过压及欠压的保护电路图

合集下载

空调过欠压、缺相、相序保护电路原理与检修

空调过欠压、缺相、相序保护电路原理与检修

空调过欠压、缺相、相序保护电路原理与检修.1.电源过欠压电路原理与检修电源过欠压电路原理。

过欠压电路可分为三种电源过欠压电路原理。

过欠压电路可分为三种::第一种是将采样电压直接送入单片机进行比控制;第二种是通过比较器将基准与采样电压进行比较,然后输入单片机进行过欠压控制;第三种是通过比较器将采样电压与基准电压进行比较后,通过继电器直接进行过欠压控制。

第一种过欠压电路如图第一种过欠压电路如图11所示,电路中,所示,电路中,B B 为变压器,为变压器,DB1DB1DB1为全桥,为全桥,为全桥,R1R1R1、、R2R2为分压电阻为分压电阻为分压电阻,,C 为滤波电容。

为滤波电容。

220V 220V 经变压器降压、经变压器降压、DB1DB1DB1整流、整流、整流、R1R1R1限流、限流、限流、R2R2R2分压后,经电容分压后,经电容C 滤波送入滤波送入单单片机进行比较制。

当电源电压过高或过低时,由于采样电路只整流不稳压,所以直流输出电压也随之变化,此电压经单片机内部分析后,然后确定是否进行过欠压控制。

第二种过欠压电路如图第二种过欠压电路如图22所示,它与图所示,它与图11相比较,整流电路完全相同,其主要区别是增加了一级比较电路,而不是直接送入单片机比较。

其中W1,L W1,LM324M324M324的的8、9、1010脚和外围元件组成欠压保护脚和外围元件组成欠压保护脚和外围元件组成欠压保护电电路。

其中W2.W2.L L M324M324的的1212、、1313、、1414脚和外围供基准电压,脚和外围供基准电压,R1R1~~R4R4、、R13R13、、R14R14为分压电阻,为分压电阻,VD1VD1、、VD2为耦合二极管。

电源电压正常时,电源电压正常时,W1W1W1输出电压使输出电压使L M394M394的的9脚电位大于脚电位大于101010脚电位,其脚电位,其脚电位,其88脚输出低电平,脚输出低电平,单单片机判断电源电压正常。

过欠压、过流、过温、软启动、CNT保护实际电路详解!

过欠压、过流、过温、软启动、CNT保护实际电路详解!

输出过压保护电路当用户在使用电源模块时,可能会由于某种原因,造成模块输出电压升高,为了保护用户电路板上的器件不被损坏,当模块的输出电压高于一定值时,模块必须封锁脉冲,阻止输出电压的继续上升。

D320产生一个5.1V电压基准送至运放U301反相输入端,R330、R334、R336用于检测输出电压、检测电压值送至运放U301同相输入端。

输出电压没有达到过压保护点时,运放U301 5脚的电压小于6脚的电压,运放输出为低电平,输出正常。

输出电压Vo升高到设定检测点电压时,电阻R336、R334、R330检测的分压比送入运放U301的5脚,此时5脚电压高于6脚电压,运放U301输出高电平,封闭控制芯片PWM信号,模块输出电压为零。

过流保护电路实例(1)图2.过流保护电路实例工作原理T2采集模块原边开关管的输入电流,采样电流经取样电阻R18转换成电压信号,再经两路开关二极管(D6)整流形成两路控制信号。

一路峰值信号去控制38C43的3脚;另一路准峰值电平进入38C43 EA的反相输入端2脚。

采用CT作电流采样的好处是采样电路功耗小,采样电路灵活,CT可以放置在MOSFET开关管的D极或S极,也可以串联于主变压器原边的Vin+端。

缺点是电路稍复杂,体积大,CT存在大占空比时不能有效复位的问题。

CT采样一般用于中大功率的模块。

3843PWM芯片介绍图3.3843芯片内部结构图芯片工作原理虚线所框部分为38C43芯片内置的误差放大器和电流放大器。

误差放大器的输出经过内部分压后(被钳位到1V),进入电流放大器的反相输入端,与电流采样信号比较后进入PWM产生电路。

最终在芯片的6脚输出PWM信号。

在这里,误差放大器被用来作OCP保护,电流控制放大器I/A作峰值电流限流保护。

误差放大器E/A用于准峰值限流。

当38C43反相输入端2脚的直流电平达到2.5V时,误差放大器E/A起作用,使38C43的6脚输出驱动信号占空比D减小,达到模块OCP之目的。

24V开关电源的几种保护电路

24V开关电源的几种保护电路

24V开关电源常用的几种保护电路1.防浪涌软启动电路24V开关电源的输入电路大都采用电容滤波型整流电路,在进线电源合闸瞬间,由于电容器上的初始电压为零,电容器充电瞬间会形成很大的浪涌电流,特别是大功率开关电源,采用容量较大的滤波电容器,使浪涌电流达100A以上。

在电源接通瞬间如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上闸。

上述现象均会造成开关电源无法正常工作,为此几乎所有的开关电源都设置了防止流涌电流的软启动电路,以保证电源正常而可靠运行。

2.过压、欠压及过热保护电路进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。

因此对输入电源的上限和下限要有所限制,为此采用过压、欠压保护以提高电源的可靠性和安全性。

温度是影响电源设备可靠性的最重要因素。

根据有关资料分析表明,电子元器件温度每升高2℃,可靠性下降10%,温升50℃时的工作寿命只有温升25℃时的1/6,为了避免功率器件过热造成损坏,在开关电源中亦需要设置过热保护电路。

3.缺相保护电路由于电网自身原因或电源输入接线不可靠,24V开关电源有时会出现缺相运行的情况,且掉相运行不易被及时发现。

当电源处于缺相运行时,整流桥某一臂无电流,而其它臂会严重过流造成损坏,同时使逆变器工作出现异常,因此必须对缺相进行保护。

检测电网缺相通常采用电流互感器或电子缺相检测电路。

由于电流互感器检测成本高、体积大,故开关电源中一般采用电子缺相保护电路。

图5是一个简单的电子缺相保护电路。

三相平衡时,R1~R3结点H电位很低,光耦合输出近似为零电平。

当缺相时,H点电位抬高,光耦输出高电平,经比较器进行比较,输出低电平,封锁驱动信号。

比较器的基准可调,以便调节缺相动作阈值。

该缺相保护适用于三相四线制,而不适用于三相三线制。

电路稍加变动,亦可用高电平封锁PWM信号。

蓄电池供电系统的过压欠压保护电路设计

蓄电池供电系统的过压欠压保护电路设计
保护电路设计: 针对现有保护技术在蓄电池电压保护方面存在的缺陷,解决功 率脉冲发生器瞬间引起的误动作,提供一种电路设计简洁、工作可 靠、成本低廉的双门限电压比较器。 电路组成框图如图1所示。当过压欠压保护电路检测到系统欠 压,且不足以维持功率脉冲发生器正常工作时,断开继电器K2, 停止功率脉冲发生器工作;当检测到系统极度欠压,并有可能损坏 蓄电池时,断开继电器K1,停止蓄电池对外供电。
(4) 当输入电压由欠压转为正常值时,比较器U1A输出恢复至高电 平,此时输入电压为:
(5)
• 147 •
ELECTRONICS WORLD・技术交流
电平转换电路由电阻R8、二极管D4、电阻R11、开关管Q1、电 阻R9、二极管D5组成。当过压或欠压时,比较器U1B或U1A输出低电 平,则二极管D2或D6导通,节点 / VP为低电平,二极管D4截止,开 关管Q1关断,输出高电平信号SD,断开功率负载。
ELECTRONICS WORLD・技术交流
蓄电池供电系统的过压欠压保护电路设计
中船重工第七一五研究所 田普涛 徐晓伟
引言:随着新能源技术的不断发展,蓄电池作为清洁、高效的 储能装置,被越来越多地应用在各个电力系统中,如手持智能设备、 电动汽车、水下自主无人航行器 (autonomous underwater vehicle,简 称AUV)等。由于内部的化学反应,蓄电池会表现出大量的非线性现 象,当输出电流逐渐增大时,电压会逐渐下降(其关系近似于反正弦 函数)。而且诸如锂电池、镍氢电池等在过放电后会永久失效,因此 在实际使用过程中需要对蓄电池的过放电进行保护。
图1 保护电路组成框图
1.1 电压保护电路原理 电压保护电路原理如图2所示,包括电压取样电路、过压保护
电路、欠压保护电路、电平转换电路和保护信号隔离上传电路。

