一、中考数学

合集下载

最全面中考数学知识点归纳总结

最全面中考数学知识点归纳总结

最全面中考数学知识点归纳总结中考数学知识点的归纳总结主要包括几何、代数、函数、概率与统计和解题方法等方面的内容。

下面是一个较为全面的中考数学知识点归纳总结,共计132个知识点。

一、几何部分:1.直线、射线、线段、角度的概念及其表示方法;2.同位角、对顶角、相邻角、互补角、补角的概念及性质;3.平行线的概念及判定方法;4.垂直线的概念及判定方法;5.直线与平面的位置关系;6.角的平分线、垂直平分线和中垂线的性质;7.基本图形(三角形、正方形、矩形、平行四边形、菱形、梯形)的特性;8.三角形的高、中线、角平分线、垂心、外心、内心的性质;9.相似三角形的判定方法及性质;10.三角形的全等判定方法及性质;11.三角形的重心、外接圆、内切圆的性质;12.直角三角形的性质及勾股定理的应用;13.倍数关系、比例关系的概念及解题方法;14.圆的概念及周长、面积的计算方法;15.扇形、弓形、弦的概念及其性质;16.圆上的切线的概念及切线与半径的关系;二、代数部分:17.有理数的概念及其基本运算;18.有理数的比较大小及其运算性质;19.小数、百分数与分数之间的相互转化;20.无理数的概念及四舍五入与有理数的关系;21.整式和多项式的概念及其加减乘除运算;22.分布恒等式的概念及应用;23.因式分解的概念及方法;24.同底数幂的积与商、幂的幂、幂的乘方;25.0次幂、负指数幂的概念及运算规律;26.小数与分数的乘除运算;27.分式的定义及分式的加减乘除运算;28.一次方程的概念及解一次方程的“相等原理”;29.一次方程的解的判别及含参量的一次方程;30.二次方程的概念及解二次方程的“因式分解法”、“配方法”、“求根公式”等方法;31.开平方的概念及开平方的运算法则;32.平方根与立方根的应用;33.平方差公式的应用;34.利用二元一次方程组解题;35.进一法与折半法的应用;三、函数部分:36.函数的概念及自变量、函数值、变量区间的含义;37.函数的输入输出、定义域、值域和图象的关系;38.一次函数与函数图象的特点;39.一次函数的斜率与截距的概念及其性质;40.直线与y轴平行的判定及斜率的计算方法;41.一次函数方程的应用;42.二次函数与函数图象的特点;43.二次函数的顶点坐标及对称轴的求解;44.二次函数图象的开口方向、焦点和准顶点的位置关系;45.函数的相等、不等、图象平移、伸缩的概念及表示方法;46.函数的和、差、积、商运算及复合函数;47.用函数的性质解答实际问题;48.绝对值函数的概念、图象及性质;49.幂函数的概念、图象及性质;50.线性函数、常函数、反比例函数的图象及性质;51.分段函数的概念及解答实际问题;四、概率与统计部分:52.实验、样本空间、事件、随机事件的概念;53.事件的发生与否的表示方法;54.事件的包含、互斥及事件间的关系;55.概率的概念及计算公式;56.等可能概型的计算方法;57.样本空间中的点与事件的对应关系;58.随机事件的发生与否的概率计算;59.从历史发展的角度看概率的概念;60.百分位数、分位数的概念及计算方法;61.数据的统计分析及统计图形的画法;62.频数分布表及频数分布直方图的制作;63.正态分布的概念及性质;64.数据的可视化处理及用统计方法解答实际问题;五、解题方法:65.算术运算法则及四则运算的性质;66.四则运算的顺序及提取公因式;67.带分数、分数的四则运算及混合运算;68.指数法则的应用;69.理解与运用算式的概念及递推算式的应用;70.用变量表示数的关系及数的线性关系;71.应用百分数求解实际问题;72.比例关系的运算及其应用;73.消元与代入法解一元一次方程组;74.联立一元一次方程组解题;75.两步走结合法解一元一次方程;76.使用平方根解二次方程的应用;77.二次函数的图象与应用;78.函数的性质与应用;79.根据函数图象表示解的方法;80.初步理解函数模型及其应用;81.理解数据的统计特征及其应用;82.根据统计图表做出合理判断;83.理解概率的基本概念及计算概率;84.基本概率模型的理解与应用;85.从概率模型的角度解答实际问题;86.根据实际问题建立数学模型解题;87.运用合理的方法解决较复杂的数学问题;88.根据问题解答合理化对策。

