第6章基本放大电路
第6章 放大电路的频率响应
讨论一
为什么波特图开阔了视野?同样长度的横轴, 为什么波特图开阔了视野?同样长度的横轴,在 单位长度不变的情况下,采用对数坐标后, 单位长度不变的情况下,采用对数坐标后,最高频 率是原来的多少倍? 率是原来的多少倍? O 10 10 20 30 102 103 40 50 104 105 60 106 f lg f
' ' C π = C π + Cµ
β0
rb'e
≈
I EQ UT
=?
二、电流放大倍数的频率响应
1. 适于频率从0至无穷大的表达式
& Ic & β= & Ib
U CE
' ' 因为k = − g m RL = 0, 所以 C π = C π + Cµ
& β=
& g mU b'e 1 & U b'e [ + jω (Cπ + Cµ )] rb'e
Vi -
ω0
图06.01RC低通电路
1 Av = 1+ ( f
f0 = fH =
fH
)2
1 2πRC
ϕ = −arctg( f f ) H
由以上公式可做出如图06.02所示的RC低 通电路的近似频率特性曲线:
Av = 1 1+ ( f
fH
)2
ϕ = −arctg( f f ) H
图06.02 RC低通电路的频率特性曲线
讨论二
电路如图。 电路如图。已知各电阻阻 静态工作点合适, 值;静态工作点合适,集电 极电流I 极电流 CQ=2mA;晶体管的 ; rbb’=200Ω,Cob=5pF, , , fβ=1MHz,β0=80。 。 试求解该电路中晶体管高 频等效模型中的各个参数。 频等效模型中的各个参数。
第6章 级联放大电路
ri1 AU R S ri1
二、多级放大电路的动态分析(了解)
(2)开路电压法: 将后一级与前一级开路,计算前一级的开路 电压增益和输出电阻,并将其作为信号源内阻加以考虑,共 同作用到后一级的输入端。(即将前一级输出电阻看成后一级 的信号源内阻)
+Vcc RB1 RC1 RB2 RC2 RB2 RC2 +Vcc
三、多级放大电路中频特性分析举例
多级放大电路的中频特性指标:与单级相同,有电压增益、输 入电阻、输出电阻。
例题:两级放大电路参数如 图所示。 已知三极管的参数为: hfe1= hfe2 =hfe=100;
UBE1=UBE2=0.7V。 要求:分别用输入电阻法 和开路电压法计算总电压 增益。
解:方法一:用输入电阻法求电压增益
VT1 RS + us + ui -
+ uo1 ro1
VT2 RE2
+ uo -
ro1
VT2
+ uo -
+ uo1 (b)开路电压法
(a) 多级放大电路图
+Vcc RB1 RC1 RB2 RC2 RB2 RC2
+Vcc
VT1 RS + us + ui -
+ uo1 ro1
VT2 RE2
+ uo -
3. 直接耦合
级间耦合方式
概念:各级电路之间直接连接或采用对直流呈导通特性的电 阻、二极管等元件相接。
•直接耦合的特点
优点:具有良好的低频特性, 可放大变化缓慢的信号,无 耦合大电容,便于集成。
直接耦合放大电路
级间耦合方式
4. 光电耦合
概念:两级间利用光电耦合器来传送信号的耦合方式称光电耦合。
电工电子技术_基本放大电路
8.1
7
共发射极放大电路
图8.3
放大电路动态工作电流、电压的变化情况
8.2
8
共发射极放大电路的静态分析
直流通路及静态工作点
8.2.1
放大电路不加输入信号(ui=0)时的 状态称为静态。静态时放大电路中只有 直流电源作用,由此产生的所有电流、 电压都为直流量,所以静态又称为直流 状态。静态时三极管各极电流和极间电 压分别用IB、UBE、IC、UCE表示。这些量 在三极管的输入、输出特性曲线上各确 定了一点,该点称为静态工作点,简称 Q点。 静态时直流电流通过的路径称为直 流通路。由于C1、C2的隔直流作用,放 大电路的直流通路如图8.4所示。
