Integrated System for Steel Truss Bridge
奥镁公司中英文对照说明书-2(可编辑)
奥镁公司中英文对照说明书-2STEELFLOW CONTROL炼钢与连铸ENGLISH / CHINESE VERSION中文 / 英文对照PRODUCTS 20062006年产品目录Page 1Version 01-2006Content 目录PAGE页数Pig Iron Transport 3 - 8铁水运输Basic Oxygen Furnace Converter 9 - 19碱性氧气转炉Electric Arc Furnace 21 - 31电弧炉Induction Furnace 32 - 35感应炉Steel Treatment and Casting Ladle 36 - 51[incl. VOD Ladle]钢水精炼及浇铸钢包包括VOD钢包Ladle Purging Ceramic 52 - 69钢包底吹供气元件RH/ DH Degasser 70 - 75RH/DH真空脱气装置AOD Oxygen Converter 76 - 80AOD氧气转炉Tundish 81 - 88中间包Slide Gate Ceramics 89 - 98滑动水口ISO Ceramics 99 - 110功能三大件Heat Treatment Furnaces 轧钢加热炉 111 - 117Page 2Version 01-2006PIG IRONTRANSPORT铁水运输Lining Concepts for the Blast Furnace Runner, Torpedo & Transport Ladle高炉铁沟,鱼雷罐&铁水包Page 3Version 01-2006Blast Furnace Runner高炉铁沟Slag Runner渣沟CARSIT D184CARSIT D223CARSIT D225Tilter WearAll Runners Wear CARSIT D236LiningLining 铁沟工作层Main RunnerCARSIT D237渣沟工作层主铁沟 CARSIT D184 CARSIT D184CARSIT D223CARSIT D184CARSIT D223CARSIT D223 CARSIT D225 CARSIT D225CARSIT D225CARSIT D226CARSIT D236Main Runner主铁沟Iron RunnerCARSIT D184铁沟CARSIT D223CARSIT D226CARSIT D226CARSIT D235CARSIT D237Main RunnerPig Iron Zone主铁沟CARSIT D235Insulation LiningSkimmer Block Safety Lining 隔热层Steel Shell挡渣块安全衬PYROSTOP BLANKET铁壳DIDURIT 170CARSIT D236LEGRAL 40/9 EADIDURIT 170ACARSIT D237The Mixomat 混料机aggregate for mixing of castables适用浇注料的混合Flexible application多功能Precise dosage of water quantity 精确控制水量Individual mixing time dry or wet可干湿分别操作High homogenity of mix 高均匀度混合Transportable by crane or fork lift 装运方便Mixomat Crossection剖视图Mixomatas delivered实体图Page 4Version 01-2006Torpedo Ladle鱼雷罐Lower Outlet出铁口底部Outlet 出铁口UREX ASC812UREX ASC 708Roof 顶部COMPAC VIB U780 0-6Mortar 火泥COMPAC FLO L880 SIC 0-6UREX AC 704-124Safety Lining 安全层UREX C404 0-0.5Wear Lining 工作层RESIMUR 190K 0-0.5DURAMUR 95 TSlag Zone 渣线UREX ASC812UREX ASC 708Gunning Mixes喷补料COMPAC GUN L880 0-3Insulation隔热层Safety LiningLEGRAL 35/0Impact AreaHot Metal Zone安全衬冲击区铁水区UREX 42SICAL B 1004NUREX ASC 711UREX ASC708UREX ASC812Shotcrete 喷涂机quick effective repair system for torpedo ladles 鱼雷罐专用高速喷涂机Shorter lining times 4-12 mt/h施工时间短4-12吨/小时No shuttering or moulds necessary 不需模具Low water consumption 用水量少Wear LiningLow porosity 低气孔率工作层High density 高密度No dust 无粉尘污染COMPAC SHOT160 0-3Significantly better physical properties than conventional gunning mixes大幅改善传统喷涂法的工作层物理性质Physical properties comparable with LC vibrating castables物理性质媲美低水泥的震动浇注料Can be gunned vertically or horizontally, also at longer ranges适用于各种角度施工垂直,水平,大范围施工Page 5Version 01-2006Transport Ladle铁水包Spout 包嘴Brick LiningCOMPAC VIB U780 0-6COMPAC FLO L880 SIC 0-6包衬-砖Insulation 隔热层LEGRAL 35/0Safety Lining安全衬UREX 42Mortar 火泥Slag Zone 渣线区Safety Lining 安全衬UREX ASC 708UREX C404 0-0.5Wear Lining 工作衬RESIMUR 190K 0-0.5RESITECT 190K E10Metal Zone铁水区RESISTAL S 55 SiCUREX ASC 708Gunning Mix 喷补料COMPAC GUN L880 0-3Gas Purging System供气系统Bottom Joint Mix包底填缝料COMPAC VIB U780 0-6Impact Zone冲击区RESISTAL S 55 SiCUREX ASC 708Bottom 包底Purging ElementRESISTAL S 55 SiCUREX ASC 708透气砖ANKERPERM SEG 88MMonolithic LiningSpout 包嘴包衬-浇注料 COMPAC FLO L890 0-6Slag Zone渣线区COMPAC FLO L890 0-6Wear Lining Metal ZoneMortar 火泥工作层铁水区Safety Lining 安全衬COMPAC FLO L890 0-6ANKOBIND L75 0-0.7Wear Lining 工作衬RESITECT 190K E10Safety Lining安全衬Gunning Mix 喷补料UREX 42COMPAC GUN L880 0-3Insulation隔热层LEGRAL 35/0Page 6Version 01-2006Transport Ladle Standard Shapes 铁水包砖型Dimension 尺寸mm rVol.3Side Arch Bricks*Pos. a b h l mm dmP-Shapes3P0 100 100 155 250 -- 3.88P型砖3P8 104 96 155 250 1860 3.883P10 105 95 155 250 1473 3.883P20 110 90 155 250 698 3.884P0 100 100 187 250 -- 4.684P8 104 96 187 250 2244 4.684P10 105 95 187 250 1777 4.684P12 106 94 187 250 1465 4.684P16 108 92 187 250 1075 4.684P22 111 89 187 250 757 4.685P0 100 100 220 250 -- 5.505P8 104 96 220 250 2640 5.505P16 108 92 220 250 1265 5.505P22 111 89 220 250 890 5.506P10 105 95 250 250 2375 6.256P18 109 91 250 250 1264 6.256P26 113 87 250 250 837 6.25* cut-bricks are availableMini Key Bricks*Dimension尺寸 mm rVol.MK-Shapes3Pos. a b h l mm dmMK型MK6/8 154 146 152.4 100 2781 2.29* cut-bricks are availableMK6/20 160 140 152.4 100 1067 2.29MK6/30 165 135 152.4 100 686 2.29MK6/40 170 130 152.4 100 495 2.29MK7/8 154 146 177.8 100 3245 2.67MK7/20 160 140 177.8 100 1245 2.67MK7/30 165 135 177.8 100 800 2.67MK7/40 170 130 177.8 100 535 2.67MK8/8 154 146 203.2 100 3708 3.05MK8/20 160 140 203.2 100 1423 3.05MK8/30 165 135 203.2 100 914 3.05MK8/40 170 130 203.2 100 660 3.05Page 7Version 01-2006Physical and Chemical Properties 理化指标CHEMICAL PROPERTIES WEIGHT - % 化学成分 PHYS. PROP.物理性能PRODUCTBulkMgO Al O CaO SiO Fe O TiO C others Por. CCS2 3 2 2 3 2产品牌号weight% % % % Vol% N/mm2% % % %3g/cmBLAST FURNACE LAUNDER / INSTALLATION & REPAIR MIXES高炉出铁槽砌炉料或修补料CARSIT D184 - 68.0 - 6.5 - - 2.9 SiC 24.6 2.85 - 80CARSIT D223 - 63.0 - 5.0 - ZrO 1.8 4.7 SiC 25.0 2.95 - 702CARSIT D225 - 66.5 - 3.1 - - 2.9 SiC 25.0 3.10 - 70CARSIT D226 - 74.0 - 3.6 - - 2.9 SiC 17.0 3.15 - 80CARSIT D235 - 76.0 - 0.1 - - 3.2 SiC 15.0 2.92 - 35CARSIT D236 - 21.0 - 2.5 - - 1.7 SiC 73.5 2.78 - 100CARSIT D237 - 44.0 - 4.0 - - 1.8 SiC 47.5 2.97 - 120CARSIT D194 - 66.1 - 10.0 0.9 - 5.0 SiC 10.0 2.35 - 25CARSIT D195 - 62.0 - 7.8 - - 5.0 SiC 19.5 2.42 - 45COMPAC GUN L770SIC 0-6 - 68.5 - 11.0 1.0 - - SiC+C 14.5 2.36 - 15 LEGRAL 40/9 EA 0.2 43.0 0.3 51.0 1.3 1.7 - K O 2.2 0.90 - 52PYROSTOP BLANKET 128/1430-35.0 -50.0 - - - ZrO 14.0 0.13 - -2TORPEDO LADLE & TRANSPORT LADLE/ BRICKS 鱼雷罐&铁水包/砖SICAL B100 4N - 63.0 - 19.5 1.4 2.0 13.0 SiC 5.0 2.70 13.0 40 UREX AC 704-124 - 77.0 - 12.5 1.6 2.7 5.5 - 2.87 15.5 45UREX ASC708 - 75.0 - 13.5 0.8 2.0 8.0 SiC 6.5 3.01 5.5 100UREX ASC711 - 66.0 - 16.5 1.3 2.2 12.0 SiC 6.5 3.02 7.5 80UREX ASC812 - 71.5 - 15.0 0.8 1.5 11.5 9.0 2.95 7.0 55RESISTAL S55 SiC - 54.0 - 35.0 0.6 0.3 - SIC 10.0 2.65 11.5 120UREX 42 0.4 44.0 0.2 51.0 1.6 1.7 - K O 0.1 2.26 16.0 552LEGRAL 35/0 0.5 33.0 0.4 60.0 2.2 0.8 - K O 2.8 1.00 - 62ANKERPERM SEG 88M ----- - - - - - -ANKOFORM UMR 88C - 87.5 - 0.2 - - - Cr O 10.0 3.05 18.0 1002 3TORPEDO LADLE & TRANSPORT LADLE/ INSTALLATION & REPAIR MIXES & / 鱼雷罐铁水包砌筑修补料COMPAC VIB U780 0-6 - 83.0 - 12.0 1.2 2.5 - - 2.85 - -COMPAC FLO L890 0-6 - 89.0 - 6.5 0.9 1.9 - - 2.90 - -COMPAC FLO L880 SiC 0-6 - 74.0 1.5 8.0 0.5 1.3 - SiC 15.0 2.88 - 110 TORPEDO LADLE & TRANSPORT LADLE/ GUNNING MIXES鱼雷罐&铁水包/喷补料COMPAC GUN L880 0-3 - 81.0 - 12.5 1.2 2.6 - - 2.50 - 70COMPAC SHOT160 0-3 - 83.5 - 13.4 0.9 1.9 - Na O 0.3 2.67 - 1052TORPEDO LADLE & TRANSPORT LADLE/ MORTARS鱼雷罐&铁水包/火泥 KONa O Cr O 2 22 3ANKOBIND L40 0-0.5 - 46.0 - 49.0 1.0 2.0 - K O 0.5 1.50 - -2ANKOBIND L75 0-0.7 - 78.5 - 16.0 1.7 3.2 - Na O 0.5 1.60 - -2DURAMUR 95T 0-0.5 - 97.5 - 1.5 0.1 - - Na O 0.3 2.15 - -2RESITECT 190K E10 0-0.3 0.2 88.5 - 1.6 0.3 0.1 4.5 P O 5.0 2.65 - - 2 5RESIMUR 190K 0-0.5 - 87.5 - 3.5 0.3 - 5.0 P O 2.2 1.90 - -2 5UREX C404 0-0.5 - 46.0 - 49.0 1.0 2.0 - - 1.50 - -Page 8Version 01-2006BASIC OXYGENFURNACE碱性氧气转炉Lining Concepts for the Converter转炉炉衬方案Page 9Version 01-2006BOF Lining Design 转炉炉衬设计Trunnion Area耳轴区ANCARBON OC83ANCARBON OC84ANCARBON OC93ANCARBON OC94 Mouth炉口Upper Cone上锥部ANCARBON OC73MANCARBON KC62ANCARBON OC62ANCARBON KC72ANCARBON OC72Tap HoleHousing Bricks出钢口围砖ANKERTAP SX30Tap Hole出钢口Impact Area 冲击区ANKERTAP TT90X ANCARBON KC91 ANCARBON KC91-MRI ANCARBON MC91-MRI Cylinder, Barrel炉身ANCARBON KC62 ANCARBON OC62 ANCARBON KC72 ANCARBON OC72 Lower Cone下锥部Bottom 炉底ANCARBON KC62 ANCARBON KC72 ANCARBON KC62 ANCARBON KC72 Safety Lining安全衬Domed Bottom LiningANKER N3 C圆形炉底ANCARBON KC51Purging PlugPurging Plug透气砖Surrounding BricksANKERPERM VRS003透气砖围砖ANCARBON KC73ANCARBON KC83Page 10Version 01-2006BOF Lining Design 转炉炉衬设计Trunnion Area耳轴区RADEX RCS14-8CRADEX RCS18-8CRADEX RCS14-9CRADEX RCS18-9CMouth 炉口Upper Cone上锥部RADEX RCS14-7CMRADEX RCS10-6RADEX RCS10-6CRADEX RCS10-7RADEX RCS10-7CTap HoleHousing Bricks出钢口围砖CONTAP P5Tap Hole出钢口Impact Area冲击区CONTAP PS95-T RADEX RCS7-9 RADEX RCS7-9-MRI RADEX RCS7-9M-MRI Cylinder, Barrel中间炉身RADEX RCS10-6 RADEX RCS10-6C RADEX RCS10-7C Lower Cone下锥部RADEX RCS10-6 Bottom 炉底RADEX RCS10-7 RADEX RCS10-6 RADEX RCS10-7 Safety Lining安全衬Domed Bottom Lining RADEX OM3 C圆形炉底RADEX RCS7-5Purging PlugPurging PlugSurrounding Bricks透气砖透气砖围砖RADEX DPPCRADEX RCS14-7RADEX RCS14-8Page 11Version 01-2006Installation & Repair Mixes 砌筑修补料Lip Ring Closure炉顶封口料ANKERMIX CS13ANKERMIX CP13Repair Mixes修补料Gunning Mix喷补料ANKERJET CP11*ANKERJET CWP30ANKERJET CWP37BackfillingANKERJET NP12背缝填充料ANKERTAR NT92Tap HoleRamming Mix 出钢口捣打料ANKERMIX CP13Ring Gap Mix出钢口缝隙填料ANKERFIX NS03 ANKERFIX GN01 Repair Mixes修补料Hot pouring Mix热投补料ANKERREP CX13*Hot guning Mix热喷补料ANKERJET NP12 Mortar 火泥Bottom Joint ANKERFIX CRP炉底接口填料Purging Plug Backfilling ANKERTAR FC01透气砖填充料* Chinese Market only 只用于中国地区Page 12Version 01-2006Installation & Repair Mixes 砌筑修补料Lip Ring Closure炉顶封口料PERMASIT 10SCPERMASIT CPRepair Mixes修补料Gunning Mix喷补料PERGUNIT CP11*PERGUNIT 30GPCPERGUNIT 37GPCBackfilling填充料PERFILL CLPERMASIT TM30Tap HoleRamming Mix出钢口捣打料PERMASIT CPRing Gap Mix出钢口缝隙填料PERMASIT GSRADEXLAST CRepair Mixes修补料Hot pouring Mix热投补料PERPLEX HR10C*Hot gunning Mix热喷补料PERGUNIT XKMortar 火泥Bottom JointRADEXPLAST SECPurging Plug炉底接缝填料BackfillingPERMASIT AM10透气砖填充料PERMASIT 10SC* Chinese Market only 只用于中国地区Page 13Version 01-2006ISO JET Taphole Systems & PTX 转炉出钢口ISOJET-BISOJET-CIsojet B:Isojet C:Standard Tapping 标准出钢口Special development for clean steel / slag detection systems 专门为纯净钢水/ 探渣系统而开发Taphole Set New Taphole Set NewTaphole Set Repair Taphole Set RepairPrompt Tap Exchange System PTX 出钢口快速更换系统3 min installation三分钟安装5 min injection五分钟填充料7 min hardening七分钟硬化Position the repair set将欲更换的出钢口摆放定位1Affix the set withwedges 用楔子固定2Connect pipe, put BOFPumping Mixes in tapping position连接3管线并将转炉转到出钢注入填缝料位置RUBINIT 8004Pumping 注入填充料RUBINIT 