新北师大版第一章《整式的乘除》知识点

合集下载

北师大版七年级(下册)数学知识点总结

北师大版七年级(下册)数学知识点总结

北师大版数学七年级下册知识点总结第一章 整式的乘除1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。

2、多项式:几个单项式的和叫做多项式。

多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。

3、整式:单项式和多项式统称整式。

注意:凡分母含有字母代数式都不是整式。

也不是单项式和多项式。

4、同底数幂的乘法法则:n m n m a a a +=•(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。

注意:底数可以是多项式或单项式。

如:532)()()(b a b a b a +=+•+5、幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。

如:10253)3(=-幂的乘方法则可以逆用:即m n n m mn a a a )()(==如:23326)4()4(4==6、积的乘方法则:n n n b a ab =)((n 是正整数)积的乘方,等于各因数乘方的积。

如:(523)2z y x -=5101555253532)()()2(z y x z y x -=•••-7、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m同底数幂相除,底数不变,指数相减。

如:3334)()()(b a ab ab ab ==÷8、零指数和负指数;10=a ,(ɑ≠0)即任何不等于零的数的零次方等于1。

p p aa 1=-(p a ,0≠是正整数),即一个不等于零的数的p -次方等于这个数的p 次方的倒数。

9、科学记数法:如:0.00000721=6-1021.7⨯(第一个非零数字前零的个数)10、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

新北师大版七下第一章《整式的乘除与因式分解》知识点

新北师大版七下第一章《整式的乘除与因式分解》知识点

整式的加减、乘除【知识点一】代数式的概念:①代数式中出现的乘号,通常写作“·”或省略不写,如6×b 常写作6·b 或6b ;②数字与字母相乘时,数字写在字母前面,如6b 一般不写作b6;③除法运算写成分数形式,如1÷a 通常写作()01≠a a④系数1或-1,通常省略1,如1a 写作a ,-1a 写作-a.⑤211a 通常写作23a. 例1、下列代数式中,书写正确的是( ) A. ab ·2 B. a ÷4 C. -4×a ×b D. xy 213E. mn 35 F. -3× 【知识点二】单项式的概念:由 与 的 构成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。

例2、bc a 22-的 系数为 ,次数为 ,单独的一个非零数的次数是 。

【知识点三】多项式:几个单项式的 叫做多项式。

多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。

例3、122++-x ab a ,项有 ,二次项为 ,一次项为 ,常数项为 ,各项次数分别为 ,系数分别为 ,这个多项式叫 式。

【知识点四】整式:单项式和多项式统称整式。

【注意:凡分母含有字母代数式都不是整式。

也不是单项式和多项式。

】【知识点五】 升幂排列与降幂排列 例4、多项式121322233-+-+-a a b b a ab b a 按字母a 升幂排列为:【知识点六】 同类项:所含字母相同,并且相同字母的指数也分别相等的项,另外所有的常数项都是同类项。

【注意:同类项与系数大小无关,与字母的排列顺序无关。

】例5、下列各题中的两个项是不是同类项?(1)3x 2y 与-3x 2y (2)0.2a 2b 与0.2ab 2 (3)11abc 与9bc (4)3m 2n 3与-n 3m 2 (5)4xy 2z 与4x 2yz (6)62与x 2【知识点七】合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数保持不变。

新版北师大七年级数学下册第一章《整式的乘除运算》知识点总结及习题

新版北师大七年级数学下册第一章《整式的乘除运算》知识点总结及习题

第一章整式的乘除知识点总结一、单项式:数字与字母的乘积组成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

一个单项式中,数字因数叫做这个单项式的系数,所有字母的指数和叫做这个单项式的次数。

注意:π是数字,而不是字母,它的系数是π,次数是0. 二、多项式几个单项式的代数和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式:单项式和多项式统称为整式。

