Quasi-static axial compression of thin-walled circular aluminium tubes
常用流体力学单词
221
incompressible fluid
inertial coordinate system initial condition input intensity of turbulence
interface internal energy internal friction
inviscid fluid
I
脉动应力 流体 流体动力学 流场 流体机械 流体力学 流体质点 流体静力学 自由表面 摩擦系数 摩擦阻力 无粘性流体
气体常数 气体动力学 表压力 几何压力 几何相似 渐缩 渐扩
调和函数 压头损失 传热 亥姆霍兹方程 非均质流体 均质流体 水平力 水平线 水力直径 紊流光滑管区 流体静力学 流体静压力 流体静应力 高超音速流动 (m>5)
背压 斜压流体 气压计 正压流体 伯努利方程 叶片 质量力 边界条件 边界层,附面层 边界层分离 附面层厚度 体积模量 体积应力 流束 浮力 过渡层
218
C
Cauchy-Reimam condition
center of pressure coefficient coefficient of compressibility coefficient of eddy viscosity coefficient of viscosity cohesive forces combined boundary layer completely rough zone of turbulent pipe flow component velocity compressibility compressible fluid conservation equation of energy conservation equation of mass conservation of mechanical energy conservation of moment of momentum conservation of momentum continuity continuum continuum hypothesis control surface control volume convective acceleration convergent-divergent nozzle converging nozzle correction coefficient critical pressure critical Reynolds number critical speed of sound critical state cross section curvature radius curved shock cylindrical coordinate system
汽车轻量化技术的研究与进展
汽车轻量化技术的研究与进展作者:范子杰, 桂良进, 苏瑞意, FAN Zijie, GUI Liangjin, SU Ruiyi作者单位:清华大学汽车安全与节能国家重点实验室,北京100084,中国刊名:汽车安全与节能学报英文刊名:JOURNAL OF AUTOMOTIVE SAFETY AND ENGERGY年,卷(期):2014,5(1) Government Printing Office Partnership for a New Generation of Vehicles (PNGV):assessment of programgoals,activities,and priorities 19962.American Iron and Steel Institute UltraLight steel auto body final report 20143.American Iron and Steel Institute ULSAB-AVC overview report 20024.EAA (European Aluminium Association),Aluminium in Cars 20085.杨阳;周谊;桂良进双扭杆双横臂悬架有限元建模与分析 2006(11)6.桂良进;范子杰;陈宗渝“长安之星”微型客车白车身刚度研究 2004(09)7.周长路;范子杰;陈宗渝微型客车白车身模态分析 2004(01)8.郝春鹏;范子杰;桂良进微型客车车身结构正面碰撞特性的数值模拟 2004(05)9.Gobbi M;Haque I;Papalambros P P Y A critical review of optimization methods for road vehicles design 200610.郝琪;张继伟车门结构优化设计的灵敏度分析研究 2010(05)11.桂良进;范子杰;周长路某型载重车车架结构轻量化设计研究 2003(04)12.苏瑞意;桂良进;王旭燃料电池城市客车结构有限元分析与轻量化设计 2008(12)13.刘江;桂良进;王青春全承载式大客车车身结构多目标优化 2008(02)14.丁炜琦;苏瑞意;桂良进基于应力优化的大客车结构多目标优化 2010(04)15.Botkin M E Structural Optimization of Automotive Body Components Based on Parametric Solid Modeling 2002(02)16.Shin J K;Lee K H;Song S I Automotive door design with the ULSAB concept using structural optimization 2002(04)17.XIANG Yujiang;WANG Qian;FAN Zijie Optimal crashworthiness design of a spot-welded thin-walled hat section 2006(10)18.Su Ruiyi;Gui Liangjin;Fan Zijie Multi-objective optimization for bus body with strength and rollover safety constraints based on surrogate models 2011(03)19.朱茂桃;钱洋;顾娅欣基于Kriging模型的车门刚度和模态优化 2013(11)20.Choi W S;Park G J Structural optimization using equivalent static loads at all time intervals 2002(19-20)21.Jeong S;Yi S;Kan C Structural optimization of an automobile roof structure using equivalent static loads 2008(11)22.Shimoda M;Tsuji J Shape optimization for weight reduction of automotive shell structures subject to a strength constraint.SAE Technical Paper,2007-01-372023.方剑光;高云凯;王婧人基于网格变形技术的白车身多目标形状优化 2012(24)24.Bendsφe M P Optimal shape design as a material distribution problem 1989(04)25.Yang R J;Chahande A I Automotive applications of topology optimization 1995(3-4)26.Yang R J;Chuang C;Che X New applications of topology optimization in automotive industry 2000(01)27.Baskin D M;Reed D B;Seel T N A case study in structural optimization of an automotive body-in-white design.SAE Tech Paper,2008-01-088028.SU Ruiyi;GUI Liangjin;FAN Zijie Truss Topology Optimization Using Genetic Algorithm with Individual Identification 200929.SU Ruiyi;GUI Liangjin;FAN Zijie Topology and sizing optimization of truss structures using adaptive genetic algorithm with node matrix encoding 200930.SU Ruiyi;WANG Xu;GUI Liangjin Multi-objective topology and sizing optimization of truss structures based on adaptive multi-island search strategy 2011(02)31.Sobieski J Optimization by decomposition:a step from hierarchic to non-hierarchic systems 198832.Kroo I;Altus S;Braun R Multidisciplinary optimization methods for aircraft preliminary design 199433.Kim H M;Michelena N F;Papalambros P Y Target cascading in optimal system design 2003(03)34.De Weck O;Agte J;Sobieski J State-of-the-art and future trends in multidisciplinary design opti-mization 200735.苏瑞意;桂良进;吴章斌大客车车身骨架多学科协同优化设计 2010(018)36.Michelena N;Louca L;Kokkolaras M Design of an advanced heavy tactical trucks:A target cascading case study.SAE Tech Paper,2001-01-279337.Kim H M;Rideout D G;Papalambros P Y Analytical target cascading in automotive vehicle design 2003(03)38.赵迁;陈潇凯;林逸解析目标分流法在汽车多学科设计优化中的应用 2010(06)39.冯美斌汽车轻量化技术中新材料的发展及应用 2006(03)40.马鸣图;柏建仁汽车轻量化材料及相关技术的研究进展 2006(06)41.王利;陆匠心汽车轻量化及其材料的经济选用 2013(01)42.王广勇;王刚高强度钢在汽车轻量化中的应用 2011(01)43.桂良进;高付海;范子杰双相钢板料的单向拉伸断裂失效研究(Ⅰ)一数字图像相关技术试验 2010(02)44.高付海;桂良进;范子杰双相钢板料的单向拉伸断裂失效研究(Ⅱ)一弧长法非线性有限元分析 2010(03)45.GAO F;GUI L;Fan Z Experimental and Numerical Analysis of an In-Plane Shear Specimen Designed for Ductile Fracture Studies 2011(06)46.桂良进;高付海;范子杰先进高强度钢的断裂失效准则研究 2012(33)47.Sadagopan S Formability characterization of advanced high-strength steels48.Pickett AK;Pyttel T;Payen F Failure prediction for advanced crashworthiness of transportation vehicles 2004(07)49.Ducker Worldwide EAA Aluminium penetration in cars 201250.Hirsch Ju¨ rgen Aluminum in Innovative Light-Weight Car Design 2011(05)51.马鸣图;游江海;路洪洲汽车轻量化以及铝合金汽车板的应用 200952.詹志强铝合金汽车车身板应用现状及需求前景 201253.王丹铝合金汽车板应用及生产现状 2013(03)54.桂良进;范子杰;王青春泡沫填充圆管的轴向压缩能量吸收特性 2003(11)55.桂良进;范子杰;王青春泡沫填充圆管的动态轴向压缩吸能特性 2004(05)56.王青春;范子杰;桂良进泡沫铝填充帽型结构轴向冲击吸能特性的试验研究 2006(04)57.王青春;范子杰;桂良进中等应变率下泡沫铝的吸能特性 2005(06)58.WANG Q;FAN Z;SONG H Experimental and numerical analyses of the axial crushing behaviour of hat sections partially filled with aluminum foam 2005(05)59.WANG Q;FAN Z;GUI L A theoretical analysis for the dynamic axial crushing behaviour of aluminium foamfilled hat sections 2006(7-8)60.WANG Q;FAN Z;GUI L Theoretical analysis for axial crushing behaviour of aluminium foam-filled hat sections2007(04)61.Waurzyniak P Advanced materials in automotive:Newer steels,aluminum,magnesium,and other materials lead to more lightweight,economical vehicles 2009(03)62.Kulekci M K Magnesium and its alloys applications in automotive industry 2008(09)63.吴章斌;桂良进;范子杰AZ31B镁合金挤压板材力学性能的各向异性 2012(02)64.许江菱;钟晓萍;殷荣忠2011-2012年世界塑料工业 进展 2013(03)65.杨挺汽车工业中塑料材料应用的现状及展望 2013(05)66.ZHANG Ping;GUI Liangjin;FAN Zijie Finite element modeling of the quasi-static axial crushing of braided composite tubes 2013(01)67.ZHANG Ping;GUI Liangjin;FAN Zijie Crash energy absorption of braided composite tubes and its application in vehicle passive safety 201368.GUI Liangjin;ZHANG Ping;FAN Zijie Energy absorption properties of braided glass/epoxy tubes subjected to quasi-static axial crushing 2009(01)69.ZHANG Ping;GUI Liangjin;FAN Zijie An analytical model for predicting the elastic properties of triaxially braided composites 2009(15)70.张平;桂良进;范子杰三向编织复合材料弹性性能研究 2009(01)71.康万平;王宇;康蕾管件液压成型技术简述 2010(01)72.王习文;宗长富;郭立书管件液压成形技术及其在汽车零部件制造中的应用 2013(04)73.杨勇;徐峰;苏海波管件液压成形技术及其在副车架上的应用 2010(03) Hydroforming achieves vehicle weight and cost reduction says study 201275.Koca f da A;Sadtowska H Automotive component development by means of hydroforming 2008(03)ngerak N;Rout D K;Verma R Tube hydroforming in automotive applications 201477.陈杰管材内高压成形数值模拟与工艺研究 201378.李泷杲金属薄壁管液压成形应用基础研究 200779.任芝兰汽车用高强度钢的激光焊焊接性研究 2006(01)80.朱久发激光拼焊汽车板的应用现状与发展前景 2011(03)81.ROFIN Lasers in Automotive Industry 201482.Klaus L Laser Applications in the Automotive Industry 201183.Chen H C;Pinkerton J A Mistry,Gap-free fibre laser welding of Zn-coated steel on A1 alloy for light-weight automotive applications 2011(02)84.HYRCZA-MICHALSKA M;GROSMAN F The evaluate of laser welded tailor and tubular blanks formability for automotive vehicle elements stamping 2009(01)85.Sieben M;Brunnecker F Laser-Hybrid welding,an innovative technology to join automotive body parts 201086.Schimek M;Springer A;Kaierle S Laser-welded dissimilar steel-aluminum seams for automotive lightweight construction 201287.Vasilash G S VW Is Hot On Lasers 200488.Bea M;Brockmann R;Havrilla D Remote laser welding in automotive production 2011引用本文格式:范子杰.桂良进.苏瑞意.FAN Zijie.GUI Liangjin.SU Ruiyi汽车轻量化技术的研究与进展[期刊论文]-汽车安全与节能学报 2014(1)。
材料、结构力学名词英文
力学 mechanics 牛顿力学 Newtonian mechanics 经典力学 classical mechanics 静力学 statics 运动学 kinematics 动力学 dynamics子波 wavelet 次级子波 secondary wavele 驻波 standing wave声强 intensity of sound 声强计 phonometer 声调 intonation音色 musical quality 音调 pitch 声级 sound level声压[强] sound pressure 声源 sound source 声阻抗 acoustic impedance声抗 acoustic reactance 声阻 acoustic resistance 声导纳 acoustic admittance声导 acoustic conductance 声纳 acoustic susceptance 声共振 acoustic resonance声波 sound wave 超声波 supersonic wave 声速 sound velocity次声波 infrasonic wave 亚声速 subsonic speed又称“亚音速”。
超声速 supersonic speed又称“超音速”。
声呐 sonar 共鸣 resonance回波 echo 回声 echo 拍 beat 拍频 beat frequency群速 group velocity 相速 phase velocity 能流 energy flux能流密度 energy flux density 材料力学 mechanics of materials, strength of materials 应力 stress 法向应力 normal stress 剪[切]应力 shear stress单轴应力 uniaxial stress 双轴应力 biaxial stress 拉[伸]应力 tensile stress压[缩]应力 compressive stress 周向应力 circumferential stress纵向应力 longitudinal stress 轴向应力 axial stress弯[曲]应力 bending stress, flexural stress 扭[转]应力 torsional stress局部应力 localized stress 残余应力 residual stress 热应力 thermal stress最大法向应力 maximum normal stress 最小法向应力 minimum normal stress最大剪应力 maximum shear stress 主应力 principal stress主剪应力 principal shear stress 工作应力 working stress 许用应力 allowable stress应力集中 stress concentration 应力集中系数 stress concentration factor应力状态 state of stress 应力分析 stress analysis结构[强度]分析 structured analysis 应变 strain 剪[切]应变 shear strain法向应变 normal strain 拉[伸]应变 tensile strain 压[缩]应变 compressive strain 体积应变 volumetric strain 残余应变 residual strain 热应变 thermal strain最大法向应变 maximum normal strain 主应变 principal strain主剪应变 principal shear strain 名义应变 nominal strain应变状态 state of strain 载荷 load又称“荷载”。
流体力学英语词汇翻译.