8155Let the mix dry andharden等待干燥与硬化Page 14Version 01-2006ArN2Inert-Gas Purging Systems惰性气体底吹系统Converter Gas Purging Brick 转炉底吹砖ANKERPERM VRS003, VRS005RADEX DPPCSlot-Types: 多孔型Pipes with 2mm dia and 1mm wall thickness Gaspurging Equipment:Gasflow Diagrams: 流量图控制系统Gas Control Station供气控制站Gas Control Unit 供气控制单元The CIP Systemfrom RHI转炉底吹系统Dosing Module流量控制模组Page 15Version 01-2006Machinery 机械设备TBD taphole exchange equipmentTBD 出钢口更换设备TBD tap hole exchange machineBreaking out device / Repair set insertion device 出钢口更换设备拆除装置 / 更换出钢口插入装置Converter Shooter转炉喷补机PTX PumpingMachine 活塞式注料机AnkerjetMachine喷补机 AnkergunMachinePage 16Version 01-2006BOF Standard Shapes 转炉标准砖型Dimension尺寸 mm Vol.3Pos. a b h l dm40/0 150 150 400 100 6.0040/8 154 146 400 100 6.00Dimension尺寸 mm Vol.340/20 160 140 400 100 6.00Pos. a b h l dm40/40 170 130 400 100 6.0040/80 190 110 400 100 6.00 70/8 154 146 700 100 10.75 45/0 150 150 450 100 6.75 70/20 160 140 700 100 10.75 45/8 154 146 450 100 6.75 70/36 168 132 700 100 10.75 45/20 160 140 450 100 6.75 70/60 180 120 700 100 10.75 45/40 170 130 450 100 6.75 70/120 210 90 700 100 10.75 45/60 180 120 450 100 6.75 75/0 150 150 750 100 11.25 45/90 195 105 450 100 6.75 75/8 154 146 750 100 11.25 50/0 150 150 500 100 7.50 75/20 160 140 750 100 11.25 50/8 154 146 500 100 7.50 75/36 168 132 750 100 11.25 50/20 160 140 500 100 7.50 75/60 180 120 750 100 11.25 50/36 168 132 500 100 7.50 80/0 150 150 800 100 12.00 50/60 180 120 500 100 7.50 80/8 154 146 800 100 12.0080/20 160 140 800 100 12.00 55/0 150 150 550 100 8.25 80/36 168 132 800 100 12.00 55/8 154 146 550 100 8.25 80/60 180 120 800 100 12.00 55/20 160 140 550 100 8.25 85/0 150 150 850 100 12.75 55/36 168 132 550 100 8.25 85/8 154 146 850 100 12.75 55/60 180 120 550 100 8.25 85/20 160 140 850 100 12.75 55/110 205 95 550 100 8.25 85/36 168 132 850 100 12.75 60/0 150 150 600 100 9.00 85/80 190 110 850 100 12.75 60/8 154 146 600 100 9.00 90/0 150 150 900 100 13.50 60/20 160 140 600 100 9.00 90/8 154 146 900 100 13.50 60/36 168 132 600 100 9.00 90/20 160 140 900 100 13.50 60/60 180 120 600 100 9.00 90/36 168 132 900 100 13.50 60/120 210 90 600 100 9.0065/0 150 150 650 100 9.7590/80 190 110 900 100 13.5065/8 154 146 650 100 9.7595/20 160 140 950 100 14.2565/20 160 140 650 100 9.7595/80 190 110 950 100 14.2565/36 168 132 650 100 9.7565/60 180 120 650 100 9.75100/20 160 140 1000 100 15.00100/80 190 110 1000 100 15.00110/20 160 140 1100 100 16.50110/80 190 110 1100 100 16.50120/0 150 150 1200 100 18.00120/80 190 110 1200 100 18.00Page 17Version 01-2006Physical & Chemical Properties 理化指标CHEMICAL PROPERTIES WEIGHT - %化学成分 PHYS. PROP.物理性能PRODUCTBulkMgO Al O CaO SiO Fe O C Por. CCS2 3 2 2 3产品牌号weightAox% % % Vol% N/mm2% % %3g/cmBRICKS 砖ANCARBON KC51 96.5 0.2 1.8 0.8 0.7 6.0 --- 3.02 5.0 60 ANCARBON KCOC62 97.0 0.1 1.6 0.8 0.5 10.0 Al, Si 2.982.95 5.0 40 ANCARBON KCOC72 97.2 0.2 1.7 0.6 0.5 10.0 Al, Si 3.033.01 4.5 3540 ANCARBON OC73M 97.0 0.2 1.6 0.7 0.5 14.0 Al, Si 2.96 4.5 35 ANCARBON KC73 97.2 0.2 1.6 0.7 0.5 14.0 --- 2.98 4.5 35 ANCARBON KCOC82 97.8 0.1 1.2 0.5 0.4 10.0 Al, Si 3.043.02 4.0 40 ANCARBON KCOC83 97.8 0.1 1.2 0.5 0.3 14.0 Al, Si 2.992.97 4.0 35 ANCARBON OC84 97.8 0.1 1.2 0.5 0.3 18.0 Al, Si 2.92 4.0 30 ANCARBON KC91 98.2 0.1 1.0 0.4 0.3 6.0 --- 3.10 4.0 60 ANCARBON MC91-MRI 98.4 0.1 0.8 0.4 0.2 6.0 MgAl,Al 3.08 2.0 60 ANCARBON KC91-MRI 98.4 0.1 0.8 0.4 0.2 6.0 --- 3.12 2.0 100 ANCARBON KCOC93 98.4 0.1 0.8 0.4 0.2 14.0 Al,Si 3.033.00 4.0 4035 ANCARBON OC94 98.4 0.1 0.8 0.4 0.2 18.0 Al, Si 2.94 4.0 30 ANKERTAP SX30 97.0 0.1 2.0 0.4 0.3 5.0 --- 3.10 4.0 60 ANKERTAP TT90X 97.5 0.1 1.9 0.4 0.1 6.0 --- 3.19 1.0 80ANKER N3 C 96.0 0.3 1.3 0.4 0.7 --- --- 2.93 15.5 70GAS PURGING ELEMENT 透气砖ANKERPERM VRS 003 97.5 0.1 1.9 0.4 0.1 14.0 --- 2.93 5.0 40 INSTALLATION MIXES 砌炉料 Graining 粒度 Bonding结合剂ANKERTAR FC01 91.6 6.0 1.4 0.5 0.6 9.0 0-5 2.90 carbonANKERMIX CP13 91.0 0.6 1.6 1.5 1.0 --- 0-3 2.70 phosphate ANKERMIX CS13 94.5 0.2 1.7 1.0 1.0 --- 0-3 2.60 sod.silicate ANKERFILL CW73 68.7 0.8 1.2 21.5 4.1 --- 0-3 --- chemical ANKERTAR NT92 70.0 0.3 24.0 0,7 4.5 --- 0-5 2.8 carbon ANKERMIX NS03 97.0 0.3 1.6 0.7 0.4 --- 0-3 2.70 sulfate ANKERFIX GN01 --- --- --- --- --- 94.0 0-0.1 0.80 organic ANKERFIX CRP 95.3 0.1 1.3 0.7 0.5 --- 0-0.2 1.60 phosphate REPAIR MIXES 修补料 Graining 粒度 Bonding结合剂ANKERJET CP11 86.5 0.4 4.1 2.4 0.7 --- 0-3 --- phosphate ANKERJET CP30 68.8 0.7 11.9 3.6 0.9 --- 0-3 --- phosphate ANKERJET CP37 65.9 0.6 13.6 3.2 0.6 --- 0-3 --- phosphate ANKERJET CW30 67.1 0.4 15.9 4.9 0.8 --- 0-3 --- sod.silicate ANKERJET CW37 65.5 0.5 16.4 5.6 0.7 --- 0-3 --- sod.silicate ANKERREP CX13 68.7 0.3 7.5 1.3 0.7 --- 0-15 2.10organicPage 18Version 01-2006Physical & Chemical Properties 理化指标CHEMICAL PROPERTIES WEIGHT - %化学成分 PHYS. PROP.物理性能PRODUCTBulkMgO Al O CaO SiO Fe O C Por. CCS2 3 2 2 3产品牌号weightAox% % % Vol% N/mm2% % %3g/cmBRICKS 砖RADEX RCS7-5 96.5 0.2 1.8 0.8 0.7 6.0 --- 3.02 5.0 60RADEX RCS10-5 96.8 0.1 1.7 0.7 0.6 10.0 --- 2.99 7.0 35RADEX RCS10-6C 97.0 0.1 1.6 0.8 0.5 10.0 Al, Si 2.982.95 5.0 40 RADEX RCS10-7C 97.2 0.2 1.7 0.6 0.5 10.0 Al, Si 3.033.01 4.5 3540 RADEX RCS14-7CM 97.0 0.2 1.6 0.7 0.5 14.0 Al, Si 2.96 4.5 35 RADEX RCS14-7 97.2 0.2 1.6 0.7 0.5 14.0 --- 2.98 4.5 35RADEX RCS10-8C 97.8 0.1 1.2 0.5 0.4 10.0 Al, Si 3.043.02 4.0 40 RADEX RCS14-8C 97.8 0.1 1.2 0.5 0.3 14.0 Al, Si 2.992.97 4.0 35 RADEX RCS18-8C 97.8 0.1 1.2 0.5 0.3 18.0 Al, Si 2.92 4.0 30 RADEX RCS7-9 98.2 0.1 1.0 0.4 0.3 6.0 --- 3.10 4.0 60RADEX RCS7-9M-MRI 98.4 0.1 0.8 0.4 0.2 6.0 MgAl,Al 3.08 2.0 60 RADEX RCS7-9-MRI 98.4 0.1 0.8 0.4 0.2 6.0 --- 3.12 2.0 100 RADEX RCS14-9C 98.4 0.1 0.8 0.4 0.2 14.0 Al,Si 3.033.00 4.0 4035 RADEX RCS18-9C 98.4 0.1 0.8 0.4 0.2 18.0 Al, Si 2.94 4.0 30 CONTAP P5 97.0 0.1 2.0 0.4 0.3 5.0 --- 3.10 4.0 60CONTAP PS95-T 97.5 0.1 1.9 0.4 0.1 6.0 --- 3.19 1.0 80RADEX OM3 C 96.0 0.3 1.3 0.4 0.7 --- --- 2.93 15.5 70GAS PURGING ELEMENT 透气砖RADEX DPPC 97.5 0.1 1.9 0.4 0.1 14.0 --- 2.93 5.0 40.0 INSTALLATION MIXES 砌炉料 Grainsize 粒度 Bonding结合剂PERMASIT AM10 91.6 6.0 1.4 0.5 0.6 9.0 0-5 2.90 carbon PERMASIT CP 91.0 0.6 1.6 1.5 1.0 --- 0-3 2.70 phosphate PERMASIT 10SC 94.5 0.2 1.7 1.0 1.0 --- 0-3 2.60 sod.silicate PERFILL CL 68.7 0.8 1.2 21.5 4.1 --- 0-3 --- chemical PERMASIT TM30 70.0 0.3 24.0 0,7 4.5 --- 0-5 2.8 carbon PERMASIT M 97.0 0.3 1.6 0.7 0.4 --- 0-3 2.7 sulfate RADEXPLAST C --- --- --- --- --- 94.0 0-0.1 0.80 organic RADEXPLAST SEC 95.3 0.1 1.3 0.7 0.5 --- 0-0.2 1.60 phosphate REPAIR MIXES 修补料 Grainsize 粒度 Bonding结合剂PERGUNIT 11PC 86.5 0.4 4.1 2.4 0.7 --- 0-3 --- phosphate PERGUNIT 30PC 68.8 0.7 11.9 3.6 0.9 --- 0-3 --- phosphate PERGUNIT 37PC 65.9 0.6 13.6 3.2 0.6 --- 0-3 --- phosphate PERGUNIT 30GC 67.1 0.4 15.9 4.9 0.8 --- 0-3 --- sod.silicate Page 19Version 01-2006ELECTRIC ARCFURNACE电弧炉Lining Concepts for the Electric Arc Furnace电弧炉炉衬方案Page 20Version 01-2006EBT AC Furnace with WC 水冷式交流电炉Wall Upper PartDoor Jamb Area Hot Spots上部炉墙热点炉门ANCARBON KAC52 ANCARBON AC73ANCARBON KAC73ANCARBON KAC62 ANCARBON AC83 ANCARBON KAC83 Mixes炉料Universal mix 散料ANKERMIX CS13ANKERMIX CS15ANKERMIX CS17Mortar 火泥ANKERFIX CRPGunning mix喷补料ANKERJET CP11*ANKERJET CW20ANKERJET CWP30ANKERJET CWP37ANKERJET CW90Fettling mix 补炉料ANKERFRIT NX93ANKERFRIT NX95ANKERFRIT 076Wall Lower Part下部炉墙ANKARBON KC42ANCARBON KC52ESafety Lining* Chinese market only安全衬Hearth Mix炉膛料只用于中国地区ANKER N6 C CDANKERHARTH NN25Slag Line渣线ANKERHARTH 134EBT TapholeANCARBON KAC72ANCARBON KAC82EBT出钢口Gap Filling Mix 填缝料ANKERHARTH NN25EBT Filling MixANKERHARTH 134出钢口填充料PERRAMIT M。
不锈钢对照表
Stainless SteelDesignation System for Stainless Steel (ISO 3506 1979)Chemical Composition (Austenitic Group)Maximum values unless otherwise stated.•Types A2 and A4 may contain up to a maximum of 4% copper.•The selection of steel grades within a group is the prerogative of the manufacturer, unless the purchaser has specified particular steels to ISO or national standards.•Different grades of steel may be used as long as all physical and mechanical properties and the corresponding corrosion resistance of the finishedproduct are achieved. Only when all these conditions are fulfilled may finished articles be marked in accordance with DIN 267 Part 11.Mechanical Properties-Austenitic GradesComparison: US and ISO (DIN) Stainless SteelsSelection of Diameters (Tightening Torques, Loads)1)The values correspond to 100% of the 0.2%Notes on application:•When selecting the correct screw diameter it should be ensured that the total load on the screw does not exceed 90% of the standardized 0.2% yield stress. Care should be taken to ensure correct initial tensioning, with a torque wrench wherever possible.•Experience has shown that a utilization of 70% of the total load is reasonable average for the initial stressing force to allow additional forces in service to be taken up.**The table above is only intended as an aid for quick comparison**Comparative International Stainless Steel GradesBritish French German Italian Japanese Swedish USA 304S21Z12CN17.08 1.4310X12CrNi 17 07SUS30114 23 31301 304S31SUS30214 23 32302 304S15304S16Z8CN18.09 1.4301X5CrNi 18 10SUS30114 23 33304 304S11Z2CN18.10 1.4306X2CrNi 18 11SUS304L14 23 52304L 305S19Z8CN18.12X8CrNi 18 12SUS305305 309S24Z15CN24.13X16CrNi 23 14SUS309309 310S24Z12CN25.20 1.4845Z22CrNi 25 20SUS310S14 23 61310 315S1614 23 40316S31 316S33Z6CND17.111.44011.4436X8CrNiMo 17 13SUS31614 23 4314 23 47316316S11 316S13Z2CND17.121.44041.4435X2CrNiMo 17 12SUS316L14 23 5314 23 48316L317S12Z2CND19.15 1.4435X2CrNiMo 18 16SUS317L14 23 67317L 317S16 1.4436SUS31714 23 66317320S31 320S33Z8CND17.121.45711.457314 23 50321S31Z6CNT18.12 1.4541X6CrNiTi 18 11SUS32114 23 37321347S31Z6CNNb18.11 1.4558X6CrNiNb 18 11X8CrNiNb 18 11SUS34714 23 38347403S17Z6C13 1.4000X6Cr13SUS40314 23 01403 405S17Z6CA13 1.4002Z6CrA1 13SUS405405 409S19 1.4512409 430S17Z8C17 1.4016X8Cr 17SUS43014 23 20430 434S17Z8CD17.01 1.4113X8CrMo 17SUS43414 23 25434410S21Z12C131.40061.4024X12Cr 13SUS41013 23 02410410S45Z30C13X30Cr 13SUS420JS14 23 04420。
