第3章 微生物细胞的结构与功能
第三章__微生物细胞的结构与功能
除病毒外,微生物都具有细胞结构。
一个细胞
营养功能 生长能力 分化(形态和功能的变化) 信号传导 进化
第一节 原核微生物细胞的结构和功能 第二节 真核微生物细胞的结构和功能 第三节 真核生物和原核生物的比较
第一节 原核微生物细胞的结构和功能
一 一般构造
(一)细胞壁 (二)细胞质膜 (三)细胞质 (四)核质 (五)内含体
周质蛋白可用“冷休克”方法释放。
(3)古生菌的细胞壁
除热原体属(Thermoplasma )无细胞壁外。
➢假肽聚糖细胞壁(pseudopeptidoglycan)
类脂A
核心多糖 O-特异侧链(O-多糖、O-抗原)
Lipid A core polysaccharide
O-specific side chain
O-特异侧链 核心多糖 类脂A
LPS中的类脂 A即是内毒素
LPS的主要功能:
◆ 类脂A是革兰氏阴性细菌致病物质—— 内毒素的物质基础
◆ 吸附Mg 2+、Ca 2+阳离子提高在细胞表面的浓度 ◆ 革兰氏阴性菌表面抗原决定簇具多样性——
素和噬菌体的敏感性。
2 原核微生物细胞壁的多样性★
(1)革兰氏阳性细菌的细胞壁 (2)革兰氏阴性细菌的细胞壁 (3)古生菌的细胞壁 (4)缺壁细菌 (5)革兰氏染色的机制
(1)革兰氏阳性细菌的细胞壁
特点:
■厚度大(20~80nm) ■只有一层——90%肽聚糖,10%磷壁酸
❖ 肽聚糖(peptidoglycan)
稀疏、机械强度差
❖ 外膜 outer membrane
革兰氏阴性细菌细胞壁外层
外膜outer membrane
微生物细胞的结构与功能
内消旋二氨基庚二酸(m-DAP) 内消旋二氨基庚二酸 (只在原核微生物细胞壁上发现 只在原核微生物细胞壁上发现) 只在原核微生物细胞壁上发现
(2)外膜位于革兰氏阴性细菌细胞壁外层,由 外膜位于革兰氏阴性细菌细胞壁外层, 脂多糖、 脂多糖、磷脂和脂蛋白等若干种蛋白质组成的 有时也称为外壁。 膜,有时也称为外壁。
根据LPS抗原性的测定,沙门氏菌的抗原型多达2107种 根据LPS抗原性的测定,沙门氏菌的抗原型多达2107种,一般 LPS抗原性的测定 2107 都源自O 特异侧链种类的变化。这种多变性是G 都源自O-特异侧链种类的变化。这种多变性是 -细菌躲避宿 主免疫系统攻击,保持感染成功的重要手段。 主免疫系统攻击,保持感染成功的重要手段。可依此用灵敏的 血清学方法对病原菌进行鉴定,在传染病诊断中有重要意义。 血清学方法对病原菌进行鉴定,在传染病诊断中有重要意义。
4 .古生菌的细胞壁 .古生菌的细胞壁
具有与真细菌类似功能的细胞壁; 具有与真细菌类似功能的细胞壁; 细胞壁的结构和化学成分均差别甚大; 细胞壁的结构和化学成分均差别甚大; 已研究过的一些古生菌,它们细胞壁中没有 已研究过的一些古生菌, 真正的肽聚糖,而是由多糖(假肽聚糖) 真正的肽聚糖,而是由多糖(假肽聚糖)、 糖蛋白或蛋白质构成的。 糖蛋白或蛋白质构成的。 热原体属(Thermoplasma)没有细胞壁。 热原体属(Thermoplasma)没有细胞壁。 (Thermoplasma)没有细胞壁
2.革兰氏阴性细菌的细胞壁 2.革兰氏阴性细菌的细胞壁 肽聚糖 外膜 外膜蛋白
周质空间
1~2层肽 (1)肽聚糖:埋藏在外膜层之内,是仅由1~2层肽 )肽聚糖:埋藏在外膜层之内,是仅由1~2 聚糖网状分子组成的薄层(2~3nm), 聚糖网状分子组成的薄层(2~3nm),约占细胞壁总重的 (2~3nm) 10%,故对机械强度的抵抗力较革兰氏阳性菌弱。 10%,故对机械强度的抵抗力较革兰氏阳性菌弱。 没有特殊的肽桥,只形成较为稀 没有特殊的肽桥 只形成较为稀 疏、机械强度较差的肽聚糖网套
第三章-微生物细胞的结构与功能
第三章微生物细胞的结构与功能第一节原核微生物一大类细胞微小、细胞核无核膜包裹的原始单细胞生物。
与真核微生物的区别:基因组由无核膜包裹的双链环状DNA组成;缺乏由单位膜分割包围的细胞器;核糖体为70S。
原核微生物分为:细菌域:细菌、放线菌、蓝细菌、支原体、立克次氏体、衣原体。
共同点:细胞壁含肽聚糖;细胞膜含有由酯键连接的脂质,DNA一般无内含子。
古生菌域。
一、细胞壁位于细胞最外的一层厚实、坚韧的外被,主要由肽聚糖构成。