四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。

五、幂的运算性质:1、同底数幂的乘法:),(都是正整数n m aa a nm nm+=∙2、幂的乘方:),(都是正整数)(n m a a mnn m =3、积的乘方:)()(都是正整数n b a ab nnn= 4、同底数幂的除法:)0,,(≠=÷-a n m a a a nm nm都是正整数六、零指数幂和负整数指数幂: 1、零指数幂:);0(10≠=a a 2、负整数指数幂:),0(1是正整数p a aa p p≠=- 七、整式的乘除法:1、单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。

2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

3、多项式乘以多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

5、多项式除以单项式:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

八、整式乘法公式:1、平方差公式: 22))((b a b a b a -=-+2、完全平方公式: 2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-七年级数学(下)第一章《整式的运算》一、 知识点:1、都是数与字母的乘积的代数式叫做单项式(单独的一个数或一个字母也是单项式);几个单项式的和叫做多项式;单项式和多项式统称整式。

(新北师大七下)第一单元整式的乘除基础知识+练习

(新北师大七下)第一单元整式的乘除基础知识+练习

(新北师大七下)第一单元整式的乘除基础知识+练习 姓名一.〈知识点〉回顾1、幂的运算法则:(1)同底数幂相乘:n m a a ∙= (m 、n 为正整数)=⋅⋅32a a a __ ; 108a a ∙= ;421010⋅=____ ;25()()()x x x ---=(2)幂的乘方:()n m a = (m 、n 为正整数) 22(10)= 22()a = ___)(32=a 25()x ⎡⎤-⎣⎦= (3)积的乘方:()nab = (n 为正整数) _____)(3=xy ; 32)2(mn -=_______ ; 23)102(⨯=_________ (4)同底数幂相除:m n a a ÷= (m 、n 为正整数,a ≠0) 87 a a ÷= ; 22b b ÷= ;(5)零指数0a = (a ≠ ) (-2)0= 负指数=-p a (a ≠ )(-1)-2= 2)21(-= 5-2= (6)科学记数法:0.00000058=2.整式的乘除① 单项式×单项式: _____5=⋅x x ; 2a ·2a= ; ______=⋅ab ab ; -4xy • 3x 2y=_______5343=⋅x x ; _______)2)((=--x x ;_________)2(32=-∙a b a② 单项式×多项式: ()m a b c ++=a (2a 2-4a +3)= ; -2a 2(3a 2+4a -2)= 。

③多项式×多项式相乘:=++))((b a n m __________________(x -2)(x -6)= =(2x -1)(3x +2)= = ________________)75)(4(=-+y x y x =④单项式÷单项式:27x 3x ÷= 12mn 4mn ÷=-⑤多项式÷单项式:(4x 3y +6x 2y 2-xy 3)÷2xy=(6a 4-4a 3-2a 2)÷(-2a 2)=3.乘法公式: 平方差公式:___________________))((=-+b a b a完全平方和公式:______________________)(2=+b a 完全平方差公式:______________________)(2=-b a (1)(x +2)(x -2) (2)(x -8y )(x +8y ) (3)(2x -3)(-2x -3)解:原式= 解:原式= 解:原式=(4)2(3)a b -= (5)21(4)2x + (6)2(2)a b -+=解:原式= 解:原式= 解:原式=综合练习:1.x m =3,x n =5,则x m+n = ,x 3m+2n = , x m-n = , x 3m-2n = 。

北师大版七年级下册数学《第一章 整式的乘除--完全平方公式》知识点讲解!

北师大版七年级下册数学《第一章 整式的乘除--完全平方公式》知识点讲解!

