A-1501H中文资料

合集下载

大学专业部分代码表(中英文)(已翻译并审核)

大学专业部分代码表(中英文)(已翻译并审核)

专业代码表
44 0301 45 0305 46 0306 47 0307 48 0310 49 0311 50 0313 51 0314 52 0315 53 0316 54 0321 55 0322 56 0323 57 0324 58 0325 59 0326 60 0327 61 0328 62 0401 63 0402 64 0405 65 0406 66 0408 67 0421 68 0422 69 0423 70 0424 71 0425 72 0426 73 0427 74 0454 75 0455 76 0456 77 0491 78 0501 79 0502 80 0503 81 0504 82 0505 83 0506 84 0507 85 0508 86 0509 87 0521 88 0522 89 0554 90 0571
0126 国际经济与贸易(专转本)
0127 物流管理(专转本)
0128 财务管理(本)(单)
0129 物流管理(3+2)
0130 财务管理(专转本)
0135 金融学(3+2)
0151 会计(五年一贯制)
0152 会计学(W专转本)
0153 财务管理(W专转本)
0165 会计(五年一贯制)
0180 H会计学(本)
0103 金融学(本)
0104 市场营销(本)
0105 财务管理(本)
0108 物流管理(本)
0110 金融工程(本)
0111 电子商务(本)
0112 审计学(本)
0121 会计学(本)(单)
0122 会计学(专转本)
0123 市场营销(本)(单)
0124 金融学(专转本)
0125 市场营销(专转本)

AM150中文资料

AM150中文资料

.220( 5.6 .181( ) 4.6)
.031(0.8) .028(0.7)
1.0(25.4) MIN
AM150
Maximum Recurrent Peak Reverse Voltage Maximum RMS Bridge input Voltage Maximum DC Blocking Voltage Maximum Average Forward Current TA=50°C Peak Forward Surge Current, 8.3ms singlehalf sine-wave superimposed on rated load I2t Rating for fusing ( t < 8.35 ms) Maximum Forward Voltage Drop per Bridge Element at 1.0A Maximum Reverse Current at Rated TJ= 25°C DC Blocking Voltage per element TJ=125°C Typical Junction capacitance per leg (Note 1) CJ Typical Thermal resistance per leg (Note 2) RθJA Typical Thermal resistance per leg (Note 2) RθJA Operating Temperature Range TJ Storage Temperature Range TA NOTES:
AM151 100 70 100
AM152 200 140 200
AM154 400 280 400 1.5 50.0 10.0 1.0 10.0 1.0 24.0 36.0 13.0

单片机符号表

单片机符号表

PC = progammer counter //程序计数器ACC = accumulate //累加器PSW = progammer status word //程序状态字SP = stack point //堆栈指针DPTR = data point register //数据指针寄存器IP = interrupt priority //中断优先级IE = interrupt enable // 中断使能TMOD = timer mode //定时器方式(定时器/计数器控制寄存器) ALE = alter (变更,可能是) 寄存器控制PSEN = progammer saving enable //程序存储器使能(选择外部程序存储器的意思)EA = enable all(允许所有中断)完整应该是enable all interrupt PROG = progamme (程序) SFR = special funtion register //特殊功能寄存器TCON = timer control //定时器控制PCON = power control //电源控制MSB = most significant bit//最高有效位LSB = last significant bit//最低有效位CY = carry //进位(标志)AC = assistant carry //辅助进位OV = overflow //溢出ORG = originally //起始来源DB = define byte //字节定义EQU = equal //等于DW = define word //字定义E = enable //使能OE = output enable //输出使能RD = read //读WR = write //写中断部分:INT0 = interrupt 0 //中断0INT1 = interrupt 1//中断1T0 = timer 0 //定时器0T1 = timer 1 //定时器1TF1 = timer1 flag //定时器1 标志(其实是定时器1中断标志位)IE1 = interrupt exterior //(外部中断请求,可能是)IT1 = interrupt touch //(外部中断触发方式,可能是)ES = enable serial //串行使能ET = enable timer //定时器使能EX = enable exterior //外部使能(中断)PX = priority exterior //外部中断优先级PT = priority timer //定时器优先级PS = priority serial //串口优先级助记符号的记忆方法表格列举法把44个指令助记符按功能分为五类,每类列表记忆。

H125A00 COAX H125 AL PVC CATV 产品说明书

H125A00 COAX H125 AL PVC CATV 产品说明书

Part Number: H125A00COAX H125 AL PVC CATVProduct DescriptionCOAX [1.0/4.8] H125 AL PVC CATVTechnical SpecificationsProduct OverviewPhysical Characteristics (Overall)ConductorInsulationOuter Shield MaterialOuter Jacket MaterialConstruction and DimensionsElectrical CharacteristicsConductor DCRCapacitanceImpedanceNominal Characteristic Impedance Nominal Characteristic Tolerance Regularity of Impedance75 Ohm 3 Ohm Min. 40 dBHigh Frequency (Nominal/Typical)Frequency [MHz]Nom. Insertion Loss5 MHz 1.8 dB/100m50 MHz 4.7 dB/100m100 MHz 6.5 dB/100m200 MHz9.1 dB/100m230 MHz9.8 dB/100m400 MHz12.9 dB/100m600 MHz16 dB/100m800 MHz18.6 dB/100m862 MHz19.3 dB/100m1000 MHz20.9 dB/100m1350 MHz24.6 dB/100m1750 MHz28.4 dB/100m2400 MHz34 dB/100m3000 MHz38.6 dB/100mDelayNominal Velocity of Propagation (VP) [%]Velocity of Propagation Tolerance81 % 2 %High FreqFrequency [MHz]Min. RL (Return Loss) [dB]5 - 30 MHz23 dB30 - 470 MHz23 dB470 - 1000 MHz20 dB1000 - 2000 MHz18 dB2000 - 3000 MHz16 dBHigh Freq Table Note:In each frequency band, 3 peak values up to 4 dB lower are allowed ScreeningFrequency [MHz]Min. Screening Attenuation100 - 1000 MHz75 dBScreening Class:BTransfer ImpedanceTransfer Impedance40 mOhm/mTransfer Impedance Class:CVoltageElement Non-UL Voltage Rating Voltage Test Dielectric2.0 kV DCVoltage test jacket3750 DC VTemperature RangeInstallation Temp Range:-5°C To +50°CStorage Temp Range:-40°C To +70°COperating Temp Range:-40°C To +70°CMechanical CharacteristicsMin Bend Radius (W/o Pulling35 mmStrength):Crush Resistance:Max. 1% (load of 700N) NAdhesion Dielectric:No shrinkback NStandardsCPR Euroclass:EcaCENELEC Compliance:EN 50117-2-1, EN 50117-2-4 and EN 50117-1RG Type:6/U TypeApplicable Environmental and Other ProgramsEU RoHS Compliance Date1998-01-01(yyyy-mm-dd):Part NumberVariantsItem #ColorH125A00.01100BlackH125A00.01500BlackH125A00.015000BlackH125A00.01B100BlackH125A00.01U250BlackH125A00.02B100BrownH125A00.03B100GrayH125A00.00100WhiteH125A00.001000WhiteH125A00.00200WhiteH125A00.00250WhiteH125A00.00500WhiteH125A00.005000WhiteH125A00.009999WhiteH125A00.00B100WhiteH125A00.00U150WhiteH125A00.00U250WhiteH125A00.099999WhiteH125A00.09B9999WhiteH125A00.105000WhiteHistoryRevision Number:9© 2019 Belden, IncAll Rights Reserved.Although Belden makes every reasonable effort to ensure their accuracy at the time of this publication, information and specifications described here in are subject to error or omission and to change without notice, and the listing of such information and specifications does not ensure product availability.Belden provides the information and specifications herein on an "ASIS" basis, with no representations or warranties, whether express, statutory or implied. In no event will Belden be liable for any damages (including consequential, indirect, incidental, special, punitive, or exemplary damages) whatsoever, even if Belden has been advised of the possibility of such damages, whether in an action under contract, negligence or any other theory, arising out of or in connection with the use, or inability to use, the information or specifications described herein.All sales of Belden products are subject to Belden's standard terms and conditions of sale.Belden believes this product to be in compliance with all applicable environmental programs as listed in the data sheet. The information provided is correct to the best of Belden's knowledge, information and belief at the date of its publication. This information is designed only as a general guide for the safe handling, storage, and any other operation of the product itself or the one that it becomes a part of. The Product Disclosure is not to be considered a warranty or quality specification. Regulatory information is for guidance purposes only. Product users are responsible for determining the applicability of legislation and regulations based on their individual usage of the product.。

EN549中文版

EN549中文版

英国标准规范于燃气器具、设备密封件和膜片用橡胶材料欧洲标准EN549 :1994年以来的英国标准未经BSI允许不得拷贝此英国标准责任委员会此英国标准委托GSE/22技术委员会进行编辑,燃气具的安全与控制如下所诉:控制器制造商协会(TAMCA(BEAMA有限公司英国电器制造厂商协会));英国燃气公司(英国)贸工部(消费者安全协会,加利福利亚分部)液化石油气协会英国燃气工业协会修订后出版发行委员会指导编辑,标准委员会权威发行,于1995年5月15日实施。

此后BSI条款涉及工作标准:GSE/22 标准委员会92/82881 DC 征求意见稿前言此英国标准委托GSE/22技术委员会进行编辑,EN 549:1994为英文版,燃气器具、设备密封件和膜片用橡胶材料,由欧洲标准化委员会(CEN)出版。