最新ATX电源用TL494制作的ATX开关电源控制电路图过流,过压,欠压保护详解整理

最新ATX电源用TL494制作的ATX开关电源控制电路图过流,过压,欠压保护详解整理

用TL494制作的ATX开关电源控制电路图过流,过压,欠压保护详解本开头电源控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)?494是双排16脚集成电路,工作电压7~40V?它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路ATX电源的控制电路见图1?控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)?494是双排16脚集成电路,工作电压7~40V?它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路,振荡频率由{5}脚外接电容及{6}脚外接电阻来决定?{13}脚为高电平时,由{8}脚及{11}脚输出双路反相(即推挽工作方式)的脉宽调制信号?本例为此种工作方式,故将{13}脚与{14}脚相连接?比较器是一种运算放大器,符号用三角形表示,它有一个同相输入端“+”;一个反相输入端“-”和一个输出端?比较器同相端电平若高于反相端电平,则输出端输出高电平;反之输出低电平?494内的比较放大器有四个,为叙述方便,在图1中用小写字母a?b?c?d来表示?其中a是死区时间比较器?因两个作逆变工作的三极管串联后接到+310V的直流电源上,若两个三极管同时导通,就会形成对直流电源的短路?两个三极管同时导通可能发生在一个管子从截止转为导通,而另一个管子由导通转为截止的时候?因为管子在转换时有时间的延迟,截止的管子已经转为导通了,但导通的管子尚未完全转为截止,于是两个管子都呈导通状态而形成对直流电源的短路?为防止这样的事情发生,494设置了死区时间比较器a?从图1可以看出,在比较器a的反相输入端串联了一个“电源”,正极接反相端,负极接494的{4}脚?A比较器同相端输入的锯齿波信号,只有大于“电源”电压的部分才有输出,在三极管导通变为截止与截止转为导通期间,也就是死区时间,494没有脉冲输出,避免了对直流电源的短路?死区时间还可由{4}脚外接的电平来控制,{4}脚的电平上升,死区时间变宽,494输出的脉冲就变窄了,若{4}脚的电平超过了锯齿波的峰值电压,494就进入了保护状态,{8}脚和{11}脚就不输出脉冲了?494内部还有3个二输入端与门(用1?2?3表示)?两个二输入端与非门?反相器?T触发器等电路?与门是这样一种电路,只有所有的输入端都是高电平,输出端才能输出高电平;若有一个输入端为低电平,则输出端输出低电平?反相器的作用是把输入信号隔离放大后反相输出?与非门则相当于一个与门和一个反相器的组合?T触发器的作用是:每输入一个脉冲,输出端的电平就变化一次?如输出端Q为低电平,输入一个脉冲后,Q变为高电平,再输入一个脉冲,Q又回到低电平?比较器?与门?反相器?T触发器以及锯齿波振荡器及{8}脚?{11}脚输出的波形见图2?339是四比较器集成电路?按管脚的顺序把内部四个比较器设为A?B ?C ?D 比较器?494和339再配合其他电路,共同完成ATX电源的稳压,产生PW-OK信号及各种保护功能?过流保护过压保护一?产生PW-OK信号PC主机要求各路电源稳定之后才工作,以保护各元器件不致因电压不稳而损坏,故设置了PW-OK信号(约+5V),主机在获得此信号后才开始工作?接通电源时,要求PW-OK信号比±5V?±12V?+3.3V电源延迟数百毫秒才产生,关机时PW-OK信号应比直流电源先消失数百毫秒,以便主机先停止工作,硬盘的磁头回复到着陆区,以保护硬盘?ATX电源接通市电后,辅助电源立即工作?一方面输出+5VSB电源,同时向494的{12}脚提供十几伏到二十多伏的直流电源?494从{14}脚输出+5V基准电源,锯齿波振荡器也开始起振工作?若主机未开机,PS-ON信号为高电平,经R37使339的B比较器{6}脚亦为高电平,因电阻R37小于R44,{6}脚电平高于{7}脚电平,B比较器输出端{1}脚输出低电平,经D36的钳位作用,A比较器的反相端{4}脚亦为低电平,其电平低于同相端{5}脚的电平,输出端{2}脚呈高电平,经R41使494的{4}脚为高电平,故494内部的死区时间比较器a输出低电平,与门1也因此输出低电平并进而使与门2和与门3输出低电平,封锁了振荡器的输出,{8}脚?{11}脚无脉冲输出,ATX电源无±5V?±12V?+3.3V电源输出,主机处于待机状态?因+5V?+12V电源输出为零,经电阻R15?R16使494的{1}脚电平亦为零,494的c比较器的输出端{3}脚输出亦为零,经R48使339的{9}脚亦为零电平,故339的C比较器的输出端{14}脚为零电平?另外,339的{1}脚低电平信号因D34的钳位作用,也使{14}脚为低电平,经R50和R63使{11}脚亦为低电平?因此D比较器的输出端{13}脚为低电平,也就是PW-OK信号为低电平,主机不会工作?开启主机时,通过人工或遥控操作闭合了与PS-ON相关的开关,PS-ON呈低电平,经R37使339的反相端{6}脚为低电平,B比较器{1}脚输出高电平,D35?D36反偏截止,A比较器的输出电平则由{5}脚与{4}脚的电平决定?正常工作时,{5}脚电平低于{4}脚电平,{2}脚输出低电平,经R41送到494的{4}脚,使{4}脚的电平变为低电平,锯齿波振荡信号可以从死区时间比较器a输出脉冲信号,另一方面,振荡信号送到了PWM比较器b的同相输入端,PWM比较器输出的脉冲信号的宽度,则是由494的{1}脚的电平(也就是负载的大小)与{16}脚的电平来决定?PWM比较器输出的脉冲信号,最后经缓冲放大器放大后,从{8}?{11}脚输出脉冲信号,ATX电源向主机输出±5V ?±12V?+3.3V电源?此过程因C35的充电有数百毫秒的延时,但对主机开机并无影响?494的{1}脚从+5V?+12V 经取样电阻R15?R16得到电压,其电平略高于{2}脚电平,{3}脚输出高电平,经R48使339的{9}脚得到高电平,其电平高于{8}脚电平,因而{14}脚输出高电平,此电平经R50与基准+5V电源经R64共同对C39充电,经数百毫秒后,{11}脚电平升到高于{10}脚电平时,D比较器{13}脚输出高电平,此电平经R49反馈至{11}脚,维持{11}脚处于高电平状态,故{13}脚输出稳定的高电平PW-OK信号,主机检测到此信号后即开始正常工作?关机时,主机内开关使PS-ON呈高电平,此时339的{6}脚电平高于{7}脚,{1}脚输出低电平,因二极管D34的钳位作用,{14}脚呈低电平,C39对C比较器及B比较器放电,很快{11}脚呈低电平,{13}脚输出低电平,即PW-OK信号呈低电平?在339的{1}脚为低电平时,经D36使{4}臆脚为低电平,{2}脚输出高电平,经R41传送到494的{4}脚,但因C35电位不能突变,经数百毫秒的放电后方使494的{4}脚转为高电平,从而封锁正负脉冲的输出,主机进入待机状态?上述的过程中,关机时C39和C35都要放电,但因放电时间常数不同,C39放电较快,故PW-OK信号先于各电源变成低电平,满足了主机关机的需要?此外,关机时因各路输出电源的电解电容放电需要时间,也使PW-OK信号先于各电源回到低电平?二?稳压494的{2}脚经R47与基准电压+5V相连,维持较好的稳定电压,而{1}脚则与取样电阻R15?R16与+5V?+12V相连接,正常的情况下,{1}脚电平与{2}脚电平相等或略高?当输出电压升高时(无论+5V或+12V),{1}脚电平高于{2}脚电平,c比较器输出误差电压与锯齿波振荡脉冲在PWM比较器b进行比较使输出脉冲宽度变窄,输出电压回落到标准值,反之则促使振荡脉冲宽度增加,输出电压回升?由于494内的放大器增益很高,故稳压精度很好?从稳压的原理,我们可以得到ATX电源输出电压偏高或偏低的维修方法?如果输出电压偏低,可在494的{1}脚对地并联电阻,或是把R47的电阻增大?要是电源的输出偏高,则可在{2}脚对地并联电阻,也可以用增大R33或取下R69?R35来降低输出电压?