铁路专业英文词汇
铁路专业英文词汇铁路专业词汇一、铁路;铁道railway railroad ?铁路线railway line; railroad line?铁路网 railway network; railroad network铁道科学railwayscience铁路技术 railway technology铁路等级railway classification ?国有铁路 national railway;state railway ?地方铁路localrailway; regionalrail way私有铁路 private railway合资铁路joint investment railway; jointlyowned rai lway ?标准轨铁路 standard-gage railway ?窄轨铁路 na rro w-gage railway米轨铁路meter-gage railway宽轨铁路 broad-gage railway单线铁路 single track railway?双线铁路 double track railway ?多线铁路 multiple track railway ?重载铁路 heavy ha ul railway高速铁路 high speed railway电气化铁路;电力铁路 electrified railway; electric railway干线铁路 main line railway; trunkrailway市郊铁路 suburban railway地下铁道;地铁subway;metro; underground railway工业企业铁路 industry railway?矿山铁路mine railway ?轻轨铁路 lightrailwa y; light rail高架铁路 elevated railway ?单轨铁路;独轨铁路 monorail;monorail railway 磁浮铁路magnetic levitation railway;maglev森林铁路forest railway山区铁路 mountain railway既有铁路existingrailway新建铁路newly-built railway改建铁路 reconstructedrailway?运营铁路railway in operation; operation; operating railway专用铁路 special purpose railway干线 trunk line; main line ?支线 branch line?铁路专用线 railway special li ne货运专线railway line for freight traffic; freight special line; freight traffic only line客运专线railway line for passenger traffic;passen ger special line; passenger traffic only line ?客货运混合铁路railway line for mixed passenger and freight traff ic铁路运营长度;运营里程operation length o f railway; ope rating distance;rev enue length列车运行图train diagram铁路建筑长度construction length of railway ?区间 section区段district ?轨距 rail gage; rail gauge ?轮重 wheel load 轴重axleload ?最大轴重maximumallowable axle load ?限制轴重axle load limited ?限界 clearance; gauge限界图 clearance diagram铁路建筑限界railway construction clearance; structure clearance fo rrailway; railwaystructiongauge?基本建筑限界 fundamental constructionclearance; fundamental structure gauge ?桥梁建筑限界 bridgeconstructionclearance; bridge s tructure gauge?隧道建筑界限tunnel construction clearance; tunnel structure gauge铁路机车车辆限界 rolling stockclearance for railway; vehicle gauge?机车车辆上部限界clearance limitfor upper pa rt of rolling stock ?机车车辆下部限界 clearance limit for lower part of rolling stock装载限界loading clearancelimit; loa ding gauge ?阔大货物限界clearance limit for freight with exceptional dim ension;clearance limit for overs ize modities 接触网限界 clearance limit for overhead contract wire; clearance limit for overhead catenary system; over head catenarysystem gauge列车与线路相互作用track-train interaction ?轮轨关系wheel-rail rela tion; wheel-rail interaction 粘着系数adhesion coefficient车轮滑行 wheel sliding; wheel skid车轮空转 wheel slipping牵引种类kinds of traction;categ ory of traction牵引方式 mode of traction牵引定数tonnage rating; tonnage of traction ?装载系数 loading coefficient ?速度 speed持续速度 continuous speed限制速度limitedspeed;speed restric tion?均衡速度balancing speed构造速度construction speed; design speed ?最高速度 maximum speed临界速度 criticalspeed ?重载列车heavy haul train 高速列车 high speed train?超长超重列车 exceptiona lly long and heavy train列车正面冲突train collision列车尾追traintailcollision ?列车尾部防护train rear end protection ?伸缩运动foreand aft motion ?蛇行运动hunting; nosing列车压缩 train running in?列车拉伸 tr ain running out?列车分离trainseparation?列车颠覆train overturni ng ?列车动力学traindynamics?列车空气动力学train aerodynamics机车车辆振动 vibration of rolling stock ?纵向振动 longitudinal vibration ?横向振动 lateral vibration ?垂向振动vertical vibration ?摆滚振动 rock-roll vibration浮沉振动 bouncing; vibration测滚振动 rolling ; vibration测摆振动swaying; vibration点头振动 pitching; nodding ?摇头振动yawing; hunting 机车车辆共振resonanceof rolling stock 机车车辆冲击impact of rolling ?纵向冲击longitudinal impact横向冲击 lateral impact垂向冲击vertical impact ?货运站综合作业自动化automation of synthetic operations at freightstation行车指挥自动化 automation of trafficcontrol ?编组场综合作业自动化automation of synthetic operations in marshalling yard铁路运营信息系统railway operation i nformation system?铁路数据交换系统railway data exchangesystem 运营系统模拟simulation of operation system铁路法railway law铁道法规railway act ?铁路条例 railway code铁路技术管理规程regulations ofrailway technical operation综合运输 prehensive transport; multi-mode transport;intermode transpo rt ?国际铁路联运internationalrailway through traffic大陆桥;洲际铁路transcontinental railway; intercontinental railway; land-railway国际联运协定agreement of international throughtraffic ?国际联运议定书protocol ofinternational through traffic ?国际铁路联运公约 convention of international railwaythrough traffic二、铁路新线建设newly-built railway construction铁路技术改造technical reform of railway; technical r enovation of railway;betterment and improvement of ra ilway ?铁路主要技术条件 main technical standard of railway; main techincal requirement of railway单位工程 unitproject?分部工程 part project ?分项工程item project预可行性研究pre-feasibility study 项目建议书propos ed task of project 可行性研究feasibility study ?设计阶段design phase; design stage ?三阶段设计three-step desi gn; three-phase design ?两阶段设计two-step design; tw o-phasedesign?一阶段设计one-stepdesign; one-phasedesign初步设计 preliminary design ?技术设计 t echnicaldesign ?扩大初步设计enlarged preliminary design; expanded preliminary design?施工图设计construction detail design;working-drawing design变更设计 altered design设计概算 apporximate estimate of des ign; budgetary estimate of design?个别概算individualapproximate est imate综合概算 prehensive approximate esti mate ?总概算sum of approximate esti mate; total estimate;summary estimate修正总概算amended sum ofapproximate estimate; revised general estimate?调整总概算adjusted sum of approximate estimate ?投资检算checkingof inv estmen t?预算定额 rating ofbudget;rating formfor budget?概算定额rating of approximate estimate; ra ting formfor estimate投资估算investmentestimate ?估算指标index of estimate机械台班定额 rating per machine per team; rating per machine-team工程直接费directexpense of project; directcostof project ?工程间接费indirect expense of project; indirect cost ofproject?工程预备费reservefund of project ?设计鉴定 certifi cation of design; appraisal of desig n竣工决算final accounts of pleted project?铁路用地rig ht-of-way?铁路勘测railway reconnaissance ?调查测绘 survey and drawing of investigation;investigation survey; investigation surveyingand sketching?地形调查t opographic survey ?地貌调查 topograp hic feature survey; geomorphologic s urvey地质调查 geologicsurvey经济调查 economic investigation; economic surve y水文地质调查hydrogeologic survey?土石成分调查sur vey of soil and rock position土石物理力学性质physical and mechanicalpropert ies of soil and rock土石分类classificationof soil a ndrock地基承载力bearing capacity of foundation;beari ng capacity of ground;bearing of subgrade 隧道围岩分级 classificationof tunnelsurrounding rock ?地质图测绘 survey and drawing of geological map; surveying and sketchingof geological map勘探exploration;prospecting ?挖探excavation prospecting钻探boring; exploration drilling物探geophysicalprospecting ?室内测试indoor test; laboratory test原位测试 in situtest ?静力触探static sounding; static probing; cone penetration test动力触探试验dynamic penetration test标准贯入试验 standard penetration te st ?区域地质regi onal geology工程地质 engineeringgeology?不良地质 unfavorable geology特殊地质 special geology ?工程地质条件engineeringgeologic; requiremen t;engineering geologiccondition ?气象资料 meteorological data冻结深度freezing depth地震基本烈度basic intensity of eart hquake;seismic basic intensity工程地质图engineering geologicalmap ?地层柱状图column diagram of strat um; graphic logs of strata;drill log of stratum ?洪水调查floodsu rvey河道调查 river course survey冰凌调查 ice floe survey; frazil ice survey汇水区流域特征调查surveyof catchment basin characteristics水文断面hydrologic sectional drawing;dydrologic section; hydrologic cross-section ?主河槽mainriver channel ?设计流速design current velocity ?设计高程;设计标高design elevation ?河流比降slopeof river; parable horiz on ofriver历史洪水位 historic floodlevel ?最高水位highestwaterlevel; HWL ?通航水位navigation water level; NWL 桥涵水文 hydrology of bridge and culvert ?水利半径hydr aulic radius桥前壅水高度 backwater height in front of bridge; top water levelinfront of bridge ?桥渡勘测设计 survey and design of bridge crossing水面坡度 slope ofwater surface水文测量hydrological survey ?泥石流流域catchment basin of debris flow分水岭watershed; dividing ridge汇水面积catchment area; water collecting area; drainage area ?洪水频率flood frequency设计流量design discharge设计水位design waterlevel ?施工水位construction level; constructionwater level; working water level 设计洪水过程线designed flood hydro graph容许冲刷allowable scour ?一般冲刷gener al scour ?局部冲刷 local scour; partial scour三、铁路测量railway survey?线路踏勘;草测routereconnaissance ?初测 preliminary survey定测 locationsurvey; alignment; final location survey导线测量traversing; traversesurvey ?光电导线photoelectric traverse ?地形测量 topographical survey?横断面测量cross leveling; cross-section survey; cross-section leveling线路测量 routesurvey; pro;longit udinal survey ?既有线测量;旧线测量 survey of existing railway ?线路复测 repetition survey of existing railway; resurvey of existing railway测量精度survey precision; precision ofsurvey?均方差;中误差 mean square error最大误差;极限误差maximum error; limiting error中线测量center line survey ?中线桩center line stake?加桩additional stake; plus stake外移桩 shift out stake; stake outward; offsetstake 水准点高程测量bench mark leveling ?中桩高程测量;中平center stakelevelin g?曲线控制点curve control point 放线setting-outof route; lay out of route交点intersection point副交点 auxiliary intersection point转向角 deflection angle ?分转向角 auxiliary deflection angle 坐标方位角plane-coordinate azimut h?象限角quadrantal angle经纬距 plane rectangular coordinate断链 broken chain投影断链projectionofbroken chain ?断高broken height ?铁路航空摄影测量;铁路航测 railway aerial photogramm etry铁路航空勘测 railway aerial surveying 航带设计 flight strip design; design of flight strip铁路工程地质遥感remote sensing of railway engineeri ng geology测段 segment of survey ?航测选线aerial surveying alignment航测外控点 field control point of aerophotogrammetry全球定位系统global positioning syst em; GPS像片索引图index of photography ?