主要功能:固定细胞外形和提高机械强度,免受外力损伤;为细胞的生长、分裂、鞭毛运动所需;阻拦酶蛋白和某些抗生素等大分子物质进入细胞,保护细胞免受溶菌酶、消化酶和青霉素等有害物质的损伤;赋予细胞特定抗原性、致病性、对抗生素和噬菌体的敏感性。
1、革兰氏阳性菌的细胞壁厚度大、化学组分简单。
90%肽聚糖、10%磷壁酸。
(1)肽聚糖(粘肽、胞壁质、粘质复合物)由肽和聚糖两部分组成,肽有四肽尾和肽桥,聚糖由N-乙酰葡糖胺和N-乙酰胞壁酸相互间隔连接而成,呈长链骨架状。
1)双糖单位由N-乙酰葡糖胺通过β-1,4-糖苷键与N-乙酰胞壁酸相连。
β-1,4-糖苷键容易被溶菌酶水解。
2)四肽尾或四肽侧链由4个氨基酸分子按L型与D型交替方式连接而成。
L-Ala D-Glu L-Lys D-Ala3)肽桥或肽间桥肽聚糖的多样性主要变化发生在肽桥上。
(2)磷壁酸酸性多糖,主要成分甘油磷酸或核糖醇磷酸。
分类:壁磷壁酸,与肽聚糖分子间进行共价结合。
膜磷壁酸,由甘油磷酸链分子与细胞膜上的磷脂进行共价结合。
主要生理功能:其磷酸分子较多负电荷可提高周围Mg2+浓度,可保证一些需要Mg2+的合成酶提高活性;储藏磷元素;增强某些致病菌对宿主细胞的粘连、避免被白细胞吞噬和补抗体作用;特定抗原;作为噬菌体特异性吸附受体;调节自溶素的活力,借以防止细胞因自溶而死亡。
2、革兰氏阴性菌细胞壁(1)肽聚糖与革兰氏阳性菌的差别:四肽尾的第三个氨基酸不是L-Lys,而是m-DAP;没有特殊的肽桥,两个单体间只通过甲四肽尾的第四个氨基酸D-Ala的羧基与乙四肽尾的第三个氨基酸m-DAP的氨基直接相连。
微生物细胞的结构与功能第三章
细菌鞭毛与真核微生物鞭毛的比较
细 菌 鞭 毛 真核微生物鞭毛
1. 由3~8根平行的蛋白纤维左向 9对微管两根中心微管组
螺旋排列成中空的丝状体,无鞘 外有鞘 2. 直径为12 nm,长度为4-5μm 直径为200 ,长度为2 3. 具抗原性 无抗原性 4. 完全由蛋白质组成 70%蛋白质,20%脂类,10% 少量核酸 5. 不存在半胱氨酸 由普通氨基酸组成 6. 制备的鞭毛不出现ATP酶活性 制备的鞭毛有ATP酶活
S-层是由蛋白质亚单位组成的单分子晶状结构,其厚度 为5-20nm 革兰氏阳性 (G+)菌 与肽聚糖层相连 革兰氏阴性(G-)菌 与外膜相连 古生菌 直接与细胞膜相连
S-层蛋白的组成
一般具有高含量的酸性和疏水性氨基酸,其中疏水性 氨基酸可占 40-60%, S-层蛋白的糖基化现象普遍存在. 含大量谷氨酸(Glu)和天冬氨酸(Asp) 赖氨酸的含量较高,占10% 极少有含硫氨基酸 S-层蛋白多为酸性,等电点在4-6之间, 少数呈碱性。 约20%的氨基酸是以α-螺旋形式 约40%的氨基酸采取β折叠形式 无规折叠和β转角含量在5%到45%之间变化
隐蔽热网菌 Pyrodictium occultum
1977年,地质学家对大陆漂移学说 产生了浓厚的兴趣,根据学说,太平 洋板块和南美板块应该有一条断裂带, 他们制造了一个名叫阿尔文号的潜水 艇,来到了赤道附近的加拉帕戈斯群 岛,当下潜到2500深的海底的时候,他们被眼前的景 象惊呆了:数十个高约2-5米的柱状物正向海水中喷着 黑色的烟雾,阿尔文号仿佛穿梭在 “海底工厂”之中。 更让他们惊讶的是这些黑烟囱周围还生活着大量奇形 怪状的生物,它们生存的密度很高,俨然是一个庞大 而有序的生物群落。
第三章微生物的细胞
生 物
细菌细胞的结构
一般构造
细胞壁 细胞膜 间体 核区 内含物 核糖体
特殊构造
③ 鞭毛 ④ 菌毛 ⑤ 性菌毛
① •②
③ ⑤ ④ ⑥
① 芽孢
微荚膜
•②
荚膜 粘液层
糖被
一、细胞壁
细菌细胞壁(cell wall)是位于 细胞最外的一层(一般结构)厚实、 坚韧的外被,主要成分为肽聚糖。 细菌细胞壁可用电子显微镜直接 观察细菌的超薄切片。 细菌细胞壁绝大多数以肽聚糖为 基本成分,但不同细菌,细胞壁在结 构和成分上各有自己的特点。
细胞质膜
肽聚糖
1、G+细胞壁成分
肽聚糖单体
双糖单位 • N-乙酰葡萄糖胺(G) • N-乙酰胞壁酸(M) 肽尾 • 短肽(4~5个氨基酸) 肽桥 • 1~5个氨基酸
磷壁酸(两种)
是一类
G+细胞壁成分
G+特有的 同肽聚糖混在一起的 分子比较短(6~9个) 的阴离子多聚物 以 甘油磷壁酸 为主链 核糖醇磷壁酸
细菌细胞壁主要成分为 肽聚糖
真菌细胞壁主要成分为 几丁质
真 原 核 生 物 的 核 糖 体
50S 60S
30S 40S
80S 70S
原核生物的核糖体是怎样的?
