FANUC10、11、12、15 故障分析

合集下载

发那科fanuc数控系统常见问题及解决方法

发那科fanuc数控系统常见问题及解决方法

发那科fanuc数控系统常见问题及解决方法学习2010-06-13 09:04:52 阅读106 评论0 字号:大中小订阅1、要编辑FS10/11格式程序,必须将设定画面的:FS15 TAPE FORMATE=1 (FANUC 0i-TB) 请问FS10/11格式程序什么含义它有什么特点如何进行参数设定我想了解的详细一点,非常感谢您的回信!操作书中所讲,让我看的满头汗水。

答:18 使用FS10/11 纸带格式的存储器运行概述通过设定参数(#1),可执行FS10/11 纸带格式的程序。

说明Oi 系列和10/11 系列的刀具半径补偿,子程序调用和固定循环的数据格式是不同的。

10/11 系列数据格式可用于存储器运行。

其它数据格式必须遵从Oi 系列。

当指定的数据值超出Oi 系列的规定范围时,出现报警。

对于Oi 系列无效的功能不能存储也不能运行。

详细参见B-63844C/01 编程18.使用FS10/11 纸带格式的存储器运行2、关于梯形图(0i-A)梯形图传下来后如何用LADDER--3打开,详细步骤是怎样的答:打开LADDER III, 新建一个文件,PMC类型要和你的实际类型一致,然后再进入"文件"--"导入"(import), 选择"Memory card file" 再选择需要导入的文件名(传下来的梯形图),确定,就可以了。

3、还是老问题(FANUC-0i)专家同志:你好我按您的方法去操作了.在A轴显示正常的那台台中精机上用手动操作A轴,超过360度时,会报警A超程,而在A轴显示不正常的台中精机上手动操作时,即使超过360度,也不会报警,不停的往一个方向摇时,其显示值会累加,当然,反方向摇时会累减.我好困惑.是哪个参数设错了呢还得请您指导.谢谢4、参数不可改写(BJ-FANUC Oi-MB)最近不知道是怎么回事,我们所用的加工中心,在设置中的参数可写入不能置1了。

FANUC11系统主板的状态显示与故障诊断

FANUC11系统主板的状态显示与故障诊断

发那科FANUC6系统主板的状态显示与故障诊断来源:数控产品网添加:2008-06-04 阅读:100次[ 内容简介]在不同的系统中,系统主板的状态指示有不同的含义,维修时应根据系统的不同区别对待。

对于常见系统,主板的状态指示含义如下述。

当数控系统发生报警时,通常情况下可以在系统显示器上显示报警号与报警内容,但如果与显示功能有关的部分发生故障时,显示就无法进行,这时必须依靠系统主板或其他部分的指示灯(LED)的状态,进行故障分析、诊断与维修。

在不同的系统中,系统主板的状态指示有不同的含义,维修时应根据系统的不同区别对待。

对于常见系统,主板的状态指示含义如下述。

2.4.1 FANUC6系统主板的状态显示与故障诊断FANUC6系统主板上有五个LED作为系统错误状态指示,其含义如下:1)WDALM:当系统主板上的WDALM指示灯亮时,为系统监控报警。

引起此报警原因一般为系统RAM出错,或者是系统功能参数(PRM 000~005、PRM300~304)设定错误。

当出现以上故障时,在某些场合,一般可以通过RAM的初始化操作进行清除。

2)LED 0~3:指示系统错误,其状态显示见表2-7。

表2-7 FS6系统错误状态显示●:LED不亮;口:LED亮;女:LED闪烁。

注意:在FANUC 6系统中,还可以通过RAM测试操作,检测故障的RAM号。

RAM测试的操作步骤如下:1)确认系统RAM故障。

2)同时按住“-”与“.”,同时起动系统。

3)CRT显示画面:IL—MODE 1、TAPE 2、MEMORY 3、ENPANE 4、BUBBLE 5、PC—LOAD 6、RAMTEST 4) 按数字键6,进入RAM测试状态。

5) 按START键,进行RAM0测试。

6) 再次按START键,进行RAMl测试。

7) 重复按START键,完成对全部(RAM0~RAMl0)的测试,测试结果状态与故障的RAM对应关系见表2-7。

(。

FANUC常见问题解决fanuc发那科维修说明书故障分析解决

FANUC常见问题解决fanuc发那科维修说明书故障分析解决

FANUC 常见问题解决1、要编辑FS10/11格式程序,必须将设定画面的:FS15 TAPE FORMATE=1?(FANUC 0i-TB)请问FS10/11格式程序什么含义?它有什么特点?如何进行参数设定? 我想了解的详细一点,非常感谢您的回信!操作书中所讲,让我看的满头汗水。

答:18 使用FS10/11 纸带格式的存储器运行概述通过设定参数(No.0001 #1),可执行FS10/11 纸带格式的程序。

说明Oi系列和10/11 系列的刀具半径补偿,子程序调用和固定循环的数据格式是不同的。

10/11系列数据格式可用于存储器运行。

其它数据格式必须遵从Oi 系列。

当指定的数据值超出Oi 系列的规定范围时,出现报警。

对于Oi系列无效的功能不能存储也不能运行。

详细参见B-63844C/01 编程18.使用FS10/11 纸带格式的存储器运行2、关于梯形图(0i-A)梯形图传下来后如何用LADDER--3打开,详细步骤是怎样的答:打开LADDER III, 新建一个文件,PMC类型要和你的实际类型一致,然后再进入"文件"--"导入"(import), 选择"Memory card file" 再选择需要导入的文件名(传下来的梯形图),确定,就可以了。

