3《概率论与数理统计》期末考试试题 A卷
2020-2021大学《概率论与数理统计》期末课程考试试卷A4(含答案)
2020-2021《概率论与数理统计》期末课程考试试卷A4适应专业:软件 考试时间: 考试类型:闭卷考试所需时间:120分钟 考试成绩:一. 单项选择题(每小题2分,共12分)1. 设离散型随机变量X 的可能取值为3,2,1,相应的概率依次为a a a a +22,7,, 则a =( ) .(A) 1/4 (B) -1/2 (C) 1/2 (D) -1/42. 设随机变量X ~)1,2(N ,)1,1(~N Y ,令Y X Z +=2,则)(Z E =( ). (A) 4 (B) 2 (C) 1 (D) 53. 已知6/1)(,3/1)(,2/1)(===AB P B P A P ,则事件A 与B ( ).(A) 相互独立 (B) 互斥 (C) 相等 (D) 互为对立事件4. 设随机变量),(~2σμN X ,则概率}1{μ+≤X P ( ).(A) 随μ增加而变大 (B) 随μ增加而减小 (C) 随σ增加而不变 (D) 随σ增加而减小5. 设A 与B 相互独立,2.0)(=A P ,4.0)(=B P ,则=)|(B A P ( ). (A) 0.2 (B) 0.4 (C) 0.6 (D) 0.86. 设样本n X X X ,,21来自正态总体),(2σμN ,在进行假设检验时,当( )时,一般采用统计量nX Z /0σμ-=(其中σ为标准差)(A) μ未知,检验202σσ= (B) μ已知,检验202σσ= (C) 2σ已知,检验0μμ= (D) 2σ未知,检验0μμ=二. 填空题(每空2分,共18分)1. 设A 、B 、C 是三个事件,用A 、B 、C 的运算表示A 、B 、C 三个事件中至 少有一个发生 .2. 已知3/1)(,2/1)(==B P A P ,如果事件A 与B 互斥,则=)(B A P ,如果事件A 与B 独立,则=)(B A P .3. 设由来自正态总体X~)9.0,(2μN 的容量为9的简单随机样本,得样本均值5=x , 则未知参数μ的置信水平为0.95的置信区间是 。
概率论与数理统计期末考试试题及参考答案
概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。
参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。
参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。
参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。
参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。
参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。
概率论与数理统计期终考试试卷A及参考答案
上海应用技术学院2011—2012学年第一学期 《概率论与数理统计》期(末)(A )试卷课程代码: B2220073 学分: 3 考试时间: 100 分钟 课程序号: 112-7244、7246、7248、7249、7251、7254、7255、7257、7258等共9个教学班 班级: 学号: 姓名:我已阅读了有关的考试规定和纪律要求,愿意在考试中遵守《考场规则》,如有违反将愿接受相应的处理。
试卷共6页,请先查看试卷有无缺页,然后答题。
一、填空题(每题3分,共计18分)1、有321,,R R R 三个电子元件,用321,,A A A 分别表示事件“元件i R 正常工作”)3,2,1(=i ,试用321,,A A A 表示事件“至少有一个元件正常工作”:_______________。
2、连续型随机变量X 的分布函数为20,0,(),01,1, 1.x F x x x x ⎧<⎪=≤<⎨⎪≥⎩则(0.5 1.5)P X <<=_____。
3、设随机变量X 服从(3,7)F 分布,则随机变量1~Y X=____________。
4、设()28,10~N X ,()=<<200X P (用()Φ表示)。
5、已知随机变量,X Y ,有cov(,)5X Y =,设31U X =+,24V Y =-,则cov(,)U V =____。
6、设随机变量,X Y 相互独立~(5,0.5)X N ,~(2,0.6)Y N ,则()E XY =___________。
二、选择题(每题3分,共计18分)1、设S 表示样本空间,下述说法中正确的是( )(A )若A 为一事件,且()0P A =,则A =∅(B )若B 为一事件,且()1P B =,则B S = (C )若C S =,则()1P C =(D )若,A B 相互独立,则()()()P AB P A P B =+2、设随机变量X 与Y 均服从正态分布2~(,4)X N μ,2~(,5)Y N μ。
2020-2021大学《概率论与数理统计》期末课程考试试卷A2(含答案)
2020-2021《概率论与数理统计》期末课程考试试卷A2适用专业: 考试日期:试卷所需时间:2小时 闭卷 试卷总分 100分考试所需数据: 0.05(19)1,7291t = 0.05(20)1,7247t = 一、填空题: (4小题,每空2分,共10分)1、袋中有20个球,其中12只红球,8只黑球,今有2人依次随机地从袋中各取一球,取后不放回。
则第2人取得红球的概率为 。
2、若1,2,3,4,5号运动员随机的排成一排,则1号运动员站在中间的概率为 .3、 设随机变量X 与Y 互相独立,且()()2~,2/1~Exp Y Exp X 则随机变量Y 的概率密度函数为()f x = ;(232)E X Y --= .4、设随机变量()()22~,~m n Y X χχ,且X ,Y 相互独立,则随机变量mY nX F //=服从 分布.二、单项选择题:(5小题,每题2分,共10分)1、同时抛掷2枚匀称的硬币,则恰好有两枚正面向上的概率( ). A 0.5 B 0.25 C 0.125 D 0.3752、任何一个连续型的随机变量的概率密度()x ϕ一定满足 ( ). A 0()1x ϕ≤≤ B 在定义域内单调不减 C ()0x dx ϕ+∞-∞=⎰ D ()0x ϕ≥3、 已知~()X x ϕ,21x x ϕπ-()=[(1+)],则2Y X = 概率密度为( ). A 21(1)y π+ B 22(4)y π+ C 21(1/4)y π+ D 21(14)y π+ 4、随机变量X 与Y 满足()()()D X Y D X D Y +=-,则必有( ) .A X 与Y 独立B X 与Y 不相关C DX=0D DX DY 0⋅=5、在假设检验问题中,检验水平α的意义是 ( ). A 原假设0H 成立,经检验被拒绝的概率 B 原假设0H 成立,经检验不能被拒绝的概率C 原假设0H 不成立,经检验被拒绝的概率D 原假设0H 不成立,经检验不能拒绝的概率.三、(14分)20件产品中,有2件次品,不放回地从中接连取两次,每次取一件产品,则第二次取到的是正品的概率为多少?四、(14分)设随机变量X 与Y 相互独立,且X 与Y 的分布律为试求:(1)二维随机变量(,)X Y 的分布律;(2)随机变量Y X Z +=的分布律.专业班级: 姓名: 学号:装 订 线五、(14分)设二维随机向量(,)X Y 的概率密度为21,01,0(,)20ye x yf x y -⎧≤≤>⎪=⎨⎪⎩,其它 (1)求(X,Y)关于X 和关于Y 的边缘概率密度;(2)问X 是Y 否相互独立,为什么?