三?过流保护过流保护的原理是基于负载愈大,Q3?Q4集电极的脉冲电压也愈高,也即是R13(1.5kΩ)上的电压也愈高,从这里采样经D14整流和C36滤波,再经R54?R55并联电阻与R51?R56?R58等组成的分压电路送到494的{16}脚?随着负载的加重,{16}脚的电平也随之上升,当超过{15}脚的电平时,误差放大器输出的误差电压促使调制脉冲的宽度变窄从而使负载电流减小?另外,从R56?R58并联电阻获得的分压再经R52送到339的{5}脚,当{5}脚的电平超过{4}脚时,{2}脚即输出高电平送到494的{4}脚,494停止输出脉冲信号,终止±5V?±12V?+3.3V电源的输出,达到过流及短路保护的目的?需要说明的是:494的{16}脚电平的高低只能改变输出脉冲的宽度,但不影响494的{4}脚电平状态,而339的{5}脚电平一旦超过{4}脚的电平,339的{2}脚就送出高电平去封锁449的脉冲输出,终止±5V?±12V?+3.3V电源的输出,同时{2}脚的高电平经R59和二极管D39反馈到{5}脚,维持{5}脚处于高电平状态,此时若过载或短路状态消失,494的{4}脚仍维持高电平,±5V与±12V?+3.3V电源仍不能输出,只有切断交流市电的输入,再重新接通交流电,方可再次开机?四?过压保护过电压保护由R17和稳压管Z02并联电路从+5V采样,经D37送到339的{5}脚?若+5V电源由于某种原因升高,339的{5}脚电平也会随之升高,当超过{4}脚电平时,{2}脚即送出高电平去494的{4}脚,封锁±5V?±12V? +3.3V电源的输出,达到过电压保护的目的?正常工作时,R17上的压降不大,Z02截止送到{5}脚的电压较低,若+5V电源的电压上升,使R17上的压降超过Z02的稳压值,Z02导通,+5V电源上升后的电压值全部加到339的{5}脚上,促使其快速封锁494脉冲的输出,以保护电源五?欠压保护欠压保护从-5V的D32及-12V处的R14取样,经R34和D37送到339的{5}脚?若因某种原因使输出电压过低时,-12V及-5V电压的负值也会随之减小,也就是电压值上升,经R34及D37送往339的{5}脚使电平上升,339的{2}脚送出高电平到494的{4}脚,从而封锁449脉冲的输出,实现欠压保护?二极管D32在导通时,其电压降与通过的电流基本无关,保持在0.6V~0.7V,于是-5V电压的减少量会全部传送到D32的负端,提高了欠压保护的灵敏度?六?电源保护电路故障的维修从上面的叙述中可以了解到,各种保护电路最终都是通过控制339的{5}脚电平来控制494的{4}脚电平实现的?正常工作时,339的{5}脚电平低于339的{4}脚电平,339的{2}脚输出低电平,使494的{4}脚呈低电平状态(约为0.25V)?若339的{5}脚电平高于339的{4}脚电平,339的{2}脚输出高电平,于是494的{4}脚变为高电平,电源就进入了保护状态,终止各路电源的输出?因此ATX电源出了故障,若电源的整流?滤波?逆变以及辅助电源均完好,则要检查339的{4}?{5}脚的电平?若是{5}脚电平高于{4}脚的电平,表示电源进入了保护状态?下一步则找出是什么原因使电源进入了保护状态?可检查与339的{5}脚相连各支路另一端的电压是不是比{5}脚电压高,高出{5}脚电压的支路就是故障所在的支路?另外,也可以用断开与{5}脚相连的一个个支路,若是断开某一条支路后{5}脚的电平正常了,那么故障就出在这一条支路上?再沿着这条支路往下查,很快就可以把故障排除?下面通过两个实例来加以说明?1.一台SLPS-250ATXC电源的输出电压偏低?空载下,+5V电源的电压只有+1.8V,其他各路电压也按比例同样下降?电源是采用TL494及LM339集成电路的典型ATX电路?检查494的{4}脚电压为+2.6V?电路似乎处于保护状态?但保护状态时各路输出的电压均应为零,而现在却是正常电压的三分之一,令人费解?试着把494的第{4}脚接地,电源立即输出正常?{4}脚接地就正常工作,说明494并未损坏,问题可能出在339以及有关的电路?用万用表查339管脚的电压,当查到第{4}脚及{7}脚时,各路电源均正常了?甚至只用一条表笔去碰{7}脚或{4}脚,也可使电源恢复正常工作?这等于在{4}脚或{7}脚上加了一条“天线”,天线接收了外来信号电源就工作正常了!我试了试天线的长度,40厘米以下对电源不起作用,长度增加了,输出电压也随着增加,达到1米左右时,输出电压就正常了,494的{4}脚电压也恢复到0V?但电源要用“天线”才能工作,说明还有故障未找到?再检查339的{4}脚与{5}脚的电压,{5}脚电压为 2.4V,{4}脚的电压为 1.2V,输出端{2}脚的电压为 2.9V?(这部分电路见图3)?但是339的{2}脚高电位,必须由{5}脚电位高于{4}脚的电位时才能产生,那{5}脚最初的高电位是怎么来的?把与{5}脚相连的各支路断开试一试?在断开c支路以后,电源就正常了?沿着D2往下找,最后在+3.3V电源处对地接一个1000μF的电容时,电源就正常了?再检查+3.3V电源原来的滤波电容,发现已经失效?更换电容后494的{4}脚电压恢复正常,用表笔去碰触339的{4}脚或{7}脚也不起作用,问题得到了解决?为什么+3.3V电源的滤波电容失效会造成输出电压偏低?+3.3V电源在没有电容滤波时,输出的直流电源中含有很强的由逆变功率管输出的脉冲成分,通过D3及D2送到LM339的{5}脚,使{5}脚的电平高于{4}脚的电平,电源进入了保护状态?从+20V电源经R3?D1 ?R2和三个并联电阻到接地的支路中,三个电阻并联后的电阻值是 2.43kΩ,再略去其他支路的影响,可以估算出{5}脚的电压大约是 2.3V,因二极管D1的钳位作用,{2}脚输出电压只能在 2.9V左右,经R1送到TL494的{4}脚,减去电阻R1的降压,494的{4}脚电压就是 2.6V了?在此电压下,494会输出较窄的脉冲,于是在空载下,+5V电源有约 1.8V的电压输出?解决的办法可在d支路中串联一个47kΩ的电阻,并把R2由3.9kΩ换成100kΩ就行了?经这样处理后,不论是正常工作或是保护状态,各路电源的输出电压和各管脚的电压均正常了?而R2电阻的改动,也不会影响电源的过载保护性能?至此,电源的故障才完全得到了解决(爱好者手中若有SLPS-250ATXC 电源,可参考此例加一个47kΩ电阻以提高电源的保护性能)?为什么339的{4}脚加了天线会正常工作呢?这是{2}脚经D1反馈到{5}脚后,产生了轻微的高频寄生振荡?{4}脚或{7}脚接了天线以后,破坏了电路的振荡条件,使{4}脚的电压升高,当超过{5}脚的电压时,{2}脚送出0V的低电平信号到494的{4}脚,电源就工作正常了?同样,在D1支路中串联了47kΩ电阻后,增加了阻尼因数,破坏了电路的振荡条件,电源也就正常了?此时若取下+3.3V电源处新加的电解电容,通电后,电源会立即进入保护状态,各路电源都没有输出?2.一台新时代HY-ATX300电源,空载时输出电压正常,但不能带动负载?检查494各个管脚的电压,发现{12}脚的电压只有10V,这是造成不能带动负载的原因?在辅助电源逆变变压器T3的初级线圈1加上16.5V的高频电压,测得次级+5VSB挡线圈3的电压是0.9V,向494集成电路{12}脚供电线圈4的电压为 1.5V,约是+5VSB挡线圈电压的 1.7倍?电源的+5VSB电源是直接从线圈3经整流和滤波后得到,+5VSB电源的稳压则是借助WD431稳压集成电路和光电耦合器反馈回逆变三极管得到的,如图4所示?由此可以算出线圈4的电压为5×1.7=8.5V,因负载较轻,经电容滤波后的电压就是10V左右了?由此说明T3脉冲变压器线圈4的匝数少了?拆开T3变压器,得到各绕组的匝数为:初级2×110匝;反馈绕组10匝;+5VSB绕组12匝;绕组4的匝数是8匝?重新绕制绕组4,把匝数由原来的8匝增加到20匝,其余绕组的匝数不变?绕好后上机实验,494集成电路{12}脚的电压上升到17V,电源的输入功率可达130W,故障排除?从故障现象看,可能是工厂生产时将变压器装错了?。