这里直流分量是正常放大的基础,交流分量是放大的对象,交流量搭 载在直流上进行传输和放大。如果三极管工作总是处于放大状态,它们的 变化规律是一样的。放大电路的动态分析关注的就是交流信号的传输和放 大情况,动态分析的电路指标主要包括电压放大倍数、输入电阻、输出电 阻等。
8.3
12
共发射极放大电路的动态分析
图8.1
共发射极放大电路
8.1
5
共发射极放大电路
2.各元器件的作用 (1)晶体管VT (2)集电极电源EC (3)集电极电阻RC (4)基极电源EB和基极偏置电阻RB (5)电容C1和C2 由于该电路使用两组电源,很不经 济。若只使用电源EC,将RB连到EC上, 只要适当调整RB阻值,保证发射结正偏 ,产生合适的基极偏流IB,就可省掉电 源EB。另外,为了使作图简洁,常不画 出电源回路,只标出EC正极对地的电位 值UCC和极性(“+”或“-”),如图8.2 所示。
图8.8
共发射极放大电路的微变等效电路
8.3
第6章级联放大电路
Rs
+ us -
ri1
VT1 +
+ ui -
uo1 -
ri2
(a) 多级放大电路图
VT2 +
RE2 uo -
VT1 +
Rs
uo1 ri2
+
-
us
-
(b) 输入电阻法
级联放大器电压增益AU
AU
uo ui
AU1 AU 2
其中:
AU 1
uo1, ui
AU 2
uo uo1
考虑信号源内阻时
AUs
uo us
ui us
1/28
第6章 级联放大电路
2/28
第6章 级联放大电路
问题: 1.为什么要采用多级级联放大? 2.常用的级联耦合方式有哪几种?特点如何? 3.级联电路的动态特性主要取决于那一级?如何分析 计算?
3/28
多级放大电路
级联问题的产生原因:电压增益指标不满足要求等。需要 多次(级)放大。
Ec
Ui
Uo
出电压却缓慢变化的现象,称为零点漂移现象。
零点漂移产生的原因:温度
变换所引起的半导体器件参数的 变化是产生零点漂移现象的主要 原因,因此零点漂移也称为温度 漂移,简称温漂。
抑制零点漂移的方法:
(1)引入直流负反馈 (2)温度补偿 (3)采用差分放大电路
直接耦合放大电路
23/28
级联放大电路小结
本章主要内容如下: 一、级联目标 •提高放大电路增益。 二、耦合方式 •阻容耦合:电容与后级输入电阻一起形成阻容耦合,各级之 间直流工作点独立。不易集成。 •变压器耦合:功率传输效率高,能传递直流和变化缓慢的信 号。不易集成。 •直接耦合:能传输交流、直流信号,易集成。 •二极管光电耦合:电-光-电,不易集成。
高二物理竞赛课件基本放大电路
IB的相反变化自动抑制IC的变化。
RB
调节原理
ICQ↑
IEQ↑
UEQ(=IEQRE)↑
RC
UCC RE
ICQ↓
IBQ ↓
UBEQ(= UBQ -UEQ)↓
工作点的计算:
I BQ
UCC U BE(on)
RB (1 )RE
ICQ I BQ
RE越大,调节作用越强,Q点 越稳定 。RE过大时, 因UCEQ 过小会使Q点靠近饱和区。
2、输入信号必须加在b-e回路:uBE对iC灵敏控制作用, 只有将信号加在发射结,才能得到有效放大。
3、合理通畅的直流和交流信号通路:一是保证稳定Q点, 二是尽可能减少信号损耗。
二、直流偏置电路 作用:在信号的变化范围内,晶体管处于正常放大状态。 偏置电路提供一个适合的静态工作点Q。 对偏置电路的要求是:
基本放大电路
基本放大电路
主要介绍以下内容:
放大器的组成原理和直流偏置电路 放大器图解分析方法 放大器的交流等效电路分析方法 共集电极放大器和共基极放大器 场效应管放大器 放大器的级联
组成原理和直流偏置电路
晶体管的一个基本应用就是构成放大器。所谓放大, 是在保持信号不失真的前提下,使其由小变大、由弱 变强。其实质是放大器件的控制作用,是一种小变化 控制大变化 。 基本放大器是指由一个晶体管构成的单级放大电路。
根据输入、输出回路公共端所接的电极不同,分为共射 极、共集电极和共基极放大电路。
一、基本放大器的组成原理
电容:隔直流通交流,使放
C1 +
+