3、还是老问题(FANUC-0i)专家同志:你好我按您的方法去操作了.在A轴显示正常的那台台中精机上用手动操作A轴,超过360度时,会报警A超程,而在A轴显示不正常的台中精机上手动操作时,即使超过360度,也不会报警,不停的往一个方向摇时,其显示值会累加,当然,反方向摇时会累减.我好困惑.是哪个参数设错了呢?还得请您指导.谢谢4、参数不可改写(BJ-FANUC Oi-MB)最近不知道是怎么回事,我们所用的加工中心,在设置中的参数可写入不能置1了。

请帮我们分析一下是什么原因引起的。

怎样能够修改参数。

FANUC系统常见故障诊断与处理方法

FANUC系统常见故障诊断与处理方法

FANUC系统常见故障诊断与处理方法摘要:介绍日本日立精机、牧野精机、森精机等公司产数控系统,包括了FANUC 16i、18i、21i、18T、21T等系列的故障:如电网闪断停机、内置脉冲编码器通信异常、伺服放大器误差、外围器件损坏等进行了分析逐步查找及处理。

关键词:FANUC系统故障诊断维修一、电网闪断和断电停机后出现的故障1.一台森精机产SH403加工中心,采用FANUC 18iMA系统。

电网闪断恢复后重新开机,显示“EX0557 OIL&AIR LUBRICANTPRESSURE DOWN”(主轴的油气润滑系统压力低下)报警。

检查发现中间继电器未接通,润滑泵无100V电压供给。

检查该中间继电器OK。

利用系统的自诊断功能,检查PMC信号,发现开机时,油气润滑的供油信号输出接点Y6.4接通,但该中间继电器线圈却不得电,于是,怀疑接点所在的I/0模块UNIT1-2的基板有问题。

将该印刷电路板对比调试后,未发现有任何问题,而该模块的其他输出接点均正常,据此判定是该输出接点烧坏。

替代,故障排除。

2.一台牧野产V55立式加工中心,采用FANUC 16 Mi系统。

设备断电停机几小时后再开机时,显示“306 APC ALARM: AXISBATTERY VOLTAGE 0(X);306 APC ALARM:AXIS BATTERYVOLTAGE 0(Y);306 APC ALARM:AXIS BATTERY VOLTAGE 0(Z);“300 APC ALARM: AXIS NEED ZRN (X);300 APC ALARMAXIS NEED ZRN (Y);300 APC ALARM: AXIS NEE D ZRN (Z)”。