几款常用的保护电路

几款常用的保护电路

几款常用的保护电路鉴于电源电路存在一些不稳定因素,而设计用来防止此类不稳定因素影响电路效果的回路称作保护电路。

在各类电子产品中,保护电路比比皆是,例如:过流保护、过压保护、过热保护、空载保护、短路保护等等,本文就整理了一些常见的保护电路。

1、电机过热保护电路生产中所用的自动车床、电热烘箱、球磨机等连续运转的机电设备,以及其它无人值守的设备,因为电机过热或温控器失灵造成的事故时有发生,需要采取相应的保安措施。

PTC热敏电阻过热保护电路能够方便、有效地预防上述事故的发生。

下图是以电机过热保护为例,由PTC热敏电阻和施密特电路构成的控制电路。

图中,RT1、RT2、RT3为三只特性一致的阶跃型PTC热敏电阻器,它们分别埋设在电机定子的绕组里。

正常情况下,PTC热敏电阻器处于常温状态,它们的总电阻值小于1KΩ。

此时,V1截止,V2导通,继电器K得电吸合常开触点,电机由市电供电运转。

当电机因故障局部过热时,只要有一只PTC热敏电阻受热超过预设温度时,其阻值就会超过10KΩ以上。

于是V1导通、V2截止,VD2显示红色报警,K失电释放,电机停止运转,达到保护目的。

PTC热敏电阻的选型取决于电机的绝缘等级。

通常按比电机绝缘等级相对应的极限温度低40℃左右的范围选择PTC热敏电阻的居里温度。

例如,对于B1级绝缘的电机,其极限温度为130℃,应当选居里温度90℃的PTC热敏电阻。

2、逆变电源中的保护电路逆变器经常需要进行电流转换,如果电路中的电流超出限定范围,将对电路和关键器件造成很大伤害,因此保护电路在逆变电源中就显得尤为重要。

(1)防反接保护电路如果逆变器没有防反接电路,在输入电池接反的情况下往往会造成灾难性的后果,轻则烧毁保险丝,重则烧毁大部分电路。

在逆变器中防反接保护电路主要有三种:反并肖特基二极管组成的防反接保护电路,如下图所示。

由图可以看出,当电池接反时,肖特基二极管D导通,F被烧毁。

如果后面是推挽结构的主变换电路,两推挽开关MOS管的寄生二极管的也相当于和D并联,但压降比肖特基大得多,耐瞬间电流的冲击能力也低于肖特基二极管D,这样就避免了大电流通过MOS管的寄生二极管,从而保护了两推挽开关MOS管。

36v欠压保护电路图大全(六款模拟电路设计原理图详解)

36v欠压保护电路图大全(六款模拟电路设计原理图详解)

36v欠压保护电路图大全(六款模拟电路设计原理图详解)36v欠压保护电路图(一)电路工作原理:输出电压低于规定值时,反映了输入直流电源、开关稳压器内部或者输出负载发生了异常。

输入直流电源电压下降到规定值之下时,会导致开关稳压器的输出电压跌落,输入电流增大,既危及开关三极管,也危及输入电源。

因此,要设欠电压保护。

简单的欠电压保护如图1所示。

当未稳压输入的电压值正常时,稳压管ZD击穿,晶体管V导通,继电器动作,触点吸合,开关稳压器加电。

当输入低于所允许的最低电压值时,稳压管ZD不通,V截止,触点跳开,开关稳压器不能工作。

开关稳压器内部,由于控制电路失常或者开关三极管失效会使输出电压下降;负载发生短路也会使输出电压下降。

特别在升压型或反相升压型的直流开关稳压器中欠电压的保护是跟过电流保护紧密相关的,因而更加重要。

实现方法是在开关稳压器的输出端接电压比较器,如图2所示。

正常时,比较器没有输出,一旦电压跌落在允许值之下比较器就翻转,驱动告警电路;同时反馈到开关稳压器的控制电路,使开关三极管截止或切断输入电源。

36v欠压保护电路图(二)电路工作原理:本电路由11个元件组成,电路简洁,反应灵敏,其应用范围也比较宽广,电压范围和功率容量可以通过使用不同的器件而改变,并且可采用贴片元件,使体积进一步减小。

电路如上图所示。

在电压正常的情况下,b点电位较高,故a点电位相应也较高;晶闸管导通,所以Ql导通,输出端的负载正常1工作。

当输入电压降低到一定程度时.b点电位相应下降,Q2导通程度减弱使a点电位降低,可控硅关断,使Ql截止,切断了对负载的供电。

当外部电压正常或电池充足电后,对其手动复位即可。

若需安装指示电路可按下图所示安装,采用三色发光二极管进行指示即可。

本电路可用于电动车、充电灯、矿灯等对铅酸电池进行过放电保护,也可接入低压直流供电回路中保护负载。

在此,在应用铅酸电池的场合中,应尽量加装欠压保护器,并能在单格电压降至1.9V左右时实行保护,以延长电池的使用寿命。

过压及欠压的保护电路图

过压及欠压的保护电路图

图4是仅用一个4比较器LM339及几个分立元器件构成的过压、欠压、过热保护电路。

取样电压可以直接从辅助控制电源整流滤波后取得,它反映输入电源电压的变化,比较器共用一个基准电压,N1.1为欠压比较器,N1.2为过压比较器,调整R1可以调节过、欠压的动作阈值。