流体力学英语词汇翻译(1)流体动力学 fluid dynamics连续介质力学 mechanics of continuous media介质 medium流体质点 fluid particle无粘性流体 nonviscous fluid, inviscid fluid连续介质假设 continuous medium hypothesis流体运动学 fluid kinematics水静力学 hydrostatics液体静力学 hydrostatics支配方程 governing equation伯努利方程 Bernoulli equation伯努利定理 Bernonlli theorem毕奥-萨伐尔定律 Biot-Savart law欧拉方程 Euler equation亥姆霍兹定理 Helmholtz theorem开尔文定理 Kelvin theorem涡片 vortex sheet库塔-茹可夫斯基条件 Kutta-Zhoukowski condition 布拉休斯解 Blasius solution达朗贝尔佯廖 d'Alembert paradox雷诺数 Reynolds number施特鲁哈尔数 Strouhal number随体导数 material derivative不可压缩流体 incompressible fluid质量守恒 conservation of mass动量守恒 conservation of momentum能量守恒 conservation of energy动量方程 momentum equation能量方程 energy equation控制体积 control volume液体静压 hydrostatic pressure涡量拟能 enstrophy压差 differential pressure流[动] flow流线 stream line流面 stream surface流管 stream tube迹线 path, path line流场 flow field流态 flow regime流动参量 flow parameter流量 flow rate, flow discharge涡旋 vortex涡量 vorticity涡丝 vortex filament涡线 vortex line涡面 vortex surface涡层 vortex layer涡环 vortex ring涡对 vortex pair涡管 vortex tube涡街 vortex street卡门涡街 Karman vortex street马蹄涡 horseshoe vortex对流涡胞 convective cell卷筒涡胞 roll cell涡 eddy涡粘性 eddy viscosity环流 circulation环量 circulation速度环量 velocity circulation偶极子 doublet, dipole驻点 stagnation point总压[力] total pressure总压头 total head静压头 static head总焓 total enthalpy能量输运 energy transport速度剖面 velocity profile库埃特流 Couette flow单相流 single phase flow单组份流 single-component flow均匀流 uniform flow非均匀流 nonuniform flow二维流 two-dimensional flow三维流 three-dimensional flow准定常流 quasi-steady flow非定常流 unsteady flow, non-steady flow 暂态流 transient flow周期流 periodic flow振荡流 oscillatory flow分层流 stratified flow无旋流 irrotational flow有旋流 rotational flow轴对称流 axisymmetric flow不可压缩性 incompressibility不可压缩流[动] incompressible flow浮体 floating body定倾中心 metacenter阻力 drag, resistance减阻 drag reduction表面力 surface force表面张力 surface tension毛细[管]作用 capillarity来流 incoming flow自由流 free stream自由流线 free stream line外流 external flow进口 entrance, inlet出口 exit, outlet扰动 disturbance, perturbation分布 distribution传播 propagation色散 dispersion弥散 dispersion附加质量 added mass ,associated mass 收缩 contraction镜象法 image method无量纲参数 dimensionless parameter几何相似 geometric similarity运动相似 kinematic similarity动力相似[性] dynamic similarity平面流 plane flow势 potential势流 potential flow速度势 velocity potential复势 complex potential复速度 complex velocity流函数 stream function源 source汇 sink速度[水]头 velocity head拐角流 corner flow空泡流 cavity flow超空泡 supercavity超空泡流 supercavity flow空气动力学 aerodynamics低速空气动力学 low-speed aerodynamics高速空气动力学 high-speed aerodynamics 气动热力学 aerothermodynamics亚声速流[动] subsonic flow跨声速流[动] transonic flow超声速流[动] supersonic flow锥形流 conical flow楔流 wedge flow叶栅流 cascade flow非平衡流[动] non-equilibrium flow细长体 slender body细长度 slenderness钝头体 bluff body钝体 blunt body翼型 airfoil翼弦 chord薄翼理论 thin-airfoil theory构型 configuration后缘 trailing edge迎角 angle of attack失速 stall脱体激波 detached shock wave波阻 wave drag诱导阻力 induced drag诱导速度 induced velocity临界雷诺数 critical Reynolds number前缘涡 leading edge vortex附着涡 bound vortex约束涡 confined vortex气动中心 aerodynamic center气动力 aerodynamic force气动噪声 aerodynamic noise气动加热 aerodynamic heating离解 dissociation地面效应 ground effect气体动力学 gas dynamics稀疏波 rarefaction wave热状态方程 thermal equation of state 喷管 Nozzle普朗特-迈耶流 Prandtl-Meyer flow瑞利流 Rayleigh flow可压缩流[动] compressible flow可压缩流体 compressible fluid绝热流 adiabatic flow非绝热流 diabatic flow未扰动流 undisturbed flow等熵流 isentropic flow匀熵流 homoentropic flow兰金-于戈尼奥条件 Rankine-Hugoniot condition 状态方程 equation of state量热状态方程 caloric equation of state完全气体 perfect gas拉瓦尔喷管 Laval nozzle马赫角 Mach angle马赫锥 Mach cone马赫线 Mach line马赫数 Mach number马赫波 Mach wave当地马赫数 local Mach number冲击波 shock wave激波 shock wave正激波 normal shock wave斜激波 oblique shock wave头波 bow wave附体激波 attached shock wave激波阵面 shock front激波层 shock layer压缩波 compression wave反射 reflection折射 refraction散射 scattering衍射 diffraction绕射 diffraction出口压力 exit pressure超压[强] over pressure反压 back pressure爆炸 explosion爆轰 detonation缓燃 deflagration水动力学 hydrodynamics液体动力学 hydrodynamics泰勒不稳定性 Taylor instability盖斯特纳波 Gerstner wave斯托克斯波 Stokes wave瑞利数 Rayleigh number自由面 free surface波速 wave speed, wave velocity波高 wave height波列 wave train波群 wave group波能 wave energy表面波 surface wave表面张力波 capillary wave规则波 regular wave不规则波 irregular wave浅水波 shallow water wave深水波 deep water wave重力波 gravity wave椭圆余弦波 cnoidal wave潮波 tidal wave涌波 surge wave破碎波 breaking wave船波 ship wave非线性波 nonlinear wave孤立子 soliton水动[力]噪声 hydrodynamic noise 水击 water hammer空化 cavitation空化数 cavitation number空蚀 cavitation damage超空化流 supercavitating flow水翼 hydrofoil水力学 hydraulics洪水波 flood wave涟漪 ripple消能 energy dissipation海洋水动力学 marine hydrodynamics 谢齐公式 Chezy formula欧拉数 Euler number弗劳德数 Froude number水力半径 hydraulic radius水力坡度 hvdraulic slope高度水头 elevating head水头损失 head loss水位 water level水跃 hydraulic jump含水层 aquifer排水 drainage排放量 discharge壅水曲线 back water curve压[强水]头 pressure head过水断面 flow cross-section明槽流 open channel flow孔流 orifice flow无压流 free surface flow有压流 pressure flow缓流 subcritical flow急流 supercritical flow渐变流 gradually varied flow急变流 rapidly varied flow临界流 critical flow异重流 density current, gravity flow堰流 weir flow掺气流 aerated flow含沙流 sediment-laden stream降水曲线 dropdown curve沉积物 sediment, deposit沉[降堆]积 sedimentation, deposition沉降速度 settling velocity流动稳定性 flow stability不稳定性 instability奥尔-索末菲方程 Orr-Sommerfeld equation 涡量方程 vorticity equation泊肃叶流 Poiseuille flow奥辛流 Oseen flow剪切流 shear flow粘性流[动] viscous flow层流 laminar flow分离流 separated flow二次流 secondary flow近场流 near field flow远场流 far field flow滞止流 stagnation flow尾流 wake [flow]回流 back flow反流 reverse flow射流 jet自由射流 free jet管流 pipe flow, tube flow内流 internal flow拟序结构 coherent structure猝发过程 bursting process表观粘度 apparent viscosity运动粘性 kinematic viscosity动力粘性 dynamic viscosity泊 poise厘泊 centipoise厘沱 centistoke剪切层 shear layer次层 sublayer流动分离 flow separation层流分离 laminar separation湍流分离 turbulent separation分离点 separation point附着点 attachment point再附 reattachment再层流化 relaminarization起动涡 starting vortex驻涡 standing vortex涡旋破碎 vortex breakdown涡旋脱落 vortex shedding压[力]降 pressure drop压差阻力 pressure drag压力能 pressure energy型阻 profile drag滑移速度 slip velocity无滑移条件 non-slip condition壁剪应力 skin friction, frictional drag 壁剪切速度 friction velocity磨擦损失 friction loss磨擦因子 friction factor耗散 dissipation滞后 lag相似性解 similar solution局域相似 local similarity气体润滑 gas lubrication液体动力润滑 hydrodynamic lubrication浆体 slurry泰勒数 Taylor number纳维-斯托克斯方程 Navier-Stokes equation 牛顿流体 Newtonian fluid边界层理论 boundary later theory边界层方程 boundary layer equation边界层 boundary layer附面层 boundary layer层流边界层 laminar boundary layer湍流边界层 turbulent boundary layer温度边界层 thermal boundary layer边界层转捩 boundary layer transition边界层分离 boundary layer separation边界层厚度 boundary layer thickness位移厚度 displacement thickness流体力学英语词汇翻译(2)动量厚度 momentum thickness能量厚度 energy thickness焓厚度 enthalpy thickness注入 injection吸出 suction泰勒涡 Taylor vortex速度亏损律 velocity defect law形状因子 shape factor测速法 anemometry粘度测定法 visco[si] metry流动显示 flow visualization油烟显示 oil smoke visualization孔板流量计 orifice meter频率响应 frequency response油膜显示 oil film visualization阴影法 shadow method纹影法 schlieren method烟丝法 smoke wire method丝线法 tuft method氢泡法 nydrogen bubble method相似理论 similarity theory相似律 similarity law部分相似 partial similarity定理 pi theorem, Buckingham theorem 静[态]校准 static calibration动态校准 dynamic calibration风洞 wind tunnel激波管 shock tube激波管风洞 shock tube wind tunnel 水洞 water tunnel拖曳水池 towing tank旋臂水池 rotating arm basin扩散段 diffuser测压孔 pressure tap皮托管 pitot tube普雷斯顿管 preston tube斯坦顿管 Stanton tube文丘里管 Venturi tubeU形管 U-tube压强计 manometer微压计 micromanometer多管压强计 multiple manometer静压管 static [pressure]tube流速计 anemometer风速管 Pitot- static tube激光多普勒测速计 laser Doppler anemometer, laser Doppler velocimeter 热线流速计 hot-wire anemometer热膜流速计 hot- film anemometer流量计 flow meter粘度计 visco[si] meter涡量计 vorticity meter传感器 transducer, sensor压强传感器 pressure transducer热敏电阻 thermistor示踪物 tracer时间线 time line脉线 streak line尺度效应 scale effect壁效应 wall effect堵塞 blockage堵寒效应 blockage effect动态响应 dynamic response响应频率 response frequency底压 base pressure菲克定律 Fick law巴塞特力 Basset force埃克特数 Eckert number格拉斯霍夫数 Grashof number努塞特数 Nusselt number普朗特数 prandtl number雷诺比拟 Reynolds analogy施密特数 schmidt number斯坦顿数 Stanton number对流 convection自由对流 natural convection, free convec-tion强迫对流 forced convection热对流 heat convection质量传递 mass transfer传质系数 mass transfer coefficient热量传递 heat transfer传热系数 heat transfer coefficient对流传热 convective heat transfer辐射传热 radiative heat transfer动量交换 momentum transfer能量传递 energy transfer传导 conduction热传导 conductive heat transfer热交换 heat exchange临界热通量 critical heat flux浓度 concentration扩散 diffusion扩散性 diffusivity扩散率 diffusivity扩散速度 diffusion velocity分子扩散 molecular diffusion沸腾 boiling蒸发 evaporation气化 gasification凝结 condensation成核 nucleation计算流体力学 computational fluid mechanics多重尺度问题 multiple scale problem伯格斯方程 Burgers equation对流扩散方程 convection diffusion equationKDU方程 KDV equation修正微分方程 modified differential equation拉克斯等价定理 Lax equivalence theorem数值模拟 numerical simulation大涡模拟 large eddy simulation数值粘性 numerical viscosity非线性不稳定性 nonlinear instability希尔特稳定性分析 Hirt stability analysis相容条件 consistency conditionCFL条件 Courant- Friedrichs- Lewy condition ,CFL condition 狄里克雷边界条件 Dirichlet boundary condition熵条件 entropy condition远场边界条件 far field boundary condition流入边界条件 inflow boundary condition无反射边界条件nonreflecting boundary condition数值边界条件 numerical boundary condition流出边界条件 outflow boundary condition冯.诺伊曼条件 von Neumann condition近似因子分解法 approximate factorization method人工压缩 artificial compression人工粘性 artificial viscosity边界元法 boundary element method配置方法 collocation method能量法 energy method有限体积法 finite volume method流体网格法 fluid in cell method, FLIC method通量校正传输法 flux-corrected transport method通量矢量分解法 flux vector splitting method伽辽金法 Galerkin method积分方法 integral method标记网格法 marker and cell method, MAC method特征线法 method of characteristics直线法 method of lines矩量法 moment method多重网格法 multi- grid method板块法 panel method质点网格法 particle in cell method, PIC method质点法 particle method预估校正法 predictor-corrector method投影法 projection method准谱法 pseudo-spectral method随机选取法 random choice method激波捕捉法 shock-capturing method激波拟合法 shock-fitting method谱方法 spectral method稀疏矩阵分解法 split coefficient matrix method不定常法 time-dependent method时间分步法 time splitting method变分法 variational method涡方法 vortex method隐格式 implicit scheme显格式 explicit scheme交替方向隐格式 alternating direction implicit scheme, ADI scheme 反扩散差分格式 anti-diffusion difference scheme紧差分格式 compact difference scheme守恒差分格式 conservation difference scheme克兰克-尼科尔森格式 Crank-Nicolson scheme杜福特-弗兰克尔格式 Dufort-Frankel scheme指数格式 exponential scheme戈本诺夫格式 Godunov scheme高分辨率格式 high resolution scheme拉克斯-温德罗夫格式 Lax-Wendroff scheme蛙跳格式 leap-frog scheme单调差分格式 monotone difference scheme保单调差分格式 monotonicity preserving difference scheme穆曼-科尔格式 Murman-Cole scheme半隐格式 semi-implicit scheme斜迎风格式 skew-upstream scheme全变差下降格式 total variation decreasing scheme TVD scheme 迎风格式 upstream scheme , upwind scheme计算区域 computational domain物理区域 physical domain影响域 domain of influence依赖域 domain of dependence区域分解 domain decomposition维数分解 dimensional split物理解 physical solution弱解 weak solution黎曼解算子 Riemann solver守恒型 conservation form弱守恒型 weak conservation form强守恒型 strong conservation form散度型 divergence form贴体曲线坐标 body- fitted curvilinear coordi-nates[自]适应网格 [self-] adaptive mesh适应网格生成 adaptive grid generation自动网格生成 automatic grid generation数值网格生成 numerical grid generation交错网格 staggered mesh网格雷诺数 cell Reynolds number数植扩散 numerical diffusion数值耗散 numerical dissipation数值色散 numerical dispersion数值通量 numerical flux放大因子 amplification factor放大矩阵 amplification matrix阻尼误差 damping error离散涡 discrete vortex熵通量 entropy flux熵函数 entropy function分步法 fractional step method广义连续统力学 generalized continuum mechanics简单物质 simple material纯力学物质 purely mechanical material微分型物质 material of differential type积分型物质 material of integral type混合物组份 constituents of a mixture非协调理论 incompatibility theory微极理论 micropolar theory决定性原理 principle of determinism等存在原理 principle of equipresence局部作用原理 principle of objectivity客观性原理 principle of objectivity电磁连续统理论 theory of electromagnetic continuum内时理论 endochronic theory非局部理论 nonlocal theory混合物理论 theory of mixtures里夫林-矣里克森张量 Rivlin-Ericksen tensor声张量 acoustic tensor半向同性张量 hemitropic tensor各向同性张量 isotropic