北师大版七年级下册数学《第一章整式的乘除--完全平方公式》知识点讲解!1.完全平方公式:(a+b)2=a2+b2+2ab (a-b)2=a2+b2-2ab两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。

2.派生公式:(a+b)2-2ab=a2+b2(a-b)2+2ab=a2+b2(a-b)2+(a+b)2=2(a2+b2) (a+b)2-(a-b)2=4ab考点解析完全平方公式是进行代数运算与变形的重要知识基础。

该知识点重点是对完全平方公式的熟记及应用,难点是对公式特征的理解(如对公式中积的一次项系数的理解)。

两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,叫做完全平方公式。

为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。

理解公式左右边特征(一)学会推导公式(这两个公式是根据乘方的意义与多项式的乘法法则得到的),真实体会随意“创造”的不正确性;(二)学会用文字概述公式的含义:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.都叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.(三)这两个公式的结构特征是:1、左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;2、左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);3、公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.(四)两个公式的统一:因为所以两个公式实际上可以看成一个公式:两数和的完全平方公式。

这样可以既可以防止公式的混淆又杜绝了运算符号的出错。

北师大版七年级下册数学知识点总结(最新最全)

北师大版七年级下册数学知识点总结(最新最全)

北师大版数学七年级下册知识点总结第一章 整式的乘除1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。

2、多项式:几个单项式的和叫做多项式。

多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。

3、整式:单项式和多项式统称整式。

注意:凡分母含有字母代数式都不是整式。

也不是单项式和多项式。

4、同底数幂的乘法法则:n m n m a a a +=•(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。

注意:底数可以是多项式或单项式。

如:532)()()(b a b a b a +=+•+5、幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。

如:10253)3(=-幂的乘方法则可以逆用:即m n n m mn a a a )()(==如:23326)4()4(4==6、积的乘方法则:n n n b a ab =)((n 是正整数)积的乘方,等于各因数乘方的积。

如:(523)2z y x -=5101555253532)()()2(z y x z y x -=•••-7、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m同底数幂相除,底数不变,指数相减。

如:3334)()()(b a ab ab ab ==÷8、零指数和负指数;10=a ,(ɑ≠0)即任何不等于零的数的零次方等于1。

pp a a 1=-(p a ,0≠是正整数),即一个不等于零的数的p -次方等于这个数的p 次方的倒数。

9、科学记数法:如:0.00000721=6-1021.7⨯(第一个非零数字前零的个数)10、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