C2
+
RC
+
大器的直流偏置与信号源和 负载相互隔离。
Rs
第六章《集成运算放大电路》
U od = U od 1 U od 2 = A u1 U id A u 2 ( U id ) = 2 A u 1 U id
U od 结论:差模电压放大倍数等于 结论: Ad = = A u1 半电路电压放大倍数。 半电路电压放大倍数。 2 U id
21
§6-3.差分放大电路
(2)共模输入方式
非线性区: 非线性区:
u o只有两种可能 : + U OM或 U OM
7
§6-2.集成运放中的电流源电路
( 一) 电 流 源 概 述
一、电流源电路的特点: 电流源电路的特点:
这是输出电流恒定的电路。它具有很高的输出电阻。 这是输出电流恒定的电路。它具有很高的输出电阻。 BJT、FET工作在放大状态时 工作在放大状态时, 1、BJT、FET工作在放大状态时,其输出电流都是具有恒流特 性的受控电流源;由它们都可构成电流源电路。 性的受控电流源;由它们都可构成电流源电路。 在模拟集成电路中,常用的电流源电路有: 2、在模拟集成电路中,常用的电流源电路有: 镜象电流源、精密电流源、微电流源、 镜象电流源、精密电流源、微电流源、多路电流源等 电流源电路一般都加有电流负反馈。 3、电流源电路一般都加有电流负反馈。 电流源电路一般都利用PN结的温度特性, PN结的温度特性 4、电流源电路一般都利用PN结的温度特性,对电流源电路进 行温度补偿,以减小温度对电流的影响。 行温度补偿,以减小温度对电流的影响。
差模输入信号为Ui1 - Ui2=2 Uid 差模输入信号为U
差模输入方式
定义: 定义:Ad=Uod/2Uid
20
§6-3.差分放大电路
A u1 U od 1 = U i1
U od 2 U i2
A u2 =
高频电子线路(第六章 功率放大器)
高频功放与高频小信号放大器的比较
高频小信号 放大器 高频功放
电路性质
应用场合 放大器类型
线性
发射机送给功放的信号 接收机天线送来的信号
非线性
发射机末端 丙类 余弦脉冲
将电源的能量尽可能 以信号的形式输出
甲类
集电极输出波形 与输入信号一致 设计的目的
信号波形放大、传输
最关心的指标
电压增益
效率
8
(4)分析高频功放时应注意的事项
33
§6.3.2 集电极余弦脉冲电流iC分解
ic I c0 I cm1 cost I cm2 cos2t I cmn cosnt
根据付立叶级数原理
I c0
I c0
1 2
1 2
i
C
d (t )
把上页求出的C 表达式带入 i
算出此定积分
c
t
vo
21
vBE、iC、vC的相位关系
22
分析第四步:把输入信号,集电极电流,集电极电压对齐画出
ve BE
b
vb
VBZ –VBB
t
ib
t ic
t e vC
c
Vcm Vcm VCC t
23
分析第五步:把输入信号,集电极电流,集电极电压 画到同一个坐标中(从图中可以读出很多关系)
或 电电 流压
c 70
O
28
§6.2.2 功率关系
第一步: 分析电源输出功率 P
余弦电流脉冲ic可分解为付立叶级数:
ic I c0 I cm1 cost I cm2 cos2t I cmn cosnt
第六章放大电路中的反馈
6-22
电压负反馈的输出电阻
由以上分析可以看 出,负反馈能改善 和影响放大电路多 方面的性能,改善 与影响的程度均与 反馈深度 (1 Ao F ) 有 关。
图6-23
电流负反馈的输出电阻
22
6.5 正确引入负反馈的原则 负反馈能改善放大电路和的多方面性能。为了提高放 大电路某方面的性能,可按以下原则进行。 1.欲稳定直流量(如静态工作点),应引入直流负反馈。
.
Ui Ui U f
'
.
.
.
知,希望 U 恒定,即 RS 0 ,则 U f 的变化全部体现在 i
.
.
U i ' 上,其反馈效果显著,否则反馈作用无从体现。因此,对于串联负反
馈,信号源近似为恒压源处理。
二、电流串联负反馈
.