此标准替代BS 6505。

EN549是由英国积极参加国际讨论后所出版。

互相参照出版物对应英国标准BS(英国国家标准)903 橡胶物性测试ISO48 A26. 硬度确定ISO188 A19. 耐热性与加速老化试验ISO247 BS 7164 原材料与硫化橡胶的化学测试5. 灰分含量的确定方法BS 903 橡胶物性ISO471 A35. 试验片的测试时间、温度、湿度的调节ISO815 A6. 压缩变形的环境、高低温的确定方法ISO1400 A26. 硬度确定ISO1407 BS 1673 橡胶原材料及未加硫复合橡胶的测试方法2.橡胶原材料的化学分析BS 903 橡胶物性测试ISO1431-1 A43. 抗臭氧开裂性确定方法(静态应变测试)ISO1817:1985 A16.1987 液体中效果确定BS 903 橡胶物性测试ISO4648 A38. 用于测试的试验片及产品的尺寸确定方法ISO4650 BS 4181 橡胶红外光谱鉴定1.碳化氢、氯丁二烯、丁腈及氯磺化聚乙烯橡胶的确定方法遵守英国标准,本身并不赋予法律义务的豁免权。

HES150ZG-A中文资料

HES150ZG-A中文资料

1High Density - Board Mounted Power DivisionPowering Communications and Technology5055606570758085909512345678910X10 = LOA D %E F F I C I E N C Y %HES033ZE HES075ZG HES100ZETECHNICAL SPECIFICATIONSHES single output DC/DC converters provide up to 150 Watts of output power in an industry standard, half-brick package and footprint. These units feature ultra-high efficiency, Class A conducted noise specs,and fixed switching frequency. The HES is designed with open-frame packaging, along with planar magnetics to provide maximum useable power with minimal thermal constraints. The HES is especially suited to harsh telecom, networking, and industrial applications, and is fully compatible with production board washing processes.•High Efficiency•Industry Standard Half-Brick•Open-Frame Packaging •100°C Baseplate Operation•Water Washable •“True-Trim” Option •1500V Isolation•Positive or Negative LogicDESCRIPTIONFEATURESHES SERIES 150 WATTTurn-On Time10 msRemote ShutdownPositive Or Negative LogicRemote Shutdown ReferenceV in NegativeSwitching Frequency 2.5 & 3.3, 5V Model 200 kHz, 300 kHz (Respectively)IsolationInput - Output 1500 VDC Input - Case 1050 VDC Output - Case500 VDC Temperature Coefficient 0.02%/°CCase Temperature Operating Range -40 To +100°C Storage Range-40 To +125°C Thermal Shutdown Range 105 To 115°C Vibration, 3 Axes, 5 Min Each 5 g, 10 - 55 Hz MTBF †(Bellcore Tr-nwt-000332) 1.8 X 106hrsSafetyUL 1950, Csa 22.2-950, En60950Weight (Approx.)1.4 oz†MTBF predictions may vary slightly from model to model.Specifications typically at 25°C, normal line, and full load,unless otherwise stated.Soldering Conditions: I/O pins, 260°C, ten seconds; fully compatible with commercial wave-soldering equipment.Safety: Agency approvals may vary from model to model.Please consult factory for specific model information.Units are water-washable and fully compatible with commercial spray or immersion post wave-solder washing equipment.Setpoint Accuracy ±1%Line Regulation V in Min. - V in Max., I out Rated 0.2% V out Load Regulation I out Min. - Iout Max., V in Nom.0.2% V out Remote Sense Headroom 0.5 VDC Minimum Output Current 10 %Dynamic Regulation, Loadstep 25% I out Pk Deviation 4% V out Settling Time 500 ms Voltage Trim Range ±10%Short Circuit / Overcurrent Protection Shutdown / Hiccup Current Limit Threshold Range, % of I out Rated 110 - 130%OVP Trip Range 120 - 140% V out Nom.OVP Type Self RecoveringVoltage Range24 VDC Nominal 18 - 36 VDC 48 VDC Nominal 36 - 72 VDCReflected Ripple50 mA Input Reverse Voltage ProtectionShunt Diode Input Undervoltage Lockout / Hysteresis<34V/1V Nom.OutputInputEfficiency vs. Load (48V Input)NotesGeneral2H i g h D e n s i t y - B o a r d M o u n t e d P o w e r D i v i s i o nPowering Communications and TechnologyThermal ImpedanceNatural Convection 15.4 °C/W 100 LFM 12.2 °C/W 200 LFM 9.3 °C/W 300 LFM 7.4 °C/W 400 LFM6.4 °C/WTolerancesNote:Thermal impedance data isdependent on many environmental factors. The exact thermalperformance should be validated for specific application.HES SERIES 150 WATT1-V in 2Case 3On/Off 4+V in 5-V out 6-Sense 7Trim 8+Sense 9+V outInches: (Millimeters).XX ± 0.020 .X ± 0.5.XXX ± 0.010 .XX ± 0.25 Pin:± 0.002 ± 0.05(Dimensions as listed unless otherwise specified.)PinFunctionMODELS - (See the last page of Section for options.)MOUNTING INSERTS M3X.5THROUGH 4PL1.400"(35.6mm)1.000"(25.4mm)0.700"(17.8mm)0.400"(10.2mm)-0.50"(-12.7mm)2.40"(61.0mm)2.28"(57.9mm)BOTTOM VIEW1234567890.18"DIA 0.080"DIA 0.040"0.025"REF.0.50"(12.7mm)(4.6mm)(1.0mm)(2.0mm)(0.6mm)1.900"(48.3mm)-0.19"(-4.8mm)2PL7PL MECHANICAL DRAWINGn i V )s t l o V (e g n a R n i V )s t l o V (*.x a M n i I )s p m A (t u o V )s t l o V (d e t a R t u o I )s p m A (&e l p p i R e s i o N )V m (k P -k P y c n e i c i f f E **.p y T l e d o M 424284848484848484848484848463-8163-8127-6327-6327-6327-6327-6327-6327-6327-6327-6327-6327-6327-635.54.731.126.133.196.124.277.162.232.306.233.327.402.25.23.33.355.23.355.23.355.23.351.20303010151515102020203030303051001001001001001001001001001001001001001%18%38%78%88%68%88%98%68%58%88%28%38%68%08A -D Y 570S E H T A -E Y 001S E H A -E Z 330S E H A -G Z 050S E H A -D Z 730S E H A -E Z 050S E H A -G Z 570S E H A -D Z 050S E H A -E Z 660S E H A -G Z 001S E H A -D Z 570S E H A -E Z 001S E H A -G Z 051S E H A-C Z 360S E H .r e w o p t u p t u o d e t a r m u m i x a m ,e g a t l o v t u p n i m u m i n i m t a t n e r r u c t u p n i m u m i x a M *.t u p t u o d e t a r ,n i V l a n i m o n t A **。

LH1521AAC中文资料

LH1521AAC中文资料

LH1521BAC/ BACTR/ BBDocument Number 83820Rev. 1.2, 01-Dec-05Vishay Semiconductors1Dual 1 Form B Solid State RelayFeatures•Dual Channel (LH1501)•Isolation test Voltage 3750 V RMS •Typical R ON 20 Ω •Load Voltage 350 V •Load Current 150 mA •High Surge Capability•Clean Bounce Free Switching •Low Power Consumption•SMD Lead Available on Tape and Reel •Lead (Pb)-free component•Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/ECAgency Approvals•UL1577, File No. E52744 System Code H or J, Double Protection•CSA - Certification 093751Applications•General Telecom Switching - On/off Hook Control - Ring Delay - Dial Pulse - Ground Start- Ground Fault Protection •Instrumentation •Industrial ControlsDescriptionThe LH1521 dual 1 Form B relays are SPST normally closed switches that can replace electromechanical relays in many applications. The relays are con-structed as a multi chip hybrid device. Actuation con-trol is via an Infrared LED. The output switch is a combination of a photodiode array with MOSFET switches and control circuity.Order InformationPartRemarksLH1521BAC Tubes, SMD-8LH1521BACTR Tape and Reel, SMD-8LH1521BBTubes, DIP-8 2Document Number 83820Rev. 1.2, 01-Dec-05LH1521BAC/ BACTR/ BBVishay SemiconductorsAbsolute Maximum Ratings, T amb = 25°CStresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute Maximum Ratings for extended periods of time can adversely affect reliability.SSR1 Breakdown occurs between the output pins external to the package.Electrical Characteristics, T amb = 25°CMinimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluations. Typical values are for information only and are not part of the testing requirements.InputOutputParameterTest condition Symbol Value Unit Ambient temperature range T amb - 40 to + 85°C Storage temperature range T stg- 40 to + 125°C Pin soldering temperature t = 10 s maxT sld 260°C Input/output isolation voltage t = 1.0 s, I ISO = 10 µA maxV ISO3750V RMS Pole-to-pole isolation voltage (S1 to S2)1) (dry air, dust free, atsea level)1600VLED continuous forward current I F50mA LED reverse voltage I R ≤ 10 µA V R 5.0V DC or peak AC load voltage I L ≤ 50 µAV L 350V Continuous DC load current - one pole operatingI L 150mA Continuous DC load current - two poles operatingI L110mA Peak load current (single shot)t = 100 msI P 400mA Output power dissipation (continuous)P diss600mWParameterTest conditionSymbol Min Typ.MaxUnit LED forward current, switch turn-on I L = ± 150 mA, t = 10 ms I Fon 0.20.9mA LED forward current, switch turn-off V L = ± 300 V I Foff 1.0 2.0mA LED forward voltageI F = 10 mAV F1.15 1.221.45VParameterTest conditionSymbol MinTyp.Max Unit ON-resistance I F = 0 mA, I L = 50 mA R ON 2025ΩOFF-resistanceI F = 5.0 mA, V L = ± 100 V R OFF0.1 1.4G ΩOff-state leakage current I F = 5.0 mA, V L = ± 350 V 0.08 1.0µA Output capacitanceI F = 5.0 mA, V L = 50 V50pFLH1521BAC/ BACTR/ BBDocument Number 83820Rev. 1.2, 01-Dec-05Vishay Semiconductors3TransferTypical Characteristics (Tamb = 25 °C unless otherwise specified)Package Dimensions in Inches (mm)ParameterT est conditionSymbol MinT yp.MaxUnit Capacitance (input-output)V ISO = 1.0 VC IO 3.0pF T urn-on time I F = 5.0 mA, I L = 50 mA t on 2.0 3.0ms T urn-off timeIF = 5.0 mA, I L = 50 mAt off1.03.0msFigure 1. Recommended Operating Conditionsilh1521bb_009005015012030-40-20020406080L o a d C u r r e n t (m A )Ambient Temperature (°C) 4Document Number 83820Rev. 1.2, 01-Dec-05LH1521BAC/ BACTR/ BB Vishay SemiconductorsPackage Dimensions in Inches (mm)LH1521BAC/ BACTR/ BBDocument Number 83820Rev. 1.2, 01-Dec-05Vishay Semiconductors5Ozone Depleting Substances Policy StatementIt is the policy of Vishay Semiconductor GmbH to1.Meet all present and future national and international statutory requirements.2.Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.1.Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively2.Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA3.Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.We reserve the right to make changes to improve technical designand may do so without further notice.Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personaldamage, injury or death associated with such unintended or unauthorized use.Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, GermanyDocument Number: 91000Revision: 18-Jul-081DisclaimerLegal Disclaimer NoticeVishayAll product specifications and data are subject to change without notice.Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.Product names and markings noted herein may be trademarks of their respective owners.元器件交易网。