六、(14分)设随机变量X 的概率密度为,02()20,xx f x ⎧≤≤⎪=⎨⎪⎩其它试求:(1)E(X),D(2X-3) ;(3)P{0<X<1.5}七、(14分)设总体X 具有分布律其中(01)θθ<<为未知参数,已知取得样本值1231,2,1x x x ===,试求θ的矩估计值和最大似然估计值.八、(10分)下面列出的是某工厂随便选取的20只部件的装配时间(min ):9.8 10.4 10.6 9.6 9.7 9.9 10.9 11.1 9.6 10.2 10.3 9.6 9.9 11.2 10.6 9.8 10.5 10.1 10.5 9.7设装配时间的总体服从正态分布2(,)N μσ,2,μσ均未知,是否可以认为装配时间的均值显著大于10(取0.05α=)?0.5099s =2020-2021《概率论与数理统计》期末课程考试试卷A2答案一、填空题1)3/5; 2)1/5; 3)()()21,020,xe xf xelse-⎧≥⎪=⎨⎪⎩;-7; 4)自由度为m,n的F分布.二、选择题1)B; 2)C; 3)D; 4)B; 5)A.三解、18171829142019201910p=⨯+⨯=分五、解()()1211,01,0;720,0,xX Yxe xf x f yelseelse-⎧<<⎧≤⎪==⎨⎨⎩⎪⎩分独立,因为()()(),14X Yf x f y f x y=分六、解()()()4294;2310;0 1.5143916E X D X P x=-=<<=分分分七解、22122131322E X分;所以()332分,E Xθ-=又()^453分;E X X==所以的矩估计为566=分θ.由521L,则ln5ln ln2ln17L分;令lnd Ld,得596分θ=,所以的最大似然估计为5106=分θ八解、由题可得0010:10;:102H H分;0.05,20,119,10.24n n x分;;原假设的拒绝域为016/xt nn分;0 1.7541/0.5099/20n0.05(19)1,7291t=,所以在显著性水平为0.05的情况下拒绝原假设10分.。
《概率论与数理统计》期末考试试卷(A)答案
2013-2014学年《概率论与数理统计》期末考试试卷 (A)一、 填空题(每小题4分,共32分).1.设 A 、B 为随机事件, P (A ) = 0.3, P (B ) = 0.4, 若 P (A |B ) =0.5, 则 P (A ⋃B ) = _______; 若 A 与 B 相互独立, 则 P (A ⋃B ) = _________.2.设随机变量 X 在区间 [1, 6] 上服从均匀分布, 则 P { 1 < X < 3} = ______________. 3.设随机变量 X的分布函数为,2,1 21 ,6.011 ,3.01 ,0 )(⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=x x x x x F则 X 的分布律为 ___________________________ . 4.若离散型随机变量 X 的分布律为则常数 a = _________; 又 Y = 2X + 3, 则 P {Y > 5} =_________ .5.设随机变量 X 服从二项分布 b (50, 0.2), 则 E (X ) = ________, D (X ) = ___________.6.设随机变量 X ~ N (0, 1), Y ~ N (1, 3), 且X 和 Y 相互独立, 则D (3X - 2Y ) = _________.7.设随机变量 X 的数学期望 E (X ) = μ, 方差 D (X ) =σ2, 则由切比雪夫不等式有P{|X -μ| < 3σ} ≥_________________.8.从正态总体N(μ, 0.12) 随机抽取的容量为16 的简单随机样本, 测得样本均值5=x,则未知参数μ的置信度为0.95的置信区间是____________________________. (用抽样分布的上侧分位点表示).二、选择题(只有一个正确答案,每小题3分,共18分)1.设A, B, C是三个随机变量,则事件“A, B, C不多于一个发生”的逆事件为( ).(A) A, B, C都发生(B) A, B, C至少有一个发生(C)A, B, C都不发生(D)A, B, C 至少有两个发生2.设随机变量X的概率密度为f (x), 且满足f (x) = f (-x), F(x) 为X 的分布函数, 则对任意实数a, 下列式子中成立的是( ).(A)(B)(C)(D)3.设随机变量 X , Y 相互独立, 与 分别是X 与 Y 的分布函数, 则随机变量 Z = max{X ,Y } 分布函数 为 ( ).(A) max{,} (B)+ -(C)(D)或4. 设两个相互独立的随机变量 X 和 Y 分别服从正态分布 N (0, 1) 和 N (1, 1), 则 ( ).21}0{ )A (=≤+Y X P 21}1{ )B (=≤+Y X P 21}0{ )C (=≤-Y X P21}1{ )D (=≤-Y X P 5.对任意两个随机变量 X 和 Y , 若 E (XY ) = E (X )E (Y ), 则 ( ).(A) X 和 Y 独立 (B) X 和 Y 不独立(C) D (XY ) = D (X )D (Y ) (D) D (X + Y ) = D (X ) + D (Y )6.设 X 1, X 2, …, X n (n ≥ 3) 为来自总体 X 的一个简单随机样本, 则下列估计量中不是总体期望 μ 的无偏估计量的是 ( ). (A)X(B) 0.1⨯ (6X 1 + 4X 2) (C)(D) X 1 + X 2 - X 3三、解答(本题 8 分)某大型连锁超市采购的某批商品中, 甲、乙、丙三厂生产的产品分别占45%、35%、20%,各厂商的次品率分别为4%、2%、5%,现从中任取一件产品,(1) 求这件产品是次品的概率; (2) 若这件产品是次品, 求它是甲厂生产的概率?四、解答(本题8分)设连续型随机变量 X 的概率密度为,其他⎩⎨⎧<<= ,0 0,sin )(πx x A x f求: (1) 常数 A 的值; (2) 随机变量 X 的分布函数 F (x ); (3)}.23{ππ≤≤X P五、解答(本题10分)设二维随机变量 (X , Y ) 的联合概率密度为求: (1) 求 X , Y 的边缘概率密度 f X (x ), f Y (y ), 并判断 X 与 Y 是否相互独立(说明原因)? (2) 求 P { X + Y ≤ 1}.六、解答(本题8分)已知随机变量 X 分布律为X k -1 0 2 4 P k0.10.50.30.1求 E (X ), D (X ).七、(本题6分)设某供电区域中共有10000 盏电灯,夜晚每盏灯开着的概率均为 0.7,假设各灯开、关时间彼此独立,求夜晚同时开着的灯的数量在6800 至 7200 间的概率.(其中999999.0)36.4()2120(=≈ΦΦ).八、(10分) 设总体 X 的概率密度为,其他⎩⎨⎧<<+= ,010 ,)1()(x x x f θθ其中θ > -1 是未知参数, X 1,X 2, …, X n 为来自总体的一个简单随机样本,x 1, x 2, …, x n 为样本值, 求 θ 的矩估计量和极大似然估计量.参考答案: 一、填空题 1. 0.5 ;0.58 2. 2/5 3.4. 0.3 ;0.5 5. 10 ;8 6. 21 7. 8/9 8. )41.05,41.05(025.0025.0z z +-详解:4.因为0.5+0.2+a=1,所以 a=0.3 Y = 2X + 3所以P {Y > 5} =0.2+0.3=0.5二、选择题1. D2. A3. C4. B5. D6. C 详解:2. 