⎫-23×⎝⎛⎭⎫-135;⑤⎝⎛⎭⎫-34×⎝⎛⎭⎫-112÷⎝⎛⎭⎫-214. 答案:(1)①-74;②0没有倒数;③-15;④-1;⑤516. (2)①-12;②-500;③32;④35;⑤-12. 四、总结反思1.以学生讨论的方式对本节课进行总结:你有哪些收获?得到哪些启示?2.你还需要我的帮助吗?。

浙教版七年级上册数学2.4有理数的除法

浙教版七年级上册数学2.4有理数的除法

12.有理数 a 在数轴上对应点的位置如图所示, 请比较 a,1a,-a,-1a的大小,并用“<”连接.
解:1a<a<-a<-1a.
13.【中考·杭州】计算 6÷-12+13,方方同学的计算过程如下: 原式=6÷-12+6÷13=-12+18=6.请你判断方方的计算 过程是否正确,若不正确,请你写出正确的计算过程.
答案显示
方方的计算过程不正确. 正确的计算过程如下: 13 原式=6÷-36+26=6÷-16 =-36.
14 B种债券收益率大一些.
习题链接
提示:点击 进入习题
答案显示
15 1
17
(1)最大值为15 16
(2)最小值为-5
原式的倒数为16-134+23-27÷-412 =16-134+23-27×(-42) =-7+9-28+12=-14. 故原式=-114.(方法不唯一)
(3)根据程序可知,当输入的数为-2 时,运算为(-2)÷(- 4)×(-80)=-40,而-40=40<100,故继续按程序计算, 代入的数为-40,得(-40)÷(-4)×(-80)=-800,-800= 800>100,则输出的数为-800.
【答案】 -800
10.计算: (1)16-18+112÷-214; 解:原式=16-18+112×(-24)=234×(-24)=-3. (2)18÷12-78×-13;
解:方方的计算过程不正确.正确的计算过程如下: 原式=6÷-36+26=6÷-16=-36.
【点拨】本题主要考查有理数及其运算.有理数的除法是没 有分配律的,因此方方的计算过程不正确.正确的算法是先 进行括号里的加法运算,再进行除法运算. 【答案】 36
14.某债券市场发行两种债券,A种债券面值为100元,买入价 也为100元,一年到期本利和为113元;B种债券面值也是 100元,但买入价为88元,一年到期本利和为100元.如果 收益率=(到期本利和-买入价)÷买入价×100%,试分析, 哪种债券收益率大一些?