三角测量trigonometric survey; trian gulation精密导线测量precisetraversesurvey; accurate trav erse survey三角高程测量trigonometric leveling ?隧道洞外控制测量 ou tside tunnel control survey隧道洞内控制测量 in tunnel control surv ey; through sur vey ?隧道洞口投点horizontal point of tunnel portal;geodetic control point of portal loc ation of adit桥轴线测量 survey of bridge axis铁路选线 railway location; approximat e railway location;location of railwayroute selection平原地区选线location in plainregion; plain location越岭选线 location of mountain line; lo cation of line i n mountain regi on; location over mountain 山区河谷选线 mountain and valley regionlocation; location of line of in mountain and valley region?丘陵地段选线 hilly land location; location of line on hilly land工程地质选线engineeringgeoligic location of line线间距distance between centersof tracks; midway between tracks车站分布 distribution of stations ?方案比选 scheme pa rison; route alternative?投资回收期 repayment period of capital cost纸上定线 paperlocationof line缓坡地段 section of easy grade; section ofgentle slope ?紧坡地段section of sufficient grade ?非紧坡地段section ofunsufficient grade; section fo insufficien t grade ?导向线leading line; alignmentguiding line 拔起高度;克服高度 height of lifting; li fting height; ascent of elevation横断面选线 cross-section method of rail way location;location with cross-section method; cross-sectionme thod for location ofline展线extension of line; development ofline; line development展线系数coefficient of extension line; coefficient ofdevelopment line ?套线 overlappingline线路平面图 track plan;line plan线路纵断面图 track profile; lineprofile站坪长度 length ofstation site ?站坪坡度grade of station site控制区间 control section; controlling section?最小曲线半径minimumradius of curve圆曲线circular curve单曲线simple curve?缓与曲线transition curve; easement curve;spiraltransition curve ?缓与曲线半截变更率rate of easement curvature; rate of transition curve ?复曲线 pound curve同向曲线 curves of same sense; adjacent curvesin one direction反向曲线reverse curve; curve of oppositesense?夹直线 intermediate straightline; tangent between curves坡度 grade; gradient; slope人字坡doublespur grade限制坡度ruling grade; limiting grade?加力牵引坡度pusher grade; assisting grade最大坡度 maximum grade临界坡度 critical grade长大坡度longsteepgrade; long heavy grade动力坡度momentum grade均衡坡度balanced grade ?有害地段harmfuldistrict无害地段harmless district ?变坡点point of gradient change; breakein grade坡段grade section?坡段长度lengthof gradesection坡度差 algebraic difference between adjacent g radients竖曲线 verticalcurve分坡平段 levelstretch between opposite sign gradi ent ?缓与坡度slight grade; flat grade; easy grade?起动缓坡flat gradient for starting ?加速缓坡easy gradient forac celeration; accelerating grade坡度折减pensation of gradient; gradient pensation; g radepensation?曲线折减pensation ofcurve; curve pesation隧道坡度折减pensation of gradient in tunnel;pensation grade in tunnel 绕行地段detouring section; round se ction ?换侧;换边change side of doubl eline ?容许应力设计法 allowablestress design method破损阶段设计法 plastic stage design method?极限状态设计法limit state design method ?概率极限状态设计法;可靠度设计法probabilisatic limit state design method 地震系数法seismiccoefficient method四、路基 subgrade;road bed; formation subgrade岩石路基 rock subgrade ?渗水土路基permeab le soil sub grade; pervious embank ment ?非渗水土路基non-permeab le soil subgrade; impervious embankment特殊土路基subgrade of specialsoil 软土地区路基subgrade in softsoil zone; subgrade insoft; clay region ?泥沼地区路基subgrade in bog zone;subgrade inmorass region; subgr ade in swampland膨胀土地区路基;裂土地区路基 subgradein swellingsoil zone; subgrade in expansive soil region盐渍土地区路基subgrade in salty soil zone; subgradein saline soilregion多年冻土路基 subgrade inpermafro st soil zone ?特殊条件下得路基subgrade underspecial condition 河滩路堤 embankment on plain river beach ?滨河路堤 embankment on river bank水库路基subgrade in reservoir; embankmentcrossingreservoir ?崩塌地段路基subgrade inrock falldistrict; su bgradein collapse zone岩堆地段路基subgrade in rock deposit zone; subgrad ein talus zone; subgradeinscree zone滑坡地段路基subgrade in slide?岩溶地段路基;喀斯特地段路基 subgrade in karst zone洞穴地段路基subgrade in cavity zone;subgrade in cavern zone风沙地段路基 subgrade in windy and sa ndy zone; subgradein desert雪害地段路基subgrade insnow damage z one; subgrade insnow disaster zone泥石流地段路基subgrade in debris flow zone ?路基横断面 subgrade cross-section路基面 subgrade surface; formation 路基面宽度 width of thesubgrade surface; formationwidth ?路拱roa d c rown; subgrade crown路肩Road shoulder; subgrade should er路肩高程formation level; shoulderleve l?路堤embankment; fill ?路堑 cut; road; cutting半堤半堑 part-cut and part-fill section; cut and fill section ?基床subgrade bed;formation ?基床表层surfacelayer of subgrade bed; form ationtoplayer; surface layer of subgrade基床表层 bottom layer of subgrade; f ormation base lay er; bottom layerofsubgrade bed一般路基general subgrade; ordinary subgrade ?最小填筑高度minimumfill height of subgrade; minimumheight of fill ?临界高度 criticalheig ht基底 foundation base; base ?路堤边坡s ide slope of e mbankment; fill slope talus ?坡脚toe of side slope 护道berm ?取土坑borrow pit路堤填料embankmentfillmaterial; embankment filler; filling materi alof embankment?填料分类 cla ssification of filling material ?岩块填料 rock block filler; rock filler;rockfill ?粗粒土填料coarse-grainedsoil filler; coarse-grained soil fi ll细粒土填料fine-grainedsoil filler; fine-grainedso il fill?压实标准 pacting criteria相对密度 relative density ?压实系数 pact ing factor; pactingcoefficient ?最佳含水量optimum moisture content;best moisture content最佳密度optimum density;best density核子密度湿度测定 determinationof nuclear density-moi sture ?路基承载板测定determinationofbearingslab ofsubgrade预留沉落量reservesettlement; settlement allowance ?反压护道 berm wit hsuperloading; berm for back pressure; counter swelling berm?石灰砂桩 lime sandpile ?换土change soil; soil replacement爆破排淤blasting dischargingsedimentation; silt arrestingbyexplosion; dischargeof sedimentat ion byblasting ?抛石挤淤throwingstones to packing sedime ntation; packing sedimentation by throwing stones; packing up sedimentation by dumping stones 路堑石方爆破 rock cutting blasting; r ock blastingin cut ?定向爆破directional blasting ?浅孔爆破shallow hole blasting ?深孔爆破 deep holeblasting洞室药包爆破 chamber explosivepa ckageblastin g; chamher blasting 扬弃爆破abandoned blasting; abandonment blasting ?抛掷爆破pin-point blasting ?松动爆破blasting for loosening rock药壶爆破pot hole blasting裸露腰包爆破 adobe blasting; contact blasting路堑边坡 cutting slope; side slope of c ut?堑顶 top of cutting slope; top of cutting路堑平台 platform of cutting; berm in cutting弃土堆 waste bank; bankette;spoilbank ?五、防护工程Protection works挡土墙 retaining wall重力式挡土墙 gravity retainingwall 衡重式挡土墙 balanceweight retaining wall; gravity retaining wall with relieving platform; balanced typ eretaining wall?锚定板挡土墙 anchored retaining wall by tie rods; a nchored bulkhead retaining wall; anchored plate retainingwall?加筋土挡土墙 reinforced earth retaining wal l; rein forced soil retaining wall 锚杆挡墙 anchored boltretai ningwall; anchoraged retaining wall by tie rods 管柱挡墙 cylindricalshaft retaining wall沉井挡墙 caisson retaining wall抗滑桩 anti-slide pile; counter-sliding pile?护墙guard wall ?护坡 slope protection; revetment; pitching 排水沟weep drain; drainage ditch; drain ditch ?边沟;侧沟side ditch ?天沟gutter; overhead ditch; intercepting ditch吊沟 suspended ditch跌水 hydraulic drop ?截水沟 interceptin g ditch;catch -drain ?急流槽chute 排水槽drainage channel ?渗水暗沟bl ind drain渗水隧洞leak tunnel;permeable tunnel; drainage tunnel?渗井leac hing well; seepage well渗管 leaky pipe平孔排水 horizontal hole drainage反滤层 reverse filtration layer; inv erted filter;protective filter 检查井 inspection well; manhole 砂井;排水砂井sand drain ?隔断层 insul ating course;insulating layer透水路堤perviousembankment; permeable embankment渗水路堤immerseable embankment ?排水砂垫层 sand filled drainage layer;drainage sand blanker ?坡面防护slop e protection护岸revetment; shore protection ?导流堤diversiondike拦石墙 stone cut off wall; stone falling wall; buttree ?落石槽stone fa lling channel; trough for catching falling rocks ?柴排firewood raft; mattress; willowfascine?固沙造林stabilization for sands by affores tation ?挡风墙 wind-break wall ?防风栅栏wind break fence砂土液化 sand liquefaction六、桥梁 bridge中-活载CR-live loading; China r ailway standard loading?桥梁标准活载standard live load for bridge桥梁荷载谱 bridge load spectrum ?换算均布活载equivalent uniform live load ?设计荷载 design load ?主力princi pal load恒载 dead load土压力earth load ?静水压力hydrostatic pressure浮力 buoyancy列车活载 live load of train列车离心力centrifugalforce oftrain ?列车冲击力;冲击荷载impact forceoftrain ?冲击系数ceofficient of imp act人行道荷载 sidewalk loading附加力 subsidiary load; secondary load列车制动力brakin g force of train ?列车牵引力tractiveforce oftrain 风荷载wind load 列车横向摇摆力lateral swaying force of train?流水压力pressure of water flow冰压力 ice pressure冻胀力frost heaving force ?特殊荷载particular load船只或排筏得撞击力collision force of shipor raft ?地震力seismic force 地震烈度earthquake intensity地震震级 earthquake magnitude ?施工荷载constructional loading?荷载组合 loadingconbination 铁路桥 railway bridge公铁两用桥 bined bridge; bined highway andrailway bridge; bined rail-c um-road bridge跨线桥;立交桥overpass bridge; grade separation bri dge;flyover ?高架桥viaduct旱桥 dry bridge ?人行桥foot bridge; pedestrian bridge ?圬工桥masonry bri dge ?钢桥steel bridge?铆接钢桥rivet ed steelbridge ?栓焊钢桥bolted and welded steel bridge ?全焊钢桥 allwelded steel bridge ?摩擦结合式高强度螺栓highstrength frictio ngripbolt?扭剪式高强度螺栓torshe ar type high strength blot?螺栓示功扳手bolt wre nch with indicator混凝土桥concrete bridge钢筋混凝土桥reinforcedconcrete bridge ?预应力混凝土桥 prestressed conc rete bridge ?先张法预应力梁 preten sioned prestressedconcrete girder后张法预应力梁 post-tensioned prestressed concrete girder?部分预应力混凝土桥partiallyprestressed concretebridge结合梁桥posite beam bridge低高度梁 shallow girder?无碴无枕梁 girder without b allast and sleeper ?型钢混凝土梁;劲性骨架混凝土梁 girder with rolled steelsection encased in concrete; skeletonreinforced concrete girder简支梁桥 simply supported beam brid ge ?连续梁桥continuous beam bridg e?悬臂梁桥cantilever beam bridg e板桥 slab bridge空心板桥 hollow slab bridge板梁 plate girder ?工形梁I-beam箱形梁box girder槽形梁trough girder桁架truss拆装式桁架 demountable truss?刚架桥;刚构桥 rigid frame bridge ?