九年级22章试题
人教版九年级数学上册《第22章二次函数实际应用》测试题(附答案)
人教版九年级数学上册《第22章二次函数实际应用》测试题(附答案)学校:___________班级:___________姓名:___________考号:___________主题分类:主题一:拱桥问题主题二:折叠立体图形问题主题三:围墙问题主题四:投球问题主题五:销售利润问题主题一:拱桥问题1. 三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时单个小孔的水面宽度为4米若大孔水面宽度为20米,则单个小孔的水面宽度为( )3米 2米 13 D.7米主题二:折叠立体图形问题2. 在平面直角坐标系中,已知抛物线2y ax bx c =++与x 轴交于点()()3,0,1,0A B -两点,与y 轴交于点()0,3C ,点P 是抛物线上的一个动点.(1)求抛物线的表达式;(2)当点P 在直线AC 上方的抛物线上时连接BP 交AC 于点D .如图1.当PD DB的值最大时求点P 的坐标及PD DB 的最大值; (3)过点P 作x 轴的垂线交直线AC 于点M ,连接PC ,将PCM △沿直线PC 翻折,当点M 的对应点'M 恰好落在y 轴上时请直接写出此时点M 的坐标.主题三:围墙问题3. 如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD ,为美化环境,用总长为100m 的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).(1)若四块矩形花圃的面积相等,求证:AE =3BE ;(2)在(1)的条件下,设BC 的长度为xm ,矩形区域ABCD 的面积为ym 2,求y 与x 之间的函数关系式,并写出自变量x 的取值范围.4. 蔬菜大棚是一种具有出色的保温性能的框架覆膜结构,它出现使得人们可以吃到反季节蔬菜.一般蔬菜大棚使用竹结构或者钢结构的骨架,上面覆上一层或多层保温塑料膜,这样就形成了一个温室空间.如图,某个温室大棚的横截面可以看作矩形ABCD 和抛物线AED 构成,其中3m AB =,4m BC =取BC 中点O ,过点O 作线段BC 的垂直平分线OE 交抛物线AED 于点E 若以O 点为原点,BC 所在直线为x 轴,OE 为y 轴建立如图所示平面直角坐标系.请回答下列问题:(1)如图,抛物线AED 的顶点()0,4E ,求抛物线的解析式;(2)如图,为了保证蔬菜大棚的通风性,该大棚要安装两个正方形孔的排气装置LFGT ,SMNR 若0.75m FL NR ==,求两个正方形装置的间距GM 的长;(3)如图,在某一时刻,太阳光线透过A 点恰好照射到C 点,此时大棚截面的阴影为BK ,求BK 的长.主题四:投球问题5. 一次足球训练中,小明从球门正前方8m 的A 处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为6m 时球达到最高点,此时球离地面3m .已知球门高OB 为2.44m ,现以O 为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素).(2)对本次训练进行分析若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O 正上方2.25m 处? 6. 嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m 长.嘉嘉在点(6,1)A 处将沙包(看成点)抛出,并运动路线为抛物线21:(3)2C y a x =-+的一部分,淇淇恰在点(0)B c ,处接住,然后跳起将沙包回传,其运动路线为抛物线221:188n C y x x c =-+++的一部分.(1)写出1C 的最高点坐标,并求a ,c 的值;(2)若嘉嘉在x 轴上方1m 的高度上,且到点A 水平距离不超过1m 的范围内可以接到沙包,求符合条件的n 的整数值.7. 小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A ,C 在x 轴上,球网AB 与y 轴的水平距离3m OA =,2m CA =击球点P 在y 轴上.若选择扣球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足一次函数关系0.4 2.8y x =-+;若选择吊球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足二次函数关系()21 3.2y a x =-+.(1)求点P 的坐标和a 的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C 点的距离更近,请通过计算判断应选择哪种击球方式.8. 乒乓球被誉为中国国球.2023年的世界乒乓球标赛中,中国队包揽了五个项目的冠军,成绩的取得与平时的刻苦训练和精准的技术分析是分不开的.如图,是乒乓球台的截面示意图,一位运动员从球台边缘正上方以击球高度OA 为28.75cm 的高度,将乒乓球向正前方击打到对面球台,乒乓球的运行路线近似是抛物线的一部分.乒乓球到球台的竖直高度记为y(单位:cm),乒乓球运行的水平距离记为x(单位:cm).测得如下数据:水平距离x/cm0105090130170230竖直高度y/cm28.7533454945330(1)在平面直角坐标系xOy中,描出表格中各组数值所对应的点(),x y,并画出表示乒乓球运行轨迹形状的大致图象;(2)①当乒乓球到达最高点时与球台之间的距离是__________cm,当乒乓球落在对面球台上时到起始点的水平距离是__________cm;①求满足条件的抛物线解析式;(3)技术分析:如果只上下调整击球高度OA,乒乓球的运行轨迹形状不变,那么为了确保乒乓球既能过网,又能落在对面球台上,需要计算出OA的取值范围,以利于有针对性的训练.如图①.乒乓球台长OB 为274cm,球网高CD为15.25cm.现在已经计算出乒乓球恰好过网的击球离度OA的值约为1.27cm.请你计算出乒乓球恰好落在对面球台边缘点B处时击球高度OA的值(乒乓球大小忽略不计).专题五:销售利润问题9.某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润.售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是______元.10. 在“乡村振兴”行动中,某村办企业以,两种农作物为原料开发了一种有机产品,原料的单价是原料单价的1.5倍若用900元收购原料会比用900元收购原料少.生产该产品每盒需要原料和原料,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时每天可以销售500盒;每涨价1元,每天少销售10盒.(1)求每盒产品的成本(成本=原料费+其他成本);(2)设每盒产品的售价是元(是整数),每天的利润是元,求关于的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过元(是大于60的常数,且是整数),直接写出每天的最大利润. 11. 某商贸公司购进某种商品的成本为20元/kg ,经过市场调研发现,这种商品在未来40天的销售单价y (元/kg )与时间x (天)之间的函数关系式为:0.2530(120)35(2040)x x y x +≤≤⎧=⎨<≤⎩且x 为整数,且日销量()kg m 与时间x (天)之间的变化规律符合一次函数关系,如下表: 时间x (天) 1 3 6 10 …日销量()kg m 142 138 132 124 …填空:(1)m 与x 的函数关系为___________;(2)哪一天的销售利润最大?最大日销售利润是多少?(3)在实际销售的前20天中,公司决定每销售1kg 商品就捐赠n 元利润(4n <)给当地福利院,后发现:在前20天中,每天扣除捐赠后的日销售利润随时间x 的增大而增大,求n 的取值范围.12. 渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克根据市场调查发现,批发价定为48元/千克时每天可销售500千克.为增大市场占有率,在保证盈利的情况下,工厂采取降价措施.批发价每千克降低1元,每天销量可增加50千克.(1)写出工厂每天的利润W 元与降价x 元之间的函数关系.当降价2元时工厂每天的利润为多少元?(2)当降价多少元时工厂每天的利润最大,最大为多少元?(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元? 13. 某超市从厂家购进A 、B 两种型号的水杯,两次购进水杯的情况如下表:进货批次 A 型水杯(个) B 型水杯(个) 总费用(元)一100 200 8000 二 200 300 13000(1)求A 、B 两种型号的水杯进价各是多少元?A B A B A B 100kg A 2kg B 4kg x x w w x a a(2)在销售过程中,A型水杯因为物美价廉而更受消费者喜欢.为了增大B型水杯的销售量,超市决定对B型水杯进行降价销售,当销售价为44元时每天可以售出20个,每降价1元,每天将多售出5个,请问超市应将B型水杯降价多少元时每天售出B型水杯的利润达到最大?最大利润是多少?(3)第三次进货用10000元钱购进这两种水杯,如果每销售出一个A型水杯可获利10元,售出一个B 型水杯可获利9元,超市决定每售出一个A型水杯就为当地“新冠疫情防控”捐b元用于购买防控物资.若A、B两种型号的水杯在全部售出的情况下,捐款后所得的利润始终不变,此时b为多少?利润为多少?14.红星公司销售一种成本为40元/件的产品若月销售单价不高于50元/件.一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x(单位:元/件),月销售量为y(单位:万件).(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围;(2)当月销售单价是多少元/件时月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a的值.参考答案1.【答案】B【分析】根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A的小孔所在抛物线的解析式,将x=﹣10代入可求解.【详解】解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=3 2设大孔所在抛物线解析式为y=ax2+3 2∵BC=10,∴点B(﹣5,0),∴0=a×(﹣5)2+32,∴a=-350∴大孔所在抛物线解析式为y=-350x 2+32,设点A(b,0),则设顶点为A 的小孔所在抛物线的解析式为y=m(x﹣b)2 ∵EF=14,∴点E 的横坐标为-7,∴点E 坐标为(-7,-3625), ∴-3625=m(x﹣b)2 ∴x 1615m 2615m -615m -615m-925 ∴顶点为A 的小孔所在抛物线的解析式为y=-925(x﹣b)2 ∵大孔水面宽度为20米,∴当x=-10时y=-92,∴-92=-925(x﹣b)2,∴x 15222=-522+b 5225222(米),故选:B. 【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答. 2.【答案】(1)223y x x =--+;(2)点P 的坐标为315,24⎛⎫- ⎪⎝⎭;PD DB 的最大值为916;(3)点M 的坐标为:()32,2--- ()32,2-+ 【分析】(1)利用待定系数法求出抛物线的解析式即可;(2)过点P 作PQ x ∥轴,交AC 于点Q ,求出直线AC 的解析式为3y x ,设点P 的坐标为()2,23t t t --+,则点()222,23Q t t t t ----+得出2223PQ t t t t t =---=--根据PQ x ∥轴得出PD PQ BD AB =根据21394216PD t BD ⎛⎫=-++ ⎪⎝⎭,求出点P 的坐标和最大值即可; (3)证明MPC PCM ∠=∠得出PM CM =,设(),3M m m +,()2,23P m m m --+得出()2222332CM m m m =++-=,()()()222222223333PM m m m m m m m =--+--=--=+根据22PM CM =得出()22223m m m =+,求出0m =或32m =--或32m =-+根据当0m =时点P 、M 、C 、M '四点重合,不存在PCM △舍去,求出点M 的坐标为()32,2--- ()32,2-+.【详解】(1)解:把()()3,0,1,0A B -,()0,3C 代入2y ax bx c =++得:93003a b c a b c c -+=⎧⎪++=⎨⎪=⎩解得:123a b c =-⎧⎪=-⎨⎪=⎩①抛物线的解析式为223y x x =--+.(2)解:过点P 作PQ x ∥轴,交AC 于点Q ,如图所示:设直线AC 的解析式为y kx b =+,把()30A -,,()0,3C 代入得: 303k b b -+=⎧⎨=⎩解得:13k b =⎧⎨=⎩①直线AC 的解析式为3y x设点P 的坐标为()2,23t t t --+,则点()222,23Q t t t t ----+ ①点P 在直线AC 上方的抛物线上①2223PQ t t t t t =---=--①PQ x ∥轴①~PQD BAD①PD PQ BD AB= ①()134AB =--=①234PD t t BD --=()2134t t =-+ 21394216t ⎛⎫=-++ ⎪⎝⎭ ①当32t =-时PD BD有最大值916 此时点P 的坐标为315,24⎛⎫- ⎪⎝⎭. (3)解:根据折叠可知PM PM '= CM CM '= PCM PCM '∠=∠ ①PM x ⊥轴①PM CM '∥①MPC PCM '∠=∠①MPC PCM ∠=∠①PM CM =设(),3M m m + ()2,23P m m m --+ ()2222332CM m m m =++-=()()()222222223333PM m m m m m m m =--+--=--=+ ①PM CM =①22PM CM =①()22223m m m =+整理得:()22320m m ⎡⎤+-=⎣⎦ ①20m =或()2320m +-=解得:0m =或32m =--或32m =-+①当0m =时点P 、M 、C 、M '四点重合,不存在PCM △ ①0m ≠①点M 的坐标为()32,2--- ()32,2-+.【点睛】本题主要考查了求抛物线的解析式,二次函数的综合应用,平行线分线段成比例定理,等腰三角形的判定,平行线的性质,两点间距离公式,解题的关键是数形结合,作出辅助线或画出图形. 3.【答案】(1)见解析;(2),见解析. 【分析】(1)由题意易得AM =2ME,故可直接得证;(2)由(1)及题意得2AB +GH +3BC =100,设BC 的长度为xm ,矩形区域ABCD 的面积为ym 2即可得出函数关系式.【详解】解:(1)证明:∵矩形MEFN 与矩形EBCF 面积相等,∴ME =BE ,AM =GH . ∵四块矩形花圃的面积相等,即S 矩形AMDND =2S 矩形MEFN ,∴AM =2ME ,∴AE =3BE ; (2)∵篱笆总长为100m ,∴2AB +GH +3BC =100,即,∴ 设BC 的长度为xm ,矩形区域ABCD 的面积为ym 2,则 ∵,∴解得 ∴. 【点睛】本题主要考查二次函数的实际应用,关键是根据题意得到线段的等量关系,然后列出函数关系式即可.4.【答案】(1)2144y x =-+;(2)0.5m ;(3)97m 12【分析】(1)根据顶点坐标,设函数解析式为24y ax =+,求出A 点坐标,待定系数法求出函数解析式即可;(2)求出 3.75y =时对应的自变量的值,得到FN 的长,再减去两个正方形的边长即可得解;(3)求出直线AC 的解析式,进而设出过点K 的光线解析式为34y x m =-+,利用光线与抛物线相切,求出2610040053⎛⎫=-+<< ⎪⎝⎭y x x x 1231002AB AB BC ++=6405AB BC =-266404055y BC AB x x x x ⎛⎫=⋅=-=-+ ⎪⎝⎭6405AB BC =-402035EB x =->1003x <2610040053⎛⎫=-+<< ⎪⎝⎭y x x xm 的值,进而求出K 点坐标,即可得出BK 的长.【详解】(1)解:①抛物线AED 的顶点()0,4E 设抛物线的解析式为24y ax =+①四边形ABCD 为矩形,OE 为BC 的中垂线 ①4m AD BC == 2m OB = ①3m AB =①点()2,3A -,代入24y ax =+,得:344a =+①14a =-①抛物线的解析式为2144y x =-+;(2)①四边形LFGT ,四边形SMNR 均为正方形0.75m FL NR == ①0.75m MG FN FL NR ====延长LF 交BC 于点H ,延长RN 交BC 于点J ,则四边形FHJN ,四边形ABFH 均为矩形①3m,FH AB FN HJ === ① 3.75m HL HF FL =+=①2144y x =-+,当 3.75y =时213.7544x =-+解得:1x =±①()1,0H - ()1,0J ①2m FN HJ ==①0.5m GM FN FG MN =--=; (3)①4m BC =,OE 垂直平分BC ①2m OB OC == ①()()2,0,2,0B C -设直线AC 的解析式为y kx b =+ 则:2023k b k b +=⎧⎨-+=⎩解得:3432k b ⎧=-⎪⎪⎨⎪=⎪⎩①3342y x =-+①太阳光为平行光设过点K 平行于AC 的光线的解析式为34y x m =-+ 由题意,得:34y x m =-+与抛物线相切联立214434y x y x m ⎧=-+⎪⎪⎨⎪=-+⎪⎩,整理得:234160x x m -+-=则:()()2344160m ∆=---=解得:7316m =; ①373416y x =-+,当0y =时7312x =①73,012K ⎛⎫ ⎪⎝⎭①()2,0B - ①73972m 1212BK =+=. 【点睛】本题考查二次函数的实际应用.读懂题意,正确的求出二次函数解析式,利用数形结合的思想,进行求解,是解题的关键. 5.【答案】(1)()212312y x =--+,球不能射进球门;(2)当时他应该带球向正后方移动1米射门 【分析】(1)根据建立的平面直角三角坐标系设抛物线解析式为顶点式,代入A 点坐标求出a 的值即可得到函数表达式,再把0x =代入函数解析式,求出函数值,与球门高度比较即可得到结论; (2)根据二次函数平移的规律,设出平移后的解析式,然后将点()0,2.25代入即可求解. 【详解】(1)解:由题意得:抛物线的顶点坐标为()2,3 设抛物线解析式为()223y a x =-+ 把点()8,0A 代入,得3630a +=12①抛物线的函数表达式为()212312y x =--+ 当0x =时82.443y => ①球不能射进球门;(2)设小明带球向正后方移动m 米,则移动后的抛物线为()212312y x m =---+ 把点()0,2.25代入得()212.252312m =---+ 解得15m =-(舍去),21m =①当时他应该带球向正后方移动1米射门.【点睛】此题考查了二次函数的应用,待定系数法求函数解析式、二次函数图象的平移等知识,读懂题意,熟练掌握待定系数法是解题的关键.6.【答案】(1)1C 的最高点坐标为()32,,19a =-和1c =;(2)符合条件的n 的整数值为4和5 【分析】(1)利用顶点式即可得到最高点坐标;点(6,1)A 在抛物线上,利用待定系数法即可求得a 的值;令0x =即可求得c 的值;(2)求得点A 的坐标范围为()()5171,,,求得n 的取值范围,即可求解. 【详解】(1)解:①抛物线21:(3)2C y a x =-+①1C 的最高点坐标为()32,①点(6,1)A 在抛物线21:(3)2C y a x =-+上①21(63)2a =-+解得:19a =-①抛物线1C 的解析式为21(3)29y x =--+,令0x =,则21(03)219c =--+=;(2)解:①到点A 水平距离不超过1m 的范围内可以接到沙包①点A 的坐标范围为()()5171,,当经过()51,时211551188n=-⨯+⨯++ 解得175n =; 当经过()71,时211771188n=-⨯+⨯++7①174157n ≤≤ ①符合条件的n 的整数值为4和5.【点睛】本题考查了二次函数的应用,联系实际,读懂题意,熟练掌握二次函数图象上点的坐标特征是解题的关键.7.【答案】(1)()0,2.8P 0.4a =-;(2)选择吊球,使球的落地点到C 点的距离更近【分析】(1)在一次函数上0.4 2.8y x =-+,令0x =,可求得()0,2.8P ,再代入()21 3.2y a x =-+即可求得a 的值;(2)由题意可知5m OC =,令0y =,分别求得0.4 2.80x -+=,()20.41 3.20x --+=即可求得落地点到O 点的距离,即可判断谁更近.【详解】(1)解:在一次函数0.4 2.8y x =-+ 令0x =时 2.8y = ①()0,2.8P将()0,2.8P 代入()21 3.2y a x =-+中,可得: 3.2 2.8a +=解得:0.4a =-; (2)①3m OA = 2m CA = ①5m OC =选择扣球,则令0y =,即:0.4 2.80x -+=解得:7x = 即:落地点距离点O 距离为7m ①落地点到C 点的距离为752m -=选择吊球,则令0y =,即:()20.41 3.20x --+=解得:221x =±+(负值舍去) 即:落地点距离点O 距离为()221m +①落地点到C 点的距离为()()5221422m --=- ①4222-<①选择吊球,使球的落地点到C 点的距离更近.【点睛】本题考查二次函数与一次函数的应用,理解题意,求得函数解析式是解决问题的关键.8.【答案】(1)见解析;(2)①49 230;①()20.00259049y x =--+;(3)乒乓球恰好落在对面球台边缘点B 处时击球高度OA 的值为64.39cm【分析】(1)根据描点法画出函数图象即可求解;(2)①根据二次函数图象的对称性求得对称轴以及顶点根据表格数据,可得当0y =时230=x ; ①待定系数法求解析式即可求解;(3)根据题意,设平移后的抛物线的解析式为()20.0025904928.75y x h =--++-根据题意当274x =时0y =,代入进行计算即可求解.【详解】(1)解:如图所示(2)①观察表格数据,可知当50x =和130x =时函数值相等,则对称轴为直线90x =,顶点坐标为()90,49又抛物线开口向下,可得最高点时与球台之间的距离是49cm 当0y =时230=x①乒乓球落在对面球台上时到起始点的水平距离是230cm ; 故答案为:49;230.①设抛物线解析式为()29049y a x =-+,将()230,0代入得()202309049a =-+解得:0.0025a =-①抛物线解析式为()20.00259049y x =--+;(3)①当28.75OA =时抛物线的解析式为()20.00259049y x =--+设乒乓球恰好落在对面球台边缘点B 处时击球高度OA 的值为h ,则平移距离为28.75h -()cm ①平移后的抛物线的解析式为()20.0025904928.75y x h =--++-依题意,当274x =时0y =即()20.0025274904928.750h --++-= 解得:64.39h =.答:乒乓球恰好落在对面球台边缘点B 处时击球高度OA 的值为64.39cm .【点睛】本题考查了二次函数的应用,画二次函数图象,二次函数图象的平移,熟练掌握二次函数图象的性质是解题的关键. 9.【答案】1264【分析】根据题意,总利润=A 快餐的总利润+B 快餐的总利润,而每种快餐的利润=单件利润×对应总数量,分别对两份快餐前后利润和数量分析,代入求解即可.【详解】解:设A 种快餐的总利润为1W ,B 种快餐的总利润为2W ,两种快餐的总利润为W ,设A 快餐的份数为x 份,则B 种快餐的份数为()120x -份. 据题意:2140112122032222x x W x x x x -⎛⎫⎛⎫=-⨯=-+⨯=-+ ⎪ ⎪⎝⎭⎝⎭()()22801201=812072240022x W x x x --⎡⎤+-=-+-⎢⎥⎣⎦∴()22121042400=521264W W W x x x =+=-+---+∵10-< ∴当52x =的时候,W 取到最大值1264,故最大利润为1264元故答案为:1264【点睛】本题考查的是二次函数的应用,正确理解题意、通过具体问题找到变化前后的关系是解题关键点.10.【答案】(1)每盒产品的成本为30元.(2);(3)当时每天的最大利润为16000元;当时每天的最大利润为元.【分析】(1)设原料单价为元,则原料单价为元.然后再根据“用900元收购原料会比用900元收购原料少”列分式方程求解即可;(2)直接根据“总利润=单件利润×销售数量”列出解析式即可;(3)先确定的对称轴和开口方向,然后再根据二次函数的性质求最值即可. 【详解】解:(1)设原料单价为元,则原料单价为元. 依题意,得.解得,,.经检验,是原方程的根. 210140033000=-+-w x x 70a ≥6070a <<()210140033000a a -+-B m A 1.5m A B 100kg 210140033000=-+-w x x B m A 1.5m 9009001001.5m m-=3m = 1.5 4.5m =3m =∴每盒产品的成本为:(元).答:每盒产品的成本为30元.(2);(3)∵抛物线的对称轴为=70,开口向下∴当时a =70时有最大利润,此时w=16000,即每天的最大利润为16000元; 当时每天的最大利润为元.【点睛】本题主要考查了分式方程的应用、二次函数的应用等知识点,正确理解题意、列出分式方程和函数解析式成为解答本题的关键.11.【答案】(1)2144m x =-+;(2)第16天销售利润最大,最大为1568元;(3)02n <≤ 【分析】(1)设m kx b =+,将()1142,,()3138,代入,利用待定系数法即可求解; (2)分别写出当120x ≤≤时与当2040x <≤时的销售利润表达式,利用二次函数和一次函数的性质即可求解;(3)写出在前20天中,每天扣除捐赠后的日销售利润表达式根据二次函数的性质可得对称轴16220n +≤,求解即可.【详解】解:(1)设m kx b =+,将()1142,,()3138,代入可得: 1421383k b k b =+⎧⎨=+⎩解得2144k b =-⎧⎨=⎩,∴2144m x =-+; (2)当120x ≤≤时销售利润()()()212021440.2530201615682W my m x x x =-=-++-=--+ 当16x =时销售利润最大为1568元;当2040x <≤时销售利润20302160W my m x =-=-+当21x =时销售利润最大为1530元;综上所述,第16天销售利润最大,最大为1568元; (3)在前20天中,每天扣除捐赠后的日销售利润为:()()()21'200.2510214416214401442W my m nm x n x x n x n =--=+--+=-+++-∵120x ≤≤时'W 随x 的增大而增大,∴对称轴16220n +≤解得02n <≤.【点睛】本题考查二次函数与一次函数的实际应用,掌握二次函数与一次函数的性质是解题的关键. 12.【答案】(1)2504009000W x x =-++,9600;(2)降价4元,最大利润为9800元;(3)43 【分析】(1)若降价x 元,则每天销量可增加50x 千克根据利润公式求解并整理即可得到解析式,然后代入2x =求出对应函数值即可;(2)将(1)中的解析式整理为顶点式,然后利用二次函数的性质求解即可;(3)令9750W =可解出对应的x 的值,然后根据“让利于民”的原则选择合适的x 的值即可.4.5243930⨯+⨯+=()()305001060w x x =---⎡⎤⎣⎦210140033000x x =-+-210140033000=-+-w x x w 70a ≥6070a <<()210140033000a a -+-【详解】(1)若降价x 元,则每天销量可增加50x 千克∴()()500504830W x x =+--,整理得:2504009000W x x =-++ 当2x =时2502400290009600W =-⨯+⨯+=,∴每天的利润为9600元; (2)()225040090005049800W x x x =-++=--+ ∵500-<,∴当4x =时W 取得最大值,最大值为9800 ∴降价4元,利润最大,最大利润为9800元;(3)令9750W =,得:()297505049800x =--+解得:15=x 23x = ∵要让利于民,∴5x =,48543-=(元)∴定价为43元.