【浙教版】七年级数学上册分层训练附答案:第2章有理数的运算2.4有理数的除法

【浙教版】七年级数学上册分层训练附答案:第2章有理数的运算2.4有理数的除法

2.4 有理数的除法1.两数相除,同号得____________,异号得____________,并把绝对值____________.2.零除以任何一个不等于零的数都得____________.3.除以一个数(不等于零),等于乘这个数的____________.A 组 基础训练1.(衢州中考)-4÷49×(-94)的值为( ) A .4 B .-4 C.814 D .-8142.下列运算:①1÷(-2)=-2;②(-2)÷12=1;③(-12)÷13×3=-12;④(-13)÷(-6)=2.其中正确的有( )A .0个B .1个C .2个D .3个3.有理数a ,b 在数轴上的对应点如图所示,则下列式子错误的是( )第3题图A .ab>0B .a +b<0 C.a b<1 D .a -b<0 4.下列四个算式中,误用分配律的是( )A .12×⎝ ⎛⎭⎪⎫2-13+16=12×2-12×13+12×16 B.⎝ ⎛⎭⎪⎫2-13+16×12=2×12-13×12+16×12 C .12÷⎝ ⎛⎭⎪⎫2-13+16=12÷2-12÷13+12÷16 D.⎝ ⎛⎭⎪⎫2-13+16÷12=2÷12-13÷12+16÷12 5.两个因数相乘,其中一个因数是35,积是-1,那么另一个因数是( ) A.35 B.53 C .-35 D .-536.下列说法不正确的是( )A .一个不为0的数与它的倒数之积是1B .一个不为0的数与它的相反数的商是1C .两个数的商为-1,这两个数互为相反数D .两个数的积为1,这两个数互为倒数7.填空:(1)(-4)×(____________)=-2;(2)(-14)÷(____________)=-2;(3)(____________)÷7=-3;(4)(____________)÷(-88.9)=0.8.计算:(1)(-56)÷(-14)=____________;(2)(-317)÷1112=____________; (3)-12÷78×(-34)=____________. (4)15÷(15-13)=____________. 9.(1)一个数与-34的积为12,则这个数是____________; (2)-214除以一个数的商为-9,则这个数是____________; (3)一个数的25是-165,则这个数是____________; (4)-114的倒数与4的相反数的商是____________. 10.(1)对于有理数a ,b ,定义⊕运算如下:a⊕b =ab a -b-3,则4⊕6=____________. (2)若a ,b 互为相反数且都不为0,则(a +b -2)×⎝ ⎛⎭⎪⎫a b +1=____________;若a ,b 互为相反数,c ,d 互为倒数,则(a +b +d )÷1c=____________.第10题图(3)小海在自学了简单的电脑编程后,设计了如图所示的程序,若他输入的数是-2,那么执行了程序后,输出的数是____________.11.计算:(1)⎝ ⎛⎭⎪⎫16-18+112÷⎝ ⎛⎭⎪⎫-124;(2)18÷⎝ ⎛⎭⎪⎫12-78×⎝ ⎛⎭⎪⎫-13;(3)(-21)÷7×17÷⎝ ⎛⎭⎪⎫-67.B 组 自主提高12.某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+8,-3,+12,-7,-10,-3,-8,+1,0,+10.(1)这10名同学中最高分是多少?最低分是多少?(2)这10名同学中,低于80分所占的百分比是多少?(3)这10名同学的平均成绩是多少?13.某债券市场发行两种债券,A 种债券面值为100元,买入价也为100元,一年到期本利和为113元;B 种债券面值也是100元,但买入价为88元,一年到期本利和为100元.如果收益率=(到期本利和-买入价)÷买入价×100%,试分析,哪种债券收益率大一些?C 组 综合运用14.(1)用加、减、乘、除号和括号将3,6,-8,5这四个数(每个数都要用且只用一次)进行加减乘除四则运算使结果为24,请你写出两个算式.(2)已知有理数a ,b ,c 满足|a|a +|b|b +|c|c =-1,求|abc|abc的值.参考答案2.4 有理数的除法【课堂笔记】1.正 负 相除 2.零 3.倒数【分层训练】1.C 2.A 3.C 4.C 5.D 6.B7.(1)12(2)7 (3)-21 (4)0 8.(1)4 (2)-247 (3)37 (4)-22529.(1)-23 (2)14 (3)-8 (4)1510.(1)-15 (2)0 1 (3)-800 【解析】(-2)÷(-4)×(-80)=-40,|-40|<100,(-40)÷(-4)×(-80)=-800,|-800|>100,∴输出的数是-800.11.(1)原式=324×(-24)=-3. (2)原式=18÷⎝ ⎛⎭⎪⎫-38×⎝ ⎛⎭⎪⎫-13=18×83×13=19. (3)原式=(-3)×17×⎝ ⎛⎭⎪⎫-76=12. 12.(1)最高分是80+12=92(分),最低分是80-10=70(分).(2)低于80分的有5个,所占的百分比是5÷10×100%=50%.(3)平均分是80+(8-3+12-7-10-3-8+1+0+10)÷10=80(分).13.A 种债券的收益率为(113-100)÷100×100%=13%,B 种债券的收益率为(100-88)÷88×100%≈13.6%,所以B 种债券收益率大.14.(1)答案不唯一,如(-8)÷(3-5)×6=24,6÷(3-5)×(-8)=24等. (2)∵|a|a的值为+1或-1,同理|b|b ,|c|c 的值为+1或-1,又∵|a|a +|b|b +|c|c=-1,∴其中两数为-1,一数为+1,不妨设|a|a =|b|b =-1,|c|c =1,则a <0,b <0,c >0,∴abc >0,∴|abc|abc=1.。