N1.3为过热比较器,R T为负温度系数的热敏电阻,它与R7构成分压器,紧贴于功率开关器件IGBT的表面,温度升高时,R T阻值下降,适当选取R7的阻值,使N1.3在设定的温度阈值动作。

N1.4用于外部故障应急关机,当其正向端输入低电平时,比较器输出低电平封锁PWM驱动信号。

由于4个比较器的输出端是并联的,无论是过压、欠压、过热任何一种故障发生,比较器输出低电平,封锁驱动信号使电源停止工作,实现保护。

如将电路稍加变动,亦可使比较器输出高电平封锁驱动信号。

交流电源过压、欠压保护电路一、实验目的1、学习使用运算放大器构成比较器。

2、学习元件的选择及用万用表检测电子器件。

3、学会电路调试技术。

二、实验设备与器件1、函数信号发生器2、双踪示波器3、交流毫伏表4、数字万用表5、元件自选三、设计要求a) 设计说明某些用电设备对输入电压有一定的要求,电网工作正常时,用电设备接通电源,电网电压波动超过正负10%时,自动切断电源,停止工作。

b)设计要求1)要求利用实验台和所学过的模拟电子技术的知识,实际该装置。

2)输入市电。

3)使用运算放大器构成比较器。

4)电源工作正常,绿色发光二极管亮,电源过压、欠压,红色发光二极管亮。

四、设计提示实验的原理框图如图1所示。

市电经整流滤波后加入比较器电路,电网电压在正常范围时,执行电路将常开触点J闭合,用电设备通电;当电网电压波动超过正负10%时,触点J断开。

切断电源,用电设备停止工作。

图1 交流电源过压、欠压保护电路原理框图利用实验装置似的交流变压输出的14、16、18V端点模拟电网电压的变化。

用16V模拟电网电压工作在正常范围,用14V和18V模拟电网电压波动超出正负10%状态。

过欠电压保护

过欠电压保护

1、设计背景随着现在电气设备的普及,给工农业生产、国防事业、科技带来了革命性的变化,加快了社会的发展,人们步入了电气化时代,人们的生活质量得到了大幅度的提高,人们也越来越离不开这些电器设备。

而电子产品越来越多,越来越精密,要在相对稳定的电压电流下工作,使用寿命才不会缩短。

目前我国的电网正在普及,庞大的电网系统给了我们许多方便,但是随着接入电网的用户增多和用户电器的多样化,也造成了设电网电压的不稳定,经常产生浪涌电流,还有不可预料的过压以及欠压状况对用户电器造成极大的危害,为了避免这些问题就需要研究如何在电压变化较大时保护好用电设备,此次设计“过压与欠压自动保护电路”也由此孕育而生。

过电压:电力系统在特定条件下所出现的超过工作电压的异常电压升高。

属于电力系统中的一种电磁扰动现象。

电工设备的绝缘长期耐受着工作电压,同时还必须能够承受一定幅度的过电压,这样才能保证电力系统安全可靠地运行。

研究各种过电压的起因,预测其幅值,并采取措施加以限制,是确定电力系统绝缘配合的前提,对于电工设备制造和电力系统运行都具有重要意义。

过电压分外过电压和内过电压两大类。

外过电压:又称雷电过电压、大气过电压。

是由于大气中的雷云对地面放电而引起的。

分直击雷过电压和感应雷过电压两种。

雷电过电压的持续时间约为几十微秒,具有脉冲的特性,故常称为雷电冲击波。

直击雷过电压是雷闪直接击中电工设备导电部分时所出现的过电压。

雷闪击中带电的导体,如架空输电线路导线,称为直接雷击。

雷闪击中正常情况下处于接地状态的导体,如输电线路铁塔,使其电位升高以后又对带电的导体放电称为反击。

直击雷过电压幅值可达上百万伏,会破坏电工设施绝缘,引起短路接地故障。

感应雷过电压是雷闪击中电工设备附近地面,在放电过程中由于空间电磁场的急剧变化而使未直接遭受雷击的电工设备(包括二次设备、通信设备)上感应出的过电压。

因此,架空输电线路需架设避雷线和接地装置等进行防护。

通常用线路耐雷水平和雷击跳闸率表示输电线路的防雷能力。

市电欠压过压自动保护电路

市电欠压过压自动保护电路

摘要本设计介绍的是市电欠压、过压自动保护器。

能在市电高于限定电压或低于限定电压时起自动保护动作,切断负载(用电设备)的工作电源。

而在市电恢复正常后,又能自动恢复供电。

设计中主要有桥式整流电路、滤波电路、稳压电路、控制电路,电路结构简单,电路工作原理清晰明了,性能优良。

此设计经过检测和分析,它具有自动保护功能。

当市电电源电压低于或高于设定的电压时,切换负载供电,还可根据需要延时供电。

它能在市电电压低于170V或者高于240V时,自动切断负载的供电线路,可防止用电设备因欠电压或者过电压而损坏。

关键词时基电路;欠压保护;过压保护;自动保护第1章绪论1.1 选题的目的及意义随着现在电气设备的普及,给工农业生产、国防事业、科技带来了革命性的变化,加快了社会的发展,人们步入了电气化时代,也使人们的生活质量得到了大幅度的提高,也越来越离不开这些电器设备。

随着科技的发展,电器设备的精度也逐渐提高,发生了翻天覆地的变化,但是如何保护好这些电器设备的不受外界的干扰,成了当今科技发展关注的主要问题。

目前我国的电网正在普及,庞大的电网系统给了我们许多方便。

但是随着接入电网的用户增多,和用户电器的多样化,也造成了电网电压的不稳定,忽高忽低的电压,也成了损坏电器设备的主要因素。

如何在电压变化较大时保护好用电设备,成了人们现在研究的一个方向。

1.2 概述本设计介绍的是市电过电压与欠压自动保护器,它的主要功能是在市电电压低于170V或者高于240V时,自动切断负载的供电线路,以达到防止用电设备内因欠电压或者过电压而损坏的目的。

1.2.1 过电压过电压是指工频下交流电压均方根值升高,超过额定值的10%,并且持续时间大于1分钟的长时间电压变动现象;过电压的出现通常是负荷投切的结果,例如:切断某一大容量负荷或向电容器组增能(无功补偿过剩导致的过电压)。