北师大版七年级下册数学知识点总结

北师大版七年级下册数学知识点总结

北师大版七年级下册数学知识点总结第一章:整式的乘除。

1. 同底数幂的乘法。

- 法则:同底数幂相乘,底数不变,指数相加。

即a^m· a^n=a^m + n(m,n 都是正整数)。

- 例如:2^3×2^4=2^3 + 4=2^7。

2. 幂的乘方与积的乘方。

- 幂的乘方:(a^m)^n=a^mn(m,n都是正整数)。

例如(3^2)^3=3^2×3=3^6。

- 积的乘方:(ab)^n=a^nb^n(n是正整数)。

例如(2×3)^2=2^2×3^2=4×9 = 36。

3. 同底数幂的除法。

- 法则:同底数幂相除,底数不变,指数相减。

即a^m÷ a^n=a^m - n(a≠0,m,n都是正整数,且m>n)。

例如3^5÷3^2=3^5 - 2=3^3。

- 零指数幂:a^0=1(a≠0)。

例如5^0=1。

- 负整数指数幂:a^-p=(1)/(a^p)(a≠0,p是正整数)。

例如2^-3=(1)/(2^3)=(1)/(8)。

4. 整式的乘法。

- 单项式与单项式相乘:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

例如2x^2·3x^3=(2×3)(x^2·x^3) = 6x^5。

- 单项式与多项式相乘:就是用单项式去乘多项式的每一项,再把所得的积相加。

例如a(b + c)=ab+ac。

- 多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

例如(a + b)(c + d)=ac+ad+bc+bd。

5. 平方差公式。

- 公式:(a + b)(a - b)=a^2-b^2。

例如(3 + 2)(3 - 2)=3^2-2^2=9 - 4 = 5。

6. 完全平方公式。

- (a + b)^2=a^2+2ab + b^2;(a - b)^2=a^2-2ab + b^2。

北师大版本七年级下册第一单元《整式的乘除》全章知识讲解+经典练习

北师大版本七年级下册第一单元《整式的乘除》全章知识讲解+经典练习

《整式的乘除》全章复习与巩固【要点梳理】要点一、幂的运算1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >).同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1. 6.负指数幂:1n na a -=(a ≠0,n 是正整数). 要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;需灵活地双向应用运算性质.要点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.2.单项式乘以多项式单项式与多项式相乘,就是根据分配率用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项包含前面的“+”“-”号.根据多项式的乘法,能得出一个应用广泛的公式:()()()2x a x b x a b x ab ++=+++. 4.单项式相除单项式相除、把系数、同底数幂分别相除后,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式:22()()a b a b a b +-=-两个数和与这两个数差的积,等于这两个数的平方差. 要点诠释:1.在这里,a b ,既可以是具体数字,也可以是单项式或多项式.2.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是三项,是这两数的平方和加(或减)这两数之积的2倍.【典型例题】类型一、幂的运算1、已知:2m +3n =5,则4m •8n =( )A .16B .25C .32D .64 【解答】解:4m •8n =22m •23n =22m +3n =25=32,故选:C .2.下列各式正确的有( )①x 4+x 4=x 8;②﹣x 2•(﹣x )2=x 4;③(x 2)3=x 5;④(x 2y )3=x 3y 6;⑤(﹣3x 3)3=﹣9x 9;⑥2100×(﹣0.5)99=﹣2;A .1个B .2个C .3个D .4个【解答】解:①x 4+x 4=2x 4,此计算错误;②﹣x 2•(﹣x )2=﹣x 4,此计算错误;③(x 2)3=x 6,此计算错误;④(x 2y )3=x 6y 3,此计算错误;⑤(﹣3x 3)3=﹣27x 9,此计算错误;⑥2100×(﹣0.5)99=2×299×(﹣0.5)99=2×(﹣0.5×2)99=2×(﹣1) =﹣2,此计算正确;故选:A .3、阅读下列两则材料,解决问题:材料一:比较322和411的大小.解:∵411=(22)11=222,且3>2∴322>222,即322>411小结:指数相同的情况下,通过比较底数的大小,来确定两个幂的大小材料二:比较28和82的大小解:∵82=(23)2=26,且8>6∴28>26,即28>82小结:底数相同的情况下,通过比较指数的大小,来确定两个幂的大小【方法运用】(1)比较344、433、522的大小(2)比较8131、2741、961的大小(3)已知a 2=2,b 3=3,比较a 、b 的大小(4)比较312×510与310×512的大小【解答】解;(1)∵344=(34)11=8111,433=(43)11=6411,522=(52)11=2511, ∵81>64>25,∴8111>6411>2511,即344>433>522;(2)∵8131=(34)31=3124,2741=(33)41=3123,961=(32)61=3122,∵124>123>122,∴3124>3123>3122,即8131>2741>961;(3)∵a 2=2,b 3=3,∴a 6=8,b 6=9,∵8<9,∴a 6<b 6,∴a <b ;(4)∵312×510=(3×5)10×32,310×512=(3×5)10×52,又∵32<52,∴312×510<310×512.类型二、整式的乘除法运算1、要使()()621x a x -+的结果中不含x 的一次项,则a 等于( )A.0B.1C.2D.3【答案】D ;【解析】先进行化简,得:,要使结果不含x 的一次项,则x 的一次项系数为0,即:62a -=0.所以3a =.【总结升华】代数式中不含某项,就是指这一项的系数为0.2.如图,一个边长为(m +2)的正方形纸片剪去一个边长为m 的正方形,剩余的部分可以拼成一个长方形,若拼成的长方形的一边长为2,则另一边长为 2m +2 .【解答】解:设另一边长为x ,根据题意得,2x =(m +2)2﹣m 2,解得x =2m +2.故答案为:2m +2.3.如图,现有A ,C 两类正方形卡片和B 类长方形卡片各若干张,用它们可以拼成一些新的长方形.