PIC12F1501T-IMF;PIC12LF1501T-IMF;PIC12F1501-EMF;PIC12LF1501-EMF;中文规格书,Datasheet资料

PIC12F1501T-IMF;PIC12LF1501T-IMF;PIC12F1501-EMF;PIC12LF1501-EMF;中文规格书,Datasheet资料

Trademarks The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, , dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, , PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2011, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. ISBN: 978-1-61341-765-2

ae1501规格书

ae1501规格书

PWM降压型DC/DC开关调节器◆主要特征◆ 概述– 3.3V,5V两种固定输出电压型–内置固定频率为150kHz的振荡器–过热保护电路和限流保护电路–输入电压最高到36V–只需4个外围器件–可提供3A负载电流–待机电流85uA–高效率◆ 应用领域- 简单的高效降压调节器–LCD电压调节器◆ 管脚设置5-Lead TO-263(S)AE1501系列是降压型开关稳压器,具有优良的电压调整率和负载调整率。

能够提供3A的负载电流。

有3.3V、5V两种固定输出电压型。

外围元件少,应用简单,内置频率补偿电路和固定频率振荡器。

开关频率为150KHz,可以使用小尺寸的滤波元件。

在额定输入电压和输出负载的条件下,输出电压容差为±5%,振荡频率的容差为±15%。

待机电流为85μA(典型值),内置两级过流保护电路和过热保护电路。

◆功能框图◆ 最大绝对额定值◆ 电气特性除非特别说明,V IN=12V, I LOAD=500mA。

◆ 电气特性(续)==注1:最大绝对额定值给器件的正常工作范围做了限制,超过这些条件时器件有可能损坏。

注2:人体放电模式相当于一个100pF 的电容通过一个1.5KΩ的电阻向每个管脚放电。

注3:典型数据是指在工作在25℃下,代表最常见的情况。

注4:所有的范围保证在室温和极限温度下,所有室温下的范围都是经过100%测试得出的,所有的极限温度下的范围都可以通过使用相关的标准统计质量控制方法来加以保证。

注5:外部元件为续流二极管、储能电感、输入和输出端电容,会影响开关调节器的系统性能,AE1501用在如图1所示测试电路中时,其系统性能如电气特性中的系统参数所示。

注6:当第二级电流限制起作用时,开关频率会降低,降低值决定于过流程度。

注7:输出脚不连接二极管、电感和电容。

注8:把反馈端直接连接到0V 电压,强制输出开关管常开启。

注9:把连接在调整器输出脚的反馈端断开,V OUT =3.3V、5V 的AE1501反馈端连接12V 电压,强制输出开关管常关闭。

国内外材料对照表

国内外材料对照表

S18-0-1 X12CrNiS18.8 X5CrNi18.9 X5CrNiMo18.10 X2CrNiMo18.10 X10CrNiTi18.9 X8Cr17 X12CrMos17
1.3355 1.4305 1.4301 1.4401 1.4404 1.4541 1.4016 1.4104
T12001 S30300 S30400 S31600 S31603 S32100 S43000 S43020 S42020 S44002
G12144 G51400 G41350 G41400 G15660 G52986 T72301 T72301 T30403 T30402 T31502 T31501
S250Pb 530A40 708A37 080A67 42C4 15CD4.05 34CD4
SUJ2 SK6,SK5 SK4,SK3 SKD1 SKD11
OCr18Ni10Ti 1Cr17 2Cr13 0Cr17Ni4Cu4Nb 中国(YS)
法国(NF) TG2 TU2
瑞典(Sweden) H20 H20,SH
38 39
硬质合金(hard alloy)
YG8 YW2
序号(Item)种类(Description)
1 2 3 4 5 6 7 8 9 10 11 有 色 金 属 (col oure d meta l) 黄铜(brass) 纯铜(copper)
材料(material)
英文名称(English Name)
polyether etherketone polytetrafluoroethylene polyformaldehyde polyamide acrylonitrile-butadienestyrene copolymer polycarbonate polyethylene poly(vinyl chloride) polysulfone polyurethane fabric phenolic laminated epoxy polyester glass fiber plank

A-15GA产品规格书

A-15GA产品规格书

● 产品特性-25~+70℃工作温度(具体查看降额曲线) 短路/过载/过压保护功能100%满载老化 效率高、高可靠性 2年质保期●应用领域:工业控制系统、机械与电气设备、电子仪器仪表、工业自动化、家用电器等● 参考标准EN55024\EN61000-4-2,3,4,5,6,8,11\GB17625.1\EN61000-3-2,-3\EN55022\GB4943\UL1012● 产品描述A-15GA 系列是一款15W 单路恒压输出的工业控制电源,电压输入范围176~264VAC ,输出电压有5V 、12V 、24V 等,可适用于工业控制系统、机械与电气设备、电子仪器仪表、工业自动化、家用电器等多种工业领域。

超高的效率,紧凑的外壳设计,良好的散热,保障了本系列产品可长期稳定的工作。

● 产品命名电气参数输出负载与温度曲线 静态特性曲线机构尺寸●安装方式●产品安装、使用说明:1、安装时,请按照安装方式说明进行安装。

2、在安装完毕通电试运行之前,请检查和校对各接线端子上的连线,确信输入和输出、交流和直流、正极和负极、电压值和电流值等正确,杜绝接反接错现象的发生,避免损坏电源和用户设备。