电力系统在特定条件下所出现的超过工作电压的异常电压升高。

属于电力系统中的一种电磁扰动现象。

过欠压保护电路

过欠压保护电路

二、调试结果及分析 以下数据为在实际正常市电(经测量为 241v)情况下所测得数据 令市电下高压报警值为 x1,低压报警值为 x2 设定变压器输出初值为 U 初=11v(约合 220v 交流电下的 10v 直流) 调节 R1 使其在高压 12v 时开始报警,则低压在 0.6755*12=8.1v 时开始报警,对应交流电分别为
利用 T0 管和 T1 管的开关特性来控制继电器 J(6v)的通断,从而达到通过继电器来控制用电器电源通断 的目的。如图八:当 T0 和 T1 均不导通时,T2 不导通,继电器不工作,当 T0 或 T1 导通时,T2 管导通, 继电器工作,切断用电器电源。考虑到自感的影响,可在继电器旁并联一二极管,防止继电器从吸合到断 开瞬间所产生的 感应电压击穿三极管。 该方案由于 T0 和 T1 不导通时输出的低电平约为 1.2v,使的 T2 中有电流产生,在继电器上有约为 3.4v 的 压降,而继电器在 4v 左右时开始工作,因此继电器处于不稳定状态。 解决方案:在 T2 发射极加一电阻分压,使继电器两端电压下降到约为 2v,经实验该电阻阻值约为 15 欧, 该情况下报警时继电器压降约为 5v,能正常工作,继电器吸合;而当恢复正常电压时,由于继电器上还有 两伏的压降,使的继电器仍处于吸合状态,由此可防止因电压多次高低波动对用电器造成的损害,只有人 工复位(即将继电器与 6v 电源断路一次)后,用电器才能继续工作。 3.实验结果:调节 R1,确定使其在输入直流 12v 时刚好报警,则由比例关系得低压报警值为 0.6755*12=8.1v。 调节电位器使输出电压超过 12v 后报警,继电器吸合,在恢复正常电压时继电器仍吸合;同理,当输出由 正常减小到 8.1v 后报警,继电器吸合,在恢复正常电压时,继电器仍吸合。 用继电器的上述原理来控制用电器的开关,实现了继电器对用电器的有效保护。 整机电路图见最后。

电源过压欠压保护电路报告

电源过压欠压保护电路报告

电源过压欠压保护电路报告目录一、摘要 (2)二、方案论证 (2)三、电路工作原理及说明 (3)1。

电压比较电路 (3)2。

比较器与运算放大器的差别 (7)3.执行电路 (7)4.总电路图 (9)四、电路性能指标的测试 (10)五、设计心得 (10)附录 (13)附录一 (13)参考文献 (14)电源过压欠压保护电路一、摘要随着微控技术的日益完善和发展,在工业控制中,用电设备通常工作至三相电源中,而很多用电设备在使用中对相应提供的工作电源有着较高的要求。

但通常电网产生的电压偏高(是指给定的瞬间设备端电压U与设备额定电压Un之差),以及大功率电动机的起动,电焊机的工作,特别是大型电弧炉和大型轧钢机冲击性负荷的工作,均会引起负荷的急剧变动,使电网电压损耗随之产生相应变动,从而使用户公共供电点的电压出现波动现象。

而上述情况所造成的电压波动,又会给用电设备造成不应有的过压、欠压现象。

如长时间供给用电设备,则会极大的损坏用电设备。

所以在用电设备使用中,会加入相应的保护电路,以保证用电设备在正常的供电状态下使用。

当供电线路出现过、欠压时,保护电路进行有效保护,从而确保用电设备安全正常运行。

二、方案论证本课题主要设计电源过压/欠压保护电路。

主要设计思想为:在正常情况下,即电压在标准电压附近的时候,电路正常工作,报警器不工作。

当有过压、欠压或者掉电的时候,输入电压经过整流滤波稳压后与已知标准电压相差很大时,电路使晶体管工作,从而驱动报警器报警,提示工作人员进行必要的措施,防止不必要的损失。

经过理论推理,进行分析比较并逐步模拟,确立以下比较合理的方案。

过压、欠压保护电路原理框图如图1所示。

该电路设计过压/欠压掉电报警器电路,由比较电路、报警器装置组成。

图1 过压/欠压保护电路原理框图三、电路工作原理及说明1.电压比较电路保护电路中主要是电压比较器在起作用,电压比较器可以看作是放大倍数接近“无穷大”的运算放大器。

比较电路主要由两个理想运放组成,这是电路正常工作的核心。

过压欠压保护器

过压欠压保护器

• 三、设计
• 1.整流滤波模块:电子电路正常工作时需要直流电源,而电网供给50HZ
交流电,需要利用具有单向导电性的半导体器件把交流电转换为直流电 (这里采用整流二极管)。交流电经过二极管整流之后,方向单一,但 大小仍在变化。这种脉动直流不能给集成电路供电、,要把脉动直流变 成波形平滑的直流还要进行滤波。
课程设计: 交流电源过压、欠压保护电路
• 答辩人:电子1804-车华华-23
一、设计要求设计
1.功能要求:
某些用电设备对输入电压有一点的要求,电网正常工作时,用电设备接通电源, 电网电压波动超过±10%,自动切断电源,停止工作。 指标要求:
1.频率为50HZ,峰峰值位16V代表电网正常工作时的电压,14V和18V分别代表波动 为10%的电压。 二、思路AB源自如图为设计的整流滤波电路,
当输入电压值A点为X,则输 出B点电压为Y=√2X+1.4(两个 二极管的压降)
• 2.报警模块:
由VCC电压源分压得到A点电 压为11.9V,B点电压为9.1V。 C点为直流电压输入点。D点 电压为二分之C点电压。将D 点电压分别与A、D电压进行 比较。若正极大于负极比较 器输出1,反之输出0。两个 比较器只要有输出0,与门后 为0,则下面的红灯亮。同时 输出1后与门后也为1,上面 绿灯亮。
• 红绿灯亮的工作原理
与门输出1后满足C点的高电压要求, 下面晶体管导通,上面电阻分压后, 使得B点电压小于A,满足上面晶体管 导通B点为低电压要求,所以绿灯亮。 与门输出0后相当于下面晶体管未接 入。A、B点电压相等,上面晶体管不 会导通。下面的VDD充当高,C为低, 则下面红灯亮,这样就将保护范围成 功的钳制在E点的23.8( √2X18+1.4) 和18.2( √2X14+1.4 )

图解空气开关原理,过热保护、过流保护和欠压保护功能介绍!

图解空气开关原理,过热保护、过流保护和欠压保护功能介绍!

图解空⽓开关原理,过热保护、过流保护和⽋压保护功能介绍!空⽓开关,⼜名空⽓断路器,是断路器的⼀种。

是⼀种只要电路中电流超过额定电流就会⾃动断开的开关。

空⽓开关是低压配电⽹络和电⼒拖动系统中⾮常重要的⼀种电器,它集控制和多种保护功能于⼀⾝。

除能完成接触和分断电路外,还能对电路或电⽓设备引发⽣的短路、严重过载及⽋电压等进⾏保护,同时也可以⽤于不频繁地启动电动机。

当线路发⽣⼀般性过载时,过载电流虽不能使电磁脱扣器动作,但能使热元件产⽣⼀定热量,促使双⾦属⽚受热向上弯曲,推动杠杆使搭钩与锁扣脱开,将主触头分断,切断电源。

当线路发⽣短路或严重过载电流时,短路电流超过瞬时脱扣整定电流值,电磁脱扣器产⽣⾜够⼤的吸⼒,将衔铁吸合并撞击杠杆,使搭钩绕转轴座向上转动与锁扣脱开,锁扣在反⼒弹簧的作⽤下将三副主触头分断,切断电源。

开关的脱扣机构是⼀套连杆装置。

当主触点通过操作机构闭合后,就被锁钩锁在合闸的位置。

如果电路中发⽣故障,则有关的脱扣器将产⽣作⽤使脱扣机构中的锁钩脱开,于是主触点在释放弹簧的作⽤下迅速分断。

按照保护作⽤的不同,脱扣器可以分为过电流脱扣器及失压脱扣器等类型。

空⽓开关在电路中作接通、分断和承载额定⼯作电流,空⽓开关在线路和电动机发⽣过载、短路、⽋压、过压的情况下进⾏可靠的保护,空⽓开关是电⽓控制回路最常见元件,它有很⾼的分断能⼒和限流能⼒。