如果要拼成一个长为(3a+2b),宽为(a+b)的长方形,那么需要B类长方形卡片5张.【解答】解:长为3a+2b,宽为a+b的长方形的面积为:(3a+2b)(a+b)=3a2+5ab+2b2,∵A类卡片的面积为a2,B类卡片的面积为ab,C类卡片的面积为b2,∴需要A类卡片3张,B类卡片5张,C类卡片2张,故答案为:5.类型三、乘法公式1.如果x2﹣2(m+1)x+4是一个完全平方公式,则m=.【解答】解:∵x2﹣2(m+1)x+4是一个完全平方公式,∴﹣2(m+1)=±4,则m=﹣3或1.故答案为:﹣3或1.2、用简便方法计算:(1)1002﹣200×99+992(2)2018×2020﹣20192 (3)计算:(x﹣2y+4)(x+2y﹣4)【解答】解:(1)1002﹣200×99+992=1002﹣2×100×(100﹣1)+(100﹣1)2=[100﹣(100﹣1)]2=12=1;(2)2018×2020﹣20192=(2019﹣1)(2019+1)﹣20192=20192﹣1﹣20192=﹣1.(3)原式=x2﹣(2y﹣4)2=x2﹣4y2+16y﹣16;3.图①是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称抽)剪开,把它分成四块形状和大小都一样的小长方形,然后按图②那样拼成一个正方形,则中间空的部分的面积是()A.ab B.a2+2ab+b2C.a2﹣b2D.a2﹣2ab+b2【解答】解:图(1)是一个长为2a,宽为2b(a>b)的长方形,∴正方形的边长为:a +b ,∴正方形的面积为(a +b )2,∵原矩形的面积为4ab ,∴中间空的部分的面积=(a +b )2﹣4ab =a 2﹣2ab +b 2.故选:D .4、已知222246140x y z x y z ++-+-+=,求代数式2012()x y z --的值.【思路点拨】将原式配方,变成几个非负数的和为零的形式,这样就能解出,,x y z .【答案与解析】解:222246140x y z x y z ++-+-+= ()()()2221230x y z -+++-= 所以1,2,3x y z ==-=所以20122012()00x y z --==.【总结升华】一个方程,三个未知数,从理论上不可能解出方程,尝试将原式配方过后就能得出正确答案.类型四、综合类大题1.在前面的学习中,我们通过对同一面积的不同表达和比较,利用图①和图②发现并验证了平方差公式和完全平方公式,不仅更清晰地“看到”公式的结构,同时感受到这样的抽象代数运算也有直观的背景.这种利用面积关系解决问题的方法,使抽象的数量关系因几何直观而形象化.请你利用上述方法解决下列问题:(1)请写出图(1)、图(2)、图(3)所表示的代数恒等式(2)试画出一个几何图形,使它的面积能表示(x+y)(x+3y)=x2+4xy+3y2【拓展应用】提出问题:47×43,56×54,79×71,……是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?几何建模:用矩形的面积表示两个正数的乘积,以47×43为例:(1)画长为47,宽为43的矩形,如图③,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形的上面.(2)分析:几何建模步骤原矩形面积可以有两种不同的表达方式,47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果.请你参照上述几何建模步骤,计算57×53.要求画出示意图,写出几何建模步骤(标注有关线段)归纳提炼:两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述):证明上述速算方法的正确性.【解答】解:(1)图(1)所表示的代数恒等式:(x+y)•2x=2x2+2xy,图(2)所表示的代数恒等式:(x+y)(2x+y)=2x2+3xy+y2图(3)所表示的代数恒等式:(x+2y)(2x+y)=2x2+5xy+2y2.(2)几何图形如图所示:拓展应用:(1)①几何模型:②用文字表述57×53的速算方法是:十位数字5加1的和与5相乘,再乘以100,加上个位数字3与7的积,构成运算结果;即57×53=(50+10)×50+3×7=6×5×100+3×7=3021;十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果;故答案为十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果;2.阅读下列材料并解决后面的问题材料:对数的创始人是苏格兰数学家纳皮尔(J.Npler,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler,1707﹣﹣1783)才发现指数与对数之间的联系,我们知道,n个相同的因数a相乘a•a…,a记为a n,如23=8,此时,3叫做以2为底8的对数,记为log28,即log28=3一般地若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b,即log a b=n.如34=81,则4叫做以3为底81的对数,记为log381,即log381=4.(1)计算下列各对数的值:log24=,log216=,log264=(2)通过观察(1)中三数log24、log216、log264之间满足的关系式是;(3)拓展延伸:下面这个一股性的结论成立吗?我们来证明log a M+log a N=log,a MN(a>0且a≠1,M>0,N>0)证明:设log a M=m,log a N=n,由对数的定义得:a m=M,a n=N,∴a m•a n=a m+n=M•N,∴log a MN=m+n,又∵log a M=m,log a N=n,∴log a M+log a N=log a MN(a>0且a≠1,M>0,N>0)(4)仿照(3)的证明,你能证明下面的一般性结论吗?log a M﹣log a N=log a(a>0且a≠1,M>0,N>0)(5)计算:log34+log39﹣log312的值为.【解答】解:(1)log24=log222=2,log216=log224=4,log264=log226=6;故答案为:2,4,6;(2)通过观察(1)中三数log24、log216、log264之间满足的关系式是:log24+log216=log264;(4)证明:设log a M=m,log a N=n,由对数的定义得:a m=M,a n=N,∴a m÷a n=a m﹣n=,∴log a=m﹣n,又∵log a M=m,log a N=n,∴log a M﹣log a N=log a(a>0且a≠1,M>0,N>0)(5)log34+log39﹣log312,=log3,=log33,=1,故答案为:1.。