图6-9为电流串联负反馈组态的方块图。其中 Aiu 的含义为输出的电流 I o . (假设方向由上而下流经 RL )与静输入电压 U i' 的比值。 12
4
(a)负反馈 图6-3 正、负反馈
(b)正反馈
5
6.2
反馈放大电路的方块图及闭环放大倍数的 一般表达
一、定义:
图6-5 负反馈放大电路的方块图表示法
6
X 图中, 表示一般信号量,可能是电压,也可能是电流。 表示输入量, 表示输出量, 表示净输入量, 表 Xf Xo Xi X i' 示反馈量。 表示基本放大电路的传输系数,称开环增益,即不 A 考虑反馈作用时的增益, 定义为输出量 与净输入量 X i' Xo A 的比值。 定义为输出量 与总输入量 的比值。 表示反馈 Xi Xo F Af 网络的传输系数,称反馈系数,它定义为反馈量 与 Xf 反馈网络的输入量 的比值。
《模拟电子技术》课件第6章 集成运算放大电路
IE2
IE1Re1 Re2
VT Re2
ln
IE1 IE2
§6.2 电流源电路
IR R
IC1
T1
IE1 Re1
IB1 IB2
VCC
I C 2=IO
T2
IE2 Re2
当值足够大时
IR IC1 IE 1 IO IC2 IE 2
IO
IR
Re1 Re2
VT Re2
ln
IR IO
IO
IR
Re1 Re2
四、微电流源
R c + vo R c
VCC
Rs
+
vi1
T1 RL T2
Rs
+
vi2
Re
VEE
2、差模信号和共模信号的概念
vid = vi1 vi2 差模信号
vic
=
1 2
(vi1
vi2 )
共模信号
Avd
=
vod vid
差模电压增益
其中vod ——差模信号产生的输出
Avc
=
voc vic
共模电压增益
总输出电压
IE3
IC2
IC1
1
IC2
2
IC 1
2 IC1 β
IO
1
IR 2
2
2
IR
IC1
T1
R IB3
T3
IE3
IB1 IB2
V CC IO= IC2 = IC1
T2
IR R
IC1
IB3
T1 I B1
VCC
IO
T3
IE3 IC2
T2 IB2
三、比例电流源
模拟电子技术电子教案:第六章--放大电路的反馈
第六章 放大电路的反应〖主要内容〗1、根本概念反应、正反应和负反应、电压反应和电流反应、并联反应和串联反应等根本概念;2、反应类型判断:有无反应?是直流反应、还是交流反应?是正反应、还是负反应?3、交流负反应的四种组态及判断方法;4、交流负反应放大电路的一般表达式;5、放大电路中引入不同组态的负反应后,对电路性能的影响;6、深度负反应的概念,在深度负反应条件下,放大倍数的估算;〖本章学时分配〗本章分为3讲,每讲2学时。
第十九讲 反应的根本概念和判断方法及负反应放大电路的方框图一、 主要内容1、反应的根本概念 1〕什么是反应反应:将放大器输出信号的一局部或全部经反应网络送回输入端。
反应的示意图见以下图所示。
反应信号的传输是反向传输。
开环:放大电路无反应,信号的传输只能正向从输入端到输出端。
闭环:放大电路有反应,将输出信号送回到放大电路的输入回路,与原输入信号相加或相减后再作用到放大电路的输入端。
图示中i X 是输入信号,f X是反应信号,i X '称为净输入信号。
所以有 f i i X X X -='2) 负反应和正反应负反应:参加反应后,净输入信号iX ' <iX ,输出幅度下降。
应用:负反应能稳定与反应量成正比的输出量,因而在控制系统中稳压、稳流。
正反应:参加反应后,净输入信号iX ' >iX ,输出幅度增加。
应用:正反应提高了增益,常用于波形发生器。
3) 交流反应和直流反应直流反应:反应信号只有直流成分;交流反应:反应信号只有交流成分;交直流反应:反应信号既有交流成分又有直流成分。
直流负反应作用:稳定静态工作点;交流负反应作用:从不同方面改善动态技术指标,对Au、Ri、Ro有影响。
2、反应的判断1〕有无反应的判断〔1〕是否存在除前向放大通路外,另有输出至输入的通路——即反应通路;〔2〕反应至输入端不能接地,否那么不是反应。