3、通电前请使用万用表测量火线、零线和接地线是否短路,输出端是否短路;通电时最好空载启动。

4、使用时请勿超过电源标称值,以免影响产品的可靠性。

如需更改电源的输出参数,请客户在使用电源前向本司技术部门咨询,以保证使用效果和可靠性。

5、为保证使用的安全性和减小干扰,请确保接地端可靠接地(接地线大于AWG18#)。

6、电源如出现故障,请勿擅自对其维修,请尽快与本司客户服务部联系,客服专线:86-519-85215050。

●运输、储存:1、运输:本包装适用与汽车、船、飞机、火车等运输,运输过程中应防雨,文明装卸。

2、储存:产品未使用时应放在包装箱里,储存环境温度和相对湿度应符合该产品的要求,仓库内不应有腐蚀性气体或产品,并且无强烈的机械振动、冲击和强磁场作用。

TD1501H

TD1501H

General DescriptionThe TD1501H is a series of easy to use fixed and adjustable step-down (buck) switch-mode voltage regulators. These devices are available in fixed output voltage of 3.3V, 5V, and an adjustable output version. Both versions are capable of driving a 3A load with excellent line and load regulation.Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation, and a fixed-frequency oscillator. The output voltage is guaranteed to ±3% tolerance under specified input voltage and output load conditions. Theoscillator frequency is guaranteed to ±15%. External shutdown is included, featuring typically 80 µA standby current. Self protection features include a two stagefrequency reducing current limit for the output switch andan over temperature shutdown for complete protectionunder fault conditions.The TD1501H is available in TO-220B-5L TO220-5L andTO-263-5L packages.Featuresz 3.3V, 5V and adjustable output versions z Output adjustable from 1.23v to 54Vz Fixed 150KHz frequency internal oscillator z Guaranteed 3A output load current z Input voltage range up to 60V z Low power standby mode, I Q typically 80 µAz TTL shutdown capability z Excellent line and load regulation z Requires only 4 external components z High efficiency z Thermal shutdown and current limit protection z Available in TO-220B/TO220 and TO-263 packages Applications z Simple High-efficiency step-down regulatorz On-card switching regulatorsz Positive to negative converterz LCD monitor and LCD TVz DVD recorder and PDP TVz Battery chargerz Step-down to 3.3V for microprocessorsPackage TypesFigure 1. Package Types of TD1501HPin ConfigurationsFigure 2 Pin Configuration of TD1501H (Top View)Pin DescriptionPin Number Pin Name Description1 Vin Input supply voltage2 Output Switching output3 GND Ground4 FB Output voltage feedback5 ON/OFFON/OFF shutdownActive is “Low” or floatingOrdering InformationTD1501H □ □Circuit Type Output Voltage:33:3.3V50:5VPackage ADJ:ADJ T:TO220B-5LL:TO220-5LS:TO263-5L Function BlockFigure 3 Function Block Diagram of TD1501HAbsolute Maximum RatingsNote1: Stresses greater than those listed under Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the deviceat these or any other conditions above those indicated in the operation is not implied. Exposure to absolute maximum rating conditions for extended periods may affectreliability.UnitValueParameter SymbolInput Voltage V IN-0.3 to 60 VFeedback Pin Voltage V FB-0.3 to Vin+0.3 VON/OFF Pin Voltage V EN-0.3 to Vin+0.3 VOutput Pin Voltage V SW-0.3 to Vin+0.3 VmWlimitedPower Dissipation P D InternallyºCOperating Junction Temperature T J 150Storage Temperature T STG-65 to 150 ºCLead Temperature (Soldering, 10 sec) T LEAD 260 ºCESD (HBM) 2000 VLevel3 MSLThermal Resistance-Junction to Ambient RθJA 23 ºC / WThermal Resistance-Junction to Case RθJC 3.5 ºC / WRecommended Operating ConditionsParameter Symbol Min. Max. UnitInput Voltage V IN 3.6 60 VºCOperating Junction Temperature T J -40 125ºCOperating Ambient Temperature T A -40 85Electrical CharacteristicsSpecifications with boldface type are for full operationg temperature range, the other type are for T J=25O C.Note1: Thermal resistance with copper area of approximately 3 in2.Parameters SymbolTestConditionMin.Typ.Max.UnitFeedback bias current I b Adjustable only,V FB=1.3V1050/100nAQuiescent current I Q V FB=12V force driveroff5 10 mAStandby quiescent current I STBY ON/OFF=5V,V IN=36V 80200/250uAOscillator frequency F OSC127150173KHz Saturation voltage V SAT I OUT=3A1.21.4/1.5V Current Limit I CL Peak Current (V FB=0V) 4.55.5/6.5 AOutput leakage current I LI LOutput=0V (V FB=12V) 50 uAOutput leakage current Output=-1V (V IN=36V) 2 30 mAON/OFF pin logic input Threshold voltage V ILV IHLow (Regulator ON) 1.3 0.6 VON/OFF pin input current I HI LHigh (Regulator OFF) 2.0 1.3 VV LOGIC=2.5V(RegulatorOFF)5 15 uAV LOGIC=0.5V(RegulatorON)0.02 5 uAThermal Resistance Junction to Case θJCTO220B-5L/TO220-5LTO263-5L2.53.5O C/WThermal ResistanceJunction to Ambient (Note1) θJATO220B-5L/TO220-5LTO263-5L2823O C/WElectrical Characteristics(Cont.)Specifications with boldface type are for full operationg temperature range, the other type are for T J=25O C.Note1: Thermal resistance with copper area of approximately 3 in2.Parameters SymbolTestConditionMin.Typ.Max.UnitTD1501H ADJ Vout: OutputVoltage11V≤V IN≤60V, 0.2A≤I LOAD≤3A, V OUT for 9V1.193/1.1801.231.267/1.280V η: EfficiencyV IN=12V,V OUT=9V,I LOAD=3A88 %TD1501H 3.3V Vout: OutputVoltage4.75V≤V IN≤60V, 0.2A≤I LOAD≤3A3.168/3.1353.33.432/3.465V η: Efficiency V IN=12V, I LOAD=3A 76 %TD1501H 5V Vout: OutputVoltage7V≤V IN≤60V, 0.2A≤I LOAD≤3A4.800/4.7505.05.200/5.250V η: Efficiency V IN=12V, I LOAD=3A 83 %Typical Performance CharacteristicsFigure 4. Output Voltage vs. Temperature Figure 5. Switching Frequency vs. TemperatureFigure 6. Output Saturation CharacteristicsFigure 7. Quiescent Current vs. TemperatureTypical Performance Characteristics(Cont.)Figure 8. ON/OFF Pin Voltage Figure 9. ON/OFF Pin Sink CurrentFigure 10. Output Saturation CharacteristicsTypical Application CircuitFigure 11. Typical Application of TD1501H For 3.3VInput Voltage Inductor (L1)Output Capacitor (Cout)Through Hole Electrolytic Surface Mount Tantalum6V ~ 18V 47uh 470uf/25V 330uf/6.3V 6V ~ 60V 68uh 560uf/25V 330uf/6.3VTable 1. TD1501H Series Buck Regulator Design Procedure For 3.3VFigure 12. Typical Application of TD1501H For 5VInput Voltage Inductor (L1)Output Capacitor (Cout)Through Hole Electrolytic Surface Mount Tantalum8V ~ 18V 33uh 330uf/25V 220uf/10V 8V ~ 60V 47uh 470uf/25V 330uf/10VTable 2. TD1501H Series Buck Regulator Design Procedure For 5VFigure 13. Typical Application of TD1501H For ADJNote:In PCB layout. Reserved an area for CFFVout R1 R2 Cf (Operational) 3.3V 1.6K 2.7K 33nf5V 3.6K 11K 10nf9V 6.8K 43K 1.5nf12V 1.5K 13K 1nfTable 3. Vout VS. R1, R2, Cf Select TableOutput VoltageInputVoltageInductor (L1)Output Capacitor (Cout)Through Hole Electrolytic3.3V 6V ~ 18V 47uh 470uf/25V6V ~45V 68uh 560uf/25V5V 8V ~ 18V 33uh 330uf/25V 8V ~45V 47uh 470uf/25V9V 12V~18V 47uh 330uf/25V 12V ~45V 47uh 470uf/25V12V 15V ~ 18V 47uh 220uf/25V 15V ~45V 47uh 330uf/25VTable 4. Typical Application Buck Regulator Design ProcedureFunction DescriptionPin Functions+V INThis is the positive input supply for the IC switching regulator. A suitable input bypass capacitor must be present at this pin to minimize voltage transients and to supply the switching currents needed by the regulator GroundCircuit ground.OutputInternal switch. The voltage at this pin switches between (+V IN – V SAT) and approximately – 0.5V, with a duty cycle of approximately V OUT / V IN. To minimize coupling to sensitive circuitry, the PC board copper area connected to this pin should be kept a minimum. FeedbackSenses the regulated output voltage to complete the feedback loop.ON/OFFAllows the switching regulator circuit to be shutdown using logic level signals thus dropping the total input supply current to approximately 80uA. Pulling this pin below a threshold voltage of approximately 1.3V turns the regulator on, and pulling this pin above 1.3V (up to a maximum of 25V) shuts the regulator down. If this shutdown feature is not needed, the ON /OFF pin can be wired to the ground pin or it can be left open, in either case the regulator will be in the ON condition.Thermal ConsiderationsThe TD1501H is available in two packages, a 5-pin TO-220B/TO-220 and a 5-pin surface mount TO-263. The TO-220B/TO-220 package needs a heat sink under most conditions. The size of the heatsink depends on the input voltage, the output voltage, the load current and the ambient temperature. The TD1501H junction temperature rises above ambient temperature for a 3A load and different input and output voltages. The data for these curves was taken with the TD1501H (TO-220B/TO-220 package) operating as a buck switching regulator in an ambient temperature of 25o C (still air). These temperature rise numbers are all approximate and there are many factors that can affect these temperatures. Higher ambient temperatures require more heat sinking.The TO-263 surface mount package tab is designed to be soldered to the copper on a printed circuit board. The copper and the board are the heat sink for this package and the other heat producing components, such as the catch diode and inductor. The PC board copper area that the package is soldered to should be at least 0.4 in2, and ideally should have 2 or more square inches of 2 oz. Additional copper area improves the thermal characteristics, but with copper areas greater than approximately 6 in2, only small improvements in heat dissipation are realized. If further thermal improvements are needed, double sided, multilayer PC board with large copper areas and/or airflow are recommended.The TD1501H (TO-263 package) junction temperature rise above ambient temperature with a 3A load for various input and output voltages. This data was taken with the circuit operating as a buck switching regulator with all components mounted on a PC board to simulate the junction temperature under actual operating conditions. This curve can be used for a quick check for the approximate junction temperature for various conditions, but be aware that there are many factors that can affect the junction temperature. When load currents higher than 3A are used, double sided or multilayer PC boards with large copper areas and/or airflow might be needed, especially for high ambient temperatures and high output voltages.For the best thermal performance, wide copper traces and generous amounts of printed circuit board copper should be used in the board layout. (Once exception toFunction Description(Cont.)this is the output (switch) pin, which should not have large areas of copper.) Large areas of copper provide the best transfer of heat (lower thermal resistance) to the surrounding air, and moving air lowers the thermal resistance even further.Setting the Output VoltageThe output voltage is set using a resistive voltage divider from the output voltage to FB(TD1501H-ADJ) The voltage divider divides the output voltage down by the ratio:VFB = VOUT * R1 / (R1 + R2)Thus the output voltage is:VOUT = 1.235 * (R1 + R2) / R1R1 can be as high as 100KΩ, but a typical value is 10KΩ. Using that value, R2 is determined by:R2 ~= 8.18 * (VOUT – 1.235) (KΩ)For example, for a 3.3V output voltage, R1 is 10KΩ, and R2is 17KΩ.InductorThe inductor is required to supply constant current to the output load while being driven by the switched input voltage. A larger value inductor results in less ripple current that in turn results in lower output ripple voltage. However, the larger value inductor has a larger physical size, higher series resistance, and/or lower saturation current. Choose an inductor that does not saturate under the worst-case load conditions. A good rule for determining the inductance is to allow the peak-to-peak ripple current in the inductor to be approximately 30% of the maximum load current. Also, make sure that the peak inductor current (the load current plus half the peak to peak inductor ripple current) is below the TBDA minimum current limit. The inductance value can be calculated by the equation: L = (VOUT) * (VIN-VOUT) / VIN * f * ∆IWhere VOUT is the output voltage, VIN is the input voltage, f is the switching frequency, and ∆I is thepeak-to-peak inductor ripple current.Input CapacitorThe input current to the step-down converter is discontinuous, and so a capacitor is required to supply the AC current to the step-down converter while maintaining the DC input voltage. A low ESR capacitor is required to keep the noise at the IC to a minimum. Ceramic capacitors are preferred, but tantalum orlow-ESR electrolytic capacitors may also suffice.The input capacitor value should be greater than 10μF. The capacitor can be electrolytic, tantalum or ceramic. However since it absorbs the input switching current it requires an adequate ripple current rating. Its RMS current rating should be greater than approximately1/2 of the DC load current.For insuring stable operation should be placed as close to the IC as possible. Alternately a smaller high quality ceramic 0.1μF capacitor may be placed closer to the IC and a larger capacitor placed further away. If using this technique, it is recommended that the larger capacitor be a tantalum or electrolytic type. All ceramic capacitors should be places close to the TD1501H.Output CapacitorThe output capacitor is required to maintain the DC output voltage. Low ESR capacitors are preferred to keep the output voltage ripple low. The characteristics of the output capacitor also affect the stability of the regulation control system. Ceramic, tantalum, or low ESR electrolytic capacitors are recommended. In the case of ceramic capacitors, the impedance at the switching frequency is dominated by the capacitance,Function Description(Cont.)and so the output voltage ripple is mostlyindependent of the ESR. The output voltage ripple is estimated to be:VRIPPLE ~= 1.4 * VIN * (fLC/fSW)^2Where VRIPPLE is the output ripple voltage, VIN is the input voltage, fLC is the resonantfrequency of the LC filter, fSW is the switching frequency. In the case of tanatalum or low- ESR electrolytic capacitors, the ESRdominates the impedance at the switching frequency, and so the output ripple is calculated as:VRIPPLE ~= ∆I * RESRWhere VRIPPLE is the output voltage ripple, ∆I is the inductor ripple current, and RESR is the equivalent series resistance of the output capacitors.Output Rectifier DiodeThe output rectifier diode supplies the current to the inductor when the high-side switch is off. To reduce losses due to the diode forward voltage and recovery times, use a Schottky rectifier.Table 1 provides the Schottky rectifier part numbers based on the maximum input voltage and current rating.Choose a rectifier who’s maximum reverse voltage rating is greater than the maximum input voltage, and who’scurrent rating is greater than the maximum load current. Feedforward Capacitor (CFF) For output voltages greater than approximately 8V, an additional capacitor is required. The compensation capacitor is typically between 100 pF and 33 nF, and is wired in parallel with the output voltage setting resistor, output capacitors, such as solid tantalum capacitors.This capacitor type can be ceramic, plastic, silver mica, etc.(Because of the unstable characteristics of ceramic capacitors made with Z5U material, they are not recommended.)Note:In PCB layout. Reserved an area for CFF.Over Current Protection (OCP)The cycle by cycle current limit threshold is set between 4A and 5A. When the load current reaches the current limit threshold, the cycle by cycle current limit circuit turns off the high side switch immediately to terminate the current duty cycle. The inductor current stops rising. The cycle by cycle current limit protection directly limits inductor peak current. The average inductor current is also limited due to the limitation on peak inductor current. When the cycle by cycle current limit circuit is triggered, the output voltage drops as the duty cycle is decreasing.Thermal Management and LayoutConsiderationIn the TD1501H buck regulator circuit, high pulsingcurrent flows through two circuit loops. The first loop starts from the input capacitors, to the VIN pin, to theVOUT pins, to the filter inductor, to the output capacitorand load, and then returns to the input capacitor throughground. Current flows in the first loop when the high side switch is on. The second loop starts from the inductor, to the output capacitors and load, to the GND pin of theFunction Description(Cont.)noise of this circuit and improves efficiency. A ground plane is recommended to connect input capacitor, output capacitor, and GND pin of the TD1501H.In the TD1501H buck regulator circuit, the two major power dissipating components are the TD1501H and output inductor. The total power dissipation of converter circuit can be measured by input power minus output power.P total _loss = V IN× I IN– V O× I OThe power dissipation of inductor can be approximately calculated by output current and DCR of inductor.P inductor _loss= I O2 × R inductor× 1.1The junction to ambient temperature can be got from power dissipation in the TD1501H and thermal impedance from junction to ambient.T (jun-amb)=(P totalloss–P inductorloss)× ΘJAThe maximum junction temperature of TD1501H is 145°C, which limits the maximum load current capability. Please see the thermal de-rating curves for the maximum load current of the TD1501H under different ambient temperatures.The thermal performance of the TD1501H is trongly affected by the PCB layout. Extra care should be taken by users during the design process to nsure that the IC will operate under the recommended environmental conditions. Several layout tips are listed below for the best electric and thermal performance.1. Do not use thermal relief connection to the VIN and the GND pin. Pour a maximized copper area to the GND pin and the VIN pin to help thermal dissipation.2. Input capacitor should be connected to the VIN pin and the GND pin as close as possible.3. Make the current trace from VOUT pins to L to the GND as short as possible.4. Pour copper plane on all unused board area and connect it to stable DC nodes, like VIN, GND, or VOUT.5. Keep sensitive signal traces such as trace connecting FB pin away from the VOUT pins.Package InformationTO220B­5LPackage Information(Cont.) TO220­5LPackage Information(Cont.)TO263­5LcDesign Notes。