内含物
包括气泡、羧基化体、绿色体、 磁石体、和各种储存物质。
请说出下面细菌菌体从内到外的结构
菌毛 鞭毛
拟核
细胞质
cytoplasm
细胞质膜 细胞壁
真核细胞结构示意图
内含物
气泡 类囊体 羧酶体
• (1)储藏物
1)聚β -羟丁酸
由β -丁酸单位形成 的直链聚合物,集合 成高度折射性的小球 状物,随细胞老化更 加突出。
第三章微生物细胞的结构与功能
抗酸细菌细胞壁得构造
4、 古生菌
古生菌(Archaea,又称古细菌Archaebacteria,古菌): 就是一个在进化途径上很早就与真细菌和真核
生物相互独立得生物类群,主要为一些独特生态类型 得原核生物。如产甲烷菌和大多数嗜极菌 (extremophile)。
单、双分子层混合膜 而单分子层膜多存在于嗜高温古生菌
甘油二醚和甘油四醚得分子构造及由其形成得双层和单层膜
2、 细胞质和内含物
细胞质(cytoplasm):被细胞膜包围得除核质以外得一切
半透明、胶体状、颗粒状物质得总称。含水量约80%。
主要成分:核糖体(50S+30S)、储藏物、酶类、中间代
谢物、质粒、营养物质和大分子单体等;少数细菌还含有 类囊体、羧酶体、气泡或伴孢晶体等特殊功能得细胞组分。
在产碱菌属(Alcaligenes)、 假单胞菌属(Pseudomonas)
和固氮菌属(Azotobacter) 等60属菌中存在。
染色性:
可用尼罗蓝或苏丹黑染色。
聚-ß-羟丁酸(PHB)和聚羟链烷酸(PHA)
功能:
类脂性质得碳原类储藏物,具有储藏能量、碳源和降低胞内渗透压 得作用。
意义:
聚-ß-羟丁酸(PHB) 和聚羟链烷酸(PHA)为生物 合成得高聚物,具有无毒、可 塑和易降解等优点,可取代塑 料,用于制造医用塑料、快餐 盒等。
磷壁酸得种类:
壁磷壁酸 膜磷壁酸
磷壁酸得生理功能
结合镁离子(Mg2+),提高胞膜合成酶活力; 储藏磷元素; 增强细菌与宿主细胞粘连、抗吞噬和抗补体; 表面抗原; 噬菌体受体; 调节胞内自溶酶(autolysin)活力,防自溶。
2、 G-菌细胞壁
第三章 真核微生物
由担孢子萌发形成的菌丝,其细胞内含有一个细胞核,在整个生活史中 占据的时间短;
双核菌丝
由性别不同的两初生菌丝只进行质配,不进行核配所形成的双核菌丝。 具有双核的次生菌丝细胞常以锁状联合的方式来增加细胞的个体。次生菌 丝占据生活史的大部分时期。
三生菌丝
•双核菌丝体发育到一定阶段,在一定的环境条件下,又会相互交接聚合起 来,形成三生菌丝体。三生菌丝体已高度分化,成为特殊的十分致密的菌 丝组织。特化后的三生菌丝形成各种子实体 ;
3.生产单细胞蛋白(SCP, single cell protein) 4.基因工程中用于表达外源蛋白的最好的模 式真核微生物
(一)、酵母细胞的形态构造
形态
大、一般呈圆形、卵圆形、柱形或柠檬形等 酿酒酵母:2.5-10×4.5-21um
• 构造
(二)、酵母菌的繁殖方式和生活史
1. 弄清几个名词
2、线粒体(Mitochondria)
是进行氧化磷酸化反应的重要细胞器, 其功能是把蕴藏在有机物中的化学潜能转化 成生命活动所需的能量(ATP)。
3、叶绿体(Chloroplast)
一种有双层膜包裹、能转化光能为化学能 的绿色颗粒状细胞器,只存在于绿色植物(包 括藻类)中,具有进行光合作用的功能。
芽痕(蒂痕); 真酵母和假酵母 真菌丝和假菌丝
芽痕:芽体成熟后,与母细胞分离,在母细胞上留 下的痕迹。
蒂痕:芽体与母细胞分离,在子细胞上留下的痕迹。
假酵母:只进行无性繁殖的酵母。 真酵母:具有有性繁殖的酵母菌。 假菌丝:长大的子细胞与母细胞不立即分离,其间 仅以狭小的面积相连,呈藕节状的细胞串。
遗传学研究的良好实验材料。
第3章 微生物细胞的形态结构-真核微生物
内质网
蛋白合成示意图
第一节 概述
五、细胞质和细胞器--高尔基体(Golgi body)
1898年意大利学者C Golgi在神经细胞发现,4~8个平 行的扁平膜囊和囊泡组成,无核糖体附着。
作用:RER合成Pr运到Golgi与脂、糖形成糖蛋白或 脂蛋白,外排到细胞外。合成糖蛋白、脂蛋白及对 某些蛋白质原酶切加工,合成新CW和CM提供原材 料的重要场所
吸取养料:假根、吸器 特化营养菌丝 附着:附着枝 休眠:菌核、菌索 菌丝体 延伸:匍匐枝 捕食线虫:菌环、菌网 简单:孢子囊、担子 特化气生菌丝(子实体)复杂:分生孢子器 子囊果
直径是细菌的10倍。球状、卵圆状、椭圆状、香肠状等
典型酿酒酵母(Saccharomyces cerevisiae)2.5~10×4.5~21um 有的成链状,叫假丝酵母。
1)CW
25nm,外层甘露聚糖,中间蛋白,