浙教版-7年级-上册-数学-第2章《有理数的运算》2.4 有理数的除法-每日好题挑选

浙教版-7年级-上册-数学-第2章《有理数的运算》2.4 有理数的除法-每日好题挑选

C、两数相乘,同号得正,故选项错误;D、若 a>b,a<0,则 >0,故选项错误.
【例 2】选:②④
【解答】解:① 若|a|=a,则 a=0 或 a 为正数,错误;② 若 a,b 互为相反数,且 ab≠0,则 =﹣1,正确;
③ 若 a2=b2,则 a=b 或 a=﹣b,错误;④ 若 a<0,b<0,所以 ab﹣a>0,则|ab﹣a|=ab﹣a,正确;
4
4
7 12 4
(6)-1。
3
1-
14 2
2
【例 5】(1) ÷ 4 =- × =- .即这个数是- ;
2
23 3
3
1
911
1
(5)-2 ÷(-9)= × = .即这个数是 。
4
494
4
【例 6】解:2*(-3)=2×(-3)÷[2+(-3)]-2×2+(-3)=-1,
1
1
(-1)*(-1)=(-1)×(-1)÷[(-1)+(-1)]-2×(-1)+(-1)= ,所以[2*(-3)]*(-1)的值为 。
浙教版-7 年级-上册-数学-第 2 章《有理数的运算》
2.4 有理数的除法-每日好题挑选
【例 1】在下列各题中,结论正确的是( )
A、若 a>0,b<0,则 >0
B、若 a>b,则 a﹣b>0
C、若 a<0,b<0,则 ab<0
D、若 a>b,a<0,则 <0
【例 2】下列说法,其中正确的有

① 若|a|=a,则 a=0; ② 若 a,b 互为相反数,且 ab≠0,则 =﹣1;
3
(2) 4 ÷ 7 ÷ 6 = 4 × 3 × 7 =- ;
2
1
2
3
(3)- ×(-4)÷(- )=2×(- )=-3;