这时切勿关断设备电源,将NC后备电池(4节)更换后,按“RESET”键即可消除306报警,然后选定“原点回归”方式,对各轴执行原点回归操作。

各轴回参考点后再按“RESET”键即可消除300报警。

FANUC系统共性故障分析和排除

FANUC系统共性故障分析和排除

FANUC系统共性故障分析和排除一、FANUC系统概述FANUC系统是一种常用于工业机器人和数控机床中的控制系统,由FANUC公司开发并推出。

FANUC系统具有高性能、稳定性和可靠性的特点,被广泛应用于各种工业领域。

然而,由于系统的复杂性,以及长时间运行中可能出现的各种问题,导致系统故障成为影响设备正常运行的一个重要因素。

二、FANUC系统的常见故障1.通信故障:FANUC系统中,由于通信硬件或软件的故障,可能导致控制系统与外部设备之间无法正常通信,造成设备操作受阻。

通信故障的排查需要检查通信线路、通信接口、通信协议等多个方面,以确定故障原因。

2.电源故障:FANUC系统中,由于电源供应不稳定或者电源线路故障,可能导致设备无法正常启动或者运行。

电源故障的排查需要检查电源输入输出是否正常,是否存在电源波动或者过载等问题。

3.硬件故障:FANUC系统中,由于硬件故障,可能导致系统一些功能无法正常使用,或者整个系统无法正常运行。

硬件故障的排查需要检查硬件组件的工作状态,如电路板、传感器、执行器等,以确定哪些硬件影响了系统的正常运行。

4.软件故障:FANUC系统中,由于软件程序出错或者系统配置不当,可能导致系统运行异常或者无法启动。

软件故障的排查需要检查软件程序的逻辑性和正确性,以及系统配置是否符合要求。

5.温度故障:FANUC系统中,由于温度过高或者过低,可能导致硬件故障或系统异常。

温度故障的排查需要检查设备的散热系统是否正常工作,以及环境温度是否符合设备使用要求。

6.机械故障:FANUC系统中,由于机械部件磨损或者配合不良,可能导致设备在运行过程中出现卡滞或者振动等问题。

机械故障的排查需要检查设备机械结构的各个部分,确定哪些部件需要更换或调整。

7.人为操作不当:FANUC系统中,由于人为操作不当或者误操作,可能导致系统设置错误或者功能错误,影响设备正常运行。

人为操作不当的排查需要检查设备操作记录和操作人员技能水平,找出错误的操作环节。

FANUC常见报警的解释

FANUC常见报警的解释

1.分解角度①角度正负值。

②上为A③下为A◆①刀具G40/G41/G42②外径G42刀尖R方位3号,G42右到左直线A180.度。

G41左到右0。

度③镗内径G41刀尖R方位2号(刀反装).正装G42方位3号.④铣六方/方位9号。

R为铣刀二分之一。

⑤外径刀反装从右到左用G42方位4号.●G41为左。

沿进给方向观察,刀具处于工件左侧。

G42为右,沿进给方向观察,刀具处于工件右侧。

螺纹格式一、代码格式①G32XZF ;回后退功能无效。

②G34ZFK;K[+-]0.001-500.mm范围~回退功能无效。

双头螺纹例:G32W-30.F4.0Q0G32W-30.F4.0Q180000起始角不是模值,不指定则为0。

(Q为螺纹的起始角,增量为0。

001度)不能指定小点。

●;锥螺纹标准法为正+R法。

‘bb●多线螺纹,每次移二分之一。

1.定位点螺距。

例:G0Z2。

02.G0XZF1。

03.G0Z2。

54.。

5.G0Z2。

756.。

7.M05;M30;G90/G92/G9 4相同1.车管螺纹格式:主轴转速S20-S50:1.例子:G01X10。

;2.G04X0。

25;3.G32Z-10。

F2。

0;4.G04X0。

25;5.G32X9。

0Z2。

F2。

;2.三针测量法;用三根钢针放在螺纹槽宽。

再用千分尺测量外径。

●角度A/公式d.1.A60。

度`d=M-3*D+0.866*P2.A55。

度`d=M-3.1657*D+0.9605*P3.A30。

度`d=M-4.864*D+1.866*P4.A29。

度d=M-4.99*D+1.933*P`●尺所量的尺寸●D钢针直;;;d------螺纹中径●M千分尺---工件加钢-径●P螺纹的螺距。

1.A60。

度D=0。

577*P2.A55。

度D=0。

564*P3.A30。

度D=0。

518*P4.A29。

度D=0。

516*P●单针法1.A60。

d=M-1。

5*D+0。

108*P+0。

5d*2.A55。

FANUC常见报警故障分析

FANUC常见报警故障分析

FANUC常见故障报警分析FANUC风扇报警总结:主轴SPM:一、系统报警显示9056,主轴驱动器报警显示代码56:报警内容:SPM控制电路部分的冷却风扇停止(主轴驱动器内部风扇失效)1.控制板安装问题请切实安装控制印刷板.(控制板与功率板的连接器脱离时,有可能会发出本报警)2.请更换SPM或SPM内部的冷却风扇二、系统报警显示9088,主轴驱动器报警显示代码88:报警内容:SPM散热器冷却风扇停止.(主轴驱动器外部风扇失效)发生报警时,请更换SPM散热器冷却风扇三、系统报警9001,主轴驱动器报警显示1报警内容:电机过热.电机内部高于或等于标准温度,电机温度过高。

(一).切削过程中显示本报警时(电机温度过高)1.确认电机的冷却状态,电机冷却风扇,对液冷电机,请确认冷却系统.2.请再次确认加工条件.(切削条件:吃刀量,刀具,材料)(二).轻负载下显示本报警时(电机温度过高)1.频繁加/减速:请在包含加/减速运行时输出功率的平均值要小于等于额定值的条件下使用.2.电机固有参数设定不正确.(三).电机温度较低而显示报警时1.主轴电机反馈电缆故障,电机过热信号电缆断线或接触不良,请更换反馈电缆.2.参数未正确设定电机温度通过参数4134设定,因电机而异。

是电机固有参数。

第一主轴电机温度,在诊断403里可以显示,显示αi主轴伺服电机线圈温度,模拟温度数据在主轴反馈电缆里,信号为THR1和THR2。

现象可能是:1温度长闭开关,2热电偶就可通过参数设定,具体值。

涡流,放大器错误都报警。

3.控制印刷电路板故障.请更换控制印刷电路板或主轴放大器.4.电机(内部温度传感器)故障,请更换电机.电源PSM:一、系统报警显示SV443,SP9059,电源模块PSM上报警显示2报警内容:PSM内部排风扇失效.(电源模块内部风扇故障)处理方法: 观察冷却风扇的状态.更换风扇,更换侧板443报警:PSM内部排风扇停止。

β系列SVU内部排风扇失效。

FANUC数控系统典型故障分析

FANUC数控系统典型故障分析

信号受干扰而失效 。 否则应检查参考计数器的设定值 , 与脉 冲数
量是否相匹配 , 如果匹配 , 并且检查脉冲编码器与 N C之 间的反 馈 电缆连接也正常 , 则检查此反馈电缆 中的屏蔽线是否 已接地 , 如已接地 , 则须更换轴卡 。 2超程报警 . 505 1 1~ 8 报警 ( 超程报警 ) 表示机床位置超过 了行程 限位或
维普资讯
F N C数控 系统典型故 障分析 A U
李 巧洁
摘要
谭 国斌
以 F N C 0系列为例 , A U一 介绍典型故障的分析方法 , 并列举 了 1 0例故障诊 断实例。 漂移
B T 37 P 0 文献 标 识 码
关键词 数控系统 典 型故障
毕, 机械原点随即确立 。 而电气原点是 由机床所使用的检测反馈 元件所发出的栅点信号或零标志信号确立 的参考点。为 了使 电 气原点与机械原点重合 ,必须将电气原点到机械原 点的距离用