斜腿刚架桥;斜腿刚构桥 strutted beam bridge;slant-leggedrigid frame bridge ?悬板桥;悬带桥stressedribbon bridge悬索桥;吊桥 suspension bridge斜拉桥cable-stayedbridge ?浮桥pontoon bridge; floating bridge;bateau bridge ?拱桥 arch bridge 固端拱;无铰拱fixed-end arch ?双铰拱two-hingedarch ?三铰拱three-hinged arch实腹拱 spandrel-filled arch; solid-spandrel arch 空腹拱 open-spandrelarch双曲拱 two-way curved arch; cross-curved arch?系杆拱;柔性系杆刚性拱tied arch?榔格尔式桥;刚性系杆柔性拱桥Langer bridge; flexiblearch bridge with rigid tie 洛泽式桥;直悬杆式刚性拱刚性梁桥Lohse bridge; rigid archbridge with rigidtie and vertical sespenders?尼尔森桥 Nielsen systen bridge尼尔森式骆泽梁桥;斜悬杆式刚性拱梁桥Nielsen type Lhse bridge; rigid archbridge withfighd tieand inclined suspenders活动桥 movable bridge竖旋桥 bascule bridge ?平旋桥swing bridge升降桥 lift bridge ?正交桥right brid ge?斜交桥skew bridge曲线桥 curvedbridge曲梁 curved beam特大桥super maior bridge ?大桥 major bridge?中桥mediumbridge小桥 minor bridge单线桥 single track bridge双线桥doubletrack bridge多线桥multi-trackbridge ?正桥; 主桥mainbrid ge ?引桥 approach spans 上承式桥 deck bridge半穿式桥;中承式half throughbridge; midheight deck bridge ?下承式桥 through bridge ?双层桥 double-deck bridge ?永久性桥 permanent bridge临时性桥;便桥temporary bridge跨径;跨度 span ?净跨 clearspan桥梁全长overall length of bridge ?桥下净空undernea thclearance主梁中心距 center to center distance between maingirder ?节间长度 panellength梁高depth of girder?拱度 camber?挠度 deflection ?节间panel ?锚跨;锚孔anchor span悬跨;吊孔suspendedspan?桥梁上部结构superstructure ?腹板web plate翼缘flange ?翼缘板 flange plate弦杆 chordmember腹杆web member斜杆diagonal member ?竖杆vertical member ?吊杆suspender hanger加劲杆 stiffener节点panelpoint ?节点板gussetpl ate?拼接板splice plate ?缀条 lacing bar缀板stayplate;tie plate ?侧向水平联结系lateral bracing ?横联sway bracing?制动撑架braking bracing?桥门架portal frame纵梁stringer横梁floor beam; transverse beam桥面系floorsystem ?端横梁 end floo r beam ?起重横梁 jacking floor beam 梁端缓冲梁 auxiliary girder for cont ro lling angle change应变时效strain ageing ?碳当量carbon equivalent钢丝steel wire ?钢丝束 bundled steel wires ?钢绞线steelstrand ?钢筋reinforcement; steel bar箍筋 stirrup纵向钢筋 longitudinal reinforcement ?弯起钢筋 bent-upbar ?架立钢筋erection bar?构造钢筋constructional reinforcement预应力筋tendon套管sheath梁腋 haunch?拱圈 arch ring ?拱肋 arch r ib ?拱顶 rach crown ?拱矢rise of arch起拱点 springing拱腹soffit?拱腹线intrados拱背钱 extrados桥塔bridge tower; pylon?索平面cable plane?缆索ca ble ?斜缆stay cable;inclined cable?吊缆 suspension ca ble ?索鞍cable saddle索夹 cable band; cable clamp锚座socket锚碇 anchorage明桥面open deck;ballastless deck; openfloor桥梁道碴槽ballast trough?道碴桥面 b allasted deck; ballasted floor桥梁护轨guard rail of bridge ?桥梁护木guard timber of bridge桥枕bridge tie;bridge sleeper?桥上人行道 sidewalk o nbridge步行板 foot plank?避车台 refuge platform ?伸缩缝expansion joint?正交异性板orthotropic plate?栏杆railing; handrail; handrailing泻水孔drainage opening直结轨道 track fastened directly to steel girders ?抗剪连接件;抗剪结合件shear connector?支座bearing固定支座 fixed bearing活动支座expension bearing; movable bearing ?平板支座plate bearing摇轴芝座 rocker bearing ?滚轴支座 roller bearing ?球面支座 spherical bear ing板式橡胶支座laminated rubber bearing盆式橡胶支座pot rubberbearing聚四氯乙烯支座poly-tetrafluoroedthylene bearing; PTFE bearing涡流激振wortex-excitedoscillation 弛振galloping ?颤振 flutter扰流板spoiler ?风嘴wind fairing ?桥梁自振周期 natu ral vibration period ofbridge浮运架桥法 bridge erection by floating架桥机架设法erection bybridge girder erectingequipment ?顶推式架设法erectionbyincrementalla unch ing ?拖拉架设法launching method 赝架式架设法erection with scaffoldin g?悬臂架设法 catilever erection; ere ction by protrusion悬臂灌注法cast-in-placecantilever construction; freecantileversegmental concreting with suspended formwork ?悬臂拼装法cantilevered assembling construti on; freecantilever erectionwith segments of precast concrete预制混凝土构件precast concrete units; precast conc rete members ?活动模架逐跨施工法 segmentalspan-by-span construction usingform traveller桥梁合龙closure就地贯注法cast-in-place method; cast-in-situ method活动吊篮travelling cradle顶进法 jack-in method旋转法施工;转体施工 erection by swing method ?液压式张拉千斤顶 hydraulic tensioning jack桥梁下部结构 substructure桥台abutment重力式桥台gravityabutment ?埋置式桥台buried abutment锚定板式桥台 anchor slab abutmentU形桥台U-shaped abutment耳墙式桥台abutmentwithcantileveredretaining wall?台身abutment body前墙front wall台帽 abutment coping ?翼墙 wing wall ?锥体护坡 quadrant revetment; trunca tedconebanking ?台后填方 fill ing behind abutment ?桥墩pier空心桥墩 hollow pier?实体桥墩 solid p ier ?重力式桥墩gravity pier?柔性桥墩flexible pier拼装式桥墩assembly pier; pier constructed with precast units ?制动墩braking pier柱式桥墩columnpier ?V形桥墩V-shaped pier圆端形桥墩round-ended pier圆形桥墩 circular pier?矩形桥墩 rectan gularpier排架式桥墩pile bent pier墩身pier body;pier shaft ?墩帽 pier coping围栏 railing around coping ofpieror abutment承台bearingplatform?破冰体iceapron; ice-breaking cutwater; ice guard ?地基foundation; foundation soil; subgrade加固地基 improved foundation; improvedground?天然地基natural foundation;natural groun d桥梁基础bridge foundation ?扩大基础spread foundation明挖基础open-cut foundation; open ex cavation founda tion ?沉井基础 opencaissonfoundation ?浮式沉井基础floating caissonfoundation沉井刃脚 cutting edge of open caisson ?围堰 cofferdam ?双壁钢围堰钻孔基础 double wall steel cofferdam bored foundation预制钢壳钻孔基础prefabricated steel shell bored foundation?泥浆套沉井法slurry jacket method forsinking caisson空气幕沉井法 air curtain methodfor sinki ng caisson沉箱基础pneumatic caisson foundation?管柱基础tubular column foundation桩基础 pile foundation?预制桩 precast pile ?就地灌注桩cast-in-place concr ete pile; cast-in-situ concretepil e?螺旋喷射桩auger injected pile ?摩擦桩friction pile 支承桩 bearing pile?钻孔桩 bored pile挖孔桩dug pile?钢桩steel pile钢管桩steel pipe pile钢板桩steel sheet pile ?板桩 sheet pile ?木桩 timber p ile ?钢筋混凝土桩reinforced concrete pile砂桩sand pile挤密砂桩sand conpaction pile流砂 quicksand; drift sand送桩pile follower试桩testpile?斜桩batter pile; raking pile; spur pile 护筒 pile casting重锤夯实法 heavy tamping method ?灰土换填夯实法 mothod of lime-soil replacement and tamping灌注水下混凝土underwater concreting; concreting with tremie method ?导流建筑物 regulating structure 丁坝;挑水坝spur dike ?顺坝 longitudinal dam河床铺砌 river bed paving码头wharf排架bent脚手架 scaffold?悬空脚手架 hanging s tage; hangin g scaffold七、铁路涵洞 railway culvert ?涵洞孔径 ap erture of cul vert?管涵pipe culvert 箱涵 box culvert ?拱涵 arch culvert?盖板涵 slab culvert无压力涵洞inlet unsubmerged culvert ?压力式涵洞 out let submerged culver t?半压力式涵洞 inlet submerged culvert明渠open channel; open ditch; open d rain倒虹吸管 inverted siphon潮汐河流 tidal river淤积silting; siltation流冰 icedrift铁路轮渡 railway car ferries ?轮渡站ferry station ?轮渡栈桥 ferry trestle bridge ?渡轮ferry boat轮渡引线;轮渡斜引道ferry slip ?八、铁路隧道railway tunnel ?山岭隧道mountain tunnel越岭隧道over mountain line tunnel ?水下隧道;水地隧道subaqueous tunnel;underwater tunnel ?地铁隧道subway tunne; underground railwaytunnel?浅埋隧道shallowtu nnel; shallow-depthtunnel; shallowburying tunnel 深埋隧道deep tunnel; deep-depthtun nel; deep burying tunnel单线隧道single track tunnel ?双线隧道double track tun nel多线隧道multiple track tunnel ?车站隧道station t unnel ?地铁车站 subwaystation; metrostation特长隧道superlong tunnel长隧道 long tunnel ?中长隧道mediumtunnel短隧道 short tunnel隧道群 tunnel group地铁工程subway engineering; metro engineering 洞口 tunne ladit; tunnelopening 隧道进口 tunnel en trance ?隧道出口 tunne lexit ?迎坡;正面坡 front slope ?洞门tunnel portal洞门框 tunnel portalframe端墙式洞门end walltunnel portal ?柱式洞门 post t unnel portal?翼墙式洞门wing wall tunnel portal 耳墙式洞门 ear wall tunnel portal台阶式洞门 bench tunnel portal ?正洞门orthonormal tunnel portal; straight tunnel portal?斜洞门skew t unn el portal ?明洞门open-cut-tunn elportal;galleryportal衬砌lining ?拱圈 arch?边墙sidewa ll ?仰拱invert; inverted arch ?底板floor ?整体式衬砌integral lining装配式衬砌 precast lining; prefabric ated lining ?模筑衬砌 moulded lining?洞口段衬砌liningof tunnel portal section偏压衬砌unsymmetrically loadinglining; eccentrically pressed lining 组合衬砌;复合衬砌posite lining?初期支护primary support ?二次衬砌secondary lining隔离层isolation layer?喷锚衬砌 shorcrete bolt lining下锚段衬砌;接触网锚段衬砌anchor-section lining ?挤压混凝土衬砌 extruding conc rete tunnel lining ?隔热层therma l insulationlayer明洞open-cut tunnel; tunnel without cover; gallery ?拱形明洞 arch open cut tunnel; arch tunnel without cover; arch gallery棚洞shed tunnel; shedgallery?路堑式明洞cut-type open cut tunnel;cut-typetunnel without cover; cut-type gallery ?半路堑式明洞 part cut-t ype open cut tunnel; part cut-type tunnel without cover;part cut-typ egallery?抗滑明洞anti-skid-typeopen cut tunnel; anti -skid-type tunnel without cover;anti-skid-typegallery ?盖板式棚洞 slab shed tunnel;slab shed gallery刚架式棚洞 framed shedtunnel;frame d shed gallery ?悬臂式棚洞cantileve rshed tunnel;cantilever shed ga llery ?隧道专家系统expert system of tunnel围岩surrounding rock围岩压力 pressure ofsurrounding rock。
Robustness Assessment of a Steel Truss Bridge