本⽂对空⽓开关过热保护、过流保护和⽋电压保护原理做详细说明。

空⽓开关过热保护空⽓开关过电流保护⽤到热胀冷缩的原理。

公式:U=I×R,即电压=电流×电阻U代表电压,单位:伏; I代表电流,单位:安培;R代表电阻,单位:欧姆。

它们之间的关系是U=I×R,当⽤电设备过多(相当于电阻并联),会导致路端电阻减少。

但电压是保持在AC220V或AC380V的稳定压,所以根据公式U=I×R 可知回路中电流变⼤,电流增⼤会产⽣⼤量的热,同时空⽓开关中的空⽓也开始膨胀。

稳压电源的欠压、过压保护设计

稳压电源的欠压、过压保护设计

稳压电源的欠压、过压保护设计摘要:稳压电源(stabilized voltage supply)是能为负载提供稳定的交流电或直流电的电子装置,包括交流稳压电源和直流稳压电源两大类。

当电网电压或负载出现瞬间波动时,稳压电源会以10-30ms的响应速度对电压幅值进行补偿,使其稳定在±2%以内。

本文以轨道车辆上电气系统稳压电源的应用为出发点,设计了具有过电压和欠电压保护,并带有延时控制的串联型稳压电源进行分析。

关键词:过压保护;欠压保护;稳压电源;延时控制1 概述稳压电源的输出电压相对稳定,它与人们的日常生活密切相连。

本次设计的稳压电源主要由整流滤波电路、串联稳压电路、过压保护电路及欠压保护电路四部分组成。

2 整流滤波电路2.1 单相桥式整流电路整流电路是利用二极管的单向导电性,将交流电变为单向脉动的直流电。

本次设计用四只二极管组成桥式整流电路。

为简化分析,二极管采用理想模型,即当二极管受到正向电压作用时,将其作为短路处理;当受到反向电压作用时,将其作为开路处理。

2.2 滤波电路经整流后的输出电压除了含有直流分量外,还含有较大的谐波分量,这些谐波分量总称为纹波。

为了滤去整流输出中的交流分量,减少纹波,以便得到较平滑的直流输出,必须采用滤波电路。

其中电容滤波电路主要利用电容两端电压不能突变的特性,使负载电压波形平滑,故电容应与负载并联。

3 串联稳压电路串联型稳压电路的工作原理是将输出电压的变化通过取样电路反映出来,并与基准电压进行比较,将比较结果放大后,送到调整管去控制输出电压,从而得到稳定的输出电压。

3.1 电路组成带有放大环节的串联型稳压电路的原路图(见图1),它由以下几部分组成:取样环节、基准电压、比较放大环节、调整环节。

3.1.1 取样环节。

由R4、R5、RP组成的分压电路构成,它将输出电压Uo分出一部分作为取样电压UF,送到比较放大环节。

3.1.2 基准电压。

由稳压二极管VD5和电阻R3构成的稳压电路组成,它为电路提供一个稳定的基准电压UZ,作为调整、比较的标准。

电源过压欠压保护电路报告

电源过压欠压保护电路报告

电源过压欠压保护电路报告一、引言二、电源过压保护电路原理电源过压保护电路通过监测电源输入电压的大小,当电压超过设定的阈值时,立即切断电源供应,以保护电子设备免受过高电压的损害。

其基本原理如下:1.电源输入电压通过一个电压分压器接入到比较器的正输入端,经过阈值设定电阻进行分压;2.比较器的负输入端通过一个可调电阻接地;3.当电源输入电压超过阈值设定电阻分压得到的电压时,比较器的输出端产生高电平信号,使继电器吸合,切断电源供应。

三、电源欠压保护电路原理电源欠压保护电路与过压保护电路类似,当电源输入电压低于设定的阈值时,立即切断电源供应,以避免电子设备在电压不足的情况下正常工作。

其基本原理如下:1.电源输入电压通过一个电压分压器接入到比较器的正输入端,经过阈值设定电阻进行分压;2.比较器的负输入端通过一个可调电阻接地;3.当电源输入电压低于阈值设定电阻分压得到的电压时,比较器的输出端产生高电平信号,使继电器吸合,切断电源供应。

四、电源过压欠压保护电路设计方法1.阈值设定:根据电子设备的工作电压范围,设定适当的过压和欠压阈值;2.电压分压比例:根据输入电压和比较器的工作电压范围确定分压比例;3.可调电阻选择:根据实际需求选择合适的可调电阻,以便在测试和调试时方便调整阈值;4.继电器选择:根据电子设备的功率需求选择合适的继电器,以确保能承受设备的工作电流;5.过压欠压保护时间:根据电子设备的特性和实际需求设置过压欠压保护时间,以避免误触发和过度保护。

五、电源过压欠压保护电路实际应用六、总结电源过压欠压保护电路是一种重要的保护电路,通过监测电源输入电压并切断电源供应,可以有效保护电子设备免受过高或过低电压的损害。

设计电源过压欠压保护电路需要根据实际需求确定阈值和其他参数,并选择合适的电阻和继电器。

在实际应用中,电源过压欠压保护电路广泛应用于各类电子设备中,提高了设备的可靠性和稳定性。

(完整版)欠压保护电路

(完整版)欠压保护电路

(完整版)欠压保护电路欠压保护电路初始上电:Qa1和Qa2导通情况,可能由于电源电压的不同而结果不同.若初始电压大于12.7V,则Qa1导通,Qa2关断,此时输出一直为高电平,若初始电压小于8。

6V,(图中的参数)由VDD*(R1+R2)/(R1+R2+R4+R5)=0.7V计算得出,则Qa1关断,Qa2导通,输出为低电平。

那么在过压保护电路中,就可以将12。

7V设置为电压上限,在欠压保护电路中,就可以将8.6V设置为电压下限,由使用决定.正常工作状态下(要么小于8。

6V,要么大于12。

7V),分析欠压电路情况:电路大于12.7V正常工作,若某种情况下,出现欠压,Qa2仍然关断,此时由于R1、R2、R4、R5组成的回路,使得Qa1一直导通,直到VDD 〈8。

6V时,不足以使得Qa1导通(Vbe〈0.7V),此时Qa2导通,输出低电平.也就是说,欠压保护的低压值为8。

6V。

当电压回升后,由于Qa2一直导通,所以R5右电压始终几乎为0,直到VDD大于12.7V时,依靠稳压管产生0.7V的电压,使得Qa1再次导通,Qa2关断,输出为高。

因此,在欠压应用下,可以实现的电压保护范围是 <8。

6V,开启范围是〉12.7V,同样,在过压保护中,可以实现的是正常工作〈8.6V开启,大于12.7V截止,逻辑与欠压下相反。

通过调节R5的阻值,可以改变保护的下限值,通过调节稳压管,可以改变保护的上限值。

上限值为:Vd1+0。

7V。

下限值为0。

7*(R1+R2+R4+R5)/(R1+R2)=V。

此电路中,迟滞窗口为8。

6V—12.7V.对上述电路的使用,可以将输出作为MOS管的控制信号,也可以经过光耦电平转换,输入到MCU进行电压检测判断。

开关电源常用的几种保护电路

开关电源常用的几种保护电路

开关电源常用的几种保护电路1 引言评价开关电源的质量指标应该是以安全性、可靠性为第一原则。

在电气技术指标满足正常使用要求的条件下,为使电源在恶劣环境及突发故障情况下安全可靠地工作,必须设计多种保护电路,比如防浪涌的软启动,防过压、欠压、过热、过流、短路、缺相等保护电路。