因为⎰∞-=xtt f x F d )()( 故⎰-∞-=-att f a F d )()( 令u =-t⎰∞+--=-a u u f a F d )()(⎰+∞=au u f d )(⎰+∞=at t f d )(⎰-=at t f 0d )(21 (21d )(0=⎰+∞t t f ) 详解:4.因为X ~)1,0(N ,Y ~)1,1(N 所以 1)(=+Y X E ,2)(=+Y X D 故)()(Y X D Y X E Y X ++-+21-+=Y X ~)1,0(N 所以21}021{=≤-+Y X P 即 21}01{=≤-+Y X P 21}01{=≤-+Y X P三、解答题解:设A 事件表示“产品为次品”,B 1事件表示“是甲厂生产的产品”,B 2事件表示“是乙厂生产的产品”,B 3事件表示“是丙厂生产的产品”(1) 这件产品是次品的概率:)()()()()()()(332211B P B A P B P B A P B P B A P A P ++= 035.02.005.035.002.045.004.0=⨯+⨯+⨯=(2) 若这件产品是次品,求它是甲厂生产的概率:3518035.045.004.0)()()()(111=⨯==A PB P B A P A B P 四、解答题 解:(1) A x x A x x f 2d sin d )(10===⎰⎰∞∞-π21=∴A (2) ⎰∞-=xt t f x F d )()(0d 0d )()(0===≤⎰⎰∞-∞-xxt t t f x F x 时,当)cos 1(21d sin 210d d )()(00x t t t t t f x F x xx-=+==<<⎰⎰⎰∞-∞-时,当π 10d d sin 210d d )()(0=++==≥⎰⎰⎰⎰∞-∞-x xt t t t t t f x F x πππ时,当 所以⎰∞-=xt t f x F d )()(=⎪⎩⎪⎨⎧≥<<-≤ππx x x x ,10),cos 1(210,0(3)414121)3()2(}23{=-=-=≤≤ππππF F X P 五、解答题 (1)⎪⎩⎪⎨⎧≤≤-=-==⎰⎰∞∞-其它,020),2(21d )2(d ),()(10x x y y x y y x f x f X ⎪⎩⎪⎨⎧≤≤=-==⎰⎰∞∞-其它,010,2d )2(d ),()(20y y x y x x y x f y f Y因为 ),()()(y x f y f x f Y X =⋅,所以X 与Y 是相互独立的.(2)247d )1)(2(21d )2(d }1{1021010=--=-=≤+⎰⎰⎰-x x x y y x x Y X P x六、解答题1.043.025.001.01)(⨯+⨯+⨯+⨯-=X E =0.9 1.043.025.001.0)1()(22222⨯+⨯+⨯+⨯-=X E =2.9 2229.09.2])([)()(-=-=X E X E X D =2.09七、解答题解:设X 为夜晚灯开着的只数,则X ~)7.0,10000(b}72006800{≤≤X P }3.07.0100007.010********.07.0100007.0100003.07.0100007.010*******{⨯⨯⨯-≤⨯⨯⨯-≤⨯⨯⨯-=X P}21203.07.0100007.010*******{≤⨯⨯⨯-≤-=X P 1)2120(2)]2120(1[)2120()2120()2120(-Φ=Φ--Φ=-Φ-Φ≈999998.01999999.02=-⨯=八、解答题 解:(1) 矩估计法21d )1()(101++=+==⎰θθθμθx x x X E 11112μμθ--=∴∑===ni iX n X A 111 所以θ的矩估计量∧θXX --=112(2) 最大似然法似然函数θθi ni x L )1(1+∏==,10<<ixθθi ni x L )1(1+∏==θθi n i n x 1)1(=∏+=∑=++=ni ix n L 1ln )1ln(ln θθ∑=++=ni ix nL 1ln 1d ln d θθ 令0d ln d =θL得θ的最大似然估计值 ∧θ1ln 1--=∑=ni ixnθ的最大似然估计量 ∧θ1ln 1--=∑=ni iXn。
2020-2021大学《概率论与数理统计》期末课程考试试卷A(含答案)
2020-2021大学《概率论与数理统计》期末课程考试试卷A适用专业: 考试日期:试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一.填空题(每题2分,共10分)1设事件A,B 互不相容,若P (A )=0.3,P (B )=0.7,则P (AB )为_________。
设事件A,B 相互独立,若P (A )=0.3,P (B )=0.7,则P (AB )为______.3.设母体X 服从正态分布N (μ,σ2),X 1,X 2⋯,X n 为取自母体的子样,X̄为子样均值,则X ̄服从的分布为__________.4.设X 1,X 2⋯,X n 相互独立,且都服从正态分布N (0,1),则∑X i 2n i=1服从的分布为_____________.5. 将一枚硬币重复掷N 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 和Y 的相关系数等于__________.二、选择题(每小题2分共10分)1.设A,B 为互不相容事件,且P (A )>0,P (B )>0,则结论正确的有( )(A )P (A |B )>0 (B )P (A |B )>P(A) (C) P (A |B )=0 (D) P (A |B )=P (A )P (B ) 2、设随机变量ξ,η相互独立,且有Dξ=6,Dη=3.则D (2ξ+η)为( ) (A )9 (B )15 (C)21 (D)27 3、设随机变量X 服从正态分布N (μ,σ2),则随着σ的增大,P (|X −μ|<σ)( )(A )单调增大 (B )单调减少 (C )保持不变 (D )增减不定4、任一连续型随机变量的概率密度函数ϕ(x )一定满足( )(A )0≤ϕ(x )≤1;(B )定义域内单调不减;(C )∫ϕ(x )+∞−∞dx =1;(D )lim x→+∞ϕ(x )=1。
5、设随机变量ξ,η满足条件D (ξ+η)=D (ξ−η),则有( )事实上 (A ) Dη=0 (B )ξ,η不相关 (C )ξ,η相互独立 (D )Dξ⋅Dη=0三、综合题(每小题5分共30分)1.某射击小组共有20名射手,其中一级射手4名,二级射手8名,三级射手7名,四级射手1名,一、二、三、四级射手能通过选拔进入决赛的概率分别是0.9,0.7,0.5,0.2,求在小组内任选一名射手,该射手能通过选拔进入决赛的概率。
概率论与数理统计 期末试卷及答案 A
第 1 页 共 5 页班级 姓名 准考证号‥‥‥‥‥‥密‥‥‥‥‥‥封 ‥‥‥‥‥ 线 ‥‥‥‥内 ‥‥‥‥‥不 ‥‥‥‥‥准 ‥‥‥‥‥答 ‥‥‥‥‥题 ‥‥‥‥‥‥期末考试试卷 参考答案学年学期: 课程名称: 《概率论与数理统计》 适用专业:(满分:100分 时间:120分钟)一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的备选项中选择符合题目要求的,请将其代码填涂在答题卡上相应的位置,错涂、多涂或未涂均无分。