Robustness Assessment of a Steel Truss BridgeP. Olmati 1, F. Brando 2 and K. Gkoumas 11School of Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184, Rome, Italy; PH +39-06-44585.265; FAX +39-02-30136014; email: pierluigi.olmati@uniroma1.it; konstantinos.gkoumas@uniroma1.it 2Thornton Tomasetti, 51 Madison Ave, New York, ST 10010-1603; PH (917) 661-7800; FAX (917) 661-7801; email: FBrando@ABSTRACTThis study focuses on the robustness assessment of a steel truss bridge. Inthe first part, a brief overview of several robustness index es found in literature is provided, together with the principal approaches on the topics of structural robustness, collapse resistance and progressive collapse. In the second part, the extensively studied I-35W Minneapolis steel truss bridge is used as a case study for the application of a consequence-based robustness assessment. In particular, focus is given on the influence that the loss of primary elements has on the structural load bearing capacity.INTRODUCTIONStructural robustness is a research topic particularly relevant in the designand the safety assessment of both new and ex isting structures. The latter are prone not only to local failure due to accidental or man-made attacks, but also due to long term material degradation (e.g. corrosion), bad design or construction. Behind this attention, there is the increasing interest from society that cannot tolerate death and losses as in the past. This is more evident after:· recent terrorist attacks (a series of terror attacks in America and beyond, thedeadliest being the September 11, 2001 attacks);· recent bridge collapses due to deterioration or bad design or bad construction(for example, the De la Concorde overpass collapse in Montreal, 2006).· recent multiple hazard events from natural sources the most significant ofwhich was the 2011 earthquake, off the Pacific coast of T ōhoku.Steel truss bridges in particular, in their various forms, very commonworldwide, are now aged, not often optimally maintained, and need to be checked both for safety and serviceability.Considering what said above, aim of this paper is to apply to a steel trussbridge, a methodology for the robustness assessment that, among else, takes into account the consequences of unexpected actions on or unforeseen events (England et al. 2008) on structures, with a special focus on the effect of the loss of primary elements on the structural load bearing capacity.D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y C H A N G 'A N U N I VE R S I T Y o n 11/17/13. C o p y r i g h t A S C E .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .STRUCTURAL ROBUSTNESS AND PROGRESSIVE COLLAPSEA variety of terms have been used in literature, however, typicallyrobustness is defined as the “insensitivity of a structure to initial damage” and collapse resistance as the “insensitivity of a structure to abnormal events” (Starossek and Haberland, 2010). Similarly, ASCE 7-05 (2005), defines progressive collapse as the spread of an initial local failure from element to element, eventually resulting in collapse of an entire structure or a disproportionately large part of it. Starossek and Haberland (2010) focus on the differences of progressive and disproportionate collapse, concluding that the terms of disproportionate collapse and progressive collapse are often used interchangeably because disproportionate collapse often occurs in a progressive manner and progressive collapse can be disproportionate.A review of international research on structural robustness anddisproportionate collapse is provided in Arup (2011). Arangio et al. (2011) and Sgambi et al. (2012) provide a dependability framework adapted from the electronic engineering field, where dependability attributes are either related to structural safety or serviceability. Potential failure scenarios specific for bridges are provided in FHWA (2011), within a framework aiming at the resilience improvement. Giuliani (2012) identifies the design strategies for obtaining robustness, using prevention and mitigation measures. An additional aspect is the inherent uncertainty associated with actions and mechanical, geometric and environmental parameters cannot be ignored since they affect the structural response (Petrini and Ciampoli, 2012).Structural robustness assessment meth ods. A relevant issue related to the structural robustness evaluation, is the choice of appropriate synthetic parameters describing for ex ample the sensitivity of a damaged structure in suffering a disproportionate collapse.Eurocode 1 (EN 1991-1-7 2006) merely outlines the issue of structuralrobustness in a qualitative manner, stating that a structure should not be damaged by events to an extent disproportionate to the original cause. Several authors provide a review of methods for assessing structural robustness (Canisius et al. 2007; Starossek and Haberland, 2010; COST, 2011; Sørensen et al. 2012; Parisi and Augenti 2012; Cavaco et al. 2013). In what follows a non-ex haustive overview of approaches for the robustness assessment is provided, focusing on the proposed indexes.Ellingwood and Dusenberry (2005), link the progressive collapse probabilityP(F ) to a chain of probabilities, consisting in (i) the hazard of an abnormal event P(H ), (ii) the local damage as a consequence of this hazard P(D │H ), and (iii) the failure of the structure as a result of the local damage D due to H P(F │DH ).P(F )= P(F │DH )·P(D │H )·P(H )Baker et al. (2008) propose a probabilistic framework for the robustnessassessment, computing both direct risk, associated with the direct consequences of potential damages to the system, and indirect risk, corresponding to the increased risk of a damaged system. The latter corresponds to the robustness of the system, since it can be assumed as a risk from consequences disproportionate to the cause ofD o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y C H A N G 'A N U N I VE R S I T Y o n 11/17/13. C o p y r i g h t A S C E .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .the damage. In their approach, a robust system is considered to be one where indirect risks do not contribute significantly to the total system risk.IndDir DirRob R R R I +=The index takes values from 0 (if all risk is due to indirect consequences) to1 (if there is no risk due to indirect consequences, thus, the system is completely robust).Biondini and Restelli (2008) propose a robustness index (ρ) associated withthe displacements of the system:dos s =ρWhere s 0 is the displacement vector, ║·║ denotes the Euclidian norm, and the subscript “0” and “d” refer respectivelly to the intact and damage state of the structure.Izzuddin et al. (2008) propose a multi-level framework for the progressivecollapse assessment of building structures subject to sudden column loss. The proposed assessment framework utilizes three main stages: (i) nonlinear static response of the damaged structure under gravity loading; (ii) simplified dynamic assessment to establish the maximum dynamic response under sudden column loss; and, (iii) ductility assessment of the connections. Within this framework, they propose that the single measure of structural robustness is the system pseudo-static capacity, that is the maximum value of the nonlinear static resistance for which the resulting maximum dynamic displacement, is less than or equal to the ductility limit. The comparison of the latter against the applied gravity loading establishes the required limit state.Cavaco et al. (2013) consider robustness as the measure of degree ofstructural performance lost after damage occurrence, and propose the following metric (R d : Robustness Index).∫===1)(d d d dxx f RWhere R d indicates the area above the curve defined by the normalized structural performance f (given by the ratio between the structural performance on the intact and damage states), subjected to a normalized damage d (given by the ratio between actual and maximum possible damage).Nafday (2011) discusses the usefulness of consequence event design, forex tremely rare, unforeseen, and difficult to characterize statistically events (black swans). In this view, the author, with reference to truss structures, proposes anD o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y C H A N G 'A N U N I VE R S I T Y o n 11/17/13. C o p y r i g h t A S C E .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .additional design phase that focuses on the robustness, the damage tolerance and the redundancy of the structure. This proposed metric consequence factor C f i for the i-th member is based on the evaluation of the determinants of the normalized stiffness matrixes for the undamaged and damaged structure and is defined as:N i Ni f K K C =Where |K N | is volume of the geometrical shape which is spanned by the vectors of matrix K N for ‘intact condition’ and |K N i | is similar volume under ‘damaged condition’ i.e., after the removal of the i-th member.The robustness, ultimate strength and progressive collapse susceptibility ofsteel truss structures and bridges has been the subject of recent research. Xu and Ellingwood (2011) apply a method of energy-based nonlinear static pushdown analysis on steel frames. Gerasimidis et al. (2012) apply a methodology loosely based on the alternate load path method and obtain robustness measure for geometric irregular steel frames that have the advantage of being comparable. Choi and Chang (2009), focus on the vertical load bearing capacity of truss structures, using a sensitivity index that accounts for the influence of a lost element to the load bearing capacity. Miyachi et al. (2012) focus on how the live load intensity and distribution affect the ultimate strength and ductility of different steel truss bridges, similar to the one considered in this study. Malla et al. (2011) conduct nonlinear dynamic analysis for the progressive failure assessment of bridge truss members, considering their inelastic post-buckling cyclic behavior. Saydam and Frangopol (2011) use FE skills to investigate the vulnerability, redundancy and robustness of truss bridges, taking into account the stochastic time-dependent deterioration of the structure.What emerges from the above is the difference in the approaches andindexes in literature towards the structural robustness quantification. An overview is provided in Table 1.Table 1. Overview of robustness approaches. Robustness Approach Index- property of the structure or property of the structure andthe environment- static or dynamic- linear or non-linear - deterministic or probabilisticMember consequence factor and robustness assessment. Focusing on skeletal structures (e.g. trusses), current member-based design in structural codes does not explicitly consider system safety performance during the structural design, while the level of safety in new designs is usually provided on the basis of intuition and past experience (Nafday, 2008). On the other hand, the Ultimate Limit State (ULS) of the Performance-Based Design (PBD) requires that individual structural members are designed to have a resistance (R) greater than the load action (E), where both R and E are probabilistically characterized (Stewart and Melchers, 1997).D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y C H A N G 'A N U N I VE R S I T Y o n 11/17/13. C o p y r i g h t A S C E .