上海初三数学知识点

上海初三数学知识点

上海初三数学知识点在初中数学中,数学知识点的理解和掌握是学生们学好数学的关键。

下面将介绍一些上海初三数学知识点,帮助同学们更好地学习数学。

一、代数知识点在初三的代数知识点中,方程与不等式是重要的内容。

1.方程:方程是数学中比较常见的一种表达式,可以通过解方程来找到未知数的值。

在初三中,我们需要掌握一元一次方程的解法,如通过移项、合并同类项、因式分解等方法解方程。

同时,还需掌握二元一次方程的解法。

2.不等式:不等式在实际生活和数学问题中都有重要作用。

初三数学中常见的不等式有一元一次不等式、二元一次不等式以及绝对值不等式。

对于这些类型的不等式,我们需要了解解集的概念,能够具体解决应用问题。

二、几何知识点几何在初三数学中扮演着重要的角色,要注意几何图形的性质和运用。

1.角度与直线问题:初三数学中的角度概念比较重要,要能够准确地理解角度的定义与测量,了解角度所具有的性质。

此外,还需要掌握不同类别角的判定方法,如相等角、互补角、对顶角等。

2.等腰三角形与相似三角形:初三中等腰三角形与相似三角形的性质是十分常见的问题。

我们需要了解等腰三角形的性质和判断方法,同时能够运用相似三角形的特点来解决一些几何问题。

三、函数知识点函数是初三数学中的重要内容,掌握函数的性质与运用是学好数学的关键。

1.函数的概念与图像:初三数学中,我们需要理解函数的定义与图像的绘制。

同时,也需要了解函数的性质,如奇偶性、单调性、最值等。

这些性质有助于我们对函数进行分析、解题和应用。

2.一次函数与二次函数:初三数学中,一次函数和二次函数是重点内容。

了解这两种函数的性质,如函数图像、增减性、最值等,能够使我们更好地理解函数的概念与运用。

综上所述,上海初三数学知识点主要包括代数、几何和函数三个方面。

掌握这些知识点,能够帮助同学们更好地理解数学,提升数学水平。

同时,积极参与课堂上的练习和实践,多做习题和真题,能够进一步巩固和应用所学的数学知识。

相信通过努力学习,同学们一定能够在数学中取得好成绩。

2023年中考数学专题练——1数与式

2023年中考数学专题练——1数与式

2023年中考数学专题练——1数与式一.选择题(共11小题)1.(2022•泉山区校级三模)下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(﹣a3)2=a6D.a2÷a3=a 2.(2022•鼓楼区校级二模)下列计算正确的是()A.a+a=a2B.(2a)2÷a=4a C.(﹣ab)2=ab2D.a2⋅a2=2a2 3.(2022•徐州一模)下列运算中,正确的是()A.a2•a3=a5B.(a2)3=a8C.a2+a3=a5D.a3÷a2=1 4.(2022•鼓楼区校级一模)2022的倒数是()A.2022B.﹣2022C.12022D.−120225.(2022•丰县二模)下列无理数中与3最接近的是()A.√5B.√6C.√10D.√12 6.(2021•徐州模拟)下列运算中,正确的是()A.3a+2a=5a2B.a2•a3=a6C.a2+a2=a4D.(﹣a3)2=a6 7.(2022•贾汪区二模)有理数﹣2022的相反数等于()A.2022B.﹣2022C.12022D.−120228.(2022•邳州市一模)下列运算中,正确的是()A.x6÷x2=x3B.(x2)3=x5C.x2+x3=x5D.2x2•x=2x3 9.(2022•徐州一模)数轴上在√3和√10之间的整数有()A.0个B.1个C.2个D.3个10.(2022•邳州市一模)周末小明与同学相约在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的菜单总共为10个汉堡,x杯饮料,y份沙拉,则他们点的B餐份数为()A.10﹣x B.10﹣y C.x﹣y D.10﹣x﹣y 11.(2022•睢宁县模拟)下列计算正确的是()A.2a2﹣a2=2B.(a﹣b)2=a2﹣b2C.(﹣a3b)2=a6b2D.(2a+3)(a﹣2)=2a2﹣6二.填空题(共10小题)12.(2022•鼓楼区校级三模)如图,每个图案均由相同大小的圆和正三角形按规律排列,依照此规律,第n个图形中三角形的个数比圆的个数多个.(由含n的代数式表示)13.(2022•泉山区校级三模)√4=.14.(2022•丰县二模)太阳距离银河系中心约为250000000000000000公里,其中数据250000000000000000用科学记数法表示为.15.(2022•丰县二模)计算:(x2)3•x﹣2=.16.(2022•丰县二模)数轴上的点A、B分别表示﹣2、3,则点离原点的距离较近(填“A”或“B”).17.(2022•徐州二模)2021“双十一”全网成交额约9650亿元.将数据“9650亿”用科学记数法表示.18.(2022•邳州市一模)因式分解:b2﹣4b+4=.19.(2022•徐州一模)新型冠状病毒呈球形或椭圆形有包膜,直径大约是80~160纳米,1纳米=10﹣9米.用科学记数法表示160纳米=米.20.(2021•徐州模拟)分解因式:m2+6m=.21.(2022•贾汪区二模)已知√a+2有意义,则a的取值范围为.三.解答题(共9小题)22.(2022•鼓楼区校级三模)计算:(1)20220﹣(−12)﹣1﹣|3−√8|;(2)(1+1x−2)÷x−1x−2.23.(2022•丰县二模)计算:(1)(﹣1)2022+|﹣4|+(12)﹣1−√273;(2)(1−1a)÷a2−2a+1a.24.(2022•徐州二模)(1)计算:(12)−2−tan45°−(π−3)0+√4; (2)化简:(1−1x+2)÷x 2−1x+2. 25.(2022•贾汪区二模)计算: (1)20220+(12)−1−|−3|+√−83; (2)(x −1x )÷x 2−2x+1x . 26.(2022•睢宁县模拟)计算: (1)(−2)3−(−3)−(13)−1+√8; (2)a a 2−4÷(1−2a+2). 27.(2022•邳州市一模)计算:(1)(﹣1)2022+|﹣5|﹣(13)﹣1+√12;(2)a−1a 2÷(1−1a 2). 28.(2022•徐州一模)计算:(1)|−√3|﹣(4﹣π)0+2sin60°+(12)﹣1;(2)(1x+1−1x−1)÷2x 2−1. 29.(2022•徐州一模)计算: (1)√12+4﹣1﹣(12)﹣1+|−√3|;(2)(1x+3−1)×x 2+6x+9x 2−4.30.(2022•鼓楼区校级二模)计算: (1)|−4|−20220+√273−(13)−1;(2)(a +2a+1a )÷a 2−1a.2023年江苏省徐州市中考数学专题练——1数与式参考答案与试题解析一.选择题(共11小题)1.(2022•泉山区校级三模)下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(﹣a3)2=a6D.a2÷a3=a 【解答】解:A、a2与a3不属于同类项,不能合并,故A不符合题意;B、a2•a3=a5,故B不符合题意;C、(﹣a3)2=a6,故C符合题意;D、a2÷a3=a﹣1,故D不符合题意;故选:C.2.(2022•鼓楼区校级二模)下列计算正确的是()A.a+a=a2B.(2a)2÷a=4a C.(﹣ab)2=ab2D.a2⋅a2=2a2【解答】解:a+a=2a,故A错误,不符合题意;(2a)2÷a=4a,故B正确,符合题意;(﹣ab)2=a2b2,故C错误,不符合题意;a2⋅a2=a4,故D错误,不符合题意;故选:B.3.(2022•徐州一模)下列运算中,正确的是()A.a2•a3=a5B.(a2)3=a8C.a2+a3=a5D.a3÷a2=1【解答】解:A、a2•a3=a5,故A符合题意;B、(a2)3=a6,故B不符合题意;C、a2与a3不属于同类项,不能合并,故C不符合题意;D、a3÷a2=a,故D不符合题意;故选:A.4.(2022•鼓楼区校级一模)2022的倒数是()A.2022B.﹣2022C.12022D.−12022【解答】解:2022的倒数是12022.故选:C.5.(2022•丰县二模)下列无理数中与3最接近的是()A.√5B.√6C.√10D.√12【解答】解:∵5<6<9<10<12<16,∴√5<√6<3<√10<√12<4,与3最接近的是√10,故选:C.6.(2021•徐州模拟)下列运算中,正确的是()A.3a+2a=5a2B.a2•a3=a6C.a2+a2=a4D.(﹣a3)2=a6【解答】解:A、3a+2a=5a,原计算错误,故此选项不符合题意;B、a2•a3=a5,原计算错误,故此选项不符合题意;C、a2+a2=2a2,原计算错误,故此选项不符合题意;D、(﹣a3)2=a6,原计算正确,故此选项符合题意.故选:D.7.(2022•贾汪区二模)有理数﹣2022的相反数等于()A.2022B.﹣2022C.12022D.−12022【解答】解:有理数﹣2022的相反数等于2022,故选:A.8.(2022•邳州市一模)下列运算中,正确的是()A.x6÷x2=x3B.(x2)3=x5C.x2+x3=x5D.2x2•x=2x3【解答】解:x6÷x2=x4≠x3,故选项A计算错误;(x2)3=x6≠x5,故选项B计算错误;x2与x3不是同类项,不能加减,故选项C计算错误;2x2•x=2x3,故选项D计算正确.故选:D.9.(2022•徐州一模)数轴上在√3和√10之间的整数有()A.0个B.1个C.2个D.3个【解答】解:∵1<3<4,9<10<16,∴1<√3<2,3<√10<4,∴在√3和√10之间的整数有2,3共2个,故选:C.10.(2022•邳州市一模)周末小明与同学相约在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的菜单总共为10个汉堡,x杯饮料,y份沙拉,则他们点的B餐份数为()A.10﹣x B.10﹣y C.x﹣y D.10﹣x﹣y【解答】解:∵x杯饮料则在B和C餐中点了x份汉堡,∴点A餐为10﹣x,∴y份沙拉,则点C餐有y份,∴点B餐的份数为:10﹣(10﹣x)﹣y=x﹣y,故选:C.11.(2022•睢宁县模拟)下列计算正确的是()A.2a2﹣a2=2B.(a﹣b)2=a2﹣b2C.(﹣a3b)2=a6b2D.(2a+3)(a﹣2)=2a2﹣6【解答】解:∵2a2﹣a2=a2≠2,∴选项A不符合题意;∵(a﹣b)2=a2﹣2abb+2≠a2﹣b2,∴选项B不符合题意;∵(﹣a3b)2=a6b2,∴选项C符合题意;∵(2a+3)(a﹣2)=2a2﹣a﹣6≠2a2﹣6,∴选项D不符合题意;故选:C.二.填空题(共10小题)12.(2022•鼓楼区校级三模)如图,每个图案均由相同大小的圆和正三角形按规律排列,依照此规律,第n个图形中三角形的个数比圆的个数多(2n+1)个.(由含n的代数式表示)【解答】解:根据题意有,第1个图形,圆的个数为:1;正三角形的个数为:1×3+1;第2个图形,圆的个数为:2;正三角形的个数为:2×3+1;第3个图形,圆的个数为:3;正三角形的个数为:3×3+1;……,第n个图形,圆的个数为:n;正三角形的个数为:n×3+1;n×3+1﹣n=3n﹣n+1=2n+1,∴第n个图形中三角形的个数比圆的个数多(2n+1)个.故答案为:(2n+1).13.(2022•泉山区校级三模)√4=2.【解答】解:∵22=4,∴4的算术平方根是2,即√4=2.故答案为:2.14.(2022•丰县二模)太阳距离银河系中心约为250000000000000000公里,其中数据250000000000000000用科学记数法表示为 2.5×1017.【解答】解:数据250000000000000000用科学记数法表示为2.5×1017.故答案为:2.5×1017.15.(2022•丰县二模)计算:(x2)3•x﹣2=x4.【解答】解:(x2)3•x﹣2=x6•1x2=x4,故答案为:x4.16.(2022•丰县二模)数轴上的点A、B分别表示﹣2、3,则点A离原点的距离较近(填“A”或“B”).【解答】解:∵|﹣2|=2,|3|=3,∴点A离原点的距离较近,故答案为:A.17.(2022•徐州二模)2021“双十一”全网成交额约9650亿元.将数据“9650亿”用科学记数法表示9.65×1011.【解答】解:9650亿=965000000000=9.65×1011.故答案为:9.65×1011.18.(2022•邳州市一模)因式分解:b2﹣4b+4=(b﹣2)2.【解答】解:b2﹣4b+4=(b﹣2)2.故答案为:(b﹣2)2.19.(2022•徐州一模)新型冠状病毒呈球形或椭圆形有包膜,直径大约是80~160纳米,1纳米=10﹣9米.用科学记数法表示160纳米= 1.6×10﹣7米.【解答】解:∵1纳米=10﹣9米,∴160纳米=160×10﹣9米=1.6×10﹣7米.故答案为:1.6×10﹣7.20.(2021•徐州模拟)分解因式:m2+6m=m(m+6).【解答】解:原式=m(m+6).故答案为:m(m+6).21.(2022•贾汪区二模)已知√a+2有意义,则a的取值范围为a≥﹣2.【解答】解:∵√a+2有意义,∴a+2≥0,解得a≥﹣2,即a的取值范围为a≥﹣2.故答案为:a≥﹣2.三.解答题(共9小题)22.(2022•鼓楼区校级三模)计算:(1)20220﹣(−12)﹣1﹣|3−√8|;(2)(1+1x−2)÷x−1x−2.【解答】解:(1)20220﹣(−12)﹣1﹣|3−√8|=1﹣(﹣2)﹣(3﹣2√2)=1+2﹣3+2√2=2√2;(2)(1+1x−2)÷x−1x−2=x−1 x−2⋅x−2 x−1=1.23.(2022•丰县二模)计算:(1)(﹣1)2022+|﹣4|+(12)﹣1−√273;(2)(1−1a)÷a2−2a+1a.【解答】解:(1)(﹣1)2022+|﹣4|+(12)﹣1−√273=1+4+2﹣3=4;(2)(1−1a)÷a2−2a+1a=a−1a⋅a(a−1)2 =1a−1.24.(2022•徐州二模)(1)计算:(12)−2−tan45°−(π−3)0+√4;(2)化简:(1−1x+2)÷x2−1x+2.【解答】解:(1)原式=4﹣1﹣1+2=4;(2)原式=x+2−1x+2•x+2(x+1)(x−1)=x+1 x+2•x+2 (x+1)(x−1)=1x−1.25.(2022•贾汪区二模)计算:(1)20220+(12)−1−|−3|+√−83;(2)(x−1x)÷x2−2x+1x.【解答】解:(1)20220+(12)−1−|−3|+√−83=1+2﹣3+(﹣2)=﹣2; (2)(x −1x)÷x 2−2x+1x=x 2−1x ⋅x (x−1)2=(x+1)(x−1)(x−1)2=x+1x−1. 26.(2022•睢宁县模拟)计算: (1)(−2)3−(−3)−(13)−1+√8; (2)a a 2−4÷(1−2a+2). 【解答】解:(1)原式=﹣8+3﹣3+2√2 =﹣8+2√2.(2)原式=a(a+2)(a−2)÷a+2−2a+2 =a(a+2)(a−2)•a+2a=1a−2. 27.(2022•邳州市一模)计算:(1)(﹣1)2022+|﹣5|﹣(13)﹣1+√12;(2)a−1a 2÷(1−1a 2). 【解答】解:(1)(﹣1)2022+|﹣5|﹣(13)﹣1+√12 =1+5﹣3+2√3 =3+2√3; (2)a−1a 2÷(1−1a 2) =a−1a2⋅a 2(a−1)(a+1)=1a+1.28.(2022•徐州一模)计算:(1)|−√3|﹣(4﹣π)0+2sin60°+(12)﹣1;(2)(1x+1−1x−1)÷2x 2−1. 【解答】解:(1)原式=√3−1+2×√32+2=√3−1+√3+2=2√3+1;(2)原式=[x−1(x+1)(x−1)−x+1(x+1)(x−1)]•(x+1)(x−1)2 =x−1−x−1(x+1)(x−1)•(x+1)(x−1)2=﹣1. 29.(2022•徐州一模)计算:(1)√12+4﹣1﹣(12)﹣1+|−√3|; (2)(1x+3−1)×x 2+6x+9x 2−4. 【解答】解:(1)√12+4﹣1﹣(12)﹣1+|−√3| =2√3+14−2+√3=3√3−74;(2)(1x+3−1)×x 2+6x+9x 2−4=1−x−3x+3•(x+3)2(x+2)(x−2)=−2−x x+3•(x+3)2(x+2)(x−2) =−x+3x−2.30.(2022•鼓楼区校级二模)计算:(1)|−4|−20220+√273−(13)−1;(2)(a +2a+1a )÷a 2−1a. 【解答】解:(1)|−4|−20220+√273−(13)−1=4﹣1+3﹣3=3;(2)(a +2a+1a )÷a 2−1a=a 2+2a+1a •a (a+1)(a−1) =(a+1)2a •a (a+1)(a−1) =a+1a−1.。

中考数学专题《一元一次方程的应用》专题讲练原卷

中考数学专题《一元一次方程的应用》专题讲练原卷

专题07 一元一次方程的应用(12大考点) 专题讲练一元一次方程的应用题属于人教版七年级上期期末必考题,需要完全掌握各个类型的应用题,该专题将应用题分为分段计费、行程问题、工程问题、方案优化选择、商品销售问题、比赛积分问题、日历问题(数字问题)、配套问题、调配问题、和差倍分问题(比例问题)、几何图形问题、动态问题等共进行方法总结与经典题型进行分类。