浙教版2019-2020学年七年级数学上册第2章有理数的运算2.4有理数的除法(知识清单+经典例题+

浙教版2019-2020学年七年级数学上册第2章有理数的运算2.4有理数的除法(知识清单+经典例题+

浙江版2019-2020学年度七年级数学上册第2章有理数的运算2.4有理数的除法【知识清单】1、有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不为0的数都得0. 2、有理数的除法与乘法的转换:除以一个数(不等于0),等于乘以这个数的倒数.且0不能作除数,否则无意义. 3、解决含有除法的题目一般步骤:(1)先将除法转化乘法;(2)再根据乘法法则和运算律进行计算. 【经典例题】例题1、等式[(-7.5) -□]÷(-221)=0中,□表示的数是 . 【考点】有理数的除法,简单方程.【分析】根据有理数的除法,可得答案. 【解答】 [(-7.5)-□]÷(-221)=0,得 (-7.5) -□=0, 解得□=-7.5, 故答案为:-7.5.【点评】本题考查了有理数的除法,零除以任何非零的数都得零. 例题2、计算:(-15)÷(-5)×51= . A .4 B .10 C .12 D .20 【考点】有理数的除法.【分析】先把除法转化为乘法,再根据有理数的乘法运算法则进行计算即可得解. 【解答】(-15)÷(-5)×51 =(﹣15)×(﹣51)×51 =15×51×51 =53. 故答案为:53.【点评】本题考查了有理数的除法,有理数的乘法,是基础题,要注意按照从左到右的顺序依次进行计算,不能随意简化. 【夯实基础】1、711-的倒数与7的相反数的商为( )A .-8个B .8C .81-2、下列运算中,正确的是( )A .-21÷(-3) =-7B .-6 C .(-0.375)÷(-53、若两个有理数的和除以这两个有理数的积,其商为0,则这两个数为( )A .互为倒数B .互为相反数C .都为0D .互为相反数且都不为中“□”的所在的位置,填入下列运算符号,计算出来的值最小的是( )A. +B. -C. ×D. ÷5、若a ,b ,c 为非零有理数,则acacb b aa ++可能为 . 6、有理数a 、b 在数轴上是位置如图所示,则ba ab- 0. 7、若a +5没有倒数,则a = ;在计算24÷a 时,误将“÷”看成“+”,结果得16,而24÷a 的正确结果是________ 8、计算:(1)-7÷(-1121)×76×(-612)÷11;(2)-15÷)517()65()65(-÷⎥⎦⎤⎢⎣⎡-⨯-);(3)1251-÷)216132(-+ ; (4)-3÷(83-)+15÷(65-).9、有若干数,第一个数记作a 1,第二个数记作a 2, 第三个数记作a 3,…,第n 个数记作a n , 若a 1=-32,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”. 第6题图(1)试计算a 2= , a 3= ; (2)求a 2019的值.【提优特训】10、下列四个算式中,误用分配律的是( ) A .-24×(-81+61-41)=24×81-24×61+24×41B .(-81+61-41)×(-48)=81×48-61×48+41×48 C .-24÷(-81+61-41)=24÷81-24÷61+24÷41D .(-81+61-41)÷(-24)=81÷24-61÷24+41÷24 11、若a +b <0,ba<0,则a ,b 为 ( ) A .异号0 B .都小于0 C .异号,且正的绝对值大 D .异号,且负的绝对值大 12、已知a 是负整数,则a ,-a ,a1的大小关系为( ) A .-a >a 1>a B .-a >a 1≥a C .a >a 1>-a D . a1>a >-a 13、若a ,b 是互为相反数且都不等于零,则(a -3+b )×(ba+3) A .6 B .3 C .0 D .-614、已知两个数的积为-31,若其中一个因数为615-,则另一个数为 . 15、若b a 36122-++=0,则ba ab+的值为 . 16、在11.2与它的倒数之间有a 个整数,在11.2与它的相反数之间有b 个整数.求(a -b )÷(a +b )+17、若a 、b 互为相反数(a 、b 均不为0),c 、d 互为倒数,且032=+m ,求m c d bam b a 63299-++ 的值.18、计算:(1))202011()411()311()211(1-÷⋅⋅⋅÷-÷-÷-÷;(2) (-2161+-43125+)÷(121-)19、阅读下列材料,然后解决问题:计算:(481-)÷(3281-61+43-).解法一:原式=(481-)÷32-(481-)÷81+(481-)÷61-(481-)÷43 =-321+6181-+361=28811; 解法二:原式=(481-)÷[(3261+)+(81-43-)]=(481-)÷(6587-)=481-×(-24)=21;解法三:原式的倒数为(3281-61+43-)÷(481-)=(3281-61+43-)×(-48)=-32+6-8+36 =2, 故原式=21. 解决问题:上述三种解法得出的结果不同,肯定有错误的,你认为哪种解法是错误的,在正确的解法中,你认为哪种解法比较简捷? 然后请你解答下列问题: 计算:(361-)÷(61-125+94-41+).20、(1)判断[])9()27(36-÷-+-与)9()27()9()36(-÷-+-÷-的结果是否相等? (2)计算(-72)÷(-24-8)与(-72)÷(-24)+(-72)÷(-8),观察其结果是否相等? (3)总结(1)、(2)的规律,我们得到(a +b )÷c _____,a ÷c + b ÷c ;c ÷(a +b ) _______ c ÷a + c ÷b (填入“=”或“≠”),其中(2)的计算结果说明:除法的分配律_____(填入“成立”或“不成立”).21、已知a =201820182018201920192019+⨯⨯-, b =201920192019202020202020+⨯⨯-, c =202020202020202120212021+⨯⨯-,求(a +b +c )÷abc 的值.