【点睛】本题考查二次函数的实际应用,弄清数量关系,准确求出函数解析式并熟练掌握二次函数的性质是解题关键.13.【答案】(1)A 型号水杯进价为20元,B 型号水杯进价为30元;(2)超市应将B 型水杯降价5元后,每天售出B 型水杯的利润达到最大,最大利润为405元;(3)A ,B 两种杯子全部售出,捐款后利润不变,此时b 为4元,利润为3000元.【分析】(1)主要运用二元一次方程组,设A 型号水杯为x 元,B 型号水杯为y 元根据表格即可得出方程组,解出二元一次方程组即可得A 、B 型号水杯的单价;(2)主要运用二次函数,由题意可设:超市应将B 型水杯降价z 元后,每天售出B 型水杯的利润达到最大,最大利润为w,每个水杯的利润为()4430z --元;每降价1元,多售出5个,可得售出的数量为()205z +个根据:利润=(售价-进价)×数量,可确定函数关系式,依据二次函数的基本性质,开口向下,在对称轴处取得最大值,即可得出答案;(3)根据(1)A 型号水杯为20元,B 型号水杯为30元.设10000元购买A 型水杯m 个,B 型水杯n 个,所得利润为W 元,可列出方程组,利用代入消元法化简得到利润W 的函数关系式,由于利润不变,所以令未知项的系数为0,即可求出b ,W .【详解】(1)解:设A 型号水杯进价为x 元,B 型号水杯进价为y 元 根据题意可得:100200800020030013000x y x y +=⎧⎨+=⎩解得:2030x y =⎧⎨=⎩∴A 型号水杯进价为20元,B 型号水杯进价为30元.(2)设:超市应将B 型水杯降价z 元后,每天售出B 型水杯的利润达到最大,最大利润为w 根据题意可得:()()4430205w z z =--+化简得:2550280w z z =-++,当()505225b z a =-=-=⨯-时255505280405max w =-⨯+⨯+= ∴超市应将B 型水杯降价5元后,每天售出B 型水杯的利润达到最大,最大利润为405元. (3)设购买A 型水杯m 个,B 型水杯n 个,所得利润为W 元根据题意可得:()203010000109m n W b m n +=⎧⎨=-+⎩①②将①代入②可得:()100002010930mW b m -=-+⨯化简得:()()106300043000W b m b m =--+=-+ 使得A ,B 两种杯子全部售出后,捐款后所得利润不变 则40b -=,得4b =,当4b =时3000W =∴A ,B 两种杯子全部售出,捐款后利润不变,此时b 为4元,利润为3000元.【点睛】题目主要考察二元一次方程、一元二次函数的以及一次函数的应用,难点是对题意的理解及对函数和方程的综合运用. 14.【答案】(1)5(4050)0.110(50100)x y x x ≤≤⎧=⎨-+<≤⎩;(2)当月销售单价是70元/件时月销售利润最大,最大利润是90万元;(3)4.【分析】(1)分4050x ≤≤和50x >两种情况根据“月销售单价每涨价1元,月销售量就减少0.1万件”即可得函数关系式,再根据0y >求出x 的取值范围;(2)在(1)的基础上根据“月利润=(月销售单价-成本价)⨯月销售量”建立函数关系式,分别利用一次函数和二次函数的性质求解即可得;(3)设该产品的捐款当月的月销售利润为Q 万元,先根据捐款当月的月销售单价、月销售最大利润可得5070x <≤,再根据“月利润=(月销售单价-成本价a -)⨯月销售量”建立函数关系式,然后利用二次函数的性质即可得.【详解】解:(1)由题意,当4050x ≤≤时5y = 当50x >时50.1(50)0.110y x x =--=-+0y ≥,0.1100x ∴-+≥解得100x ≤,综上,5(4050)0.110(50100)x y x x ≤≤⎧=⎨-+<≤⎩;(2)设该产品的月销售利润为w 万元 ①当4050x ≤≤时5(40)5200w x x =-=-第 21 页 共 21页 由一次函数的性质可知,在4050x ≤≤内,w 随x 的增大而增大则当50x =时w 取得最大值,最大值为55020050⨯-=;②当50100x <≤时2(40)(0.110)0.1(70)90w x x x =--+=--+由二次函数的性质可知,当70x =时w 取得最大值,最大值为90因为9050>所以当月销售单价是70元/件时月销售利润最大,最大利润是90万元;(3)捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元(大于50万元) 5070x ∴<≤,设该产品捐款当月的月销售利润为Q 万元由题意得:,整理得: ,在内,随的增大而增大 则当时取得最大值,最大值为因此有解得.【点睛】本题考查了二次函数与一次函数的实际应用,正确建立函数关系式是解题关键. (40)(0.110)Q x a x =---+221400.1()390240a a Q x a +=--+-+140702a +>∴5070x <≤Q x 70x =Q (7040)(0.17010)903a a ---⨯+=-90378a -=4a =。
人教版九年级数学上册第22章《二次函数》单元测试题含答案
人教版九年级数学上册第22章《二次函数》单元测试题一、选择题:(每题3,共30分) 1.抛物线2(1)2y x =-+的顶点坐标是( ). A .(1,2)B .(1,-2)C .(-1, 2)D .(-1,-2)2. 把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线( ). A .()231y x =+- B .()233y x =++ C .()231y x =-- D .()233y x =-+3、抛物线y=(x+1)2+2的对称轴是( ) A .直线x=-1 B .直线x=1 C .直线y=-1 D .直线y=14、二次函数221y x x =-+与x 轴的交点个数是( )A .0B .1C .2D .35、若,,,,,123351A yB yC y 444⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为二次函数2y x 4x 5=+-的图象上的三点,则123y y y 、、的大小关系是( )A.123y y y <<B.213y y y <<C.312y y y <<D.132y y y <<6、在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致为( )OxyOxyOxyOxy(A)(B)(C)(D)7.〈常州〉二次函数y =ax 2+bx +c (a 、b 、c 为常数且a ≠0)中的x 与y 的部分对x -3 -2 -1 0 1 2 3 4 5 y 12 5 0 -3 -4 -3 0 5 12 (1)二次函数y =ax 2+bx +c 有最小值,最小值为-3;(2)当-12<x <2时,y <0;(3)二次函数y =ax 2+bx +c 的图象与x 轴有两个交点,且它们分别在y 轴两侧.则其中正确结论的个数是( )A.3B.2C.1D.08.〈南宁〉已知二次函数y =ax 2+bx +c (a ≠0)的图象如图3所示,下列说法错误的是( )A.图象关于直线x =1对称B.函数y =ax 2+bx +c (a ≠0)的最小值是-4C.-1和3是方程ax 2+bx +c =0(a ≠0)的两个根D.当x <1时,y 随x 的增大而增大9、二次函数与882+-=x kx y 的图像与x 轴有交点,则k 的取值范围是( ) A.2<kB.02≠<k k 且C.2≤kD.02≠≤k k 且10. 如图,菱形ABCD 中,AB =2,∠B =60°,M 为AB 的中点.动点P 在菱形的边上从点B 出发,沿B →C →D 的方向运动,到达点D 时停止.连接MP ,设点P 运动的路程为x ,MP 2 =y ,则表示y 与x 的函数关系的图象大致为( ).二、填空题:(每题3,共30分)11.已知函数()x x m y m 3112+-=+,当m = 时,它是二次函数.12、抛物线3842-+-=x x y 的开口方向向 ,对称轴是 ,最高点的坐标是 ,函数值得最大值是 。
人教版 九年级数学上册 第22章复习测试题带答案
人教版 九年级数学上册 第22章复习测试题带答案22.1 二次函数的图象和性质一、选择题1. 对于二次函数y =-(x -1)2+2的图象与性质,下列说法正确的是( ) A. 对称轴是直线x =1,最小值是2 B. 对称轴是直线x =1,最大值是2 C. 对称轴是直线x =-1,最小值是2 D. 对称轴是直线x =-1,最大值是22. 二次函数y =x 2-2x +4化为y =a (x -h )2+k 的形式,下列正确的是( ) A. y =(x -1)2+2 B. y =(x -1)2+3 C. y =(x -2)2+2 D. y =(x -2)2+43. 二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①b <0;②c >0;③a +c <b ;④b 2-4ac >0,其中正确的个数是( ) A. 1 B. 2 C. 3 D. 44. 已知二次函数y =ax 2-bx -2(a ≠0)的图象的顶点在第四象限,且过点(-1,0),当a -b 为整数时,ab 的值为( ) A. 34或1 B. 14或1 C. 34或12 D. 14或345. (2019•雅安)在平面直角坐标系中,对于二次函数22()1y x =-+,下列说法中错误的是A .y 的最小值为1B .图象顶点坐标为(2,1),对称轴为直线2x =C .当2x <时,y 的值随x 值的增大而增大,当2x ≥时,y 的值随x 值的增大而减小D .它的图象可以由2y x 的图象向右平移2个单位长度,再向上平移1个单位长度得到6. 海滨广场中心标志性建筑处有高低不同的各种喷泉,其中一支高度为1米的喷水管喷出的水的最大高度为3米,此时喷水的水平距离为12米.在如图所示的平面直角坐标系中,这支喷泉喷出的水在空中划出的曲线满足的函数解析式是( )A .y =-⎝ ⎛⎭⎪⎫x -122+3B .y =3⎝ ⎛⎭⎪⎫x -122+1C .y =-8⎝ ⎛⎭⎪⎫x -122+3D .y =-8⎝ ⎛⎭⎪⎫x +122+37. 二次函数y =ax 2+bx +c (a ,b ,c 为常数且a ≠0)的图象如图所示,则一次函数y =ax +b 与反比例函数y =cx 的图象可能是( )8. 已知抛物线y =ax 2+bx +c (b >a >0)与x 轴最多有一个交点.现有以下四个结论:①该抛物线的对称轴在y 轴左侧;②关于x 的方程ax 2+bx +c +2=0无实数根;③a -b +c ≥0;④a +b +cb -a的最小值为3.其中,正确结论的个数为( ) A. 1个 B. 2个 C. 3个 D. 4个9. (2019•泸州)已知二次函数(1)(1)37y x a x a a =---+-+(其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值范围是 A .2a < B .1a >- C .12a -<≤D .12a -≤<10. 如图,△ABC是等腰直角三角形,∠A =90°,BC =4,点P 是△ABC 边上一动点,沿B →A →C 的路径移动.过点P 作PD ⊥BC 于点D ,设BD =x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是( )二、填空题11.抛物线y =-8x 2的开口向________,对称轴是________,顶点坐标是________;当x >0时,y 随x 的增大而________,当x <0时,y 随x 的增大而________.12. 如图为二次函数y =ax 2+bx +c 的图象,在下列说法中:①ac<0;②方程ax 2+bx +c =0的根是x 1=-1,x 2=3;③a +b +c>0;④当x>1时,y 随着x 的增大而增大.正确的说法有________.(请写出所有正确说法的序号)13. (2019•襄阳)如图,若被击打的小球飞行高度h (单位:m)与飞行时间t (单位:s)之间具有的关系为2205h t t =-,则小球从飞出到落地所用的时间为__________s .14. (2019•徐州)已知二次函数的图象经过点(2,2)P ,顶点为(0,0)O 将该图象向右平移,当它再次经过点P 时,所得抛物线的函数表达式为__________.15. 如图,抛物线y=-x2+2x+3与y轴交于点C,点D(0,1),点P在抛物线上,且△PCD是以CD为底的等腰三角形,则点P的坐标为________.16. 已知点(x1,-7)和点(x2,-7)(x1≠x2)均在抛物线y=ax2上,则当x=x1+x2时,y的值是________.17. 如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0)和B(3,2),不等式x2+bx+c>x+m的解集为____________.三、解答题18. 如图,已知二次函数y=x2+bx+c的图象过点A(1,0),C(0,-3).(1)求此二次函数的解析式;(2)设抛物线与x轴的另一交点为B,在抛物线上存在一点P,使△ABP的面积为10,请直接写出点P的坐标.19. 2018·南京已知二次函数y=2(x-1)(x-m-3)(m为常数).(1)求证:不论m为何值,该函数的图象与x轴总有公共点;(2)当m取什么值时,该函数的图象与y轴的交点在x轴的上方?20. 已知二次函数y=ax2-2ax+c(a>0)的图象与x轴的负半轴和正半轴分别交于A、B两点,与y轴交于点C,它的顶点为P,直线CP与过点B且垂直于x轴的直线交于点D,且CP∶PD=2∶3.(1)求A、B两点的坐标;(2)若tan∠PDB=54,求这个二次函数的关系式.21. 在平面直角坐标系中,设二次函数y1=(x+a)(x-a-1),其中a≠0.(1)若函数y1的图象经过点(1,-2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b 满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上.若m<n,求x0的取值范围.22. 如图,已知抛物线经过A(-3,0),B(0,3)两点,且其对称轴为直线x=-1.(1)求此抛物线的解析式;(2)若P是抛物线上点A与点B之间的动点(不包括点A,B),求△PAB的面积的最大值,并求出此时点P的坐标.人教版九年级22.1 二次函数的图象和性质培优训练-答案一、选择题1. 【答案】B 【解析】由二次函数y =-(x -1)2+2可知,对称轴为直线x =1排除C ,D ,函数开口向下,有最大值,最大值为当x =1时y =2,故排除A 选B .2. 【答案】B 【解析】将二次函数的一般式经过配方转化成顶点式,可以加上一次项系数的一半的平方来凑完全平方式.y =x 2-2x +4=x 2-2x +1+3=(x -1)2+3.3. 【答案】C 【解析】∵图象开口向下,∴a <0,∵对称轴在y 轴右侧,∴a ,b 异号,∴b >0,故①错误;∵图象与y 轴交于x 轴上方,∴c >0,故②正确;当x =-1时,a -b +c <0,则a +c <b ,故③正确;图象与x 轴有两个交点,则b 2-4ac >0,故④正确.4. 【答案】A 【解析】由二次函数过点(-1,0)可得a +b =2,把x =1代入y =ax 2-bx -2得y =a -b -2,即a -b =2+y.由a +b =2和a -b =2+y 得a =2+12y ,由题意得a >0,b >0,所以2+12y >0,解得y >-4,又由顶点在第四象限,可得y =-3或-2或-1.当y =-3时,可得a =12,b =32,则ab =34;当y =-2时,可得a =1,b =1,则ab =1;当y =-1时,可得a =32,b =12,则ab =34,综上ab 的值为34或1.5. 【答案】C【解析】二次函数22()1y x =-+,10a =>,∴该函数的图象开口向上,对称轴为直线2x =,顶点为(2,1),当2x =时,y 有最小值1,当2x >时,y 的值随x 值的增大而增大,当2x <时,y 的值随x 值的增大而减小;故选项A 、B 的说法正确,C 的说法错误; 根据平移的规律,2yx 的图象向右平移2个单位长度得到2(2)y x =-,再向上平移1个单位长度得到22()1y x =-+, 故选项D 的说法正确, 故选C .6. 【答案】C7. 【答案】C【解析】抛物线开口向上,所以a >0,对称轴在y 轴右侧,所以a 、b 异号,所以b <0,抛物线与y 轴交于负半轴,所以c <0,所以直线y =ax +b过第一、三、四象限,反比例函数y =cx 位于第二、四象限,故答案为C.8. 【答案】D 【解析】 序号 逐项分析 正误① ∵b >a >0,∴对称轴-b2a <0,即对称轴在y 轴左侧√ ② ∵抛物线y =ax 2+bx +c 与x 轴最多有一个交点,且抛物线开口向上,∴y =ax 2+bx +c ≥0,∴方程ax 2+bx +c +2=0即ax 2+bx +c =-2无实数根√③ 由②得y =ax 2+bx +c ≥0,∴当x =-1时,a -b +c ≥0 √④∵当x =-2时,y =4a -2b +c ≥0,∴a +b +c ≥3b -3a ,a +b +c ≥3(b -a ),∵b >a ,∴a +b +cb -a≥3 √9. 【答案】D【解析】(1)(1)37y x a x a a =---+-+22236x ax a a =-+-+, ∵抛物线与x 轴没有公共点,∴22(2)4(36)0a a a ∆=---+<,解得2a <, ∵抛物线的对称轴为直线22ax a -=-=,抛物线开口向上, 而当1x <-时,y 随x 的增大而减小, ∴1a ≥-,∴实数a 的取值范围是12a -≤<, 故选D .10. 【答案】B【解析】∵△ABC 是等腰直角三角形,∴∠A =90°,∠B =∠C =45°.(1)当0≤x ≤2时,点P 在AB 边上,△BDP 是等腰直角三角形,∴PD =BD =x ,y =12x 2 (0≤x ≤2),其图象是抛物线的一部分; (2)当2<x ≤4时,点P 在AC 边上,△CDP 是等腰直角三角形,∴PD =CD =4-x ,∴y =12BD ·PD =12x (4-x ) (2<x ≤4),其图象也是抛物线的一部分.综上所述,两段图象均是抛物线的一部分,因此选项B 的图象能大致反映y 与x 之间的函数关系.二、填空题11. 【答案】下 y 轴 (0,0) 减小 增大12. 【答案】①②④【解析】由于二次函数开口向上,且与y 轴的交点在负半轴上,∴a >0,c <0,∴ac <0,即①正确;又由于二次函数与x 轴交点的横坐标为-1,3.∴方程ax 2+bx +c =0的根是x 1=-1,x 2=3即②正确;当x =1时,二次函数上的点在第四象限,即a +b +c <0即③错误;由于(-1,0),(3,0)两点关于二次函数的对称轴为轴对称,∴此二次函数的对称轴方程为:x =1,因为二次函数开口向上,所以当x >1时y 随x 的增大而增大,即④正确. 故①②④正确.13. 【答案】4【解析】依题意,令0h =得: ∴20205t t =-, 得:(205)0t t -=, 解得:0t =(舍去)或4t =,∴即小球从飞出到落地所用的时间为4s , 故答案为:4.14. 【答案】21(4)2y x =- 【解析】设原来的抛物线解析式为:2y ax =(0)a ≠, 把(2,2)P 代入,得24a =, 解得12a =, 故原来的抛物线解析式是:212y x =, 设平移后的抛物线解析式为:21()2y x b =-, 把(2,2)P 代入,得212(2)2b =-,解得0b =(舍去)或4b =, 所以平移后抛物线的解析式是:21(4)2y x =-, 故答案为:21(4)2y x =-.15. 【答案】(1+2,2)或(1-2,2) 【解析】抛物线y =-x 2+2x +3与y 轴交于点C ,则点C 坐标是(0,3),∵点D(0,1),点P 在抛物线上,且△PCD 是以CD 为底的等腰三角形,∴易得点P 的纵坐标是2,当y =2时,∴-x 2+2x+3=2,则x 2-2x -1=0,解得方程的两根是x =2±222=1±2,∴点P 的坐标是(1+2,2)或(1-2,2).16. 【答案】0 [解析]依题意可知已知两点关于y 轴对称,∴x 1与x 2互为相反数,即x 1+x 2=0.当x =0时,y =a·02=0.17. 【答案】x<1或x>3 【解析】∵直线y =x +m 和抛物线y =x 2+bx +c 都经过点A(1,0)和B(3,2),∴根据图象可知,不等式x 2+bx +c >x +m 的解集为x <1或x >3.三、解答题18. 【答案】解:(1)∵二次函数y =x 2+bx +c 的图象过点A(1,0),C(0,-3),∴⎩⎨⎧1+b +c =0,c =-3,解得⎩⎨⎧b =2,c =-3.∴此二次函数的解析式为y =x 2+2x -3. (2)∵当y =0时,x 2+2x -3=0,解得x 1=-3,x 2=1,∴B(-3,0),∴AB =4. 设点P 的坐标为(m ,n). ∵△ABP 的面积为10, ∴12AB·|n|=10,解得n =±5. 当n =5时,m 2+2m -3=5,解得m =-4或m =2,∴P(-4,5)或P(2,5); 当n =-5时,m 2+2m -3=-5,此方程无解.故点P 的坐标为(-4,5)或(2,5).19. 【答案】解:(1)证明:当y =0时,2(x -1)(x -m -3)=0, 解得x 1=1,x 2=m +3.当m +3=1,即m =-2时,方程有两个相等的实数根; 当m +3≠1,即m ≠-2时,方程有两个不相等的实数根. 综上,不论m 为何值,该函数的图象与x 轴总有公共点. (2)当x =0时,y =2(x -1)(x -m -3)=2m +6, ∴该函数的图象与y 轴交点的纵坐标为2m +6,∴当2m +6>0,即m >-3时,该函数的图象与y 轴的交点在x 轴的上方.20. 【答案】解:(1)y =ax 2-2ax +c=a(x 2-2x)+c =a(x -1)2+c -a ∴P 点坐标为(1,c -a).(2分)如图,过点C 作CE ⊥PQ ,垂足为E ,延长CE 交BD 于点F ,则CF ⊥BD. ∵P(1,c -a), ∴CE =OQ =1. ∵PQ ∥BD ,∴△CEP ∽△CFD , ∴CP CD =CE CF .又∵CP ∶PD =2∶3, ∴CE CF =CP CD =22+3=25,∴CF =2.5,(4分) ∴OB =CF =2.5,∴BQ =OB -OQ =1.5, ∴AQ =BQ =1.5,∴OA =AQ -OQ =1.5-1=0.5, ∴A(-0.5,0),B(2.5,0).(5分)(2)∵tan ∠PDB =54,∴CFDF=5 4,∴DF=45CF=45×2.5=2,(6分)∵△CFD∽△CEP,∴PEDF=CE CF,∴PE=DF·CECF=2×12.5=0.8.∵P(1,c-a),C(0,c),∴PE=PQ-OC=c-(c-a)=a,∴a=0.8,(8分)∴y=0.8x2-1.6x+c.把A(-0.5,0)代入得:0.8×(-0.5)2-1.6×(-0.5)+c=0,解得c=-1.(9分)∴这个二次函数的关系式为:y=0.8x2-1.6x-1.(10分)21. 【答案】【思维教练】由图象过点(1,-2),将其带入y1的函数表达式中,解方程即可;(2)由y1=(x+a)(x-a-1)可得出y1过x轴上的两点的坐标,然后分两种情况讨论即可;(3)先求出y1=(x+a)(x-a-1)的对称轴,根据开口向上的二次函数,离对称轴越近,函数值越小即可得解.解:(1)∵函数y1=(x+a)(x-a-1)图象经过点(1,-2),∴把x=1,y=-2代入y1=(x+a)(x-a-1)得,-2=(1+a)(-a),(2分)化简得,a2+a-2=0,解得,a1=-2,a2=1,∴y1=x2+x-2;(4分)(2)函数y1=(x+a)(x-a-1)图象在x轴的交点为(-a,0),(a+1,0),①当函数y2=ax+b的图象经过点(-a,0)时,把x=-a,y=0代入y2=ax+b中,得a2=b;(6分)②当函数y2=ax+b的图象经过点(a+1,0)时,把x=a+1,y=0代入y2=ax+b中,得a2+a=-b;(8分)(3)∵抛物线y1=(x+a)(x-a-1)的对称轴是直线x=-a+a+12=12,m<n,∵二次项系数为1,∴抛物线的开口向上,∴抛物线上的点离对称轴的距离越大,它的纵坐标也越大,∵m<n,∴点Q离对称轴x=12的距离比P离对称轴x=12的距离大,(10分)∴|x0-12|<1-12,∴0<x0<1.(12分) 22. 【答案】解:(1)设抛物线的解析式为y =ax 2+bx +c. 根据题意,得⎩⎪⎨⎪⎧9a -3b +c =0,c =3,-b2a =-1,解得⎩⎨⎧a =-1,b =-2,c =3. 所以抛物线的解析式为y =-x 2-2x +3.(2)易知直线AB 的表达式为y =x +3,设P(m ,-m 2-2m +3),过点P 作PC ∥y 轴交AB 于点C ,则C(m ,m +3),PC =(-m 2-2m +3)-(m +3)=-m 2-3m , 所以S △PAB =12×(-m 2-3m)×3=-32(m 2+3m)=-32(m +32)2+278, 所以当m =-32时,S △PAB 有最大值278,此时点P 的坐标为(-32,154).22.2 二次函数与一元一次方程一、选择题(本大题共10道小题)1. 抛物线y =-x 2+4x -4与坐标轴的交点个数为( ) A .0B .1C .2D .32. 根据下列表格中的数值,判断方程ax 2+bx +c =0(a ,b 为常数)根的情况是( )A.B .有两个相等的实数根 C .只有一个实数根 D .无实数根3. 已知二次函数y =ax 2+bx +c 的图象如图所示,则一元二次方程ax 2+bx +c =0的解是( )A.x1=-3,x2=1 B.x1=3,x2=1C.x=-3 D.x=-24. 从地面竖直向上抛出一个小球,小球的上升高度h(单位:m)与小球运动时间t(单位:s)之间的关系式为h=24t-4t2,那么小球从抛出至回落到地面所需的时间是()A.6 s B.4 s C.3 s D.2 s5. 若A(-1,0)为抛物线y=-3(x-1)2+c上一点,则当y≥0时,x的取值范围是()A.-1<x<3 B.x<-1或x>3C.-1≤x≤3 D.x≤-1或x≥36. 函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是()A.x<-4或x>2 B.-4<x<2C.x<0或x>2 D.0<x<27. 若二次函数y=ax2-2ax+c的图象经过点(-1,0),则方程ax2-2ax+c=0的解为()A. x1=-3,x2=-1B. x1=1,x2=3C. x1=-1,x2=3D. x1=-3,x2=18. 根据下列表格中的对应值,判断方程ax2+bx+c=0(a≠0)的一个根x的取值范围是()A.1.23<x<1.24 B.1.24<x<1.25C.1.25<x<1.26 D.1<x<1.239. 如图,抛物线y =12x 2-7x +452与x 轴交于点A ,B ,把抛物线在x 轴及其下方的部分记作C 1,将C 1向左平移得到C 2,C 2与x 轴交于点B ,D ,若直线y =12x +m 与C 1,C 2共有3个不同的交点,则m 的取值范围是( )A .-458<m <-52B .-298<m <-12C .-298<m <-52D .-458<m <-1210. 已知二次函数y =-x 2+x +6及一次函数y =-x +m ,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新函数图象(如图),当直线y =-x +m 与新图象有4个交点时,m 的取值范围是( )A .-254<m<3 B .-254<m<2 C .-2<m <3D .-6<m <-2二、填空题(本大题共7道小题)11. 飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数解析式是y =60t -32t 2,在飞机着陆滑行中,最后2 s 滑行的距离是________m.12. 如图,已知抛物线y =x 2+2x -3与x 轴的两个交点分别是A ,B (点A 在点B的左侧).(1)点A 的坐标为__________,点B 的坐标为________; (2)利用函数图象,求得当y <5时x 的取值范围为________.13. 已知二次函数y=kx2-6x-9的图象与x轴有两个不同的交点,则k的取值范围为____________.14. 