个设 置原点偏移量的参数进行设置。 机床参 考点确定后 , 各工
件坐标 系随之确立。 在数控设 备使用过程中 , 机床各 轴都要先 回
并为全闭环系统 , 先检查半闭环系统 回原点 的漂移情况 , 如果正 常, 应检查电机一转标志信号是否 由半闭环系统提供 , 检查有关
() 3 切断 电源 , 然后按 [ 及[A ] 的同时接通 电源 , P C N键 】 此时 可用手动运转退 出报警 区。
参数设 置及信号电缆联接 。 如参数设置正常 , 则为光栅尺等线性 测量元件不 良或其接 1电路故障。 3 如参数设置不正确 , 则修正设
时 的开始位置 , 在位置偏差量> 2 18个脉 冲的状态下 , 在返 回参
考点方向上进行 1 转以上 的快速进给 ,检测是否输入过 1 转信 怀疑P U 0至 N U板间 电缆接触不 良, C5 C 改接临时短电缆 , 报警

发那克(FANUC)故障与维修经验总结

发那克(FANUC)故障与维修经验总结

发那克(FANUC)故障与维修经验总结发那克(FANUC)故障与维修经验总结cnc,电脑锣数控机床的故障分析:数控机床的应用越来越广泛,其加工柔性好,精度高,生产效率高,具有很多的优点。

但由于技术越来越先进、复杂,对维修人员的素质要求很高,要求他们具有较深的专业知识和丰富的维修经验,在数控机床出现故障才能及时排除。

我公司有几十台数控设备,数控系统有多种类型,几年来这些设备出现一些故障,通过对这些故障的分析和处理,我们取得了一定的经验。

下面结合一些典型的实例,对数控机床的故障进行系统分析,以供参考。

一、NC系统故障1.硬件故障有时由于NC系统出现硬件的损坏,使机床停机。

对于这类故障的诊断,首先必须了解该数控系统的工作原理及各线路板的功能,然后根据故障现象进行分析,在有条件的情况下利用交换法准确定位故障点。

例一、一台采用德国西门子SINUMERIK SYSTEM3的数控机床,其PLC采用S5─130W/B,一次发生故障,通过NC 系统PC功能输入的R参数,在加工中不起作用,不能更改加工程序中R参数的数值。

通过对NC系统工作原理及故障现象的分析,我们认为PLC的主板有问题,与另一台机床的主板对换后,进一步确定为PLC主板的问题。

经专业厂家维修,故障被排除。

例二、另一台机床也是采用SINUMERIK SYSTEM3数控系统,其加工程序程序号输入不进去,自动加工无法进行。

经确认为NC系统存储器板出现问题,维修后,故障消除。

例三、一台采用德国HEIDENHAIN公司TNC155的数控铣床,一次发生故障,工作时系统经常死机,停电时经常丢失机床参数和程序。

经检查发现NC系统主板弯曲变形,经校直固定后,系统恢复正常,再也没有出现类似故障。

2.软故障数控机床有些故障是由于NC系统机床参数引起的,有时因设置不当,有时因意外使参数发生变化或混乱,这类故障只要调整好参数,就会自然消失。

还有些故障由于偶然原因使NC系统处于死循环状态,这类故障有时必须采取强行启动的方法恢复系统的使用。

发那科数控系统维修资料1

发那科数控系统维修资料1

CPU卡
伺服 FSSB接口
系统维修
11
轴卡 背景灯逆
变电源
扩展板 接口
显卡
CPU
LCD 显示
FROM/ SRAM
主轴 模拟卡
PCMCIA
电源
系统维修
系统电源 系统保险
12
母板的更换(注意母板的更换会SRAM资料的丢失,需做资料的恢复) 1)如图拆卸红圈所示接头(软键、PCMCIA、视频) 2)如图拆卸黑圈所示螺钉 3)向下移动主板,脱开与
*不同系统间的FROM/SRAM不能随意更换(确认功能选项及硬件配置一致的前提下) *新老系统间的SRAM的数据不要相互恢复 *不要随意往FROM中追加原先没有的系统软件
注: OPRM删除后即使有原始备份恢复,也 会产生认证报警(certify),需ID号网
上申请恢复,否则只有720小时使用期。
CNC规格号的查找
14
保险的更换
系统的保险(7.5A)
LCD的保险(2A)
系统维修
15
系统风扇的更换 系统的风扇安装在系统的上方 1)切断系统电源 2)将需更换的风扇拉至跟前 3)将拉至风扇装置向上提,从机壳上拆下风扇 4)将风扇装入机壳 5)往里推,听到“咔嚓”声表示风扇装好
系统维修
16
系统启动状态中七段LED显示
“☆”表示LED指示灯闪烁
系统维修
19
显显示示板板 电电源板板
保险 轴卡
CPU板
系统维修
20
主轴模拟卡
FROM/ SRAM
系统维修
21
新版0iC(MATE-C)系统硬件及维修中注意事项
松开卡子拉出后盖
风扇
松开螺钉
CN2 JA2