产品规格书 高压电源-百度

产品规格书 高压电源-百度

HV1000/1250/1500高压电源规格书 V1.0●产品概述HV1000/HV1250/HV1500高压电源模块是本公司专门针对分析检测类仪器设计生产的专用电源模块。

模块采用新一代升压专用芯片,集成度高,功耗低,体积小,宽电压输入,输出电压可调,金属屏蔽。

广泛应用于无损超声探伤电源、光电倍增管电源、计数管电源、雪崩管电源、激光器电源等。

已被国内多家仪器生产厂商选用。

模块化集成,稳定可靠。

也可应用于线束测试设备中耐压测试等的应用场景。

●产品特点✓宽输入范围 9 V– 18V(其它输入电压范围可定制)✓电压输出连续可调✓输出电流1mA - 5mA,根据所选的产品确定✓控制电压范围为0V-2.5V✓输出电压极性为正输出✓输入输出控制共地✓金属屏蔽封装✓电源输入防反接✓工作温度:-40℃ - +85℃●规格参数✓电气参数输入特性项目最小典型最大单位V 输入电压 9 12 18mA 输入电流 -- -- 400V 输入控制电压 0 -- 2.5输出电压特性项目最小典型最大单位V HV1000 0 -- 1000V HV1250 0 -- 1250V HV1500 0 -- 1500输出电流特性项目最小典型最大单位HV1000 -- -- 5mAmA HV1250 -- -- 3mA HV1500 -- -- 2其它特性时漂 <1%温漂 <1%纹波 <0.1%转换效率 >65%外形尺寸 56mm*45mm*20mm重量 50g✓ 引脚定义引脚名称备注P1 Adj 控制电压输入P2 GND 电源地P3 +12V 电源输入 P4 H.V 高压输出 P5 H.G 高压输出地P6 F.G 屏蔽地✓ 封装尺寸尺寸单位:mm。

A1501

A1501

1.50mm pitch 90° Wafer
1.50±0.05
Ordering Information & Dimensions:
∅0.70±0.03
P.C.B LAYOUT
PART NO.
A1501WR-2P A1501WR-3P A1501WR-4P A1501WR-5P A1501WR-6P A1501WR-7P A1501WR-8P A1501WR-9P A1501WR-10P A1501WR-11P A1501WR-12P A1501WR-13P A1501WR-15P
0.89 0.44
1.10
1.45
SEC:B-B
0.50 1.09
Ordering information & Specifications Part NO. A1501-TP-H A1501-GP-H Wire Range AWG#24-#30 AWG#24-#30 Insulation O.D. 1.10mm(max) 1.10mm(max)
Circuit 1
1.50mm pitch 180° Wafer
4.80±0.25
1.50±0.05
Ordering Information & Dimensions Dimensions:
∅0.70±0.03
1.50±0.10 A±0.20 B±0.25 3.50±0.25
PART NO.
A1501WV-2P A1501WV-3P A1501WV-4P A1501WV-5P A1501WV-6P A1501WV-7P A1501WV-8P A1501WV-9P A1501WV-10P A1501WV-11P A1501WV-12P A1501WV-13P A1501WV-15P