北师大版七年级数学下册第一章 整式的乘除 小结与复习

北师大版七年级数学下册第一章  整式的乘除 小结与复习

方法总结
在本章中应用幂的运算法则、乘法公式时,可以 将一个代数式看做一个字母,这就是整体思想,应用 这种思想方法解题,可以简化计算过程,且不易出错.
针对训练
8. 若 xn = 5,则 (x3n)2-5(x2)2n = 12500 .
9. 若 x + y = 2,则 1 x2 xy 1 y2 = 2 .
方法总结
幂的乘法运算包括同底数幂的乘法、幂的乘方、 积的乘方.这三种运算性质贯穿全章,是整式乘法的基 础.其逆向运用可将问题化繁为简,负数乘方结果的符 号,奇次方得负,偶次方得正.
针对训练
1. 下列计算不正确的是 ( D )
A. 2a3 ·a = 2a4
B. (-a3)2 = a6
C. a4 ·a3 = a7
针对训练
5. 求方程 (x-1)2-(x-1)(x + 1) + 3(1-x) = 0 的解.
解:原方程可化为-5x + 5 = 0,解得 x = 1.
6. 已知 x2 + 9y2 + 4x-6y + 5 = 0,求 xy 的值. 解:∵ x2 + 9y2 + 4x-6y + 5 = 0,
∴ (x2 + 4x + 4) + (9y2-6y + 1)=0. ∴(x + 2)2 + (3y-1)2 = 0.
(ab)n= anbn (n 为正整数)
[注意] (1) 其中的 a、b 可以是单独的数、单独
的字母,还可以是一个任意的代数式; (2) 这几个法则容易混淆,计算时必须先搞清楚
该不该用法则、该用哪个法则.
2.同底数幂的除法法则 (1) 任何不等于零的数的零次幂都等于 1.