FANUC数控系统故障报警及处理

FANUC数控系统故障报警及处理
的触点粘连。 z #4(LDA):串行脉冲编码器LED异常。 z #3(PMS):因串行脉冲编码器C出故
障或反馈电缆引起反馈错误。
29
1
2009-04-15

分离型串形脉冲 编码器报警内容
#7(OHA):分离型脉冲编码器出现过热。 #6(LDA):分离型脉冲编码器LED出现异常。 #5(BLA):分离型脉冲编码器电池电压低。 #4(PHA):分离型直线尺相位数据出现异常。 #3(CMA):分离型脉冲编码器出现计数错误。 #2(BZA):分离型脉冲编码器电池电压变为0。 #1(PMA):分离型脉冲编码器出现脉冲错误。 #0(SPH):分离型脉冲编码器出现软相位数据
wwwplcworldcn2009041551fanucfanuc0i0i系统主系统主cpucpu板的构成框图板的构成框图0i的主cpu板上除了主cpu及外围电路之外还集成了fromsram模块pmc控制模块存储器主轴模块伺服模块等wwwplcworldcn2009041552系统故障分析与处理方法系统故障分析与处理方法当系统电源打开后如果电源正常数控系统则会进入系统版本号显示画面如下图所示系统开始进行初始化
1
37 2009-04-15

串行主轴
#4(SAI)0:不使用模拟主轴控制。
1:使用模拟主轴控制。
#3(SS2) 0:串行主轴控制中不使用第2主轴。
1:串行主轴控制中使用第2主轴。
#2(SSR)0:不使用串行主轴控制。
1:使用串行主轴控制。
#1(POS) :模拟主轴控制所需要的模块。
z ④关于其他信息 – ·装置附近是否有干扰发生源?
• 故障发生频率低时,考虑电源电压的外面干扰等因素 影响,要确认在同一电源上是否还连接其他机械及焊

FANUC 10报警维修资料

FANUC 10报警维修资料

FANUC 10/11/12/15系统报警和解决办法(1)FANUC10/11/12系统在一般情况下出现报警时,显示器屏幕上会显示报警号和报警内容。

但当显示器屏幕没有显示时,可根据主板的LED显示内容来判断故障所在。

序号故障征兆故障原因解决办法1 当主板上数码管显示A时1、显示器/MDI单元连接异常1)确认MDI/显示器单元的连接光缆是否正确。

2)确认连接光缆是否损坏,请更换。

3)确认光缆座是否干净,请清洁。

2 主板上的数码管显示E 显示器/MDI单元与系统不匹配1)MDI/显示器单元有9"、14"等种类,请确认MDI/显示器单元是否与NC 的软件版号匹配。

2)与连接单元的连接是否正确。

3)检查MDI/显示器屏幕的连接电缆。

3 主板上的数码管显示F 连接单元和输入/输出卡D1--D3的连接异常1)连接单元的电缆连接是否正确。

请检查确认其光缆及光缆座。

2)更换连接单元。

3)更换光缆及光缆座。

4)更换主板。

4 主板上的数码管D显示H 连接单元和输入/输出卡D1--D3与NC软件板本不匹配1)请检查确认NC软件的版本号。

2)请检查确认连接单元以及与连接单元的连接的电缆是否正确。

3)更换连接单元。

5 主板上的数码管显示C 通过光缆传输的数据出现错误1)请确认与光缆连接的控制板报警号信息。

2)更换主板。

3)更换MDI/显示器控制板。

4)更换连接单元及输入/输出单元。

5)更换光缆。

6)如果正在调试PC,请更换PCRAM板。

6 主板上数码管显示J 等待PC回应1)请确认系统是否装有PC-ROM盒PCRAM控制板、接口转换板、主板。

2)上述各控制板是否安装正确。

3)更换PMC-ROM盒4)更换接口转换板5)如果正在调试PC,更换PCRAM控制板7 主板上的数码管显示L 等待PC准备1)请确认系统是否装有PC-ROM盒。

2)更换PCROM以及PC-ROM盒。

3)如果正在调试PC,更换PC-ROM控制板。

FANUC常见报警的解释

FANUC常见报警的解释

第一章常见报警的解释1.1 368报警(串行数据错误)上图中368报警以及相关编码器报警的原因有:(1)电机后面的编码器有问题,如果客户的加工环境很差,有时会有切削液或液压油浸入编码器中导致编码器故障。

(2)编码器的反馈电缆有问题,电缆两侧的插头没有插好。

由于机床在移动过程中,坦克链会带动反馈电缆一起动,这样就会造成反馈电缆被挤压或磨损而损坏,从而导致系统报警。

尤其是偶然的编码器方面的报警,很大可能是反馈电缆磨损所致。

(3)伺服放大器的控制侧电路板损坏。

解决方案:(1)把此电机上的编码器跟其他电机上的同型号编码器进行互换,如果互换后故障转移说明编码器本身已经损坏。

(2)把伺服放大器跟其同型号的放大器互换,如果互换后故障转移说明放大器有故障。

(3)更换编码器的反馈电缆,注意有的时候反馈电缆损坏后会造成编码器或放大器烧坏,所以最好先确认反馈电缆是否正常。

1.2 电源模块PSM控制板内风扇故障443,610上图报警是电源模块控制板内风扇损坏导致的报警(使用αi电源模块时),报警时电源模块PSM的LED显示“2”,主轴放大器SPM的LED显示“59”。