LMX1501资料

LMX1501资料

TL W 12340LMX1501A LMX1511PLLatinum 1 1GHz Frequency Synthesizer for RF Personal CommunicationsNovember 1995LMX1501A LMX1511PLLatinum TM 1 1GHz Frequency Synthesizer for RF Personal CommunicationsGeneral DescriptionThe LMX1501A and the LMX1511are high performance fre-quency synthesizers with integrated prescalers designed for RF operation up to 1 1GHz They are fabricated using Na-tional’s ABiC IV BiCMOS processThe LMX1501A and the LMX1511contain dual modulus prescalers which can select either a 64 65or a 128 129divide ratio at input frequencies of up to 1 1GHz Using a proprietary digital phase locked loop technique the LMX1501A 11’s linear phase detector characteristics can generate very stable low noise local oscillator signalsSerial data is transferred into the LMX1501A and the LMX1511via a three line MICROWIRE TM interface (Data Enable Clock) Supply voltage can range from 2 7V to 5 5V The LMX1501A and the LMX1511feature very low current consumption typically 6mA at 3VThe LMX1501A is available in a JEDEC 16-pin surface mount plastic package The LMX1511is available in a TSSOP 20-pin surface mount plastic packageFeaturesY RF operation up to 1 1GHz Y 2 7V to 5 5V operation YLow current consumptionI CC e 6mA (typ)at V CC e 3VY Dual modulus prescaler 64 65or 128 129Y Internal balanced low leakage charge pumpYSmall-outline plastic surface mount JEDEC 0 150 wide (1501A)or TSSOP 0 173 wide (1511)packageApplicationsY Cellular telephone systems (AMPS NMT ETACS)YPortable wireless communications (PCS PCN Cordless)YAdvanced cordless telephone systems (CT-1 CT-1a CT-2 ISM902-928)YOther wireless communication systemsBlock DiagramTL W 12340–1TRI-STATE is a registered trademark of National Semiconductor CorporationMICROWIRE TM and PLLatinum TM are trademarks of National Semiconductor Corporation C 1995National Semiconductor CorporationRRD-B30M115 Printed in U S AConnection DiagramsLMX1501ATL W 12340–2JEDEC 16-Lead (0 150 Wide)SmallOutline Molded Package (M)Order Number LMX1501AM or LMX1501AMXSee NS Package Number M16ALMX1511TL W 12340–320-Lead (0 173 Wide)Thin ShrinkSmall Outline Package (TM)Order Number LMX1511TM or LMX1511TMXSee NS Package Number MTC20Pin DescriptionsPin No Pin No Pin Name I O Description1501A 15111501A 151111OSC INIOscillator input A CMOS inverting gate input intended for connection to a crystal resonator for operation as an oscillator The input has a V CC 2inputthreshold and can be driven from an external CMOS or TTL logic gate May also be used as a buffer for an externally provided reference oscillator 23OSC OUT OOscillator output34V P Power supply for charge pump must be t V CC45V CCPower supply voltage input Input may range from 2 7V to 5 5V Bypasscapacitors should be placed as close as possible to this pin and be connected directly to the ground plane56D o OInternal charge pump output For connection to a loop filter for driving the input of an external VCO 67GND Ground78LD O Lock detect Output provided to indicate when the VCO frequency is in ‘‘lock’’ When the loop is locked the pin’s output is HIGH with narrow low pulses 810f IN I Prescaler input Small signal input from the VCO911CLOCK I High impedance CMOS Clock input Data is clocked in on the rising edge into the various counters and registers1013DATA I Binary serial data input Data entered MSB first LSB is control bit High impedance CMOS input1114LEILoad enable input (with internal pull-up resistor) When LE transitions HIGH data stored in the shift registers is loaded into the appropriate latch (control bit dependent) Clock must be low when LE toggles high or low See Serial Data Input Timing Diagram1215FC I Phase control select (with internal pull-up resistor) When FC is LOW the polarity of the phase comparator and charge pump combination is reversed X 16BISW O Analog switch output When LE is HIGH the analog switch is ON routing the internal charge pump output through BISW (as well as through D o )13f r O Monitor pin of phase comparator input Programmable reference divider output 14f pO Monitor pin of phase comparator input Programmable divider output X 17f OUT O Monitor pin of phase comparator input CMOS Output1518w p O Output for external charge pump w p is an open drain N-channel transistor and requires a pull-up resistor1620w r OOutput for external charge pump w r is a CMOS logic output X2 9 12 19NCNo connect2Functional Block DiagramLMX1501ATL W 12340–403Functional Block Diagram(Continued)LMX1511TL W 12340–44Absolute Maximum Ratings(Note1)If Military Aerospace specified devices are required please contact the National Semiconductor Sales Office Distributors for availability and specifications Power Supply VoltageV CC b0 3V to a6 5V V P b0 3V to a6 5V Voltage on Any Pinwith GND e0V(V I)b0 3V to a6 5V Storage Temperature Range(T S)b65 C to a150 C Lead Temperature(T L)(solder 4sec )a260 C Recommended Operating ConditionsPower Supply VoltageV CC2 7V to5 5V V P V CC to5 5V Operating Temperature(T A)b40 C to a85 C Note1 Absolute Maximum Ratings indicate limits beyond which damage to the device may occur Operating Ratings indicate conditions for which the device is intended to be functional but do not guarantee specific perform-ance limits For guaranteed specifications and test conditions see the Elec-trical Characteristics The guaranteed specifications apply only for the test conditions listedElectrical Characteristics V CC e5 0V V P e5 0V b40 C k T A k85 C except as specifiedSymbol Parameter Conditions Min Typ Max Units I CC Power Supply Current V CC e3 0V6 08 0mAV CC e5 0V6 58 5mA f IN Maximum Operating Frequency1 1GHz f OSC Maximum Oscillator Frequency20MHz f w Maximum Phase Detector Frequency10MHz Pf IN Input Sensitivity V CC e2 7V to5 5V b10a6dBm V OSC Oscillator Sensitivity OSC IN0 5V PP V IH High-Level Input Voltage 0 7V CC V V IL Low-Level Input Voltage 0 3V CC V I IH High-Level Input Current(Clock Data)V IH e V CC e5 5V b1 01 0m A I IL Low-Level Input Current(Clock Data)V IL e0V V CC e5 5V b1 01 0m A I IH Oscillator Input Current V IH e V CC e5 5V100m A I IL V IL e0V V CC e5 5V b100m A I IH High-Level Input Current(LE FC)V IH e V CC e5 5V b1 01 0m A I IL Low-Level Input Current(LE FC)V IL e0V V CC e5 5V b1001 0m A Except f IN and OSC IN5Electrical Characteristics V CC e5 0V V P e5 0V b40 C k T A k85 C except as specified(Continued) Symbol Parameter Conditions Min Typ Max UnitsI Do-source Charge Pump Output Current V Doe V P 2b5 0mAI Do-sink V Doe V P 25 0mAI Do-Tri Charge Pump TRI-STATE Current0 5V s V D o s V P b0 5V b5 05 0nAT e25 CV OH High-Level Output Voltage I OH e b1 0mA V CC b0 8V V OL Low-Level Output Voltage I OL e1 0mA 0 4V V OH High-Level Output Voltage(OSC OUT)I OH e b200m A V CC b0 8V V OL Low-Level Output Voltage(OSC OUT)I OL e200m A0 4V I OL Open Drain Output Current(w p)V CC e5 0V V OL e0 4V1 0mA I OH Open Drain Output Current(w p)V OH e5 5V100m A R ON Analog Switch ON Resistance(1511)100X t CS Data to Clock Set Up Time See Data Input Timing50ns t CH Data to Clock Hold Time See Data Input Timing10ns t CWH Clock Pulse Width High See Data Input Timing50ns t CWL Clock Pulse Width Low See Data Input Timing50ns t ES Clock to Enable Set Up Time See Data Input Timing50ns t EW Enable Pulse Width See Data Input Timing50ns Except OSC OUT6Typical Performance CharacteristicsI CC vs V CCTL W 12340–5I DoTRI-STATE vs D o VoltageTL W 12340–6Charge Pump Current vs D o VoltageTL W 12340–7Charge Pump Current vs D o VoltageTL W 12340–8Charge Pump Current VariationTL W 12340–9Oscillator Input SensitivityTL W 12340–10 7Typical Performance Characteristics(Continued)Input Sensitivity vs FrequencyTL W 12340–11Input Sensitivity vs FrequencyTL W 12340–12Input Sensitivity at TemperatureVariation V CC e5VTL W 12340–13Input Sensitivity at TemperatureVariation V CC e3VTL W 12340–14LMX1501A Input Impedance vs FrequencyV CC e2 7V to5 5V f IN e100MHz to1 600MHzTL W 12340–15 Marker1e500MHz Real e67 Imag e b317Marker2e900MHz Real e24 Imag e b150Marker3e1GHz Real e19 Imag e b126Marker4e1 500MHz Real e9 Imag e b63LMX1511Input Impedance vs FrequencyV CC e2 7V to5 5V f IN e100MHz to1 600MHzTL W 12340–16 Marker1e500MHz Real e69 Imag e b330Marker2e900MHz Real e36 Imag e b193Marker3e1GHz Real e35 Imag e b172Marker4e1 500MHz Real e30 Imag e b1068Charge Pump Current Specification DefinitionsTL W 12340–17I1e CP sink current at V D o e V P b D V I2e CP sink current at V D o e V P 2I3e CP sink current at V D o e D VI4e CP source current at V D o e V P b D V I5e CP source current at V D o e V P 2I6e CP source current at V D o e D VD V e Voltage offset from positive and negative rails Dependent on VCO tuning range relative to V CC and ground Typical values are between 0 5V and 1 0V 1 I D o vs V D o e Charge Pump Output Current magnitude variation vs Voltage el I1l b l I3l l I1l a l I3l 100%and l I4l b l I6l l I4l a l I6l 100%2 I D o-sink vs I D o-source e Charge Pump Output Current Sink vs Source Mismatch el I2l b l I5l l I2l a l I5l 100%3 I D o vs T A e Charge Pump Output Current magnitude variation vs Temperature el I2 temp l b l I2 25 C l l I2 25 C l 100%and l I5 temp l b l I5 25 C l l I525 C l 100%4 K w e Phase detector charge pump gain constant e l I2l a l I5lRF Sensitivity Test Block DiagramTL W 12340–18Note 1 N e 10 000R e 50P e 64Note 2 Sensitivity limit is reached when the error of the divided RF output f OUT is greater than or equal to 1Hz9Functional DescriptionThe simplified block diagram below shows the 19-bit data register the 14-bit R Counter and the S Latch and the 18-bit N Counter (intermediate latches are not shown) The data stream is clocked (on the rising edge)into the DATA input MSB first If the Control Bit (last bit input)is HIGH the DATA is transferred into the R Counter (programmable reference divider)and the S Latch (prescaler select 64 65or 128 129) If the Control Bit (LSB)is LOW the DATA is transferred into the N Counter (programmable divider)TL W 12340–19PROGRAMMABLE REFERENCE DIVIDER (R COUNTER)AND PRESCALER SELECT (S LATCH)If the Control Bit (last bit shifted into the Data Register)is HIGH data is transferred from the 19-bit shift register into a 14-bit latch (which sets the 14-bit R Counter)and the 1-bit S Latch (S15 which sets the prescaler 64 65or 128 129) Serial data format is shown belowTL W 12340–2014-BIT PROGRAMMABLE REFERENCE DIVIDER RATIO (R COUNTER)Divide14S 13S 12S 11S 10S S 9S 8S 7S 6S 5S 4S 3S 2S1RatioR 30000000000001140000001001638311111111111111Notes Divide ratios less than 3are prohibitedDivide ratio 3to 16383S1to S14 These bits select the divide ratio of the programmable reference dividerC Control bit (set to HIGH level to load R counter and S Latch)Data is shifted in MSB first1-BIT PRESCALER SELECT (S LATCH)Prescaler 15S Select P 128 129064 65110Functional Description(Continued)PROGRAMMABLE DIVIDER(N COUNTER)The N counter consists of the7-bit swallow counter(A counter)and the11-bit programmable counter(B counter) If the Control Bit(last bit shifted into the Data Register)is LOW data is transferred from the19-bit shift register into a7-bit latch(which sets the7-bit Swallow(A)Counter)and an11-bit latch(which sets the11-bit programmable(B)Counter) Serial data format is shown belowTL W 12340–21 Note S8to S18 Programmable counter divide ratio control bits(3to2047)7-BIT SWALLOW COUNTER DIVIDE RATIO(A COUNTER)DivideS7S6S5S4S3S2S1RatioA00000000100000011271111111 Note Divide ratio 0to127B t A11-BIT PROGRAMMABLE COUNTER DIVIDE RATIO(B COUNTER)Divide18S17S16S15S14S13S12S11S10S S9S8 RatioB300000000011400000000100204711111111111 Note Divide ratio 3to2047(Divide ratios less than3are prohibited)B t APULSE SWALLOW FUNCTIONf VCO e (P c B)a A c f OSC Rf VCO Output frequency of external voltage controlled oscil-lator(VCO)B Preset divide ratio of binary11-bit programmablecounter(3to2047)A Preset divide ratio of binary7-bit swallow counter(0s A s127 A s B)f OSC Output frequency of the external reference frequencyoscillatorR Preset divide ratio of binary14-bit programmable ref-erence counter(3to16383)P Preset modulus of dual moduIus prescaler(64or 128)11Functional Description (Continued)SERIAL DATA INPUT TIMINGTL W 12340–22Notes Parenthesis data indicates programmable reference divider dataData shifted into register on clock rising edge Data is shifted in MSB firstTest Conditions The Serial Data Input Timing is tested using a symmetrical waveform around V CC 2 The test waveform has an edge rate of 0 6V ns withamplitudes of 2 2V V CC e 2 7V and 2 6V V CC e 5 5VPhase CharacteristicsIn normal operation the FC pin is used to reverse the polari-ty of the phase detector Both the internal and any external charge pump are affectedDepending upon VCO characteristics FC pin should be set accordinglyWhen VCO characteristics are like (1) FC should be set HIGH or OPEN CIRCUITWhen VCO characteristics are like (2) FC should be set LOWWhen FC is set HIGH or OPEN CIRCUIT the monitor pin of the phase comparator input f out is set to the reference divider output f r When FC is set LOW f out is set to the programmable divider