1、知识储备2、经典基础题考点1. 分段计费问题考点2. 行程问题考点3. 工程问题考点4. 方案优化问题考点5. 商品销售问题考点6. 比赛积分问题考点7. 配套问题考点8. 调配问题考点9. 数字与日历问题考点10.和、差、倍、分(比例)问题考点11. 几何问题(等积问题)考点12. 动态问题3、优选提升题1.用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类题的一般步骤为:审、设、列、解、检验、答. 2 .建立书写模型常见的数量关系1)公式形数量关系:生活中许多数学应用情景涉及如周长、面积、体积等公式。

在解决这类问题时,必须通过情景中的信息,准确联想有关的公式,利用有关公式直接建立等式方程。

长方形面积=长×宽长方形周长=2(长+宽) 正方形面积=边长×边长正方形周长=4边长2)约定型数量关系:利息问题,利润问题,质量分数问题,比例尺问题等涉及的数量关系,像数学中的公式,但常常又不算数学公式。

我们称这类关系为约定型数量关系。

3)基本数量关系:在简单应用情景中,与其他数量关系没有什么差别,但在较复杂的应用情景中,应用方法就不同了。

我么把这类数量关系称为基本数量关系。

单价×数量=总价速度×时间=路程工作效率×时间=总工作量等。

3.分析数量关系的常用方法1)直译法分析数量关系:将题中关键性的数量关系的语句译成含有未知数的代数式,并找出没有公国的等量关系,翻译成含有未知数的等式。

中考数学计算题大全及参考答案(一)

中考数学计算题大全及参考答案(一)

中考数学计算题大全及参考答案(一)2+3=1,再平方得18.(1)-2+33+20=51,(2)231012-99223=0解析】略9、(1)-23+(-37)-(-12)+45=-23-37+12+45= -3;(2)(212-1/2)×(-6)2=-212×36= -7632解析】略10.(1)(24-1/2)÷6×(11-2×x)=2x-15,解得x=3/2;(2)212÷3+4-1260÷60=74解析】略11.(1)(375-1)/4-60/11=5/44,(2)(6x-1111+2x)÷3x=8/3解析】略15.-3/4解析】(-3)2+(-1)/4-(-2)2=9-1/4-4= -15/416.18-(-2+3)+(-1)2=20解析】略17.-15解析】12-(27+(-15))=12-12=0,再减去-15=-1518.-7.5解析】(-0.8)-(-5)+7/3=(-0.8)+5+2.333=6.533,再减去12=-5.467,约等于-7.519.-2.25解析】12-(3-π)×38/4=12-28.5=-16.5,再减去(-18)=-2.5,约等于-2.2520.-2解析】(-1)-(-2)+3×(20-3+π)/4=1+3(20-3+3.14)/4=23.55/4,约等于5.89,再减去8=-2.11,约等于-222.-3解析】28-(11+12)/2=28-11.5=16.5,再减去19.5=-323.-4解析】(3-2)+(5-3)×(5+3)=1+2×8=17,再减去21=-4解析】试题分析:(1)直接代入计算即可;(2)先化简二次根式,再利用乘法分配律计算.试题解析:(1)原式=(3)(1)213+2=52)原式=22222 222 222 2 22 2222222222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22222222222222222218.解析:计算原式,先进行分数的通分,然后进行加减法运算,最后化简即可得到答案。

2024年中考数学复习专题课件(共30张PPT)一元一次不等式(组)及其应用

2024年中考数学复习专题课件(共30张PPT)一元一次不等式(组)及其应用

解:设普通水稻的亩产量是 x kg,则杂交水稻的亩产量是 2x kg,依题 意得 7 200 9 600
x - 2x =4,解得 x=600, 经检验,x=600 是原分式方程的解,且符合题意,则 2x=2×600=1 200(kg). 答:普通水稻的亩产量是 600 kg,杂交水稻的亩产量是 1 200 kg.
__00__.
6.[2023·贵州第 17(2)题 6 分]已知 A=a-1,B=-a+3.若 A>B,求 a 的取值范围. 解:由 A>B 得 a-1>-a+3, 解得 a>2, 即 a 的取值范围为 a>2.
7.[2021·贵阳第 17(1)题 6 分]有三个不等式 2x+3<-1,-5x>15, 3(x-1)>6,请在其中任选两个不等式, 组成一个不等式组,并求出它 的解集.
4.风陵渡黄河公路大桥是连接山西、陕西、河南三省的交通要塞 ,该 大桥限重标志牌显示,载重后总质量超过 30 t 的车辆禁止通行,现有一 辆自重 8 t 的卡车,要运输若干套某种设备,每套设备由 1 个 A 部件和 3 个 B 部件组成,这种设备必须成套运输,已知 1 个 A 部件和 2 个 B 部件 的总质量为 2.8 t,2 个 A 部件和 3 个 B 部件的质量相等. (1)求 1 个 A 部件和 1 个 B 部件的质量各是多少; (2)卡车一次最多可运输多少套这种设备通过此大桥?
解:(1)设出售的竹篮 x 个,陶罐 y 个,依题意有 5x+12y=61, x=5, 6x+10y=60,解得y=3. 答:小钢出售的竹篮 5 个,陶罐 3 个.
(2)设购买鲜花 a 束,依题意有 0<61-5a≤20, 解得 8.2≤a<12.2, ∵a 为整数, ∴共有 4 种购买方案, 方案一:购买鲜花 9 束; 方案二:购买鲜花 10 束; 方案三:购买鲜花 11 束; 方案四:购买鲜花 12 束.