1.设二项分布的随机变量,其数学期望与方差之比为4:3,则该分布的参数p =( ).A .0.5B .0.25C .0.75D .不能确定2.设随机变量X 与Y 的关系为21Y X =+,如果()D X =2,则()D Y =( ).A .4B .6C .8D .103.若X 服从区间[]2,6上的均匀分布,则{23}P x <<=( ).A .0.2B .0.75C .0.5D .0.254.若随机变量X 的期望EX 存在,则()E aX b +=( ).A .aEXB .2a EXC .aEX b +D .2a EX b +5.当随机变量X 的可能值充满( )时,则()cos f x x =可以成为随机变量X 的密度函数.A .π[0,]2B .π[,π]2C .[0,π]D .3π7π[,]226.矿砂中铜含量服从正态分布),(~2σμN X ,2μσ,未知,现从总体中抽取样本521,,,X X X ,5115i i X X ==∑,52211()5i i S X X ==-∑,在显著水平α下检验00:μμ=H ,则所取的统计量为( ).A .5/0σμ-X B .5/0S X μ- C .4/0σμ-X D .4/0S X μ-7.事件表达式A B +的表示( ).A .事件A 与事件B 同时发生 B .事件A 发生但事件B 不发生C .事件B 发生但事件A 不发生D .事件A 与事件B 至少有一个发生8.样本空间S 中的事件A 与B 相互独立的充要条件是( ). A .A B S += B .()()()P AB P A P B =C .AB =∅D .()()()P A B P A P B +=+9.设1X 、2X 是总体X 的样本,则下列统计量不是总体X 的期望的无偏估计量的是( ).A .1XB .121233X X + C .121()2X X + D .121()3X X +10.任何一个连续型随机变量X 的密度函数()f x 一定满足( ).A 卷第 2 页 共 5 页‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 密 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 封 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 线‥‥‥‥‥‥‥‥‥‥‥‥‥A .0()1f x ≤≤B .() d 1f x x +∞-∞=⎰C .在定义域内单调不减D .lim ()1x f x →+∞= 11.袋中有5球,3新2旧,从中任取一球,无返回的取两次,A =第一次取新球,B =第二次取新球.求P (B|A )=( ).A .12B .23C .35D .1312.已知事件A 和B 互不相容,()0,()0P A P B >>,下式成立的是( ). A .()()()P A B P A P B =+ B .()()()P AB P A P B =C .()1P A B =D .()0P AB >13.若随机变量2(,),3,1,X N EX DX μσ==则11}P X ≤≤={-( ).A .2(1)1A Φ-、 B .(4)(2)B Φ-Φ、C .(4)(2)Φ--Φ-C 、 D .(2)(4)Φ-ΦD 、 14.参数为λ的指数分布的方差是( ).A .1λB .2λC .λD .21λ15.设X 为连续型随机变量,则{1}P X ==( ). A .1B .0C .不能确定D .以上都不对二、判断题(本大题共5小题,每小题2分,共10分)判断正误,正确代码为A ,错误代码为B ,请将正确的答案代码涂在答题卡相应的题号下。
概率论与数理统计期末考试试卷答案
《概率论与数理统计》试卷A(考试时间:90分钟; 考试形式:闭卷)(注意:请将答案填写在答题专用纸上,并注明题号。
答案填写在试卷和草稿纸上无效)一、单项选择题(本大题共20小题,每小题2分,共40分) 1、A ,B 为二事件,则AB =()A 、AB B 、A BC 、A BD 、A B2、设A ,B ,C 表示三个事件,则A B C 表示()A 、A ,B ,C 中有一个发生 B 、A ,B ,C 中恰有两个发生C 、A ,B ,C 中不多于一个发生D 、A ,B ,C 都不发生 3、A 、B 为两事件,若()0.8P AB =,()0.2P A =,()0.4P B =,则()成立A 、()0.32P AB = B 、()0.2P A B =C 、()0.4P B A -=D 、()0.48P B A = 4、设A ,B 为任二事件,则()A 、()()()P AB P A P B -=- B 、()()()P AB P A P B =+C 、()()()P AB P A P B =D 、()()()P A P AB P AB =+ 5、设事件A 与B 相互独立,则下列说法错误的是()A 、A 与B 独立 B 、A 与B 独立C 、()()()P AB P A P B =D 、A 与B 一定互斥 6、设离散型随机变量X 的分布列为其分布函数为()F x ,则(3)F =()A 、0B 、0.3C 、0.8D 、17、设离散型随机变量X 的密度函数为4,[0,1]()0,cx x f x ⎧∈=⎨⎩其它 ,则常数c =()A 、15 B 、14C 、4D 、58、设X ~)1,0(N,密度函数22()x x ϕ-=,则()x ϕ的最大值是()A 、0B 、1 C、9、设随机变量X 可取无穷多个值0,1,2,…,其概率分布为33(;3),0,1,2,!k p k e k k -==,则下式成立的是()A 、3EX DX ==B 、13EX DX == C 、13,3EX DX == D 、1,93EX DX ==10、设X 服从二项分布B(n,p),则有()A 、(21)2E X np -=B 、(21)4(1)1D X np p +=-+C 、(21)41E X np +=+D 、(21)4(1)D X np p -=-11、独立随机变量,X Y ,若X ~N(1,4),Y ~N(3,16),下式中不成立的是()A 、()4E X Y +=B 、()3E XY =C 、()12D X Y -= D 、()216E Y += 12、设随机变量X 的分布列为:则常数c=()A 、0B 、1C 、14 D 、14- 13、设X ~)1,0(N ,又常数c 满足{}{}P X c P X c ≥=<,则c 等于()A 、1B 、0C 、12D 、-1 14、已知1,3EX DX =-=,则()232E X ⎡⎤-⎣⎦=()A 、9B 、6C 、30D 、36 15、当X 服从( )分布时,EX DX =。
概率论与数理统计期末试卷及答案(最新6)
,n=2,3,4…
2005级概率论与数理统计试卷A卷参考答案
一、
1.C
注释:由“A B成立”得P(A)=P(AB)
2.C
3.B
注释:参考课本86页
4.B
?5.
6.B
A项参见课本64页,D项参见课本86页
二、
1.2
注释:若X服从Poisson分布,则EX= ,DX= 。(课本84页)
A. f(z)= B. f(z)=
C. f(z)= D. f(z)=
6.设( , )服从二维正态分布,则下列说法中错误的是()
A.( , )的边际分布仍然是正态分布
B.由( , )的边际分布可完全确定( , )的联合分布
C.( , )为二维连续性随机变量
D. 与 相互独立的充要条件为 与 的相关系数为0
A) B)
C) D)
3、设是一个连续型变量,其概率密度为(x),分布函数为F(x),则对于任意x值有( )
A)P(=x) = 0 B)F(x) =(x)
C)P(= x) =(x) D)P(= x) = F(x)
4、对于任意两个随机变量 和 ,若 ,则()
A) B)
C) 和 独立D) 和 不独立
5、设 的分布律为
五、(本题8分)已知产品中96%为合格品。现有一种简化的检查方法,它把真正的合格品确认为合格品的概率为0.98,而误认废品为合格品的概率为0.05.求在这种简化检查下被认为是合格品的一个产品确实是合格品的概率?