【中考链接】22.(2018•株洲)如图,52的倒数在数轴上表示的点位于下列两个点之间( ) A. 点E 和点FB. 点F 和点GC. 点F 和点GD. 点G 和点H 23、(2019•山东省聊城市•3分)计算:(2131--)÷54= . 24、(2019•浙江嘉兴•4分)数轴上有两个实数a ,b ,且a >0,b <0,a +b <0,则四个数a ,b ,-a ,-b 的大小关系为 (用“<”号连接).第22题图参考答案1、D2、C3、D4、C5、3或1或-16、<7、-5,-3 10、C 11、D 12、B 13、D 14、6 15、-3 22、D 23、32- 24、b <-a <a <-b 8、计算:(1)-7÷(-1121)×76×(-612)÷11;(2)-15÷)517()65()65(-÷⎥⎦⎤⎢⎣⎡-⨯-);(3)1251-÷)216132(-+ ; (4)-3÷(83-)+15÷(65-).解:(1)原式=-7×1311×76×613×111=-1; (2)原式=15×3652536⨯=3; (3)原式=1217-÷)636164(-+ =1217-÷31=-441; (4)原式=3×38+15×(56-) =8-18=-10.9、有若干数,第一个数记作a 1,第二个数记作a 2, 第三个数记作a 3,…,第n 个数记作a n , 若a 1=-32,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”.(1)试计算a 2= 53 , a 3= 25; (2)求a 2019的值.解:由题意得:a 1=-32,a 2不难发现-32,53,25,这三个数反复出现. ∵2019÷3=673,其余数为0, 16、在11.2与它的倒数之间有a 个整数,在11.2与它的相反数之间有b 个整数.求(a -b )÷(a+b )+∴a =11,∵11.2的相反数为-11.2,之间的整数有-11~11共23个, ∴b =23, ∴(a -b )÷(a +b=(1117、若a 、b 互为相反数(a 、b 均不为0),c 、d 互为倒数,且032=+m ,求m c d bam b a 63299-++ 的值.解:∵a 、b 互为相反数,且a 、b 均不为0,∴a +b =0,∵c 、d 互为倒数, ∴cd =1,03=+m , ∴2m+3=0,即2m=-3. mcd ba63-+=cd m bam b a )2(332)(9⨯-++ =0-3-3×(-3)×1 =-3+9=6. 18、计算:(1))202011()411()311()211(1-÷⋅⋅⋅÷-÷-÷-÷;(2) (-2161+-43125+)÷(121-) 解:(1)原式=202020194332211÷⋅⋅⋅÷÷÷÷=202020192020342321=⨯⋅⋅⋅⨯⨯⨯⨯. (2)原式=(-2161+-43125+)⨯(-12) =(-21)⨯(-12)61+⨯(-12)-43⨯(-12)125+⨯(-12) =6-2+9-5=8.19、阅读下列材料,然后解决问题:计算:(481-)÷(3281-61+43-).解法一:原式=(481-)÷32-(481-)÷81+(481-)÷61-(481-)÷43 =-321+6181-+361=28811; 解法二:原式=(481-)÷[(3261+)+(81-43-)]=(481-)÷(6587-)=481-×(-24)=21;解法三:原式的倒数为(3281-61+43-)÷(481-)=(3281-61+43-)×(-48)=-32+6-8+36 =2, 故原式=21. 解决问题:上述三种解法得出的结果不同,肯定有错误的,你认为哪种解法是错误的,在正确的解法中,你认为哪种解法比较简捷? 然后请你解答下列问题:计算:(361-)÷(61-125+94-41+).解:解法一是错误的.在正确的解法中,解法三比较简捷. 原式的倒数为(61-125+94-41+)÷(361-) =(61-125+94-41+)×(-36) =6-15+16-9=-2. 故原式=21-. 20、(1)判断[])9()27(36-÷-+-与)9()27()9()36(-÷-+-÷-的结果是否相等? (2)计算(-72)÷(-24-8)与(-72)÷(-24)+(-72)÷(-8),观察其结果是否相等? (3)总结(1)、(2)的规律,我们得到(a +b )÷c _____,a ÷c + b ÷c ;c ÷(a +b ) _______ c ÷a + c ÷b (填入“=”或“≠”),其中(2)的计算结果说明:除法的分配律_____(填入“成立”或“不成立”). (1)相等,其结果均为7. (2)不相等. (-72)÷(-24-8)=49;(-72)÷(-24)+(-72)÷(-8)=12. 49≠12. (3)=;≠;不成立. 21、已知a =201820182018201920192019+⨯⨯-, b =201920192019202020202020+⨯⨯-, c =202020202020202120212021+⨯⨯-,求(a +b +c )÷abc 的值. 解:a =201820182018201920192019+⨯⨯-=12019201820182019-=⨯⨯-,b =201920192019202020202020+⨯⨯-=12020201920192020-=⨯⨯-,c =202020202020202120212021+⨯⨯-=12021202020202021-=⨯⨯-.∴ (a +b +c )÷abc =(-1-1-1)÷(-1)⨯(-1)⨯(-1) =-3÷(-1)=3.。