中考数学复习讲义1

中考数学复习讲义1

中考数学复习讲义第1课时有理数七(上)第二章编写:尤兴桂班级______姓名_______[课标要求]1、理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小.2、借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法,知道|a|的含义(这里a表示有理数.3、理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以上三步以内为主).4、理解有理数的运算律,能运用运算律简化运算.5、能运用有理数的运算解决简单的问题.[基础训练]1、-1, 0, 0.2,, 3 中正数一共有个.2、既不是正数也不是负数的数是 .3、如图是一个正方体盒子的展开图,请把-10,8,10,-2,-8,2分别填入六个小正方形,使得按虚线折成的正方体相对面上的两数互为相反数.4、数轴上点A、B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数为______.5、已知a与b互为倒数,c和d互为相反数,且|x|=6,则3ab-(c+d)+x2=6、若|a|=3,则a=_____7、下列四个数中,是负数的是()A、|-2|B、(-2)2C、-D、8、如图,数轴上的点P表示的数是-1,将点P向右移动3个单位长度得到点P’,则点P’表示的数是:.[要点梳理]1、_____与_____统称为有理数2、规定了_____、_____和_____的直线叫做数轴.3、如果两个数符号不同,绝对值相同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数.0的相反数是.4、数轴上表示一个数的点与原点的叫做该数的绝对值.正数的绝对值是;负数的绝对值是;0的绝对值是5、数轴上两个点表示的数,右边的总比左边的___;正数___0,负数____0,正数__负数;两个负数比较大小,_______6、乘积为1的两个有理数互为_____.7、有理数分类应注意:(1)0是整数但不是正整数;(2)整数分为三类:正整数、零、负整数,易把整数误认为分为二类:正整数、负整数.(3)整数还可以分为自然数和负整数两类或分为偶数和奇数两类.8、两个数a、b互为相反数,则a+b=_____.9、绝对值是易错点:如绝对值是5的数应为±5,易丢掉-5.10、乘方的意义:求n个相同因数a的积的运算叫做____,乘方的结果叫做__11、科学计数法:_____________________________[问题研讨]例1、如果零上2℃记作+2℃,那么零下3℃记作()A、-3℃B、-2℃C、+3℃D、+2℃例2、如图,若A是实数a在数轴上对应的点,则关于a,-a,1的大小关系表示正确的是()A、a<1<-aB、a<-a<1C、1<-a<aD、-a<a<1例3、首届中国(北京)国际服务贸易交易会(京交会)于6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元,将60 110 000 000用科学记数法表示应为()A、B、C、D、★例4、a是不为1的有理数,我们把称为a的差倒数....如:2的差倒数是,的差倒数是.已知,是的差倒数,是的差倒数,是的差倒数,…,依此类推,则a=____.例5、根据如图所示的程序计算,若输入x的值为1,则输出y的值为_____7 122)2(-96.01110⨯960.1110⨯106.01110⨯110.601110⨯11a-1112=--1-111(1)2=--113a=-2a1a3a2a4a3a输入x输出y平方乘以2减去4若结果大于0否则0 1A例6、观察下面的变形规律: 211⨯ =1-12; 321⨯=12-31;431⨯=31-41;…… 解答下面的问题:(1)若n 为正整数,请你猜想)1(1+n n = ;(2)证明你猜想的结论; (3)求和:211⨯+321⨯+431⨯+…+201220111⨯★(4)探究并计算:201220101861641421⨯++⨯+⨯+⨯ .[规律总结]1、搞清有理数的三种常见形式:① 整数 ;②分数;③无限循环小数,如0.01010101…… .2、绝对值的性质——要注意正确区分数的三种情况,尤其是负数去掉绝对值应变为其相反数.3、有理数的混合运算应灵活运用运算律. 乘方计算时注意:(1)注意分清底数,如:-a n 的底数是 a ,而不是-a ;(2)注意运算顺序,运算时先算乘方,如 3 ×52=3 ×25=75; [强化训练]1、的相反数是 ( ) A 、B 、-C 、3D 、-32、下面的数中,与-3的和为0的是 ( ) A 、3 B 、-3 C 、 D 、3、—8的相反数是( ) A 、8B 、-8C 、D 、 4、若|a|=7,|b|=5,a + b >0,那么a -b 的值是( )A 、2或 12B 、2或-12C 、-2或-12D 、-2或 125、为改善学生的营养状况,中央财政从秋季学期起,为试点地区在校生提供营养餐膳食补助,一年所学资金约为160亿元,用科学计数法表示为 元.6、5月12日,四川省汶川县发生了里氏8.0级大地震.新疆各族群众积极捐款捐物,还紧急烤制了2×104个饱含新疆各族人民深情的特色食品——馕(n áng ),运往灾区.每个馕厚度约为2cm ,若将这批馕摞成一摞,其高度大约相当于( )A 、160层楼房的高度(每层高约2.5m )B 、一棵大树的高度C 、一个足球场的长度D 、m 的高度 7、数轴上点A 到原点的距离是5,则A 表示的数是_____8、比较大小:-56 _____-679、若a 的相反数是最大的负整数,b 是绝对值最小的数,则a +b =_____.★10、观察下列等式71=7,72=49,73=343,74=2401, …,由此可判断7100的个位数字是____.11、计算 (1)(-3)×13 ÷(-13 )×3(2))1()32(32101-+-+-+⎪⎭⎫⎝⎛-31-31313131-8181-中考数学复习讲义第2课时 实数八(上)第二章 2.3~2.6编写:尤兴桂 班级______姓名_______[课标要求]1、了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根.2、了解乘方与开方与为逆运算,会用平方运算求百以内整数的平方根,会用立方运算求百以内整数(对应的负整数)的立方根,会用计算器求平方根和立方根.3、了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值.4、能用有理数估计一个无理数的大致范围.5、了解近似数,在解决实际问题中,能用计算器进行近似计算,并会按问题的要求结果取近似值.6、了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、除运算法则,会用它们进行有关的简单四则运算. [基础训练]1、4的平方根是_____. 算术平方根是_____.2、如果一个数的平方根等于本身,则这个数是____.如果一个数的算术平方根等于本身,则这个数是____. 如果一个数的立方根等于本身,则这个数是____. 3、下列四个实数中,是无理数的为( )A .0 BC .-2D .4、(1)81-的立方根是_____;(2)已知x 3=8,则x =_____. 5、已知实数x,y满足x-2 +(y+1)2=0,则x -y 等于___ 6、用四舍五入法把0.7096精确到千分位的近似值是_____.7、今年某市约有108000名应届初中毕业生参加中考,按四舍五入保留两位有效数字,108000用科学计数法表示为( )A 、0.10×106B 、1.08×105C 、0.11×106D 、1.1×105 8、一个正方形的面积是15,估计它的边长大小在 ( )A 、2与3之间B 、3与4之间C 、4与5之间D 、5与6之间9、3―a 在实数范围内有意义,则a 的取值范围是( )A 、a≥3B 、a ≤3C 、a ≥―3D 、a ≤―3 10、计算:.[要点梳理](3)数的开方与数的乘方互为逆运算. 2、实数(1)无理数的定义及表示形式 (2)实数的分类(3)实数的大小比较的方法、运算性质,及运算律与有理数相同. 3、实数与数轴上的点是一一对应的.4、有效数字:对一个近似数,从左面第一个不是0的数字起,到末位数字止,所有的数字都称为这个近似数的有效数字. [问题研讨] 例1、(1)如图,矩形OABC 的边OA 长为2 ,边AB 长为1,O A 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是A 、2.5B 、2 2C 、 3D 、 5(2)数轴上的点并不都表示有理数,如所画图中数轴上的点P 所表示的数是___. 这种说明问题的方式体现的数学思想方法是_______27()11π32sin 458-⎛⎫-︒- ⎪⎝⎭例2、把下列各数填到相应的集合里:3-1,8,327-,-π,3.14,0.1010010001…722,sin30°,tan45°,-3,-3.21001,|-3.2| 整数集合:{ …}分数集合:{ …} 有理数集合:{ …} 无理数集合:{ …}注:严格地按照定义来分类. 例3、比较大小注:有理数大小的比较方法在实数范围内仍然适用,如作差法,作商法,两个负数绝对值大的反而小等等.例4、(1)3.5万精确到_____位,有____个有效数字;1.35×103精确到_____位,有____个有效数字.(2)用四舍五入法,按要求对下列各数取近似数,并用科学记数法表示. ①地球上七大洲的总面积约为149480000km 2(保留2个有效数字).②某人一天饮水1890mL (精确到1000mL ) ③小明身高1.595m (保留3个有效数字)④人的眼睛可以看见的红光的波长为0.000077cm (精确到0.00001cm ).[规律总结]1、实数是初中数学的基础内容,试题分值5~8分,多以选择题、填空题、计算题出现.2、牢固掌握实数的有关概念,掌握数形结合的思想.3、掌握实数的各种运算,在混合运算中注意符号和运算顺序.4、对于体现创新意识的问题,可采用猜想、归纳、计算、验证等综合方法解题[强化训练]1、在实数π3 ,sin300,- 3 , 4 中,无理数的个数为( )A 、1B 、2C 、3D 、4 2、计算17+1的值在( )A 、2和3之间B 、3和4之间C 、4和5之间D 、5和6之间 3.(填“”、 “”或“=”) 4、已知|a|=5,2b =3,且ab >0,则a +b 的值为( ) A 、8 B 、-2C 、8或-8D 、2或-25、实数、在轴上的位置如图所示,且,则化简的结果为( )A 、B 、C 、D 、6、若0<x <1,则x ,x1,x 2的大小关系是( ) A 、x 1<x <x 2 B 、x <x 1<x 2 C 、x 2<x <x 1 D 、x 1<x 2<x7、如果aa ||=-1,则a 的取值是( )A 、a <0B 、a ≤0C 、a ≥0D 、a >0 8、计算(1)()1611130sin 202+⎪⎭⎫⎝⎛-+-︒+--π(2)|1+(-1)+(8-)0+()-112><a b b a >b a a +-2b a +2b a +-2b b a -2π813aob中考数学复习讲义第3课时 用字母表示数七(上)第三章 七(下)第八章幂的运算编写:尤兴桂 班级______姓名_______【课标要求】1、借助现实情境了解代数式,进一步理解用字母表示数的意义.2、能分析具体问题中的简单数量关系,并用代数式表示.3、会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算.4、整式的有关概念,如单项式、多项式、同类项等,简单的整式加、减、乘法运算.5、整数指数幂的意义与基本性质.6、会解释一些简单代数式的实际背景或几何意义. 【基础练习】1、“x 的21与y 的和”用代数式可以表示为( ) A 、21(x +y ) B 、x +21+y C 、x +21y D 、21x +y2、某超市进了一批商品,每件进价为a 元,若要获利25%,则每件商品的零售价应定为( )A 、25%aB 、(1-25%)aC 、(1+25%)aD 、%251+a3、下列运算中,正确的是( ). A 、x 3·x 2=x 5B 、x +x 2=x 3C 、2x 3÷x 2=x D 、2x 233=⎪⎭⎫⎝⎛x4、下列运算中,正确个数为( )个①x 2+x 3=x 5 ②(x 2)3=x 6 ③30×2-1=5 ④-|-5|+3=8 ⑤1÷212⨯=1A 、1B 、2C 、3D 、4 5、如果的取值是和是同类项,则与n m y x y xm m n 31253--( )A 、3和-2B 、-3和2C 、3和2D 、-3和-26、若实数a 满足2210a a -+=,则2245a a -+=_____.7、已知10m =2,10n =3,则103m+2n=____8、52314222-+-+-a a a a 与的差是_____.【要点梳理】1、用运算符号(加、减、乘、除、乘方、开方)把数和____连接而成的式子,叫做代数式,单独一个数或一个字母也是代数式.2、代数式的值:一般地,用______代替代数式里的字母,按照代数式中的运算关系,计算得出的结果,叫做代数式的值.3、______和_______统称为整式. ⑴单项式是______的积,其含义是:①不含加减运算,②字母不出现在分母里,③单独的一个数或字母也是单项式.__________________叫做单项式的系数; __________________叫做单项式的次数.⑵多项式是_______的和,其含义有:①由单项式组成;②体现和的运算法则 ______ ____________叫做多项式的一个项;_________ 叫做这个多项式的次数.4、⑴同类项应必须同时具备两个条件:①_____;②_____.⑵合并同类项的法则是_________________________. 5、幂的运算法则(1)a m ·a n =_______; (2)(a m )n =______; (3)(ab)n =________; (4)a m ÷a n =____(a ≠0);(5)a 0=1( ); (6)a -p =_____(a ≠0). 【问题研讨】例1、填空(1)a 的系数是____,次数是_____ (2)3abπ的系数是_____,次数是_____例2、单项式4x a +2b y 8与-3x 2y 3a +4b 和仍是单项式,求a +b 的值.例3、按下列程序计算,把答案写在表格内:(1)填写表格:(2)请将题中计算程序用代数式表达出来,并给予化简. 分析:明确计算程序是正确解答本题的前提.例4、如图,将连续的奇数1、3、5、7 …… ,排列成如下的数表,用十字框框出5个数.问:(1)十字框框出5个数字的和与框子正中间的数17有什么关系? (2)若将十字框上下左右平移,可框住另外5个数,若设中间的数为a ,用代数式表示十字框框住的5个数字之和;(3)十字框框住的5个数字之和能等于吗?若能,分别写出十字框框住的5个数;若不能,请说明理由.【规律总结】1、整体代入法是求代数式值的方法之一2、观察数列中各个数据的数量关系(如和差倍分关系)是解答观察数字型归纳题的一个方法3、要准确理解和辨析单项式次数、系数、同类项等概念,特别要关注简单整式的运算.4、运用公式或法则进行运算,首先要判断题目是否具备某一公式或法则的结构特征,在此基础上正确选择公式或法则进行运算.【强化训练】1、若代数式26x x b -+可化为2()1x a --,则b a -的值是___.2、用代数式表示“a 、b 两数的平方和”,结果为_____.3、下列运算正确的是( ) A、321x x -= B、22122xx--=-C、236()a a a -=·D、236()a a -=-4、某计算程序编辑如图所示,当输入x =_____时,输出的y =3.5、已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为( ) A 、Q P > B 、Q P = C 、Q P < D 、不能确定 ★6、某公园计划砌一个形状如图(1)的喷水池,后来有人建议改为图(2)的形状且外圆的直径不变,喷水池边沿的宽度,高度不变,你认为砌喷水池的边沿( )A 、图(1)需要的材料多B 、图(2)需要材材料多C 、图(1)、图(2)需要的材料一样多D 、无法确定7、先化简,再求值:(3x +2)(3x -2)-5x (x -1)-(2x -1)2,其中x =-31.8、求(7ab -3a 2)-(2b 2+13ab )-(a 2-2ab )的值,其中a =1,b =-1.图2图1 1 3 5 7 9 1113 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47… … … … … …中考数学复习讲义第4课时 从面积到乘法公式(1)七(下)第三章、七(下)第八章幂的运算编写:尤兴桂 班级______姓名_______[课标要求]1、会进行简单的整式乘法运算2、能推导乘法公式:(a +b )(a -b )=a 2-b 2,(a ±b )2=a 2±2ab +b 2,了解公式的几何背景,并能利用公式进行简单计算. [基础练习]1、21ab 2c ·(-0.5ab 2)·(-2bc 2)=_______ 2、-3a 2(ab 2+31b -1)=_________3、二次三项式是一个完全平方式,则的值是4、如图,从边长为(a+1)cm 的正方形纸片中剪去一个边长为(a ﹣1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是( )A . 2cm 2B . 2acm 2C . 4acm 2D . (a 2﹣1)cm1、单项式的乘法法则:单项式乘以单项式,把它们的_________分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2、单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的_______,再把所得的_________.3、多项式乘法法则:多项式与多项式相乘,先用一个多项式的_____乘以另一个多项式的_____,再把所得的积相加.注意:多项式与多项式相乘的展开式中,有同类项的要合并同类项.4、 写出完全平方公式_________________________写出平方差公式 . [问题研讨]例 1、计算:①()()23232--⋅-a a a ②[(2x -y )(2x +y )+y (y -6x )]÷2x③)3)(52(y x y x -- ④)168()4(2--+x x .例2、(1)已知a +b =-3,ab =2,求a 2+b 2 和 (a -b)2的值.(2)已知A =2x+y ,B =2x -y ,计算A 2-B 2.(3)已知31=-x ,求代数式4)1(4)1(2++-+x x 的值.29x kx -+k例3、由m (a +b +c )=ma +mb +mc ,可得:(a +b )(a 2-ab +b 2)=a 3-a 2b +ab 2+a 2b -ab 2+b 3=a 3+b 3,即(a +b )(a 2-ab +b 2)=a 3+b 3. ………………………① 我们把等式①叫做多项式乘法的立方公式. 下列应用这个立方公式进行的变形不正确...的是( ) A 、(x +4y )(x 2-4xy +16y 2)=x 3+64y 3B 、(2x+y )(4x 2-2xy+y 2)=8x 3+y 3C 、(a +1)(a 2+a +1)=a 3+1D 、x 3+27=(x +3)(x 2-3x +9) [规律总结]1、掌握单项式乘多项式、多项式乘多项式的运算法则;2、二次代数式的几何意义都与面积有关;3、掌握好平方差公式与完全平方公式的特征. 平方差公式:(a +b )(a -b )=a 2-b 2 完全平方公式:(a ±b )2=a 2±2ab +b 2 [强化训练]1、利用因式分解简便计算:57×99+44×99-99正确的是( ) A 、99×(57+44)=99×101=9999 B 、99×(57+44-1)=99×100=9900 C 、99×(57+44+1)=99×102=10098 D 、99×(57+44-99)=99×2=1982、如果多项式162++mx x 能分解为一个二项式的平方的形式,那么m 的值为:( )A 、4B 、8C 、—8D 、±8 3、一套住房的平面图如图所示,其中卫生间、厨房的面积和等于( )A 、4xyB 、3xyC 、2>n )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的长小方形,然后按图②那样拼成一个正方形,则中间空的部分的面积是( )A 、2mnB 、(m +n )2C 、(m -n )2D 、m2-n 25、将图甲中阴影部分的小长方形变换到图乙位置,你 能根据两个图形的面积关系得到的数学 公式是__________.6、如图是在正方形网格中按规律填成的阴影,根据此规律,第n 个图中的阴影部分小正方形的个数是_____7、化简:(a +2)(a -2)-a (a +1)8、先化简,再求值:,其中.★9、有足够多的长方形和正方形的卡片,如下图.如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是 .2(2)2()()()a a b a b a b a b -++-++1,12a b =-=3ab2b baa 1 13 2 233a ba -baa -b中考数学复习讲义第5课时 从面积到乘法公式(2)七(下)第九章 9.5~9.6编写:尤兴桂 班级______姓名_______[课标要求]1、理解因式分解的意义并感受分解因式与整式乘法是相反方向的变形2、能用提公因式法、公式法(直接利用公式不超过二次)进行因式分解(指数是正整数).3、会用因式分解法解决相关问题 [基础练习]1、因式分解:= .2、分解因式:_____.225、填上适当的数,使等式成立:24x x -+____=(x -____2)6、分解因式2(2)(4)4x x x +++-=______7、下列各式从左向右的变形,属于因式分解的有( ) A 、(x+2)(x -2)=x 2-4 B 、x 2-4+3x =(x+2)(x -2)+3xC 、a 2-4=(a+2)(a -2)D 、全不对 8、下列因式分解错误的是( ) A 、x 2-y 2=(x +y )(x -y ) B 、x 2+6x +9=(x +3)2 C 、x 2+xy =x (x +y ) D 、x 2+y 2=(x +y )29、下列各式中,不能运用平方差公式的是( ) A 、-a 2+b 2 B 、-x 2-y 2 C 、494+25n 2p 2 10、把下列各式分解因式:(1)4x 4-25y 2 (2)32232a b a b ab -+(3)81(a -b)2-16(a+b)2 (4)16(b -c)2-a 2[要点梳理]1、因式分解的概念:2、因式分解的方法: ①提公因式法:; ②公式法:3、因式分解与整式乘法的关系怎样?4、因式分解法(一种重要的数学思想方法)在解题中的应用. [问题研讨]例1:(1)下列各式由左边到右边的变形中,是分解因式的是( ) A 、a (x +y )=ax +ay B 、x 2-4x +4=x (x -4)+4C 、10x 2-5x =5x (2x -1)D 、x 2-16+3x =(x +4)(x -4)+3x (2)下列因式分解中,结果正确的是( )A 、x 2-4=(x +2)(x -2)B 、1-(x +2)2=(2-4n 2) D 、x 2-x +41=x 2(1-2411x x +) (3)因式分解:-m 2+n 2=___________.(4)分解因式 .分析:考察的是因式分解的概念,注意与整式乘法的区别与联系. 例2、把下列各式分解因式:(1);1682++x x (2);1102524++a a(3)()4)(42++-+n m n m (4)4224167281y y x x +-22a a -2168()()x y x y --+-=32232a b a b ab -+=例3、已知:0136422=++-+b a b a ,求ab 的值.说明:此例运用0)(2222≥±=+±b a b ab a 及几个非负数都为零.★例4、(1)两个边长分别为a,b,c 的直角三角形和一个两条直角边都是c 的直角三角形拼成一个新的图形.试用不同的方法计算这个图形的面积,你能发现什么?(2)由四个边长分别为a,b,c 的直角三角形拼成一个新的图形.试用两种不同的方法计算这个图形的面积,并说说你发现了什么.[规律总结]因式分解的一般步骤:(1)多项式的各项有公因式时,先提公因式;(2)各项没有公因式时,要看能不能用公式法来分解; (3)分解因式,必须进行到每一个多项式都不能再分解.[强化训练]1、观察: 32-12=8; 52-32=16; 72-52=24; 92-72=32. ……根据上述规律,填空:132-112= ,192-172= .你能用含n 的等式表示这一规律吗?你能说明它的正确性吗? 2、(1)观察下面各式规律:2222)121(2)21(1+⨯=+⨯+; 2222)132(3)32(2+⨯=+⨯+; 2222)143(4)43(3+⨯=+⨯+;……写出第n 行的式子,并证明你的结论.- 第-一-网(2)计算下列各式,你发现了什么规律?①×-2; ②210010199-⨯; ③210000100019999-⨯.★3、已知P =3xy -8x+1,Q =x -2xy -2,当x ≠0时,3P -2Q =7恒成立,求y 的值.a b c c a b。