六、(本题8分)一个复杂的系统由100个相互独立起作用的部件所组成。在运行期间,每个部件损坏的概率为0.1,而为了使整个系统正常工作,至少必须有85个部件工作。求整个系统正常工作的概率。
2013-2014学年《概率论与数理统计》期末考试试卷-(A)答案
1. 0.5 ;0.58 2. 2/5 3.4. 0.3 ;0.5 5. 10 ;8 6. 21 7. 8/9 8. )41.05,41.05(025.0025.0z z +-《概率论与数理统计》期末考试试卷 (A)一、填空题(每小题4分,共32分).1.设 A 、B 为随机事件, P (A ) = 0.3, P (B ) = 0.4, 若 P (A |B ) =0.5, 则 P (A ⋃B ) = __0.5_____; 若 A 与 B 相互独立, 则 P (A ⋃B ) = ____0.58____.2.设随机变量 X 在区间 [1, 6] 上服从均匀分布, 则 P { 1 < X < 3} = _____2/5_________.3.设随机变量 X 的分布函数为,2,1 21 ,6.011 ,3.01,0 )(⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=x x x x x F 则 X 的分布律为___________________________ .4.若离散型随机变量 X 的分布律为则常数 a = _0.3________; 又 Y = 2X + 3, 则 P {Y > 5} = _0.5________ .5.设随机变量 X 服从二项分布 b (50, 0.2), 则 E (X ) = ___10_____, D (X ) = _8__________.6.设随机变量 X ~ N (0, 1), Y ~ N (1, 3), 且X 和 Y 相互独立, 则D (3X - 2Y ) =___21______.7.设随机变量 X 的数学期望 E (X ) = μ, 方差 D (X ) = σ 2, 则由切比雪夫不等式有 P {|X - μ | < 3σ } ≥ _________________.8.从正态总体 N (μ, 0.1 2) 随机抽取的容量为 16 的简单随机样本, 测得样本均值5=x ,则未知参数 μ 的置信度为0.95的置信区间是 ____________________________. (用抽样分布的上侧分位点表示). 1. D 2. A 3. C 4. B 5. D 6. C详解:2.因为⎰∞-=xt t f x F d )()( 故⎰-∞-=-at t f a F d )()( 令u =-t ⎰∞+--=-a u u f a F d )()(⎰+∞=au u f d )(⎰+∞=at t f d )(⎰-=a t t f 0d )(21 (21d )(0=⎰+∞t t f )详解:4.因为X ~)1,0(N ,Y ~)1,1(N 所以 1)(=+Y X E ,2)(=+Y X D 故)()(Y X D Y X E Y X ++-+21-+=Y X ~)1,0(N 所以21}021{=≤-+Y X P 即 21}01{=≤-+Y X P 21}01{=≤-+Y X P二、选择题(只有一个正确答案,每小题3分,共18分)1.设A , B , C 是三个随机变量,则事件“A , B , C 不多于一个发生” 的逆事件为( D ).(A) A , B , C 都发生 (B) A , B , C 至少有一个发生 (C) A , B , C 都不发生 (D) A , B , C 至少有两个发生2.设随机变量 X 的概率密度为 f (x ), 且满足 f (x ) = f (-x ), F (x ) 为 X 的分布函数, 则对任意实数 a , 下列式子中成立的是 ( A ). (A) 错误!未找到引用源。
《概率论与数理统计》期末考试(A)卷答案与评分标准
海南师范大学 物理、电子、自动化、地理、城规、计算机专业《概率论与数理统计》 2009—2010学年度第一学期期末考试(A )卷答案与评分标准 注意事项:1. 考前请将密封线内填写清楚 2. 所有答案请直接答在试卷上 3.考试形式:闭卷 4. 本试卷共五大题,满分100分, 考试时间100分钟一、单项选择题(本题共六小题,每小题3分,共18分。
在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分)1、设B A ,为随机事件, 若4.0)(,6.0)(==B P A P , 则有( D ). A :1)(=B A P ; B :24.0)(=AB P ; C :6.0)(≤B A P ; D: 4.0)(≤AB P .2、设随机变量X 服从正态分布)1 ,0(N , )(x Φ为其分布函数,则}4{2<X P =( A ) . A :1)2(2-Φ ; B :1)4(2-Φ ; C : )2(21Φ-; D :)2(1Φ-.3、己知二维随机变量),(Y X 具有分布函数),(y x F ,则( D ). A :}{),(x X P x F <=+∞; B :1),(=+∞x F ; C :1),(=+∞-∞F ; D :0),(=-∞x F .4、己知随机变量X 服从二项分布)2.0 ,5(B , 则=)(2X E ( C ). A :1; B :0.8; C :1.8; D :0.2.5、设n X X X ,,,21 是来自总体) ,(2σμN 的简单随机样本,则∑==n i i X n X 11服从正态分布( A ). A :) ,(2n N σμ; B :) ,(2σn n N ; C :) ,(2σμN ; D :)1 ,0(N .6、设n X X X ,,,21 是来自总体) ,(2σμN 的简单随机样本,2 σ未知,检验假设 00μμ=:H ,对01μμ≠:H 时,需用到检验统计量是( B ). A :n X Z σμ0-=; B :n S X T 0μ-=; C :222)1(σχS n -=; D :n S X T n 0μ-=. 二、填空题(将答案直接填入栝号内,本题共六小题,每小题3分,共18分) 1、设事件B A 与相互独立,7.0)(,5.0)(==B A P A P ,则=)(B P ( 0.4 ) 第1页(共6页) 第2页(共6页)2、设随机变量X 的概率密度函数为⎩⎨⎧≤≤=其它,,0,10,3)(2x x x f X 的概率分布函数为)(x F ,则=)5.0(F ( 0.125 ).3、已知随机变量Y X 与的联合分布律为则概率==}1),{max(Y X P ( 0.6 );4、设随机变量X 的概率密度函数为⎩⎨⎧≤>=-,0,0,0,)(x x e x f x则X e Y 3-=的数学期望=)(Y E ( 41).5、己知随机变量X 的期望,20)(=X E 方差,8)(=X D ,则≤≥-}620{X P ( 92);.6、设n X X X ,,,21 是来自总体),(2σμN 的简单随机样本,2σ未知,X 是样本均值, 2S 是样本均值,则μ的置信度为1-α的单侧置信下限为()三、解答题(本题共 4小题,每小题8分,共32分)1、9.0)(,7.0)(,5.0)(===B A P B P A P ,试计算:)(AB P ,)(B A P -及)(B A A P 的值。
概率论与数理统计期末考试试卷及答案
概率论与数理统计期末考试试卷及答案专业概率论与数理统计课程期末试卷A卷1.设随机事件A、B互不相容,p(A)=0.4,p(B)=0.2,则p(AB)=0.A。
2B。
4C。
0D。
62.将两封信随机地投入四个邮筒中,则未向前两个邮筒中投信的概率为3/16.A。
2B。
2/3C。
3/16D。
13/163.填空题(每空2分,共30分)1)设A、B是两个随机变量,p(A)=0.8,p(B)=。
则p(AB)=0.3.2)甲、乙两门彼此独立地向一架飞机各发一炮,甲、乙击中飞机的概率分别为0.3、0.4,则飞机至少被击中一次的概率为0.58.3)设随机变量X的分布列如右表,记X的分布函数为F(x),则F(2)=0.6.X。