里层葡聚糖(使cell抗机械强度)
2)CM
蛋白+类脂+少量糖 含丰富麦角甾醇,uv转化为VD2
第一节 概述
五、细胞质和细胞器--细胞基质和细胞骨架
细胞基质(cytometrix):除可分辩细胞器之外的胶状 溶液,细胞代谢重要场所。 微管:微管蛋白组成中空管 细胞骨架(cytoskeleton) 肌动蛋白丝(微丝):肌动Pr 中间丝:中间纤维
微管功能:支持和运输,细胞分裂时的纺锤体、鞭毛和纤毛。 微丝功能:提供ATP,发生收缩 中间丝:支持和运动
叶绿体
类囊体摞在一起为基粒
第一节 概述
五、细胞质和细胞器--其他细胞器
液泡(vacuole)
单位膜分隔的细胞器,老龄细胞大而明显。 含糖原、脂肪、多磷酸盐等贮藏物,各种酶类。 功能:维持渗透压、贮藏营养物、溶酶体的作用 (将各种蛋白酶与CP隔离,防止细胞损伤)。
微生物学第三章
第三章: 微生物细胞的结构和功能1.概述原核微生物分为: 细菌和古生菌. 真核微生物分为:真菌,原生动物,微藻类三域系统:细菌,古生菌,真核生物.原核微生物和真核微生物的主要区别:1.基因组由无核膜包裹的双链环状DNA组成。
2.缺乏由单位膜分割,包围的细胞器。
3.核糖体为70S型。
2.原核微生物原核微生物的构造可分为一般构造(一般都具有的)和特殊构造(部分种类或特定环境下才形成的)。
A.原核微生物的细胞壁细胞壁是位于细胞最外层厚实,坚韧的外被,主要由肽聚糖构成,有固定细胞外型和保护细胞等多种生理功能。
通过染色,质壁分离,电子显微镜观察超薄切片,光学显微镜观察原生质体等方法可证实细胞壁的存在。
细胞壁的主要功能有:1。
固定细胞外型和提高机械强度,使其免受渗透压等外力的损伤。
2。
为细胞的生长,分裂和鞭毛运动所必需。
3。
阻拦酶蛋白和抗生素等大分子进入细胞,保护免受溶菌酶,消化酶和青霉素等有害物质的损伤。
4。
赋予细胞具有特定的抗原性,致病性以及对抗生素和噬菌体的敏感性。
革兰氏染色的基本原理:革兰氏阳性菌和革兰氏阴性菌主要由于其细胞壁化学成分不同而引起的脱色能力不同。
革兰氏阳性菌细胞壁较厚,肽聚糖网层次多交联致密,染色后进行脱色处理,因失水反而使网孔缩小,再加上其不含脂类,故乙醇处理不会溶出缝隙,能把结晶紫和碘复合物留在壁能成紫色。
革兰氏阴性菌细胞壁薄,脂含量高,肽聚糖层薄交联差,遇脱色剂后外膜溶解,结晶紫碘复合物溶出,格兰氏阳性菌的细胞壁: (金黄色葡萄球菌)特点: 厚度大,化学组成简单,90%肽聚糖和10%磷壁酸成分与作用:1.肽聚糖: 是真细菌特有成分,典型的肽聚糖层厚约20~80nm,由25~40层左右的网格状分子交织成的网套覆盖在整个细胞上。
肽聚糖分子是由肽和聚糖2部分组成,其中的肽有四肽尾和肽桥2种,聚糖则由N-乙酰葡糖胺和N-乙酰胞壁酸相互间隔连接而成(β-1,4-糖苷键)。
作用:构成骨架,起支持和保护作用。
第三章:微生物细胞的结构与功能-原核生物
第三章:微生物细胞的结构与功能-原核生物一.是非判断:1.真细菌包括普通细菌、放线菌、蓝细菌、支原体、立克次氏体和衣原体等。
2.杆状细菌的细胞直径比较稳定,与排列方式和长度一起可作为分类鉴定的依据。
3.受到菌龄的影响,幼龄细菌一般比成熟的或老龄的细菌小。
4.在原核细胞的周质空间中,存在着多种周质蛋白,被誉为“酶口袋”。
5.溶菌酶可用于细菌、酵母和霉菌的原生质体的制备。
6.微生物细胞内的储存物中,异染粒是β-羟基丁酸聚合物。
7.原核生物与真核生物细胞膜组分的主要差别是前者无甾醇。
8.根瘤菌的类菌体不仅具有固氮能力,还具有繁殖功能。
9.古生菌的细胞壁均为假肽聚糖构成。
10.细菌细胞膜不含甾醇类物质,而真菌细胞膜含有甾醇类物质。
11.只有分枝杆菌才具有抗酸染色的特性。
12.肽聚糖的基本组成单位包括双糖单位、四肽尾和五肽桥。
13.间体为细胞质膜内褶而形成的囊状构造,其中充满着层状或管状的泡囊,多见于革兰氏阳性细菌。
14.原核生物的细胞质含水约80%,处于一种流动状态。
15.原核生物细胞中气泡的膜也是磷脂双份子层结构,可耐受一定的压力。
16.产芽孢的细菌多为杆菌,也有一些球菌。
芽孢的有无、形态、大小和着生位置是细菌分类和鉴定中的重要指标。
17.革兰氏阴性细菌细胞壁中的脂多糖是细菌外毒素的物质基础。
18.细菌的内毒素就是指革兰氏阴性细菌细胞壁中的脂多糖中的类脂A。
19.磷壁酸是革兰氏阳性细菌细胞壁中特有的酸性多糖。
20.抗酸细菌是一类细胞壁中含有大量分枝菌酸等蜡质的特殊革兰氏阳性菌。
21.古生菌的细胞膜中存在着独特的单分子层膜和单双分子层混合的膜结构。
22.由于革兰氏阴性菌细胞外有外膜层的保护,因此对青霉素和溶菌酶不敏感。