设A,B,C三点分别是抛物线y=x2-4x-5与y轴的交点以及与x轴的两个交点,则△ABC的面积是________.15. 如图,抛物线y=ax2与直线y=bx+c的两个交点分别为A(-2,4),B(1,1),则方程ax2=bx+c的解是____________.16. 二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b>0;②a-b +c=0;③一元二次方程ax2+bx+c+1=0(a≠0)有两个不相等的实数根;④当x <-1或x>3时,y>0.上述结论中正确的是________.(填上所有正确结论的序号)17. 已知实数x,y满足x2+3x+y-3=0,则x+y的最大值为________.三、解答题(本大题共4道小题)18. 已知二次函数y=x2+mx+n的图象经过点P(-3,1),对称轴是直线x=-1.(1)求m,n的值;(2)当x取何值时,y随x的增大而减小?19. 已知二次函数y=-x2+2x+m.(1)如果二次函数的图象与x轴有两个公共点,求m的取值范围;(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标;(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.20. 某班“数学兴趣小组”对函数y=x2-2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分;(3)观察函数图象,写出两条函数的性质;(4)进一步探究函数图象发现:①函数图象与x轴有________个交点,所以对应的方程x2-2|x|=0有________个实数根;②方程x2-2|x|=2有________个实数根;③关于x的方程x2-2|x|=a有4个实数根时,a的取值范围是________.21. 利用图象解一元二次方程x2-2x-1=0时,我们采用的一种方法是在直角坐标系中画出抛物线y=x2和直线y=2x+1,两图象交点的横坐标就是该方程的解.(1)请你再给出一种利用图象求方程x2-2x-1=0的解的方法;(2)已知函数y=x3的图象(如图),求方程x3-x-2=0的解(精确到0.1).人教版九年级数学22.2 二次函数与一元一次方程同步训练-答案一、选择题(本大题共10道小题)1. 【答案】C[解析] 当x=0时,y=-x2+4x-4=-4,则抛物线与y轴的交点坐标为(0,-4);当y=0时,-x2+4x-4=0,解得x1=x2=2,则抛物线与x轴的交点坐标为(2,0),所以抛物线与坐标轴有2个交点.故选 C.2. 【答案】A【解析】当x=2时,方程ax2+bx+c=0,因此方程有一个实数根为2.当x 由-1增大到0时,ax 2+bx +c 的值由-3增大到2,因此可以推断当x 在-1与0之间取某一值时,必有ax 2+bx +c =0,说明方程ax 2+bx +c =0必有一个根在-1与0之间.3. 【答案】A[解析] ∵抛物线与x 轴的一个交点的坐标是(1,0),对称轴是直线x =-1,∴抛物线与x 轴的另一个交点的坐标是(-3,0).故一元二次方程ax 2+bx +c =0的解是x 1=-3,x 2=1.故选A.4. 【答案】A5. 【答案】C6. 【答案】A[解析] 抛物线的对称轴是直线x =-2a2a =-1,∴抛物线与x 轴的另一个交点坐标是(-4,0).∵a <0,∴抛物线开口向下,∴使y <0成立的x 的取值范围是x <-4或x >2.故选A.7. 【答案】C【解析】∵图象过点(-1,0),∴将点(-1,0)代入方程得a +2a+c =0,即3a +c =0.当x =3时,将(3,0)代入方程也得到3a +c =0成立,当x =-3时,将(-3,0)代入方程也得到15a +c =0(与3a +c =0不相符),∴方程的两个根为x 1=-1,x 2=3.8. 【答案】B9. 【答案】C【解析】 如图.∵抛物线y =12x 2-7x +452与x 轴交于点A ,B ,∴B (5,0),A (9,0).∴抛物线C 1向左平移4个单位长度得到C 2,∴平移后抛物线的解析式为y =12(x -3)2-2.当直线y =12x +m 过点B 时,有2个交点, ∴0=52+m ,解得m =-52;当直线y =12x +m 与抛物线C 2只有一个公共点时,令12x +m =12(x -3)2-2,∴x 2-7x +5-2m = 0,∴Δ=49-20+8m =0,∴m =-298,此时直线的解析式为y =12x -298,它与x 轴的交点为(294,0),在点A 左侧,∴此时直线与C 1,C 2有2个交点,如图所示.∴当直线y =12x +m 与C 1,C 2共有3个不同的交点时,-298<m <-52.10. 【答案】D【解析】 如图,当y =0时,-x 2+x +6=0,解得x 1=-2,x 2=3,则A (-2,0),B (3,0).将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方的部分图象的解析式为y =(x +2)(x -3),即y =x 2-x -6(-2≤x ≤3).当直线y =-x +m 经过点A (-2,0)时,2+m =0,解得m =-2;当直线y =-x +m 与抛物线y =x 2-x -6有唯一公共点时,方程x 2-x -6=-x +m 有两个相等的实数根,解得m =-6.所以当直线y =-x +m 与新图象有4个交点时,m 的取值范围为-6<m <-2.二、填空题(本大题共7道小题)11. 【答案】6 【解析】 当y 取得最大值时,飞机停下来, 则y =60t -32t 2=-32(t -20)2+600,此时t =20,飞机着陆后滑行600米停下来, 因此t 的取值范围是0≤t ≤20. 当t =18时,y =594, 所以600-594=6(米). 故答案是:6.12. 【答案】(1)(-3,0)(1,0) (2)-4<x <2【解析】(1)当x2+2x-3=0时,解得x1=-3,x2=1,∴A(-3,0),B(1,0).(2)当y=5时,x2+2x-3=5,x2+2x-8=0,解得x1=-4,x2=2.由函数图象可得,当-4<x<2时,y<5.13. 【答案】k>-1且k≠014. 【答案】15[解析] 当x=0时,y=-5,∴点A的坐标为(0,-5);当y=0时,x2-4x-5=0,解得x1=-1,x2=5,不妨设点B在点C的左侧,∴点B的坐标为(-1,0),点C的坐标为(5,0),则BC=6,∴△ABC的面积为12×6×5=15.15. 【答案】x1=-2,x2=1[解析] 方程ax2=bx+c的解即抛物线y=ax2与直线y=bx+c交点的横坐标.∵交点是A(-2,4),B(1,1),∴方程ax2=bx+c的解是x1=-2,x2=1.16. 【答案】②③④[解析] 由图可知,抛物线的对称轴为直线x=1,与x轴的一个交点坐标为(3,0),∴b=-2a,抛物线与x轴的另一个交点坐标为(-1,0).①∵a>0,∴b<0,∴①错误;②当x=-1时,y=0,∴a-b+c=0,∴②正确;③一元二次方程ax2+bx+c+1=0的解是函数y=ax2+bx+c的图象与直线y=-1的交点的横坐标,由图象可知函数y=ax2+bx+c的图象与直线y=-1有两个不同的交点,∴一元二次方程ax2+bx+c+1=0(a≠0)有两个不相等的实数根,∴③正确;④由图象可知,y>0时,x<-1或x>3,∴④正确.17. 【答案】4[解析] x+y=-x2-2x+3=-(x+1)2+4,∴当x=-1时,x+y有最大值,最大值是4.三、解答题(本大题共4道小题)18. 【答案】解:(1)∵二次函数y =x 2+mx +n 的图象经过点P (-3,1),对称轴是直线x =-1,∴⎩⎪⎨⎪⎧1=9-3m +n ,-m 2=-1,解得⎩⎨⎧m =2,n =-2. (2)由(1)知二次函数的解析式为y =x 2+2x -2.∵a =1>0,∴抛物线的开口向上,∴当x ≤-1时,y 随x 的增大而减小.19. 【答案】解:(1)∵二次函数的图象与x 轴有两个公共点,∴Δ=b 2-4ac =22+4m >0,∴m >-1.(2)∵二次函数的图象过点A(3,0),∴0=-9+6+m ,∴m =3,∴二次函数的解析式为y =-x 2+2x +3.令x =0,则y =3,∴B(0,3).设直线AB 的解析式为y =kx +b ,∴⎩⎨⎧3k +b =0,b =3,解得⎩⎨⎧k =-1,b =3,∴直线AB 的解析式为y =-x +3.∵抛物线y =-x 2+2x +3的对称轴为直线x =1,∴把x =1代入y =-x +3,得y =2,∴P(1,2).(3)根据函数图象可知:使一次函数值大于二次函数值的x 的取值范围是x <0或x >3.20. 【答案】解:(1)m =0.(2分)(2)如解图所示:(4分)(3)①函数图象有两个最低点,坐标分别是(-1,-1)以及(1,-1).②函数图象是轴对称图形,对称轴是直线x=0(y轴).(6分)③从图象信息直接看出:当x<-1或0<x<1时,函数值随自变量的增大而减小;当-1<x<0或x>1时,函数值随自变量的增大而增大.④在x<-2或x>2时,函数值大于0,在-2<x<0或0<x<2时,函数值小于0等.(答案不唯一,合理即可)(4)①3,3;②2; ③-1<a<0.(10分)【解法提示】①观察图象可知函数图象与x轴有3个交点,∴方程x2-2|x|=0有3个不相等的实数根;②把抛物线y=x2-2|x|向下平移2个单位,得抛物线y=x2-2||x-2,则抛物线y=x2-2|x|-2与x轴只有2个交点,∴方程x2-2|x|-2=0有2个不相等的实数根;③把抛物线y=x2-2|x|向上平移0<h<1时,抛物线与x轴有4个交点,∴抛物线解析式y=x2-2|x|-a中,0<-a<1,∴-1<a<0.21. 【答案】解:(1)答案不唯一,如在直角坐标系中画出抛物线y=x2-1和直线y=2x,其交点的横坐标就是方程的解.(2)在图中画出直线y=x+2,与函数y=x3的图象交于点B,得点B的横坐标x≈1.5,∴方程的解为x≈1.5.22.3【实际问题与二次函数】一.选择题1.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣6(t﹣2)2+7,则小球距离地面的最大高度是()A.2米B.5米C.6米D.7米2.正方形的边长为3,如果边长增加x,那么面积增加y,则y与x之间的函数表达式是()A.y=3x B.y=(3+x)2C.y=9+6x D.y=x2+6x3.对于二次函数y=﹣(x﹣2)2﹣3,下列说法中正确的是()A.当x=﹣2时,y的最大值是﹣3B.当x=2时,y的最小值是﹣3C.当x=2时,y的最大值是﹣3D.当x=﹣2时,y的最小值是﹣34.一台机器原价50万元,如果每年的折旧率是x,两年后这台机器的价格为y万元,则y 与x的函数关系式为()A.y=50(1﹣x)2B.y=50(1﹣2x)C.y=50﹣x2D.y=50(1+x)2 5.若二次函数y=ax2+bx+c的图象开口向下、顶点坐标为(2,﹣3),则此函数有()A.最小值2B.最小值﹣3C.最大值2D.最大值﹣36.若抛物线y=x2﹣2x+m的最低点的纵坐标为n,则m﹣n的值是()A.﹣1B.0C.1D.27.已知二次函数y=a(x﹣1)2+b(a≠0)有最大值,则a,b的大小比较为()A.a>b B.a<b C.a=b D.不能确定8.二次函数y=﹣x2+6x﹣7,当x取值为t≤x≤t+2时,y=﹣(t﹣3)2+2,则t的取值最大值范围是()A.t=0B.0≤t≤3C.t≥3D.以上都不对9.已知二次函数y=a(x﹣1)2+b(a≠0)有最大值2,则a、b的大小比较为()A.a>b B.a<b C.a=b D.不能确定10.用一段20米长的铁丝在平地上围成一个长方形,求长方形的面积y(平方米)和长方形的一边的长x(米)的关系式为()A.y=﹣x2+20x B.y=x2﹣20x C.y=﹣x2+10x D.y=x2﹣10x 二.填空题11.已知x2﹣3x+y﹣5=0,则y﹣x的最大值为.12.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=﹣0.2x2+1.5x﹣2,则最佳加工时间为min.13.如图,有一个矩形苗圃园、其中一边靠墙(墙长为15m),另外三边用长为16m的篱笆围成,则这个苗圃园面积的最大值为.14.某工厂今年一月份生产防疫护目镜的产量是20万件,计划之后两个月增加产量,如果月平均增长率为x,那么第一季度防疫护目镜的产量y(万件)与x之间的关系应表示为.15.如图,P是抛物线y=x2﹣x﹣4在第四象限的一点,过点P分别向x轴和y轴作垂线,垂足分别为A、B,则四边形OAPB周长的最大值为.三.解答题16.龙眼是同安的特产,远销国内外.现有一个龙眼销售点在经销时发现:如果每箱龙眼盈利10元,每天可售出50箱.若每箱龙眼涨价1元,日销售量将减少2箱.若该销售点单纯从经济角度考虑,每箱龙眼应涨价多少元才能获利最高?17.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系y=﹣0.1x2+2.6x+43(0≤x≤30).y值越大,表示接受能力越强.(1)x在什么范围内,学生的接受能力逐步增强?(2)某同学思考10分钟后提出概念,他的接受能力是多少?18.某超市销售一种水果,进价为每箱40元,规定售价不低于进价.现在的售价为每箱72元,每月可销售60箱.经市场调查发现:若这种水果的售价每降低2元,则每月的销量将增加10箱,设每箱水果降价x元(x为偶数),每月的销量为y箱.(1)写出y与x之间的函数关系式和自变量x的取值范围.(2)若该超市在销售过程中每月需支出其他费用500元,则如何定价才能使每月销售水果的利润最大?最大利润是多少元?19.用长12m的一根铁丝围成长方形.(1)如果长方形的面积为5m2,那么此时长方形的较长的边是多少?(2)能否围成面积是10m2的长方形?为什么?(3)能围成的长方形的最大面积是多少?20.生产商对在甲、乙两地生产并销售的某产品进行研究后发现如下规律:每年年产量为x (吨)时所需的全部费用y(万元)与x满足关系式y=x2+5x+90,投人市场后当年能全部售10出,且在甲、乙两地每吨的售价P甲P乙(万元)均与x满足一次函数关系.(注:年利润=年销售额﹣全部费用)(1)当在甲地生产并销售x吨时,满足P甲=﹣x+14,求在甲地生成并销售20吨时利润为多少万元;(2)当在乙地生产并销售x吨时,P乙=﹣x+15,求在乙地当年的最大年利润应为多少万元?参考答案一.选择题1.解:∵h=﹣6(t﹣2)2+7,∴a=﹣6<0,∴抛物线的开口向下,函数由最大值,∴t=2时,h最大=7.故选:D.2.解:∵新正方形的边长为x+3,原正方形的边长为3,∴新正方形的面积为(x+3)2,原正方形的面积为9,∴y=(x+3)2﹣9=x2+6x,故选:D.3.解:对于二次函数y=﹣(x﹣2)2﹣3,由于﹣1<0,所以,当x=2时,y取得最大值,最大值为﹣3,故选:C.4.解:二年后的价格是为:50×(1﹣x)×(1﹣x)=50(1﹣x)2,则函数解析式是:y=50(1﹣x)2.故选:A.5.解:因为抛物线开口向下和其顶点坐标为(2,﹣3),所以该抛物线有最大值是﹣3.故选:D.6.解:∵y=x2﹣2x+m,∴==n,即m﹣1=n,∴m﹣n=1.故选:C.7.解:∵y=a(x﹣1)2+b有最大值,∴抛物线开口向下a<0,b=,∴a<b.故选:B.8.解:∵y=﹣x2+6x﹣7=﹣(x﹣3)2+2,当t≤3≤t+2时,即1≤t≤3时,函数为增函数,y max=f(3)=2,与y max=﹣(t﹣3)2+2矛盾.当3≥t+2时,即t≤1时,y max=f(t+2)=﹣(t﹣1)2+2,与y max=﹣(t﹣3)2+2矛盾.当3≤t,即t≥3时,y max=f(t)=﹣(t﹣3)2+2与题设相等,故t的取值范围t≥3,故选:C.9.解:∵二次函数y=a(x﹣1)2+b(a≠0)有最大值2,∴a<0,b=2,则a、b的大小比较为:a<b.故选:B.10.解:∵长方形一边的长度为x米,周长为20米,∴长方形的另外一边的长度为(10﹣x)米,则长方形的面积y=x(10﹣x)=﹣x2+10x,故选:C.二.填空题11.解:∵x2﹣3x+y﹣5=0,∴y=﹣x2+3x+5,∴y﹣x=﹣x2+2x+5=﹣(x﹣1)2+6,∴y﹣x的最大值为6,故答案为6.12.解:根据题意:y=﹣0.2x2+1.5x﹣2,当x=﹣=3.75时,y取得最大值,则最佳加工时间为3.75min.故答案为:3.75.13.解:设垂直于墙面的长为xm,则平行于墙面的长为(16﹣2x)m,由题意可知:y=x(16﹣2x)=﹣2(x﹣4)2+32,且x<8,∵墙长为15m,∴16﹣2x≤15,∴0.5≤x<8,∴当x=4时,y取得最大值,最大值为32m2;故答案为:32m2.14.解:y与x之间的关系应表示为:y=20+20(x+1)+20(x+1)2.故答案为:y=20+20(x+1)+20(x+1)2.15.解:设P(x,x2﹣x﹣4),四边形OAPB周长=2PA+2OA=﹣2(x2﹣x﹣4)+2x=﹣2x2+4x+8=﹣2(x﹣1)2+10,当x=1时,四边形OAPB周长有最大值,最大值为10.故答案为10.三.解答题16.解:设每箱龙眼应涨价x元,总利润为y,根据题意可得:y=(10+x)(50﹣2x)=﹣2x2+30x+500=﹣2(x﹣)2+612.5,答:每箱龙眼应涨价元才能获利最高.17.解:(1)∵y=﹣0.1(x2﹣26x+169)+16.9+43=﹣0.1(x﹣13)2+59.9∴对称轴是:直线x=13即当(0≤x≤13)提出概念至(13分)之间,学生的接受能力逐步增强;(2)当x=10时,y=﹣0.1×102+2.6×10+43=59.18.解:(1)根据题意知y=60+5x,(0≤x≤32,且x为偶数);(2)设每月销售水果的利润为w,则w=(72﹣x﹣40)(5x+60)﹣500=﹣5x2+100x+1420=﹣5(x﹣10)2+1920,当x=10时,w取得最大值,最大值为1920元,答:当售价为62元时,每月销售水果的利润最大,最大利润是1920元.19.解:设长方形的宽为xm,则长为(12﹣2x)m,即为(6﹣x)m,则6﹣x≥x,得0<x≤3,(1)根据题意,得x(6﹣x)=5,即x2﹣6x+5=0,x1=5,x2=1(舍去),∴此时长方形较长的边为5m.(2)当面积为10m2时,x(6﹣x)=10,即x2﹣6x+10=0,此时b2﹣4ac=36﹣40=﹣4<0,故此方程无实数根.所以这样的长方形不存在.(3)设围成的长方形面积为k,则有x(6﹣x)=k.即x2﹣6x+k=0,要使该方程有解,必须(﹣6)2﹣4k≥0,即k≤9,∴最大的k只能是9,即最大的面积为9m2,此时x=3m,6﹣x=3m,这时所围成的图形是正方形.20.解:(1)甲地当年的年销售额为(﹣x+14)•x=(﹣x2+14x)万元;w=(﹣x2+14x)﹣(x2+5x+90)=﹣x2+9x﹣90.甲=﹣×202+9×20﹣90=30,当x=20时,w甲所以在甲地生成并销售20吨时利润为30万元;(2)在乙地区生产并销售时,年利润:w=﹣x2+15x﹣(x2+5x+90)乙=﹣x2+10x﹣90=﹣(x﹣25)2+35.∴当x=25时,w有最大值35万元,乙∴在乙地当年的最大年利润应为35万元.。
九年级数学上册第二十二章《二次函数》测试卷-人教版(含答案)
九年级数学上册第二十二章《二次函数》测试卷-人教版(含答案)考试范围:全章综合测试 参考时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.对于函数y =5x 2,下列结论正确的是( )A . y 随x 的增大而增大B . 图象开口向下C .图象关于y 轴对称D .无论x 取何值,y 的值总是正的 【答案】C .详解:a =5>0,开口向上,对称轴为y 轴,在y 轴左侧,y 随x 的增大而减小,在y 轴的右侧, y 随x 的增大而增大,当x =0时,y =0. 故A 错,B 错,C 对,D 错,∴答案选C . 2.二次函数y =x 2-4x 的图象的对称轴是( )A . x =4B . x =-4C . x =-2D . x =2 【答案】D .详解:a =1,b =-4,由对称轴公式,对称轴为x =-2ba=2,故选D . 3.二次函数y =2(x +1)2-3的图象的顶点坐标是( )A . (1,3)B . (-1,3)C . (1,-3)D .(-1,-3) 【答案】D .详解:知识点:抛物线的顶点式为y =a (x -h )2+k ,顶点坐标为(h ,k ).4.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价. 若设平均每次降价的 百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数关系式为( ) A . y =2a (x -1) B . y =2a (1-x ) C . y =a (1-x 2) D . y =a (1-x )2 【答案】D .详解:第一次降价后的价格为a (1-x )元,第二次降价后的价格为a (1-x )2,故选D . 5.用配方法将函数y =x 2-2x +2写成y =a (x -h )2+k 的形式是( )A . y =(x -1)2+1B . y =(x -1)2-1C . y =(x -1)2-3D . y =(.x +1)2-1 【答案】A .详解:y =x 2-2x +2=(x 2-2x +1)+1=(x -1)2+1,故选A .6.把抛物线y =2x 2绕原点旋转180°,再向右平移1个单位长度,向下平移2个单位长度,所得 的抛物线的函数表达式为( )A . y =2(x -1)2-2B . y =2(x +1)2-2C . y =-2(x -1)2-2D . y =-2(.x +1)2-2 【答案】C .详解:原抛物线的顶点为(0,0),旋转180°后,开口向下,顶点为(0,0),两次平移后的 顶点为(1,-2),故答案为y =-2(x -1)2-2.7. 在比赛中,某次羽毛球的运动路线可以看作是抛物线y=-14x2+bx+c的一部分(如图),其中出球点B离地面O点的距离是1m,球落地点A到O点的距离是4m,那么这条抛物线的解析式是()A. y=-14x2+34x+1 B. y=-14x2+34x-1C. y=-14x2-34x+1 D. y=-14x2-34x-1【答案】A.详解:依题意,点B的坐标为(0,1),点A的坐标为(4,0),把A( 4,0),B(0,1)代入y=-14x2+bx+c,解得b=34,c=1,故选A.另法:由B(0,1),可排除B、D,根据“左同右异”的规律,可排除C.8.抛物线y=ax2-2ax+c经过点A(2,4),若其顶点在第四象限,则a的取值范围为()A. a>4B. 0<a<4C. a>2D. 0<a<2【答案】A.详解:把A(2,4)代入,得c=4,∴y=ax2-2ax+4=a(x-1)2+4-a,顶点为(1,4-a),∵顶点在第四象限,∴4-a<0,∴a>4.9.飞机着陆后滑行的距离y(m)关于滑行时间t(s)的函数解析式是y=60t-32t2,飞机着陆至停下来共滑行()A. 20米B. 40米C. 400米D. 600米【答案】D.详解:配方得y=-32(t-20)2+600,∴当t=20时,y取得最大值600,即飞机着陆后滑行600米才能停下来.10. 如图,抛物线y=-2x2+mx+n与x轴交于A、B两点. 若线段AB的长度为4,则顶点C到x轴的距离为()A. 6B. 7C. 8D. 9【答案】C.详解:令y=0,得-2x2+mx+n=0,解得x=284m m n ±+.∴AB=|x1-x2|=282m n+=4,∴m2+8n=64.∴244ac ba-=24(2)4(2)n m---=288m n+=8,故答案选C.二、填空题(每小题3分,共18分)11.抛物线y =2x 2-4的顶点坐标是___________. 【答案】(0,-4).详解:a =2,b =0,c =-4,开口向上,对称轴为y 轴,顶点为(0,-4).12. 若方程ax 2+bx +c =0的解为x 1=-2,x 2=4,则二次函数y =ax 2+bx +c 的对称轴为______. 【答案】直线x =1. 详解:x =242-+=1. 13.如图,抛物线y =a (x -2)2+k (a 、k 为常数且a ≠0)与x 轴交于点A 、B 两点, 与y 轴交于点C ,过点C 作CD ∥x 轴与抛物线交于点D . 若点A 坐标为 (-2,0),则OBCD的值为_________. 【答案】32.详解:抛物线的对称轴为x =2,C 在y 轴上,∴CD =4.又∵A (-2,0),∴B (6,0),∴OB =6. ∴6342OB CD ==. 14.如图,Rt △OAB 的顶点A (-2,4)在抛物线y =ax 2上,将Rt △OAB 向右 平移得到△O 1AB 1,平移后的O 1A 1与抛物线交于点P ,若P 为线段A 1O 1 的中点,则点P 的坐标为________. 【答案】P (2,2).详解:把A (-2,4)代入y =ax 2得a =1,∴y =x 2. ∵A (-2,4),∴点A 1的纵坐标为4, ∵P 为O 1A 1的中点,∴点P 的纵坐标为2, 把y =2代入y =x 2,得x =±2. 取x =2,∴P (2,2).15.下列关于二次函数y =x 2-2mx +1(m 为常数)的结论: ①该函数的图象与函数y =-x 2+2mx 的图象的对称轴相同; ②该函数的图象与x 轴有交点时,m >1;③该函数的图象的顶点在函数y =-x 2+1的图象上;④点A (x 1,y 1)与点B (x 2,y 2)在该函数的图象上,若x 1<x 2,x 1+x 2<2m ,则y 1<y 2· 其中正确的结论是________________(填写序号). 【答案】①③.详解:对于①,根据对称轴公式,两抛物线对称轴均为x =m ,故①正确; 对于②,Δ=b 2-4ac =4m 2-4≥0,∴m ≥1或m ≤-1,故②错; 对于③,y =x 2-2mx +1的顶点为(m ,-m 2+1),显然③正确; 对于④,抛物线的开口向上,对称轴为x =m ,∵x 1+x 2<2m ,∴122x x +<m ,P O 1A 1B 1又∵x1<x2,∴点A离对称轴的距离大于点B离对称轴的距离,∴y1>y2,故④错;综上,正确的有①③.16.如图,抛物线y=x2+2x与直线y=2x+1交于A、B两点,与直线x=2交于点D,将抛物线沿着射线AB方向平移25个单位. 在整个平移过程中,点D经过的路程为___________.【答案】738.详解:平移前,D(2,8),∴直线AB的解析式为y=2x +1,∴抛物线沿射线AB方程平移25个单位时,相当于抛物线向右平移了4个单位,向上平移了2个单位. ∵原抛物线顶点为M(-1,-1),平移后的顶点为M′(3,1),平移后的抛物线为y=(x-3)2+1,此时D′(2,2),直线MM′的解析式为y=12x-12,平移过程中,抛物线的顶点始终在y=12x-12上,设顶点为(a,12a-12),-1≤a≤3,抛物线的解析式为y=(x-a)2+12a-12,当x=2时,y=(2-a)2+12a-12=a2-72a+72,即在平移过程中,抛物线与直线x=2的交点的纵坐标为y=a2-72a+72,∵y=a2-72a+72=(a-74)2+716,∴当a=74时,点D到达最低点,此时D(2,716)当a=3时,y=(x-3)2+1,此时D(2,2);观察图形,可知点D的运动路径为D(2,8)→D(2,716)→D(2,2),路径长为(8-716)+(2-716)=738.三、解答题(共8题,共72分)17.(8分)通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标.(1) y=x2-4x+6;(2) y=-4x2+4x.【答案】(1) y=x2-4x+6=x2-4x+4+2=(x-2)2+2,开口向上,对称轴为x=2,顶点坐标为(2,2).(2) y=-4x2+4x=-4(x2-x)=-4(x2-x+14-14)=-4(x-12)2+1,yxM‘MBAD2O开口向下,对称轴为x =12,顶点坐标为(12,1).18.(8分)二次函数的最大值为4,其图象的对称轴为x =2,且过点(1,2),求此函数的解析式. 【答案】∵函数的最大值为4,图象的对称轴为x =2, ∴可设函数的解析式为y =a (x -2)2+4,把(1,2)代入,得:a (1-2)2+4=2,解得a =-2, ∴函数的解析式为y =-2(x -2)2+4.19.(8分)二次函数y =x 2+bx +c 图象上部分点的横坐标x 、纵坐标y 的对应值如下表: (1)求二次函数的表达式;(2)画出二次函数的示意图,结合函数图象, 直接写出y <0时自变量x 的取值范围. 