output f pVCO CharacteristicsTL W 12340–23PHASE COMPARATOR AND INTERNAL CHARGE PUMP CHARACTERISTICSTL W 12340–24Notes Phase difference detection range b 2q to a 2qThe minimum width pump up and pump down current pulses occur at the D o pin when the loop is locked FC e HIGH12Analog Switch (1511only)The analog switch is useful for radio systems that utilize a frequency scanning mode and a narrow band mode The purpose of the analog switch is to decrease the loop filter time constant allowing the VCO to adjust to its new frequency in a shorter amount of time This is achieved by adding another filter stage in parallel The output of the charge pump is normally through the D o pin but when LE is set HIGH the charge pump output also becomes available at BISW A typical circuit is shown below The second filter stage (LPF-2)is effective only when the switch is closed (in the scanning mode)TL W 12340–25Typical Crystal Oscillator CircuitA typical circuit which can be used to implement a crystal oscillator is shown belowTL W 12340–26Typical Lock Detect CircuitA lock detect circuit is needed in order to provide a steady LOW signal when the PLL is in the locked state A typical circuit is shown belowTL W 12340–2713Typical Application ExampleTL W 12340–28 Operational NotesVCO is assumed AC coupledR IN increases impedance so that VCO output power is provided to the load rather than the PLL Typical values are10X to200X depending on the VCO power level f IN RF impedance ranges from40X to100X50X termination is often used on test boards to allow use of external reference oscillator For most typical products a CMOS clock is used and no terminating resistor is required OSC IN may be AC or DC coupled AC coupling is recommended because the input circuit provides its own bias (See Figure below)TL W 12340–29Proper use of grounds and bypass capacitors is essential to achieve a high level of performanceCrosstalk between pins can be reduced by careful board layoutThis is a static sensitive device It should be handled only at static free work stations14Application InformationLOOP FILTER DESIGNA block diagram of the basic phase locked loop is shownTL W 12340–30FIGURE1 Basic Charge Pump Phase Locked LoopAn example of a passive loop filter configuration includingthe transfer function of the loop filter is shown in Figure2TL W 12340–31Z(s)es(C2 R2)a1s2(C1 C2 R2)a sC1a sC2FIGURE2 2nd Order Passive FilterDefine the time constants which determine the pole andzero frequencies of the filter transfer function by lettingT2e R2 C2(1a)andT1e R2C1 C2C1a C2(1b)The PLL linear model control circuit is shown along with theopen loop transfer function in Figure3 Using the phasedetector and VCO gain constants K w and K VCO and theloop filter transfer function Z(s) the open loop Bode plotcan be calculated The loop bandwidth is shown on theBode plot(0p)as the point of unity gain The phase marginis shown to be the difference between the phase at the unitygain point and b180TL W 12340–33Open Loop Gain e i i i e e H(s)G(s)e K w Z(s)K VCO NsClosed Loop Gain e i o i i e G(s) 1a H(s)G(s)TL W 12340–32FIGURE3 Open Loop Transfer FunctionThus we can calculate the3rd order PLL Open Loop Gain interms of frequencyG(s) H(s)l s e j 0e b K wK VCO(1a j0 T2)02C1 N(1a j0 T1)T1T2(2)From equation2we can see that the phase term will bedependent on the single pole and zero such thatw(0)e tan b1(0 T2)b tan b1(0 T1)a180 (3)By settingd wd0eT21a(0 T2)2bT11a(0 T1)2e0(4)we find the frequency point corresponding to the phase in-flection point in terms of the filter time constants T1and T2This relationship is given in equation50p e1 0T2 T1(5)For the loop to be stable the unity gain point must occurbefore the phase reaches b180degrees We thereforewant the phase margin to be at a maximum when the magni-tude of the open loop gain equals1 Equation2then givesC1eK w K VCO T10p2 N T2(1a j0p T2)(1a j0p T1) (6)15Application Information(Continued) Therefore if we specify the loop bandwidth 0p and the phase margin w p Equations1through6allow us to calcu-late the two time constants T1and T2 as shown in equa-tions7and8 A common rule of thumb is to begin your design with a45 phase marginT1e sec w p b tan w p0p(7)T2e10p2 T1(8)From the time constants T1 and T2 and the loop band-width 0p the values for C1 R2 and C2are obtained in equations9to11C1e T1T2K w K VCO0p2 N01a(0p T2)21a(0p T1)2(9) C2e C1 T2T1b1J(10) R2eT2C2(11)K VCO(MHz V)Voltage Controlled Oscillator(VCO)Tuning Voltage constant The fre-quency vs voltage tuning ratioK w(mA)Phase detector charge pump gainconstant The ratio of the current out-put to the input phase differentialN Main divider ratio Equal to RF opt f ref RF opt(MHz)Radio Frequency output of the VCO atwhich the loop filter is optimizedf ref(kHz)Frequency of the phase detector in-puts Usually equivalent to the RFchannel spacing In choosing the loop filter components a trade off must be made between lock time noise stability and reference spurs The greater the loop bandwidth the faster the lock time will be but a large loop bandwidth could result in higher reference spurs Wider loop bandwidths generally improve close in phase noise but may increase integrated phase noise depending on the reference input VCO and division ratios used The reference spurs can be reduced by reduc-ing the loop bandwidth or by adding more low pass filter stages but the lock time will increase and stability will de-crease as a resultTHIRD ORDER FILTERA low pass filter section may be needed for some applica-tions that require additional rejection of the reference side-bands or spurs This configuration is given in Figure4 In order to compensate for the added low pass section the component values are recalculated using the new open loop unity gain frequency The degradation of phase margin caused by the added low pass is then mitigated by slightly increasing C1and C2while slightly decreasing R2The added attenuation from the low pass filter isATTEN e20log (2q f ref R3 C3)2a1 (12) Defining the additional time constant asT3e R3 C3(13) Then in terms of the attenuation of the reference spurs add-ed by the low pass pole we haveT3e010ATTEN 20b1(2q f ref)2(14) We then use the calculated value for loop bandwidth0c in equation11 to determine the loop filter component values in equations15–17 0c is slightly less than0p therefore the frequency jump lock time will increaseT2e10c2 (T1a T3)(15)0c etan w (T1a T3)(T1a T3)2a T1 T301a(T1a T3)2a T1 T3tan w (T1a T3) 2b1((16)C1e T1T2K w K VCO0c2 N(1a0c2 T22)(1a0c2 T12)(1a0c2 T32)((17)16Application Information (Continued)Example 1K VCO e 19 3MHz V K w e 5mA (Note 1)RF opt e 886MHz F ref e 25kHzN e RF opt f ref e 354400p e 2q 5kHz e 3 1415e4w p e 43ATTEN e 10dBT1e sec w p b tan w p0pe 1 38e b 5T3e10(10 20)b 1(2q 25e3)2e 9 361e b 60c e(tan 43 ) (1 38e b 5a 9 361e b 6)(1 38e b 5a 9 361e b 6)2a 1 38e b 59 361e b 61a(1 38e b 5a 9 361e b 6)2a 1 38e b 5 9 361e b 6(tan 43 ) (1 38e b 5a 9 361e b 6) 2b 1(e 1 8101e4T2e 1(1 8101e4)2(1 38e b 5a 9 361e b 6)e 1 318e b 4C1e1 38e b 51 318e b 4(5e b 3) 19 3e6(1 8101e4)2 (35440)1a (1 8101e4)2 (1 318e b 4)2 1a (1 8101e4)2 (1 38e b 5)2 1a (1 8101e4)2 (9 361e b 6)2 (e 2 153nFC2e 2 153nF1 318e b 41 384e b 5b 1Je 18 35nFR2e1 318e b 418 35e b 9e 7 18k Xif we choose R3e 120k then C3e9 361e b 6120e3e 78pFConverting to standard component values gives the follow-ing filter values which are shown in Figure 4 C1e 2200pF R2e 8 2k X C2e 0 018m F R3e 120k X C3e 78pFNote 1 See related equation for K w in Charge Pump Current SpecificationDefinitions For this example V P e 5 0V The value for K w can then be approximated using the curves in the Typical Performance Char-acteristics for Charge Pump Current vs D o Voltage The units for K w are in mA You may also use K w e (5mA 2q rad) but in this case you must convert K VCO to (rad V)multiplying by 2qTL W 12340–41FIGURE 4 E 5kHz Loop Filter17Application Information(Continued)TL W 12340–43 FIGURE5 PLL Reference SpursThe reference spurious level is k b66dBc due to the loop filter attenuation and the low spurious noise level of the LMX1511TL W 12340–45 FIGURE6 PLL Phase Noise3 5kHz OffsetThe phase noise level at3kHz offset is b65dBc HzTL W 12340–44 FIGURE7 PLL Phase Noise 150Hz OffsetThe phase noise level at150Hz offset is b75 5dBc HzTL W 12340–42 FIGURE8 Frequency Jump Lock Time Of concern in any PLL loop filter design is the time it takes to lock in to a new frequency when switching channels Fig-ure8shows the switching waveforms for a frequency jump of857MHz–915MHz By narrowing the frequency span of the HP53310A Modulation Domain Analyzer enables evalu-ation of the frequency lock time to within g1kHz The lock time is seen to be k1 6ms for a frequency jump of58MHz 18Application Information(Continued) EXTERNAL CHARGE PUMPThe LMX PLLatimum series of frequency synthesizers are equipped with an internal balanced charge pump as well as outputs for driving an external charge pump Although the superior performance of NSC’s on board charge pump elim-inates the need for an external charge pump in most appli-cations certain system requirements are more stringent In these cases using an external charge pump allows the de-signer to take direct control of such parameters as charge pump voltage swing current magnitude TRI-STATE leak-age and temperature compensationOne possible architecture for an external charge pump cur-rent source is shown in Figure9 The signals w p and w r in the diagram correspond to the phase detector outputs of the LMX1501 1511frequency synthesizers These logic signals are converted into current pulses using the circuitry shown in Figure9 to enable either charging or discharging of the loop filter components to control the output frequency of the PLLReferring to Figure9 the design goal is to generate a5mA current which is relatively constant to within5V of the power supply rail To accomplish this it is important to establish as large of a voltage drop across R5 R8as possible without saturating Q2 Q4 A voltage of approximately300mV pro-vides a good compromise This allows the current source reference being generated to be relatively repeatable in the absence of good Q1 Q2 Q3 Q4matching (Matched tran-sistor pairs is recommended )The w p and w r outputs are rated for a maximum output load current of1mA while5mA current sources are desired The voltages developed across R4 9will consequently be approximately258mV or42mV k R8 5 due to the current density differences 0 026 1n(5 mA 1mA) through the Q1 Q2 Q3 Q4pairsIn order to calculate the value of R7it is necessary to first estimate the forward base to emitter voltage drop(Vfn p)of the transistors used the V OL drop of w p and the V OH drop of w r’s under1mA loads (w p’s V OL k0 1V and w r s V OH k0 1V )Knowing these parameters along with the desired current allow us to design a simple external charge pump Separat-ing the pump up and pump down circuits facilitates the no-dal analysis and give the following equationsR4e V R5b V T 1n i source i p max Ji sourceR9e V R8b V T 1n i sink i n max Ji sinkR5eV R5 (b p a1)i p max (b p a1)b i sourceR8eV R8 (b n a1)i r max (b n a1)b i sinkR6e (V p b V VOL w p)b(V R5a Vfp)i p maxR7e (V P b V VOH w r)b(V R8a Vfn)i maxEXAMPLETypical Device Parameters b n e100 b p e50Typical System Parameters V P e5 0VV cntl e0 5V b4 5VV w p e0 0V V w r e5 0VDesign Parameters I SINK e I SOURCE e5 0mAV fn e V fp e0 8VI rmax e I pmax e1mAV R8e V R5e0 3VV OL w p e V OH w r e100mVTL W 12340–46FIGURE9Therefore selectR4e R9e0 3V b0 026 1n(5 0mA 1 0mA)5mAe51 6XR5e0 3V (50a1)1 0mA (50a1)b5 0mAe332XR8e0 3V (100b1)1 0mA (100a1)b5 0mAe315 6XR6e R7e(5V b0 1V)b(0 3V a0 8V)1 0mAe3 8k X1920Physical Dimensions inches(millimeters)JEDEC16-Lead(0 150 Wide)Small Outline Molded Package(M)Order Number LMX1501AMFor Tape and Reel Order Number LMX1501AMX(2500Units per Reel)NS Package Number M16A21L M X 1501A L M X 1511P L L a t i n u m 1 1G H z F r e q u e n c y S y n t h e s i z e r f o r R F P e r s o n a l C o m m u n i c a t i o n s Physical Dimensions (millimeters)(Continued)20-Lead (0 173 Wide)Thin Shrink Small Outline Package (TM)Order Number LMX1511TMFor Tape and Reel Order Number LMX1511TMX (2500Units per Reel)NS Package Number MTC20LIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION As used herein1 Life support devices or systems are devices or2 A critical component is any component of a life systems which (a)are intended for surgical implantsupport device or system whose failure to perform can into the body or (b)support or sustain life and whosebe reasonably expected to cause the failure of the life failure to perform when properly used in accordancesupport device or system or to affect its safety or with instructions for use provided in the labeling caneffectiveness be reasonably expected to result in a significant injuryto the userNational SemiconductorNational Semiconductor National Semiconductor National Semiconductor CorporationEurope Hong Kong Ltd Japan Ltd 1111West Bardin Road Fax (a 49)0-180-530858613th Floor Straight Block Tel 81-043-299-2309。