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .The member-based design is summarized in the following design expression,valid for a single structural member:0E R undamaged d undamaged d ≥−(1)where R d undamaged and E d undamaged are the design values respectively of the resistance and of the solicitation (EN 1990 2002) in the undamaged configuration of the structure. Concerning the commonly implemented standards this equation is not respected with a probability of 10-(6÷7). The method applied here aims to introduce an additional multiplicative coefficient in the first term of the Eq. (1): this is identified as the member consequence factor (C f ), takes values within a range from 0 to 1, and quantifies the influence that a loss of a structural element has on the load carrying capacity. Essentially, if C f tends to 1, the member is likely to be important to the structural system; instead if C f tends to 0, the member is likely to be unimportant to the structural system. C f provides to the single structural member an additional load carrying capacity, in function of the nominal design (not ex treme) loads. This additional capacity can be used for contrasting unexpected and extreme loads.0E R *)C 1(undamagedd undamaged d scenario f≥−− (2)Nafday (2011) provides Eq. (2) in a similar manner, with the only differencebeing on the range mean of C f that is the inverse of the proposed one, so the first term of Eq. (2) is multiplied directly by C f . Thus, in this study the equation proposed by (Nafday 2011) has been slightly revised in order to fit with the here proposed expression of the C f - see both Eq. (2) and Eq. (3). The structure is subjected to a set of damage scenarios and the consequence of the damages is evaluated by the consequence factor (C f scenario ) that for convenience can be easily ex pressed in percentage. For damage scenario is intended the failure of one or more structural elements.Considering the above, robustness can be ex pressed as the complement to100 of C f scenario , intended as the effective coefficient that affects directly the resistance - see Eq. (2). C f scenario is evaluated by the maximum percentage difference of the structural stiffness matrix eigenvalues of the damaged and undamaged configurations of the structure.N 1i un idami un i scenario f100)(max C−=⎟⎟⎠⎞⎜⎜⎝⎛λλ−λ= (3)where, λi un and λi dam are respectively the i-th eigenvalue of the structural stiffness matrix in the undamaged and damaged configuration, and N is the total number of the eigenvalues.The corresponding robustness index (R scenario ) related to the damage scenariois therefore defined as:D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y C H A N G 'A N U N I VE R S I T Y o n 11/17/13. C o p y r i g h t A S C E .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .scenario fscenario C 100R −= (4)Values of C f close to 100% mean that the failure of the structural membermost likely causes a global structural collapse. Low values of C f do not necessarily mean that the structure survives after the failure of the structural member: this is something that must be established by a non-linear dynamic analysis that considers the loss of the specific structural member. A value of C f close to 0% means that the structure has a good structural robustness.Some further considerations are necessary. The proposed method forcomputing the consequence factors should not be used 1) for structures that have high concentrated masses (especially non-structural masses) in a particular zone, and 2) for structures that have cable structural system (e.g. tensile structures, suspension bridges).The first issue is related to the dynamic nature of a structural collapse, sinceEq. (3) does not take into account the mass matrix of the system that is directly related to the inertial forces. It is possible to accept this limitation only if the masses are those of the structural members, thus distributed uniformly. Moreover there is no way to consider any dynamic magnification phenomena with Eq. (3).The second issue is related to the geometrical non-linearity of cablestructures. For such structures the stiffness matrix is a function of the loads, something not accounted for in the elastic stiffness matrix. Moreover for the nature of the elastic stiffness matrix, eventual structural dissipative behaviors and non-linear resistive mechanisms (e.g. catenary action) are not taken into account.In the authors’ opinion the above limitations can be accepted if the desiredoutcome is a non-computational ex pensive method, since the C f value provides an indication of the structural robustness in a quick and smart manner. Thus, the C f as ex pressed in Eq. (3) can be used primarily as an index to establish the critical structural members for the global structural stability, or to compare different structural design solutions from a robustness point of view. The latter implementation of C f can be helpful for the robustness assessment of complex structures, such as wind turbine jacket structures (Petrini et al. 2010), since it provides an indication on the key structural elements that in a complex structure are of difficult evaluation.The method applied in this study aims at increasing the collapse resistance ofa structure, by focusing on the resistance of the single structural members, and accounting for their importance to the global structural behavior consequently to a generic ex treme event that can cause a local damage. Moreover, the method is particularly helpful for unpredictable events that by definition are not possible to take into account in the design phase. This does not mean that the collapse resistance is accounted only for the single member resistance, because the authors intend, as a design philosophy, to increase the resistance of the single members in addition to the structural stability analysis that provide the assessment of the global structural behavior.Thus, this method neglects the “load characterization” of the ex treme loadsince it is considered unpredictable, and it is complementary to the so-called threat independent stability analyses (DoD, 2009).D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y C H A N G 'A N U N I VE R S I T Y o n 11/17/13. C o p y r i g h t A S C E .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .APPLICATION ON A STEEL TRUSS BRIDGEThis section focuses on the robustness assessment of a steel truss bridgeusing the member consequence factor method. The bridge used as a case study is the I-35 West Bridge in Minneapolis. The I-35 West Bridge was built in the early 1960s and opened to traffic in 1967. The bridge spanned across the Mississippi River, Minneapolis and it was supported on thirteen reinforced concrete piers and consisted of fourteen spans. Eleven of the fourteen spans were approach spans to the main deck truss portion. The total length of the bridge including the approach and deck truss was approximately 580 meter (1,907 feet). The length of the continuous deck truss portion which spanned over four piers was approx imately 324 meter (1,064 feet). The elevation of the deck truss portion of the bridge is shown in Figure 1.Figure 1. Bridge overview (edited from MnDOT).The deck truss portion of the bridge was supported on a pinned bearing atPier 7 and roller bearings at the other three supports. The main bridge trusses were comprised of built-up welded box and I-sections sandwiched by gusset plates at each panel point. The collapse which occurred on August 1st 2007 was probably due to a combination of the temperature effect, roller bearings condition, and increased gravity loads on the bridge prior to collapse. For this functionally non-redundant bridge the initial buckle at the lower chord member close to the pier and local plastic hinges in the member resulted in global instability and collapse (Malsch et al. 2011).The bridge has been thoroughly studied by Brando et al. (2010) focusing onthe issues of redundancy, progressive collapse and robustness. Studies have been conducted in order to assess the effect of the collapse of specific structural components (Crosti and Duthinh, 2012), while Crosti et al. (2012) performed non-linear dynamic analysis on specific damage scenarios.For computing the consequence factors and the robustness index of thestructure for the selected damage scenarios a FE model of the structure is necessary. Figure 2 shows the three-dimensional FE model of the I-35 West Bridge built using the commercial FE solver Sap2000® (Brando et al. 2010).Both shell and beam finite elements are used in the FE model. The bridgesuperstructure and both the deck girders and beams are built using beam elements, while, the concrete deck is modeled using shell elements. Moreover, contact links connect the deck with both the deck girders and beams. In accordance to the original blueprints of the I-35 West Bridge (MnDOT 2012), standard and non-conventional beam cross sections are implemented in the model.3 Span Continuous Trusses – 1,064 ftPier 7Pier 6NorthPier 8 Pier 5D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y C H A N G 'A N U N I VE R S I T Y o n 11/17/13. C o p y r i g h t A S C E .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .Figure 2. 