2〕正、负反应极性的判断之一—瞬时极性法〔1〕在输入端,先假定输入信号的瞬时极性;可用“+〞、“-〞或“↑〞、“↓〞表示;〔2〕根据放大电路各级的组态,决定输出量与反应量的瞬时极性;〔3〕最后观察引回到输入端反应信号的瞬时极性,假设使净输入信号增强,为正反应,否那么为负反应。
基本放大电路
耦合电容C1和C2 :用来隔断直流、耦合交流。电容 值应足够大,以保证在一定 的频率范围内,电容上的 交流压降可以忽略不计,即对交流信号可视为短路。
7.1.2 放大电路的分析
一、分析三极管电路的基本思想和方法
基本思想
非线性电路经适当近似后可按线性电路对待, 利用叠加定理,分别分析电路中的交、直流成分。 直流通路(ui = 0)分析静态。 交流通路(ui 0)分析动态,只考虑变化的电压和电流。 画交流通路原则:
7.2sint (mV)
ib
u be r be
5.5sin t (A)
iC = ( 2.4 + 0.55sint ) mA uCE = ( 5.5 – 0.85sint ) V
ic i b 0.55sin t (mA )
IBQ
12 0.7 470
0.024 (mA)
ICQ = IBQ = 2.4 mA UCEQ = 12 2.4 2.7 = 5.5 (V)
r be
200 (1 ) 26
I EQ
200 26 1 283 () 0.024
② 交流通路 iC
C2
③ 小信号等效
+
+
C1
RS + uS –
1.微变等效电路法
动态分析的目的:确定放大电路的电压放大倍数 , 输入电阻和输入电阻。
分析方法:微变(小信号)等效电路分析法。
B ib + ube
–
ic C
+
uce
E
–
IB
IB
Q IB
rbe
UBE IB
ube ib
300() (
1) 26(mV ) IE (mA )
基本放大电路
第二章 基本放大电路2.1 放大的概念和放大电路的主要性能指标 2.1.1 放大的概念以扩音机为例说明一下问题: 如图2.1.1所示:一、 放大电路放大的本质是能量的控制和转换。
二、 电子电路放大的基本特征是功率放大。
三、 放大电路组成的必要条件是存在能够控制能量的元件,即有源元件。
四、 放大的前提是不失真,即只有在不失真的情况下放大才有意义。
五、 放大电路的测试信号为正弦波,因为任何稳态信号都可以分解为若干频率正弦信号的叠加。
2.1.2 放大电路的性能指标一、 放大电路示意图:(图2.1.2)任何一个放大电路都可以看成一个两端口网络,解释放大电路作为负载相当于一个电阻,作为前级相当于电源。
二、 放大倍数i u uu U U A A 0== i i ii I I A A 0== i ui I U A 0= iiu U I A 0= 注: (1)在实测时,只有在不失真的情况下才有意义。
(2)当输入信号为缓慢变化量或直流变化量时,输入、输出量都用△表示,如:I u ∆、I i ∆。
三、 输入电阻 iii I U R =四、 输出电阻 (图2.1.3) L R U U R ⎪⎪⎭⎫⎝⎛-=10'00,0U 与0U '分别代表空载和带负载时的输出电压的有效值。
解释输入、输出电阻在多级放大电路中的作用。
五、 通频带(图2.1.4)1. 通频带产生原因:放大电路中存在电容、电感及半导体器件结电容等电抗元件。
2. 通频带的定义:L H bw f f f -= 上限截止频率、下限截止频率。
3. 通频带的意义:用于衡量放大电路对不同频率信号的放大能力。
4. 通频带的宽窄根据实际情况而定。
六、 非线性失真系数1. 产生原因:放大器件具有非线性特性,线性放大范围有一定的限度,当输入信号幅度超过一定值后,输出电压将会产生非线性失真。
2. 定义:输出波形中的谐波成分总量与基波成分之比,+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=213212A A A A D七、 最大不失真输出电压1. 定义:当输入电压再增大就会使输出波形产生非线性失真时的输出电压。