北师大版七年级数学下册第一章整式的乘除复习课件

北师大版七年级数学下册第一章整式的乘除复习课件

a3 • a3 2a3,b4 b4 b8, m2 m2 2m2 (x)3 • (x)2 • (x) (x)6 x6
2、幂的乘方
法则:幂的乘方,底数不变,指数相乘。
数学符号表示: (a m ) n a mn
(其中m、n为正整数)
[(a m )n ] p a mnp (其中m、n、P为正整数)
a, 2x3 y 4 , 23 mn ,
2 3
Π

4、多项式:几个单项式的和叫多项式。
a 2b 3
5、多项式的项及次数:组成多项式中的单项式叫多 项式的项,多项式中次数最高项的次数叫多项式的次 数。特别注意,多项式的次数不是组成多项式的所有 字母指数和!!!
练习:指出下列多项式的次数及项。
2x3 y2 5m5n 2 , 2x3 y2z 3 ab4 72
第一章 整式的乘除
(复习课)
北师大版数学七年级下 第一章 整式的运算
本章知识结构:
一、整式的有关概念
1、单项式 2、单项式的系数及次数 3、多项式 4、多项式的项、次数 5、整式
二、整式的运算
(一)整式的加减法
1、去括号 2、合并同类项
(二)整式的乘法
1、同底数的幂相乘 2、幂的乘方 3、积的乘方 4、同底数的幂相除 5、单项式乘以单项式 6、单项式乘以多项式 7、多项式乘以多项式 8、平方差公式 9、完全平方公式
(二)整式的除法
就你 这回 些忆 知起 识了
吗 ?
1、单项式除以单项式 2、多项式除以单项式
一、整式的有关概念
1、单项式:数 单与独字一母个乘数积或,字这母样也的是代单数项式式叫。单项式。 2、单项式的系数: 单项式中的数字因数。
3、单项式的次数:单项式中所有的字母的指数和。

新北师大版七年级数学下册第一章整式的乘除知识点梳理汇总(K12教育文档)

新北师大版七年级数学下册第一章整式的乘除知识点梳理汇总(K12教育文档)

新北师大版七年级数学下册第一章整式的乘除知识点梳理汇总(word版可编辑修改)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(新北师大版七年级数学下册第一章整式的乘除知识点梳理汇总(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为新北师大版七年级数学下册第一章整式的乘除知识点梳理汇总(word版可编辑修改)的全部内容。

新北师大版七年级数学下册第一章整式的乘除
知识点梳理汇总。

(版)北师大版数学七年级下册第一章整式乘除知识点总结及练习题

(版)北师大版数学七年级下册第一章整式乘除知识点总结及练习题

☆☆☆北师大版数学七年级【下册】第一章整式的乘除一、同底数幂的乘法同底数幂的乘法法那么: a m a n a mn(m,n都是正数)是幂的运算中最根本的法那么,在应用法那么运算时,要注意以下几点:①法那么使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法那么可推广为a m a n a pa mnp〔其中m、n、p均为正数〕;⑤公式还可以逆用:a mn a m a n〔m、n均为正整数〕二.幂的乘方与积的乘方.幂的乘方法那么:(a m)na mn(m,n都是正数)是幂的乘法法那么为根底推导出来的,但两者不能混淆..(am)n(an)m a mn(m,n都为正数).底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法那么化成同底,如将〔-a〕3化成-a3n当为偶数时),一般地,(a)n当为奇数时).n.底数有时形式不同,但可以化成相同。

.要注意区别〔ab〕n与〔a+b〕n意义是不同的,不要误以为a+b〕n=an+bn〔a、b均不〔为零〕。

.积的乘方法那么:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即(ab)na nb n〔n为正整数〕。