【答案】(1) 把(0,3),(1,0)代入y =x 2+bx +c , 得:310c b c =⎧⎨++=⎩,解得43b c =-⎧⎨=⎩,∴二次函数的表达式为y =x 2-4x +3;(2) 函数的图象如图所示,由图象,可知当1<x <3时,y <0.20.(8分)二次函数的图象与直线y =x +m 交于x 轴上一点A (-1,0), 图象的顶点为C (1,-4). (1)求这个二次函数的解析式;(2)若二次函数的图象与x 轴交于另一点B ,与直线 y =x +m 交于另一点D ,求△ABD 的面积. 【答案】(1)∵图象的顶点为C (1,-4),可设抛物线的解析式为y =a (x -1)2-4, 把(-1,0)代入,得:4a -4=0,∴a =1. ∴抛物线的解析式为y =(x -1)2-4, 即y =x 2-2x -3.(2)令y =0,得x 2-2x -3=0,∴x 1=-1,x 2=3. ∴B (3,0). 把A (-1,0)代入y =x +m ,得m =1,∴y =x +1. 联立2123y x y x x =+⎧⎨=--⎩,解得1110x y =-⎧⎨=⎩,2245x y =⎧⎨=⎩,∴D (4,5). ∵A (-1,0),B (3,0),∴AB =4,x… 0 1 2 3 … y … 3 0 -1 0 …yx123O∴△ABD 的面积S =12×4×5=10.21.(8分)如图,抛物线y =-12x 2+52x -2与x 轴相交于A 、B 两点,与y 轴相交于点C . (1)求△ABC 各顶点的坐标及△ABC 的面积;(2)过点C 作CD ∥x 轴交抛物线于点D . 若点P 在线段AB 上以 每秒1个单位长度的速度由点A 向点B 运动,同时点Q 在线 段CD 上以每秒1.5个单位长度的速度由点D 向点C 运动,问: 经过几秒时,PQ =AC ?【答案】(1)令y =0,得-12x 2+52x -2=0,得x 1=1,x 2=4. ∴A (1,0),B (4,0).令x =0,得y =-2,∴C (0,-2).△ABC 的面积为S =12AB ·OC =12×3×2=3.(2) 设经过t 秒后,PQ =AC . 则AP =t ,P (1+t ,0) 抛物线的对称轴为x =2.5,∵C (0,-2),∴D (5,-2). DQ =1.5t ,∴CQ =5-1.5t ,∴Q (5-1.5t ,-2).过P 作PH ⊥CQ 于H ,则PH =OC ,∵PQ =AC ,∴HQ =OA =1. 即|(1+t )-(5-1.5t )|=1,化简得|2.5t -4|=1,解得t =2或65.所以,经过2秒或65秒时,PQ =AC .22. (10分)如图,有一面长为a m 的墙,利用墙长和30m 的篱笆,围成中间隔有一道篱笆的长方形 花圃,设花圃的宽AB 为x m ,面积为S m 2. (1)当a =10时;①求S 与x 的关系式,并写出自变量x 的取值范围; ②如果要围成面积为48m 2的花圃,AB 的长是多少m ? (2)求长方形花圃的最大面积.【答案】(1) ①AB =CD =x ,BC =30-3x , ∴S =x (30-3x )=-3x 2+30x , 由0<BC ≤a ,得0<30-3x ≤10,∴203≤x <10. ② 令S =48,得-3x 2+30x =48,即x 2-10x +16=0,H30-3xxxx解得:x =8或2(舍),∴AB 的长为8m . (2) S =-3x 2+30x =-3(x -5)2+75, ∵0<30-3x ≤a ,∴10-3a≤x <10.∵抛物线开口向下,对称轴为x =5,1°当10-3a≤5时,即a ≥15,此时当x =5时,S 取得最大值75;2°当10-3a>5,即0<a <15,此时S 随x 的增大而减小,则当x =10-3a 时,S 的最大值为10a -13a 2.答:当a ≥15时,长方形花圃的最大面积为75m 2;当0<a <15,长方形花圃的最大面积为(10a -13a 2)m 2.23.(10分)某小区内超市在“新冠肺炎”疫情期间,两周内标价为10元/斤的某种水果,经过两次 降价后的价格为8.1元/斤,并且两次降价的百分率相同. (1)求该种水果每次降价的百分率;(2)①从第一次降价的第1天算起,第x 天(x 为整数)的售价、销量及储存和损耗费用的 相关信息如表所示:已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元), 求y 与x (1≤x <15)之间的函数解析式,并求出第几天时销售利润最大.②在①的条件下,问这14天中有多少天的销售利润不低于330元,请直接写出结果. 【答案】(1) 设该种水果每次降价的百分率为x ,依题意,得: 10(1-x )2=8.1,解得x =0.1或1.9(舍去). 答:该种水果每次降价的百分率为10%.(2) ① 当1≤x <9时,第一次降价后的价格为10(1-10%)=9(元), ∴y =(9-4.1)(80-3x )-(40+3x )=-17.7x +352,y 随x 的增大而减小,∴当x =1时,y 取得最大值为334.3(元); 当9≤x <15时,第二次降价后的价格为8.1(元),∴y =(8.1-4.1)(120-x )-(3x 2-64x +400)=-3x 2+60x +80=-3(x -10)2+380, 图象的开口向下,当x =10时,y 取得最大值为380(元)>334.3(元).时间x (天) 1≤x <9 9≤x <15 售价(元/斤) 第1次降价后的价格第2次降价后的价格销量(斤) 80-3x 120-x 储存和损耗费用(元)40+3x3x 2-64x +400综上,第10天时销售利润最大. ②7天.提示:当1≤x <9时,y =-17.7x +352≥330,解得x ≤220177, ∵x 为正整数,∴x =1;当9≤x <15时,y =-3(x -10)2+380≥330,解得10-563≤x ≤10+563, ∵x 为正整数,9≤x <15,∴x =9,10,11,12,13,14,共6天; 1+6=7,故一共有7天.24.(12分)直线y =kx +k +2与抛物线y =12x 2交于A 、B 两点(A 在B 的左侧). (1)直线AB 经过一个定点M ,直接写出M 点的坐标;(2)如图1,点C (-1,m )在抛物线上,若△ABC 的面积为3,求k 的值;(3)如图2,分别过A 、B 且与抛物线只有唯一公共点的两条直线交于点P ,求OP 的最小值. 【答案】(1) M (-1,2);提示:y =k (x +1)+2, 直线AB 过定点,令x +1=0, 得y =2,∴定点为M (-1,2). (2) 过C 作CD ∥y 轴交AB 于D ,把C (-1,m )代入y =12x 2,得C (-1,12).把x =-1代入y =kx +k +2,得D (-1,2), ∴CD =2-12=32.联立2212y kx k y x =++⎧⎪⎨=⎪⎩,得x 2-2kx -(2k +4)=0, 设点A 、B 的横坐标分别为a 、b ,则a 、b 为上述方程的根, ∴a +b =2k ,ab =-(2k +4).∵△ABC 的面积为3,由铅垂法,得12CD (b -a )=3,即12×32(b -a )=3,∴b -a =4. 两边平方,得(a +b )2-4ab =16,∴(2k )2+4(2k +4)=16, 整理,得:k 2+2k =0,解得k =0或-2. (3) 设点A 、B 的横坐标分别为a 、b ,则a ≠b . 由(2),a +b =2k ,ab =-(2k +4),∴设直线P A 的解析式为y =px +q ,联立212y px qy x =+⎧⎪⎨=⎪⎩,得 x 2-2px -2q =0,D∵P A 与抛物线只有唯一公共点,∴上述方程有两个相等的实数根(x 1=x 2=a ), 由根与系数的关系,得a +a =2p ,a ·a =-2q ,∴p =a ,q =-12a 2.∴直线P A 的解析式为y =ax -12a 2.同理,直线PB 的解析式为y =bx -12b 2.联立221212y ax a y bx b ⎧=-⎪⎪⎨⎪=-⎪⎩,解得x =2a b +=k ,y =2ab =-(k +2). ∴P (k ,-k -2).∴OP 2=k 2+(-k -2)2=2k 2+4k +4=2(k +1)2+2, 当k =-1时,OP 2.。
人教新版九年级上册数学第22章 《二次函数》单元测试卷【含答案】
人教新版九年级上册数学第22章《二次函数》单元测试卷一.选择题1.下列函数中是二次函数的为()A.y=3x﹣1B.y=3x2﹣1C.y=(x+1)2﹣x2D.y=x3+2x﹣32.函数y=(m﹣n)x2+mx+n是二次函数的条件是()A.m、n是常数,且m≠0B.m、n是常数,且m≠nC.m、n是常数,且n≠0D.m、n可以为任何常数3.若函数y=a是二次函数且图象开口向上,则a=()A.﹣2B.4C.4或﹣2D.4或34.若y=2是二次函数,则m等于()A.﹣2B.2C.±2D.不能确定5.在同一坐标系中,作y=x2,y=﹣x2,y=x2的图象,它们的共同特点是()A.抛物线的开口方向向上B.都是关于x轴对称的抛物线,且y随x的增大而增大C.都是关于y轴对称的抛物线,且y随x的增大而减小D.都是关于y轴对称的抛物线,有公共的顶点6.已知二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A.a>b>c B.c>a>b C.c>b>a D.b>a>c7.关于二次函数y=﹣(x+1)2+2的图象,下列判断正确的是()A.图象开口向上B.图象的对称轴是直线x=1C.图象有最低点D.图象的顶点坐标为(﹣1,2)8.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+m,则m的值是()A.1或7B.﹣1或7C.1或﹣7D.﹣1或﹣79.在同一平面直角坐标系中,一次函数y=kx﹣2k和二次函数y=﹣kx2+2x﹣4(k是常数且k≠0)的图象可能是()A.B.C.D.10.二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()A.B.C.D.二.填空题11.若y=(2﹣m)是二次函数,且开口向上,则m的值为.12.如果函数是关于x的二次函数,那么k的值是.13.当m=时,函数y=(m﹣1)是关于x的二次函数.14.如果y=(m﹣2)是关于x的二次函数,则m=.15.抛物线y=ax2﹣3x+a2﹣1如图所示,则a=.16.如图所示,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(﹣1,0)和B(2,0),当y<0时,x的取值范围是.17.已知抛物线y=x2+4x+5的对称轴是直线x=.18.在正方形的网格中,抛物线y1=x2+bx+c与直线y2=kx+m的图象如图所示,请你观察图象并回答:当﹣1<x<2时,y1y2(填“>”或“<”或“=”号).19.如图是二次函数y=a(x+1)2+2图象的一部分,该图在y轴右侧与x轴交点的坐标是.20.抛物线y=(x﹣2)2+3的顶点坐标是.三.解答题21.画出函数y=x2﹣2x﹣8的图象.(1)先求顶点坐标:(,);(2)列表x……y……(3)画图.22.函数是关于x的二次函数,求m的值.23.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?24.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?25.已知是x的二次函数,求出它的解析式.26.已知二次函数y=ax2+bx+c.(1)当a=1,b=﹣2,c=1时,请在图上的直角坐标系中画出此时二次函数的图象;(2)用配方法求该二次函数的图象的顶点坐标.27.下图是数值转换机的示意图,小明按照其对应关系画出了y与x的函数图象.(1)分别写出当0≤x≤4与x>4时,y与x的函数关系式;(2)小明说:“所输出y的值为3时,输入x的值为0或5.”你认为他说的对吗?试结合图象说明.答案与试题解析一.选择题1.解:A、y=3x﹣1是一次函数,故A错误;B、y=3x2﹣1是二次函数,故B正确;C、y=(x+1)2﹣x2不含二次项,故C错误;D、y=x3+2x﹣3是三次函数,故D错误;故选:B.2.解:根据二次函数的定义可得:m﹣n≠0,即m≠n.故选:B.3.解:∵函数y=a是二次函数且图象开口向上,∴a2﹣2a﹣6=2,且a>0,解得a=4.故选:B.4.解:由y=2是二次函数,得m2﹣2=2,解得m=±2,故选:C.5.解:因为y=ax2形式的二次函数对称轴都是y轴,且顶点都在原点,所以它们的共同特点是:关于y轴对称的抛物线,有公共的顶点.故选:D.6.解:由函数图象已知a>0,c<0,∵﹣=﹣1,∴b=2a,∴b>a,∴b>a>c,故选:D.7.解:∵﹣1<0,∴函数的开口向下,图象有最高点,∵这个函数的顶点是(﹣1,2),∴对称轴是直线x=﹣1,故选:D.8.解:∵一条抛物线的函数表达式为y=﹣x2+4x+m,∴这条抛物线的顶点为(2,m+4),∴关于x轴对称的抛物线的顶点(2,﹣m﹣4),∵它们的顶点相距6个单位长度.∴|m+4﹣(﹣m﹣4)|=6,∴2m+8=±6,当2m+8=6时,m=﹣1,当2m+8=﹣6时,m=﹣7,∴m的值是﹣1或﹣7.故选:D.9.解:A、由一次函数图象可知,k>0,∴﹣k<0,∴二次函数的图象开口应该向下,故A 选项不合题意;B、由一次函数图象可知,k>0,∴﹣k<0,,∴二次函数的图象开口向下,且对称轴在x轴的正半轴,故B选项不合题意;C、由一次函数图象可知,k<0,∴﹣k>0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y =﹣4k>0,故C选项符合题意;D、由一次函数图象可知,k<0,∴﹣k>0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y =﹣4k>0,故D选项不合题意;故选:C.10.解:由一次函数y=ax+a可知,一次函数的图象与x轴交于点(﹣1,0),排除A、B;当a>0时,二次函数y=ax2开口向上,一次函数y=ax+a经过一、二、三象限,当a<0时,二次函数开口向下,一次函数经过二、三、四象限,排除C;故选:D.二.填空题11.解:根据题意得,m2﹣3=2,解得m=±,∵开口向上,∴2﹣m>0,解得m<2,∴m=﹣.故﹣.12.解:由题意得:k2﹣3k+2=2,解得k=0或k=3;又∵k﹣3≠0,∴k≠3.∴k的值是0时.故0.13.解:依题意可知m2+1=2得m=1或m=﹣1又因为m﹣1≠0∴m≠1∴当m=﹣1时,这个函数是二次函数.14.解:根据二次函数的定义:m2﹣m=2,m﹣2≠0,解得:m=﹣1,故﹣1.15.解:∵二次函数的图象过原点(0,0),代入抛物线解析式,得a2﹣1=0,解得a=1或a=﹣1,又∵抛物线的开口向下,故a<0,∴a=﹣1.16.解:观察图象可知,抛物线与x轴两交点为(﹣1,0),(2,0),y<0,图象在x轴的下方,所以答案是x<﹣1或x>2.17.解:由对称轴公式:对称轴是直线x=﹣=﹣=﹣2,故﹣2.18.解:根据图示知,①当x≤﹣1时,y2≤y1;②当﹣1<x<2时,y2<y1;③当x≥2时,y2≥y1;故<.19.解:由y=a(x+1)2+2可知对称轴x=﹣1,根据对称性,图象在对称轴左侧与x轴交点为(﹣3,0),所以该图在对称轴右侧与x轴交点的坐标是(1,0).20.解:y=(x﹣2)2+3是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(2,3).故(2,3)三.解答题21.解:(1)y=x2﹣2x﹣8=(x﹣1)2﹣9∴其顶点坐标为(1,﹣9)故1,﹣9(2)列表x…﹣2﹣101234…y…0﹣5﹣8﹣9﹣8﹣50…(3)画图:22.解:由题意可知解得:m=2.23.解:(1)依题意得∴∴m=0;(2)依题意得m2﹣m≠0,∴m≠0且m≠1.24.解:(1)根据一次函数的定义,得:m2﹣m=0解得m=0或m=1又∵m﹣1≠0即m≠1;∴当m=0时,这个函数是一次函数;(2)根据二次函数的定义,得:m2﹣m≠0解得m1≠0,m2≠1∴当m1≠0,m2≠1时,这个函数是二次函数.25.解:由二次函数的定义,可知m2+m≠0,即m≠0,m≠﹣1又因为m2﹣2m﹣1=2,m2﹣2m﹣3=0解得m=3或m=﹣1(不合题意,舍去)所以m=3故y=12x2+9.26.解:(1)当a=1,b=﹣2,c=1时,y=x2﹣2x+1=(x﹣1)2,∴该二次函数的顶点坐标为(1,0),对称轴为直线x=1,利用函数对称性列表如下:x…﹣10123…y…41014…在给定的坐标中描点,画出图象如下.(2)由y=ax2+bx+c是二次函数,知a≠0y=a(x2+x)+c=a[x2+x+()2]+c﹣a×()2=a(x+)2+∴该二次函数图象的顶点坐标为.27.解:(1)当0≤x≤4时,y=x+3;当x>4时,由图表可知y=(x﹣6)2+k,由函数图象可知,当x=4时,y=x+3=6,此时(4﹣6)2+k=6,解得k=2,所以,当x>4时,y=(x﹣6)2+2;(2)他说的错误.把y=3代入y=x+3中,得x+3=3,解得x=0,把y=3代入y=(x﹣6)2+2中,得(x﹣6)2+2=3,解得x=5或7,正确说法是:所输出y的值为3时,输入x的值为0或5或7.。
人教版九年级数学上册第二十二章《二次函数》测试题(含答案)
人教版九年级数学上册第二十二章《二次函数》测试题(含答案)一、单选题1.下列函数中,y 是x 的二次函数的是( ) A .22(1)y x x =--B .(2)y x x =-+C .21y x=D .2x y =2.若函数2221()m m y m m x --=+是二次函数,则m 的值是( ) A .2B .-1或3C .-1D .33.已知二次函数y =(a ﹣1)x 2﹣x +a 2﹣1图象经过原点,则a 的取值为( ) A .a =±1B .a =1C .a =﹣1D .无法确定4.苹果熟了,从树上落下所经过的路线s 与下落的时间t 满足s=212gt (g 是不为0的常数),则s 与t 的函数图象大致是( )A .B .C .D .5.若二次函数y=ax 2+1的图象经过点(-2,0),则关于x 的方程a (x-2)2+1=0的实数根为( ) A .1x 0=,2x 4= B .1x 2=-,2x 6= C .132x =,25x 2=D .1x 4=-,2x 0=6.由二次函数22(3)1y x =-+可知( ) A .其图象的开口向下 B .其图象的对称轴为3x =- C .其最大值为1D .当3x <时,y 随x 的增大而减小7.二次函数y =﹣2x 2+4x +1的图象如何平移可得到y =﹣2x 2的图象( ) A .向左平移1个单位,向上平移3个单位 B .向右平移1个单位,向上平移3个单位 C .向左平移1个单位,向下平移3个单位 D .向右平移1个单位,向下平移3个单位8.如果二次函数2(0)y ax bx c a =++≠的图像如图所示,那么( )A .a 0,b 0,c 0<>>B .0,0,0a b c >>>C .0,0,0a b c ><<D .0,0,0a b c >><9.已知函数y =kx 2﹣7x ﹣7的图象和x 轴有交点,则k 的取值范围是( )A .74k >-B .74k ≥-C .74k ≥-且k ≠0D .74k >-且k ≠010.根据表格中代数式ax 2+bx +c =0与x 的对应值,判断方程ax 2+bx +c =0(其中a ,b ,c 是常数,且a ≠0)的一个根x 的大致范围是( )x 6.17 6.18 6.19 6.20 ax 2+bx +c ﹣0.03﹣0.010.020.06A .6<x <6.17B .6.17<x <6.18C .6.18<x <6.19D .6.19<x <6.2011.老师出示了小黑板上的题后(如图),小华说:过点(3,0);小彬说:过点(4,3);小明说:a=1;小颖说:抛物线被x 轴截得的线段长为2.你认为四人的说法中,正确的有( )A .1个B .2个C .3个D .4个12.某超市销售一种商品,每件成本为50元,销售人员经调查发现,该商品每月的销售量y (件)与销售单价x (元)之间满足函数关系式5550y x =-+,若要求销售单价不得低于成本,为每月所获利润最大,该商品销售单价应定为多少元?每月最大利润是多少?( ) A .90元,4500元 B .80元,4500元 C .90元,4000元 D .80元,4000元二、填空题13.若二次函数y =(m +2)23mx -的图象开口向下,则m =______.14.点P (m ,n )在以y 轴为对称轴的二次函数y =x 2+ax +4的图象上,则m -n 的最大值为_________.15.抛物线223(0)y ax ax a =--≠与x 轴交于两点,分别是()0m ,,(),0n ,则m n +的值为_______.16.如图,抛物线2y ax =与直线y bx c =+的两个交点坐标分别为()2,4A -,()1,1B ,则关于x 的方程20ax bx c --=的解为______.17.如图是某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A ,B 两点,拱桥最高点C 到AB 的距离为8m ,24m AB =,D ,E 为拱桥底部的两点,且//DE AB ,若DE 的长为36m ,则点E 到直线AB 的距离为______.三、解答题18.已知抛物线y =ax 2-2ax -6+a 2(a ≠0) (1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x 轴上,求其对应的函数的解析式.19.已知二次函数2y x px q +=+的图象经过(0,1),(2,1)A B -两点. (1)求,p q 的值.(2)试判断点(1,2)P -是否在此函数的图象上.20.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为区域ABCD 的面积为y m 2. (1)求y 与x 之间的函数关系式;(2)当x 为何值时,y 有最大值?最大值是多少?21.已知二次函数2123y x x =--的图像与x 轴交于A 、B 两点(A 在B 的左侧),与y轴交于点C ,顶点为D .(1)求点A 、B 、D 的坐标,并在下面直角坐标系中画出该二次函数的大致图像; (2)设一次函数()20y kx b k =+≠的图像经过B 、C 两点,请直接写出满足12y y <的x 的取值范围.22.已知,如图,二次函数y=ax 2+bx+c 的图象与x 轴交于A 、B 两点,其中A 点坐标为(﹣1,0),点C (0,5),另抛物线经过点(1,8),M 为它的顶点. (1)求抛物线的解析式; (2)求①MCB 的面积.23.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y =kx+b,且x=65时,y=55;x=75时,y=45.(1)求一次函数的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?24.国庆期间,某商场销售一种商品,进货价为20元/件,当售价为24元/件时,每天的销售量为200件,在销售的过程中发现:销售单价每上涨1元,每天的销量就减少10件.设销售单价为x(元/件)(x≥24),每天销售利润为y(元).(1)直接写出y与x的函数关系式为:;(2)若要使每天销售利润为1400元,求此时的销售单价;(3)若每件小商品的售价不超过36元,求该商场每天销售此商品的最大利润.参考答案1.BA . 22(1=)2+1y x x x =---是一次函数,不合题意;B . 2(2)=2y x x x x =-+--是二次函数,合题意;C . 21y x =不是二次函数,不合题意; D . 2x y =不是函数,不合题意; 故选:B . 2.D根据题意得:22212m m m m ⎧+≠⎨--=⎩解得:m=3. 故选:D . 3.C解:①二次函数y =(a ﹣1)x 2﹣x +a 2﹣1 的图象经过原点, ①a 2﹣1=0, ①a =±1, ①a ﹣1≠0, ①a ≠1, ①a 的值为﹣1. 故选:C 4.B 解:由21,2s gt =可得:s 是t 的二次函数,且函数图像经过原点,图像的开口向上, 所以:A 错误,B 正确,,C D 错误, 故选:.B 5.A解:①二次函数y=ax 2+1的图象经过点(-2,0), ①4a+1=0,①a=-14,①方程a (x-2)2+1=0为:方程-14(x-2)2+1=0,解得:x 1=0,x 2=4,故选:A . 6.D解:22(3)1y x =-+,∴抛物线开口向上,对称轴为3x =,顶点坐标为(3,1), ∴函数有最小值1,当3x <时,y 随x 的增大而减小, 故选:D . 7.C解:二次函数y =﹣2x 2+4x +1的顶点坐标为(1,3),y =﹣2x 2的顶点坐标为(0,0), 只需将函数y =﹣2x 2+4x +1的图象向左移动1个单位,向下移动3个单位即可. 故选:C . 8.C解:①图象开口方向向上, ①a >0;①图象的对称轴在y 轴的右边上, ①2ba->0, ①a >0, ①b <0;①图象与y 轴交点在y 轴的负半轴上, ①c <0;①a >0,b <0,c <0. 故选:C . 9.B解:当0k =时,函数为77y x =--,为一次函数,与x 轴有交点,符合题意; 当0k ≠,函数为277y kx x =--,为二次函数, 因为图像与x 轴有交点所以,2(7)470k ∆=-+⨯≥,解得74k ≥-且0k ≠综上,74k ≥-故选B 10.C解:①当x =6.18时,y =-0.01<0;当x =6.19时,y =0.02>0,①当x 在6.18<x <6.19的范围内取某一值时,对应的函数值为0,即ax 2+bx +c =0,①方程ax 2+bx +c =0(其中a ,b ,c 是常数,且a ≠0)的一个根x 的大致范围为6.18<x <6.19. 故选:C . 11.C解:①抛物线过(1,0),对称轴是x =2,① 30b 22a a b ++=⎧⎪⎨-=⎪⎩ ,解得a =1,b =-4,①y =x 2-4x +3,当x =3时,y =0,所以小华正确, 当x =4时,y =3,小彬正确, a =1,小明也正确,抛物线被x 轴截得的线段长为2,已知过点(1,0),则可得另一点为(-1,0)或(3,0),所以对称轴为y 轴或x =2,此时答案不唯一,所以小颖也错误, 故答案为:C . 12.B解:设每月总利润为w , 依题意得:(50)w y x =-(5550)(50)x x =-+- 2580027500x x =-+-25(80)4500x =--+50-<,此图象开口向下,又50x ≥,∴当80x =时,w 有最大值,最大值为4500元.故选:B . 13.5①y =(m +2)23m x -是二次函数,①m 2-3=2, 解得:5m =± ①二次函数y =(m +2)23m x -的图象开口向下,①m +2<0, ①2m <-,52>-,52--, ①5m =- 故答案为:5-14.154-解:二次函数y =x 2+ax +4以y 轴为对称轴 02a∴-= ,即0a = , ∴ 二次函数解析式为24y x =+ ,点P (m ,n )在二次函数y =x 2+ax +4的图象上, 24n m ∴=+ ,()2221154424m n m m m m m ⎛⎫∴-=--=---=--- ⎪⎝⎭ ,∴ m -n 的最大值为154-. 故答案为:154-. 15.2解:①抛物线y =ax 2-2ax -3与x 轴交于两点,分别是(m ,0),(n ,0), ①2.2am n a-+=-=. 故答案是:2. 16.12x =-,21x =解:①抛物线2y ax =与直线y bx c =+的两个交点坐标分别为()2,4A -,()1,1B ,①方程组2y ax y bx c ⎧=⎨=+⎩的解为1124x y =-⎧⎨=⎩,2211x y =⎧⎨=⎩,即关于x 的方程20ax bx c --=的解为12x =-,21x =. 故答案为x 1=-2,x 2=1. 17.10m解:根据题意,以C 为坐标原点建立如图所示的平面直角坐标系,则B (12,﹣8), 设该抛物线的表达式为y =ax 2,将B (12,﹣8)代入,得:﹣8=a ·122, 解得:a =118-, ①该抛物线的表达式为y =118-x 2, 当x =18时,y =118-×182=﹣18,①E (18,﹣18), ①点E 到直线AB 的距离为﹣8﹣(﹣18)=10m ,故答案为:10m .18.(1)222226(1)6y ax ax a a x a a =--+=-+--, ∴对称轴为直线1x =;(2)由题可知,当抛物线顶点在x 轴上时, 260a a --=, (3)(2)0a a -+=,解得:3a =或2a =-,当3a =时,函数解析式为2363y x x =-+; 当2a =-时,函数解析式为2242y x x =-+-. 19.解:(1)把A (0,1),B (2,-1)代入y =x 2+px +q ,得1421q p q =⎧⎨++=-⎩, 解得:31p q =-⎧⎨=⎩,①p ,q 的值分别为-3,1;(2)把x =-1代入y =x 2-3x +1,得y =5, ①点P (-1,2)不在此函数的图象上. 20.解:(1)设BC 的长度为x m ,则AB =13(40﹣x )m ,则矩形区域ABCD 的面积y =13x (40﹣x )=﹣13x 2+403x ;(2)①y =﹣13x 2+403x =13-(x ﹣20)2+4003 ,①当x =20时,y 有最大值,最大值是4003m 2. 21.解:(1)令y=0时,则有2023x x -=-,解得:121,3x x =-=, ①()1,0A -;()3,0B ;由二次函数2123y x x =--可得顶点式为()2114y x =--, ①()1,4D -,图像如图所示:(2)由题意画出直线()20y kx b k =+≠的图像,如图所示,则由图像可得:当12y y <时,03x <<.22.(1)①A (﹣1,0),C (0,5),(1,8)三点在抛物线y=ax 2+bx+c 上, ①058a b c c a b c -+=⎧⎪=⎨⎪++=⎩,解方程组,得145a b c =-⎧⎪=⎨⎪=⎩,故抛物线的解析式为y=﹣x 2+4x+5;(2)①y=﹣x 2+4x+5=﹣(x ﹣5)(x+1)=﹣(x ﹣2)2+9,①M (2,9),B (5,0),设直线BC 的解析式为:y=kx+b ,550b k b =⎧⎨+=⎩,解得,15k b =-⎧⎨=⎩则直线BC 的解析式为:y=﹣x+5.过点M 作MN①y 轴交BC 轴于点N ,则①MCB 的面积=①MCN 的面积+①MNB 的面积=12MN OB ⋅. 当x=2时,y=﹣2+5=3,则N (2,3),则MN=9﹣3=6, 则165152MCB S =⨯⨯=. 23.(1)解:根据题意,得65557545k b k b +=⎧⎨+=⎩,解得:1120k b =-⎧⎨=⎩, ①所求一次函数的表达式为y =-x +120;(2)解:W =(x -60)•(-x +120)=-x 2+180x -7200=-(x -90)2+900,①抛物线的开口向下,①当x <90时,W 随x 的增大而增大,①60≤x ≤60×(1+45%),①60≤x ≤87,①当x =87时,W 有最大值,此时W =-(87-90)2+900=891.答:销售单价定为87元时,商场可获得最大利润,最大利润是891元. 24.解:(1)由题意得:y 与x 的函数关系式为:()()2202001024106408800y x x x x =---=-+-⎡⎤⎣⎦;故答案为2106408800y x x =-+-;(2)由题意得:21064088001400x x -+-=,解得:1230,34x x ==;答:此时的销售单价为30元或34元.(3)由()2210640880010321440y x x x =-+-=--+可得100-<, ①该二次函数的图象开口向下,对称轴为直线32x =,①每件小商品的售价不超过36元,①当32x =时,该商场每天销售此商品的利润为最大,最大值为1440; 答:该商场每天销售此商品的最大利润为1440元.。