tensor应变张量 strain tensor伸缩张量 stretch tensor连续旋错 continuous dislination连续位错 continuous dislocation动量矩平衡 angular momentum balance余本构关系 complementary constitutive relations共旋导数 co-rotational derivative, Jaumann derivative 非完整分量 anholonomic component爬升效应 climbing effect协调条件 compatibility condition错综度 complexity当时构形 current configuration能量平衡 energy balance变形梯度 deformation gradient有限弹性 finite elasticity熵增 entropy production标架无差异性 frame indifference弹性势 elastic potential熵不等式 entropy inequality极分解 polar decomposition低弹性 hypoelasticity参考构形 reference configuration响应泛函 response functional动量平衡 momentum balance奇异面 singular surface贮能函数 stored-energy function内部约束 internal constraint物理分量 physical components本原元 primitive element普适变形 universal deformation速度梯度 velocity gradient测粘流动 viscometric flow当地导数 local derivative岩石力学 rock mechanics原始岩体应力 virgin rock stress构造应力 tectonic stress三轴压缩试验 three-axial compression test 三轴拉伸试验 three-axial tensile test三轴试验 triaxial test岩层静态应力 lithostatic stress吕荣 lugeon地压强 geostatic pressure水力劈裂 hydraulic fracture咬合[作用] interlocking内禀抗剪强度 intrinsic shear strength循环抗剪强度 cyclic shear strength残余抗剪强度 residual shear strength土力学 soil mechanics孔隙比 void ratio内磨擦角 angle of internal friction休止角 angle of repose孔隙率 porosity围压 ambient pressure渗透系数 coefficient of permeability [抗]剪切角 angle of shear resistance渗流力 seepage force表观粘聚力 apparent cohesion粘聚力 cohesion稠度 consistency固结 consolidation主固结 primary consolidation次固结 secondary consolidation固结仪 consolidometer浮升力 uplift扩容 dilatancy有效应力 effective stress絮凝[作用] flocculation主动土压力 active earth pressure被动土压力 passive earth pressure土动力学 soil dynamics应力解除 stress relief次时间效应 secondary time effect贯入阻力 penetration resistance沙土液化 liquefaction of sand泥流 mud flow多相流 multiphase flow马格努斯效应 Magnus effect韦伯数 Weber number环状流 annular flow泡状流 bubble flow层状流 stratified flow平衡流 equilibrium flow二组份流 two-component flow冻结流 frozen flow均质流 homogeneous flow二相流 two-phase flow气-液流 gas-liquid flow气-固流 gas-solid flow液-气流 liquid-gas flow液-固流 liquid-solid flow液体-蒸气流 liquid-vapor flow浓相 dense phase稀相 dilute phase连续相 continuous phase离散相 dispersed phase悬浮 suspension气力输运 pneumatic transport气泡形成 bubble formation体密度 bulk density壅塞 choking微滴 droplet挟带 entrainment流型 flow pattern流[态]化 fluidization界面 interface跃动速度 saltation velocity非牛顿流体力学 non-Newtonian fluid mechanics 非牛顿流体 non-Newtonian fluid幂律流体 power law fluid拟塑性流体 pseudoplastic fluid触稠流体 rheopectic fluid触变流体 thixotropic fluid粘弹性流体 viscoelastic fluid流变测量学 rheometry震凝性 rheopexy体[积]粘性 bulk viscosity魏森贝格效应 Weissenberg effect流变仪 rheometer稀薄气体动力学 rarefied gas dynamics物理化学流体力学 physico-chemical hydrodynamics 空气热化学 aerothermochemistry绝对压强 absolute pressure绝对反应速率 absolute reaction rate绝对温度 absolute temperature吸收系数 absorption coefficient活化分子 activated molecule活化能 activation energy绝热压缩 adiabatic compression绝热膨胀 adiabatic expansion绝热火焰温度 adiabatic flame temperature电弧风洞 arc tunnel原子热 atomic heat雾化 atomization自燃 auto-ignition自动氧化 auto-oxidation可用能量 available energy缓冲作用 buffer action松密度 bulk density燃烧率 burning rate燃烧速度 burning velocity接触面 contact surface烧蚀 ablation。
工程热力学第1章-基本概念
两者关系:
v
1
河北理工大学
1-4 平衡状态
工程热力学
一、平衡状态(thermodynamic equilibrium state)
1.定义:无外界影响系统保持状态参数不随时间而改变的状态
热平衡(thermal equilibrium) : 在无外界作用的条件下,系统内部、系统与外界 处处温
度相等。
河北理工大学
四、逆向循环(reverse cycle)
▲制冷循环(refrigeration cycle) ▲热泵循环(heat-pump cycle)
工程热力学
一般地讲:输入净功; 在状态参数图逆时针运行; 吸热小于放热。
河北理工大学
五、循环经济性指标:
收益 代价
动力循环: 热效率(thermal efficiency)
河北理工大学
三、热量(heat)
1.定义:仅仅由于温差而 通过边界传递的能量。
2.符号约定:系统吸热“+”; 放热“-”
3.单位: J kJ
4.计算式及状态参数图
(T-s图上)表示
2
Q TdS
(可逆过程)
1
δQ TdS
热量是过程量
河北理工大学
工程热力学
四、热量与功的异同:
1.均为通过边界传递的能量;
热力学温标单位:开尔文,K。水的三相 点的温度,即固相、液相和气相平衡共 存状态的温度作为基准点,并规定为 273.16K。
t T 273.15
C
K
河北理工大学
河北理工大学
工程热力学
工程热力学
华氏温标和摄氏温标
{t} ℃=5/9[{t} ℉-32] {t} ℉ =9/5{t} ℃ +32
螺旋挤压条件下连续泡沫金属制备1
螺旋挤压条件下连续泡沫金属制备作者:张楠,梁朝燕,李娜指导教师:高玉周(大连海事大学交通运输装备与海洋工程学院,辽宁省大连市 116026)摘要:本设计采用螺旋挤压机构,靠挤压螺杆的推动使物料被迫曲折前进,经过混合、压缩,在推进力和摩擦力机械作用下受压变热,在腔体内达到高温(150-200ºC)、高压状态(106N/m2),此状态下金属物料中积蓄的大量能量,在膨化的瞬间,由高压变为常压,同时有巨大的能量释放,使物料中的起泡剂蒸发膨胀并冷却,金属物料的体积也随之膨胀。
挤压膨化后,凝固结晶,形成泡沫多孔金属。
关键词:螺旋挤压、泡沫金属、膨化the form of metal foam under the conditions of screw extrusionAbstract:This design using the screw extrusion mechanism, the material is forced to go forward relying on extrusion screw drive. After mixing, compression, it gets hot under the action of the propulsive force and friction force , and the body cavity gets high temperature (150-200 ºC)), and high pressure (106N/m2).Under the condition, the metal material saving a great deal of energy, in bulking moment,a large energy release by high pressure to atmospheric pressure, making the material of the foaming agent evaporation expansion and cooling, then the volume of the metal material inflate. After extrusion bulking, solidification, it forms foam porous metal.Key words:screw extrusion,foam porous metal,inflation一、引言多孔金属材料由连续的固相骨架和孔隙所组成的,在近些年来发展非常迅速,业已成为一种兼具功能和结构双重属性的性能优异的工程材料。
室温下TC11钛合金准静态拉伸力学性能实验研究
室温下TC11钛合金准静态拉伸力学性能实验研究牛秋林;陈明;明伟伟【摘要】针对典型航空材料TC11钛合金的拉伸性能,采用准静态拉伸实验对不同应变率条件下的TC11钛合金的应力-应变关系进行了研究,利用扫描电镜分析了其拉伸断口形貌.实验结果表明:TC11钛合金具有一定的应变率敏感性,抗拉强度和屈服强度均会受到应变率的影响;准静态拉伸时TC11钛合金试样出现了颈缩现象,试样截面形状为杯锥状,试样断口存在光滑的剪切唇区和灰色的纤维区,其断裂属于韧性断裂,但是其韧性较差;TC11钛合金拉伸断口形貌主要为大小不一的韧窝,随着应变率的增大,试样拉伸断口韧窝的大小和深度均变小,同时出现了少量的撕裂棱和准解理面,试样的断裂机制为以韧性断裂为主和伴有准解理断裂.因此,在准静态拉伸条件下,TC11钛合金的力学行为与应变率有关.%According to the tensile properties of typical aerospace material TC11 titanium alloy, the stress-strain relationship is studied using the quasi-static tensile test at different strain rates, and the tensile fracture morphology is analyzed with SEM.The experimental results show that TC11 titanium alloy has certain strain rate sensitivity, and both tensile strength and yield strength are affected by strain rate.During quasi-static tension test, TC11 titanium alloy specimen has the phenomenon of neck shrinkage.The section of the specimen is cuppy, and there is smooth shear lip zone and grey fiber area in the sample fracture.The fracture of the samples belongs to ductile fracture, but its toughness is poor.The tensile fracture morphology of TC11 titanium alloy is mainly the dimple with different sizes, but with the increase of strain rate, the size and the depth of dimple at the tensile fracture aresmaller, and the fracture surface produces a small number of tearing edges and quasi-cleavage plane, and the fracture mechanism of the specimen is mainly ductile fracture and quasi-cleavage fracture.Therefore, the mechanical behavior of TC11 titanium alloy is related to strain rate under quasi-static tensile condition.【期刊名称】《河北科技大学学报》【年(卷),期】2017(038)004【总页数】5页(P320-324)【关键词】材料力学;TC11钛合金;准静态拉伸;力学性能;断口形貌【作者】牛秋林;陈明;明伟伟【作者单位】湖南科技大学机电工程学院,湖南湘潭 411201;上海交通大学机械与动力工程学院,上海 200240;上海交通大学机械与动力工程学院,上海 200240【正文语种】中文【中图分类】TG146.2钛合金由于具有优良的机械性能而受到广泛关注[1-2]。
Yoshimura折纸管轴向压溃吸能特性分析
圆形直管和六边形直管相比:圆形直管初始压 溃峰值载荷、平均压溃载荷、总吸能高但载荷效率 低,说明圆形直管初始峰值力大,吸能多但吸能均匀 性差;六边形直管初始峰值力较小,吸能少但吸能均 匀性好。三种构型的吸能管相比:Yoshimura折纸 管初始压溃峰值载荷最小,平均压溃载荷、总吸能、 载荷效率最高,说明Yoshimura折纸管初始峰值力 最小、吸能最多且吸能均匀性最好;同时,从压溃载 荷一位移曲线中可以看出Yoshimura折纸管后期 呈上扬趋势,说明其吸能潜力更高。数值分析结果 表明 ,Yoshimura 折纸管吸能效果最好, 圆 形 直管吸 能多于六边形直管, 六边 形 直管 吸 能均匀 性 优于 圆 形直管。
为了研究吸能管结构形状对吸能效果的影响 ,
本文采用传统的圆形直管、六边形直管与Yoshimura 折纸管作为研究对象。 如图)所示, 三种形状吸
能管的外接圆半径R = 50mm,总高度Hh = 240mm,壁厚t = 2mm。材料选用弹塑性材料,弹性 模量为205GPa,泊松比为0. 3,屈服强度为 235MPa,极限强度为375MPa。本文采用S3R壳单 元对吸能管进行网格划分,考虑到求解精度与效率, 网格尺寸约为6mm。
(d)
(b)正视图
(c)俯视图
图1 Yoshimura折纸管
(d)平面镶嵌图
3有限元分析
有限元方法将结构离散为有限个单元,单元之间 通过节点连接。通过建立平衡方程,可以求解节点的 位移和应力等物理量。通用有限元软件ABAQUS在 解决大变形、强非线性问题方面有较强的稳定性和较 高的精度,因此本文选用ABAQUS进行数值分析闪。 3. 1有限元模型的建立
工程流体力学中英翻译
脉动应力
fluid
流体
fluid dynamics
流体动力学
fluid field
流场
fluid machinery
流体机械
fluid mechanics
流体力学
fluid particle
流体质点
fluid statics
流体静力学
free surface
自由表面
比热比
real fluid
粘性流体
real gas
真实气体,实际气体
rectangular coordinate system
直角坐标系
reduced Navier-Stokes equation
简化纳维—斯托克斯方程
Reynoldsnumber
雷诺数
adiabatic flow
绝热流动
airfoil
翼型
angle of attack
冲角
angular velocity
角速度
apparent shear stresses
表面剪切应力
apparent stresses
表面应力
Archimedes law
阿基米德定律
atmospheric pressure
临界雷诺数
critical speed of sound
临界声速
critical state
临界状态
cross section
横截面
curvature radius
曲率半径
curved shock
曲面波
cylindrical coordinate system
柱坐标系
2019工程力学北京科技大学版材料力学部分(一)
§1-5 材料在拉压时的力学性能
Mechanical properties of materials in tension and compression
材料的力学性能只能通过实验求得. 通常是在常温 isothermal、准静 载荷 quasi-static loading 的条件下测定的.
两类典型材料: 塑性材料 plastic materials ,以低碳钢为代表. 脆性材料 brittle materials ,以铸铁为代表.
2)变形谐调条件 condition of compatibility A
= 常数.
3)物理关系 constitutive relation : Hooke's law
= E = 常数.
联解得
(4)实验证明
N dA A, A
N.
A
(1-1)
圣维难原理 St. Venant's Principle :在远离(一个特性常数)加力处的应 力分布, 只与加力的合力有关, 而与加力方式无关.
工程力学 材料力学部分(一)
10
3、材料压缩时的力学性能
Mechanical properties of materials in compression
试件:
金属:圆柱体 l / d = 1.5 ~ 3.
混凝土及石料:大致相
同. 试件被压成圆饼.
工程力学 材料力学部分(一)
2
§1-2 轴向拉压时的内力 Internal force
1. 内力: 由于外力的作用引起的构件各部分之间的附加内力.
2. 截面法 Method of Sections:
以特殊的例题说明求内力的一般方法.
(1)切 假想切开(一刀两断);
(完整版)《工程热力学》、《传热学》课程专业词汇中英文对照表
(完整版)《⼯程热⼒学》、《传热学》课程专业词汇中英⽂对照表《⼯程热⼒学》课程专业词汇中英⽂对照表thermodynamics热⼒学heat热work功irreversible process不可逆过程energylaw of energy conservation能量守恒定律temperature 温度thermal equilibrium热平衡Zeroth law of thermodynamics热⼒学第零定律temperature scale温标thermometer温度计thermodynamics scale of temperature 热⼒学温标density密度mass质量pressure压⼒gauge pressure表压absolute pressure绝对压⼒system系统boundary边界surrounding外界closed system闭⼝系统open system开⼝系统quantity of state状态参数process过程reversible process可逆过程irreversible process不可逆过程quasistatic process准静态过程isovolumetric process定容过程adiabatic process绝热过程isothermal process定温过程polytrophic process多变过程P-V diagram P-V 图absolute work 绝对功technical work技术功kinetic energy动能potential energy势能internal energy内能specific internal energy⽐内能specific heat capacity⽐热容constant volume specific heat capacity定容⽐热容constant pressure specific heat capacity定压⽐热容flow energy流动能enthalpy焓specific enthalpy⽐焓latent heat潜热sensible heat显热law of conservation of energy能量守恒定律first law of thermodynamics热⼒学第⼀定律nozzle喷管heat engine热机perpetual-motion machine of first kind第⼀类永动机ideal gas理想⽓体imperfect gas⾮理想⽓体equation of state状态⽅程式universal gas constant通⽤⽓体常数ratio of specific heat capacity⽐热容⽐Joule-Thomson effect焦⽿-汤姆逊效应partial pressure分压⼒Dalton”s law道尔顿定律humidity湿度dry air⼲空⽓absolute humidity 绝对湿度saturated steam pressure饱和蒸汽压relative humidity相对湿度dew point露点cycle循环reciprocating engine往复式发动机bottom dead center下⽌点top dead center 上⽌点thermal efficiency热效率refrigerator制冷机heat pump热泵72 irreversibility不可逆性second law of thermodynamic热⼒学第⼆定律Clausius statement克劳修斯表述Kelven-Plank statement 开尔⽂-普朗克表述perpetual-motion machine of second kind第⼆类永动机isenthalpic process定焓过程Carnot cycle卡诺循环Clausius integral克劳修斯积分Clausius inequality克劳修斯不等式entropy熵absolute entropy绝对熵principle of the increase of entropy熵增原理T-S diagram T-S图real gas实际⽓体steam蒸汽boiling 沸腾evaporation汽化saturation pressure饱和压⼒wet saturated steam 湿蒸汽convergent nozzle渐缩喷管critical pressure临界压⼒Mach number马赫数compression ignition engine压缩点⽕发动机Diesel cycle狄赛尔循环combined cycle混合加热循环gas turbine燃⽓轮机steam prime mover蒸汽原动机boiler锅炉《传热学》课程专业词汇中英⽂对照表heat transfer热传递heat conduction导热convection对流natural convection⾃然对流free convection ⾃由对流forced convection 强制对流heat transfer by convection对流换热phase change 相变evaporation蒸发boiling沸腾condensation凝结melting融化solidification凝固thermal radiation热辐射temperature field温度场steady-state conduction稳态温度场transient conduction⾮稳态温度场temperature gradient 温度梯度isotherms 等温线cartesian coordinates直⾓坐标系heat flux热流密度⽮量Fourier’s law导热基本定律heat Diffusion Equation导热微分⽅程式initial conditions初始条件boundary conditions边界条件thermal contact resistance接触热阻isothermal place等温⾯heat transfer rate热流量heat flux lines热流线heat flux热流密度thermal conductivity 导热系数thermal diffusivity热扩散率heat transfer coefficient换热系数thermal resistance热阻thermal resistance of fouling污垢热阻overall thermal resistance总热阻overall coefficient of heat transfer传热系数convection heat transfer对流换热dimensional analysis量纲分析boundary layer边界层analysis of the order of magnitude in boundary layer边界层的数量级分析boundary layer integral equation 边界层积分⽅程boundary layer differential equation边界层微分⽅程boundary grid point边界节点boundary layer condition边界条件turbulent flow湍流Nusselt number努谢尔特数Reynolds number 雷诺数Prandtl number普朗特数Grashof number 格拉晓夫数external flow外部流动flow along a flat plate外掠平板reference temperature定性温度equivalent diameter当量直径boiling heat transfer沸腾换热flow across single tube横掠单管flow across tube bundles横掠管束pool boiling⼤容器沸腾flow boiling流动沸腾forced convection boiling强制对流沸腾subcooled boiling过冷沸腾surface boiling 表⾯沸腾subcool temperature过冷温度saturated boiling饱和沸腾bulx boiling容积沸腾superheat过热度maximum heat flux point最⼤热流密度点nucleation center核化中⼼nucleate boiling核态沸腾burn out烧毁minimum heat flux point最⼩热流密度点film boiling膜态沸腾transition boiling过渡沸腾spheroidal state 球形状态boiling curve沸腾曲线condensation凝结condenser冷凝器film condensation膜状凝结drop-wise condensation珠状凝结mixed condensation 混合凝结radiation heat transfer辐射换热absolute black body 绝对⿊体gray body灰体view factor ⾓系数spectrum 光谱Planck radiation law 普朗克辐射定律Rayleigh formula雷莱公式emissivity辐射率reflectivity 反射⽐emissive power辐射⼒degree of blackness⿊度irradiation投⼊辐射radiosity有效辐射diffuse reflection漫反射diffuse surface漫射表⾯thermal shield 遮热板heat exchanger换热器parallel-flow 顺流counter-flow逆流effectiveness of heat exchanger 换热器的效能log-mean temperature difference对数平均温差。