1.2.3p(X) 0.2.0.4.0.44)把三个不同的球随机地放入三个不同的盒中,则出现两个空盒的概率为3/5.5)设X为连续型随机变量,c是一个常数,则p(X=c)=0.6)设随机变量X~N(μ,1),Φ(x)为其分布函数,则Φ(x)+Φ(-x)=1.7)设随机变量X、Y相互独立,且p(X≤1)=1/2,p(Y≤1)=1/3,则p(X≤1,Y≤1)=1/6.8)已知P(X=0)=1/2,P(X=1)=1/4,P(X=2)=1/8,则E(X^2)=1/2.9)设随机变量X~U[0,1],由切比雪夫不等式可得P(|X-1/2|≥1/4)≤1/4.4.答案解析1)p(B)=0.375由乘法公式p(AB)=p(A)p(B)可得,0.3=0.8p(B),解得p(B)=0.375.2)P(未击中)=0.3×0.6+0.4×0.7=0.58由概率加法公式可得,P(未击中)=P(甲未击中且乙未击中)=P(甲未击中)×P(乙未击中)=0.3×0.6+0.4×0.7=0.58.3)F(2)=P(X≤2)=0.2+0.4=0.6由分布函数的定义可得,F(2)=P(X≤2)=P(X=1)+P(X=2)=0.2+0.4=0.6.4)P(两个空盒)=3/5将三个球分别放入三个盒子中,共有3×2×1=6种方案。
安徽大学2020-2021第一学期概率论与数理统计论与数理统计A期末考试卷及参考答案
安徽大学2020—2021学年第一学期《概率论与数理统计A 》期末考试试卷(A 卷)参考答案及评分标准一、填空题(每小题3分,共15分) 1.0.8; 2.011122Y⎛⎫⎪⎪⎝⎭; 3.12;4.22σμ+; 5.1.65二、选择题(每小题3分,共15分)6.C ; 7.B ; 8.C ; 9.A ; 10.D三、计算题(每小题10分,共60分) 11.解:(1) 由121d )(02==−⎰k x x kααα 2 =⇒k ,................... 4分(2) 22 0 02()()d , 0 1 x x x x F x f t t x x αααα−∞<⎧⎪⎪==−≤<⎨⎪≥⎪⎩⎰,................... 10分12.解:(1) Z 的密度函数为 ⎩⎨⎧≤≤−=其他 , 022 , 4/1)(z z f ,,41}1{}1,1{}1,1{=−≤=≤−≤=−=−=Z P Z Z P Y X P,0}1,1{}1,1{=>−≤==−=Z Z P Y X P,21}11{}1,1{}1,1{=≤<−=≤−>=−==Z P Z Z P Y X P,41}1{}1,1{}1,1{=>=>−>===Z P Z Z P Y X P所以X................... 5分(2) ,324321}1{}1,1{}1|1{===−====−=X P Y X P X Y P.31}1{}1,1{}1|1{=======X P Y X P X Y P................... 10分13.解:此人每天等车时间超过10分钟也即步行上班的概率为2510e d e 51)10(−−∞+==>⎰x X P x, 故 )e ,5(~2−B Y .................... 5分他一周内至少有一次步行上班的概率为52)e 1(1)1(−−−=≥Y P .................... 10分14.解:(1)),(Y X 的联合密度为⎩⎨⎧∈=其他 , 0),( , 1),(Dy x y x f , 所以X 的边缘密度为⎪⎩⎪⎨⎧<<=⋅==⎰⎰−∞+∞−其它, 0 10 , 2d 1d ),()(x x y y y x f x f x x X ,................... 5分(2)32d 210=⋅=⎰x x x EX ,21d 21022=⋅=⎰x x x EX ,181)(22=−=EX EX DX , 所以92)(4)12(==+X D X D .................... 10分15.解:⎰∞+∞−−=x x z x f z f Z d ),()(,⎩⎨⎧<−<<<−−−=−其他,010,10),(2),(x z x x z x x z x f ⎩⎨⎧+<<<<−=其他,01,10,2xz x x z , ................... 4分当0≤z 或2≥z 时, 0)(=z f Z ;当10<<z 时, ⎰−=zZ x z z f 0d )2()()2(z z −=;当21<≤z 时, ⎰−−=11d )2()(z Z x z z f 2)2(z −=;故Y X Z +=的概率密度⎪⎩⎪⎨⎧<≤−<<−=其他 ,021 ,)2(10 ,2)(22z z z z z z f Z .................... 10分16.解:(1)⎰−⋅=1d 11)(θθx x X E 21θ+=,由1)(2−=X E θ, 所以θ的矩估计量为 12ˆ−=X θ,其中∑==ni i X n X 11。
概率论与数理统计期末考试试卷答案
《概率论与数理统计》试卷A一、单项选择题(本大题共20小题,每小题2分,共40分) 1、A ,B 为二事件,则AB =()A 、AB B 、A BC 、A BD 、A B2、设A ,B ,C 表示三个事件,则A B C 表示()A 、A ,B ,C 中有一个发生 B 、A ,B ,C 中恰有两个发生C 、A ,B ,C 中不多于一个发生D 、A ,B ,C 都不发生 3、A 、B 为两事件,若()0.8P AB =,()0.2P A =,()0.4P B =,则()成立A 、()0.32P AB = B 、()0.2P A B =C 、()0.4P B A -=D 、()0.48P B A = 4、设A ,B 为任二事件,则()A 、()()()P AB P A P B -=- B 、()()()P AB P A P B =+C 、()()()P AB P A P B =D 、()()()P A P AB P AB =+ 5、设事件A 与B 相互独立,则下列说法错误的是()A 、A 与B 独立 B 、A 与B 独立C 、()()()P AB P A P B =D 、A 与B 一定互斥 6、设离散型随机变量X 的分布列为其分布函数为()F x ,则(3)F =()A 、0B 、0.3C 、0.8D 、17、设离散型随机变量X 的密度函数为4,[0,1]()0,cx x f x ⎧∈=⎨⎩其它 ,则常数c =()A 、15 B 、14C 、4D 、5 8、设X ~)1,0(N,密度函数22()x x ϕ-=,则()x ϕ的最大值是()A 、0B 、1 C、9、设随机变量X 可取无穷多个值0,1,2,…,其概率分布为33(;3),0,1,2,!k p k e k k -==,则下式成立的是()A 、3EX DX ==B 、13EX DX == C 、13,3EX DX == D 、1,93EX DX ==10、设X 服从二项分布B(n,p),则有()A 、(21)2E X np -=B 、(21)4(1)1D X np p +=-+C 、(21)41E X np +=+D 、(21)4(1)D X np p -=-11、独立随机变量,X Y ,若X ~N(1,4),Y ~N(3,16),下式中不成立的是()A 、()4E X Y +=B 、()3E XY =C 、()12D X Y -= D 、()216E Y += 12、设随机变量X 的分布列为:则常数c=()A 、0B 、1C 、14 D 、14- 13、设X ~)1,0(N ,又常数c 满足{}{}P X c P X c ≥=<,则c 等于()A 、1B 、0C 、12D 、-1 14、已知1,3EX DX =-=,则()232E X ⎡⎤-⎣⎦=()A 、9B 、6C 、30D 、36 15、当X 服从( )分布时,EX DX =。
概率论期末试题(带答案)
草纸:
试卷纸
共4页
第1页
试题要求:1、试题后标注本题得分;2、试卷应附有评卷用标准答案,并有每题每步得分标准;3、试卷必须装订,拆散无效;4、试卷必须
用碳素笔楷书,以便誉印;5、考试前到指定地点领取试卷。
学号:
姓名:
班级:
..........................................................密.......................................................封..........................................................线..........................................................