GRM1555C1H4R7CA01D中文资料

GRM1555C1H4R7CA01D中文资料

物料编号:GRM1555C1H4R7CA01D详细参数_易容网
MLCC即是多层陶瓷电容片式,是电子信息产品不可或缺的基本组件之一。

我国MLCC的生产起步在80年代初,行业早期主要是在外资企业的带动下发展起来的,近年来国内企业在技术上实现突破,行业国产化成效显著,并推动了MLCC产量迅速增长。

目前,MLCC的应用领域已从手机、电脑、电视机等消费电子领域,逐步拓展到新能源发电、新能源汽车、节能灯具、轨道交通、直流输变电、三网融合、高清电视、机顶盒、手机电视等多个行业。

对于这个悄悄活跃在人们生活中的元件你又知道多少呢.
本次易容网为大家推荐比较常用的MLCC村田 | Murata品牌的料号GRM1555C1H4R7CA01D的相关参数
易容网是深圳市易容信息技术有限公司独自研发的全球最大的MLCC搜索采购服务网站,2014年创立于深圳市南山区,全国首家电子元器件行业电容元件的搜索引擎及o2o商务服务平台。

易容网()现已建成全球最大的MLCC电容搜索引擎数据库,包含全球25家电容生产厂商超过28万组MLCC产品数据,用户可根据行业应用、物料编号、规格参数等信息快速的找到所有相关的MLCC电容数据。

易容网在搜索服务的前提下还提供村田、TDK、国巨、太阳诱电、风华高科等常见品牌产品的o2o商务服务,让企业客户实现询价、报价、在线订单、出库、实时物流、签收、账期服务等在线一站式商务服务体验。

Eterm学习重点笔记

Eterm学习重点笔记

指令关系结构状态及行动代码:DA指令显示营业员的工作号和本台终端的pidOffice号是pek099 改变office号uc:pek001 修改成功会提是accepted改变airline ual:cz 修改成功没有提示,等待其他输入,修改不成功,提示数据说明: office号决定主控区域1-5行(A-E):五个工作区,用于使用者输入专用工作号的显示.其后面的英文AVAIL(或者UNAVAIL)表示工作区的状态为可用(不可用),在pid建立时定义。

6行PID:当前配置在系统中的设备号。

每一个E-TERM帐号的黑屏,在进入系统后都有一个固定的PID编号。

在账号建立时就分配好的HARDCOPY:当前PID相连的打印机设备号。

一般定义为1112,在用户需要使用自己的航信系统打印机配置时,才定义其他号。

7行TIME:输入da指令时的系统时间DATE:输入da指令时的系统日期HOST:代理人分销系统名CAAC 如果是,表示所在主机分区“A”,航信分销系统将会进入系统的pid分配不同的处理主机,因此还可能显示B,C 。

8行AIRLINE: 如果是1E表示代理人分销系统,1Es是代理分销系统的通用两字代码。

也有可能使航空公司的两字代码SYSTEM:系统版本号APPLICATION:主机分区情况登陆系统:$$open tipdxX=1 表示进入ics系统X=2 表示进入离港系统X=3 表示进入crs系统Eterm c 系统代理人系统Eterm b 系统航空公司系统Eterm j 系统离港系统1 AV指令:AV指令用于查询航班座位可利用情况,及其相关航班信息,如航班号、舱位、起飞时间、经停点等,是一个非常重要的指令。

指令格式:AV:选择项/城市对(两个城市的三字代码)/日期/起飞时间/航空公司代码(二字代码)/经停标识/座位等级上述各项中只用城市对必须写其他各项都是可选的选择项有三种:(默认是p)p 显示结果按照起飞时间先后顺序排列a 显示结果按照到达时间先后顺序排列e 显示结果按照飞行时间由短到长排列查询结果中如果航班号前面有*,则表示是代码共享2 FV指令:FV功能提供了最早有座位的航班信息,它显示内容与AV相似。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档