23.芽孢在普通条件下可保存几年或几十年的生命力,因此是抗逆性最强的休眠体。
24.羧酶体是自养微生物细胞质内常见的内含物。
25.抗酸性细胞本身不易被革兰氏染色,碱性酒精脱去细胞壁中的“蜡质”组分后,细胞会变成非抗酸性,革兰氏染色阴性。
第三章微生物细胞的结构与功能(沈萍版)解析
经脱色、复染后菌体呈红色 含量低,占细胞壁干重的5~
20% 1-2层,疏松 10nm左右(其中外壁层约 8nm),多层 无 含量较高(分布在外壁层) 含量较高(分布在外壁层) 不敏感 不敏感 紧密
革兰氏染色
革兰氏染色的原理
• 革兰氏阳性菌由于细胞壁较厚,肽聚糖层 次多交联紧密,用乙醇脱色时,因失水网 孔收缩,加之其细胞壁不含类脂,不会因 乙醇溶解类脂产生细胞壁的漏洞,因此结 晶紫和碘的复合物被牢牢留在了壁内,使 细胞仍为紫色。
2、革兰氏阴性细菌细胞壁结构
特点:肽聚糖层很薄(仅2~3nm),在肽聚 糖层外还有一个外膜,成分较复杂, 整个壁厚度较G+菌薄,机械强度较G+ 菌弱。由2层壁组成。
格兰氏阴性菌肽聚糖层的特点(以大肠杆菌为例):
1. 肽聚糖层薄(2~3nm); 2. 四肽尾的第三个不是L-Lys,而是内消旋二 氨基庚二酸
3)决定G-表面抗原;4)噬菌体受体位点。 5) 有控制物质进出细胞的屏障功能。
钙离子是维持LPS稳定性所必需的。
脂多糖(lipopolysaccharide,LPS)
沙门氏菌属脂多糖中的类脂A结构
外膜蛋白
• 镶嵌在脂多糖和磷脂层外膜上的蛋白。有 20余种,大多数功能还不清楚。 脂蛋白 孔蛋白
周质空间
表 肽聚糖分子中的四种主要肽桥类型
类型 甲肽尾上连接点
肽桥
乙肽连接点
例
I
第四氨基酸
-CO.NH-直接相连 第三氨基酸 E. coli (G-)
II
第四氨基酸
III
第四氨基酸
IV
第四氨基酸
-(Gly)5 -(肽尾)1~2-D-Lys-
第三氨基酸 S. aureus (G+) 第三氨基酸 M. luteus (G+) 第二氨基酸 C. poinsettiae(G+)
第三章微生物细胞结构及功能
2. 细胞质(cytoplasm )和内含物( inclusion body)
细胞膜内除核质体外的一切半透明、胶状、颗 粒状物质可总称为细胞质。其主要成分有:核糖 体、贮藏物、各种酶类、中间代谢物及质粒等, 少数细菌还存在有类囊体、羧酶体、伴胞晶体或 气泡等。细胞质内形状较大的颗粒状构造为内含 物,包括各种贮藏物和气泡、羧酶体等。
A、组成:磷脂(占20~30%) 蛋白质(占50~70%)
B、鉴别:质壁分离,鉴别性染色或原生 质体破裂方法
细胞质膜
C、结构:1972年由辛格和尼科尔森 所提出的液态镶嵌模型即膜的主体 是脂质双分子层其具有流动性。脂 质双分子的疏水尾向内亲水头向外
细胞膜结构
A. 原核和真核细胞典型的细胞膜是由 脂质双分子层构成, 该图显示了磷 脂分子亲水端(褐色球)和疏水端 (黑色)的指向。
杆 状 的 大 肠 杆 菌
4、革兰氏染色机制
步骤:结晶紫初染,碘液酶染,乙醇或丙 酮脱色(关键步骤),沙黄(红色染料) 复染---革兰氏阳性紫红色;革兰氏 阴性红色。
原理:与肽聚糖和脂类的含量有关
G+ 菌:细胞壁厚,肽聚糖含量高,交 联度大,当乙醇脱色时,肽聚糖因脱 水而孔径缩小,故结晶紫-碘复合物 被阻留在细胞内,细胞不能被酒精脱 色,呈紫色。
外膜蛋白(outer membrrane protein)
指嵌合在LPS合磷脂层上的蛋白,有20余种。可分 为
基质蛋白-孔蛋白(通过孔的开闭可阻止抗生素进入) 外壁蛋白-外侧(与噬菌体的吸附或细菌素的作用有关)
脂蛋白-内侧(使外膜层牢固 嵌进肽聚糖层)
(3)周质空间
又称壁膜间隙。指外膜与细胞 膜之间的狭窄空间,呈胶状。 其中存在多种周质蛋白。
第三章微生物细胞的结构与功能ppt课件
1
mm。
生长迅速的细菌在核分裂之后
细胞往往来不及分裂,所以细
胞中常有2—4个核,而生长
缓慢的细菌细胞中一般只有
1—2个核,不在染色体复制
时期一般是单倍体。
质粒(plasmids)
细菌染色体外的共价闭合环状双链DNA分子.分 子量约为2—100×106D.携带1—100个基因, 一个 菌细胞可有一至数十个质粒。
➢原生质体:指在人为条件下,用溶菌霉除尽 原有壁或用青霉素抑制新生细胞合成后,仅 有一层细胞膜包裹着的圆球形渗透敏感细胞。
➢球状体:指还残留着部分细胞壁。
➢ 原体:是长期进化过程中形成,适应自然生 活条件的无细胞壁的原核生物。含甾醇
革兰氏染色法
• C.Gram于1884年 发明的一种鉴别不 同类型细菌的染色 方法
(3)磁小体
• 细菌类别:水生原核 微生物