..
27
解
19
8
设每次试验成功的概率为 p, 由题意知至少成功一次的概率是 ,那么一次都没有成功的概率是
. 即 (1 − p)3 =
8
,故
p=1.
27
27
27
3
4. 设随机变量 X, Y 的相关系数为 0.5 , E(X ) = E(Y ) = 0, E= (X 2) E= (Y 2) 2 , 则 E[( X + Y )2 ] =(空 4)
8. 设 zα , χα2 (n), tα (n) , Fα (n1, n2 ) 分别是标准正态分布 N(0,1)、χ 2 (n)分布、t 分布和 F 分布的上α 分位点, 在
下列结论中错误的是(
).
(A) zα = −z1−α .
(B)
χ
2 α
(n)=-
χ2 1−α
概率论与数理统计考试a(含答案)
深圳大学期末考试试卷参考解答及评分标准开/闭卷 闭卷A/B 卷A 课程编号 2219002801-2219002811课程名称概率论与数理统计学分3命题人(签字) 审题人(签字) 年 月 日 基本题6小题,每小题5分,满分30分。
在每小题给出的四个选项中,只有一(每道选择题选对满分,选0分)事件表达式A B 的意思是 ( ) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 事件B 发生但事件A 不发生 (D) 事件A 与事件B 至少有一件发生 D ,根据A B 的定义可知。
假设事件A 与事件B 互为对立,则事件A B ( ) 是不可能事件 (B) 是可能事件 发生的概率为1 (D) 是必然事件 A ,这是因为对立事件的积事件是不可能事件。
已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 自由度为1的F 分布 (D) 自由度为2的F 分布选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的2分布。
已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( ) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3) 选C ,因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )=2-2=0, (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。
样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。
概率论与数理统计期末考试试卷及答案
姓名: 班级: 学号: 得分:
一.选择题(18 分,每题 3 分) 1. 如果 P ( A ) + P ( B ) > 1 ,则 事件 A 与 B 必定 ( A ) 独立; ( B ) 不独立; (C ) 相容; ( )
( D ) 不相容.
概率统计试卷 A (评分标准)
一. 选择题(15 分,每题 3 分) [ 方括弧内为 B 卷答案 ] C A C A D . . [ A D B C A ]
二. 填空题(18 分,每题 3 分) 1.
0 . 62 [ 0 . 84 ];
)
ì 1 / p , x 2 + y 2 < 1 , 设 ( X , Y ) ~ f ( x , y 则 X 与 Y 为 ) = í 其 他 . î 0 ,
)
( A ) 独立同分布的随机变量; (C ) 不独立同分布的随机变量; 4.
( B ) 独立不同分布的随机变量; ( D ) 不独立也不同分布的随机变量.
ˆ ( A) m 1 = 1 3 1 X 1 + X 2 + X 3 ; 5 10 2
1 6 1 2
)
ˆ 2 = ( B ) m
1 2 4 X 1 + X 2 + X 3 ; 3 9 9 1 1 5 X 1 + X 2 + X 3 . 3 4 12
域为( ) a = 0. 1
2 2 2 2 ( A) c 2 £ c 0 n ) ; ( B ) c 2 ³ c 0 n ) ; (C ) c 2 £ c 0 n ) ; ( D ) c 2 ³ c 0 n ) . . 1 ( . 1 ( . 05 ( . 05 (
概率论与数理统计 期末测试题样卷A卷(难度适中)
期末测试样卷A 卷考试科目: 概率论与数理统计一、填空题(每空3分,共27分)1.设A B C 、、为三个事件,则“A 、B 、C 至少有两个发生”可表示为___________. 2.已知1()4P A =,()13P B =,1()2P A B =,则(1)()P A B = ;(2)()P B A -= ;(3)()P B A = . 3.设()(),~1,0,4,9,0.5X Y N -,则X 与Y 是否相互独立?_____(填“独立”或“不独立”). 4.已知连续型随机变量20, 1()43, 121, 2x XF x x x x x <⎧⎪=-+-≤<⎨⎪≥⎩,则()f x =_____________5.设X 表示100次掷骰子试验中掷到6点的次数,则掷到6点的概率为__________,且~X ___________,若用泊松分布近似计算,则~()X P λ,λ=______.二、单项选择题(每小题3分,共15分) 1.一个班级中有6名男生和4名女生,现随机地选出4名学生参加比赛,则选出的学生中男生人数等于女生人数的概率为【 】(A )37 (B )47 (C )67 (D )272.设()X Xf x ,21Y X =-+,则()Y f y =【 】(A)11()22X y f - (B)11()22X yf -- (C)11()22X y f - (D)11()22X y f --3.设随机变量~()X F x ,则()F x 一定满足【 】(A){}()d xP X x F x x -∞>=⎰ (B)0()1F x ≤≤(C)()d 1F x x +∞-∞=⎰ (D)当12x x <时,有12()()F x F x <4.设二维连续型随机变量(,)X Y 满足条件【 】时,则必有X 与Y 相互独立.(A)X 与Y 不相关 (B)()()()D X Y D X D Y +=+ (C)X 与Y 相互独立 (D)(,)()()X Y f x y f x f y = 5.设随机变量(2,4)XN -,则2()E X =【 】(A )0 (B )2 (C )6 (D )8三、解答题(第4小题,8分;其余每题各9分,共53分,将解答过程写在相应的空白处)求:(1)P (-1≤X ≤1.5);(2)()E X ;(3)2Y X =的分布列.2.向区间[3,3]-等可能地投点,落点坐标X 服从均匀分布~[3,3]X U -.(1)写出X 的概率密度函数()f x ; (2)求点坐标落在区间[1,0]-上的概率.3.设(),X Y 联合分布列如下表所示:01 21 0.3 0.1020.40.150.05Y X-(1)求边缘分布列(可做在题目上);(2)求()E X ;(3)判断X 与Y 是否相互独立.4.设(),X Y 的联合概率密度为24, 01,0(,)0,x x y xf x y ⎧≤≤≤≤=⎨⎩其它求1{}3P X ≤.5.设随机变量X 服从参数2λ=的泊松分布,Y 服从区间[]3,3-的均匀分布.若X 、Y 相互独立,求: (1)(),(),(),()E X D X E Y D Y ;(2)(2)D X Y -6.现有400名学生在实验室里测量某种化学物质的pH 值,设X 表示该400名学生中测量的结果无误差的人数,测量结果无误差的概率为0.8.(1)求X服从什么分布?并求出()()E X D X和(2)求概率{320332}P X≤≤附标准正态分布函数()xΦ查表()1.5 1.51 1.52 1.53 0.93320.93450.93570.9370xx Φ四、证明题(5分,将解答过程写在相应的空白处)证明函数sin 0()20,x xf xπ⎧≤≤⎪=⎨⎪⎩其它能作为某个连续型随机变量的概率密度函数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华中农业大学本科课程期末考试A 试卷
考试课程:概率论与数理统计 学年学期:
一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其字母代号写在该题【 】内。
答案错选或未选者,该题不得分。
每小题2分,共10分。
)
1. 设A 、B 满足1)(=A B P ,则 . 【 】
(a )A 是必然事件;(b )0)(=A B P ;(c )B A ⊃;(d ))()(B P A P ≤.