热学基础(第二章:温度热量和能量)2010
第二章 温度、热量和能量
2. 1
2.2
温度和第零定律
热量和功 能量和第一定律 温度和热量的测量
内容提纲
2.3 2.4 习 题
§2.1 温度和第零定律
§2.1.1 第零定律 第零定律:如果两个热力学系统中的每一个都与第三个热力学系统处于热平 第零定律 衡(温度相同),则它们彼此也必定处于热平衡。 图中A、B、C为3个质量和组成固定,且与外界完全隔绝的热力系统。将其中 A B C 3 的B、C用绝热壁隔开,同时使它们分别与A发生热接触。待A与B和A与C都达 到热平衡时,再使B与C发生热接触。这时B和C的热力状态不再变化,这表明 它们之间在热性质方面也已达到平衡。 这个定律给出了温度的概念:处在同一热平衡状态的所有的热力学系统都具 有一个共同的宏观特征,这一特征是由这些互为热平衡系统的状态所决定的 一个数值相等的状态函数,这个状态函数被定义为温度。温度相等是热平衡 温度相等是热平衡 之必要的条件。 之必要的条件 第零定律表明,一切互为热平衡的系统具有一个数值上相等的共同的宏观性 质──温度。温度计所以能够测定物体温度正是依据这个原理。 温度计所以能够测定物体温度正是依据这个原理 温度计所以能够测定物体温度正是依据这个原理。
§2.1.2
温度的认识和测量
法天文学家 博里奥
温度/温度计的发展历程 温度/
伽利略 费迪南二世
1593年指示热度的仪器 气体验温计 第一支水银温度计 测量气温
法国医生 让.雷伊 雷伊
注入酒精并密封 消除液体蒸发和大气压影响
第一支液体验温计
§2.1.3 温标(Temperature
Scale)
1、华氏温标(℉) 1724年,德国气象仪器制造商华伦海特。 定义水的冰点32度,沸点212度。 2、摄氏温标(℃) 标准状态下冰水混合物划一刻度; 加热水至沸腾时划一刻度; 再百等分; 3、两者关系 ℉=9/5 ℃+32 注意:以上经验温标利用了温度计中水银或酒精的热胀冷 缩特性,由于不同物质特性随温度变化的关系各不相同, 以及非严格线性关系的影响,经验温标都不是太准确。
不同缘条宽度复合材料C型柱轴向压缩吸能特性
引用格式:牟浩蕾,刘兴炎,刘冰,等. 不同缘条宽度复合材料C型柱轴向压缩吸能特性[J]. 航空材料学报,2023,43(6):107-116.MOU Haolei,LIU Xingyan,LIU Bing,et al. Energy-absorption characteristics of composite C-channels with different flange widths under axial compression[J]. Journal of Aeronautical Materials,2023,43(6):107-116.不同缘条宽度复合材料C型柱轴向压缩吸能特性牟浩蕾1*, 刘兴炎2, 刘 冰2, 解 江1, 冯振宇1*(1.中国民航大学 科技创新研究院,天津 300300;2.中国民航大学 安全科学与工程学院,天津 300300)摘要:针对不同缘条宽度的复合材料薄壁C型柱开展准静态轴向压缩实验,通过CT扫描分析其轴向压缩失效模式及破坏机理,利用吸能特性评估参数分析不同缘条宽度对C型柱轴向压缩吸能特性的影响。
建立复合材料C型柱单层壳模型与多层壳模型,通过对比轴向压缩仿真与实验获得的失效模式、载荷-位移曲线以及吸能特性评估参数,来验证模型有效性。
结果表明:缘条宽度对C型柱轴向压缩失效模式和吸能特性的影响较大,缘条宽度为25 mm和30 mm的C型柱在轴向压缩载荷作用下能够以稳态渐进的形式发生失效,且吸能特性较好;C型柱多层壳模型仿真获得的平均压缩载荷、总吸能及比吸能偏差在5%以内,单层壳模型仿真获得的平均压缩载荷、总吸能及比吸能偏差在8%以内,多层壳模型轴向压缩仿真精度更高。
关键词:复合材料C型柱;缘条宽度;失效模式;吸能特性;数值模拟doi:10.11868/j.issn.1005-5053.2023.000095中图分类号:V229+.7 文献标识码:A 文章编号:1005-5053(2023)06-0107-10Energy-absorption characteristics of composite C-channels with different flangewidths under axial compressionMOU Haolei1*, LIU Xingyan2, LIU Bing2, XIE Jiang1, FENG Zhenyu1*(1. Science and Technology Innovation Research Institute,Civil Aviation University of China,Tianjin 300300,China;2. College of Safety Science and Engineering,Civil Aviation University of China, Tianjin 300300,China)Abstract:Quasi-static axial compression experiments were conducted on the composite thin-walled C-channels with different flange widths. The axial compression failure modes and failure mechanisms were analyzed through CT scanning,and the effects of different flange widths on the axial compression energy-absorption characteristics of C-channels were evaluated by using the energy-absorption indexes. The single-layer shell model and multi-layer shell model of composite C-channel were established,and the finite element models were verified by comparing the failure modes,load-displacement curves and energy-absorption indexes. The results show that the flange width has a significant effect on the axial compression failure modes and energy-absorption characteristics of C-channels. The C-channels with flange widths of 25 mm and 30 mm are failed in the stable and asymptotic manner under the axial compression loads and have good energy-absorption characteristics. The deviation of mean crushing force,energy absorption and specific energy absorption obtained by the multi-layer shell model is within 5%,while that obtained by the single-layer shell model is within 8%,which indicating that the multi-layer shell model of C-channel has the higher simulation accuracy.Key words: composite C-channel;flange width;failure mode;energy-absorption characteristics;numerical simulation近年来,先进复合材料不断融入民用运输类飞机的设计中,波音787复合材料用量占比50%,空客A350复合材料用量占比52%,我国C929复合材料用量预计超过50%。
粒径和围压对珊瑚砂侧限压缩性能的影响
第42卷第6期2023年6月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.42㊀No.6June,2023粒径和围压对珊瑚砂侧限压缩性能的影响熊雪梅,郑宇轩,黄俊宇,周风华(宁波大学冲击与安全工程教育部重点实验室,宁波㊀315211)摘要:珊瑚砂作为海洋岛礁的重要建筑材料,广泛应用于海岛地基㊁路基㊁机场跑道等军民用工程的吹填和建设㊂针对南海某岛礁珊瑚砂开展了一系列侧限压缩试验,量化研究了初始粒径和被动围压对珊瑚砂侧限压缩性能的影响规律,可为后续珊瑚砂粒径效应和被动围压效应的研究工作提供参考㊂试验结果表明,被动围压下珊瑚砂的轴向工程应力应变曲线呈递增硬化特性,珊瑚砂侧限压缩的应力路径与颗粒粒径基本无关,被动围压随轴向应力增加呈线性增长,约为轴向应力的35%㊂本文精确计算了珊瑚砂的屈服强度和可压缩指数,得到以下结论:珊瑚砂的屈服强度随着平均粒径的增大呈幂指数减小的趋势,而可压缩指数则呈幂指数上升的趋势,这表明粒径越大的珊瑚砂颗粒破碎起始应力越低,颗粒破碎越严重,试样可压缩性越高;珊瑚砂的屈服强度几乎不受被动围压水平的影响,只与试样本身的材料特性有关,而可压缩指数随着被动围压的增大而明显减小,这是由于高被动围压限制了珊瑚砂的颗粒破碎,使珊瑚砂可压缩性变低㊂关键词:珊瑚砂;粒径;被动围压;准静态压缩;屈服强度;可压缩指数中图分类号:TU411.5㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2023)06-2037-10收稿日期:2023-02-26;修订日期:2023-04-03基金项目:国家自然科学基金(12072169,12272193);宁波市公益类科技计划(202002N3133)作者简介:熊雪梅(1994 ),女,硕士研究生㊂主要从事材料静动态力学性能的研究㊂E-mail:985750756@通信作者:郑宇轩,副教授㊂E-mail:zhengyuxuan@Effects of Particle Size and Confining Pressure on Laterally Confined Compression Properties of Coral SandXIONG Xuemei ,ZHENG Yuxuan ,HUANG Junyu ,ZHOU Fenghua(Key Laboratory of Impact and Safety Engineering,Ministry of Education,Ningbo University,Ningbo 315211,China)Abstract :Coral sand,as an important building material of ocean reef islands,is widely used in hydraulic reclamation and construction of military and civil facilities such as island foundation,subgrade,airport runway,etc.A series of laterally confined compression tests were conducted on the coral sand from a reef island in the South China Sea.The effects of particle size distribution and passive confining pressure on the laterally confined compression properties of coral sand were studied quantitatively to provide reference for subsequent research on particle size and passive confining pressure effects of coral sand.The experimental results show that the axial engineering stress-strain curves of coral sand under passive confining pressure exhibit increasing hardening.The stress path of coral sand under laterally confined compression is basically independent of the particle size,and the passive confining pressure increases linearly with the increasing axial stress,which is about 35%of the axial stress.This paper calculates accurately the yield strength and compressibility coefficient of coral sand,the following conclusions are drawn:as the mean particle size of coral sand increases,the yield strength decreases exponentially,while the compressibility coefficient increases exponentially.Therefore,the onset stress of particle breakage is lower for the coral sand with a larger mean particle size,which leads to a higher amount of particle breakage,and higher compressibility as well for the coral sand.The yield strength of coral sand is almost independent of passive confining pressure,but depends only on the material characteristics of coral sand.With the increase of passive confining pressure,the compressibility coefficient of coral sand decreases significantly.This is because the high passive confining pressure prohibits particle breakage of coral sand,and leads to a lower compressibility of coral sand.㊀㊀2038㊀资源综合利用硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷Key words:coral sand;particle size;passive confining pressure;quasi-static compression;yield strength;compressibility coefficient0㊀引㊀言随着南海资源的开发和南沙群岛珊瑚礁工程地质活动的展开,珊瑚砂工程地质研究的必要性和重要性逐渐凸显[1]㊂珊瑚砂作为南海海域的重要建筑材料,因取材方便,成本较低,广泛应用于南海填埋工程中,例如珊瑚砂回填的地基㊁路基㊁机场跑道等[2-3],也应用于制作珊瑚砂混凝土[4]㊂我国在南海建设了许多吹填珊瑚砂岛礁,并在岛礁上修建军用水库㊁机场,同时修建了商店㊁住房及医院等各类民用建筑物[5]㊂珊瑚砂作为建筑地基的吹填材料,不仅受到上方建筑物传下的轴向压力,还需要承受周边珊瑚砂以及外围基坑所施加的被动围压,此时珊瑚砂所处的应力状态是带有一定侧限的压缩加载状态㊂南沙综合科学考察促进了我国关于珊瑚砂工程地质特性方面的研究[6-7],并有学者将成果汇总出版了我国第一本珊瑚砂方面的著作‘南沙群岛珊瑚礁工程地质“[8]㊂珊瑚砂是一种碳酸钙含量较高的特殊岩土介质,又被称为钙质砂[9]㊂珊瑚砂由于保留了原生生物骨架中的细小孔隙[10],形成了多孔隙㊁形状不规则[11]和易破碎[12]的材料特性,具有高孔隙比㊁高摩擦角和低强度值[13]的土力学特点,许多学者对珊瑚砂的颗粒破碎进行了全面深入的研究[14-17]㊂而珊瑚砂的颗粒破碎与其粒径有关,已有一些学者研究了颗粒粒径对钙质砂力学特性的影响㊂梁隽灵[18]研究发现随着钙质砂颗粒粒径的增大,钙质砂颗粒间碳酸钙的胶结作用逐渐减弱,无侧限抗压强度降低㊂程壮等[19]研究发现钙质砂颗粒粒径区间越宽,胶结钙质砂的强度越高㊂Chen等[20]的研究结果表明钙质砂的粒径相关分形行为更容易受到初始粒径的影响,并提出了用体积变形估算颗粒破碎程度的经验模型㊂华晨[21]研究发现初始粒径分布越不均匀㊁细粒含量越高,试样的应变软化效应和剪胀效应越明显,颗粒破碎会降低其抗剪强度㊂Xu 等[22]研究表明胶结珊瑚砂试件的抗压强度和抗冲击性能随着珊瑚砂颗粒均匀系数的增大而增大㊂总体而言,粒径对珊瑚砂的力学性能有显著影响,但前人关于粒径与珊瑚砂侧限压缩性能关系的研究较少且不够深入,很多研究没有严格控制珊瑚砂的初始孔隙度等初始状态,粒径分布也不够宽泛,更没有定量分析珊瑚砂的粒径效应㊂珊瑚砂作为吹填的岩土材料和工程建设的基础材料,在不同围压下的力学性能也是珊瑚岛礁工程研究的关键科学问题㊂张家铭等[23-25]通过珊瑚砂的侧限压缩试验㊁三轴(排水)剪切试验等发现,围压越大,珊瑚砂试样剪切应变越大,颗粒破碎越明显,颗粒破碎对珊瑚砂抗剪强度有较大影响㊂吴琪等[26]的研究结果表明初始有效围压对最大动剪切模量影响程度的应力指数是与珊瑚砂性能相关的常数㊂赵胜华等[27]研究发现随着有效围压的增大,平均粒径对珊瑚砂动强度的提高作用越来越不明显㊂Wang等[28]研究表明应力软化系数和剪胀系数与有效围压呈半对数线性关系,随着有效围压的增大,珊瑚砂的应变软化和剪胀性逐渐减弱㊂前人研究表明,围压对珊瑚砂的剪切模量㊁剪切应变㊁抗剪能力及剪胀性等力学性能均有较大影响㊂但前人主要关注围压对珊瑚砂剪切性能的影响,而有关围压与珊瑚砂侧限压缩性能关系的研究还不够充分,大部分研究都集中在主动围压等工况,而未涉及被动围压对珊瑚砂压缩性能的影响㊂不同粒径珊瑚砂在不同被动围压水平下的压缩性能研究对吹填珊瑚砂基础的工程设计和岛礁吹填工程的施工控制具有重要的理论意义与实际应用价值,而珊瑚砂目前的研究成果在这两个方面还有所不足㊂本工作开展了被动围压下不同粒径珊瑚砂的一系列准静态压缩试验,通过珊瑚砂的屈服强度和可压缩指数定量分析了粒径和被动围压对珊瑚砂侧限压缩性能的影响,为后续珊瑚砂粒径效应和被动围压效应的研究工作提供参考㊂1㊀实㊀验1.1㊀原材料原材料是取自南海某岛礁的珊瑚砂,该珊瑚砂的密度为1.21g/cm3,含水率为4.83%,相对密度为2.72㊂采用摇筛机对珊瑚砂进行筛分试验,根据中华人民共和国国家标准‘建设用砂“(GB/T14684 2022)[29],将珊瑚砂试样缩分至约1100g,放在干燥箱中于(105ʃ5)ħ下烘干至恒量,每组珊瑚砂取500g烘干的试样第6期熊雪梅等:粒径和围压对珊瑚砂侧限压缩性能的影响2039㊀进行筛分,摇筛10min,方孔筛的规格为0.30㊁0.60㊁1.18㊁2.36㊁4.75及9.50mm㊂不同粒径分布的珊瑚砂如图1所示㊂根据筛分结果得到累计筛余百分率A ,绘出颗粒粒径D 与累计筛余百分率A 的关系曲线,该珊瑚砂的颗粒级配曲线如图2所示㊂由图2可得珊瑚砂的不均匀系数C u =10,曲率系数C c =1.1,表明原始状态的珊瑚砂为连续良好级配㊂图1㊀不同粒径分布的珊瑚砂Fig.1㊀Coral sand with different particle sizedistributions 图2㊀珊瑚砂颗粒级配曲线Fig.2㊀Particle grading curve of coral sand 1.2㊀试样制备为研究初始粒径对珊瑚砂压缩性能的影响,选取5组不同初始粒径珊瑚砂作为试验材料,记为A1~A5,A1:[0.30,0.60)mm,A2:[0.60,1.18)mm,A3:[1.18,2.36)mm,A4:[2.36,4.75)mm,A5:[4.75,9.50]mm㊂这5组珊瑚砂均用5mm 厚的有机玻璃套筒装载成型,装载高度为75mm㊂A1~A5号珊瑚砂的初始密度分别为0.94㊁0.87㊁0.87㊁0.92㊁0.87g /cm 3,初始孔隙比分别为0.95㊁1.11㊁1.11㊁1.00㊁1.11㊂每组粒径的珊瑚砂设置5组重复试验,试验结果取平均值㊂为研究围压对珊瑚砂压缩性能的影响,选取A1号珊瑚砂装载在不同厚度δ(5㊁3㊁1mm)的有机玻璃套筒里,装载高度为75mm㊂珊瑚砂的初始密度为0.94g /cm 3,初始孔隙比为0.95㊂不同厚度套筒装载的A1号珊瑚砂同样设置5组重复试验,试验结果取平均值㊂1.3㊀试验设备准静态压缩试验采用的是宁波大学机械工程与力学学院的万能材料试验机MTS Landmark,载荷量程为ʃ250kN,加载方式有等应变加载和等应力加载两种㊂围压装置选用90mm 高的有机玻璃套筒,套筒内径为37.1mm,有3种不同的厚度δ(5㊁3㊁1mm),外径分别为47.1㊁43.1㊁39.1mm㊂有机玻璃套筒上粘贴有应变片并结合应变仪来测量套筒的周向变形,珊瑚砂的上下表面均用钢垫块封装㊂1.4㊀试验原理Chen 等[30]在2022年讨论了侧限压缩下颗粒材料内部应力状态的计算方法,结果表明,当试样长度比l /L >0.625(其中l 为试样高度,L 为套筒长度)时,厚壁圆筒理论与圆柱壳体理论的计算精度都很高,都可用于围压计算㊂本文准静态压缩试验的l /L =0.83>0.625,可以直接使用厚壁圆筒理论来计算试样的被动围压㊂厚壁圆筒理论假定套筒处于平面应力状态,假设散体试样与套筒之间的径向应力满足连续性条件,此时试样的内部应力和应变可表示为σr =σθ=0.5(α2-1)E c εh (1)εr =εθ=0.5εh [(1-νc )+(1+νc )α2](2)式中:σr 为试样径向应力;σθ为试样环向应力;α为套筒外径与内径之比;E c 为套筒弹性模量;εh 为套筒外2040㊀资源综合利用硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷壁环向应变;εr 为试样径向应变;εθ为试样环向应变;νc 为套筒泊松比㊂为计算试样的被动围压,试验前沿有机玻璃套筒的中间对称两侧贴上应变片,套筒外壁环向应变εh 取对称应变片的平均值,用应变仪测量两个应变片上的电压变化值ΔU ,由式(3)可以转换得到套筒外壁环向应变εh ㊂εh =4ΔU k 1k 2U (3)式中:k 1为应变仪增益,k 1=100;k 2为应变片灵敏系数,k 2=2.16;U 为应变仪电压值,U =4V㊂2㊀结果与讨论2.1㊀A1~A5号试样的压缩曲线选择A1~A5号试样来研究在被动围压下初始粒径对珊瑚砂准静态压缩性能的影响㊂对A1~A5号试样开展了在应变率为10-4s -1下加载的侧限压缩试验,其轴向工程应力应变曲线如图3(a)所示,被动围压与轴向应变的关系曲线如图3(b)所示,不同粒径珊瑚砂的径向应变随轴向应变的变化曲线如图3(c)所示,被动围压随轴向应力的变化曲线如图3(d)所示㊂图3㊀A1~A5号珊瑚砂的准静态压缩曲线Fig.3㊀Quasi-static compression curves of five types (A1~A5)of coral sand 试验结果表明,不同粒径珊瑚砂的工程应力应变曲线和被动围压与轴向应变的关系曲线均呈现递增硬化现象㊂随着粒径的增大,在相同的轴向压缩应变下,珊瑚砂所需施加的轴向应力逐渐减小,切线压缩模量和被动围压也随之减小,而且差距随着应变增大而增大㊂主要原因是珊瑚砂质脆易碎,在较低应力水平压缩下即会发生颗粒破碎,并主导珊瑚砂的宏观变形㊂根据前人[31]研究可知,较大的颗粒相比较小的颗粒更容易发生破碎,在相同应力水平下较大粒径材料的总体颗粒破碎量要更大,这是由于颗粒材料的压缩变形主要来自屈服后的颗粒破碎,相应的宏观变形也更大,因此颗粒破碎的差异性是珊瑚砂粒径效应的微观机制㊂第6期熊雪梅等:粒径和围压对珊瑚砂侧限压缩性能的影响2041㊀A5号珊瑚砂在压缩过程中颗粒破碎比较严重,出现应力调整,压缩曲线呈现较大的振荡㊂从图3(d)可以看出,A1~A4号珊瑚砂的应力路径曲线基本吻合,表明珊瑚砂在侧限压缩下的被动围压受粒径影响较小,仅随轴向应力增加呈线性增长,约为轴向应力的35%㊂A5号珊瑚砂与其余四组珊瑚砂的应力路径曲线有些许偏离,主要原因是大粒径珊瑚砂与套筒壁接触点较少,围压分布不太均匀㊂2.2㊀A1~A5号试样的孔隙比应力曲线土力学中经常使用孔隙比应力曲线来讨论岩土材料的力学性能,孔隙比e 定义为砂土中孔隙体积与实体体积的比值,可以根据式(4)来计算㊂e =ρs ρ0(1+εa )(1+εr )2-1(4)式中:ρs 表示珊瑚砂的实体密度;ρ0表示珊瑚砂的初始密度;εa 和εr 分别为试样的轴向和径向应变㊂从图3(c)中可以看出珊瑚砂试样的径向应变εr 比轴向应变εa 低两个量级,因此εr 可近似为零,此时珊瑚砂试样近似处于一维应变状态㊂则孔隙比e 可以根据初始密度ρ0和轴向应变εa 来计算,式(4)简化为e =ρs ρ0(1+εa )-1(5)不同粒径珊瑚砂的孔隙比与轴向应力关系曲线的试验数据与拟合结果对比如图4(a)所示㊂图4(a)内插图展示了A1号珊瑚砂试样在对数坐标下的孔隙比应力曲线,图中显示珊瑚砂的压缩曲线分为三个阶段,一是弹性段OB ,二是屈服段BC ,三是塑性段CD ㊂前人认为第二阶段是砂土内部颗粒变形模式由颗粒重排向颗粒破碎转换的阶段,而第三阶段的对数线性关系则被认为是颗粒破碎导致材料硬化的结果㊂屈服强度和可压缩指数是砂土的两个重要力学性能参数㊂屈服强度σ0即为砂土屈服点对应的应力,一般认为是砂土内部颗粒破碎的起始点,在孔隙比应力曲线(应力为对数)上定义为曲率最大的点㊂可压缩指数C C 定义为孔隙比应力曲线上对数线性阶段的斜率,代表颗粒破碎开始后材料的可压缩能力㊂图4㊀珊瑚砂屈服应力的计算过程Fig.4㊀Calculation process of yield stress of coral sand 为更好地求解孔隙比应力曲线的曲率进而计算珊瑚砂的屈服强度,对A1~A5号珊瑚砂的孔隙比和轴向应力关系曲线进行最小二乘法拟合,选择最接近真实数据的函数形式,获得的拟合函数如式(6)所示㊂e =y 1+y 0-y 11+exp[(lg σ-x 0)/d x ](6)式中:σ表示珊瑚砂的轴向应力;y 0㊁y 1㊁x 0㊁d x 为拟合参数㊂不同初始粒径的珊瑚砂试样的拟合参数如表1所示㊂从图4(a)中可以看出,拟合函数得到的曲线与试验压缩曲线重合度较高,可以用拟合曲线来计算珊瑚砂的屈服强度σ0㊂由拟合函数求得的曲线曲率随轴向应力的变化如图4(b)所示,应力以对数坐标显示㊂这5种粒径下的曲率曲线均表现出明显的局部峰值,对应于图4(a)的第二阶段㊂2042㊀资源综合利用硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷表1㊀A1~A5号珊瑚砂的拟合参数Table 1㊀Fitting parameters of five types (A1~A5)of coral sand No.y 0y 1x 0d xA10.9567ʃ0.0001-0.2485ʃ0.0005 1.0790ʃ0.00030.4303ʃ0.0002A2 1.1511ʃ0.0003-0.1066ʃ0.00090.8739ʃ0.00060.4343ʃ0.0005A3 1.1663ʃ0.0004-0.1611ʃ0.00090.7248ʃ0.00060.4668ʃ0.0006A4 1.0292ʃ0.0004-0.1402ʃ0.00070.6412ʃ0.00050.4317ʃ0.0005A5 1.1065ʃ0.0004-0.0739ʃ0.00080.5670ʃ0.00050.3744ʃ0.00052.3㊀同一粒径珊瑚砂在不同围压下的压缩曲线选择A1~A5号试样来研究珊瑚砂在不同被动围压下的压缩性能,分别用3种不同厚度δ(5㊁3㊁1mm)的有机玻璃套筒装载A1~A5号试样,在应变率为10-4s -1下开展了侧限压缩试验,A1~A5号珊瑚砂的轴向工程应力应变曲线如图5所示㊂图5㊀在利用不同套筒(厚度5㊁3㊁1mm)时A1~A5号珊瑚砂的轴向工程应力应变曲线Fig.5㊀Axial engineering stress-strain curves of five types (A1~A5)of coral sand with different sleeves (thickness 5,3,1mm)由图5可得,A1~A5号试样在不同套筒厚度下的压缩曲线变化规律一样,鉴于篇幅原因,仅以A1号试样的试验结果为例,分析不同被动围压对珊瑚砂压缩性能的影响㊂A1号珊瑚砂的轴向工程应力应变曲线如图6(a)所示,被动围压与轴向应变的关系曲线如图6(b)所示,被动围压随轴向应力的变化如图6(c)所示,孔隙比与轴向应力的关系曲线如图6(d)所示㊂试验结果表明,A1号珊瑚砂的准静态压缩曲线出现递增硬化现象,与图3的结果一致㊂这是因为持续的压缩驱动颗粒和破碎后的颗粒重新排列,使得材料密实度更高㊂δ=1mm 的套筒装载的珊瑚砂轴向应变与应力的终值比另外两组低很多,这是由于套筒侧壁较薄,在承受轴向应力不到7MPa 时套筒就会发生开裂,后续数据无法采集㊂图6(a)表明,在相同轴向压缩应变下,随着套筒厚度增大,轴向应力也随之增大,主要原因是不同厚度套筒装载的珊瑚砂在侧限压缩下的应力路径不同㊂图6(c)表明,在相同的轴向应力水平第6期熊雪梅等:粒径和围压对珊瑚砂侧限压缩性能的影响2043㊀下,厚度越大的有机玻璃套筒施加给珊瑚砂的被动围压也越高㊂图6(d)也表明,在相同孔隙比条件下,随着套筒厚度的增大,孔隙比应力曲线的塑性段发生了向轴向应力增大方向移动的现象㊂图6㊀在利用不同套筒(厚度5㊁3㊁1mm)时A1号珊瑚砂的压缩曲线Fig.6㊀Compression curves of A1coral sand with different sleeves (thickness 5,3,1mm)2.4㊀珊瑚砂的屈服强度和可压缩指数图4(b)中曲率最大的点对应的轴向应力即为A1~A5号珊瑚砂的屈服强度σ0,分别为2.26㊁1.65㊁1.25㊁1.19㊁1.18MPa㊂由图4(a)可得,A1~A5号珊瑚砂的可压缩指数分别为0.0186㊁0.0227㊁0.0264㊁0.0320㊁0.0380㊂为方便定量分析粒径对珊瑚砂压缩性能的影响,对不同平均粒径d 的珊瑚砂的屈服强度σ0与可压缩指数C C 进行了函数拟合,如式(7)㊁(8)所示㊂σ0=f +h -f 1+(d /q )p(7)C C =gd i (8)式中:h ㊁f ㊁q ㊁p ㊁g ㊁i 均是拟合参数,试验数据和拟合结果如图7㊁8所示㊂其中h =2.443ʃ0.015,f =1.181ʃ0.002,q =0.762ʃ0.008,p =3.372ʃ0.087,g =0.023ʃ0.0002,i =0.259ʃ0.005㊂随着平均粒径的增大,珊瑚砂的屈服强度呈快速减小然后基本不变的趋势,而珊瑚砂的可压缩指数则呈幂指数上升的趋势,这表明粒径越大的珊瑚砂可压缩性越高,颗粒破碎起始应力越低,颗粒破碎量也越大㊂这是由于在均匀级配的珊瑚砂材料中,由于颗粒尺寸分布较窄,具有不同粒径的材料的颗粒平均配位数相近,因此颗粒破碎主要由颗粒尺寸决定㊂根据前人[32]研究可知,大颗粒内部缺陷要多于小颗粒,单颗粒破碎应力更低,表现为珊瑚砂的宏观屈服强度也更低㊂此外,由于颗粒材料的压缩变形主要来自屈服后的颗粒破碎,因此具有较大粒径的珊瑚砂相比具有较小粒径的材料更容易被压实,可压缩指数也更大㊂由图6(d)求得曲线曲率,得到1㊁3㊁5mm 厚度套筒装载的A1号珊瑚砂的屈服强度σ0分别为2.24㊁2.23㊁2.26MPa,如图9所示㊂由图6(d)可得1㊁3㊁5mm 厚度套筒装载的A1号珊瑚砂的可压缩指数分别为2044㊀资源综合利用硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷0.0529㊁0.0251㊁0.0186㊂为分析不同被动围压对珊瑚砂压缩性能的影响,对不同厚度δ的有机玻璃套筒装载的A1号珊瑚砂的可压缩指数C C 进行了函数拟合,拟合公式如式(9)所示㊂C C =mδn (9)式中:m 和n 均是拟合参数,试验数据和拟合结果如图10所示㊂其中m =0.0528ʃ0.0006,n =-0.662ʃ0.017㊂图7㊀珊瑚砂屈服强度随平均粒径的变化Fig.7㊀Evolution of yield strength with mean particle size of coralsand 图8㊀珊瑚砂可压缩指数随平均粒径的变化Fig.8㊀Evolution of compressibility coefficient with mean particle size of coralsand 图9㊀A1号珊瑚砂的屈服强度随有机玻璃套筒厚度的变化Fig.9㊀Evolution of yield strength of A1coral sand with thickness of plexiglasssleeve 图10㊀A1号珊瑚砂的可压缩指数随有机玻璃套筒厚度的变化Fig.10㊀Evolution of compressibility coefficient of A1coral sand with thickness of plexiglass sleeve ㊀㊀试验结果表明,同一粒径的珊瑚砂的屈服强度几乎不受被动围压水平的影响,只与试样本身的材料特性有关㊂随着被动围压的增大,珊瑚砂的可压缩指数则明显降低,这是由于所有材料的破碎效率都随着载荷的增加而降低㊂这表明被动围压越大的珊瑚砂可压缩性越低,可能的原因是被动围压增大限制了珊瑚砂的颗粒破碎㊂3㊀结㊀论本文针对取自南海某岛礁的珊瑚砂开展了一系列被动围压下的准静态侧限压缩试验,得到了轴向和侧向压缩曲线,通过屈服强度σ0和可压缩指数C C 分析了粒径分布和围压水平对珊瑚砂压缩性能的影响,为珊瑚砂在岛礁工程建设中的应用提供了试验参数和设计参考㊂具体结论如下:1)珊瑚砂的轴向工程应力应变曲线和被动围压与轴向应变的关系曲线均呈现递增硬化现象㊂珊瑚砂侧限压缩的应力路径与初始粒径几乎没有关系,被动围压随轴向应力增加呈线性增长,约为轴向应力的35%㊂随着珊瑚砂平均粒径的增大,要达到相同的压缩程度,珊瑚砂所需施加的轴向应力与对应的被动围压㊀第6期熊雪梅等:粒径和围压对珊瑚砂侧限压缩性能的影响2045均减小㊂珊瑚砂的屈服强度随平均粒径的增大呈幂指数减小趋势,而可压缩指数则呈幂指数上升趋势,这表明粒径越大的珊瑚砂颗粒破碎起始应力越低,颗粒破碎越严重,试样可压缩性越高㊂2)在相同轴向应变水平下,厚度越大的有机玻璃套筒施加给珊瑚砂的被动围压越大,轴向应力也随之增大㊂同一粒径珊瑚砂的屈服强度几乎不受被动围压的影响,只与试样本身的材料特性有关㊂随着被动围压的增大,珊瑚砂的可压缩指数则明显降低,这表明被动围压越高的珊瑚砂可压缩性越低,可能是由于被动围压增大限制了珊瑚砂的颗粒破碎㊂参考文献[1]㊀任辉启,黄㊀魁,朱大明,等.南沙群岛珊瑚礁工程地质研究综述[J].防护工程,2015(1):63-78.REN H Q,HUANG K,ZHU D M,et al.A research review of engineering geology of coral reef in the Nansha Islands[J].Protective Engineering,2015(1):63-78(in Chinese).[2]㊀张家铭,邵晓泉,王霄龙,等.沉桩过程中钙质砂颗粒破碎特性模拟研究[J].岩土力学,2015,36(1):272-278.ZHANG J M,SHAO X Q,WANG X L,et al.Discrete element simulation of crushing behavior of calcareous sands during pile jacking[J].Rock and Soil Mechanics,2015,36(1):272-278(in Chinese).[3]㊀YANG J N,WANG J B,DONG L,et al.Axial deformation behavior of precompressed coral sand under repeated impacts[J].Journal of CoastalResearch,2022,38(3):592-602.[4]㊀DA B,YU H F,MA H Y,et al.Experimental investigation of whole stress-strain curves of coral concrete[J].Construction and BuildingMaterials,2016,122:81-89.[5]㊀石㊀晗.钙质砂地基爆炸响应动力特性试验研究[D].武汉:武汉科技大学,2020.SHI H.Experimental study on dynamic characteristics of explosion response of calcareous sand foundation[D].Wuhan:Wuhan University of Science and Technology,2020(in Chinese).[6]㊀汪㊀稔,吴文娟.珊瑚礁岩土工程地质的探索与研究:从事珊瑚礁研究30年[J].工程地质学报,2019,27(1):202-207.WANG R,WU W J.Exploration and research on engineering geological properties of coral reefs:engaged in coral reef research for30years[J].Journal of Engineering Geology,2019,27(1):202-207(in Chinese).[7]㊀王㊀林,江㊀堃,刘启超.珊瑚礁钙质砂工程力学特性研究进展综述[J].城市建筑,2020,17(14):95-97.WANG L,JIANG K,LIU Q C.Review on research progress of engineering mechanical properties of calcareous sand in coral reef[J].Urbanism and Architecture,2020,17(14):95-97(in Chinese).[8]㊀汪㊀稔,宋朝景,赵焕庭,等.南沙群岛珊瑚礁工程地质[M].北京:科学出版社,1997.WANG R,SONG C J,ZHAO H T,et al.Engineering geology of coral reef in the Nansha Islands[M].Beijing:Science Press,1997(in Chinese).[9]㊀张延玲.地震作用下珊瑚砂场地动力响应与变形机理研究[D].重庆:重庆大学,2021.ZHANG Y L.Study on dynamic response and deformation mechanism of coral sand under earthquakes[D].Chongqing:Chongqing University, 2021(in Chinese).[10]㊀蒋明镜,吴㊀迪,曹㊀培,等.基于SEM图片的钙质砂连通孔隙分析[J].岩土工程学报,2017,39(增刊1):1-5.JIANG M J,WU D,CAO P,et al.Connected inner pore analysis of calcareous sands using SEM[J].Chinese Journal of Geotechnical Engineering,2017,39(supplement1):1-5(in Chinese).[11]㊀任玉宾,王㊀胤,杨㊀庆.颗粒级配与形状对钙质砂渗透性的影响[J].岩土力学,2018,39(2):491-497.REN Y B,WANG Y,YANG Q.Effects of particle size distribution and shape on permeability of calcareous sand[J].Rock and Soil Mechanics, 2018,39(2):491-497(in Chinese).[12]㊀COOP M R,SORENSEN K K,BODAS FREITAS T,et al.Particle breakage during shearing of a carbonate sand[J].Géotechnique,2004,54(3):157-163.[13]㊀孙宗勋.南沙群岛珊瑚砂工程性质研究[J].热带海洋,2000,19(2):1-8.SUN Z X.Engineering properties of coral sands in Nansha Islands[J].Tropic Oceanology,2000,19(2):1-8(in Chinese). [14]㊀LIU R M,HOU H Y,CHEN Y Y,et al.Elastoplastic constitutive model of coral sand considering particle breakage based on unified hardeningparameter[J].Marine Georesources&Geotechnology,2022,40(6):655-667.[15]㊀张季如,彭伟珂,郑颜军.K0固结珊瑚砂的应力-应变模型及变形参数研究[J].岩土工程学报,2023,45(3):478-485.ZHANG J R,PENG W K,ZHENG Y J.Stress-strain model and deformation parameters of K0-consolidated coral sand[J].Chinese Journal of Geotechnical Engineering,2023,45(3):478-485(in Chinese).[16]㊀CHEN X,SHEN J H,WANG X,et al.Effect of saturation on shear behavior and particle breakage of coral sand[J].Journal of Marine Scienceand Engineering,2022,10(9):1280.[17]㊀刘㊀杰,姚志华,翁兴中,等.三轴剪切下珊瑚砂颗粒破碎规律及强度特征[J].地下空间与工程学报,2021,17(5):1463-1471.。
闭孔EVA_泡沫类静态缓冲性能的研究
包装工程第44卷第21期·62·PACKAGING ENGINEERING2023年11月闭孔EVA泡沫类静态缓冲性能的研究孙德强1,高璐璐1,刘晓晨1*,陈红娟2,王倩1,张艺行1,叶润杰1,周兴荣1(1.陕西科技大学 a.轻工科学与工程学院 b.轻化工程国家级实验教学示范中心c.3S包装新科技研究所,西安710021;2.陕西科技大学设计与艺术学院,西安710021)摘要:目的研究密度与应变率对闭孔EVA泡沫材料类静态缓冲性能的影响规律。
方法基于包装用缓冲材料静态压缩试验法和能量吸收图法,对密度为80、95、106、124和180 kg/m3的闭孔EVA泡沫试样在不同应变率下进行类静态压缩试验,得到应力-应变曲线,基于此进一步处理得到相应的单位体积能量吸收、能量吸收效率、缓冲系数和最大比吸能等曲线,同时绘制试样类静态压缩过程中的能量吸收图。
结果闭孔EVA泡沫材料的密度越高,密实化应变越小,最大单位体积能量吸收越大;在压缩应变相同时,应变率越大,应力、单位体积能量吸收、能量吸收效率、最大比吸能越大;得到了5种密度闭孔EVA泡沫材料的本构方程和闭孔EVA泡沫材料的能量吸收图及其斜率与应变率的关系式;通过分析密实化应变与相对密度的关系,得到相关拟合公式。
结论密度与应变率对闭孔EVA泡沫材料的缓冲性能有着非常大的影响,在一定的应力水平下会有一个最佳的密度使得刚好能吸收完能量,并保护产品不破损,该最佳密度受应变率的影响,因此可以通过能量吸收图进行相关的缓冲包装优化设计。
关键词:闭孔EVA泡沫;类静态压缩;密度;应变率;能量吸收图中图分类号:TB484.3 文献标识码:A 文章编号:1001-3563(2023)21-0062-08DOI:10.19554/ki.1001-3563.2023.21.008Quasi-static Cushioning Properties of Closed-cell EVA FoamSUN De-qiang1, GAO Lu-lu1, LIU Xiao-chen1*, CHEN Hong-juan2, WANG Qian1,ZHANG Yi-xing1, YE Run-jie1, ZHOU Xing-rong1(1. a. School of Light Industry Science and Engineering, b. National Demonstration Center for Experimental LightChemistry Engineering Education, c. 3S Research Institute of Novel Packaging Science and Technology, ShaanxiUniversity of Science and Technology, Xi'an 710021, China; 2. School of Design and Art, Xi'an 710021, China)ABSTRACT:The work aims to study the effect of density and strain rate on the quasi-static cushioning properties of closed-cell EVA foam. Based on the static compression test for cushioning materials and the energy absorption diagram method used in packaging, closed-cell EVA foam samples with densities of 80, 95, 106, 124, and 180 kg/m³ were subject to quasi-static compression tests at different strain rates, and the stress-strain curves were obtained. Based on further processing, the corresponding curves of energy absorption per unit volume, energy absorption efficiency, chushioning coefficient and maximum specific energy absorption were obtained. Simultaneously, an energy absorption diagram during the static quasi-compression process of the sample was drawn. The results showed that, the higher the density of closed-cell EVA foam, the smaller the densification strain and the larger the maximum energy absorption per unit volume;At the same compression strain, the larger the strain rate, the greater the stress, energy absorption per unit volume, energy收稿日期:2023-06-19基金项目:国家自然科学基金(51575327);国家级一流专业建设项目(包装工程2022);陕西科技大学课程思政建设项目(包装技术基础(双语)2022)*通信作者第44卷第21期孙德强,等:闭孔EVA泡沫类静态缓冲性能的研究·63·absorption efficiency, and maximum specific energy absorption; The constitutive equations of five density closed-cell EVA foam materials, the energy absorption diagram of closed-cell EVA foam materials and the relationship between slope and strain rate were obtained; By analyzing the relationship between densification strain and relative density, relevant fitting formulas were obtained. The density and strain rate have a great impact on the cushioning performance of closed-cell EVA foam materials. Under a certain stress level there is an optimal density that can right absorb energy and protect the product from damage. The optimal density is affected by the strain rate, so the design of relevant cushioning packaging can be optimized with the energy absorption diagrams.KEY WORDS: closed-cell EVA foam; quasi-static compression; density; strain rate; energy absorption diagram闭孔EVA泡沫(Ethylene Vinyl acetate,EVA)是一种新型的环保包装材料,该材料拥有优良的缓冲和隔振性能、良好的回弹性、防潮隔热、易加工、无毒等优点,因此被广泛地应用于电子设备、出口产品、贵重物品以及高精密仪器等的防护包装[1]。
预制ECC管混凝土桥墩拟静力试验研究
文章编号:1000-4750(2021)05-0229-10预制ECC 管混凝土桥墩拟静力试验研究徐梁晋1,2,王义博1,2,张志刚1,2,林 昕3,张 超4(1. 重庆大学山地城镇建设与新技术教育部重点实验室,重庆 400045;2. 重庆大学土木工程学院,重庆 400045;3. 重庆工商职业学院城市建设工程学院,重庆 400052;4. 重庆市建筑科学院有限公司,重庆 400016)摘 要:该文提出了一种以预制ECC 管作为浇筑模板的ECC 管混凝土桥墩。
为研究该桥墩抗震性能,设计并制作了1个普通钢筋混凝土桥墩试件(RC)和3个预制ECC 管混凝土桥墩试件(ECC1~ECC3),其中:试件ECC1为基准试件;试件ECC2在加载过程中减小了轴压比;试件ECC3在塑性铰区预制ECC 管内浇筑了ECC 。
通过拟静力试验得到了上述试件的开裂过程、破坏形态以及水平力-位移滞回曲线等试验结果。
通过分析各试件极限承载能力、累计耗能、延性系数、刚度退化以及残余位移等抗震性能指标,对比了预制ECC 管混凝土桥墩与普通钢筋混凝土桥墩抗震性能的差别,得到了轴压比和塑性铰区截面形式对预制ECC 管混凝土桥墩抗震性能的影响。
研究结果表明:墩身外侧ECC 管有效防止了塑性铰区混凝土剥落后钢筋屈曲,明显改善了桥墩破坏形态,提升了桥墩变形能力,降低了桥墩的损伤程度;与普通钢筋混凝土桥墩相比,预制ECC 管混凝土桥墩的滞回曲线更加饱满,累计滞回耗能更大,具有更好的耗能能力,其峰值荷载和延性系数分别比普通钢筋混凝土桥墩的高出了16.66%和42.15%;对于ECC 管混凝土桥墩,当轴压比降低后,ECC 管壁出现的裂缝数量减少,其耗能和承载力降低,但延性变形能力增强,刚度退化也有所减缓;塑性铰区采用全截面ECC ,即在ECC 管内浇筑ECC ,能提升预制ECC 管混凝土桥墩的耗能能力、承载能力和延性变形能力,但裂缝的发展和分布几乎没影响。
环向凤梨型预折管在低速冲击荷载下的能量吸收
本文通过有限元模拟,分别对环向凤梨型折痕管、普通方管在低速冲击载荷 下的力学行为进行分析,并对环向凤梨形折痕管的能量吸收机理进行阐述。
关键词:环向凤梨;预折痕管;能量吸收;低速冲击载荷
0 引言
在结构使用过程中,普通支撑受压时会产生严重的屈曲现象。受压屈曲后, 其刚度、承载力迅速降低。并且,在往复荷载下,普通支撑滞回性能较差。为解 决以上问题,提出在支撑外部设置钢套管,构成屈曲约束支撑。但传统屈曲约束 支撑制作要求精度高,施工难度大。在使用和推广上受到很大限制。
[4]YU T X. IMPACT ENERGY ABSORBING DEVICES BASED UPON THE PLASTIC DEFORMATION OF METALLIC ELEMENTS[J]. Advances in Mechanics, 1986.