苏科版七年级上册数学 第2章 有理数的乘法与除法

苏科版七年级上册数学 第2章 有理数的乘法与除法

负数,所以这两个数都是负数.
感悟新知
总结
知2-讲
有理数的运算法则直接运用进行有理数的 运算,逆用时主要是判断符号的规律.特别注意 答案的多样性.
感悟新知
计例算3:(1)(-42)÷(-6);
(2)(-12)÷;
(3) (4)0÷(-3.72);
+
1 2
((56))1(-÷4(-.7)1÷.51);. -1
正数除以负数 8÷(-4) =-2 负数除以负数 (-8)÷(-4) =2
8 ( 1) =-2 知1-讲 4
(8)( 1) =2 4
零除以负数 0÷(-4) =0
0( 1) =0 4
因为(-2)×(-4)=8 除以所一以个8÷负(-数4等)=于-乘2 这个负 数的因倒为数20×. (-4)=0-8
8 (4) 8( 1) 4
知2-讲
特别提醒 分数线既代表除号,又有括号的功能. 最简分数的条件: (1)分子、分母同为正号; (2) 分子、分母不能再约分,即分子、分母互质.
感悟新知
知2-练
例若2两个有理数的商是正数,和为负数,则
这两个数( ) A.一正一负
C B.都是正数
C.都是负数D.不能确定
导引:若商为正数,则这两个数同号,又因为和为
(2)(-12)÷ (3)
+
1 2
=(-12)(+2)=-24.
(4)0÷(-3.721)=43 0.
3
1 2
=(-
7 4
)(-
7 2

((56))1(-÷4(-.7=)1÷(.51-)==741-)÷4.7.
2 7
1 2
.
知2-练

有理数的除法(第2课时 有理数加减乘除混合运算)课件七年级数学上册(人教版2024)

有理数的除法(第2课时 有理数加减乘除混合运算)课件七年级数学上册(人教版2024)
人教版(2024)七年级数学上册 第二章 有理数的运算
2.2.2 有理数的除法
第二课时 有理数加减乘除混合运算
目录/CONTENTS
学习目标
情景导入
新知探究
分层练习
课堂反馈
课堂小结
学习目标
1.
通过类比小学学过的运算顺序,能得出有理数的运算顺
序,按照有理数的运算顺序,正确熟练地进行有理数的加、
减、乘、除混合运算,提高学生的运算能力(重点).
-22 .

11.

【新视角·规律探究题】 a 是不为1的有理数,我们把


称为 a 的差倒数.如:2的差倒数是
=-1,-1的差倒




数是
= .已知 a1=- , a2是 a1的差倒数, a3是
−(−)


a2的差倒数, a4是 a3的差倒数,……,以此类推,则
a2 024=


.
只能用一次),使得运算结果为24或-24,其中红色扑克牌代表负数,黑色扑克牌
代表正数,A,J,Q,K分别代表1,11,12,13.
(1)如果抽到的四张牌是“黑桃3,4,10和红桃6”,请你运用上述规则写出三个
不同的算式,使其结果等于24或-24;
解: 答案不唯一.(1)(10-4)-3×(-6)=24;3×(-6)-(10-4)=-24;
2.有理数的加减乘除混合运算
问题:下列式子含有哪几种运算?先算什么,后算什么?
第二级运算
乘除运算
1
3 50 2 1 ?
5
第一级运算
加减运算
典例剖析
例7
计算:
(1) −8+4÷(−2);