.幂的乘方与积乘方法那么均可逆向运用。

三.同底数幂的除法1.同底数幂的除法法那么:同底数幂相除,底数不变,指数相减,即a m a n a mn(a≠0,m、n都是正数,且m>n).2.在应用时需要注意以下几点:①法那么使用的前提条件是“同底数幂相除〞而且0不能做除数,所以法那么中a≠0.②任何不等于0的数的0次幂等于1,即a01(a0),如10010=1),那么00无意义.③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即a p1(a≠0,p是正整数),而0-1,0-3都是无意义ap第1页的;当a>0时,a-p的值一定是正的;当a<0时,a-p的值可能是正也可能是负的,如(-2)-21,(2)3148④运算要注意运算顺序..整式的乘法单项式乘法法那么:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章《整式的乘除》知识点
一、幂的四种运算:
1、同底数幂的乘法:
⑴语言叙述:同底数幂相乘,底数不变,指数相加;
⑵字母表示:a m ·a n = a m+n ;(m ,n 都是整数) ; ⑶逆运用:a m+n = a m ·a n
2、幂的乘方:
⑴语言叙述:幂的乘方,底数不变,指数相乘;
⑵字母表示:(a m ) n = a mn ;(m ,n 都是整数); ⑶逆运用:a mn =(a m )n =(a n )m ; 3、积的乘方:
⑴语言叙述:积的乘方,等于每个因式乘方的积;
⑵字母表示:(ab)n = a n b n ;(n 是整数); ⑶逆运用:a n b n = (a b)n ;
4、同底数幂的除法:
⑴语言叙述:同底数幂相除,底数不变,指数相减;
⑵字母表示:a m ÷a n = a m-n ;(a≠0,m 、n 都是整数); ⑶逆运用:a m-n = a m ÷a n
⑷零指数与负指数: 01a =(a≠0); 1p p a a -=
(a≠0); 二、整式的乘法:
1、单项式乘以单项式: ⑴语言叙述:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的 指数不变,作为积的因式。

⑵实质:分三类乘:⑴系数乘系数;⑵同底数幂相乘;⑶单独一类字母,则连同它的指数照抄;
2、单项式乘以多项式: ⑴语言叙述:单项式与多项式相乘,就是根据分配律用单项式去乘多项式中的每一项,再把所得的积相加。

⑵字母表示:=ma +mb +mc ;(注意各项之间的符号!) 3、多项式乘以多项式:
(1)语言叙述:多项式与多项式相乘,先用一个多项式的每一项去乘另一个多项式的每一项,再
(2)字母表示:=mn +mb +an +ab ;(注意各项之间的符号!)
注意点:
⑴在未合并同类项之前,积的项数等于两个多项式项数的积。

⑵多项式的每一项都包含它前面的符号,确定乘积中每一项的符号时应用“同号得正,异号得负”。

⑶运算结果中如果有同类项,则要 合并同类项 !
三、乘法公式:(重点)
1、平方差公式:
(1)语言叙述:两数和与这两数差的积,等于这两个数的平方差。

(2)字母表示:()().22b a b a b a -=-+;
(3平方差公式的条件:⑴二项式×二项式; ⑵要有完全相同项与互为相反项; 平方差公式的结论:⑴二项式;⑵(完全相同项)2-(互为相反项)2;
2、完全平方公式:
(1)语言叙述:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的两倍
(2)字母表示:()2222b ab a b a ++=+; ().2222b ab a b a +-=-
(3)完全平方公式的条件:⑴二项式的平方;
完全平方公式的结论:⑴ 三项式 ;⑵有两项平方项,且是正的;另一项是二倍项,符号看前面;口诀记忆:“头平方,尾平方,头尾两倍在中央”;
四、整式的除法:
1、单项式除以单项式:
⑴法则:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

⑵实质:分三类除:⑴系数除以系数;⑵同底数幂相除;⑶被除式单独一类字母,则连同它的指数照抄;
2、多项式除以单项式:
⑴法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。

⑵字母表示: (a +b +c)÷m =a ÷m +b ÷m +c ÷m ;。

相关文档
最新文档