[5]MENG Q, AL-HASSANI S T S, SODEN P D. Axial crushing of square tubes[J]. International Journal of Mechanical Sciences, 1983,25(9):747-773.
3 结论
本文研究了一种环向凤梨型预折管,在普通方管壁上引入凤梨型折痕。通过 数值分析可得,凤梨型折痕可以对预折管在轴向冲击载荷下的变形模式进行诱导, 并大大提高能量吸收效率。折痕的引入导致边缘和侧面与横截面产生一定的倾斜 度。这种倾斜度降低了轴向刚度和峰值荷载。同时,使移动塑料铰链的数量加倍, 增大预折痕管壁上的塑料区,提高能量吸收效率。
钢纤维混凝土HJC模型研究
钢纤维混凝土HJC 模型研究张磊1,项笑炎2,郝龙3(1.总参工程兵科研三所,洛阳河南 471023;2. 美国工程技术联合公司南京代表处,江苏,南京,210000;3. 中国人民解放军南京军区建筑设计院,江苏,南京,210000 )摘要:本文进行了不同强度、不同纤维含量钢纤维混凝土静态单轴、常规三轴、SHPB 单轴和主动围压SHPB 实验,根据实验结果对HJC 模型进行了改进,并编写了材料子程序嵌入ABAQUS/Explicit 中模拟实验。
数值模拟结果表明改进的HJC 模型能更好反映钢纤维含量、围压和应变率对混凝土力学特性的影响。
关键词:爆炸力学;钢纤维混凝土(SFRC);HJC 本构模型;材料子程序;数值模拟Study on the HJC model of steel fiber reinforced concreteZHANG Lei1*,XIANG Xiaoyan2 ,HAO Long3(1, The Third Engineering Scientific Research Institute, The Headquarters of the General Staff, Luoyang, Henan 471023; 2, Engineering Technology Associates. Inc. Nanjing Rep. Office. Nanjing Jiangshu, 210000; 3 Architectural Design Institute of PLA Nanjing Military Region, Nanjing Jiangshu, 210000) Abstract: The quasi-static uniaxial compression, conventional tri-axial, uniaxial SHPB and active confining SHPB experiments have been conducted in this study. The HJC concrete constitutive model has been modified based on the experiment results. The user-defined material subroutine code of constitutive model has been developed in ABAQUS code and been used to simulate the experiments. The simulation results exhibited that the modified HJC model can better describe the steel fiber ratio, the confining pressure and the stain rate effect on the mechanical properties of concrete than HJC model.Key words: explosion mechanics. steel fiber reinforced concrete (SFRC), HJC constitutive model, material subroutine code, numerical simulation0 引言HJC 模型是一种考虑到静水压影响和损伤影响的率相关经验型本构模型,该模型由Holmquist 于1993 年第14 届国际弹道学术会议上提出[1]。
振动常用英语词汇
振动方面的专业英语及词汇参见《工程振动名词术语》1 振动信号的时域、频域描述振动过程(Vibration Process)简谐振动(Harmonic Vibration)周期振动(Periodic Vibration)准周期振动(Quasi-periodic Vibration)瞬态过程(Transient Process)随机振动过程(Random Vibration Process)各态历经过程(Ergodic Process)确定性过程(Deterministic Process)振幅(Amplitude)相位(Phase)初相位(Initial Phase)频率(Frequency)角频率(Angular Frequency)周期(Period)复数振动(Complex Vibration)复数振幅(Complex Amplitude)峰值(Peak-value)平均绝对值(Average Absolute Value)有效值(Effective Value,RMS Value)均值(Mean Value,Average Value)傅里叶级数(FS,Fourier Series)傅里叶变换(FT,Fourier Transform)傅里叶逆变换(IFT,Inverse Fourier Transform)离散谱(Discrete Spectrum)连续谱(Continuous Spectrum)傅里叶谱(Fourier Spectrum)线性谱(Linear Spectrum)幅值谱(Amplitude Spectrum)相位谱(Phase Spectrum)均方值(Mean Square Value)方差(Variance)协方差(Covariance)自协方差函数(Auto-covariance Function)互协方差函数(Cross-covariance Function)自相关函数(Auto-correlation Function)互相关函数(Cross-correlation Function)标准偏差(Standard Deviation)相对标准偏差(Relative Standard Deviation)概率(Probability)概率分布(Probability Distribution)高斯概率分布(Gaussian Probability Distribution)概率密度(Probability Density)集合平均(Ensemble Average)时间平均(Time Average)功率谱密度(PSD,Power Spectrum Density)自功率谱密度(Auto-spectral Density)互功率谱密度(Cross-spectral Density)均方根谱密度(RMS Spectral Density)能量谱密度(ESD,Energy Spectrum Density)相干函数(Coherence Function)帕斯瓦尔定理(Parseval''''s Theorem)维纳,辛钦公式(Wiener-Khinchin Formula2 振动系统的固有特性、激励与响应振动系统(Vibration System)激励(Excitation)响应(Response)单自由度系统(Single Degree-Of-Freedom System) 多自由度系统(Multi-Degree-Of- Freedom System) 离散化系统(Discrete System)连续体系统(Continuous System)刚度系数(Stiffness Coefficient)自由振动(Free Vibration)自由响应(Free Response)强迫振动(Forced Vibration)强迫响应(Forced Response)初始条件(Initial Condition)固有频率(Natural Frequency)阻尼比(Damping Ratio) 衰减指数(Damping Exponent)阻尼固有频率(Damped Natural Frequency)对数减幅系数(Logarithmic Decrement)主频率(Principal Frequency)无阻尼模态频率(Undamped Modal Frequency)模态(Mode)主振动(Principal Vibration)振型(Mode Shape)振型矢量(Vector Of Mode Shape)模态矢量(Modal Vector)正交性(Orthogonality)展开定理(Expansion Theorem)主质量(Principal Mass)模态质量(Modal Mass)主刚度(Principal Stiffness)模态刚度(Modal Stiffness)正则化(Normalization)振型矩阵(Matrix Of Modal Shape)模态矩阵(Modal Matrix)主坐标(Principal Coordinates)模态坐标(Modal Coordinates)模态分析(Modal Analysis)模态阻尼比(Modal Damping Ratio)频响函数(Frequency Response Function)幅频特性(Amplitude-frequency Characteristics)相频特性(Phase frequency Characteristics)共振(Resonance)半功率点(Half power Points)波德图(Bodé Plot)动力放大系数(Dynamical Magnification Factor)单位脉冲(Unit Impulse)冲激响应函数(Impulse Response Function)杜哈美积分(Duhamel’s Integral)卷积积分(Convolution Integral)卷积定理(Convolution Theorem)特征矩阵(Characteristic Matrix)阻抗矩阵(Impedance Matrix)频响函数矩阵(Matrix Of Frequency Response Function)导纳矩阵(Mobility Matrix)冲击响应谱(Shock Response Spectrum)冲击激励(Shock Excitation)冲击响应(Shock Response)冲击初始响应谱(Initial Shock Response Spectrum)冲击剩余响应谱(Residual Shock Response Spectrum) 冲击最大响应谱(Maximum Shock Response Spectrum)冲击响应谱分析(Shock Response Spectrum Analysis 3 模态试验分析模态试验(Modal Testing)机械阻抗(Mechanical Impedance)位移阻抗(Displacement Impedance)速度阻抗(Velocity Impedance)加速度阻抗(Acceleration Impedance)机械导纳(Mechanical Mobility)位移导纳(Displacement Mobility)速度导纳(Velocity Mobility)加速度导纳(Acceleration Mobility)驱动点导纳(Driving Point Mobility)跨点导纳(Cross Mobility)传递函数(Transfer Function)拉普拉斯变换(Laplace Transform)传递函数矩阵(Matrix Of Transfer Function)频响函数(FRF,Frequency Response Function)频响函数矩阵(Matrix Of FRF)实模态(Normal Mode)复模态(Complex Mode)模态参数(Modal Parameter)模态频率(Modal Frequency)模态阻尼比(Modal Damping Ratio)模态振型(Modal Shape)模态质量(Modal Mass)模态刚度(Modal Stiffness)模态阻力系数(Modal Damping Coefficient)模态阻抗(Modal Impedance)模态导纳(Modal Mobility)模态损耗因子(Modal Loss Factor)比例粘性阻尼(Proportional Viscous Damping)非比例粘性阻尼(Non-proportional Viscous Damping) 结构阻尼(Structural Damping,Hysteretic Damping) 复频率(Complex Frequency)复振型(Complex Modal Shape)留数(Residue)极点(Pole)零点(Zero)复留数(Complex Residue)随机激励(Random Excitation)伪随机激励(Pseudo Random Excitation)猝发随机激励(Burst Random Excitation)稳态正弦激励(Steady State Sine Excitation)正弦扫描激励(Sweeping Sine Excitation)锤击激励(Impact Excitation)频响函数的H1 估计(FRF Estimate by H1)频响函数的H2 估计(FRF Estimate by H2)频响函数的H3 估计(FRF Estimate by H3)单模态曲线拟合法(Single-mode Curve Fitting Method) 多模态曲线拟合法(Multi-mode Curve Fitting Method) 模态圆(Mode Circle)剩余模态(Residual Mode)幅频峰值法(Peak Value Method)实频-虚频峰值法(Peak Real/Imaginary Method)圆拟合法(Circle Fitting Method)加权最小二乘拟合法(Weighting Least Squares Fitting method)复指数拟合法(Complex Exponential Fitting method) 1.2 振动测试的名词术语1 传感器测量系统传感器测量系统(Transducer Measuring System)传感器(Transducer)振动传感器(Vibration Transducer)机械接收(Mechanical Reception)机电变换(Electro-mechanical Conversion)测量电路(Measuring Circuit)惯性式传感器(Inertial Transducer,Seismic (地震?)Transducer)相对式传感器(Relative Transducer)电感式传感器(Inductive Transducer)应变式传感器(Strain Gauge Transducer)电动力传感器(Electro-dynamic Transducer)压电式传感器(Piezoelectric Transducer)压阻式传感器(Piezoresistive Transducer)电涡流式传感器(Eddy Current Transducer)伺服式传感器(Servo Transducer)灵敏度(Sensitivity)复数灵敏度(Complex Sensitivity)分辨率(Resolution)频率范围(Frequency Range)线性范围(Linear Range)频率上限(Upper Limit Frequency)频率下限(Lower Limit Frequency)静态响应(Static Response)零频率响应(Zero Frequency Response)动态范围(Dynamic Range)幅值上限(Upper Limit Amplitude)幅值下限(Lower Limit Amplitude)最大可测振级(Max.Detectable Vibration Level)最小可测振级(Min.Detectable Vibration Level)信噪比(S/N Ratio)振动诺模图(Vibration Nomogram)相移(Phase Shift)波形畸变(Wave-shape Distortion) 比例相移(Proportional Phase Shift)惯性传感器的稳态响应(Steady Response Of Inertial Transducer)惯性传感器的稳击响应(Shock Response Of Inertial Transducer)位移计型的频响特性(Frequency Response Characteristics Vibrometer)加速度计型的频响特性(Frequency Response Characteristics Accelerometer)幅频特性曲线(Amplitude-frequency Curve)相频特性曲线(Phase-frequency Curve)固定安装共振频率(Mounted Resonance Frequency) 安装刚度(Mounted Stiffness)有限高频效应(Effect Of Limited High Frequency)有限低频效应(Effect Of Limited Low Frequency)电动式变换(Electro-dynamic Conversion)磁感应强度(Magnetic Induction,Magnetic Flux Density)磁通(Magnetic Flux)磁隙(Magnetic Gap)电磁力(Electro-magnetic Force)相对式速度传感器(Relative Velocity Transducer)惯性式速度传感器(Inertial Velocity Transducer)速度灵敏度(Velocity Sensitivity)电涡流阻尼(Eddy-current Damping)无源微(积)分电路(Passive Differential (Integrate) Circuit)有源微(积)分电路(Active Differential (Integrate) Circuit)运算放大器(Operational Amplifier)时间常数(Time Constant)比例运算(Scaling)积分运算(Integration)微分运算(Differentiation)高通滤波电路(High-pass Filter Circuit)低通滤波电路(Low-pass Filter Circuit)截止频率(Cut-off Frequency)压电效应(Piezoelectric Effect)压电陶瓷(Piezoelectric Ceramic)压电常数(Piezoelectric Constant)极化(Polarization)压电式加速度传感器(Piezoelectric Acceleration Transducer)中心压缩式(Center Compression Accelerometer)三角剪切式(Delta Shear Accelerometer)压电方程(Piezoelectric Equation)压电石英(Piezoelectric Quartz)电荷等效电路(Charge Equivalent Circuit)电压等效电路(Voltage Equivalent Circuit)电荷灵敏度(Charge Sensitivity)电压灵敏度(Voltage Sensitivity)电荷放大器(Charge Amplifier)适调放大环节(Conditional Amplifier Section)归一化(Uniformization)电荷放大器增益(Gain Of Charge Amplifier)测量系统灵敏度(Sensitivity Of Measuring System) 底部应变灵敏度(Base Strain Sensitivity)横向灵敏度(Transverse Sensitivity)地回路(Ground Loop)力传感器(Force Transducer)力传感器灵敏度(Sensitivity Of Force Transducer)电涡流(Eddy Current)前置器(Proximitor)间隙-电压曲线(Voltage vs Gap Curve)间隙-电压灵敏度(Voltage vs Gap Sensitivity)压阻效应(Piezoresistive Effect)轴向压阻系数(Axial Piezoresistive Coefficient)横向压阻系数(Transverse Piezoresistive Coefficient) 压阻常数(Piezoresistive Constant)单晶硅(Monocrystalline Silicon)应变灵敏度(Strain Sensitivity)固态压阻式加速度传感器(Solid State PiezoresistiveAccelerometer)体型压阻式加速度传感器(Bulk Type Piezoresistive Accelerometer)力平衡式传感器(Force Balance Transducer)电动力常数(Electro-dynamic Constant)机电耦合系统(Electro-mechanical Coupling System) 2 检测仪表、激励设备及校准装置时间基准信号(Time Base Signal)李萨茹图(Lissojous Curve)数字频率计(Digital Frequency Meter)便携式测振表(Portable Vibrometer)有效值电压表(RMS Value Voltmeter)峰值电压表(Peak-value Voltmeter)平均绝对值检波电路(Average Absolute Value Detector) 峰值检波电路(Peak-value Detector)准有效值检波电路(Quasi RMS Value Detector)真有效值检波电路(True RMS Value Detector)直流数字电压表(DVM,DC Digital Voltmeter)数字式测振表(Digital Vibrometer)A/D 转换器(A/D Converter)D/A 转换器(D/A Converter)相位计(Phase Meter)电子记录仪(Lever Recorder)光线示波器(Oscillograph)振子(Galvonometer)磁带记录仪(Magnetic Tape Recorder)DR 方式(直接记录式) (Direct Recorder)FM 方式(频率调制式) (Frequency Modulation)失真度(Distortion)机械式激振器(Mechanical Exciter)机械式振动台(Mechanical Shaker)离心式激振器(Centrifugal Exciter)电动力式振动台(Electro-dynamic Shaker)电动力式激振器(Electro-dynamic Exciter)液压式振动台(Hydraulic Shaker)液压式激振器(Hydraulic Exciter)电液放大器(Electro-hydraulic Amplifier)磁吸式激振器(Magnetic Pulling Exciter)涡流式激振器(Eddy Current Exciter)压电激振片(Piezoelectric Exciting Elements)冲击力锤(Impact Hammer)冲击试验台(Shock Testing Machine)激振控制技术(Excitation Control Technique)波形再现(Wave Reproduction)压缩技术(Compression Technique)均衡技术(Equalization Technique)交越频率(Crossover Frequency)综合技术(Synthesis Technique)校准(Calibration)分部校准(Calibration for Components in system)系统校准(Calibration for Over-all System)模拟传感器(Simulated Transducer)静态校准(Static Calibration)简谐激励校准(Harmonic Excitation Calibration)绝对校准(Absolute Calibration)相对校准(Relative Calibration)比较校准(Comparison Calibration)标准振动台(Standard Vibration Exciter)读数显微镜法(Microscope-streak Method)?光栅板法(Ronchi Ruling Method)光学干涉条纹计数法(Optical Interferometer Fringe Counting Method)光学干涉条纹消失法(Optical Interferometer Fringe Disappearance Method)背靠背安装(Back-to-back Mounting)互易校准法(Reciprocity Calibration)共振梁(Resonant Bar)冲击校准(Impact Exciting Calibration)摆锤冲击校准(Ballistic Pendulum Calibration)落锤冲击校准(Drop Test Calibration)振动和冲击标准(Vibration and Shock Standard) 迈克尔逊干涉仪(Michelson Interferometer)摩尔干涉图象(Moire Fringe)参考传感器(Reference Transducer)3 频率分析及数字信号处理带通滤波器(Band-pass Filter)半功率带宽(Half-power Bandwidth)3 dB 带宽(3 dB Bandwidth)等效噪声带宽(Effective Noise Bandwidth)恒带宽(Constant Bandwidth)恒百分比带宽(Constant Percentage Bandwidth)1/N 倍频程滤波器(1/N Octave Filter)形状因子(Shape Factor)截止频率(Cut-off Frequency)中心频率(Centre Frequency)模拟滤波器(Analog Filter)数字滤波器(Digital Filter)跟踪滤波器(Tracking Filter)外差式频率分析仪(Heterodyne Frequency Analyzer) 逐级式频率分析仪(Stepped Frequency Analyzer)扫描式频率分析仪(Sweeping Filter Analyzer)混频器(Mixer)RC 平均(RC Averaging)平均时间(Averaging Time)扫描速度(Sweeping Speed)滤波器响应时间(Filter Response Time)离散傅里叶变换(DFT,Discrete Fourier Transform) 快速傅里叶变换(FFT,Fast Fourier Transform)抽样频率(Sampling Frequency)抽样间隔(Sampling Interval)抽样定理(Sampling Theorem)抗混滤波(Anti-aliasing Filter)泄漏(Leakage)加窗(Windowing)窗函数(Window Function)截断(Truncation)频率混淆(Frequency Aliasing)乃奎斯特频率(Nyquist Frequency)矩形窗(Rectangular Window)汉宁窗(Hanning Window)凯塞-贝塞尔窗(Kaiser-Bessel Window)平顶窗(Flat-top Window)平均(Averaging)线性平均(Linear Averaging)指数平均(Exponential Averaging)峰值保持平均(Peak-hold Averaging)时域平均(Time-domain Averaging)谱平均(Spectrum Averaging)重叠平均(Overlap Averaging)栅栏效应(Picket Fence Effect)吉卜斯效应(Gibbs Effect)基带频谱分析(Base-band Spectral Analysis)选带频谱分析(Band Selectable Spectral Analysis) 细化(Zoom)数字移频(Digital Frequency Shift)抽样率缩减(Sampling Rate Reduction)功率谱估计(Power Spectrum Estimate)相关函数估计(Correlation Estimate)频响函数估计(Frequency Response Function Estimate)相干函数估计(Coherence Function Estimate)冲激响应函数估计(Impulse Response Function Estimate)倒频谱(Cepstrum)功率倒频谱(Power Cepstrum)幅值倒频谱(Amplitude Cepstrum)倒频率(Quefrency)4 旋转机械的振动测试及状态监测状态监测(Condition Monitoring)故障诊断(Fault Diagnosis)转子(Rotor)转手支承系统(Rotor-Support System)振动故障(Vibration Fault)轴振动(Shaft Vibration)径向振动(Radial Vibration)基频振动(Fundamental Frequency Vibration)基频检测(Fundamental Frequency Component Detecting)键相信号(Key-phase Signal)正峰相位(+Peak Phase)高点(High Spot)光电传感器(Optical Transducer)同相分量(In-phase Component)正交分量(Quadrature Component)跟踪滤波(Tracking Filter)波德图(Bode Plot)极坐标图(Polar Plot)临界转速(Critical Speed)不平衡响应(Unbalance Response)残余振幅(Residual Amplitude)方位角(Attitude Angle)轴心轨迹(Shaft Centerline Orbit)正进动(Forward Precession)同步正进动(Synchronous Forward Precession)反进动(Backward Precession)正向涡动(Forward Whirl)反向涡动(Backward Whirl)油膜涡动(Oil Whirl)油膜振荡(Oil Whip)轴心平均位置(Average Shaft Centerline Position) 复合探头(Dual Probe)振摆信号(Runout Signal)电学振摆(Electrical Runout)机械振摆(Mechanical Runout)慢滚动向量(Slow Roll Vector)振摆补偿(Runout Compensation)故障频率特征(Frequency Characteristics Of Fault) 重力临界(Gravity Critical)对中(Alignment)双刚度转子(Dual Stiffness Rotor)啮合频率(Gear-mesh Frequency)间入简谐分量(Interharmonic Component)边带振动(Side-band Vibration)三维频谱图(Three Dimensional Spectral Plot)瀑布图(Waterfall Plot)级联图(Cascade Plot)阶次跟踪(Order Tracking)阶次跟踪倍乘器(Order Tracking Multiplier)监测系统(Monitoring System)适调放大器(Conditional Amplifier)趋势分析(Trend Analysis)倒频谱分析(Cepstrum Analysis)直方图(Histogram)确认矩阵(Confirmation Matrix)通频幅值(Over-all Amplitude)幅值谱(Amplitude Spectrum)相位谱(Phase Spectrum)报警限(Alarm Level)往复式制冷压缩机(Reciprocating refrigeration compressor)润滑系统(lubrication system)离心油泵(centrifugal oil pump)。
冲击载荷下周期性层状管结构中应力波衰减特性研究