(典型题)初中物理九年级全册第二十二章《能源与可持续发展》测试题(含答案解析)
一、选择题1.下列说法中,正确的是()A.风能、水能、太阳能,都属于一次能源B.太阳向外辐射的能量,来源于内部原子核发生的裂变C.核电站利用核聚变反应发电D.能量的转化与转移都是有方向的,因此,能量守恒定律不成立2.关于能源、材料和粒子,下列说法中正确的是()A.保险丝常用电阻率比较大、熔点比较低的材料制成B.物体温度升高,一定是吸收了热量C.铁块很难被压缩说明分子之间存在相互作用的引力D.核能和化石能源均属于可再生能源3.2020年12月26日,株洲智轨一期的第一次试跑在河西段完美落幕。
智轨列车融合了有轨电车和公共汽车的优势,零排放、无污染。
智轨列车的动力系统在输出动力的过程中()A.内能转化为机械能B.电能转化为机械能C.机械能转化为电能D.机械能转化为内能4.下列关于能源及其利用的说法中,正确的是()A.目前人类使用的能源主要是煤、石油、天然气等化石能源B.木柴、石油、天然气、核能、潮汐能都属于不可再生能源C.风能、水能、太阳能、地热能、电能都属于二次能源D.核电站是利用裂变和聚变两种途径发电的5.“绿水青山,就是金山银山”,党的十九大报告提出,我们要推进绿色发展,着力解决环境问题,加大生态系统的保护,建设美丽中国。
下列关于能源利用的说法正确的是()A.煤、石油、太阳能都是不可再生能源B.风能、太阳能是可再生能源,应大力开发利用C.大量的燃烧煤炭、石油对环境不会造成负面影响D.能量在转化过程中是守恒的,所以能源是“取之不尽,用之不竭”的6.中国是一个负责任的大国,为构建人类命运共同体而不懈努力,实现可持续发展已成为21世纪各国的任务。
能源可按不同方式分类,如图,下列四组能源中,能归入图中阴影部分的一组是()A.煤炭、沼气B.太阳能、风能C.水能、天然气D.石油、核能7.为打响蓝天保卫战,能源问题已成焦点,全球能源将发生巨大变革。
下列关于能源问题的说法中不正确的是()A.天然气燃烧产生的二氧化碳,会加剧地球温室效应B.太阳是人类的“能源之母”,煤、石油、风能、水能等能源都是间接来自太阳能C.我国最大的核电站--大亚湾核电站的核反应堆应用了核聚变的原理D.能量的转化或转移具有方向性,在转化或转移过程中总量保持不变8.关于四冲程汽油机,下列说法正确的是()A.汽油属于可再生能源B.做功冲程靠飞轮的惯性来完成C.压缩冲程将内能转化为机械能D.冷却液要用比热容较大的物质9.下列能源中,属于可再生能源的是()A.煤炭B.石油C.核能D.太阳能10.以下是小王在生活中联想到的物理知识,其中正确的是A.炒菜时加盐有咸味,说明分子间存在相互的作用力B.我们不敢大口地喝热气腾腾的汤,是因为汤含有的热量较多C.旋转按钮台灯变亮,是因为电路中的电阻变小,导致通过灯的电流变大D.烧水时,壶盖被水蒸气顶起,是机械能转化成内能11.生活中能量转化的实例很多,从能量转化的角度来看,下列描述错误的是A.燃料燃烧主要是把化学能转化为内能B.摩擦起电时主要将机械能转化为电能C.手机电池充电时化学能转化为电能D.电动机带动水泵把水升到高处是把电能转化为机械能12.下列事例中,能表示能量转化或转移具有“方向性”的事例是A.电能可以转化为机械能,机械能也可以转化为电能B.热量可以自发从高温物体传递给低温物体,却不能自发从低温物体传递到高温物体C.动能可以和重力势能相互转化D.机械能可以转化为内能,内能也可以转化为机械能二、填空题13.核电站是利用核______的能量来发电的;核能属于______再生能源。
九年级数学 第22章一元二次方程达标检测卷含试卷分析
第22章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.下列方程是一元二次方程的是()A.1x2-1x=0 B.xy+x2=9C.7x+6=x2D.(x-3)(x-5)=x2-4x2.一元二次方程3x2-4x-5=0的二次项系数、一次项系数、常数项分别是() A.3,-4,-5 B.3,-4,5C.3,4,5 D.3,4,-53.方程2(x+3)(x-4)=x2-10的一般形式为()A.x2-2x-14=0 B.x2+2x+14=0C.x2+2x-14=0 D.x2-2x+14=04.下列方程中,常数项为零的是()A.x2+x=1 B.2x2-x-12=12 C.2(x2-1)=3(x-1) D.2(x2+1)=x+25.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为300元的药品进行连续两次降价后为243元,设平均每次降价的百分率为x,则下面所列方程正确的是() A.300(1-x)2=243 B.243(1-x)2=300C.300(1-2x)=243 D.243(1-2x)=3006.下列方程,适合用因式分解法解的是()A.x2-42x+1=0 B.2x2=x-3C.(x-2)2=3x-6 D.x2-10x-9=07.(·烟台)关于x的方程x2-ax+2a=0的两根的平方和是5,则a的值是()A.-1或5 B.1 C.5 D.-18.三角形的一边长为10,另两边长是方程x2-14x+48=0的两个实数根,则这个三角形是()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形9.(·安顺)若一元二次方程x2-2+1)x+m-1的图象不经过第()象限.A.四B.三C.二D.一10.一个三角形的两边长分别为3和6,第三边的长是方程(x-2)(x-4)=0的根,则这个三角形的周长是()A.11 B.11或13 C.13 D.以上选项都不正确二、填空题(每题3分,共30分)11.当m________时,关于x的方程(m-2)x2+n+n2的值为________.13.若将方程=________.14.如果关于x的方程ax2+2x+1=0有两个不相等的实数根,那么实数a的取值范围是________.15.(·内江)已知关于x的方程x2-6x+k=0的两根分别是x1,x2,且满足1x1+1x2=3,则k的值是________.16.2月28日,前央视知名记者柴静推出了关于雾霾的纪录片——《穹顶之下》,引起了极大的反响.某市准备加大对雾霾的治理力度,第一季度投入资金100万元,第二季度和第三季度计划共投入资金260万元,求这两个季度计划投入资金的平均增长率.设这两个季度计划投入资金的平均增长率为x,根据题意可列方程为____________.17.(·毕节)关于x的两个方程x2-4x+3=0与1x-1=2x+a有一个解相同,则a=________.18.小明的妈妈周三在自选商场花10元钱买了几瓶酸奶,周六再去买时,正好遇上商场酬宾活动,同样的酸奶,每瓶比周三便宜0.5元,结果小明的妈妈只比上次多花了2元钱,却比上次多买了2瓶酸奶,她周三买了________瓶酸奶.19.现定义运算“★”:对于任意实数a,b,都有a★b=a2-3a+b,如:3★5=32-3×3+5.若x★2=6,则实数x的值是________.(第20题)20.(·贵阳)如图,在Rt△ABC中,∠BAC=90°,AB=AC=16 cm,AD为BC边上的高,动点P从点A出发,沿A→D方向以 2 cm/s的速度向点D运动.设△ABP的面积为S1,矩形PDFE的面积为S2,运动时间为t s(0<t<8),则t=________时,S1=2S2.三、解答题(21题8分,22、23题每题6分,24、25题每题9分,26题10分,27题12分,共60分)21.用适当的方法解下列方程.(1)x2-x-1=0; (2)x2-2x=2x+1;(3)x(x-2)-3x2=-1; (4)(x+3)2=(1-2x)2.22.关于-2)+3=0有两个不相等的实数根.(1)求m的取值范围;(2)当m取满足条件的最大整数时,求方程的根.23.晓东在解一元二次方程时,发现有这样一种解法:如:解方程x(x+4)=6.解:原方程可变形,得[(x+2)-2][(x+2)+2]=6.(x+2)2-22=6,(x+2)2=6+22,(x+2)2=10.直接开平方并整理,得x1=-2+10,x2=-2-10.我们称晓东这种解法为“平均数法”.(1)下面是晓东用“平均数法”解方程(x+2)(x+6)=5时写的解题过程.解:原方程可变形,得[(x+□)-○][(x+□)+○]=5.(x+□)2-○2=5,(x+□)2=5+○2.直接开平方并整理,得x1=☆,x2=¤.上述过程中的“□”,“○”,“☆”,“¤”表示的数分别为________,________,________,________.(2)请用“平均数法”解方程:(x-3)(x+1)=5.24.已知x1,x2是一元二次方程(a-6)x2+2ax+a=0的两个实数根.(1)是否存在实数a,使-x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请说明理由.(2)求使(x1+1)(x2+1)为负整数的实数a的整数值.25.(·随州)楚天汽车销售公司5月份销售某种型号汽车.当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30辆.(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y与x的函数关系式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润为25万元,那么该月需售出多少辆汽车?(注:销售利润=销售价-进价)26.如图,A ,B ,C ,D 为矩形的四个顶点,AB =16 cm ,AD =6 cm ,动点P ,Q 分别从点A ,C 同时出发,点P 以3 cm /s 的速度向点B 移动,一直到达B 为止,点Q 以2 cm /s 的速度向D 移动.(1)P ,Q 两点从出发开始到几秒时,四边形PBCQ 的面积为33 cm 2? (2)P ,Q 两点从出发开始到几秒时,点P 和点Q 之间的距离是10 cm?(第26题)27.目前世界上最长的跨海大桥——杭州湾跨海大桥通车了.通车后,A 地到宁波港的路程比原来缩短了120 km .已知运输车速度不变时,行驶时间将从原来的103h 缩短到2 h .(1)求A 地经杭州湾跨海大桥到宁波港的路程.(2)若货物运输费用包括运输成本和时间成本,某车货物从A 地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A地经杭州湾跨海大桥到宁波港的运输费用是多少元?(3)A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地.若有一批货物(不超过10车)从A地按外运路线运到B地的运费需8 320元,其中从A地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B地的海上运费对一批不超过10车的货物计费方式是:1车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?答案一、1.C点拨:因为1x2-1x=0中分母含有未知数,B中xy+x2=9含有两个未知数,所以A、B都不是一元二次方程,D中可变形为x2-8x+15=x2-4x.化简后不含x2,故不是一元二次方程,故选C .2.A 3.A 4.D5.A 点拨:第一次降价后的价格为300×(1-x)元,第二次降价后的价格为300×(1-x)×(1-x)元,则列出的方程是300(1-x)2=243.6.C 7.D8.C 点拨:由x 2-14x +48=0,得x 1=6,x 2=8.因为62+82=102,所以该三角形为直角三角形.9.D 10.C二、11.≠2 12.1 13.4 14.a <1且a ≠015.2 点拨:∵x 2-6x +k =0的两根分别为x 1,x 2, ∴x 1+x 2=6,x 1x 2=k. ∴1x 1+1x 2=x 1+x 2x 1x 2=6k=3. 解得k =2.经检验,k =2满足题意. 16.100(1+x)+100(1+x)2=260点拨:根据题意知:第二季度计划投入资金100(1+x)万元,第三季度计划投入资金100(1+x)2万元.∴100(1+x)+100(1+x)2=260.17.1 点拨:由方程x 2-4x +3=0,得 (x -1)(x -3)=0, ∴x -1=0,或x -3=0. 解得x 1=1,x 2=3;当x =1时,分式方程1x -1=2x +a 无意义;当x =3时,13-1=23+a ,解得a =1,经检验a =1是方程13-1=23+a的解.18.4 点拨:设她周三买了x 瓶酸奶,根据题意得(x +2)·⎝⎛⎭⎫10x -0.5=10+2,化简得x 2+6x -40=0,解得x 1=4,x 2=-10(舍去).19.-1或4 点拨:根据题中的新定义将x ★2=6变形得x 2-3x +2=6,即x 2-3x -4=0,解得x 1=4,x 2=-1,则实数x 的值是-1或4.20.6 点拨:∵在Rt △ABC 中,∠BAC =90°,AB =AC =16 cm ,AD 为BC 边上的高,∴AD =BD =CD =8 2 cm .又∵AP =2t cm ,∴S 1=12AP·BD =12×2t ×82=8t(cm 2),PD =(82-2t)cm .易知PE =AP =2t cm ,∴S 2=PD·PE =(82-2t)·2t cm 2.∵S 1=2S 2,∴8t =2(82-2t)·2t.解得t 1=0(舍去),t 2=6.三、21.解:(1)(公式法)a =1,b =-1,c =-1, 所以b 2-4ac =(-1)2-4×1×(-1)=5.所以x =-b±b 2-4ac 2a =1±52,即原方程的根为x 1=1+52,x 2=1-52.(2)(配方法)原方程可化为x 2-4x =1, 配方,得x 2-4x +4=1+4,(x -2)2=5. 两边开平方,得x -2=±5, 所以x 1=2+5,x 2=2- 5.(3)(公式法 )原方程可化为2x 2+2x -1=0,所以a =2,b =2,c =-1,b 2-4ac =22-4×2×(-1)=12. 所以x =-2±122×2=-1±32,即原方程的根为x 1=-1+32,x 2=-1-32.(4)(因式分解法)移项,得(x +3)2-(1-2x)2=0, 因式分解,得(3x +2)(-x +4)=0, 解得x 1=-23,x 2=4.22.解:(1)∵关于-2)+3=0有两个不相等的实数根, ∴m -2≠0且Δ=(2m)2-4(m -2)(m +3)=-4(m -6)>0. 解得m<6且m ≠2.(2)在m<6且m ≠2的范围内,最大整数为5. 此时,方程化为3x 2+10x +8=0. 解得x 1=-2,x 2=-43.23.解:(1)4;2;-1;-7(最后两空可交换顺序); (2)(x -3)(x +1)=5,原方程可变形,得[(x -1)-2][(x -1)+2]=5, (x -1)2=5+22,即(x -1)2=9, 直接开平方并整理,得x 1=4,x 2=-2.24.解:(1)Δ=4a 2-4a(a -6)=24a ,∵一元二次方程有两个实数根,∴Δ≥0,即a ≥0.又∵a -6≠0,∴a ≠6.∴a ≥0且a ≠6.由题可知x 1+x 2=2a 6-a ,x 1x 2=aa -6.∵-x 1+x 1x 2=4+x 2,即x 1x 2=4+x 1+x 2,∴a a -6=4+2a6-a.解得a =24,经检验,符合题意.∴存在实数a ,a 的值为24;(2)(x 1+1)(x 2+1)=x 1+x 2+x 1x 2+1=2a 6-a +aa -6+1=-6a -6.∵-6a -6为负整数,∴整数a 的值应取7,8,9,12.25.解:(1)当x ≤5时,y =30.当5<x ≤30时,y =30-(x -5)×0.1=-0.1x +30.5.∴y =⎩⎪⎨⎪⎧30,(x ≤5,且x 为正整数),-0.1x +30.5,(5<x ≤30,且x 为正整数).(2)当x ≤5时,(32-30)x =2x ≤10<25,不合题意. 当5<x ≤30时,(32+0.1x -30.5)x =25, ∴x 2+15x -250=0.解得x 1=-25(舍去),x 2=10. 答:该月需售出10辆汽车.(第26题)26.解:(1)设P ,Q 两点从出发开始到2,则AP =3,所以PB =(16-3x)cm .因为(PB +CQ)×BC ×12=33,所以(16-3x +2x)×6×12=33.解得x =5,所以P ,Q 两点从出发开始到5 s 时,四边形PBCQ 的面积为33 cm 2.(2)设P ,Q 两点从出发开始到a s 时,点P 和点Q 之间的距离是10 cm . 如图,过点Q 作QE ⊥AB 于E ,易得EB =QC ,EQ =BC =6 cm , 所以PE =|PB -BE|=|PB -QC|=|16-3a -2a|=|16-5a|(cm ).在直角三角形PEQ 中,PE 2+EQ 2=PQ 2,所以(16-5a)2+62=102,即25a 2-160a +192=0,解得a 1=85,a 2=245,所以P ,Q 两点从出发开始到85 s 或245 s 时,点P 和点Q 之间的距离是10 cm .27.解:(1)设A 地经杭州湾跨海大桥到宁波港的路程为x km , 由题意得x +120103=x2,解得.(2)1.8×180+28×2=380(元),∴该车货物从A 地经杭州湾跨海大桥到宁波港的运输费用是380元.(3)设这批货物有y 车,由题意得y[800-20×(y -1)]+380y =8 320,整理得y 2-60y +416=0,解得y 1=8,y 2=52(不合题意,舍去),∴这批货物有8车.。
九年级数学上册 第22章《二次函数》基础练习(5套)
九年级数学上册第22章《二次函数》基础练习(5套)础知识反馈卡·22.1.1时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.若y =mx 2+nx -p (其中m ,n ,p 是常数)为二次函数,则( )A .m ,n ,p 均不为0B .m ≠0,且n ≠0C .m ≠0D .m ≠0,或p ≠02.当ab >0时,y =ax 2与y =ax +b 的图象大致是( )二、填空题(每小题4分,共8分)3.若y =x m -1+2x 是二次函数,则m =________.4.二次函数y =(k +1)x 2的图象如图J22-1-1,则k 的取值范围为________.图J22-1-1三、解答题(共11分)5.在如图J22-1-2所示网格内建立恰当直角坐标系后,画出函数y =2x 2和y =-12x 2的图象,并根据图象回答下列问题(设小方格的边长为1):图J22-1-2(1)说出这两个函数图象的开口方向,对称轴和顶点坐标;(2)抛物线y =2x 2,当x ______时,抛物线上的点都在x 轴的上方,它的顶点是图象的最______点;(3)函数y =-12x 2,对于一切x 的值,总有函数y ______0;当x ______时,y 有最______值是______.基础知识反馈卡·22.1.2时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.下列抛物线的顶点坐标为(0,1)的是( )A .y =x 2+1B .y =x 2-1C .y =(x +1)2D .y =(x -1)22.二次函数y =-x 2+2x 的图象可能是( )二、填空题(每小题4分,共8分)3.抛物线y =x 2+14的开口向________,对称轴是________. 4.将二次函数y =2x 2+6x +3化为y =a (x -h )2+k 的形式是________.三、解答题(共11分)5.已知二次函数y =-12x 2+x +4. (1)确定抛物线的开口方向、顶点坐标和对称轴;(2)当x 取何值时,y 随x 的增大而增大?当x 取何值时,y 随x 的增大而减小?基础知识反馈卡·*22.1.3时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.已知二次函数的图象过(1,0),(2,0)和(0,2)三点,则该函数的解析式是( )A .y =2x 2+x +2B .y =x 2+3x +2C .y =x 2-2x +3D .y =x 2-3x +22.若二次函数的图象的顶点坐标为(2,-1),且抛物线过(0,3),则二次函数的解析式是( )A .y =-(x -2)2-1B .y =-12(x -2)2-1 C .y =(x -2)2-1D .y =12(x -2)2-1 二、填空题(每小题4分,共8分)3.如图J22-1-3,函数y =-(x -h )2+k 的图象,则其解析式为____________.图J22-1-34.已知抛物线y =x 2+(m -1)x -14的顶点的横坐标是2,则m 的值是________.三、解答题(共11分)5.已知当x =1时,二次函数有最大值5,且图象过点(0,-3),求此函数关系式.基础知识反馈卡·22.2时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.下表是二次函数y =ax 2+bx +c 的自变量x 的值与函数y 的对应值,判断方程ax 2+A.6<C .6.18<x <6.19D .6.19<x <6.202.二次函数y =2x 2+3x -9的图象与x 轴交点的横坐标是( )A.32和3B.32和-3 C .-32和2D .-32和-2 二、填空题(每小题4分,共8分)3.已知抛物线y =x 2-x -1与x 轴的交点为(m,0),则代数式m 2-m +2011的值为__________.4.如图J22-2-1是抛物线y =ax 2+bx +c 的图象,则由图象可知,不等式ax 2+bx +c <0的解集是________.图J22-2-1 三、解答题(共11分)5.如图J22-2-2,直线y =x +m 和抛物线y =x 2+bx +c 都经过点A (1,0),B (3,2).(1)求m 的值和抛物线的关系式;(2)求不等式x 2+bx +c >x +m 的解集(直接写出答案).图J22-2-2基础知识反馈卡·22.3时间:10分钟 满分:25分 一、选择题(每小题3分,共6分)1.在半径为4cm 的圆中,挖去一个半径为x cm 的圆,剩下一个圆环的面积为y cm 2,则y 与x 的函数关系为( )A .y =πx 2-4B .y =π(2-x )2C .y =-(x 2+4)D .y =-πx 2+16π2.已知某种礼炮的升空高度h (m)与飞行时间t (s)的关系式是h =-52t 2+20t +1.若此礼炮在升空到最高处时引爆,则引爆需要的时间为( )A .3sB .4sC .5sD .6s二、填空题(每小题4分,共8分)3.出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x =________元,一天出售该种手工艺品的总利润y 最大.4.如图J22-3-1,某省大学的校门是一抛物线形水泥建筑物,大门的地面宽度为8m ,两侧距地面4m 的高处各有一个挂校名横匾用的铁环,两铁环的水平距离为6m ,则校门的高度为(精确到0.1m ,水泥建筑物厚度忽略不计)________.图J22-3-1 三、解答题(共11分)5.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一个点)的路线是抛物线y =-35x 2+3x +1的一部分,如图J22-3-2. (1)求演员弹跳离地面的最大高度;(2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?说明理由.图J22-3-2。
人教版九年级上册数学第二十二章 二次函数 含答案
人教版九年级上册数学第二十二章二次函数含答案一、单选题(共15题,共计45分)1、如图,正三角形ABC的边长为3+ ,在三角形中放入正方形DEMN和正方形EFPH,使得D,E,F在边AB上,点P、N分别在边CB、CA上,设两个正方形的边长分别为m,n,则这两个正方形的面积和的最小值为()A. B. C.3 D.2、已知二次函数y=2 x2+9x+34,当自变量x取两个不同的值x1、x2时,函数值相等,则当自变量x取x1+x2时的函数值与()A.x=1时的函数值相等B.x=0时的函数值相等C.x=时的函数值相等D.x=-时的函数值相等3、抛物线y=2x2+1的顶点坐标是()A.(2,1)B.(0,1)C.(1,0)D.(1,2)4、已知抛物线与x轴交于点A,B两点(A在原点O左侧,B 在原点O右侧),与y轴交于点C,若OC=OB,则点A的横坐标为()A. B. C. D.-25、二次函数的图象如图所示,对称轴为直线,下列结论①②③④(m为任意实数)其中不正确的个数是()A.1个B.2个C.3个D.4个6、抛物线可以由抛物线平移而得到,下列平移正确的是().A.先向左平移1个单位,再向上平移2个单位B.先向左平移1个单位,再向下平移2个单位C.先向右平移1个单位,再向上平移2个单位 D.先向右平移1个单位,再向下平移2个单位7、抛物线y=(x-2)2+3的对称轴是()A.直线x=-3B.直线x=-2C.直线x=2D.直线x=38、二次函数的顶点坐标为(-1,n),其部分图象如图所示.以下结论错误的是().A. B. C. D.关于的方程无实数根9、抛物线y=x2﹣x+m与x轴至少有一个公共点,则m的取值范围是()A.mB.m>C.m≤D.m<10、对于二次函数的图象,下列说法正确的是()A.开口向下B.对称轴C.顶点坐标是D.与轴有两个交点11、如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴交于点B (0,﹣2),点A(﹣1,m)在抛物线上,则下列结论中错误的是()A.ab<0B.一元二次方程ax 2+bx+c=0的正实数根在2和3之间 C.a= D.点P1(t,y1),P2(t+1,y2)在抛物线上,当实数t>时,y1<y212、已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m 的取值范围是()A.m=﹣1B.m=3C.m≤﹣1D.m≥﹣113、抛物线y=3 +5的顶点坐标是()A.(-2,5)B.(-2,-5)C.(2,5)D.(2,-5)14、向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2+bx+c(a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是()A.第8秒B.第10秒C.第12秒D.第15秒15、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①a,b同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=﹣2时,x 的值只能取2;⑤当﹣1<x<5时,y<0.其中正确的有()A.2个B.3个C.4个D.5个二、填空题(共10题,共计30分)16、二次函数的顶点坐标是________.17、如图,抛物线关于点B的中心对称得________。