上海市2023年中考数学试卷((附参考答案))

上海市2023年中考数学试卷((附参考答案))

上海市2023年中考数学试卷一、单选题1.下列运算正确的是()A.B.C.D.2.在分式方程中,设,可得到关于y的整式方程为()A.B.C.D.3.下列函数中,函数值y随x的增大而减小的是()A.B.C.D.4.如图所示,为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,下图是各时间段的小车与公车的车流量,则下列说法正确的是()A.小车的车流量与公车的车流量稳定;B.小车的车流量的平均数较大;C.小车与公车车流量在同一时间段达到最小值;D.小车与公车车流量的变化趋势相同.5.在四边形中,.下列说法能使四边形为矩形的是()A.B.C.D.6.已知在梯形中,连接,且,设.下列两个说法:①;②则下列说法正确的是()A.①正确②错误B.①错误②正确C.①②均正确D.①②均错误二、填空题7.分解因式:.8.化简:的结果为.9.已知关于的方程,则10.函数的定义域为.11.已知关于x的一元二次方程没有实数根,那么a的取值范围是.12.在不透明的盒子中装有一个黑球,两个白球,三个红球,四个绿球,这十个球除颜色外完全相同.那么从中随机摸出一个球是绿球的概率为.13.如果一个正多边形的中心角是,那么这个正多边形的边数为.14.一个二次函数的顶点在y轴正半轴上,且其对称轴左侧的部分是上升的,那么这个二次函数的解析式可以是.15.如图,在中,点D,E在边,上,,连结,设向量,,那么用,表示.16.垃圾分类(Refuse sorting),是指按照垃圾的不同成分、属性、利用价值以及对环境的影响,并根据不同处置方式的要求,分成属性不同的若干种类.某市试点区域的垃圾收集情况如扇形统计图所示,已知可回收垃圾共收集60吨,且全市人口约为试点区域人口的10倍,那么估计全市可收集的干垃圾总量为.17.如图,在中,,将绕着点A旋转,旋转后的点B落在上,点B的对应点为D,连接是的角平分线,则.18.在中,点D在边上,点E在延长线上,且,如果过点A,过点D,若与有公共点,那么半径r的取值范围是.三、解答题19.计算:20.解不等式组21.如图,在中,弦的长为8,点C在延长线上,且.(1)求的半径;(2)求的正切值.22.“中国石化”推出促销活动,一张加油卡的面值是1000元,打九折出售.使用这张加油卡加油,每一升油,油的单价降低0.30元.假设这张加油卡的面值能够一次性全部用完.(1)他实际花了多少钱购买会员卡?(2)减价后每升油的单价为y元/升,原价为x元/升,求y关于x的函数解析式(不用写出定义域)(3)油的原价是7.30元/升,求优惠后油的单价比原价便宜多少元?23.如图,在梯形中,点F,E分别在线段,上,且,(1)求证:(2)若,求证:24.在平面直角坐标系中,已知直线与x轴交于点A,y轴交于点B,点C在线段上,以点C为顶点的抛物线M:经过点B.(1)求点A,B的坐标;(2)求b,c的值;(3)平移抛物线M至N,点C,B分别平移至点P,D,联结,且轴,如果点P在x轴上,且新抛物线过点B,求抛物线N的函数解析式.25.如图(1)所示,已知在中,,在边上,点边中点,为以为圆心,为半径的圆分别交,于点,,联结交于点.(1)如果,求证:四边形为平行四边形;(2)如图(2)所示,联结,如果,求边的长;(3)联结,如果是以为腰的等腰三角形,且,求的值.答案1.【答案】A2.【答案】D3.【答案】B4.【答案】B5.【答案】C6.【答案】D7.【答案】8.【答案】29.【答案】1810.【答案】11.【答案】12.【答案】13.【答案】1814.【答案】(答案不唯一)15.【答案】16.【答案】1500吨17.【答案】18.【答案】19.【答案】解:原式.20.【答案】解:,解不等式①得:,解不等式②得:,则不等式组的解集为.21.【答案】(1)解:如图,延长,交于点,连接,由圆周角定理得:,弦的长为8,且,,解得,的半径为.(2)解:如图,过点作于点,的半径为5,,,,,,即,解得,,,则的正切值为.22.【答案】(1)解:由题意知,(元),答:实际花了900元购买会员卡;(2)解:由题意知,,整理得,∴y关于x的函数解析式为;(3)解:当,则,∵,∴优惠后油的单价比原价便宜元.23.【答案】(1)证明:,,在和中,,,.(2)证明:,,,即,在和中,,,,由(1)已证:,,.24.【答案】(1)解:∵直线与x轴交于点A,y轴交于点B,当时,代入得:,故,当时,代入得:,故,(2)解:设,则可设抛物线的解析式为:,∵抛物线M经过点B,将代入得:,∵,即,∴将代入,整理得:,故,;(3)解:如图:∵轴,点P在x轴上,∴设,,∵点C,B分别平移至点P,D,∴点,点向下平移的距离相同,∴,解得:,由(2)知,∴,∴抛物线N的函数解析式为:,将代入可得:,∴抛物线N的函数解析式为:或.25.【答案】(1)证明:∵∴∵∴,∴∵是的中点,,∴是的中位线,∴,即,∴四边形是平行四边形;(2)解:∵,点边中点,设,,则由(1)可得∴,∴,又∵∴,∴即,∵,在中,,∴,∴解得:或(舍去)∴;(3)解:①当时,点与点重合,舍去;②当时,如图所示,延长交于点P,∵点是的中点,,∴,设,∵∴,∴,设,∵∴,∴,∴,∴,连接交于点,∵,∴∴,∴,在与中,,,∴,又,∴,∴,∴,∴,,∴.。