冲击载荷下周期性层状管结构中应力波衰减特性研究李应刚;周雷;朱凌;郭开岭【摘要】利用分离式霍普金森压杆试验装置(SHPB)开展了周期性层状管结构的动态冲击试验,结合有限元数值仿真研究了冲击载荷作用下周期性层状管结构中瞬态应力波传播与衰减特性.基于固体晶格能带理论,研究了周期性层状管结构的带隙特性,阐明了能带结构与应力波频谱衰减区域的对应关系,分析了层状管的材料和结构参数对带隙的影响.研究结果表明,周期性层状管结构具有良好的冲击应力波衰减特性和抗冲击性能,其应力波衰减特性主要由其带隙引起,层状管的材料和结构参数对带隙的频率范围和宽度具有有效的调节作用.该研究工作可以为工程抗爆抗冲击提供新思路.【期刊名称】《振动与冲击》【年(卷),期】2019(038)005【总页数】5页(P124-127,161)【关键词】周期层状管结构;应力波衰减;抗冲击;带隙;SHPB【作者】李应刚;周雷;朱凌;郭开岭【作者单位】高性能舰船技术教育部重点实验室(武汉理工大学),武汉430063;武汉理工大学交通学院,武汉430063;武汉理工大学交通学院,武汉430063;武汉理工大学交通学院,武汉430063;武汉理工大学交通学院,武汉430063【正文语种】中文【中图分类】O347.4轻质薄壁金属管结构是最常见、最有效的一种吸能元件,广泛应用于汽车、船舶、轨道交通和航空航天等领域以及国防能量缓冲与抗爆抗冲击防护系统。
Lu等[1]对薄壁管结构的动态能量吸收能力进行了大量研究。
Zhang等[2-5]围绕提高轻质金属薄壁结构的耐撞性和能量吸收性能进行了一系列的研究工作,提出了多个性能优异的新型结构形式,并对这些新型结构的能量吸收性能进行了分析研究和优化设计。
近期,国内外学者将具有优良能量吸收性能的先进复合材料填充于薄壁金属管中,研究复合材料填充芯层对薄壁管轴向准静态和动态压缩特性的影响规律及能量吸收性能优化[6-11]。
Siromani等开发了一套有限元数值计算方法研究碳纤维增强复合材料填充薄壁金属管结构的轴向冲击压缩行为与损伤失效,数值仿真结果与试验结果吻合良好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
International Journal of Mechanical Sciences 43(2001)2103–2123Quasi-static axial compression of thin-walled circular aluminium tubesS.R.Guillow a ,G.Lu a ;∗,R.H.Grzebieta ba School of Engineering and Science,Swinburne University of Technology,PO Box 218,Hawthorn,Victoria 3122,Australiab Department of Civil Engineering,Monash University,Clayton,Victoria 3168,AustraliaReceived5October 2000;receivedin revisedform 26March 2001AbstractThis paper presents further experimental investigations into axial compression of thin-walledcircular tubes,a classical problem studied for several decades.A total of 70quasi-static tests were conducted on circular 6060aluminium tubes in the T5,as-receivedcond ition.The range of D=t considered was expanded over previous studies to D=t =10–450.Collapse modes were observed for L=D 610anda mod e classiÿcation chart developed.The average crush force,F AV ,was non-d imensionalisedandan empirical formula establishedas F AV =M P =72:3(D=t )0:32.It was foundthat test results for both axi-symmetric and non-symmetric modes lie on a single prehensive comparisons have been made between existing theories andour test results for F AV .This has revealedsome shortcomings,suggesting that further theoretical work may be required.It was found that the ratio of F MAX =F AV increasedsubstantially with an increase in the D=t ratio.The e ect of ÿlling aluminium tubes with di erent density polyurethane foam was also brie y examined.?2001Elsevier Science Ltd.All rights reserved.Keywords:Axial compression;Circular tube;Foam;Plastic collapse;Thin-walledtubes0.IntroductionThe behaviour of thin-walledmetal tubes subjectedto axial compression has been stud iedfor many years.Such tubes are frequently usedas impact energy absorbers andReid[1]has pre-sented a general review of deformation mechanisms.Fig.1shows a typical force–displacement curve for quasi-static loading.Generally speaking,the axial load rises until a ÿrst buckle is formedat a characteristic maximum force value,F MAX .This initial buckling behaviour is well ∗Corresponding author.Fax:+61-3-9214-8264.E-mail address:glu@.au (G.Lu).0020-7403/01/$-see front matter ?2001Elsevier Science Ltd.All rights reserved.PII:S 0020-7403(01)00031-52104S.R.Guillow et al./International Journal of Mechanical Sciences43(2001)2103–2123NomenclatureD average diameterF AV average axial forceF MAX maximum axial force forÿrst peakg acceleration due to gravityH half-wavelength of foldL lengthM P full plastic bending moment of tube wall per unit lengthm geometric eccentricity factor—i.e.ratio of outward s foldlength to total foldlength N number of circumferential lobes(or corners)in non-symmetrical bucklingR average radiust wall thickness of tubeV Vickers hardness number(kg=mm2)e e ective crushing distancef density of foam0 ow stress0:20.2%proof stressult ultimate tensile stressFig.1.Typical load–de ection curve for an axially loaded thin-walled metal tube which collapsed by progressive folding.S.R.Guillow et al./International Journal of Mechanical Sciences43(2001)2103–21232105Fig.2.Examples of various collapse modes for thin-walled circular6060-T5aluminium tubes under axial load-ing(more examples shown in Fig.11):(a)axi-symmetric mode(D=97:9mm;t=1:9mm;L=196mm);(b)non-symmetric mode(D=96:5mm;t=0:54mm;L=386mm);(c)mixedmod e(D=97:5mm; t=1:5mm;L=350mm).known and will not be studied in depth here.Thereafter,depending on geometrical parameters such as the ratios of D=t(diameter=thickness)and L=D(length=diameter)and also on material properties,there are a variety of possible modes of collapse.Generally,collapse involves plastic2106S.R.Guillow et al./International Journal of Mechanical Sciences43(2001)2103–2123Fig.3.Schematic axial view of non-symmetric or diamond collapse mode.Two cases are shown,N=3and4 circumferential lobes.buckling andthe formation of progressive fold s(whether axi-symmetric or non-symmetric).The formation of these folds causes the characteristic uctuation in the axial force shown in Fig.1. This plastic collapse behaviour is of primary interest in this paper.Experimentally the following modes of collapse have been observed and Fig.2shows some typical examples:(i)axi-symmetric concertina bellowing,(ii)non-symmetric buckling(also known as diamond or Yoshimura mode),with a variable number of circumferential lobes or corners(refer to Fig.3),(iii)mixed mode(combination of the two previous modes),(iv)Euler or global buckling;and(v)other(simple compression,single fold s,etc.).Research on circular tubes in the past has generally concentratedon annealedaluminium or steel tubes with D=t ratios between10and150.It is common ind ustrial practice to use aluminium alloys in the heat treatedas-receivedcond ition,but little research appears to have addressed this particular case.Moreover,Gupta and Gupta[2]have identiÿed metal temper as one of the signiÿcant factors in determining behaviour.Hence,it was decided to undertake an experimental program to extendthe range of research up to approximately D=t=450andto test aluminium alloy tubes which were in the heat treatedas-receivedcond ition.This work is of potential application in civil,mechanical,marine andaeronautical engineeringÿeld s.1.Review of previous studiesThe following section summarises the available literature on the plastic collapse behaviour of thin-walledcircular metal tubes subject to quasi-static axial load ing.It is arrangedbroad ly in a chronological order.Theÿrst signiÿcant work to address the mechanics underlying the observed behaviour of axially load edthin-walledtubes was by Alexand er[3].He proposeda simple mod el for the axi-symmetric foldpattern(refer to Fig.4)basedon experiments with metal tubes of D=t= 29–89.At a global level,external work done was equated with internal work from bending at three stationary plastic hinges andcircumferential stretching of the metal between the hinges.S.R.Guillow et al./International Journal of Mechanical Sciences 43(2001)2103–21232107Fig.4.Axi-symmetric collapse mechanism assumedby Alexand er [3].Thus the following theoretical equation was obtainedfor average crush force (axi-symmetric folds):F AV =K o t1:5√D;(1)where K is a constant and o is the ow stress.Also,plastic half-wavelength,H (refer to Fig.4)was determined as follows:H =C √Dt;(2)where C is a constant.The experimental results observedby Alexand er were generally in agreement with the above two equations.Although simple,this model seems to re ect the und erlying physical processes involvedandmany subsequent researchers have usedit as a starting point.Pugsley andMacaulay [4]were among the ÿrst researchers to consid er the non-symmetric folding mode,their study being largely empirical.Johnson et al.[5]attempted to develop a theory for the non-symmetric mode based on the actual geometry of folding,with the tube material at the mid-surface being considered inextensional.Hence they were able to develop equations to predict average axial crush force,F AV .However,agreement between their model andtest results for P.V.C.tubes was not particularly good .In 1978Magee andThornton [6]cond ucteda review of previous work by researchers who hadcond uctedaxial crushing tests on circular metal tubes.By consid ering these collectedd ata they d evelopeda number of empirical equations which involvedthe speciÿc ultimate tensile strength of the metal.Andrews et al.[7]conducted a comprehensive series of tests on annealed aluminium alloy tubes covering a wide range of D=t (4–60)and L=D (0:2–8:8).Consequently,they developed a collapse mode classiÿcation chart which predicted the mode of collapse for any given D=t and L=D combination.2108S.R.Guillow et al./International Journal of Mechanical Sciences43(2001)2103–2123Fig.5.Axi-symmetric mod el usedby Abramowicz andJones[8,9].H is the half-wavelength of the fold. Abramowicz andJones[8,9]cond uctedaxial compression tests on a range of thin-walledcir-cular andsquare steel tubes.They analytically consid eredboth axi-symmetric andnon-symmetric modes.Abramowicz introduced the important concept of e ective crushing distance, e(refer to Fig.5),where a foldconsistedof two equal rad ii segments of length H,curvedin opposite d irections andthe material hadÿnite thickness.For axi-symmetric folds,Abramowicz and Jones[9]developed the following equation in1986 (anda similar one in1984[8]):F AV M P =[25:23D=t+15:09][0:86−0:568t=D];(3)where M P= o(t2=4):For non-symmetric fold s,in1984[8]and1986[9]Abramowicz andJones commencedwith two di erent starting relationships.Taking into account e ective crushing distance,material strain rate,etc.,resultedin two d i erent equations for average crush force.The simple relation-ship d evelopedin1984[8]appliedregard less of the number of lobes:F AV M P =86:14Dt0:33:(4)However,thisÿnding appears to have developed from work carried out by Wierzbicki and Abramowicz[10]on rectangular rather than circular tubes.On the other hand,the relationshipS.R.Guillow et al./International Journal of Mechanical Sciences43(2001)2103–21232109Fig.6.Collapse mechanism assumedby Grzebieta[12]for axi-symmetric mod e. Abramowicz andJones d erivedin1986[9]was of the formF AV M P =A N1Dt+A N2;(5)where A N1and A N2are constants which were a function of the number of lobes.For further details the reader is directed to this reference.In Refs.[8,9],Abramowicz andJones observedthat reasonable agreement existedbetween pred ictions of average crush load s basedon the above notedequations andtheir experimental results for steel tubes with D=t=9–65.In a subsequent work,Abramowicz andJones[11] reportedon further tests andsummarisedtheirÿnd ings for both static andd ynamic load ing cases in two failure mode maps,adding to the previous work by Andrews et al.[7].Gupta andGupta[2]performeda series of quasi-static axial compression tests on thin-walled aluminium andmildsteel circular tubes in both the annealedandas-receivedcond itions.They combinedall results andd evelopedempirical equations for the average crushing force in terms of the Vickers hardness and D=t.Grzebieta[12–14]useda strip methodto analyse both axi-symmetric andnon-symmetric folding modes.He equated external work done with internal energy from horizontal,inclined and travelling plastic hinges as well as stretching of the metal,to produce equations for determining the instantaneous forces involved.Unfortunately,these equations do not yield simple expressions for determining the average crush force.Grzebieta’s collapse mechanism model for axi-symmetric mode(refer to Fig.6)was a mod-iÿcation of Alexand er’s.A foldconsistedof three equal lengths,two of which were curves of equal rad ius andthe thirda straight line segment.For the non-symmetric mod e Grzebieta analysedthe fold s as a half-d iamondmechanism.Grzebieta carriedout static andd ynamic tests on steel tubes with D=t=30–300.2110S.R.Guillow et al./International Journal of Mechanical Sciences 43(2001)2103–2123Fig.7.Axi-symmetric mod el usedby Wierzbicki [15]andSingace et al.[16,17].Wierzbicki et al.[15]introduced a new model for the axi-symmetric collapse mechanism (shown simpliÿed in Fig.7)which allows for both inwards and outwards radial displacement.The geometry is governedby an arbitrary geometric eccentricity factor,m ,which is deÿned as the ratio of outwardfoldlength to total foldlength.By consid ering energy rate equations Wierzbicki et al.[15]were able to develop equations for not only determining average crush load but also a representative load–de ection history.The latter helped explain the experi-mental observation that sometimes there are two force peaks during the formation of a single fold.Singace et al.[16,17]extended upon the previous work by Wierzbicki et al..For the axi-symmetric mode,they considered a global energy balance leading to an implicit equation for m ,which when solvedgave a theoretical constant value of m =0:65.In their secondpa-per [17],Singace et al.reportedgoodexperimental agreement with the pred ictedvalue of 0:ter,Singace et al.[18]re-considered the eccentricity factor,m ,for the non-symmetric mode case.From the results of experiments on a small range of circular metal tubes they de-duced that the factor m was (surprisingly)approximately constant at m =0:65for this mode also.The equations developed by Singace et al.[17,18]for calculating average axial crush force are as follows.For axi-symmetric mode:F AV M P =22:27 D t+5:632:(6)For non-symmetric mode:F AV M P =− 3N +2 2N tan 2N D t :(7)One particular problem of interpretation arises with most theoretical equations developed for non-symmetric mode collapse,for example Eq.