第六章晶体放大电路
IB =80uA
集电极电流通过集
IB =60uA
电结时所产生的功耗,
IB =40uA
PC= ICUCE < PCM
IB =20uA
IB=0
u
CE
(V)
(3)反向击穿电压
BJT有两个PN结,其反向击穿电压有以下几种:
① U(BR)EBO——集电极开路时,发射极与基极之间允许的最大 反向电压。其值一般1伏以下~几伏。 ② U(BR)CBO——发射极开路时,集电极与基极之间允许的最大 反向电压。其值一般为几十伏~上千伏。
当UB > UE , UB > UC时,晶体管处于饱和区。
当UB UE , UB < UC时,晶体管处于截止区。
C
晶体管
C
T1 T2 T3
T4
N
基极直流电位UB /V 0.7 1 -1 0
B
B
P
发射极直流电位UE /V 0 0.3 -1.7 0
N
集电极直流电位UC /V 5 0.7 0
15
E
工作状态
(2)V1=3V, V2=2.7V, V3=12V。 鍺管,1、2、3依次为B、E、C
符号规定
UA 大写字母、大写下标,表示直流量。 uA 小写字母、大写下标,表示全量。
ua 小写字母、小写下标,表示交流分量。
uA
全量
ua
交流分量
UA直流分量
t
6.3 双极型晶体三极管放大电路
6.3.1 共发射极基本放大电路
能够控制能量的元件
放大的基本要求:不失真——放大的前提
判断电路能否放大的基本出发点
放大电路的主要技术指标 1.放大倍数——表示放大器的放大能力
《模拟电子技术基础》第6章 集成运算放大器
RF R RF [ R1 (R2 // R ')uI1 R2 (R1 // R ')uI2 ] RF R R1 R1 (R2 // R ') R2 R2 (R1 // R ')
RF Rn
( RP R1
uI1
RP R2
uI2 )
当 R1 R2 R Rp Rn
uO
RF R
(uI1
uI2 )
t /ms
-2
0
-2
12 34 5
t /ms
uO /V
uO /V
12345 0 -1
t /ms
12345
0
t /ms
-2
-1
-2
输入方波不完全对称,导致输出偏移,以致饱和。 旁路电阻只对直流信号起作用,对交流信号影响要尽量小。
积分电路应采用失调电压、偏置电流和失调电流较小的运放,并在同相输 入端接入可调平衡电阻;选用泄漏电流小的电容,可以减少积分电容的漏电流 产生的积分误差。
iR
iD
uI R
uO uD
由二极管的伏安特性方程:
uo
iD
ISexp
uD UT
对数运算电路
uO
UTln
iD IS
U T ln
uI RI S
只有uI>0时,此对数函数关系才成立。
6.6 对数和指数运算电路
6.6.2 指数运算电路
将对数运算电路中的二极管VD和电阻R互换,可得指数运算电路。
uP
A
uN
uO
UoM 非线性区
uo
+Uom
uO
O
uId =uP -uN
非线性区 uId
非线性区 0
基本放大电路的工作原理
基本放大电路的工作原理
基本放大电路的工作原理是通过放大器将输入信号的幅值增加,从而产生一个更大幅值的输出信号。
放大电路通常由一个输入端、一个输出端和一个能够增加输入信号幅值的放大器组成。
在基本放大电路中,输入信号通过输入端进入放大器。
放大器中的电子器件(如晶体管)会根据输入信号的特性(如幅值、频率等)对电流或电压进行调节。
通过放大器的放大作用,输入信号的幅值会被放大,生成一个更大幅值的输出信号。
输出信号以与输入信号相同的形式通过输出端输出。
放大器的工作原理主要基于电子器件的非线性特性和反馈机制。
非线性特性可以导致输入信号的幅值在放大器中发生非线性变化,使输出信号的幅值增大。
反馈机制可以通过将部分输出信号反馈到输入端,对输入信号进行调节和修正,进一步增强放大效果。
总之,基本放大电路通过放大器使输入信号的幅值增加,并生成一个更大幅值的输出信号。
这个过程基于电子器件的非线性特性和反馈机制。
(完整版)基本放大电路计算题,考点汇总