拆下电源模块控制板后,风扇位置如下图所示:1.3 主轴放大器SPM内冷风扇故障此故障没有画面报警信息,但是有上图的“FAN”在闪烁,此现象表明主轴放大器SPM的内冷风扇出现了故障。

1.4 伺服放大器SVM内冷风扇报警 608,444上图中的报警表示伺服放大器SVM的内冷风扇出现了故障(Z轴和A轴同时出现报警是因为Z轴和A轴是同一个放大器控制的)。

上图中的报警出现时对应的伺服放大器上的LED 显示“1”。

1.5 主轴放大器和伺服放大器的内冷风扇位置上图中:(1)主轴放大器内冷风扇的安装位置(2)伺服放大器内冷风扇的安装位置(3)主轴放大器的型号A06B-6111-H XXX#H550(后面带#H***的都是主轴放大器)(4)伺服放大器的型号A06-6114-HXXX注:(1)不同型号的主轴放大器和伺服放大器对应的风扇的型号也不一样,请参考附录。

FANUC系统主板的状态显示与故障诊断

FANUC系统主板的状态显示与故障诊断

发那科FANUC6系统主板的状态显示与故障诊断来源:数控产品网添加:2008-06-04 阅读:100次[ 内容简介]在不同的系统中,系统主板的状态指示有不同的含义,维修时应根据系统的不同区别对待。

对于常见系统,主板的状态指示含义如下述。

当数控系统发生报警时,通常情况下可以在系统显示器上显示报警号与报警内容,但如果与显示功能有关的部分发生故障时,显示就无法进行,这时必须依靠系统主板或其他部分的指示灯(LED)的状态,进行故障分析、诊断与维修。

在不同的系统中,系统主板的状态指示有不同的含义,维修时应根据系统的不同区别对待。

对于常见系统,主板的状态指示含义如下述。

2.4.1 FANUC6系统主板的状态显示与故障诊断FANUC6系统主板上有五个LED作为系统错误状态指示,其含义如下:1)WDALM:当系统主板上的WDALM指示灯亮时,为系统监控报警。

引起此报警原因一般为系统RAM出错,或者是系统功能参数(PRM 000~005、PRM300~304)设定错误。

当出现以上故障时,在某些场合,一般可以通过RAM的初始化操作进行清除。

2)LED 0~3:指示系统错误,其状态显示见表2-7。

表2-7 FS6系统错误状态显示●:LED不亮;口:LED亮;女:LED闪烁。

注意:在FANUC 6系统中,还可以通过RAM测试操作,检测故障的RAM号。

RAM测试的操作步骤如下:1)确认系统RAM故障。

2)同时按住“-”与“.”,同时起动系统。

3)CRT显示画面:IL—MODE 1、TAPE 2、MEMORY 3、ENPANE 4、BUBBLE 5、PC—LOAD 6、RAMTEST 4) 按数字键6,进入RAM测试状态。