2. 设X ~N (μ,σ2),则概率P (X ≤1+μ)=( ) 【 】 A ) 随μ的增大而增大 ; B ) 随μ的增加而减小; C ) 随σ的增加而增加; D ) 随σ的增加而减小.
3. 设总体X 服从正态分布),(N 2σμ,其中μ已知,2σ未知,321X ,X ,X 是总体X 的一个
简单随机样本,则下列表达式中不是统计量的是 . 【 】 (a )321X X X ++; (b ))X ,X ,X m in(321; (c )∑
=σ3
1i 2
2i X ; (d )μ+2X .
4. 在假设检验中, 0H 表示原假设, 1H 表示备择假设, 则成为犯第二类错误 的是 . 【 】 (a )1H 不真, 接受1H ; (b )0H 不真, 接受1H ; (c )0H 不真, 接受0H ; (d )0H 为真, 接受1H .
5.设n 21X ,,X ,X 为来自于正态总体),(N ~X 2σμ的简单随机样本,X 是样本均值,记
2
n
1i i
21
)
X X
(1
n 1S --=
∑=,
2n
1
i i
22
)X X
(n
1S -
=∑= ,
2
n
1
i i
23
)
X
(1
n 1S μ--=
∑=,
2n
1
i i
24
)X
(n
1S μ-=∑=,
则服从自由度为1-n 的
t 分布的随机变量是 . 【 】 (a )1
n S X T 1
-μ-=;(b )1
n S X T 2
-μ-=
;(c )n
S X T 3
μ-=
;(d )n
S X T 4
μ-=
.
………………………………… 装 ……………………………… 订 ……………………………… 线 …………………………………
二、填空题(将答案写在该题横线上。
答案错选或未选者,该题不得分。
每小题2分,共10分。
)
1.10部机器独立工作,因检修等原因,每部机器停机的概率为0.2,同时停机数目为3部
的概率= 。
2. 在单因素方差分析中,试验因素A 的r 个水平的样本总容量为n ,则当原假设0H 成
立时,2SSA σ服从 分布,MSE MSA 服从 分布.
3. 若随机变量 ξ 1,ξ 2,…,ξ n 相互独立,且都服从正态分布N(0,1),则ξ 1 + ξ 2 + … +
ξ n 服从 分布.
4. 若总体服从正态分布N(μ,σ2),从中抽取样本为:x 1, x 2 , … , x n , 则μ的矩估计是 .
5. 在区间估计的理论中,当样本容量给定时,置信度与置信区间长度的关系是
.
三、(10分,要求写清步骤及结果) 一生产线生产的产品成箱包装,每箱的重量是随机的, 假设每箱平均重50千克, 标准重为5千克.若用最大
载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977。
( 附:Φ(2)=0.977其中Φ(x)是标准正态分布函数。
)
四、(10分,要求写清步骤及结果)
设某厂生产的电灯的寿命ξ服从指
数分布E(λ),其分布密度为p(x)= ,0
0,0
x e x x λλ-⎧⎪>⎨≤⎪⎩, 为了确定其参数λ,现
在抽样试验得到如下数据 (单位:小时):
1020, 1111, 1342, 998, 1308, 1623
试用极大似然法确定未知参数λ的极大似然估计.
五、(12分,要求写清步骤及结果)
已知某树种的木材横纹抗压力遵从
正态分布,随机抽取该木材中的9个样品做横纹抗压力试验,获得下列数
据(单位kg/cm2): 482, 493, 457, 510 , 446, 435, 418, 394, 469. 试求该木材的平均横纹抗压力的95%的置信区间. (附 t 0.975(9-1)=2.306 )
六、(15分,要求写清步骤及结果)
设有甲乙两块10年生人工马尾林,所研究的标志为胸径.已知林木的分布近似服从正态分布.用重复抽样
方式分别从两总体中抽取了若干林木,测其胸径得数据如表(单位:dm)问:(α=0.05)
1)甲,乙二地林木胸径的方差是否有显著差异? 2)甲地林木的胸径是否比乙地林木的胸径小?
( 附:),(。
1616975
0--F =7.15, t 0.95
(6+6-2)=1.812 )
………………………………… 装 ……………………………… 订 ……………………………… 线 …………………………………
七、(15分,要求写清步骤及结果) 设在育苗试验中有3种不同的处理
方法,每种方法做6次重复试验,一年后,苗高数据如下表:
1. 试问不同的处理方法是否有显著差异?
2. 请列出方差分析表.
3. 哪种处理方法最好?(附: =0.01, F 0.99(3-1,18-3)=6.36)
………………………………… 装 ……………………………… 订 ……………………………… 线 …………………………………
八、(18分,要求写清步骤及结果)某林场内随机抽取6块面积为一亩
1.试求:x ,y ,xx l ,xy l ,yy l ;
2.试求:对x 的一元线性之经验回归方程; 3.对此一元线性回归方程进行显著性检验;
4.当树高 x 0=32 m 时, 横断面积Y 0 的预测区间是多少?
(附:t 0.995(6-2)=4.604 ,)26(01.0-r =0.9172 ,F 0.99(1,6-2)= 21.20 ) ( 提示:预测公式 t =)2(~])(11[2)
(2
000--++∙--∧
n t l x x n n SSE y y xx
)。