七年级上册数学目录

七年级上册数学目录

七年级上册数学目录(总7页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除七年级上册第1章从自然数到有理数1.1从自然数到分数 1.2有理数 1.3数轴 1.4绝对值 1.5有理数的大小比较第2章有理数的运算2.1有理数的加法 2.2有理数的减法 2.3有理数的乘法 2.4有理数的除法2.5有理数的乘方 2.6有理数的混合运算 2.7准确数和近似数 2.8计算器的使用第3章实数3.1平方根 3.2实数 3.3立方根 3.4用计算器进行数的开方 3.5实数的运算第4章代数式4.1用字母表示数 4.2代数式 4.3代数式的值 4.4整式 4.5合并同类项4.6整式的加减第5章一元一次方程5.1一元一次方程 5.2一元一次方程的解法 5.3一元一次方程的应用5.4问题解决的基本步骤第6章数据与图表6.1数据的收集与整理 6.2统计表 6.3条形统计图和折线统计图 6.4扇形统计图第7章图形的初步知识7.1几何图形 7.2线段、射线和直线 7.3线段的长短比较 7.4角与角的度量7.5角的大小比较 7.6余角和补角 7.7相交线 7.8平行线七年级下册第1章三角形的初步知识1.1 认识三角形 1.2 三角形的角平分线和中线 1.3 三角形的高 1.4 全等三角形1.5 三角形全等的条件 1.6 作三角形第2章图形和变换2.1 轴对称图形 2.2 轴对称变换 2.3 平移变换 2.4 旋转变换 2.5 相似变换2.6 图形变换的简单应用第3章事件的可能性3.1 认识事件的可能性 3.2 可能性的大小 3.3 可能性和概率第4章二元一次方程组4.1 二元一次方程 4.2 二元一次方程组 4.3 解二元一次方程组4.4 二元一次方程组的应用第5章整式的乘除5.1 同底数幂的乘法 5.2 单项式的乘法 5.3 多项式的乘法5.4 乘法公式 5.5 整式的化简 5.6 同底数幂的除法 5.7 整式的除法第6章因式分解6.1 因式分解 6.2 提取公因式法 6.3 用乘法公式分解因式 6.4 因式分解的简单应用第7章分式7.1 分式 7.2 分式的乘除 7.3 分式的加减 7.4 分式方程八年级上册第1章平行线1.1同位角、内错角、同旁内角 1.2平行线的判定 1.3平行线的性质1.4平行线之间的距离第2章特殊三角形2.1等腰三角形 2.2等腰三角形的性质 2.3等腰三角形的判定 2.4等边三角形2.5直角三角形 2.6探索勾股定理 2.7直角三角形全等的判定第3章直棱柱3.1认识直棱柱 3.2直棱柱的表面展开图 3.3三视图 3.4由三视图描述几何体第4章样本与数据分析初步4.1抽样 4.2平均数 4.3中位数和众数 4.4方差和标准差 4.5统计量的选择与应用第5章一元一次不等式5.1认识不等式 5.2不等式的基本性质 5.3一元一次不等式 5.4一元一次不等式组第6章图形与坐标6.1探索确定位置的方法 6.2平面直角坐标系 6.3坐标平面内的图形变换第7章一次函数7.1常量与变量 7.2认识函数 7.3一次函数 7.4一次函数的图象7.5一次函数的简单应用八年级下册第1章二次根式1.1 二次根式 1.2 二次根式的性质 1.3 二次根式的运算第2章一元二次方程2.1 一元二次方程 2.2 一元二次方程的解法 2.3 一元二次方程的应用第3章频数及其分布3.1 频数与频率 3.2 频数分布直方图 3.3 频数分布折线图第4章命题与证明4.1 定义与命题 4.2 证明 4.3 反例与证明 4.4 反证法第5章平行四边形5.1 多边形 5.2 平行四边形 5.3 平行四边形的性质 5.4 中心对称5.5 平行四边形的判定 5.6 三角形的中位线 5.7 逆命题和逆定理第6章特殊平行四边形与梯形6.1 矩形 6.2 菱形 6.3 正方形 6.4 梯形九年级上册第1章反比例函数1.1 反比例函数1.2 反比例函数的图象和性质1.3 反比例函数的应用● 小结● 目标与评定第2章二次函数2.1 二次函数2.2 二次函数的图象● 阅读材料用计算机画二次函数的图象2.3 二次函数的性质2.4 二次函数的应用● 小结● 目标与评定第3章圆的基本性质3.1 圆3.2 圆的轴对称性3.3 圆心角3.4 圆周角● 阅读材料生活离不开圆3.5 弧长及扇形的面积3.6 圆锥的侧面积和全面积● 小结● 目标与评定第4章相似三角形4.1 比例线段4.2 相似三角形4.3 两个三角形相似的判定4.4 相似三角形的性质及其应用4.5 相似多边形4.6 图形的位似● 课题学习精彩的分形● 小结● 目标与评定九年级下册第1章解直角三角形1.1 锐角三角函数1.2 有关三角函数的计算1.3 解直角三角形● 课题学习会徽中的数学● 小结● 目标与评定第2章简单事件的概率2.1 简单事件的概念2.2 估计概率2.3 概率的简单应用● 小结● 目标与评定第3章直线与圆、圆与圆的位置关系3.1 直线与圆的位置关系3.2 三角形的内切圆3.3 圆与圆的位置关系● 小结● 目标与评定第4章投影与三视图4.1 视角与盲区4.2 投影4.3 简单物体的三视图● 小结。