(7).They require a knowledge of the number of lobes,N ,at a given D=t ratio.We have not foundany publishedequation entirely satisfactory in determining N .S.R.Guillow et al./International Journal of Mechanical Sciences43(2001)2103–21232111Fig.8.Experimental set-up.With regardto energy absorption,it has been suggestedthatÿlling metal tubes with low-density polyurethane foam(to provide wall stability)may be preferable to increasing the wall thickness.Early investigations into the e ectiveness of this foamÿlling methodwere cond ucted by Thornton[19]and Lampinen and Jeryan[20].Reid,Reddy and Gray[21]have conducted experiments on the axial compression of thin-walledrectangular metal tubes which hadbeen ÿlledwith foam.Red d y andWall[22]subsequently testedfoamÿlledcircular aluminium alloy cans.Academic opinion appears to be divided about the relative beneÿts of foamÿlling versus increasing the wall thickness.2.Test procedure and material propertiesA series of approximately70axial compression tests were conducted under quasi-static condi-tions.Tests were carriedout on a SHIMAD ZU universal testing machine which appliedthe axial loadthrough at endplatens(refer to Fig.8).Cross-headspeedwas approximately5mm=min.A LABTECH data-logger recorded the data digitally for later analysis.The tubes tested were made from commercial quality extruded6060aluminium alloy in the as-received,heat treated T5condition.Mechanical properties were determined from tensile testing of coupons cut from several tubes.Fig.9shows a stress–strain curve for a typical tensile test specimen which hada0.2%proof stress, 0:2,of180MPa,an ultimate stress, ult, of212MPa anda Vickers hard ness,V,of73kg=mm2.By averaging results from several tensile tests we were able to determine an empirical relation between the0.2%proof stress and Vickers hardness for this particular type of alloy as follows:Vg= 0:2=3:92,where g=9:81m=s2is the gravitational acceleration.2112S.R.Guillow et al./International Journal of Mechanical Sciences43(2001)2103–2123Fig.9.Typical tensile stress–strain curve for6060-T5aluminium.Fig.10.Stress–strain curves for polyurethane foams of three di erent densities.The variety of commercial tubes available was insu cient to achieve the full range of D=t values we required.To produce tubes with very large D=t ratios,the outside surface of stock tubes was machined to produce the wall thickness desired.Theÿnal thickness,mean diameter and Vickers hardness were measured for each compression testpiece.Vickers hardness read-ings were usedto quantify the mechanical properties of each tube testpiece through the above equation.A representative sample of these tube properties andthe results of our testing may be foundin the append ix.Most tests involvedempty aluminium alloy tubes.However,some tests were carriedout on aluminium alloy tubes which hadbeenÿlledwith polyurethane foam.This polyurethane foam usually comes as a two part mix(base andaccelerator)andwe usedthree d i erent d ensities (35,60and140kg=m3)during testing.Fig.10shows typical compressive stress–strain curvesfor the three di erent density foams,which were obtained from axial compression tests on 96mm diameter cylindrical foam blanks unrestrained laterally.3.Experimental results and discussionOur experimental results are summarisedon the following pages in terms of the collapse mode,average force F AV,force ratio F MAX=F AV,eccentricity factor m andthe e ect of foam ÿlling.3.1.Collapse modeFurther examples of collapse modes are shown in Fig.11,in addition to those shown in Fig.2.Of particular interest was the non-symmetric mode(refer to Fig.2b)which has multiple corners(or lobes).We observedthat for tubes with an increasing D=t ratio,the number ofFig.11.Further examples of collapse modes for axially loaded thin-walled6060-T5aluminium tubes: (a)mixedmod e(D=57:1mm;t=1:15mm;L=628mm);(b)three sided non-symmetric folding (D=57:1mm;t=1:15mm;L=628mm);(c)Euler buckling(D=58mm;t=2:0mm;L=566mm).Fig.12.Schematic axial view of spiralling non-symmetric folding with N=312lobes,from Grzebieta[13].Fig.13.Mode classiÿcation chart for circular6060-T5aluminium tubes. circumferential lobes also increasedfrom2up to5or6.At high values of D=t(¿200),the number of lobes often variedd uring testing(in one case erratically between3,4and5lobes). The number of lobes,N,was not always an integer—for example,in some cases we observed a relatively stable pattern with312lobes in a spiralling arrangement(refer to Fig.12).In other cases the lobes were simply incompletely formed.From our test results for as-received6060-T5aluminium tubes a mod e classiÿcation chart was produced,see Fig.13.This chart is divided up into areas which correspond,approximately, to the di erent modes of collapse.The general shape of our chart is similar to that produced by And rews et al.[7],who testedannealedaluminium tubes.However,there are noticeable di erences in the location of the lines delineating the various areas.For example,consider analuminium tube with D=t=50and L=D=10.From our chart we wouldexpect a mixedmod eFig.14.Plot of non-dimensional experimental average force F AV=M P versus D=t.collapse but from Andrews et al.chart an Euler collapse is indicated.Note that a logarithmic scale is usedfor D=t on our chart in order to cover the wider range of D=t values considered.It may be observed broadly from our chart that non-symmetric mode is present when D=t¿100, while axi-symmetric mode occurs when D=t¡50and L=D¡2.3.2.Average crush forceOne of the most signiÿcant parameters for quantifying the behaviour of axially compressed tubes is the average crush force F AV.This is usually expressednon-d imensionally as a ratio F AV=M P.When calculating the plastic moment,M P,di erent researchers have used various di erent measures for the ow stress, 0.Since our tests involvedonly aluminium we chose to take the value of0.2%proof stress, 0:2,as the ow stress.Thus e ectively:M P= 0:2(t2=4):Fig.14shows our test results for non-dimensionalised average axial force,F AV=M P,plotted logarithmically versus D=t.There is only a relatively small amount of experimental scatter(some points shown represent more than one test result).Note that when calculating the average axial force,F AV,results for the initial peak have been ignored.From Fig.14it can be seen that when plottedlogarithmically,all the results(whether axi-symmetric,non-symmetric or mixed modes)approximately form a straight line.Hence,we obtained the following empirical relation for6060-T5aluminium alloy tubes:F AV M P =72:3Dt0:32:(8)This equation is of similar form to Eq.(4)proposedby Abramowicz andJones in1984[8] for non-symmetric mode but quite di erent from the corresponding equation proposed by Gupta andGupta[2].parison of present experimental results for average crush force with empirical equations of Gupta and Gupta[2].parison of experiment and theory for average forceThe following paragraphs are a subjective comparison between our experimental results for average crush force,F AV,andvarious theories andempirical relationships.Fig.15shows our test results for F AV comparedwith empirical equations by Gupta andGupta [2].They usedVickers hard ness,V,to characterise material properties.These equations were determined from tests on metal tubes with a relatively small range of dimensions(D=t=10–33, L=D=2–3).In view of this,agreement for both axi-symmetric andnon-symmetric mod es is quite goodin the range D=t=10–100.For D=t¿100,their curve for axi-symmetric mode is closer to our experimental test points than their non-symmetric one,even though the actual collapse mode exhibited was non-symmetric.Fig.16shows our test results for average force,comparedwith equations d evelopedby Abramowicz andJones[8].From thisÿgure it may be seen that agreement for both axi-symmetric and non-symmetric modes is fair.Their axi-symmetric equation predicts average forces which are rather low comparedwith our test points.On the other hand,their equation for non-symmetric mode,Eq.(4),predicts average forces which are rather high compared with our test points. Nevertheless,it may be notedfrom Fig.16that the slope of the line representing Eq.(4) (non-symmetric mode)is almost the same as our test points.This is also evident from a comparison of Eqs.(4)and(8).Fig.17shows our test results for average force,F AV,comparedwith the theoretical equations d evelopedby Abramowicz andJones[9].Their axi-symmetric Eq.(3)estimates an average force which is still low comparedwith our test results,but closer to our test points than their 1984prediction.In the case of non-symmetric collapse,Abramowicz and Jones[9]developed Eq.(5),which produces a family of lines,one for each value of N.Thus,we needto know the number of lobes,N,in order to interpret Fig.17.From the appendix it will be noted that formost of the tubes we tested,N falls in the range N=3–4.Agreement between their theory andparison of present experimental results for average force with theory by Abramowicz andJones[8].parison of present experimental results for average force with theory by Abramowicz andJones[9]. our test points is goodin this range.For cases with low D=t values(¡50),where N¡3,their prediction for F AV is rather low.For high values of D=t(¿300),where N¿4,their predicted value for F AV is rather high.Nevertheless,overall it appears that this methodof pred icting F AV is satisfactory.Fig.18shows our test results for average force comparedwith the equations d evelopedby Singace et al.[17,18].Their equation for axi-symmetric mode,Eq.(6),gives values for F AV which are much too low comparedwith our test points.In the case of non-symmetric mod e, their Eq.(7),when plottedon logarithmic axes prod uces a series of very steep lines,one for each number of lobes,N.This makes the process of interpretation even more di cult. Determining the precise number of corners or lobes for each test specimen presents somepractical di culties.As has previously been noted,if D=t¿200we sometimes observedthatparison of present experimental results for average force with theory by Singace et al.papers [16–18].the number of lobes variedd uring the one test.Nevertheless,on Fig.18test points are shown for which we felt conÿdent of the lobe number.It will be noted that the lines representing the Singace et al.Eq.(7)are not inconsistent with our test points although agreement is not close.However,we observedthat when the number of lobes variedd uring testing there was not a corresponding variation in the instantaneous crush force.This observation casts doubt on the validity of Eq.(7),as the large gaps between the lines in Fig.18suggest there should be a large variation in crush force with a change in the number of lobes,N .3.4.Discussion of average forceAt this stage the following observations may be made.In general,the existing theories produce numerical predictions for average force which are reasonable only for a limited range of D=t .Comparison of our test results with these theories has revealedtwo fund amental features which remain inexplicable at present.The ÿrst feature is that all our test points,regardless of mode of collapse (axi-symmetric or non-symmetric),lie on one curve whereas the theories treat these modes quite separately.Further,most theories for non-symmetric mode predict average forces which are a function of the number of lobes but experimentally this does not appear to be the case.The second,more important,feature relates to the functional dependence of average force on D=t .Our experiments clearly show that F AV =M P is empirically dependent on (D=t )0:32.Existing theories for axi-symmetric mode,however,suggest that F AV =M P should be dependent on D=t .In the case of non-symmetric mode,a wide variety of theories have been suggested;typically F AV =M P is seen as being a linear function of D=t as for the Singace et al.Eq.(7).An exception to this is Eq.(4)d evelopedby Abramowicz andJones [9],where F AV =M P was proportional to (D=t )0:33.However,as previously noted,this equation appears to have developed from work by Wierzbicki andAbramowicz [10]on rectangular rather than circular tubes.Thus it seemsFig.19.F MAX=F AV force ratio versus D=t.that for circular tubes a rigorous theoretical explanation of the D=t exponent of13is still to be developed.3.5.Force ratio F MAX=F AVIn a previous paper,Guillow andLu[23]id entiÿedthe force ratio F MAX=F AV as being of some interest.In that paper it was notedthat F MAX=F AV variedas a function of D=t ratio(this has also been notedby other researchers).The variation in force ratio highlights the fact that the mechanics of formation of the initial and subsequent folds is substantially di erent.Fig.19 shows the results of our more recent tests at larger values of D=t.The F MAX=F AV ratio appears to be monotonically increasing up to D=t=450.Variability in the F MAX=F AV ratio increased markedly for D=t¿100.This scatter couldbe d ue to signiÿcant variation in the initial buckling force,F MAX,at large values of D=t.Incidently,the common wisdom attributes the scatter of initial buckling force to imperfection sensitivity of thin-walled shells.However,Calladine[24]has recently provided an alternative explanation basedon post-buckling consid erations.3.6.Eccentricity factor mWhen folds occur during progressive buckling,they form partly on the outside and partly on the inside of the original tube proÿle.As previously noted,Singace et al.[16–18]have investigatedthis phenomenon by consid ering the eccentricity factor,m,(refer to Fig.7for its deÿnition).We were surprised at their claim that the factor m was approximately constant at 0.65.Therefore,we decided to examine our test pieces to see if the Singace et al.ÿndings also applied to6060-T5aluminium alloy tubes.Our test results for axi-symmetric mode folding are shown in Fig.20.They appear to conÿrm that a constant value of approximately0.65alsoapplies in this case.(It is not clear why the m value shouldbe so d i erent at D=t=20.)Fig.20.Eccentricity,m,as a function of D=t,for axi-symmetric mode.Fig.21.E ect of varying density of foamÿlling in6060-T5aluminium tubes.All tubes of length196mm,average diameter97mm and thickness1:0mm.Refer to Fig.10for stress–strain curves of polyurethane foam.3.7.E ect of foamÿllingMost of our tests involvedempty aluminium alloy tubes.However,a few tests were carried out on aluminium alloy tubes which hadbeenÿlledwith polyurethane foam.Fig.21shows some of our test results for foam-ÿlledaluminium tubes andTable1presents the d ata for aver-age axial crush force.Stress–strain curves for foam only were presentedearlier in Fig.10.All of the aluminium alloy tubes usedin this stage of testing were id entical(D=97mm;t=1:0mm and L=196mm).Test results for an identical empty aluminium tube are shown in Fig.1. We expectedto observe an increase in the average crushing force,F AV,for aluminium alloy tubes which hadbeenÿlledwith foam,as comparedwith id entical empty aluminium tubes.In fact,there is a complex interaction between the metal tubes andthe foamÿlling.The foamprovides support for the thin walls of the aluminium tubes leading to an increase in the overall。