• Fe3O4颗粒 • 功能:趋磁性,便于
觅食
(4)气泡
由蛋白质膜构成的充满气体的泡状物。有些细胞质中 含有几个或多个气泡。常见于光合细菌和水生细菌
功能:
■调节细胞比重,加大菌体的浮 力,借气泡漂浮能力,以使其 漂浮在合适的水层中,使无鞭毛 菌在合适的环境中生长。
(2)颗粒状内含物
颗 粒状内含物
气泡
储藏物
羧酶体
碳源及能源类
聚-β -羟基丁酸 硫粒 糖原
氮源类 藻青素
磷源类 异染粒
①聚-β-羟基丁酸(poly-β-hydroxybutirate,PHB)
许多好氧菌和光合厌氧菌都含 有聚β-羟丁酸颗粒。
聚β-羟丁酸颗粒是许多细菌 细胞质内常含有的碳源类储藏 物。PHB不溶于水,易被脂溶性 染料(如苏丹黑)着色。
微生物细胞结构与功能
4、古生菌的细胞壁
化学成分差异较大,无真正的肽聚糖。 盐球菌属组分是糖蛋白,蛋白质中氨基
酸主要是酸性Aa,可平衡环境中Na+。 少数产甲烷菌的组分是蛋白质,有的是不 同蛋白质,有的是同种蛋白的多聚体。
5、细胞壁缺陷细菌(细胞壁缺乏或缺损的各种细菌统称) 形成条件:细胞壁中肽聚糖结构受理化或生物因素 的直接破坏或合成抑制而形成; 生物学特性:形态多形性;染色革兰阴性;培养高 滲培养基;菌落油煎蛋样。 自发缺壁突变:L型细菌 实验室中形成 缺壁 细菌 人工方法去壁 部分去除:球状体 自然界长期进化中形成:支原体
革兰氏阴性菌
结构:三维多层网状结构,但结构层次明显,分为内 壁层、外壁层。 组成:内壁层:肽聚糖层,厚约2~3nm。外壁层可分 为内、中、外三层:最外层为脂多糖层,中间为磷脂 层,内层为脂蛋白层。
脂多糖:革兰氏阴性细菌细胞壁外层的主要成分, 也是革兰氏阴性细菌细胞壁中独有的成分。
脂多糖(Lipolysaccharide)的组成
2、细胞质(cytoplasm)及内含物
(1)细胞质 细胞质是质膜包围的除核区外的半透明、胶状物 总称;包括贮藏物(reserve granule);磁小体 (megnetosome);羧酶体(carboxysome);气泡(gas vocuoles);质粒(circular covalently closed DNA) 等。 组成:水、蛋白质、核酸、脂类、少量糖和无机盐。 功能: ①细菌的内在环境,具有生命活动所具有的各 种特征。②含有各种酶系统,使细胞与周围不断进行 新陈代谢作用。
O—特异侧链 核心多糖
R1、R2一般为3—羟基豆蔻酸 R可有3种:月桂酸基 棕榈酸基 豆蔻酰豆蔻酸基
脂多糖功能
①是革兰氏阴性细菌致病物质-内毒素的物质基础;
第三章微生物细胞结构与功能重点
第3章微生物细胞的结构与功能重点、难点剖析1.G+和G-细菌肽聚糖单体的比较(表3—1)。
肽聚糖单体是组成细菌细胞壁中特有成份——肽聚糖网套的基础,G+和G-菌肽聚糖单体的构造大体相同,仅在四肽尾的第三个氨基酸残基和肽桥的有无上有明显不同。
项目G+ G-聚糖链—(G+M)n——(G+M)n—肽链四肽尾L-AlaD-GluL-lysD-AlaL-AlaD-Glum-DAPD-Ala肽桥—(Gly)5—无注:G:N—乙酰葡糖胺,M:N-乙酰胞壁酸,m-DAP:内消旋二氨基庚二酸2.G-细菌细胞壁的脂多糖构造。
脂多糖(LPS)是位于革兰氏阳性细菌细胞壁最外层的一种较厚的类脂多糖类物质,由类脂A、核心多糖和O—特异侧链3部份组成。
其中的类脂A 是革兰氏阴性细菌致病物质内毒素的物质基础。
脂多糖的分子构造可见图3—1和表解。
类脂A:2个N-乙酰葡糖胺和5个不同的长链饱和脂肪酸内核心区:3个2—酮—3—脱氧辛糖酸(KDO)LPS 核心多糖3个L-甘油-D—甘露庚糖(Hep)外核心区:5个己糖(Hex),包括葡糖胺、半乳糖、葡萄糖O -特异侧链;多个4Hex 单位,内含葡萄糖、半乳糖、鼠李糖、甘露糖,和阿比可糖(Abq)、大肠杆菌糖(colitose)、副伤寒菌糖(paratose)或泰威糖(Lyvelose)等。
3.缺壁细菌。
细胞壁是维持细菌正常形态和爱惜它们免遭不利环境条件损伤的大体构造但在自然和人为培育条件下,也可因自然进化、自发突变或人为去除等方式而形成缺壁细菌。
现将4类缺壁细菌的要紧特点列在表3—2中。
·待细胞壁再生后恢复其繁衍能力4.细菌的内含物。
位于细菌细胞质内,呈颗粒状或泡囊状的构造称内含物。
4种要紧内含物的特点可见表3—305.细菌芽孢的构造和功能。
芽孢是某些细菌在其生活史后期的细胞内形成的一个抗逆性极强的休眠体。
圆形或椭圆形,厚壁,含水量低,对热、辐射和化学药物有很强的抗性。
因每一营养细胞仅形成一个芽孢,故芽孢无繁衍功能。
微生物细胞的结构与功能
脂多糖
功能: A、类脂A是革兰氏阴性菌致病物质—内毒素的