第6章-基本放大电路-填空题:1.射极输出器的主要特点是电压放大倍数小于而接近于1,输入电阻高、输出电阻低。
2.三极管的偏置情况为发射结正向偏置,集电结正向偏置时,三极管处于饱和状态。
3.射极输出器可以用作多级放大器的输入级,是因为射极输出器的。
(输入电阻高)4.射极输出器可以用作多级放大器的输出级,是因为射极输出器的。
(输出电阻低)5.常用的静态工作点稳定的电路为分压式偏置放大电路。
6.为使电压放大电路中的三极管能正常工作,必须选择合适的。
(静态工作点)7.三极管放大电路静态分析就是要计算静态工作点,即计算、、三个值。
(I B、I C、U CE)8.共集放大电路(射极输出器)的极是输入、输出回路公共端。
(集电极)9.共集放大电路(射极输出器)是因为信号从极输出而得名。
(发射极)10.射极输出器又称为电压跟随器,是因为其电压放大倍数。
(电压放大倍数接近于1)11.画放大电路的直流通路时,电路中的电容应。
(断开)12.画放大电路的交流通路时,电路中的电容应。
(短路)13.若静态工作点选得过高,容易产生失真。
(饱和)14.若静态工作点选得过低,容易产生失真。
(截止)15.放大电路有交流信号时的状态称为。
(动态)16.当时,放大电路的工作状态称为静态。
(输入信号为零)17.当时,放大电路的工作状态称为动态。
(输入信号不为零)18.放大电路的静态分析方法有、。
(估算法、图解法)19.放大电路的动态分析方法有微变等效电路法、图解法。
20.放大电路输出信号的能量来自。
(直流电源)二、计算题:1、共射放大电路中,U CC=12V,三极管的电流放大系数β=40,r be=1KΩ,R B=300KΩ,R C=4KΩ,R L=4K Ω。
求(1)接入负载电阻R L前、后的电压放大倍数;(2)输入电阻r i输出电阻r o解:(1)接入负载电阻R L前:A u= -βR C/r be= -40×4/1= -160接入负载电阻R L后:A u= -β(R C// R L) /r be= -40×(4//4)/1= -80(2)输入电阻r i= r be=1KΩ输出电阻r o = R C=4KΩ2、在共发射极基本交流放大电路中,已知U CC = 12V,R C = 4 kΩ,R L = 4 kΩ,R B = 300 kΩ,r be=1K Ω,β=37.5 试求:(1)放大电路的静态值(2)试求电压放大倍数A u。
放大电路基础
耦合电容,隔断放大电路 与负载间的直流通路
图6-6 单管共射放大电路简化图
耦合电容C1和C2:一般为几微法至几十微法,利用其通交 隔直作用,既隔离了放大器与信号源、负载之间的直流干 扰,又保证了交流信号的畅通;需要注意的是C1和C2是电 解电容,有极性之分,正极接高电位。
第六章 放大电路基础
6.2.2 放大电路的工作原理
RC
Rb
T
+
输 出 回 路L
U CC 电源UBB和电阻RB:使管子
+
ui
U BB
输 入 回 路
R
uo
负载电阻
发射结处于正向偏置,并提 供适当的基极电流IB; 电阻RC:将集电极的电流变化 变换成集电极的电压变化,以 实现电压放大作用。
图6-5 单管共射放大电路 原理图
第六章 放大电路基础
耦合电容,隔断信号源与放 大电路间的直流通路
第六章 放大电路基础
图6-9 例1用图
解: 由于是硅管,所以 BEQ 0.7V U
I BQ U CC U BEQ Rb 12 0.7 mA 0.04mA 280
I CQ βIBQ (50 0.04)mA 2mA U CEQ U CC I CQ R c (12 2 3)V 6V
常用微变等效电路法进行放大电路的动态分析。
第六章 放大电路基础
1、微变等效电路法的基本思路
IB
Δ IB
IC
Q
Δ UBE
Δ IC
Q
Δ IB
0
0
上图所示为晶体管的输入特 性曲线。在Q点附近的微小范围 内可以认为是线性的。当uBE有一 微小变化ΔUBE时,基极电流变化 ΔIB,两者的比值称为三极管的动 态输入电阻,即rbe。