中考数学复习 第一章数与式数与式 第2课 整式及其运课件

中考数学复习 第一章数与式数与式 第2课 整式及其运课件

解:(2)∵(x+y)2=x2+y2+2xy, ∴2xy=(x+y)2-(x2+y2)=72-25=24, ∴x-y)2=x2+y2-2xy=25-24=1. ∵x>y,∴x-y= 1 =1.
探究提高 1.算式中的局部直接使用乘法公式、简化运算,
任何时候都要遵循先化简,再求值的原则. 2.在利用完全平方公式求值时,通常用到以下
探究提高 整式的加减,实质上就是合并同类项,有括号的,先 去括号.只要算式中没有同类项,就是最后的结果.
知能迁移1 (1)(2011·义乌)下列计算正确的是( D )
A.x2+x4=x6
B.2x+3y=5xy
C.x6÷x3=x2
D.(x3)2=x6
解析:(x3)2=x3×2=x6.
(2)(2011·台北)化简(-4x+8)-3(4-5x),
题型四 整式的混合运算及求值
【例4】 (本题5分)先化简,再求值: 3x(x2-x-1)-(x+1)(3x2-x),其中x=-1 . 2
解题示范——规范步骤,该得的分,一分不丢!
解:原式=3x3-3x2-3x-(3x3-x2+3x2-x)
[2分]
=3x3-3x2-3x-3x3+x2-3x2+x
=-5x2-2x.
3.整式: 单项式和多项式 统称为整式. 4.同类项:多项式中所含 字母 相同并且 相同字母的指数 也
相同的项,叫做同类项.
6.整式乘法: 单项式与单项式相乘,把系数、同底数幂分别相乘作为积 的因式,只在一个单项式里含有的字母,连同它的指数作 为积的一个因式. 单项式乘多项式:m(a+b)= ma+mb . 多项式乘多项式:(a+b)(c+d)= ac+ad+bc+bd .
第2个图形所需的棋子数为11=6×2-1. 第3个图形所需的棋子数为17=6×3-1, …… 第n个图形所需的棋子数为6n-1.

中考数学一元二次方程-经典压轴题及答案

中考数学一元二次方程-经典压轴题及答案

中考数学一元二次方程-经典压轴题及答案一、一元二次方程真题与模拟题分类汇编(难题易错题)21.解方程:(1-2x)(x2-6x+9)。

答案】x1=1/4,x2=-2/3.解析】题目分析:先对方程的右边因式分解,然后直接开平方或移项之后再因式分解法求解即可。

解题分析】因式分解,得到22(1-2x)=(x-3)。

开平方,得到1-2x=x-3,或1-2x=-(x-3)。

解得x1=1/4,x2=-2/3.2.已知关于x的一元二次方程mx-(m+2)x+2m-3=0.1)当m取什么值时,方程有两个不相等的实数根?2)当m=4时,求方程的解。

答案】(1)当m>-1且m≠0时,方程有两个不相等的实数根;(2)x1= (3+5)/4,x2= (3-5)/4.解析】分析】(1)方程有两个不相等的实数根,Δ>0,代入求m取值范围即可,注意二次项系数≠0;(2)将m=4代入原方程,求解即可。

详解】1) 当mx-(m+2)x+2m-3=0,即(m-2)x+2m-3=0.根据求根公式,得到Δ=(m+2)2-4m(m-2)=4m+4>0.因为m≠0,所以m>-1,解得m>-1.因为二次项系数≠0,所以m≠2,解得m≠2.所以当m>-1且m≠0时,方程有两个不相等的实数根。

2) 当m=4时,将m=4代入原方程,得到4x2-6x+1=0.根据求根公式,得到x1=(3+5)/4,x2=(3-5)/4.所以当m=4时,方程的解为x1=(3+5)/4,x2=(3-5)/4.点睛】本题考查一元二次方程根的情况以及求解,熟练掌握根的判别式以及一元二次方程求解是解决本题的关键。

3.某社区决定把一块长50m,宽30m的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形),空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边x为何值时,活动区的面积达到1344m2?答案】当x=13m时,活动区的面积达到1344m2.解析】分析】根据“活动区的面积=矩形空地面积-阴影区域面积”列出方程,可解答。

中考数学知识点总结(完整版)-第一轮

中考数学知识点总结(完整版)-第一轮

中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp的形式,其中p 、q 是互质的整数,这是有理数的重要特征。

2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不循环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。

3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=0 2、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。

(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3)立方根:3a 叫实数a 的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

原点、正方向、单位长度是数轴的三要素。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

中考数学知识点总结(通用15篇)

中考数学知识点总结(通用15篇)

中考数学知识点总结中考数学知识点总结(通用15篇)总结是事后对某一阶段的学习或工作情况作加以回顾检查并分析评价的书面材料,它在我们的学习、工作中起到呈上启下的作用,不如立即行动起来写一份总结吧。

那么你真的懂得怎么写总结吗?以下是小编收集整理的中考数学知识点总结,仅供参考,欢迎大家阅读。

中考数学知识点总结1不等式与不等式组1.定义:用符号〉,=,〈号连接的式子叫不等式。

2.性质:①不等式的两边都加上或减去同一个整式,不等号方向不变。

②不等式的两边都乘以或者除以一个正数,不等号方向不变。

③不等式的两边都乘以或除以同一个负数,不等号方向相反。

3.分类:①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

②一元一次不等式组:a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

4.考点:①解一元一次不等式(组)②根据具体问题中的数量关系列不等式(组)并解决简单实际问题③用数轴表示一元一次不等式(组)的解集中考数学知识点总结2一、三角形的有关概念1.三角形:由不在同一直线上的三条线段首尾顺次相接组成的图形叫三角形。

三角形的特征:①不在同一直线上;②三条线段;③首尾顺次相接;④三角形具有稳定性。

2.三角形中的三条重要线段:角平分线、中线、高(1)角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

(2)中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

(3)高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

说明:①三角形的角平分线、中线、高都是线段;②三角形的角平分线、中线都在三角形内部且都交于一点;三角形的高可能在三角形的内部(锐角三角形)、外部(钝角三角形),也可能在边上(直角三角形),它们(或延长线)相交于一点。

中考数学24题评分标准(一)

中考数学24题评分标准(一)

中考数学24题评分标准(一)中考数学24题评分标准一、总体要求•评分标准以解题思路、步骤、答案准确性为主要依据;•评分应客观公正,遵循标准答案的要求;•题目中未明确要求的内容,不计入评分。

二、具体评分细则1. 解题思路(5分)•解题思路清晰,合理性强:+5分;•解题思路基本正确,稍有瑕疵:+3分;•解题思路模糊,错误较多:+1分;•解题思路混乱,错误严重:0分。

2. 步骤和计算过程(10分)•步骤清晰,计算过程正确,无漏算、错算:+10分;•步骤基本清晰,计算过程基本正确,个别错误可接受范围内:+6分;•步骤不够清晰,计算过程中有较多错误,但答案基本正确:+3分;•步骤混乱,计算过程错误较多,答案不正确或近似:+1分;•步骤混乱,计算过程严重错误,答案错误较多:0分。

3. 答案的准确性与合理性(9分)•结果完全正确,解释合理:+9分;•结果基本正确,解释基本合理:+6分;•结果基本正确,解释不够清晰或有瑕疵:+3分;•结果不完全正确,解释含糊不清或错误:+1分;•结果完全错误,解释混乱或无解释:0分。

4. 符号使用(1分)•符号使用正确,符合数学规范:+1分;•符号使用基本正确,个别使用有瑕疵:分;•符号使用错误较多,使计算过程混乱:0分。

5. 书写和排版(5分)•书写规范,排版整洁,清晰可辨:+5分;•书写基本规范,排版基本整洁,辨认困难:+2分;•书写较差,排版混乱,辨认困难:+1分;•书写极差,排版极混乱,几乎无法辨认:0分。