物质基础; B、吸附阳离子以提高其在细胞表面浓度的作用; C、结构多变,决定了革兰氏阴性菌细胞表面抗
原决定族的多样性; D、是许多噬菌体在细胞表面的吸附受体; E、具有控制某些物质进出细胞的部分选择性屏
障功能;
(3)G+ 细菌与G -细菌细胞壁的比较
➢ 维持菌体固有的形态 ➢保护细菌抵抗低渗环境,防止酶解 ➢参与菌体内外的物质交换 ➢菌体表面带有多种抗原分子,可诱 发机体的免疫应答。 ➢与运动有关
革兰氏阳性细菌和革兰氏阴性细菌 细胞壁的化学组成和结构不同
a .革兰氏阳性菌的细胞壁结构
主要成分: 肽聚糖peptidoglycan 磷壁酸teichoic acids
Procedures of Gram Staining
甲菌 初染
媒染
脱色
复染 G+
乙菌 结晶紫
碘液
95%乙醇
复红 G-
显微镜下菌体呈红色者为革兰氏染色阴性 细菌(常以G-表示),呈深蓝紫色者为革兰 氏染色阳性反应细菌(常以G+表示)。
齐 -尼 (Ziehl- Neelsen) 抗酸染色法
• 抗酸染色法(acid-fast stain) :以5%石炭 酸复红加温染色,再用3%盐酸酒精脱色,然 后用美蓝复染,则分枝杆菌呈红色,其他细菌 和背景物质为蓝色。
figure 26-22.jpg
Figure 26.22
Figure 26.22
基本结构 3 中 体(mesosome)
中体:是部分细胞膜内陷、折叠、卷曲形成的囊状 物,多见于革兰阳性菌。其功能类似于真核细胞的 线粒体,其中酶系发达,是能量代谢的场所。
微生物的细胞结构与功能
微生物通过分泌酶来分解有机物,这些酶能够将大分子有 机物分解为小分子,如氨基酸、单糖和脂肪酸等,便于微 生物吸收利用。
生态作用
微生物在分解有机物的过程中释放的能量和营养物质,为 其他生物提供了能量和营养来源,维持了生态系统的平衡 和稳定。
合成有机物
合成有机物
微生物能够利用简单的无机物质 合成有机物质,如蛋白质、核酸、 碳水化合物和脂肪等。
细胞质与细胞核
1
细胞质是微生物细胞中充满液体的部分,其中含 有多种细胞器和酶,参与细胞的代谢和能量转换。
2
细胞核是微生物细胞中的遗传信息储存和表达的 场所,由DNA和组蛋白组成,具有自我复制和遗 传信息传递的功能。
3
细胞质和细胞核的结构和功能对于微生物细胞的 遗传、代谢和繁殖等生命活动具有关键作用。
生物防治
利用微生物及其代谢产物防治植物病虫害,减少 化学农药的使用。
微生物饲料
利用微生物发酵生产饲料,提高饲料的营养价值 和安全性。
在工业上的应用
生物发酵
利用微生物发酵生产食品、饮料、调味品等,如酸奶、酱油、醋 等。
生物制药
利用微生物生产抗生素、疫苗、抗体等生物药物,治疗人类和动物 疾病。
生物环保
自养生物
一些自养微生物能够利用光能或 化学能将无机物质转化为有机物 质,如蓝藻和化能合成细菌。
生产应用
微生物合成的有机物在食品、医 药、化工等领域有广泛应用,如 利用酵母菌发酵生产酒精和面包 等。
生物转化
生物转化
微生物能够将一些不能被直接利用的物质转化为可被利用的物质,如将无机硫转化为硫 酸盐、废水中的重金属离子转化为沉淀物等。
微生物的多样性
01
02
微生物学教案第三章微生物细胞的结构与功能
微生物学教案第三章微生物细胞的结构与功能微生物细胞的结构与功能在有细胞构造的微生物中,按其细胞,尤其是细胞核的构造和进化水平上的差别,可把它们分为原核微生物和真核微生物两个大类。
近年来正在越来越深入研究的古细菌(archaebacteria)或古生菌(archaea),尽管其在进化谱系上与真细菌(eubacteria)和真核生物相互并列,但其在细胞构造上却与真细菌较为接近,同属于原核生物。
因此,有关古生菌细胞构造和功能的内容,拟放在原核微生物一节中加以讨论。
第一节原核微生物原核微生物是指一大类细胞核无核膜包裹,只有称作核区(nuclear region)的裸露DNA的原始单细胞生物,包括真细菌和古生菌两大群。
真细菌的细胞膜含由酯键连接的脂类,细胞壁中含特有的肽聚糖(无壁的枝原体除外),DNA中一般没有内含子(但近年来也有例外的发现)。
细菌、放线菌、蓝细菌、枝原体、立克次氏体和衣原体等都属于真细菌。
以下就以最常见的细菌作主要代表详细阐述原核生物细胞的各部分构造和功能。
细菌细胞的模式构造见图3-1。
其中把一般细菌都有的构造称一般构造,而把部分细菌具有的或一般细菌在特殊环境下才有的构造称为特殊构造。
图3-1 细菌细胞构造模式图一、细胞壁细胞壁(cell wall)是位于细胞最外的一层厚实、坚韧的外被,主要由肽聚糖构成,有固定细胞外形和保护细胞等多种生理功能。