人教版九年级上册数学第22章测试卷
第二十二章测试卷时间:120分钟满分:150分一、选择题(每小题4分,共40分)1.设二次函数y=(在直线l上,则点M的坐标可能是( B )A.(1,0) B.(3,0)C.(-3,0) D.(0,-4)2.关于二次函数y=(x+2)2的图象,下列说法正确的是( D ) A.开口向下B.最低点是(2,0)C.对称轴是直线x=2 D.当x>1时,y随x的增大而增大3.将抛物线y=-5x2+1先向左平移1个单位长度,再向下平移2个单位长度,得到的抛物线为( A )A.y=-5(x+1)2-1 B.y=-5(x-1)2-1C.y=-5(x+1)2+3 D.y=-5(x-1)2+34.若抛物线y=-x2+bx+c经过点(-2,3),则2c-4b-9的值是( A )A.5 B.-1C.4 D.185.已知点A(1,y1),B(-2,y2),C(-2,y3)在函数y=2(x+1)2-12上,则y1,y2,y3的大小关系是( D )A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y1>y3>y26.若二次函数y=ax2+1的图象经过点(-2,0),则关于x的方程a(x-2)2+1=0的实数根为( A )A.x1=0,x2=4 B.x1=-2,x2=6C .x 1=32,x 2=52D .x 1=-4,x 2=07.如图,利用一面墙,其他三边用80米长的篱笆围成一块矩形场地,墙长为30米,则围成矩形场地的最大面积为( B )A .800平方米B .750平方米C .600平方米D .2 400平方米8.已知不等式ax +b >0的解集为x <2,则下列结论正确的个数是( C )(1)2a +b =0;(2)当c >a 时,函数y =ax 2+bx +c 的图象与x 轴没有公共点; (3)当c >0时,抛物线y =a 的取值范围是-34<m <0.A .1B .2C .3D .49.如图,二次函数y =x 2-2x -3的图象与x 轴交于A ,B 两点,与y 轴交于点C ,则下列说法中,错误的是( C )A .AB =4B .∠ABC =45°C .当x>0时,y<-3D .当x>1时,y 随x 的增大而增大10.如图,△ABC 和△DEF 都是边长为2的等边三角形,它们的边BC ,EF 在同一条直线l 上,点C ,E 重合.现将△ABC 沿着直线l 向右移动,直至点B 与F 重合时停止移动.在此过程中,设点C 移动的距离为x ,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为( A )A BC D二、填空题(每小题5分,共20分)11.如图是二次函数y=a(x+1)2+2的图象的一部分,则关于x的方程a(x+1)2+2=0的根是__x1=-3,x2=1__.12.二次函数y=-x2-8x+c的最大值为0,则c的值等于__-16__.13.已知点P在抛物线y=(x-2)2上,设点P的坐标为(x,y),当0≤x≤3时,y的取值范围是__0≤y≤4__.14.抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(-4,0)两点,下列四个结论:①一元二次方程ax2+bx+c=0的根为x1=2,x2=-4;②若点C(-5,y1),D(π,y2)在该抛物线上,则y1<y2;③对于任意实数t,总有at2+bt≤a-b;④对于a 的每一个确定值,若一元二次方程ax 2+bx +c =p(p 为常数,p >0)的根为整数,则p 的值只有两个.其中正确的结论是__①②③__(填写序号). 三、解答题(共90分)15.(8分)已知二次函数y =ax 2+bx +c 的顶点坐标为(-2,1),且过点(2,7),求a ,b ,c .解:设二次函数为y =a(x +2)2+1,因为函数过点(2,7),所以7=a(2+2)2+1,所以a =38,所以y =38(x +2)2+1=38x 2+32x +52,所以a =38,b =32,c =52. 16.(8分)已知二次函数y =2x 2-4x -6.(1)用配方法将y =2x 2-4x -6化为y =a(x -h)2+k 的形式,并写出对称轴和顶点坐标;(2)在平面直角坐标系中,画出这个二次函数的图象.解:(1)y =2x 2-4x -6=2(x -1)2-8,对称轴为直线x =1,顶点坐标为(1,-8);(2)图略.17.(8分)已知函数y =ax 2+bx +c 的图象顶点坐标是(1,-2),且经过点(3,2).(1)画出函数图象,并直接写出当x 为何值时,函数y 随着x 的增大而减小,当x 为何值时,函数y 随着x 的增大而增大;(2)结合函数图像,直接写出使y≥2的x 的取值范围____. 解:(1)由图知当x≤1时,函数y 随着x 的增大而减小;当x≥1时,函数y 随着x 的增大而增大;(2)x≤-1或x≥3.18.(8分)已知抛物线y =ax 2+bx +1经过点(1,-2),(-2,13). (1)求a ,b 的值;(2)若(5,y 1),(m ,y 2)是抛物线上不同的两点,且y 2=12-y 1,求m 的值.解:(1)把点(1,-2),(-2,13)代入y =ax 2+bx +1,得⎩⎪⎨⎪⎧-2=a +b +1,13=4a -2b +1,解得⎩⎪⎨⎪⎧a =1,b =-4;(2)由(1)得函数表达式为y =x 2-4x +1,把x =5代入y =x 2-4x +1,得y 1=6,∴y 2=12-y 1=6,∵y 1=y 2,对称轴为直线x =2,∴m =4-5=-1.19.(10分)如图,抛物线y =ax 2-5ax +4a 与x 轴相交于点A ,B ,且过点C(5,4).(1)求a 的值和该抛物线顶点P 的坐标;(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.解:(1)把点C(5,4)代入抛物线y =ax 2-5ax +4a ,得25a -25a +4a =4,解得a =1.∴该二次函数的解析式为y =x 2-5x +4.∵y =x 2-5x+4=⎝ ⎛⎭⎪⎫x -522-94,∴顶点P 的坐标为⎝ ⎛⎭⎪⎫52,-94;(2)(答案不唯一,合理即正确)如先向左平移3个单位长度,再向上平移4个单位长度,得到的二次函数解析式为y =⎝ ⎛⎭⎪⎫x -52+32-94+4=⎝⎛⎭⎪⎫x +122+74,即y =x 2+x +2.20.(10分)某工厂计划在每个生产周期内生产并销售完某型设备,设备的生产成本为10万元/件.(1)如图,设第x(0<x≤20)个生产周期设备售价z 万元/件,z 与x 之间的关系用图中的函数图象表示.求z 关于x 的函数解析式(写出x 的范围);(2)设第x 个生产周期生产并销售的设备为y 件,y 与x 满足关系式y =5x +40(0<x≤20).在(1)的条件下,工厂第几个生产周期创造的利润最大?最大为多少万元?(利润=收入-成本)解:(1)由图可知,当0<x≤12时,z =16,当12<x≤20时,z 是关于x 的一次函数,设z =kx +b ,则⎩⎪⎨⎪⎧12k +b =16,20k +b =14,解得⎩⎪⎨⎪⎧k =-14,b =19,∴z =-14x +19,∴z 关于x 的函数解析式为z =⎩⎪⎨⎪⎧160<x≤12,-14x +1912<x≤20;(2)设第x 个生产周期工厂创造的利润为w 万元,①当0<x≤12时,w =(16-10)×(5x+40)=30x +240,∴由一次函数的性质可知,当x =12时,w最大值=30×12+240=600(万元);②当12<x≤20时,w =⎝ ⎛⎭⎪⎫-14x +19-10(5x +40)=-54x 2+35x +360=-54(x -14)2+605,∴当x=14时,w 最大值=605(万元).综上所述,工厂第14个生产周期创造的利润最大,最大是605万元.21.(12分)有一块矩形地块ABCD ,AB =20米,BC =30米,为美观,拟种植不同的花卉,如图所示,将矩形ABCD 分割成四个等腰梯形及一个矩形,其中梯形的高相等,均为x 米.现决定在等腰梯形AEHD 和BCGF 中种植甲种花卉;在等腰梯形ABFE 和CDHG 中种植乙种花卉;在矩形EFGH 中种植丙种花卉.甲、乙、丙三种花卉的种植成本分别为20元/平方米、60元/平方米、40元/平方米,设三种花卉的种植总成本为y 元.(1)当x =5时,求种植总成本y ;(2)求种植总成本y 与x 的函数表达式,并写出自变量x 的取值范围; (3)若甲、乙两种花卉的种植面积之差不超过120平方米,求三种花卉的最低种植总成本.解:(1)当x =5时,EF =20-2x =10,EH =30-2x =20,故y =2×12(EH +AD)×x×20x +2×12(EF +AB)×x×60+EF·EH×40=(20+30)×5×20+(10+20)×5×60+20×10×40=22 000;(2)EF =20-2x>0,EH =30-2x>0,由题意,得y =(30+30-2x)·x·20+(20+20-2x)·x·60+(30-2x)(20-2x)·40=-400x +24 000(0<x<10);(3)S 甲=2×12(EH +AD)×x=(30-2x +30)x =-2x 2+60x ,同理得S乙=-2x 2+40x ,∵甲、乙两种花卉的种植面积之差不超过120平方米,∴-2x 2+60x -(-2x 2+40x)≤120,解得x≤6,故0<x≤6,而y =-400x +24 000随x 的增大而减小,故当x =6时,y 的最小值为21 600,即三种花卉的最低种植总成本为21 600元.22.(12分)在平面直角坐标系xOy 中,直线y =-12x +5与x 轴、y轴分别交于点A ,B(如图).抛物线y =ax 2+bx(a≠0)经过点A .(1)求线段AB 的长;(2)如果抛物线y =ax 2+bx 经过线段AB 上的另一点C ,且BC =5,求这条抛物线的表达式;(3)如果抛物线y =ax 2+bx 的顶点D 位于△AOB 内,求a 的取值范围.解:(1)对于直线y =-12x +5,令x =0,y =5,∴B(0,5),令y =0,则-12x +5=0,∴x =10,∴A(10,0),∴AB =52+102=55;(2)设点C ⎝ ⎛⎭⎪⎫m ,-12m +5,∵B(0,5),∴BC =m 2+⎝ ⎛⎭⎪⎫-12m +5-52=52|m|,∵BC =5,∴52|m|=5,∴m =±2,∵点C 在线段AB 上,∴m =2,∴C(2,4),将点A(10,0),C(2,4)代入抛物线y =ax 2+bx(a≠0)中,得⎩⎪⎨⎪⎧100a +10b =0,4a +2b =4,∴⎩⎪⎨⎪⎧a =-14,b =52,∴抛物线y =-14x 2+52x ;(3)∵点A(10,0)在抛物线y =ax 2+bx 中,得100a +10b =0,∴b =-10a ,∴抛物线的解析式为y =ax 2-10ax =a(x -5)2-25a ,∴抛物线的顶点D 坐标为(5,-25a),可知顶点D 在直线x =5上.设直线,N ,则M ⎝⎛⎭⎪⎫5,52,N(5,0).又因为顶点D 位于△AOB 内,所以顶点D 在线段MN 上(除点M ,N 外),∴0<-25a<52,∴-110<a <0.23.(14分)如图1,抛物线y =-x 2+b <3),过点E 作直线l ⊥. (1)求抛物线的解析式及C 点坐标;(2)当m =1时,D 是直线l 上的点且在第一象限内,若△ACD 是以∠DCA 为底角的等腰三角形,求点D 的坐标;(3)如图2,连接BM 并延长交y 轴于点N ,连接AM ,OM ,设△AEM 的面积为S 1,△MON 的面积为S2,若S 1=2S 2,求m 的值.图1图2解:(1)由题意知,⎩⎪⎨⎪⎧-1-b +c =0,-9+3b +c =0,解得⎩⎪⎨⎪⎧b =2,c =3,∴y =-x 2+2x +3,∴C 的坐标为(0,3);(2)设D(1,t),分两种情况讨论:①如图1,当DA =DC 时,则4+t 2=1+(3-t)2,解得t =1,∴D(1,1);图1图2②如图2,当AC =AD 时,由题意,得12+32=22+t 2,解得t =±6.又∵点D 在第一象限,∴D(1,6).综上,D(1,6),(1,1);(3)∵E(m,0),则设点M(m ,-m 2+2m +3),设直线BM 的表达式为y=sx +t ,则⎩⎪⎨⎪⎧-m 2+2m +3=sm +t ,0=3s +t ,解得⎩⎪⎨⎪⎧s =-m -1,t =3m +3,故直线BM的表达式为y =(-m -1)+3),则ON =3m +3.∴ON =3(m +1),∵AE =m +1,∴ON =3AE .∵S 1=2S 2,12AE·EM=2×12ON·OE,即-m 2+2m +3=6m ,∴m =-2±7,又∵0<m<3,∴m =-2+7.。
2023-2024学年第一学期九年级数学第22章二次函数单元测试卷(含答案)
2023-2024学年第一学期九年级数学第22章二次函数单元测试卷人教版一、选择题(每小题3分,共30分)1.下列函数是二次函数的是( )A.y=x−1B.y=1x C.y=x−2+x2D.y=1x22.将抛物线y=x2+3先向左平移2个单位,再向下平移1个单位,所得新抛物线的解析式为( )A.y=(x+2)2+2B.y=(x﹣1)2+5C.y=(x+2)2+4D.y=(x﹣2)2+23.已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,-3),那么该抛物线有( )A.最小值-3B.最大值-3C.最小值2D.最大值24.抛物线y=2(x+3)2+4的顶点坐标是( )A.(3,4)B.(−3,4)C.(3,−4)D.(−3,−4) 5.若二次函数y=ax2的图象经过点P(﹣2,4),则该图象必经过点( )A.(4,﹣2)B.(﹣4,2)C.(﹣2,﹣4)D.(2,4)6.y=(x-1)2+2的对称轴是直线( )A.x=-1B.x=1C.y=-1D.y=17.如图所示,当ab>0时,函数y=a x2与函数y=bx+a的图象大致是( ).A.B.C.D.8.用配方法将二次函数y=x2−8x−9化为y=a(x−ℎ)2+k的形式为( ).A.y=(x−4)2+7B.y=(x−4)2−25C.y=(x+4)2+7D.y=(x+4)2−259.抛物线y=2(x﹣1)2+c上有点A(﹣1,y1)和B(4,y2),则y1与y2的大小关系为( )A.y1≤y2B.y1≥y2C.y1<y2D.y1>y210.如图所示,二次函数y=a x2+bx+c(a>0)的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=−1.下列选项中,正确的是( ).A.abc<0B.4ac−b2>0C.c−a>0D.当x=−n2−2(n为实数)时,y⩾c二、填空题(每小题3分,共24分)11.如果点A(﹣3,y1)和点B(﹣2,y2)是抛物线y=x2+a上的两点,那么y1 y2.(填“>”、“=”、“<”).12.二次函数y=−4(x−3)2−2图象的顶点是 .13.二次函数y=−2x2−4x+5的最大值是 .14.将抛物线y=x2+2x+3向左平移1个单位,再向下平移2个单位,平移后的抛物线解析式为 .15.若二次函数的y=a x2的图象经过点(1,−2),则a= .16.某超市一月份的营业额是200万元,一月、二月、三月的营业额共y万元,如果平均每月增长率为x,那么营业额y关于月平均增长率x的函数表达式为 .17.函数y=(m−2)x2−4x+m+1的图象与x轴有且只有一个交点,则m的值为 . 18.已知抛物线y=x2−x−1与x轴的一个交点为(m,0),则代数式−3m2+3m+2022的值为 .四、作图题(共9分)19.已知二次函数经过点(−1,0),(3,0),且最大值为4.(1)求二次函数的解析式;(2)在平面直角坐标系xOy中,画出二次函数的图象;(3)当1<x<4时,结合函数图象,直接写出y的取值范围.五、解答题(一)(共35分)20.(6分)按要求求出抛物线的开口方向、对称轴和顶点坐标.x2−x+3(用公式法).(1)y=x2+2x−3(用配方法). (2)y=1221.(6分)已知抛物线的顶点是A(2,﹣3),且交y 轴于点B(0,5),求此抛物线的解析式.22.(9分)丹东是我国的边境城市,拥有丰富的旅游资源.某景区研发一款纪念品,每件成本为30元,投放景区内进行销售,规定销售单价不低于成本且不高于54元,销售一段时间调研发现,每天的销售数量y(件)与销售单价x(元/件)满足一次函数关系,部分数据如下表所示:销售单价x(元/件)…354045…每天销售数量y(件)…908070…(1)直接写出y与x的函数关系式;(2)若每天销售所得利润为1200元,那么销售单价应定为多少元?(3)当销售单价为多少元时,每天获利最大?最大利润是多少元?23.(8分)某农场拟建两间矩形种牛饲养室,饲养室的一面靠现有墙(墙长>50m),中间用一道墙隔开(如图),已知计划中的建筑材料可建围墙的总长为50m,设两饲养室合计长x(m),总占地面积为y(m2)(1)求y关于x的函数表达式和自变量的取值范围;(2)若要使两间饲养室占地总面积达到200m2,则x为多少?占地总面积有可能达到210m2吗?24.(6分)已知二次函数y=−x2+(m−2)x+m+1.试证明:不论m取何值,这个二次函数的图象必与x轴有两个交点六、解答题(二)(共8分)25.(8分)如图所示,抛物线y=a(x+1)2的顶点A与y轴的负半轴交于点B,且OB=OA.(1)求抛物线的函数表达式.(2)若点C(−3,b)在抛物线上,求S△ABC的值.26.(14分)【探究】2023年中秋节前某商场计划购进一批进价为每盒40元的食品进行销售,根据销售经验,应季销售时,若每盒食品的售价为60元,则可售出400盒,当每盒食品的售价每提高1元,销售量就相应减少10盒.(1)(4分)假设每盒食品的售价提高x元,那么销售每盒食品所获得的利润是 元,销售量是 盒.(用含x为代数式表示)(2)(3分)设应季销售利润为y元,求y与x的函数关系式,并求出应季销售利润为8000元时每盒食品的售价.(3)【拓展】根据销售经验,过季处理时,若每盒食品的售价定为30元亏本销售,可售出50盒,若每盒食品的售价每降低1元,销售量就相应增加5盒.当单价降低z元时,解答:现剩余100盒食品需要处理,经过降价处理后还是无法销售的只能积压在仓库,损失本金,若使亏损金额最小,此时每盒食品的售价应为 元;(4)(4分)若过季需要处理的食品共m盒,过季处理时亏损金额为y1元,求y1与z的函数关系式;当100≤m≤300时,求过季销售亏损金额最小时多少元?答案1.C 2.A 3.B 4.B 5.D 6.B 7.C 8.B 9.C 10.D11.>12.(3,-2) 13.7 14.y=(x+2)2 15.−216.y=200+200(1+x)+200(1+x)2 17.-2或2或3 18.201919.(1)解:设抛物线解析式为y=a(x+1)(x−3)=a x2−2ax−3a=a(x−1)2−4a,由最大值为4,得到−4a=4,即a=−1,则抛物线解析式为y=−x2+2x+3(2)解:列表:x…−10123…y…03430…描点、连线,函数图象如图所示;;(3)解:−4<y<420.(1)y=x2+2x−3=x2+2x+1−4=(x+1)2−4,∴抛物线的开口向上,对称轴为直线x=−1,顶点坐标为(−1,−4)(2)−b2a=−−12×12=1,4ac−b24a=4×12×3−(−1)24×12=52,∴拋物线的开口向上,对称轴为直线x=1,顶点坐标为(1,52) 21.解:∵抛物线的顶点坐标为A(2,﹣3),∴可设抛物线解析式为y=a(x﹣2)2﹣3,将B(0,5)代入,得4a﹣3=5,解得a=2,∴抛物线的解析式为y=2(x﹣2)2﹣3 化为一般式为y=2x2﹣8x+522.(1)y=﹣2x+160(2)解:根据题意得:(x﹣30)•(﹣2x+160)=1200,解得x1=50,x2=60,∵规定销售单价不低于成本且不高于54元,∴x=50,答:销售单价应定为50元;(3)解:设每天获利w元,w=(x﹣30)•(﹣2x+160)=﹣2x2+220x﹣4800=﹣2(x﹣55)2+1250,∵﹣2<0,对称轴是直线x=55,而x≤54,∴x=54时,w取最大值,最大值是﹣2×(54﹣55)2+1250=1248(元),答:当销售单价为54元时,每天获利最大,最大利润,1248元.23.(1)解:∵围墙的总长为50米,2间饲养室合计长x米,∴饲养室的宽=50−x3米,∴总占地面积为y=x•50−x3=﹣13x2+503x,(0<x<50);(2)解:当两间饲养室占地总面积达到200平方米时,则﹣13x2+503x=200,解得:x=20或30;∴当面积达到200平方米时,各道墙长分别为20米、10米或30米、203米;当占地面积达到210平方米时,则﹣13x2+503x=210,方程的Δ<0,所以此方程无解,∴占地面积不可能达到210平方米.24.证明:由题意,知二次函数对应的方程−x2+(m−2)x+m+1=0的判别式为b2−4ac= (m−2)2−4×(−1)×(m+1)=m2−4m+4+4m+4=m2+8.因为m2≥0,所以m2+8>0,即b2−4ac>0,所以不论m取何值,这个二次函数的图象必与x轴有两个交点.25.(1)解:∵y =a (x +1)2∴A (-1,0),∵OA=OB ,∴B (1,0),把B (1,0)代入y =a (x +1)2中,得a=-1,∴y =−(x +1)2(2)如图,过点C 作CD ⊥x 轴,把 C (−3,b )代入 y =−(x +1)2中,得b=-4,∴C (-3,-4),∴S △ABC =梯形OBCD 的面积-△ACD 的面积-△OAB 的面积 =12×(1+4)×3-12×2×4-12×1×1=3,26.(1)20+x ;400﹣10x(2)解:根据题意得:y=(20+x )(400﹣10x )=﹣10x 2+200x+8000, 把y=8000代入,得:﹣10x 2+200x+8000=8000,解得:x=0或x=20,当x=0时,60+x=60,当x=20时,60+x=80,答:应季销售利润为8000元时每盒食品的售价为60元或80元(3)20(4)解:y 1=40m ﹣(30﹣z )(50+5z )=5(z ﹣10)2+40m ﹣2000, 即当z=10时,y 1有最小值40m ﹣2000,∵100≤m≤300,∴当m=100时,y 1有最小值40m ﹣2000=2000,答:过季销售亏损金额最小时2000元。
人教版九年级全册第二十二章《能源与可持续发展》单元测试题
第二十二章单元测试题一、选择题(每题3分,共48分)1.下列能源在利用时对环境污染最厉害的是()A.太阳能 B.风能 C.煤 D.电能2.下列能源中属于不可再生能源的是( )A.风能 B.水能 C.化石能源 D.生物质能3.关于能量和能源的利用,下列说法中正确的是A.人类大量使用太阳能会导致温室效应B.因为能量是守恒的,所以不存在能源危机C.现在人类社会使用的主要能源是煤、石油和天然气D.核能的利用会造成放射性污染,所以应该关闭核电站4.“能源危机”和“环境污染”是当今世界面临的两大难题。
下列选项中,不利于解决这两大难题的是()A.煤和石油的开发、利用 B.氢气燃料的开发、利用C.太阳能的开发、利用 D.风能的开发、利用5.下列设施或过程不属于利用太阳能的是()A.太阳能电池 B.太阳能热水器C.核电站 D. 植物的光合作用6.北京奥运会广泛应用了节能减排技术,成为节约能源、减少二氧化碳排放量的成功典范。
下列措施中,不属于节能减排的是()A.国家体育场装有l00kW太阳能光伏发电系统B.奥运村内车辆应减速慢行C.奥运村生活热水全部来自6000m2的太阳能集热器D.奥运村内建筑物顶部装有风力发电机7.为了获取更多的能源,在我国辽阔的草原上,已经兴建许多大型的风能发电站,风能发电具有很好的发展前景。
下列有关风能的表述中,错误的是 ( )A.技术上已比较成熟 B.风能的资源丰富C.对环境无污染 D.风能属于不可再生能源8.下列能源中不是来自于太阳能的是()A.水能 B.风能 C.核能 D.煤、石油、天然气9.近几年,我市的汽油的价格不断上涨,能源的日益紧张已影响了人们的日常生活。
则下列做法不应提倡的是()A.出行时尽量使用自行车 B.大力开发太阳能并加以利用C.合理调节公共汽车的线路,避免出现空车运行 D.电脑整天处于待机状态10.目前世界上已建成的核电站都是利用()A.原子核的聚变释放的能量来发电的 B.原子核的裂变释放的能量来发电的C.核废料的放射性来发电的 D.原子核聚变和裂变释放的能量来发电的11.原子弹与核电站的根本区别是()A.原子弹利用核裂变,核电站利用核聚变 B.原子弹和核电站都是利用核裂变C.原子弹对裂变的链式反应不加控制,核电站控制裂变的链式反应速度D.原子弹对聚变的链式反应不加控制,核电站控制聚变的链式反应速度12.关于能源及能源的利用,下列说法中不正确的是()A.由于我国煤和石油的储量大,所以太阳能和核能的开发在我国并不十分重要B.能源的利用过程实质上是能量的转化和传递过程C.现在人类使用的能源主要是煤、石油和天然气D.煤、石油和天然气的化学能归根到底来自太阳能13.太阳释放着大量的能量,这些能量来自()A.太阳内部可燃性物质的燃烧过程 B.太阳内部大规模的核裂变过程C.太阳内部大规模的核聚变过程 D.太阳内部电能转化为热能过程14.学习了“能源与可持发展”一章后,某班学生就利用和开发能源问题展开了热烈讨论,提出了如下几条建议和设想,其中永远做不到的是()A.沿海地区应利用地理的优势,大力开发潮汐能B.我国正在建设中的田湾核电站,将解决华东地区的电力紧张问题,但在输电过程中能量损失较大,若能用超导体送电,将大大提高输电效率C.目前利用的能源主要是煤,应着力研究如何使煤充分燃烧以减少热量损失的措施D.随着能源的不断消耗,最终应致力于研究一种既可以不消耗能源,又能不断对外做功的机器15.随着社会文明的发展,人们“以人为本”意识逐渐增强。
2023-2024学年秋学期人教版九年级数学上册第22章单元检测卷附答案解析