2.4 有理数的除法七年级上册数学浙教版

2.4 有理数的除法七年级上册数学浙教版
(1)0不能作为除数。(2)两个有理数相除,若商为
1,则这两个数相等;若商为−1,则这两个数互为相反数。
典例1 计算:
(1)(−18) ÷ 6;
解:(−18) ÷ 6 = −(18 ÷ 6) = −3。
1
3
(2)(−12) ÷ (− );
解:
(3)0 ÷ (−1.8)。
解:0 ÷ (−1.8) = 0。
2
2
3
= 4 − 4 = 0。(先算乘除后算加减)
= −28。
6
8
6
13
1
(2)(−0.25) ÷ 1 ;
4
1
1
1
解:(−0.25) ÷ 1 = −( ÷ 1 ) =
4
4
4
1
(3)−8 ÷ (− ) ÷ (−10)。
4
1
解:−8 ÷ (− ) ÷ (−10) = −(8 ×
4
(1)(−2 ) ÷ (−
4
3
= 。
1
4
4
5

1
)
10
1
5
−( × ) = − 。
=−
有括号的先算括号里面的,同级运算中,按照从左往右的顺
序计算。
典例3 计算:
1ቤተ መጻሕፍቲ ባይዱ
7
(1)11 ÷ × (−
1
7
解:11 ÷ × (−
1
(2)(− )
2
4
);
11
4
)
11
= −(11 × 7 ×
× (−8) + (−6) ÷
1
2
解:(− ) × (−8) + (−6) ÷

2.2.2有理数的除法《有理数的加、减、乘、除混合运算》2025学年人教版数学七年级上册

2.2.2有理数的除法《有理数的加、减、乘、除混合运算》2025学年人教版数学七年级上册
的特征合理选择运算定律进行简便运算,同时计算时注意正负号.
典例解析
二、有理数混合运算的应用
例8 某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利32万元,
7~10月平均每月盈利21.7万元,11~12月平均每月亏损2.3万元,这个公司去年
总盈亏情况如何?
解:记盈利额为正数,亏损额为负数,由:
A. 6÷(3×2)和 6÷3×2
B. (-120+400)÷20和-120+400÷20
C. -3-(4-7)和-3-4-7
D. -4×(2÷8)和-4×2÷8
2.计算:
(1) 23 × (-5) - (-3) ÷
3
128
解:原式 = 23×(-5) - (-3) ×
(2) -7×(-3)×(-0.5)+(-12)×(-2.6)
2
=
-
2
(
3
2
(
3
1
10
1
6
2
5
+ - )
-
1
10
-
1
10
1
6
2
5
1
6
2
5
+ - )÷
+ - ) ×(-30)
= -20 +3 -5 +12
= -10

1
(- )
30
2
÷(
3
-
1
10
1
6
1
(- )
30
2
5
+ - )=
1
10
简便计算,
先取倒数
举一反三
3.
1
计算:(- )
42
1
÷(
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档