通过染色、质壁分离(plasmolysis)或制成原生质体后再在光学显微镜下观察,可证实细胞壁的存在;用电子显微镜观察细菌超薄切片等方法,更可确证细胞壁的存在。
细胞壁的主要功能有:①固定细胞外形和提高机械强度,从而使其免受渗透压等外力的损伤。
例如,有报道说大肠杆菌(Escherichia coli)的膨压(turgor)可达2微生物细胞的结构与功能个大气压(相当于汽车内胎的压力);②为细胞的生长、分裂和鞭毛运动所必需。
失去了细胞壁的原生质体,也就丧失了这些重要功能;③阻拦酶蛋白和某些抗生素等大分子物质(分子量大于800)进入细胞,保护细胞免受溶菌酶、消化酶和青霉素等有害物质的损伤;④赋予细菌具有特定的抗原性、致病性以及对抗生素和噬菌体的敏感性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章微生物细胞的结构与功能
重点、难点剖析
1.G+和G-细菌肽聚糖单体的比较(表3—1)。
肽聚糖单体是构成细菌细胞壁中特有成分——肽聚糖网套的基础,G+和G-菌肽聚糖单体的构造基本相同,仅在四肽尾的第三个氨基酸残基和肽桥的有无上有明显差别。
注:G:N—乙酰葡糖胺,M:N-乙酰胞壁酸,m-DAP:内消旋二氨基庚二酸2.G-细菌细胞壁的脂多糖构造。
脂多糖(LPS)是位于革兰氏阳性细菌细胞壁最外层的一种较厚的类脂多糖类物质,由类脂A、核心多糖和O—特异侧链3部分组成。
其中的类脂A 是革兰氏阴性细菌致病物质内毒素的物质基础。
脂多糖的分子构造可见图3—1和表解。
类脂A:2个N-乙酰葡糖胺和5个不同的长链饱和脂肪酸
内核心区:3个2—酮—3—脱氧辛糖酸(KDO)
LPS 核心多糖3个L-甘油-D—甘露庚糖(Hep)
外核心区:5个己糖(Hex),包括葡糖胺、半乳糖、葡萄糖
O -特异侧链;多个4Hex单位,内含葡萄糖、半乳糖、鼠李糖、甘露糖,以及阿比
可糖(Abq)、大肠杆菌糖(colitose)、副伤寒菌糖(paratose)或泰威糖(Lyvelose)等。
3.缺壁细菌。
细胞壁是保持细菌正常形态和保护它们免遭不利环境条件损伤的基本构造但在自然和人为培养条件下,也可因自然进化、自发突变或人为去除等方法而形成缺壁细菌。
现将4类缺壁细菌的主要特点列在表3—2中。
·待细胞壁再生后恢复其繁殖能力
4.细菌的内含物。
位于细菌细胞质内,呈颗粒状或泡囊状的构造称内含物。
4种主要内含物的特点可见表3—30
5.细菌芽孢的构造和功能。
芽孢是某些细菌在其生活史后期的细胞内形成的一个抗逆性极强的休眠体。
圆形或椭圆形,厚壁,含水量低,对热、辐射和化学药物有很强的抗性。
因每
一营养细胞仅形成一个芽孢,故芽孢无繁殖功能。
芽孢的构造和各部分功能见表3—
4。
6,原核生物鞭毛的构造。
生长在各种原核生物细胞表面的长丝状、波曲形的蛋白质附属物
称为鞭毛,其数目为一至数十条,能通过快速旋转而推动细胞运动。
鞭毛由固定于细胞表面的基体以及游离的钩形鞘和鞭毛丝3部分组成,G-细菌的鞭毛构造可表解如下:
鞭毛丝:着生于钩形鞘上,一端游离。
由大量鞭毛蛋白亚基经螺旋状围成,中空
钩形鞘:位于基体和鞭毛丝之间,使三者连成一体
鞭毛{ 鞭毛杆:是基体的轴心,可把以下4个环穿在同一轴上
L环:与细胞壁外膜的LPS层相连
P环:与细胞内壁的肽聚糖层相连
基体:S-M环:两环合在一起,似马达的转子
Mot蛋白:一对马达定子状的蛋白,围在S-M环外
Fli量白:位于S-M环基部,可操纵鞭毛正旋或逆旋
7.真核生物的“9+2型”鞭毛。
长在某些真核生物细胞表面的毛发状、有运动功能的细胞器称为鞭毛。
真核生物的鞭毛属于“9+2型”,构造较复杂,整个鞭毛由鞭杆、过渡区和基体3部分构成。
它与原核生物的鞭毛不仅结构不同,而且在运动方式和机制上都有显著的差别(表3—5)。
8.真核生物细胞核的构造。
在真核生物细胞中都有一个形态完整、有核膜包裹的细胞核,它是该细胞遗传信息(DNA)的贮存、复制和转录场所,对细胞的生长、繁殖、遗传和变异等生命活动起着关键的作用。
真核细胞的细胞核由核被膜、染色质、核仁和核基质4部分组成,可表解如下:
核膜:位于核被膜外侧,由内外两层膜构成,中间还夹有一核周间隙层
核纤层:位于核被膜内侧,由核纤层蛋白构成
染色质:自低至高常以5种不同的聚合水平存在:①DNA+组蛋白。
②核小体。
①中空螺线管。
④超螺旋环。
⑤染色体
核仁:存在于核内,由蛋白质和RNA组成的小体,无膜状物包裹,具合成rRNA和装配核糖体功能
核基质:充满在细胞核中间的蛋白纤维网,具支持细胞核外型和提供核糖体附着位点等功能
9.真核生物各种细胞器的比较。
细胞质内具有一定形态构造和专一功能的小器官,称细胞。