三、总结•中考数学24题的评分标准主要根据解题思路、步骤、答案准确性、符号使用和书写排版五个方面进行评分。

•评分要求客观公正,遵循标准答案,将解题思路、步骤、答案准确性、符号使用和书写排版的优劣进行综合评定。

•解题思路和步骤的清晰性、答案的准确性和合理性、符号的正确使用、书写和排版的规范性都将对最终评分产生重要影响。

•学生在备考中应注重解题思路和步骤的训练,同时注意答案的准确性和合理性,符号的正确使用以及书写和排版的规范性。

历年中考数学真题经典系列(一)。含详细参考答案

历年中考数学真题经典系列(一)。含详细参考答案

历年中考数学真题经典系列(一)。

含详细参考答案1.在三角形ABC中,角ACB为135度,CD垂直于AB,垂足为D。

已知AD=6,BD=20,求CD的长度。

2.在等边三角形ABC中,AB=AC=7.点D在BC上,点H在线段AD上。

连接BH、CH,且∠BHD=60度,∠AHC=90度。

已知DH的长度,求其长度。

3.在等边三角形ABC中,角BDC为120度,XXX与CD延长线交于点E。

证明AE=EG。

4.在等边三角形ABC内部,有一点P,满足PA=3,PB=4,PC=5.求三角形ABC的面积。

5.在三角形ABC中,AB=AC。

BC边上的高为AD,且AD=5.M为AD上的一点,满足MD=1,且∠BMC=3∠BAC。

求三角形ABC的周长。

6.在矩形ABCD中,O为AC的中点,且AO=AE=CF。

已知OE的长度为42,OF的长度为6,求AE的长度。

7.在直角三角形ABC中,∠C=90度。

D为AB上的一点,DF垂直于AB,垂足为F,DE垂直于AC,垂足为E。

已知8.在直角三角形ABC中,D在AC上,且BD=AD。

M是AB的中点,ME垂直于AC,垂足为E。

P是ME的中点,连接DP。

证明BE垂直于DP。

9.在三角形ABC中,AB=AC,且内切于圆。

点D在圆的劣弧AB上,且∠ABD=45度。

如图1,BD与AC交于点E,连接CD。

若AB=BD,证明CE=DE。

如图2,连接AD、CD。

已知sin(∠BDC)=12/13,求tan(∠CBD)。

10.直线y=36/x与反比例函数y=2/x相交于第一象限内的两个点A、B。

C是第一象限内的一点,连接CA并延长交y轴于点P,连接BP、BC。

已知三角形PBC的面积为24,求点C的坐标。

11.在三角形ABC中,∠BAC=120度,AB=AC=23.点D、E在BC上,且满足BD=2EC。

∠DAE=60度,求DE的长度。

12.在三角形ABC中,∠A=120度。

点D是BC的中点,点E在AB上,点F在AC上。

中考数学有关知识点总结

中考数学有关知识点总结

中考数学有关知识点总结数学是一门涵盖广泛的学科,对学生的认知能力、逻辑思维和解决问题的能力有很大的促进作用。

在中考数学中,知识点的掌握是非常重要的。

以下是中考数学的主要知识点总结。

一、代数1.1 代数式代数式是用字母和数字以及运算符号等表示的数学式子。

代数式的基本结构包括常数项、变量、系数和指数。

在中考数学中,学生需要掌握代数式的基本运算规则,包括加法、减法、乘法和除法。

1.2 一元一次方程一元一次方程是指方程中只含有一个未知数,并且未知数的最高次数为一。

在中考数学中,学生需要学习如何解一元一次方程,包括用逆运算法、加减消去法和两边乘法法等方法解方程。

1.3 二元一次方程组二元一次方程组是指包含两个未知数的一次方程的组合。

在中考数学中,学生需要学会解二元一次方程组,可以使用代入法、加减法和化解法等方法解决问题。

1.4 不等式不等式是数学中的一种运算符号,用来表示两个数之间的大小关系。

在中考数学中,学生需要掌握不等式的性质和基本运算规则。

1.5 分式分式是数学中的一种运算形式,由一个整式除以另一个整式得到。

在中考数学中,学生需要学习分式的性质和基本运算法则,包括分式的加减乘除等运算。

1.6 一元二次方程一元二次方程是指方程中只含有一个未知数,并且未知数的最高次数为二。

在中考数学中,学生需要学习如何解一元二次方程,包括利用配方法、公式法和图像法解决问题。

1.7 整式的乘除整式是由常数项和变量项有限次加、减和乘法所得到的代数式。

在中考数学中,学生需要掌握整式的乘法和除法运算规则。

1.8 因式分解因式分解是指将一个代数式或多项式表示为几个较简单的代数式相乘的形式。

在中考数学中,学生需要学习因式分解的基本方法,包括公因式提取法、分组法和换元法等。

二、几何2.1 图形的性质在中考数学中,学生需要掌握各种图形的性质,包括三角形、四边形、直角三角形、等腰三角形、等边三角形和平行四边形等。

2.2 直线、射线和线段在中考数学中,学生需要了解直线、射线和线段的定义、性质和判定方法。

中考数学知识点

中考数学知识点

中考数学知识点数学是中考考试中的一门重要科目,掌握数学知识点是考生取得好成绩的关键。

本文将全面介绍中考数学的主要知识点,帮助考生系统复习并提高他们在数学考试中的表现。

一、整数与分数1. 整数的加减乘除运算规则2. 分数的四则运算和化简3. 整数与分数的混合运算4. 根据实际问题进行整数和分数运算二、代数式与方程1. 代数式的定义和基本运算2. 一元一次方程的解法与应用3. 列方程解决实际问题4. 带有括号的代数式和方程的展开与化简三、几何与图形1. 角的概念和分类2. 直线、射线、线段的定义和性质3. 平行线与相交线的性质4. 三角形的分类、性质和计算5. 平行四边形、矩形、正方形、菱形等四边形的性质和计算6. 圆的构造、性质和计算四、函数与图像1. 函数的概念和表示2. 线性函数和常数函数的特点3. 函数图象与函数关系4. 利用函数图象解决实际问题五、统计与概率1. 平均数的计算和应用2. 频数表、频率表和直方图的制作与解读3. 概率的基本概念和计算4. 利用概率解决问题六、空间与分析几何1. 点、线、面的基本概念和关系2. 投影与视图的画法和应用3. 空间图形的性质和计算4. 利用分析几何解决实际问题七、函数与线性方程1. 一次函数的定义和性质2. 函数的图像与应用3. 一次函数和线性方程的关系和转化八、比例与相似1. 比例的性质和比例的计算2. 相似的概念和判定3. 相似三角形的计算和应用九、三角形与圆1. 角平分线的性质和应用2. 同位角、同旁内角和同旁外角的关系3. 弧长、扇形面积和圆心角的计算4. 设计与解决实际问题通过对以上九个知识点的系统学习和复习,考生能够全面掌握中考数学所考察的内容,并在考试中发挥自己的最佳水平。

在学习过程中,考生还需多做习题,通过实际操作提升解题能力。

在考前,可以参加模拟考试或请教老师,发现问题并及时纠正。

相信只要付出足够的努力和坚持,考生一定能够取得理想的成绩,实现自己的学业目标。

2024年北京中考数学试题及答案(1)

2024年北京中考数学试题及答案(1)

2024年北京中考数学试题及答案考生须知:1.本试卷共6页,共两部分.三道大题,28道小题。

满分100分。

考试时间120分钟。

2.在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上.选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡和草稿纸一并交回。

第一部分 选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D.2.如图,直线AB 和CD 相交于点O ,OE OC ⊥,若58AOC ∠=︒,则EOB ∠的大小为( )A .29︒B .32︒C .45︒D .58︒3.实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .1b >-B .2b >C .0a b +>D .0ab >4.若关于x 的一元二次方程240x x c -+=有两个相等的实数根,则实数c 的值为( )A .16-B .4-C .4D .165.不透明的袋子中装有一个红色小球和一个白色小球,除颜色外两个小球无其他差别.从中随机取出一个小球后,放回并摇匀,再从中随机取出一个小球,则两次都取到白色小球的概率为( )A .34B .12C .13D .146.为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为17410⨯Flops (Flops 是计算机系统算力的一种度量单位),整体投产后,累计实现的算力将是日前已部署上架和调试的设备的算力的5倍,达到m Flops ,则m 的值为( )A .16810⨯B .17210⨯C .17510⨯D .18210⨯7.下面是“作一个角使其等于AOB ”的尺规作图方法.(1)如图,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)作射线O A '',以点O '为圆心,OC 长为半径画弧,交O A ''于点C ';以点C '为圆心,CD 长为半径画弧,两弧交于点D ¢;(3)过点D ¢作射线O B '',则A O B AOB '''∠=∠.上述方法通过判定C O D COD '''△≌△得到A O B AOB '''∠=∠,其中判定C O D COD '''△≌△的依据是( )A .三边分别相等的两个三角形全等B .两边及其夹角分别相等的两个三角形全等C .两角及其夹边分别相等的两个三角形全等D .两角分别相等且其中一组等角的对边相等的两个三角形全等8.如图,在菱形ABCD 中,60BAD ∠=︒,O 为对角线的交点.将菱形ABCD 绕点O 逆时针旋转90︒得到菱形A B C D '''',两个菱形的公共点为E ,F ,G ,H .对八边形BFB GDHD E ''给出下面四个结论:①该八边形各边长都相等;②该八边形各内角都相等;③点O 到该八边形各顶点的距离都相等;④点O 到该八边形各边所在直线的距离都相等。

初中数学中考必考知识点(一)

初中数学中考必考知识点(一)

初中数学中考必考知识点(一)初中数学中考必考知识点1. 整数和有理数•整数的概念:由正整数、负整数和0组成的集合。

•有理数的概念:可以表示为两个整数的比值的数。

•绝对值的概念:一个数到0的距离。

•相反数和绝对值的关系:相反数的绝对值相等。

2. 分数和小数•分数的概念:一个数与1的比值。

•分数的化简与比较大小:约分分数,并比较大小时可以通分。

•分数的加法、减法、乘法和除法:通分后进行相应的运算。

•小数的概念:分数的小数表示形式。

•小数的加法、减法、乘法和除法:转化为分数后进行相应的运算。

3. 百分数和比例•百分数的概念:以百分号表示的分数。

•百分数与分数、小数的关系:百分数可以转化为分数或小数,反之亦然。

•百分数与分数、小数的运算:可以转化为分数或小数后进行相应的运算。

•比例的概念:相等的两个比值。

•比例的性质和简单应用:如比例的反比关系等。

4. 图形的认识与计算•直角三角形和勾股定理:直角三角形的判定和勾股定理的应用。

•等边三角形和等腰三角形:特殊三角形的性质和判定。

•平行四边形和矩形:平行四边形和矩形的性质和计算。

•圆的面积和周长:圆周长和圆面积的计算。

5. 数据的收集、整理与分析•调查数据的整理和统计:如频数表、频率表等的制作和分析。

•数据的图形表示:如条形图、折线图等的绘制和分析。

•数据的平均数和中位数:如算术平均数、中位数等的计算和比较。

6. 几何形体的认识与计算•正方体和长方体:正方体和长方体的性质和计算。

•锥体和柱体:锥体和柱体的性质和计算。

•圆锥和圆柱:圆锥和圆柱的性质和计算。

以上是初中数学中考必考的知识点和详解,希望能帮助到你备考数学中考。

中考数学 一边一角模型训练

中考数学 一边一角模型训练

中考数学一边一角模型训练一边一角模型是中学数学中一个重要的解题思路和方法,尤其在中考数学中经常会涉及到一边一角模型,因此对于学生来说,掌握这个模型的应用将会对解题能力起到很大的提升。

下面我将详细介绍一边一角模型的定义、常见应用以及解题步骤。

一边一角模型是指将一个几何问题抽象成一个由边长和角度组成的等式或者不等式问题,通常使用字母表示边长和角度,用代数式描述几何运算。

一边一角模型的建立主要依据以下两个基本原则:一是在同一几何形状中,相等的边有着相等的边长,相等的角有着相等的度数;二是在图形构造中,通过一些等式或不等式的推导,实现对边长和角度的求解。

一边一角模型的应用非常广泛,比如:在相似三角形的问题中,通过已知的条件建立比例关系式,利用一边一角模型进行角度和边长的求解;在平行四边形的问题中,通过平行四边形的性质建立等式或比例关系,求解角度和边长等;在三角形问题中,根据三角形内角和的性质建立等式或比例关系,求解角度、边长等。

一边一角模型的解题步骤一般为:首先读懂题目,理清思路,明确要求;然后根据已知条件,建立代数形式的等式或者不等式;接着运用几何知识对等式或不等式进行推导和变形;最后通过求解代数等式或不等式,得到结果。