2023-2024学年秋学期九年级数学上册第22章单元检测卷二次函数(满分120分)一、单选题(本大题共12小题,每小题3分,共36分)1.如图是二次函数()20y ax bx c a =++≠的图象的一部分,给出下列命题:①0a b c ++=;②2b a >;③方程20ax bx c ++=的两根分别为3-和1;④当1x <时,0y <;⑤对于任意实数m ,2am bm c a b c ++≥-+恒成立.其中正确的命题是()A .②③④B .①③④C .①②③D .①③⑤2.在平面直角坐标系中,将抛物线y=﹣x 2向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线的解析式是()A .y=﹣x 2﹣x ﹣B .y=﹣x 2+x ﹣C .y=﹣x 2+x ﹣D .y=﹣x 2﹣x ﹣3.函数2y x =的图象向右平移2个单位后解析式变为()A .22y x =+B .22y x =-C .()22y x =-D .()22y x =+4.如图,抛物线y =a 1x 2与抛物线y =a 2x 2+bx 的交点P 在第三象限,过点P 作x 轴的平行线,与两条抛物线分别交于点M 、N ,若23PM PN =,则12a a 的值是()A .3B .2C .23D .125.使用家用燃气灶烧开同一壶水所需的燃气量y (单位3m )与旋钮的旋转角度x (单位:度,090x ︒<≤︒)近似满足函数关系()20y ax bx c a =++≠如图记录了某种家用节能燃气灶烧开同一壶水的旋钮的旋转角度x 与燃气量y 的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开同一壶水最节省燃气的旋钮的旋转角度约为()A .29︒B .30︒C .42︒D .49︒6.定义[a ,b ,c]为函数y=ax 2+bx+c 的特征数,下面给出特征数为[m ﹣1,m+1,﹣2m]的函数的一些结论,其中不正确的是()A .当m=2时,函数图象的顶点坐标为325,24⎛⎫-- ⎪⎝⎭B .当m >1时,函数图象截x 轴所得的线段长大于3C .当m <0时,函数在x <12时,y 随x 的增大而增大D .不论m 取何值,函数图象经过两个定点7.若抛物线y =x 2+mx +n 的顶点在x 轴上,且过点A (a ,b ),B (a +6,b ),则b 的值为()A .9B .6C .3D .08.若二次函数23y ax bx =+-的图象经过点()2,1-,则代数式2a b -的值为()A .2-B .2C .1-D .19.二次函数()()246y x x =--+的顶点坐标是()A .()2,6B .()4,6C .()3,5-D .()3,510.已知二次函数2y x bx c =-++的图像如图,其中b ,c 的值可能是()A .2,1b c =-=B .2,1b c ==C .2,1b c ==-D .2,1b c =-=-11.(2021·陕西·汉滨区汉滨初级中学九年级月考)已知点()11,A x y ,()22,B x y 在二次函数()23y a x c =-+的图象上,若1233x x ->-,则下列结论正确的是()A .120y y +>B .120y y ->C .()120a y y +>D .()120a y y ->12.将二次函数243y x x =-+通过配方可化为2()y a x h k =-+的形式,结果为()A .2(2)1y x =--B .2(2)3y x =-+C .2(2)3y x =++D .2(2)1y x =+-三、解答题(本大题共5小题,每小题8分,共40分)(本大题共8小题,每小题3分,共24分)13.如果2(2)mmy m x -=-是关于x 的二次函数,则m =.14.如图,抛物线22y x =-+,将该抛物线在x 轴和x 轴上方的部分记作1C ,将x 轴下方的部分沿x 轴翻折后记作2C ,1C 和2C 构成的图形记作3C .关于图形3C ,给出如下四个结论:①图形3C 关于y 轴成轴对称;②图形3C 有最小值,且最小值为0;③当0x >时,图形3C 的函数值都是随着x 的增大而增大的;④当22x -≤≤时,图形3C 恰好经过5个整点(即横、纵坐标均为整数的点),以上四个结论中,所有正确结论的序号是.15.已知直线1y mx n =+和抛物线22a y x bx c =++的图象大致位置如上图所示,若2mx n ax bx c +>++,则x 的取值范围是.16.如图,在正方形ABCD 中,O 是对角线AC 与BD 的交点,M 是BC 边上的动点(点M 不与点B ,C 重合),过点C 作CN DM ⊥交AB 于点N ,连结OM 、ON ,MN .下列五个结论:①CNB DMC ≅ ;②ON OM =;③ON OM ⊥;④若=2AB ,则OMN S 的最小值是1;⑤222AN CM MN +=.其中正确结论是;(只填序号)17.如图,在平面直角坐标系中,点A 、点B 均在抛物线2y x =上,且AB x ∥轴,点C 、点D 为线段AB 的三等分点,以CD 为边向下作矩形CDEF ,矩形CDEF 的顶点E 、F 均在此抛物线上,若矩形CDEF 的面积为2,则AB 的长为.18.如图,菱形ABCD 的三个顶点在二次函数()2220y ax ax a =++<的图象上,点,A B 分别是该抛物线的顶点和抛物线与y 轴的交点,则点D 的坐标为.19.二次函数2y ax bx c =++(a ,b ,c 是常数,0a ≠)的自变量x 与函数值y 的部分对应值如表:x…-10125…2y ax bx c=++⋯m 1-1-nt⋯且当12x =-时,与其对应的函数值0y >,有下列结论:①0abc >;②当1x >时,y 随x 的增大而减小;③关于x 的方程2ax bx c t ++=的两个根是5和15-;④103m n +>.其中正确的结论是.(填写序号)20.已知点()12,y 与()23,y 在函数()22113y x =-+的图像上,则1y 、2y 的大小关系为.三、解答题21.当抛物线的解析式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x 2-2mx+m 2+2m -1①有y=(x -m)2+2m -1②,所以抛物线顶点坐标为(m ,2m -1),即x=m ③,y=2m -1④.当m 的值变化时,x ,y 的值也随之变化,因而y 的值也随x 值的变化而变化.将③代入④,得y=2x -1⑤.可见,不论m 取任何实数,抛物线顶点的纵坐标y 和横坐标x 都满足关系式:y=2x -1;根据上述阅读材料提供的方法,确定点(-2m,m -1)满足的函数关系式为_______.(2)根据阅读材料提供的方法,确定抛物线22211y x x m m m=-+++顶点的纵坐标y 与横坐标x 之间的关系式.22.如图,已知二次函数的图象M 经过A (﹣1,0),B (4,0),C (2,﹣6)三点.(1)求该二次函数的解析式;(2)点G 是线段AC 上的动点(点G 与线段AC 的端点不重合),若△ABG 与△ABC 相似,求点G 的坐标;(3)设图象M 的对称轴为l ,点D (m ,n )((12)m -<<)是图象M 上一动点,当△ACD 的面积为278时,点D 关于l 的对称点为E ,能否在图象M 和l 上分别找到点P 、Q ,使得以点D 、E 、P 、Q 为顶点的四边形为平行四边形?若能,求出点P 的坐标;若不能,请说明理由.23.为实现农村经济可持续发展,石家庄市相关部门指导对口帮扶县区的村民,加工包装当地特色农产品进行销售,以增加村民收入.已知该特色农产品每件成本10元,日销售量y (袋)与每袋的售价x (元)之间关系如下表:每袋的售价x (元)…2030…日销售量y (袋)…2010…如果日销售量y (袋)是每袋的售价x (元)的一次函数,请回答下列问题:(1)求日销售量y (袋)与每袋的售价x (元)之间的函数表达式;(2)求日销售利润P (元)与每袋的售价x (元)之间的函数表达式;(3)当每袋特色农产品以多少元出售时,才能使每日所获得的利润最大?最大利润是多少元?24.如图,已知抛物线23y ax bx =+-,与x 轴交于()1,0A ,()3,0B -两点,与y 轴交于点C .点P 是线段BC 上一动点,过点P 作x 轴的垂线交抛物线于点D .(1)求抛物线的解析式;(2)连接CD ,是否存在点P ,使得PCD 是以PD 为腰的等腰三角形,若存在,求出P 点的坐标;若不存在,请说明理由.25.投掷实心球是2024年银川市高中阶段学校招生体育考试新增的选考项目.如图①是一名学生投掷实心球的示范动作,已知实心球行进路线是一条抛物线,距地面高度(m)y 与距起点水平距离(m)x 之间的函数关系如图②所示,掷出时起点A 处距地面高度为5m 3,行进过程中最高点B 与O 点的连线与地平面成45︒角,且B 点距地面的高度h 为3m .(1)求y 关于x 的函数表达式;(2)若实心球落地点C 与原点O 的距离可以近似看作本次掷实心球的成绩,则该学生掷实心球的成绩为多少?8参考答案:1.D2.A3.C4.B5.C6.C7.A8.B9.D10.B11.D12.A 13.-114.①②④15.45x -<<16.①②③⑤17.318.()2,2-19.①③④20.12y y </21y y >21.(1)y=112x --;(2)11y x =+22.(1)234y x x =--;(2)G (23,103-);(3)P (72,94-)或P (12-,94-).23.(1)y =-x +40;(2)P =-x 2+50x -400;(3)当每袋特色农产品以25元出售时,才能使每日所获得的利润最大,最大利润是225元.24.(1)223y x x =+-(2)存在,()23,2--或()2,1--25.(1)y 关于x 的函数表达式为()243327y x =--+;(2)该学生掷实心球的成绩为7.5m .。
人教版九年级上册数学第二十二章测试题(附答案)
人教版九年级上册数学第二十二章测试题(附答案)、单选题(共12题;共24分)1 .抛物线y=3(x+1)2+1的顶点所在象限是( )A.第一象限B.第二象限C.第三象限,D.第四象限2 .在平面直角坐标系中,将二次函数 y=2x 2的图象向上平移2个单位,所得图象的解析式为( )A. y=2x 2-2B. y=22x+2C. y=2x-2) 2D. y=2(x+2) 2223二次函数y=ax 2+bx+c (aw 。
和正比例函数 y= $x 的图象如图所示,则方程 ax 2+ (b —亍)x+c=0 (aw°的两根之和(A.小于0। B.等于0C.大于0D.不能确定4 .若将抛物线y=x 2向右平移2个单位,再向上平移 3个单位,则所得抛物线的表达式为( )A. y= (x+2) 2+31B. y= (x-2) 2+31 1C. y= (x+2) 2- 3D. y= (x- 2) 2-35 .把二次函数y=3x 2的图象向左平移2个单位,再向上平移 1个单位,所得到的图象对应的二次函数表达 式是()A. y=3(x-2)2+1B. y=3(x+22-1C. y=3(x-2〃D. y=3(x+22+16 .将抛物线y=6x 2先向左平移2个单位,再向上平移3个单位后得到新的抛物线, 则新抛物线的解析式是()A. y=6 (x-2) 2+3B. y=6 (x+2) 2+3>。
y=6 (x-2) 2-3 D. y=6 (x+2) 2-37 .将二次函数y=x 2-4的图象先向右平移 2个单位,再向上平移 3个单位后得到的抛物线的函数表达式为()A. y= (x +2) 2—711B. y= (x —2) 2-7C. y= (x+2) 2 - 1D. y= (x — 2) 2 — 18 .关于二次函数y=- I (x-3) 2-2的图象与性质,下列结论错误的是( )9 .如图为二次函数 y=ax 2+bx+c 的图象,下列各式中: ①a >0,②b >0,③c=0,④c=1 ,⑤a+b+c=0 .正确的只有()A.抛物线开口方向向下C.当x>3时,y 随x 的增大而减小B. x=3时,函数有最大值-2 D.抛物线可由yW x 2经过平移得到A.①④B.②③④C.③④⑤ "D.①③⑤A. 土〉。
人教版九年级数学上册 第22章 二次函数 基础测试题(含答案)
人教版九年级数学第22章基础测试题(含答案)22.1 二次函数的图象和性质一、选择题(本大题共8道小题)1. 已知直线y=bx-c与抛物线y=ax2+bx+c在同一直角坐标系中的图象可能是()2. 将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的是() A.向左平移1个单位长度B.向右平移3个单位长度C.向上平移3个单位长度D.向下平移1个单位长度3. (2019•岳阳)对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是A.c<-3 B.c<-2C.c<14D.c<14. 如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动.过点P作PD⊥BC于点D,设BD=x,△BDP 的面积为y,则下列能大致反映y与x函数关系的图象是()5. 二次函数y=ax2+bx+c(a,b,c为常数且a≠0)的图象如图所示,则一次函数y=ax+b与反比例函数y=cx的图象可能是()6. 二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()7. 如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6 cm,在矩形ABCD中,AB=2 cm,BC=10 cm,点C和点M重合,点B,C(M),N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1 cm的速度向右移动,至点C与点N重合为止.设移动x s 后,矩形ABCD与△PMN重叠部分的面积为y cm2,则y关于x的大致图象是()8. 二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x …-2 -1 0 1 2 …y=ax2+bx+c …t m -2 -2 n …且当x =-12时,与其对应的函数值y>0,有下列结论:(1)abc>0;(2)-2和3是关于x 的方程ax 2+bx +c =t 的两个根;(3)0<m +n<203.其中正确结论的个数是( )A .0B .1C .2D .3二、填空题(本大题共8道小题)9. 抛物线y =12(x +3)2-2是由抛物线y =12x 2先向________(填“左”或“右”)平移________个单位长度,再向________(填“上”或“下”)平移________个单位长度得到的.10. 函数y =-4x 2-3的图象开口向________,对称轴是________,顶点坐标是________;当x ________0时,y 随x 的增大而减小,当x ________时,y 有最________值,是________,这个函数的图象是由y =-4x 2的图象向________平移________个单位长度得到的.11. 二次函数y =-x 2+6x -5的图象开口________,对称轴是________,顶点坐标是________;与x 轴的两个交点坐标分别是________,与y 轴的交点坐标是________;在对称轴左侧,即x ________时,y 随x 的增大而________,在对称轴右侧,即x ________时,y 随x 的增大而________,当x =________时,y 有最________值为________;抛物线y =-x 2+6x -5是由抛物线y =-x 2向________(填“左”或“右”)平移________个单位长度,再向________(填“上”或“下”)平移________个单位长度得到的.12. 抛物线y =ax 2+bx +c 经过点A (-3,0),对称轴是直线x =-1,则a +b +c =________.13. 如图,在平面直角坐标系中,抛物线y =ax 2(a >0)与y =a (x -2)2交于点B ,抛物线y =a (x -2)2交y 轴于点E ,过点B 作x 轴的平行线与两条抛物线分别交于D ,C 两点.若A 是x 轴上两条抛物线顶点之间的一点,连接AD ,AC ,EC ,ED ,则四边形ACED 的面积为________.(用含a 的代数式表示)14. 如图,抛物线y =ax 2+bx +c(a ,b ,c 是常数,a≠0)与x 轴交于A ,B 两点,顶点为P(m ,n).给出下列结论:①2a +c <0;②若(-32,y 1),(-12,y 2),(12,y 3)在抛物线上,则y 1>y 2>y 3;③若关于x 的方程ax 2+bx +k =0有实数解,则k >c -n ;④当n =-1a 时,△ABP 为等腰直角三角形.其中正确的结论是________.(填序号)15. 如图,平行于x 轴的直线AC 与函数y 1=x 2(x ≥0),y 2=13x 2(x ≥0)的图象分别交于B ,C 两点,过点C 作y 轴的平行线交y 1的图象于点D ,直线DE ∥AC 交y 2的图象于点E ,则DEAB =________.16. 如图,在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx (a >0)的顶点为C ,与x 轴的正半轴交于点A ,它的对称轴与抛物线y =ax 2(a >0)交于点B .若四边形ABOC 是正方形,则b 的值是________.三、解答题(本大题共4道小题)17. 如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.18. 如图,抛物线y=ax2+bx+c经过点A(-1,0),B(5,-6),C(6,0).(1)求抛物线的解析式.(2)在直线AB下方的抛物线上是否存在点P,使四边形PACB的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.19. 已知:如图所示,抛物线y=-x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0).(1)求抛物线的解析式.(2)设点P在该抛物线上滑动,则满足条件S△PAB=1的点P有几个?求出所有点P的坐标.(3)设抛物线交y轴于点C,该抛物线的对称轴上是否存在点M,使得△MAC的周长最小?若存在,求出点M的坐标;若不存在,请说明理由.20. (2019·山西)综合与探究如图,抛物线26y ax bx =++经过点A (–2,0),B (4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为(14)m m <<.连接AC ,BC ,DB ,D C.(1)求抛物线的函数表达式;(2)△BCD 的面积等于△AOC 的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.人教版 九年级数学 22.1 二次函数的图象和性质 培优训练-答案一、选择题(本大题共8道小题)1. 【答案】C【解析】在A 中,抛物线的对称轴在y 轴右边,∴-b2a >0,∵a>0,∴b <0;而从一次函数图象知b >0,∴选项A 错误;在B 中,抛物线对称轴-b2a >0,∵a <0,∴b >0;而从一次函数图象知b <0,∴选项B 错误;在C 中,抛物线的对称轴在y 轴左边,∴-b2a <0,∵a >0,∴b >0;抛物线与y 轴负半轴相交,∴c <0;而从一次函数图象知b >0,-c >0,∴c <0,∴选项C 正确;在D 中,抛物线与y 轴的正半轴相交,c >0,由一次函数图象知-c >0,即c <0,∴选项D 错误.2. 【答案】D [解析] A .将函数y =x 2的图象向左平移1个单位长度得到函数y =(x +1)2的图象,它经过点(1,4);B.将函数y =x 2的图象向右平移3个单位长度得到函数y =(x -3)2的图象,它经过点(1,4);C.将函数y =x 2的图象向上平移3个单位长度得到函数y =x 2+3的图象,它经过点(1,4);D.将函数y =x 2的图象向下平移1个单位长度得到函数y =x 2-1的图象,它不经过点(1,4).故选D.3. 【答案】B【解析】由题意知二次函数y=x2+2x+c 有两个相异的不动点x1、x2, 所以x1、x2是方程x2+2x+c=x 的两个不相等的实数根, 整理,得:x2+x+c=0, 所以∆=1–4c>0,又x2+x+c=0的两个不相等实数根为x1、x2,x1<1<x2, 所以函数y=x2+x+c=0在x=1时,函数值小于0, 即1+1+c<0,综上则140110c c ->⎧⎨++<⎩,解得c<-2, 故选B .4. 【答案】B【解析】∵△ABC 是等腰直角三角形,∴∠A =90°,∠B =∠C =45°.(1)当0≤x ≤2时,点P 在AB 边上,△BDP 是等腰直角三角形,∴PD =BD =x ,y =12x 2 (0≤x ≤2),其图象是抛物线的一部分; (2)当2<x ≤4时,点P 在AC 边上,△CDP 是等腰直角三角形,∴PD =CD =4-x ,∴y =12BD ·PD =12x (4-x ) (2<x ≤4),其图象也是抛物线的一部分.综上所述,两段图象均是抛物线的一部分,因此选项B 的图象能大致反映y 与x 之间的函数关系.5. 【答案】C 【解析】抛物线开口向上,所以a >0,对称轴在y 轴右侧,所以a 、b 异号,所以b <0,抛物线与y 轴交于负半轴,所以c <0,所以直线y =ax +b过第一、三、四象限,反比例函数y =cx 位于第二、四象限,故答案为C.6. 【答案】D [解析] 由一次函数y =ax +a 可知,其图象与x 轴交于点(-1,0),排除A ,B ;当a >0时,二次函数y =ax 2的图象开口向上,一次函数y =ax +a 的图象经过第一、二、三象限;当a <0时,二次函数y =ax 2的图象开口向下,一次函数y =ax +a 的图象经过第二、三、四象限.排除C.7. 【答案】A [解析] (1)当点D 位于PM 上时,x =2.当0≤x <2时,重叠部分是等腰直角三角形,y =12x2,图象是顶点为(0,0)且开口向上的抛物线的一部分.(2)当点D 位于PN 上时,x =4.当2≤x≤4时,重叠部分是直角梯形,y =12×(x -2+x)×2=2x -2,图象是直线的一部分;(3)当4<x≤6时,重叠部分是一个五边形,y =12×(2+6)×2-12(6-x)2=8-12(6-x)2,图象是顶点为(6,8)且开口向下的抛物线的一部分.故选A.8. 【答案】C [解析] (1)因为当x =-12时,与其对应的函数值y>0,由表格可知x =0时,y=-2,x =1时,y =-2,可以判断在对称轴左侧,y 随x 的增大而减小,图象开口向上,a>0;由表格可知x =0时,y =-2,x =1时,y =-2,可得对称轴为直线x =12,所以b<0;当x =0时,y =-2,所以c =-2<0,故abc>0,(1)正确.(2)由于对称轴是直线x =12,x =-2和x =3关于对称轴对称,当x =-2时,y =t ,所以当x =3时,y =t ,即-2和3是关于x 的方程ax 2+bx +c =t 的两个根,所以(2)正确.(3)依题意可得c =-2,a +b =0,当x =-12时,与其对应的函数值y>0可得a>83,当x =-1时,m =a -b -2=2a -2>103.因为x=-1和x =2关于对称轴对称,所以m =n ,所以m +n>203,故(3)错误.故选C.二、填空题(本大题共8道小题)9. 【答案】左3 下 2 [解析] 抛物线y =12x 2的顶点坐标为(0,0),而抛物线y =12(x +3)2-2的顶点坐标为(-3,-2),所以把抛物线y =12x 2先向左平移3个单位长度,再向下平移2个单位长度,就得到抛物线y =12(x +3)2-2.10. 【答案】下y 轴 (0,-3) > =0 大 -3 下 311. 【答案】向下直线x =3 (3,4) (1,0),(5,0) (0,-5) <3 增大 >3 减小 3 大4 右 3 上 412. 【答案】0 [解析] ∵抛物线y =ax 2+bx +c 经过点A(-3,0),对称轴是直线x =-1,∴抛物线y =ax 2+bx +c 与x 轴的另一交点的坐标为(1,0), ∴a +b +c =0.13. 【答案】8a[解析] ∵抛物线y =ax 2(a >0)与y =a(x -2)2交于点B ,∴BD =BC =2, ∴DC =4.∵y =a(x -2)2=ax 2-4ax +4a , ∴E(0,4a),∴S 四边形ACED =S △ACD +S △CDE =12DC·OE =12×4×4a =8a.14. 【答案】②④ [解析] (1)当x =-1时,y =a -b +c >0.由x =-b 2a <12和a >0可得-b<a.∴0<a -b +c <a +a +c =2a +c ,即2a +c >0,①错误; (2)结合图象易知②正确;(3)方程ax 2+bx +k =0有实数解,即ax 2+bx +c =c -k 有实数解.∵y =ax 2+bx +c≥n ,∴c -k≥n ,即k≤c -n ,③错误;(4)设抛物线的解析式为y =-1n (x -m)2+n(n <0).令y =0,得-1n (x -m)2+n =0.∴n 2-(x -m)2=0,∴(n -x +m)(n +x -m)=0.∴x 1=m +n ,x 2=m -n.AB =|x 1-x 2|=-2n.设对称轴交x 轴于点H ,则AH =BH =PH =-n ,∴△ABP 为等腰直角三角形,④正确.15. 【答案】3-3 [解析] 设点A 的坐标为(0,b),则B(b ,b),C(3b ,b),D(3b ,3b),E(3 b ,3b).所以AB =b ,DE =3 b -3b =(3-3) b.所以DE AB =(3-3)bb=3- 3.16. 【答案】-2 [解析] 抛物线y =ax 2+bx 的顶点C 的坐标为(-b 2a ,-b24a).把x =-b 2a 代入y =ax 2,得点B 的坐标为(-b 2a ,b 24a ).在y =ax 2+bx 中,令y =0,则ax 2+bx =0,解得x 1=0,x 2=-b a ,∴A(-ba ,0).∵四边形ABOC 为正方形,∴BC =OA ,∴2·b 24a =-b a ,即b 2+2b =0.解得b =-2或b =0(不符合题意,舍去).三、解答题(本大题共4道小题)17. 【答案】解:(1)∵抛物线y =ax 2+2ax +1与x 轴仅有一个交点, ∴b 2-4ac =(2a)2-4a =0,解得a =1,a =0(舍去), ∴抛物线的解析式:y =x 2+2x +1.(3分)(2)设直线AB 的解析式为y =kx +b , ∵抛物线解析式y =x 2+2x +1=(x +1)2, ∴A(-1,0),(4分)过点B 作BD ⊥x 轴于点D ,如解图, ∵OC ⊥x 轴, ∴OC ∥BD ,∵C 是AB 中点, ∴O 是AD 中点, ∴AO =OD =1,(6分) ∴点B 的横坐标为1,把x =1代入抛物线中,得y =(x +1)2=(1+1)2=4, ∴B 的坐标为(1,4).(7分)把点A(-1,0) ,B(1,4)代入y =kx +b , 得⎩⎨⎧0=-k +b 4=k +b , 解得⎩⎨⎧k =2b =2,∴直线AB 的解析式为: y =2x +2.(8分)18. 【答案】解:(1)设y =a(x +1)(x -6),把(5,-6)代入解析式,得a(5+1)(5-6)=-6, 解得a =1,∴y =(x +1)(x -6)=x2-5x -6. (2)存在.如图,分别过点P ,B 向x 轴作垂线,垂足为M ,N.设P(m ,m2-5m -6),其中-1<m <5,设四边形PACB 的面积为S ,则PM =-m2+5m +6,AM =m +1,MN =5-m ,CN =6-5=1,BN =6,∴S =S △AMP +S 梯形PMNB +S △BNC =12(-m2+5m +6)(m +1)+12(6-m2+5m +6)(5-m)+12×1×6=-3m2+12m +36=-3(m -2)2+48,当m =2时,S 有最大值为48,这时m2-5m -6=22-5×2-6=-12, ∴P(2,-12).19. 【答案】解:(1)将(1,0),(3,0)分别代入y =-x2+bx +c ,得⎩⎪⎨⎪⎧-1+b +c =0,-9+3b +c =0,解得⎩⎪⎨⎪⎧b =4,c =-3.∴该抛物线的解析式为y =-x2+4x -3. (2)设点P 的坐标为(x ,y).∵AB =2,S △PAB =12AB·|y|=1,∴y =±1.当y =1时,有1=-x2+4x -3, 即x2-4x +4=(x -2)2=0, 解得x1=x2=2;当y =-1时,有-1=-x2+4x -3,即x2-4x +2=0,解得x1=2-2,x2=2+ 2. ∴满足条件的点P 有3个,坐标分别为(2,1), (2+2,-1),(2-2,-1). (3)存在.作点C 关于抛物线的对称轴的对称点C′,连接AC′交抛物线的对称轴于点M ,连接MC ,任取抛物线对称轴上除点M 外的任意一点N ,连接NA ,NC ,NC′,如图所示.∵NA +NC =NA +NC′>AC′=MA +MC′=MA +MC , ∴当点A ,M ,C′共线时,△MAC 的周长最小. ∵抛物线的解析式为y =-x2+4x -3,∴点C 的坐标为(0,-3),抛物线的对称轴为直线x =-42×(-1)=2,∴C′(4,-3).设直线AC′的解析式为y =mx +n. ∵点A(1,0),C′(4,-3)在直线AC′上,∴⎩⎪⎨⎪⎧m +n =0,4m +n =-3,解得⎩⎪⎨⎪⎧m =-1,n =1,∴直线AC′的解析式为y =-x +1. 当x =2时,y =-x +1=-1,∴直线AC′与抛物线对称轴的交点的坐标为(2,-1),即M(2,-1). ∴存在点M(2,-1),使得△MAC 的周长最小.20. 