5) 按START键,进行RAM0测试。

6) 再次按START键,进行RAMl测试。

7) 重复按START键,完成对全部(RAM0~RAMl0)的测试,测试结果状态与故障的RAM对应关系见表2-7。

(。

fanuc发那科0I-9000参数及0M的一些参数维修说明书故障分析解决

fanuc发那科0I-9000参数及0M的一些参数维修说明书故障分析解决

发那克9000后不公开参数:9920/0 固定循环9920/1 刀具补正量程式输入G10 9920/2 机械手轮进给9920/3 1个MPG控制9920/4 主轴S4/S5类比输出9920/5 公/英制转换9921/0 程式储存640米9921/1 程式储存320米9921/2 程式储存160米9921/3 程式储存80米9921/4 程式储存40米9921/6 读带/打带界面控制19922/0 第二,三MPG控制9922/2 周速一定控制9922/4 模型资料输入9922/5 储存式螺距误差补偿9922/6 巨指令A9922/7 教导重现9923/4 MDI操作B9923/5 登陆程式数125组9923/6 外部按键输入9923/7 后台编辑9924/0 日文显示9924/1 徳法文显示9924/2 中文显示9924/3 意大利文显示9924/4 韩文显示9924/5 西班牙文显示9925/0 内旋补间9925/1 工件坐标系300组9925/2 切削补间前直线加减速9925/3 先行控制9925/7 程式储存20米数9926/0 选择程式制作9926/1 主轴简易同期控制9926/3 工具补正数增加补正记忆64组9926/4 工具补正数增加补正记忆99组9926/5 刀长量测9926/6 刀长自动量测9926/7 外部刀具补偿9927/1 第二辅助功能码9927/2 三轴同动9927/3 增加轴控制9927/4 工件计数及跑合时间显示9927/6 工具径补正(切削补偿)C9927/7 工具径补正(切削补偿)B9928/1 原点复归速度设定9928/4 3次元坐标变换9929/0 绘图显示9929/1 程式图形对话9929/2 扩张内藏式行程检查9929/3 行程极限外部设定9929/6 外部讯息9930/1 程式再启动9930/1 程式再启动9930/2 外部资料输入9930/3 螺旋切削9903/5 PMC轴控制9930/6 自动转角进给率9931/0 单方向定位9931/2 刚性攻牙9931/3 时钟显示9931/6 卡式磁片资料显示9931/7 0.1单位增量系统9932/0 第三及第四回参考点9932/1 比率缩放9932/2 坐标系旋转9932/3 F15纸带格式9932/4 刀具寿命管理9932/5 工具补正数增加补正记?200组9932/6 增加选择性单节跳跃(最大)19个9932/7 巨集执行器9933/1 极坐标命令9933/3 F1段进给9933/4 I/O装置外部控制9933/5 四轴同动9933/6 中断形式巨集指令9933/7 巨集指令B9934/1 遥控式缓衡器9934/2 高速遥控式缓衡器A9934/3 高速遥控式缓衡器B9934/4 读带/打带界面控制29934/6 切削进给补间后直线加减速9935/0 高速循环加工9935/1 刀具补正记忆形式B9935/2 外部机械零点漂移9935/4 外部减速9935/5 动态绘图显示9935/6 登陆程式个数400组9935/7 登陆程式个数200组9936/0 刀具位置补正9936/2 选择性道角/转角R9936/3 简易同期制御9936/4 高速跳跃信号输入9936/7 扩张工件程式编辑程式COPY 9937/0 圆筒补间9937/1 S串列式输出9937/2 极坐标补间9937/3 Cs轴轮廓控制9937/5 C轴法线方向制御9937/6 刀具寿命管理512组9937/7 I/O同时操作9939/6 CAP19939/7 CAP19940/0 DNC-19940/3 索引功能9940/4 主轴同期制御9941/0 第一主轴定位9941/2 第一主轴输出切换9942/0 第二主轴定位9942/2 第二主轴定位9943/2 倾斜轴制御9943/3 制御轴扩张9943/5 登绿程式个数100组9943/6 程式儲存储1280米9943/7 工件座标系48组9944/0 切削进给速度调整9944/1 特殊JOG进给率调整9944/2 轴取出机能9944/3 浮动原点复归9944/4 圆弧半径速度箝制9944/5 自动转角减速9945/0 高精度轮廓控制9945/1 工具退避和复归9945/2 圆形拷贝9945/3 实际速度类比输出9945/4 工件坐标系预设9945/6 3次元工具補正9945/7 切削进给補间后锺形加减9946/0 PLC5000step9946/1 PLC8000step9946/2 PLC16000step9946/3 PLC24000step9946/4 PLC3000step9946/5 PLC12000step9946/6 PMC-RC程式语言-1M 9946/7 信号波形表示机能9947/0 PMC保持型记忆追加9947/1 PLC32000step9947/2 PMC程式语言256K 9947/3 PMC程式语言512K 9947/5 PMC程式语言2M 9948/0 NC格式转换输出9948/1 C语言9948/7 程式对话Super CAP-M 9952/4 指数函数补间9952/5 工具补正量499个9952/6 工具补正量999个9952/7 多段Skip9953/1 程式储存5120米数9953/2 程式储存2560米数9953/3 DNC29953/5 OSI网路9954/6 学习制御9962/3 马达速度信号输出9962/6 真直度补正9963/0 PMC轴制御扩张机能9963/1 HDISK9963/2 特殊高速循环9963/4 PMC轴速度指令机能9963/5 旋转轴控制9963/6 高速循环资料追加A 9963/7 高速循环资料追加B 9970/7 平滑补间9972/7 假想轴补间9972/4 实际速度类比输出B 9972/6 I/Olink29972/7 简易高精度9973/0 手动数值指令9973/2 姿势制御9973/5 非均匀B形云线补间9973/6 高速分配功能9976/2 PROFIBUS slave9976/3 PROFIBUS master 9976/4 多单节预读9977/2 二重位置检出机能9977/5 1CPU2系统101/7 NFD 数据输出时数据后的同步孔的输出 O O102 输入输出设备号:0:普通RS-232口设备(用DC1-DC4码)3:Handy File(3″软盘驱动器) O O 103 波特率:10:480011:960012:19200 O OI/O 通道1的参数:111/0 SB2 停止位数 O O111/3 ASI 数据输入代码:ASCII或EIA/ISO O O111/7 NFD 数据输出时数据后的同步孔的输出 O O112 输入输出设备号:0:普通RS-232口设备(用DC1-DC4码)3:Handy File(3″软盘驱动器) O O 113 波特率:10:480011:960012:19200 O O其它通道参数请见参数说明书。

数控车床参数设置引起的故障分析

数控车床参数设置引起的故障分析

浙江工业职业技术学院毕业论文(2011届)(数控车床参数设置引起的故障分析)学生姓名蛋蛋学号080206136院系数字控制工程分院专业数控设备应用与维护指导教师完成日期2011年5月数控车床参数设置引起的故障分析摘要数控机床的应用与维护科学技术的发展,对机械产品提出了高精度、高复杂性的要求,而且产品的更新换代也在加快,这对机床设备不仅提出了精度和效率的要求,而且也对其提出了通用性和灵活性的要求。