举个例子来说明一边一角模型的应用方法。

假设有一个三角形ABC,已知AB=3x,BC=4x,角B的度数为60度,现在要求解三角形ABC的三个角度和三边的长度。

首先根据题目信息可以得到AC=BC=4x,角C =角B = 60度。

其次,根据三角形内角和的性质可以得到角A = 180度- 60度- 60度= 60度。

再利用三角形的边长之间的比例关系得到AC=3x。

最后代入已知条件和解的结果,计算出x的值,并求解出AB、BC和AC的具体数值。

通过以上例子可以看出,一边一角模型在解题中起到了非常重要的作用。

它能够将一个几何问题转化成一个代数问题,通过运用代数运算的方法,对边长和角度进行求解。

同时,一边一角模型也能够培养学生的逻辑思维和数学推理能力,提高解题的准确性和效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、中考数学探索、开放、阅读类试题精选1、设a 是大于1的实数,若a 、32+a 、312a +在数轴上对应的点分别记作A 、B 、C ,则A 、B 、C 三点在数轴上自左至右的顺序是(C )(提示:可以取特殊值来解决,如当a =2时,只有B 才成立。

)A 、C 、B 、A B 、B 、C 、A C 、A 、B 、CD 、C 、A 、B2、规定一种新的运算:a △b =ab -a -b +1,如3△4=3×4-3-4+1,请比较大小:(-3)△4 = 4△(-3)。

(提示:可直接将数字代入计算,也可将ab -a -b +1分解成(a -1)(b -1)后再代入数字计算。

)3、观察下列分母有理化运算:211+=-1+2,321+=-2+3,431+=-3+4,…利用上面的规律计算:()20031200320021 (3212)11+++++++⎪⎪⎭⎫ ⎝⎛ (答案:2002) 4、已知:a +a 1=5,则224a1a a ++=?(提示:原式=2a +1+21a =(2a +2+21a )-1=(a +a 1)2-1=24)5、先化简再求值:1a 12--a -a a 12a a 22-+-,其中a =321+。

(提示:∵a =2-3<1,∴a -1<0。

原式=5。

=6、如果x 2+3x -3=0,求代数式x 3+3x 2-3x +3的值。

(分析:①用降次法,由已知x 2=3-3x ,代入式子;②原式=x(x 2+3x -3)+3。

值=3。

)7、已知x 、y 是实数,且(x +y -1)2与4y 2+-x 互为相反数,求实数y x 的负倒数。

(提示:由题意得(x +y -1)2+4y 2+-x =0,结果为-2。

)8、若m 3+3m 2-3m +k 分解因式后有一个因式为(m +3),则k =?(提示:由题意(m +3)=0时,m 3+3m 2-3m +k =0。

k =-9。

)9、若关于x 的方程23x m 3x 2+-=--x 无解,则m 的值是多少?(提示:一个分式方程要无解,即化成整式方程后的解是原方程的增根。

整理化简原方程得x =4-m ,据题意,x =4-m 的解是x =3,代入后解得m =1。

)10、若x +2y+3z =10,4x +3y +2z =15,则x +y +z 的值是多少?(提示:三个未知数两个等式,x 、y 、z 的值不唯一确定,不妨视其中一个字母为常数,解关于另外两个字母的方程组,得x =z ,y =5-2z ,∴x +y +z =5。

)11、已知关于x 、y 的两个方程组⎩⎨⎧⎩⎨⎧===-=-11y 3x 95by 3ax 7222--和y x by ax 具有相同的解,求a 、b 的值。

(提示:据题意,方程组⎩⎨⎧⎩⎨⎧==-==-95by 3ax 2211y 3x 72-的解是方程组-by ax y x 的解。

解得前面的方程组的解代入后面的方程组,再解得a =2,b =3。

)12、一元二次方程(m -1)x 2+2mx+m+2=0有两个实数根,求m 的取值范围。

(提示:“一元二次方程”意味着m -1≠0,“两个实数根”意味着△≥0。

答案,m ≤2且m ≠1。

)13、设x 1、x 2是x 的方程x 2+px +q 的两根,x 1+1、x 2+1是x 的方程x 2+qx +p 的两根,求p 、q 的值。

(提示:利用根与系数的关系列出4个等式,代入化简求得p =-1,q =-3,注意检验两方程是否都有实数根。

)14、已知方程x 2+(2m +1)x +m 2-2=0的两个实数根的平方和等于11,求m 的值。

(提示:根据根与系数的关系和已知条件,解得m 1=1,m 2=-3,分别代入△求值,舍去-3,故m 的值为1。

)15、已知关于x 的方程x 2+2(2-m)x +3-6m =0,①求证:无论m 取什么实数,方程总有实数根;②如果方程的两实根分别为x 1、x 2,满足x 1=3x 2,求实数m 的值。

①证明:△=4(m +1)2,∵m 无论取什么实数,(m +1)2 ≥0,即△≥0,∴无论m 取什么实数,原方程总有两个实数根。

②提示:由①题可知,本题不要验证m1=0,m2=-4。

16、已知方程组{ ①=++- ②=+-02a y 01y x 2x 的两个解为{11x x y y ==;{22x x y y ==且x 1、x 2是两个不等的正数。

(1)求a 的取值范围;(2)若x 12+x 22-3x 1x 2=8a 2-6a -11,求a 的值。

(1)解:由②代入①得x 2-x +a +1=0,∵x 1、x 2是两个不等的正数,∴x 1+x 2=1,x 1x 2=a +1>0,△=1-4a -4>0,解得-1<a<-43。

(2)解:由(1)知x 1+x 2=1,x 1x 2=a +1,∴x 12+x 22-3x 1x 2=(x 1+x 2)2-5 x 1x 2=1-5a -5=-5a -4。

∴8a 2-6a -11=-5a -4,解得a =1或a =-87。

由(1)知-1<a<-43,∴a =-87。

17、解方程:x 2+24x =3⎪⎭⎫ ⎝⎛x 2+x (提示:原方程可化为⎪⎭⎫ ⎝⎛x 2+x 2-4-3⎪⎭⎫ ⎝⎛x 2+x =0,设y =⎪⎭⎫ ⎝⎛x 2+x ,注意要检验,x =22±。

)18、知关于x 的不等式组⎩⎨⎧>≥(2) 0a x (1) 12x 5---无解,求a 的取值范围。

解:由(1)得x ≤3,由(,2)得x >a ,若不等式组有解,则a<x ≤3,即a<3。

∵不等式无解,∴a ≥3。

19、关于x 的不等式组⎪⎩⎪⎨⎧+>++-<)2(423)1(1)3(32 a x x x x ,有四个整数解,求a 的取值范围。

解:由(1)得x>8,由(2)得x<2-4a ,组不等式组的解集是8<x <2-4a ,∵不等式组有四个整数解,∴12<2-4a ≤13,解得: 25a 411--<≤。

20、已知三个非负数a 、b 、c 满足3a+2b+c =5和2a+b -3c =1,若m=3a+b -7c ,求m 的最大值和最小值。

(提示:方程或不等式中,如果未知数个数多于方程的个数,往往把其中一个或几个未知数看作常数。

)解:解关于a 、b 的方程组⎩⎨⎧=-+=++1325c 2b 3a c b a 得⎩⎨⎧-=-=c b c a 11737,由题意得⎪⎩⎪⎨⎧≥≥≥-0c 011c 7037-c ,解得117c 73≤≤。

m=3a+b -7c =21c -9+7-11c -7c =3c -2,∴111m 75≤≤-。

4、某人将1,2,3,……,n 这n 个数输入电脑,求平均数,当他认为输入完毕时,电脑显示只输入了n -1个数,平均数为7535,假设这n -1个数输入无误,问未输入的一个数是多少? 解:设未输入的数是k ,则1≤k ≤n ,据题意得:⎪⎩⎪⎨⎧=+⋯⋯≥+⋯⋯++=+=+⋯⋯≤+⋯⋯++=2n 1-n n n 211-n k n 21753522n 1-n 1n 211-n k n 217535-++--++-,解得7371n 7369≤≤,∵7535是n -1个整数的平均数,∴7535×(n -1)的结果是整数,即(n -1)能被7整除。

所以n =71,此时k=56。

答:……。

21、满足(1-3)x>1+3的最大整数是多少?解:∵1-3<0∴x <23243131+=-+,∴x<-2-3,所以最大整数是-4。

22、正方形ABCD 中,E 、F 分别是AB 、BC 边上的点,且EF =AE +FC ,DH ⊥EF 于H ,求证:DH =DC 。

(分析:由于EF =AE +FC ,从而构造线段AE +FC 是解决本题的关键。

于是延长BC 至G ,使CG =AE ,连结DE 、DF 、DG 。

)23、以△ABC 的三边作如图所示的三个正三角形△ACD 、△ABE 、△BCF ,连接DF 、FE 。

①判断四边形AEFD 是什么四边形?为什么? ②当∠BAC 满足什么条件时,平行四边形ADFE 为矩形? ③当∠BAC 满足什么条件时,四边形ADFE 不存在? ④当△ABC 分别满足什么条件时,平行四边形ADFE 是菱形、正方形? 分析:①△ABC ≌△DFC ,AB =DF ,DF =AE ,同理AD =EF,E C四边形AEFD 为平行四边形。

②要平行四边形ADEF 为矩形,则∠DAE =900,∴∠BAC =1500时,平行四边形ADFE 为矩形。

③四边形ADFE 不存在,此时D 、A 、E 三点共线,于是∠BAC =600。

④平行四边形ADFE 为菱形时,必有AD =AE ,此时AB =AC 且∠BAC ≠600;平行四边形ADFE 为正方形时,它必是菱形又是矩形,此时△ABC 为顶角∠BAC =1500的等腰三角形。

24、在直角梯形ABCD 中,如果AD ∥BC ,∠B =900,AD =24cm ,BC =26cm ,动点E 从A 处开始沿AD 边以1cm/s 的速度向D 运动,动点F 从G 点开始沿CB 边以3cm/s 的速度向B 运动。

E 、F 分别从A 、C 同时出发,当其中一个点到达端点时另一个点也随之停止运动。

设运动时间为t ,问当t 为何值时四边形CDEF 为:平行四边形?等腰梯形?分析:欲使四边形CDEF 为平行四边形,必须DE =CF ,即AD -AE =CF ,于是24-t =3t ,t =6。

由于四边形CDEF 为等腰梯形,则分别过E 、D 作EG ⊥BC 于G ,DH ⊥BC 于H ,CF =CH +HG +GF =2CH +GH =2CH +DE ,CH =BC -BH =26-24=2,DE =AD -AE =24-t ,3t =4+24-t ,得t =7。

25、菱形ABCD 的边长为a ,∠A =600,E 、F 分别是边AD 、DC 上的动点(E 、F 异于菱形的顶点),且AE +CF =a 。

①E 、F 在移动时,△BEF 形状如何?②求△BEF 面积的最小值。

分析:①连结BD ,∵∠A =600,∴△ABD 与△BCD 都为等边三角形,BD =BC ,∠ADB =∠C ,AE +CF =a =AE +DE ,∴DE =CF ,∴△BDE ≌△BCF ,则BE =BF ,∠EBD =∠FBC ,∴∠EBF =600,于是△BEF 为正三角形。

②∵△BEF 为正三角形,∴△BEF 的面积=243BE ,则当其边长最短时面积最小,又∵E 为动点,∴当BE ⊥AD 时,BE 最短,即BE =a 23,∴△BEF 的面积最小值为16332a 。

相关文档
最新文档