【答案】(1)抛物线2y ax bx c =++经过点A(–2,0),B(4,0),∴426016460a b a b -+=⎧⎨++=⎩,解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的函数表达式为233642y x x =-++;(2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F , ∵点A 的坐标为(–2,0),∴OA=2,由0x =,得6y =,∴点C 的坐标为(0,6),∴OC=6,∴S △OAC=1126622OA OC ⋅⋅=⨯⨯=,∵S△BCD=34S△AOC,∴S△BCD=39642⨯=,设直线BC的函数表达式为y kx n=+,由B,C两点的坐标得406k nn+=⎧⎨=⎩,解得326kn⎧=-⎪⎨⎪=⎩,∴直线BC的函数表达式为362y x=-+,∴点G的坐标为3(,6)2m m-+,∴2233336(6)34224DG m m m m m=-++--+=-+,∵点B的坐标为(4,0),∴OB=4,∵S△BCD=S△CDG+S△BDG=1111()2222DG CF DG BE DG CF BE DG BO⋅⋅+⋅⋅=⋅+=⋅⋅,∴S△BCD=22133346242m m m m-+⨯=-+(),∴239622m m-+=,解得11m=(舍),23m=,∴m的值为3;(3)存在,如下图所示,以BD为边或者以BD为对角线进行平行四边形的构图,以BD为边时,有3种情况,∵D点坐标为15(3,)4,∴点N点纵坐标为±154,当点N的纵坐标为154时,如点N2,此时233156424x x -++=,解得:121,3x x =-=(舍),∴215(1,)4N -,∴2(0,0)M ; 当点N 的纵坐标为154-时,如点N3,N4, 此时233156424x x -++=-,解得:12114,114x x =-=+∴315(114,)4N +-,415(114,)4N --, ∴3(14,0)M ,4(14,0)M -;以BD 为对角线时,有1种情况,此时N1点与N2点重合, ∵115(1,)4N -,D(3,154),∴N1D=4, ∴BM1=N1D=4, ∴OM1=OB+BM1=8, ∴M1(8,0),综上,点M 的坐标为:1234(80)(00)(140)(140)M M M M -,,,,,,,.【名师点睛】本题考查的是二次函数的综合题,涉及了待定系数法、三角形的面积、解一元二次方程、平行四边形的性质等知识,运用了数形结合思想、分类讨论思想等数学思想,熟练掌握和灵活运用相关知识是解题的关键.【22.2二次函数与一元二次方程】一.选择题1.若抛物线y=x2﹣6x+m与x轴只有一个交点,则m的值为()A.﹣6B.6C.3D.92.已知某二次函数的图象与x轴相交于A,B两点,若该二次函数图象的对称轴是直线x =3,且点A的坐标是(8,0),则AB的长为()A.5B.8C.10D.113.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,当y>0时,x的取值范围是()A.﹣1<x<2B.x>2C.x<﹣1D.x<﹣1或x>2 4.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如下表所示:x…0100400…y…2﹣22…则方程ax2+bx+4=0的根是()A.x1=x2=200B.x1=0,x2=400C.x1=100,x2=300D.x1=100,x2=5005.已知二次函数y=ax2+bx+c(a≠0)的图象过点(0,m)(2,m)(m>0),与x轴的一个交点为(x1,0),且﹣1<x1<0.则下列结论:①若点(,y)是函数图象上一点,则y>0;②若点(﹣),()是函数图象上一点,则y2>y1;③(a+c)2<b2.其中正确的是()A.①B.①②C.①③D.②③6.二次函数y=kx2﹣6x+3的图象与x轴有交点,则k的取值范围是()A.k<3B.k<3且k≠0C.k≤3D.k≤3且k≠0 7.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表,则方程ax2+bx+c =0的一个解的范围是()x 6.17 6.18 6.19 6.20y﹣0.03﹣0.010.020.04A.﹣0.01<x<0.02B.6.17<x<6.18C.6.18<x<6.19D.6.19<x<6.208.已知函数y=3﹣(x﹣m)(x﹣n),并且a,b是方程3﹣(x﹣m)(x﹣n)=0的两个根,则实数m,n,a,b的大小关系可能是()A.m<n<b<a B.m<a<n<b C.a<m<b<n D.a<m<n<b 9.若抛物线y=x2+bx+c与x轴交于(1,0),(3,0),则b和c的值为()A.b=4,c=﹣3B.b=﹣4,c=3C.b=﹣4,c=﹣3D.b=4,c=﹣3 10.如图,抛物线y=ax2+2ax﹣3a(a>0)与x轴交于A,B,顶点为点D,把抛物线在x 轴下方部分关于点B作中心对称,顶点对应D′,点A对应点C,连接DD′,CD′,DC,当△CDD′是直角三角形时,a的值为()A.或B.或C.或D.或二.填空题11.抛物线y=ax2﹣2x﹣1与x轴有两个交点,则a的取值范围为.12.已知函数y=(m+3)x2+2x+1的图象与x轴只有一个公共点,则m的值为13.已知二次函数y=x2+2x+n,当自变量x的取值在﹣2≤x≤1的范围内时,函数的图象与x轴有且只有一个公共点,则n的取值范围是.14.已知抛物线y=a(x﹣h)2+k经过点A(﹣2,0),B(3,0)两点.若关于x的一元二次方程a(x﹣h+m)2+k=0的一个根是1,则m的值为.15.抛物线y=ax2﹣3x+2与x轴正半轴交于A、B两点,且AB=2,则a=.三.解答题16.已知关于x的函数y=(k﹣1)x2﹣2kx+k+2的图象与x轴有交点,求k的取值范围.17.抛物线y=﹣x2+bx+c交x轴于A(3,0)、B两点,与y轴交于点C(0,3),点D为顶点,对称轴l交x轴于点E,点P是抛物线上一点,AP交对称轴于点M,BP交对称轴于点N.求点D坐标及对称轴l.18.如图,已知二次函数y=﹣x2﹣2x+3的图象交x轴于A、B两点(A在B左边),交y 轴于C点.(1)求A、B、C三点的坐标和直线AC的解析式;(2)点P是直线AC上方抛物线上一动点(不与A,C重合),过点P作x轴平行线交直线AC于M点,求线段PM的最大值.19.已知二次函数y=ax2+bx+c,自变量x与函数y的部分对应值如下表:x…﹣2﹣101234…y…50﹣3﹣4﹣30m…(1)二次函数图象的开口方向,顶点坐标是,m的值为;(2)点P(﹣3,y1)、Q(2,y2)在函数图象上,y1y2(填<、>、=);(3)当y<0时,x的取值范围是;(4)关于x的一元二次方程ax2+bx+c=5的解为.20.如图,已知抛物线y=﹣x2+(m﹣1)x+m的对称轴为x=1,请你解答下列问题:(Ⅰ)求m的值;(Ⅱ)求出抛物线与x轴的交点;(Ⅲ)当y随x的增大而减小时x的取值范围是.(Ⅳ)当y<0时,x的取值范围是.参考答案一.选择题1.解:根据题意得△=(﹣6)2﹣4m=0,解得m=9.故选:D.2.解:∵某二次函数的图象与x轴相交于A,B两点,该二次函数图象的对称轴是直线x =3,且点A的坐标是(8,0),∴点B的坐标为(﹣2,0),∴AB=8﹣(﹣2)=8+2=10,故选:C.3.解:由图象可知,当y>0时,x的取值范围是x<﹣1或x>2,故选:D.4.解:由抛物线经过点(0,2)得到c=2,因为抛物线经过点(0,2)、(400,2),所以抛物线的对称轴为直线x=200,而抛物线经过点(100,﹣2),所以抛物线经过点(300,﹣2),所以二次函数解析式为y=ax2+bx+2,方程ax2+bx+4=0变形为ax2+bx+2=﹣2,所以方程ax2+bx+4=0的根理解为函数值为﹣2所对应的自变量的值,所以方程ax2+bx+4=0的根为x1=100,x2=300.故选:C.5.解:∵抛物线经过点(0,m)(2,m)(m>0),(x1,0)(﹣1<x1<0),∴抛物线开口向下,对称轴为直线x=﹣=1,即b=﹣2a,∴当x=时,y>0,则①正确;∵点()到直线x=1和点()到直线x=1的距离相等,∴y1=y2,所以②错误;∵x=1,y>0;x=﹣1,y<0,即a+b+c>0,a﹣b+c<0,∴(a+b+c)(a﹣b+c)<0,即(a+c)2<b2,则③正确.故选:C.6.解:∵二次函数y=kx2﹣6x+3的图象与x轴有交点,∴方程kx2﹣6x+3=0(k≠0)有实数根,即△=36﹣12k≥0,k≤3,由于是二次函数,故k≠0,则k的取值范围是k≤3且k≠0.故选:D.7.解:由表格中的数据看出﹣0.01和0.02更接近于0,故x应取对应的范围.故选:C.8.解:由3﹣(x﹣m)(x﹣n)=0变形得(x﹣m)(x﹣n)=3,∴x﹣m>0,x﹣n>0或x﹣m<0,x﹣n<0,∴x>m,x>n或x<m,x<n,∵a,b是方程的两个根,将a,b代入,得:a>m,a>n,b<m,b<n或a<m,a<n,b>m,b>n,观察选项可知:a<b,m<n,只有D可能成立.故选:D.9.解:抛物线解析式为y=(x﹣1)(x﹣3),即y=x2﹣4x+3.所以b=﹣4,c=3.故选:B.10.解:∵y=ax2+2ax﹣3a=a(x+3)(x﹣1)=a(x+1)2﹣4a,∴点A的坐标为(﹣3,0),点B(1,0),点D(﹣1,﹣4a),∴D′(3,4a),C(5,0),∵△CDD′是直角三角形,∴当∠DD′C=90°时,4a=×(5﹣1)=2,得a=,当∠D′CD=90°时,CB=DD′,∴5﹣1=,解得,a1=,a2=﹣(舍去),由上可得,a的值是或,故选:A.二.填空题21.解:∵抛物线y=ax2﹣2x﹣1与x轴有两个交点,∴,解得,a>﹣1且a≠0,故答案为:a>﹣1且a≠0.22.解:∵函数y=(m+3)x2+2x+1的图象与x轴只有一个公共点,∴或(m+3)=0,解得,m=﹣1或m=﹣3,故答案为:m=﹣1或m=﹣3.23.解:抛物线的对称轴为直线x=﹣=﹣1,若抛物线与x轴有一个交点,则当x=﹣1,y=0;当x=1,y≥0时,在﹣2≤x≤1的范围内时,抛物线与x轴有且只有一个公共点,即1+2+n≥0且4﹣4+n<0,解得﹣3≤n <0;所以,n的取值范围是n=1或﹣3≤n<0.故答案为n=1或﹣3≤n<0.24.解:由已知可得:对称轴为x=,∴h=,∴y=a(x﹣)2+k,将点A(﹣2,0)代入y=a(x﹣)2+k,∴k=﹣a,∵a(x﹣h+m)2+k=0,∴a(x﹣+m)2﹣a=0,∵a≠0,∴(x﹣+m)2=,∵方程的一个根为1,∴(1﹣+m)2=,故答案为m=2或m=﹣3.25.解:当y=0时,ax2﹣3x+2=0,∵a>0,∴(x﹣1)(x﹣2)=0,解得x1=,x2=,∴A、B两点的坐标为(,0),(,0),∵AB=2,∴﹣=2,解得a=.故答案为.三.解答题31.解:∵关于x的函数y=(k﹣1)x2﹣2kx+k+2的图象与x轴有交点,∴或,解得,k≤2且k≠1或k=1,由上可得,k的取值范围是k≤2.32.解:把A(﹣3,0),C(0,3)分别代入y=﹣x2+bx+c得,解得,所以抛物线解析式为y=﹣x2+2x+3,因为y=﹣(x﹣1)2+4,所以D点坐标为(1,4),抛物线的对称轴l为直线x=1.33.解:(1)令y=0,得:﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,∴点A(﹣3,0),点B(1,0);令x=0,得:y=3,∴点C(0,3);设直线AC的解析式为:y=kx+b,点A(﹣3,0),点C(0,3)在直线AC上,,解得:,∴直线AC的解析式为:y=x+3.(2)如图所示,设点P的坐标为(a,﹣a2﹣2a+3),由PM∥x轴,可知点M的纵坐标为﹣a2﹣2a+3,∴x=﹣a2﹣2a,∴PM=﹣a2﹣2a﹣a=﹣a2﹣3a(﹣3<a<0),=.当a=时,PM最大34.解:(1)由表格可见,函数的对称轴为x=1,对称轴右侧,y随x的增大而增大,故抛物线开口向上,顶点坐标为(1,﹣4),根据函数的对称性m=5;故答案为:向上;(1,﹣4);5;(2)从P、Q的横坐标看,点Q离函数的对称轴近,故y1>y2;故答案为:>;(3)从表格看,当y<0时,x的取值范围是:﹣1<x<3,故答案为:﹣1<x<3;(4)从表格看,关于x的一元二次方程ax2+bx+c=5的解为:x=﹣2或4,故答案为:x=﹣2或4.35.解:(Ⅰ)抛物线的对称轴为直线x=﹣=1,∴m=3;(Ⅱ)∵m=3,∴抛物线解析式为y=﹣x2+2x+3,当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,∴抛物线与x轴的交点为(﹣1,0),(3,0);(Ⅲ)∵a=﹣1<0,对称轴为直线x=1,∴当x>1时,y的值随x的增大而减小,故答案为x>1;(Ⅳ)当x<﹣1或x>3时,y<0,故答案为x<﹣1或x>3.22.3 实际问题与二次函数一、选择题(本大题共10道小题)1. 小敏用一根长为8 cm的细铁丝围成矩形,则矩形的最大面积是()A.4 cm2B.8 cm2C.16 cm2D.32 cm22. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段防护栏需要间距0.4 m加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A.50 m B.100 mC.160 m D.200 m3. 从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.有下列结论:①小球在空中经过的路程是40 m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度h=30 m时,t=1.5 s.其中正确的是()A.①④B.①②C.②③④D.②③4. 如图,利用一面墙,其他三边用80米长的篱笆围成一块矩形场地,墙长为30米,则围成矩形场地的最大面积为()A.800平方米B.750平方米C .600平方米D .2400平方米5. 如图,△ABC 是直角三角形,∠A =90°,AB =8 cm ,AC =6 cm ,点P 从点A出发,沿AB 方向以2 cm/s 的速度向点B 运动;同时点Q 从点A 出发,沿AC 方向以1 cm/s 的速度向点C 运动,当其中一个动点到达终点时,另一个动点也停止运动,则四边形BCQP 面积的最小值是( )A .8 cm 2B .16 cm 2C .24 cm 2D .32 cm 26. 中环桥是省城太原的一座跨汾河大桥(如图①),它由五个高度不同,跨径也不同的抛物线形钢拱通过吊杆,拉索与主梁相连.最高的钢拱如图②所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点,拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB =90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系.则此抛物线形钢拱的函数解析式为( )A .y =26675x 2 B .y =-26675x 2 C .y =131350x 2D .y =-131350x 27. 如图,在△ABC 中,∠C =90°,AB =10 cm ,BC =8 cm ,点P 从点A 沿AC向点C 以1 cm/s 的速度运动,同时点Q 从点C 沿CB 向点B 以2 cm/s 的速度运动(点Q 运动到点B 时,两点同时停止运动),在运动过程中,四边形P ABQ 的面积的最小值为 ( )A .19 cm 2B .16 cm 2C .15 cm 2D .12 cm 28. 在羽毛球比赛中,羽毛球的运动路线可以看作是抛物线y =-14x 2+bx +c 的一部分(如图),其中出球点B 离地面点O 的距离是1 m ,球落地点A 到点O 的距离是4 m ,那么这条抛物线的解析式是( )A .y =-14x 2+34x +1B .y =-14x 2+34x -1C .y =-14x 2-34x +1D .y =-14x 2-34x -19. 一位篮球运动员在距离篮圈中心水平距离4 m 处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5 m 时,达到最大高度3.5 m ,然后准确落入篮筐内.已知篮圈中心距离地面高度为3.05 m ,在如图 (示意图)所示的平面直角坐标系中,下列说法正确的是( )A .此抛物线的解析式是y =-15x 2+3.5 B .篮圈中心的坐标是(4,3.05) C .此抛物线的顶点坐标是(3.5,0) D .篮球出手时离地面的高度是2 m10. 一种包装盒的设计方法如图所示,四边形ABCD 是边长为80 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四点重合于图中的点O ,得到一个底面为正方形的长方体包装盒.设BE =CF =x cm ,要使包装盒的侧面积最大,则x 应取( )A.30 B.25 C.20 D.15二、填空题(本大题共7道小题)11. 某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50 m),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48 m,则这三间长方形种牛饲养室的总占地面积的最大值为________ m2.12. 已知一个直角三角形两直角边长的和为30,则这个直角三角形的面积最大为________.13. 某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m宽的门.已知计划中的材料可建墙体总长为27 m,则能建成的饲养室总占地面积最大为________m2.14. 某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t·为正整数....)的增大而增大,a 的取值范围应为________.15. 如图所示是一座抛物线形拱桥,当水面宽为12 m时,桥拱顶部离水面4 m,以水平方向为x轴,建立平面直角坐标系.若选取点A为坐标原点时的抛物线解析式为y=-19(x-6)2+4,则选取点B为坐标原点时的抛物线解析式为________________.16. 竖直上抛的小球离地高度是它运动时间的二次函数.小军相隔1秒依次竖直向上抛出两个小球.假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度.第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=________.17. 如图是某地一座抛物线形拱桥,桥拱在竖直平面内与水平桥面相交于A,B 两点,桥拱最高点C到AB的距离为9 m,AB=36 m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7 m,则DE的长为________m.三、解答题(本大题共4道小题)18. 某商场销售一批名牌衬衫,每件进价为300元,若每件售价为420元,则平均每天可售出20件.经调查发现,每件衬衫每降价10元,商场平均每天可多售出1件,为了扩大销售,增加盈利,减少库存,商场决定采取适当的降价措施.设每件衬衫降价x元.(1)每件衬衫的盈利为多少?(2)用含x的代数式表示每天可售出的衬衫件数.(3)若商场每天要盈利1920元,请你帮助商场算一算,每件衬衫应降价多少元?(4)这次降价活动中,1920元是最高日盈利吗?若是,请说明理由;若不是,试求最高日盈利值.19. 如图,工人师傅用一块长为10 dm,宽为6 dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形(厚度不计).(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕,并求长方体底面面积为12 dm2时,裁掉的正方形的边长;(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长为多少时,总费用最低,最低为多少元?20. 如图,某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50 m.设饲养室的长为x(m),占地面积为y(m2).(1)如图②,当饲养室的长x为多少时,占地面积y最大?(2)如图③,现要求在图中所示位置留2 m宽的门,且仍使饲养室的占地面积最大.小敏说:“只要饲养室的长比(1)中的长多2 m就行了.”请你通过计算,判断小敏的说法是否正确.21. 有一块形状如图所示的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B =90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.人教版 九年级数学 22.3 实际问题与二次函数同步训练-答案一、选择题(本大题共10道小题)1. 【答案】A [解析] 设矩形的一边长为x cm ,则另一边长为()4-x cm ,故矩形的面积S =x ()4-x =-x 2+4x =-(x -2)2+4,所以当x =2时,S 最大值=4.故矩形的最大面积为4 cm2.2. 【答案】C [解析] 以2 m 长线段所在直线为x 轴,以其垂直平分线为y 轴建立平面直角坐标系,求出抛物线的解析式,再求出不锈钢支柱的长度.3. 【答案】D [解析] ①由图象知小球在空中达到的最大高度是40 m ,故①错误;②小球抛出3秒后,速度越来越快,故②正确;③∵小球抛出3秒时达到最高点,∴速度为0,故③正确; ④设函数解析式为h =a(t -3)2+40, 把O(0,0)代入得0=a(0-3)2+40. 解得a =-409,∴函数解析式为h =-409(t -3)2+40.把h =30代入解析式,得30=-409(t -3)2+40,解得t =4.5或t =1.5,∴小球的高度h =30 m 时,t =1.5 s 或4.5 s ,故④错误.故选D.4. 【答案】B[解析] 设矩形场地中平行于墙的边长为x 米,则垂直于墙的边长为80-x2米,围成矩形场地的面积为y 平方米, 则y =x ·(80-x )2=-12x 2+40x =-12(x -40)2+800.∵a <0,∴x <40时,y 随x 的增大而增大,由于墙长为30米,∴0<x ≤30,∴当x =30时,y 取得最大值,为-12×(30-40)2+800=750.5. 【答案】A[解析] 设运动时间为t s ,四边形BCQP 的面积为S m 2,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页 第2页
┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅密┅┅┅┅┅┅┅┅┅┅┅┅┅封┅┅┅┅┅┅┅┅┅┅┅┅┅线┅┅┅┅┅┅┅┅┅┅┅┅┅
班级:__________ 姓名:__________ 考号:__________ 试场:________ 座位号:________
第22章检测题
(时间:100分钟 满分:100分)
一、精心选一选(每小题3分,共30分)
1.若(n -2)xn 2-2+x -1=0是一元二次方程,则n 的值为( )
A .2或-2
B .2
C .-2
D .0
2.(2015·温州)若关于x 的一元二次方程4x 2-4x +c =0有两个相等实数
根,则c 的值是( )
A .-1
B .1
C .-4
D .4
3.一个三角形的两边长分别为3和6,第三边的边长是方程(x -2)(x -4)
=0的根,则这个三角形的周长是( )
A .11
B .11或13
C .13
D .以上选项都不正确
4.关于x 的一元二次方程(a -1)x 2
+x +|a|-1=0的一个根是0,则实数
a 的值为( )
A .-1
B .0
C .1
D .-1或1
5.(2015·河北)若关于x 的方程x 2+2x +a =0不存在实数根,则a 的取
值范围是( )
A .a <1
B .a >1
C .a ≤1
D .a ≥1
6.已知一元二次方程x 2-6x +c =0有一个根为2,则另一根和c 分别为
( )
A .1,2
B .2,4
C .4,8
D .8,16
7.已知α,β是关于x 的一元二次方程x 2+(2m +3)x +m 2=0的两个不相
等的实数根,且满足1α+1
β
=-1,则m 的值是( )
A .3
B .1
C .3或-1
D .-3或1
8.某商店购进一种商品,单价为30元.试销中发现这种商品每天的销售量P(件)与每件的销售价x(元)满足关系:P =100-2x.若商店在试销期间每天销售这种商品获得200元的利润,根据题意,下面所列方程正确的是( )
A .(x -30)(100-2x )=200
B .x (100-2x )=200
C .(30-x )(100-2x )=200
D .(x -30)(2x -100)=200
9.某学校准备修建一个面积为200平方米的矩形花圃,它的长比宽多10
米,设花圃的宽为x 米,则可列方程为( )
A .x (x -10)=200
B .2x +2(x -10)=200
C .x (x +10)=200
D .2x +2(x +10)=200
10.我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环
境改善等多重因素,快递业迅猛发展,2014年增速位居全国第一.若2015年
的快递业务量达到4.5亿件,设2014年与2015年这两年的年平均增长率为x ,
则下列方程正确的是( )
A .1.4(1+x )=4.5
B .1.4(1+2x )=4.5
C .1.4(1+x )2=4.5
D .1.4(1+x )+1.4(1+x )2=4.5
二、细心填一填(每小题3分,共18分)
11.把方程(2x -1)(3x +2)=x 2-5化为一元二次方程的一般形式是__
__.
12.已知x =1是关于x 的一元二次方程x 2+mx +n =0的一个根,则m 2+
2mn +n 2的值为 .
13.设m ,n 是一元二次方程x 2+3x -7=0的两个根,则m 2+4m +n =__
__.
14.代数式x 2+4x +7的最小值为__ _. 15.如果把一元二次方程x 2-3x -1=0的两根各加上1作为一个新一元二次方程的两根,那么这个新一元二次方程是__ __.
16.等腰三角形ABC 中,BC =8,AB ,AC 的长是关于x 的方程x 2
-10x +m
┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅密┅┅┅┅┅┅┅┅┅┅┅┅┅封┅┅┅┅┅┅┅┅┅┅┅┅┅线┅┅┅┅┅┅┅┅┅┅┅┅┅
第3页 第4页
=0的两根,则m 的值是__ __.
三、用心做一做(共52分) 19.(8分)解下列方程:
(1)x 2-6x -2016=0; (2)(x 2-x )2-4(x 2-x )-12=0.
20.(7分)已知关于x 的方程(m +1)xm 2+1+(m -2)x -1=0. (1)m 取何值时,它是一元二次方程?并写出这个方程的解; (2)m 取何值时,它是一元一次方程?
21.(9分)如图,在Rt △ABC 中,∠BAC =90°,AB =AC =16 cm ,AD 为BC 边上的高,动点P 从点A 出发,沿A→D 方向以 2 cm /s 的速度向点D 运动,过P 点作矩形PDFE(E 点在AC 上),设△ABP 的面积为S 1,矩形PDFE 的面积为S 2,运动时间为t 秒(0<t <8).
(1)经过几秒钟后,S 1=S 2?
(2)经过几秒钟后,S 1+S 2最大?并求出这个最大值.
22.(9分)已知关于x 的一元二次方程x 2
+(m +3)x +m +1=0. (1)求证:无论m 取何值,原方程总有两个不相等的实数根;
(2)若x 1,x 2是原方程的两根,且|x 1-x 2|=22,求m 的值,并求出此时方程的根.
第5页 第6页
┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅密┅┅┅┅┅┅┅┅┅┅┅┅┅封┅┅┅┅┅┅┅┅┅┅┅┅┅线┅┅┅┅┅┅┅┅┅┅┅┅┅
班级:__________ 姓名:__________ 考号:__________ 试场:________ 座位号:________
23.(9分)现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件.现假定该公司每月投递的快递总件数的增长率相同.
(1)求该快递公司投递快递总件数的月平均增长率;
(2)如果平均每人每月最多可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?
24.(10分)某批发商以每件50元的价格购进800件T 恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T 恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x 元.
(1)填表(不需化简):
(2)如果批发商希望通过销售这批T 恤获利9000元,那么第二个月的单价应是多少元?。