2 开关电源常用的几种保护电路2.1 防浪涌软启动电路开关电源的输入电路大都采用电容滤波型整流电路,在进线电源合闸瞬间,由于电容器上的初始电压为零,电容器充电瞬间会形成很大的浪涌电流,特别是大功率开关电源,采用容量较大的滤波电容器,使浪涌电流达100A以上。

在电源接通瞬间如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上闸。

上述现象均会造成开关电源无法正常工作,为此几乎所有的开关电源都设置了防止流涌电流的软启动电路,以保证电源正常而可靠运行。

图1是采用晶闸管V和限流电阻R1组成的防浪涌电流电路。

在电源接通瞬间,输入电压经整流桥(D1~D4)和限流电阻R1对电容器C充电,限制浪涌电流。

当电容器C充电到约80%额定电压时,逆变器正常工作。

经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R1,开关电源处于正常运行状态。

图1 采用晶闸管和限流电阻组成的软启动电路图2是采用继电器K1和限流电阻R1构成的防浪涌电流电路。

电源接通瞬间,输入电压经整流(D1~D4)和限流电阻R1对滤波电容器C1充电,防止接通瞬间的浪涌电流,同时辅助电源Vcc经电阻R2对并接于继电器K1线包的电容器C2充电,当C2上的电压达到继电器K1的动作电压时,K1动作,其触点K1.1闭合而旁路限流电阻R1,电源进入正常运行状态。

限流的延迟时间取决于时间常数(R2C2),通常选取为0.3~0.5s。

为了提高延迟时间的准确性及防止继电器动作抖动振荡,延迟电路可采用图3所示电路替代RC延迟电路。

图2 采用继电器K1和限流电阻构成的软启动电路图3 替代RC的延迟电路2.2 过压、欠压及过热保护电路进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。

IGBT驱动的欠压保护电路及过流保护电路

IGBT驱动的欠压保护电路及过流保护电路

IGBT驱动的欠压保护电路及过流保护电路作者:海飞乐技术时间:2017-06-19 14:321.欠压保护电路一般情况下,IGBT栅极电压V GE需要+15V才能使IGBT进入深饱和。

如果V GE低于10V时,IGBT将工作在线性区,并且很快因过热而被烧坏。

lGBT驱动要求电源电压为正电压不低于10V,负电压不低于-12V,一般欠压保护常用稳压管检测电源电压以保护IGBT。

欠压保护电路如图1所示,采用两只稳压值分别为12V和10V的稳压管Z1和Z2。

图1 欠压保护电路当正负电压均不欠压时,三极管Q6进入饱和导通,比较器LM193反向端电压被拉低,比较器正向电压由电阻分压得到,为5V左山。

所以比较器输出高电平,无欠压故障信号。

当正电压欠压时(低于10V),10V稳压管Z2不能被击穿,使得Q6截止,比较器反向端电压升高,比较器输出低电平故障信号。

当负电压欠压时(低于-12V),12V稳压管Z1阴极大于0,,使得Q6基极电压被拉低而截止,比较器也会输出电平故障信号。

2.过流保护电路通过对流保护检测及措施的研究,驱动电路采用如下过流保护电路:(1)采用饱和压降V CC(sat)检测法,来检测过流和短路情况,并且过流阈值可调,检测过流范围IGBT额定集电极电流1.2倍到10倍;(2)过流保护采用软关断的方法。

即检测到过流发生时,立即缓慢降低栅极电压,限制集电极电流继续上升,并软关断lGBT,经过固定延时后,再硬关断IGBT(此时软关断电路退出,保证故障情况下可靠关断IGBT)。

图2 过流保护电路图2所示为设计的过流保护电路。

其中RC_refA和PWM信号反向,与IGBT开通时,RC_refA变低,比较器正向端电压V ref由RCA端电压决定,其中通过改变RCA电阻和电容值,可以调节V ref大小以及参考时间长短(即电压下降时间),V ref可调范围为0V-15V。

比较器反向端通过连接检测二极管来检测IGBT饱和压降,IGBT关断时检测的V ce(sat)上升到稳压管Z3电压10V。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图4是仅用一个4比较器LM339及几个分立元器件构成的过压、欠压、过热保护电路。

取样电压可以直接从辅助控制电源整流滤波后取得,它反映输入电源电压的变化,比较器共用一个基准电压,N1.1为欠压比较器,N1.2为过压比较器,调整R1可以调节过、欠压的动作阈值。

N1.3为过热比较器,R T为负温度系数的热敏电阻,它与R7构成分压器,紧贴于功率开关器件IGBT的表面,温度升高时,R T阻值下降,适当选取R7的阻值,使N1.3在设定的温度阈值动作。

N1.4用于外部故障应急关机,当其正向端输入低电平时,比较器输出低电平封锁PWM驱动信号。

由于4个比较器的输出端是并联的,无论是过压、欠压、过热任何一种故障发生,比较器输出低电平,封锁驱动信号使电源停止工作,实现保护。

如将电路稍加变动,亦可使比较器输出高电平封锁驱动信号。

交流电源过压、欠压保护电路
一、实验目的
1、学习使用运算放大器构成比较器。

2、学习元件的选择及用万用表检测电子器件。

3、学会电路调试技术。

二、实验设备与器件
1、函数信号发生器
2、双踪示波器
3、交流毫伏表
4、数字万用表
5、元件自选
三、设计要求
a) 设计说明
某些用电设备对输入电压有一定的要求,电网工作正常时,用电设备接通电源,电网电压波动超过正负10%时,自动切断电源,停止工作。

b)设计要求
1)要求利用实验台和所学过的模拟电子技术的知识,实际该装置。

2)输入市电。

3)使用运算放大器构成比较器。

4)电源工作正常,绿色发光二极管亮,电源过压、欠压,红色发光二极管亮。

四、设计提示
实验的原理框图如图1所示。

市电经整流滤波后加入比较器电路,电网电压在正常范围时,执行电路将常开触点J闭合,用电设备通电;当电网电压波动超过正负10%时,触点J断开。

切断电源,用电设备停止工作。

图1 交流电源过压、欠压保护电路原理框图
利用实验装置似的交流变压输出的14、16、18V端点模拟电网电压的变化。


16V模拟电网电压工作在正常范围,用14V和18V模拟电网电压波动超出正负10%状态。

参考电路
参考电路如图2所示。

图中VO点电位与输入的电网电压有关,其整流滤波后的VO与两个直流参考电压VH(高)及VL(低)在两个比较器A、B中进行比较,比较器输出电压VA、VB经二极管D5、D6
组成的与门判别电路给晶体管放大电路,驱动执行电路工作,(图中右侧驱动电路部分模拟供电情况)。

图2 交流电源过压、欠压保护电路原理线路
●电路的调试
①首先将741运放调零。

②将整流滤波电路的K点接交流变压输出16V,调RP3使VO为
4V左右,代表正常电压范围。

③调RP2略高于VO值(不能高于K点接交流变压输出18V时
VO值)。

④调RP1略低于VO值(不能低于K点接交流变压输出14V时
VO值)。

⑤测试VA、VB为高电平输出。

⑥ K在14V时VB为低电位、VA不变。

⑦ K在18V时VA为低电位、VB不变。

⑧观察模拟供电情况,K点接交流变压输出16V时,绿灯亮,K
点接交流变压输出14V或18V时,红灯亮。

五、实验报告
1、独立设计、组装、调试交流电源过压、欠压保护电路。

2、写出实验的心得、体会。

相关文档
最新文档