数控机床就是针对这种要求而产生的一种新型自动化机床。

数控机床集微电子技术、计算机技术、自动控制技术及伺服驱动技术、精密机械技术于一体,是高度机电一体化的典型产品。

它本身又是机电一体化的重要组成部分,是现代机床技术水平的重要标志。

数控机床体现了当前世界机床技术进步的主流,是衡量机械制造工艺水平的重要指标,在柔性生产和计算机集成制造等先进制造技术中起着重要的基础核心作用。

数控机床的制造厂在机床出厂时就会把相关的参数设置正确、完全,同时还给用户一份与机床设置完全符合的参数表。

目前这一点却做的不尽如人意,参数表与参数设置不符的现象时有发生,给日后数控机床的故障诊断带来很大的麻烦。

对原始数据和原始设置没有把握,在故障中就很难下决心来确定故障产生的原因,无论是对用户和维修者本人都带来不良的影响。

关键词数控机床参数故障分析第一章数控机床参数 (4)1.1掌握数控机床参数的重要性 (4)1.2数控机床参数的分类 (5)1.3数控机床产生参数故障的原因 (7)1.4数控机床参数设置对机床性能的影响 (7)1.5通过设置机床参数后探讨参数设置对机床性能的影响 (10)1.5.1利用参数调整数控机床 (10)1.5.2 利用参数状态信息诊断机床故障 (12)第二章变频器参数 (15)2.1 变频器性能的鉴别 (15)2.2 变频器在数控车床主轴上的应用 (17)第三章伺服系统参数 (20)3.1伺服驱动参数 (20)3.2伺服控制轴参数 (21)结论 (24)致谢 (25)参考文献 (26)在科学技术飞速发展的今天,利用数字信号控制机床运动的数控机床加工越来越受人青睐。

数控铣床 FANUC 系统故障分析与排除

数控铣床 FANUC 系统故障分析与排除

数控铣床 FANUC 系统故障分析与排除摘要】数控铣床指应用电子及数字化信号控制的铣床,属于自动加工设备的一种,通常分为带刀库及不带刀库两种类型,其中带刀库的数控铣床又被称之为加工中心。

数控铣床的类型较多,不同类型具有不同的部件组成,不仅包括冷却系统、润滑系统,还涵盖了控制系统、主轴传动系统等,各个系统又由多种部件组成,若数控铣床的某一部件或系统出现故障,就会对产品生产效率和质量产生不利影响,进而造成企业的利益损失。

因此,必须对其所存故障进行分析和排除。

本文以数控铣床FANUC系统故障为例,对其常见故障进行分析,并排除故障。

【关键词】数控铣床;FANUC系统;故障排除数控铣床是制造业实现集成化、信息化和自动化生产的一种重要载体,不仅是提高生产效率的保障,还是提高产品质量的保障。

FANUC系统数控铣床因其具备功能强大、可操作性强及性价比高等优势,被广泛应用于制造行业中,并在长期实践的过程中实现了进一步发展。

对于制造业来说,数控铣床发生故障次数少、发生故障时间短等均能够减少企业的利润损失,而由于数控铣床的部件组成较为复杂,无论是出现何种故障,在排除故障时通常都需要应用机电、自动控制等多项技术,因此,要求维修人员必须掌握较为牢固的专业知识和技能,能够在极短时间内分析出数控铣床FANUC系统的故障原因,快速找出故障点,并采取正确方法对故障进行排除[1]-[3]。

一、数控铣床FANUC系统电故障分析与排除对于数控铣床FANUC系统的生产厂家来说,其在销售系统的同时,也考虑到了系统故障和维修问题,由此设计并制定了数控系统维修手册,为广大用户提供故障分析和排除故障的具体方法和流程,虽然便于用户进行维修操作,但是参照维修手册上的具体方法对故障进行排除,存在着一个前提条件,就是数控系统上电正常,且并未出现软、硬件故障,对于未满足这一前提条件的系统故障,维修手册上并未明确检修方法,因此用户无法对故障进行分析和排除。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FANUC10/11/12/15 通用故障分析
FANUC10/11/12系统在一般情况下出现报警时,显示器屏幕上会显示报警号和报警内容。

但当显示器屏幕没有显示时,可根据主板的LED显示内容来判断故障所在。

对于FANUC 15A 与FANUC 15B 相比较而言,在硬件结构设计上,相差很大。

在FANUC 15B 的印刷板的制造中,元器件采用大规模集成电路。

系统的整体结构采用槽式,在每一个槽中分别插上电源、PMC控制板、Main 板、OPT1 板、RISC板等。

而对于15A/E 而言,一般由底板、电源、轴控制板、BASE0、BASE1、BASE2、REMOTE BUFFER板、分离型位置检测板等。

不论是15A/E 或15B ,当系统出现故障时,每一个板上都有报警灯和故障灯显示,因为有故障,系统的显示器不能显示,此时只有根据系统的报警灯和故障灯显示情况来判断故障位置并加以排除,状态灯为绿色,报警灯为红色。

对于15A/E 而言,其报警灯和故障灯的排列方式如下:
状态灯,绿色
LED3
报警灯,红色
LED4
LED1
对于FANUC 15B ,其报警灯和状态灯的排列方式是:
上边一排是状态显示灯,绿色;下面一排为报警灯,红色。

以下45~57项是关于15A/E 的常见故障的说明。

相关文档
最新文档