3D FE model of the I-35 West Bridge.From this model a simplified (plane) FE model is extracted and is adoptedfor computing the structural stiffness matrix in both the damaged and undamaged configurations. This choice has mostly to do with computational challenges in computing the stiffness matrix for the full model. Regarding the structural decomposition of complex structures it is possible to refer to the Bontempi et al. (2008) and Petrini and Bontempi (2011).The ex pression of the consequence factor provided by Eq. 4 refers to theeigenvalues of the elastic stiffness matrix. The choice to use a simplified model is also justified and feasible since Eq. 4 is independent from the mass of the structure. Eq. 4 is also independent from the loads, so the loads in the FE model are not considered. The concrete deck is only simply-supported by the bridge superstructure, so the concrete deck is not considered in the analyses and it is omitted in the model, consequently, the contact links are deleted as well. The deck girders and beams are also omitted since they do not have a strong influence to the load bearing capacity of the bridge. The two trusses of the bridge superstructure are similar and connected by a transverse truss structure, so the analyses focus on a single truss; at this point one plane truss is obtained from the three-dimensional model, in order to have a two-dimensional FE model, implemented for computing the stiffness matrix in both the damaged and undamaged configurations.Concluding, only a single lateral truss of the bridge is considered, and a setof damage scenario is selected (Figure 3).Figure 3. Lateral truss of the bridge and selection of damage scenarios.The damage scenarios for this application are not cumulative, so only asingle member is removed from the model for each damage scenario. In this6721345D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y C H A N G 'A N U N I VE R S I T Y o n 11/17/13. C o p y r i g h t A S C E .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .application the scenarios chosen focus on the area recognized as initiating the collapse according to forensic investigations (Brando et al. 2013).With the aim of increasing the structural robustness of the bridge, and inorder to test the sensitivity of the method proposed, an improved variation of the structural system is considered. In this case (Figure 4) the updated bridge truss is a hyper-static steel truss structure.The results of both the original and the enhanced structural schemes, underthe same damage scenarios, are shown in Figure 5.Figure 4. Updated lateral truss of the bridge and selection of damage scenarios.The proposed robustness index (based on the member consequence factor C f )captures both the lack of robustness of the I-35 W Bridge, and its robustness enhancement as a consequence of increasing the redundancy of the structure.Figure 5. Damage scenario evaluation.Generally speaking, it can be observed that the case-study bridge shows alow robustness index . This is due to the fact that it is (internally) statically determined. From the analysis of the bridge in its original configuration and for the chosen damages configurations, a consequence factor of 0.77 has been computed for67213453759424535382363415855656277204060801001234567R o b u s t n e s s %Damage ScenarioCf maxRobustness8387885360866417131247401436204060801001234567R o b u s t n e s s %Damage ScenarioCf maxRobustnessD o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y C H A N G 'A N U N I VE R S I T Y o n 11/17/13. C o p y r i g h t A S C E .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .the DS7 and, consequently, a robustness index of 0.23 is obtained.The consequence factors obtained by the analysis of the various damagescenarios can be used, as shown in Eq. (2), for the re-sizing of the structural elements In this case the structural scheme of the bridge does not change with respect to the original one and this option can be considered as a local (element-based) improvement of the structural system. In alternative, the consequence factor can be used only as a robustness performance index, without making use of Eq. (2). More than one structural configuration can be examined in order to assess which is the best solution in terms of C f . An ex ample of this strategy is given in the application of Figure 4. In the examined case the consequence factor obtained by the DS7 decreases from 0.77 to 0.36; this appreciable result is probably due to the position of the failed element in the DS7, which, being a lower element of the truss plays an important role in the load carrying capacity of the original system. Generally speaking, the redundant bridge configuration (Figure 4) shows certain insensitivity to the internal damage scenarios (number 1, 2 and 3). This option can be considered as a global improvement of the structural system. The previous strategies can be adopted simultaneously: i) the designer-sizing of the elements can be affected by the robustness index by using Eq. (2); and ii) the structural scheme can be changed (also on the basis of the C f values) in order to increase the robustness. In this case, both local and global solutions provide improvements to the structural system.CONCLUSIONSome brief considerations can be made on the findings for the specificapplication. The proposed metric seems to be promising for the robustness assessment of a complex structural system, and could be used as tool for localizing critical areas in the design, analysis and investigation phases. Furthermore, comprehensive assessments that consider a larger set of damage scenarios can be performed by implementing this method using appropriate search heuristics. Limitations of the implemented method arise from the fact that in the analyses a reduced structural system is used. In this sense, findings can be considered as merely preliminary, and have to be verified using complete models and advanced numerical analyses. Finally, an improved expression of the C f could be obtained by considering both the stiffness and mass matrix of the structure and the plasticity of the elements.REFERENCESfor dependability". Struct. Infrastruct. E., 7(1), 75-86.Arup (2011) Review of international research on structural robustness anddisproportionate collapse , London: Department for Communities and Local Government.ASCE 7-05 (2005) Minimum design loads for buildings and other structures ,American Society of Civil Engineers (ASCE).robustness”. Struct. Saf . 30(3),253–267.D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y C H A N G 'A N U N I VE R S I T Y o n 11/17/13. C o p y r i g h t A S C E .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .。
贝克休斯的关于裸眼封隔器的材料
MPas Installations Details
Max Temperature Max Dogleg Severity Max Measured Depth Max Total Vertical Depth Max Deviation Max Deviation at Packer Max Mud Weight
MPas™ New Era Open Hole Packer
© 2005 Baker Hughes Incorporated All rights reserved.
MPas™ Packer Design
Body
Elastomer Packing Element Core
Kevlar Reinforcement
The oil reactive section utilizes oleophillic polymers that absorb hydrocarbons into the matrix. This process is a physical uptake of the hydrocarbon which swells, lubricates and decreases the mechanical strength of the polymer chain as it expands.
© 2005 Baker Hughes Incorporated All rights reserved.
ShiftRinuSgne-tBInPaolPasonistciieotinSonleeve (Initiating Setting)
MPas™ Packer Specifications
Size : 5-1/2” Maximum Packer O.D. : 8.03” / 8.075” Minimum ID : 4.592” – 4.802” Setting Mechanism: Hydrostatic Cylinder Collapse Rating: 10,700 psi (80ksi MYS) Mandrel Burst Rating: 8,400 psi (80ksi MYS) Mandrel Tensile Strength: 261,000 # (80ksi MYS) Setting Tool Required: Workstring Shifting Tool Maximum Ovality Tested (to date): 8-1/2” x 12”
各国管道标准
Liquid Flow in Closed Conduits Using Transit-Time Ultrasonic Flow Meters, Measurement of
ANSI/ASME MFC-6M-1998
用涡流流量计测量管道中的液体流量
Fluid Flow in Pipes Using Vortex Flow Meters, Measurement of
ANSI/ASME
公共用离开地面的管道工程装置的支架
Supports for Off-the-Floor Plumbing Fixtures for Public Use
ANSI/ASME A13.1-1996
管道系统识别图解
Scheme for the Identification of Piping Systems
ANSI/ASME
管道系统中的气隙
Air Gaps in Plumbing Systems
ANSI/ASME
卫生管道配件
Plumbing Fixture Fittings
ANSI/ASME
卫生管道用污水管配件
Plumbing Fixture Waste Fittings
ANSI/ASME
抽水马桶与小便池水的釉瓷管道装配和水压要求
ANSI/ASME
管道系统用挡火物系统和设备的安装工资格鉴定
Qualification of Installers of Firestop Systems and Devices for Piping Systems
ANSI/ASME
卫生管道系统中使用的手动直角转弯截止阀
Manually Operated, Quarter-Turn Shutoff Valves for Use in Plumbing Systems
布达乔治安全系统:Building Integration System (BIS) - 基本套餐
uIntegration of Bosch and third party systems through deployment of OPCu All relevant information in one user interface u Fully embedded access controlu Full event log for forensic investigations uScalable system that grows with your needsThe Building Integration System (BIS)BIS is a flexible, scalable security and safetymanagement system that can be configured to handle an enormous spectrum of operational scenarios.It contains a huge range of applications and features which enable both the integration and coupling as well as the monitoring and control of all technical building systems.This new version builds on Bosch's many years of experience in management systems and was considerably influenced by the following market trends:•Increasing complexity of technical building equipment The increasing complexity of technical equipment inside buildings requires a powerful management system which combines the most varied functions (e.g. fire and intrusion alarm systems, access control,video systems and building automation... etc.) in the best possible way. The OPC standard enables BIS to process and share information efficiently with a huge variety of hardware devices and other sources.•Using new technologies and standardsWhile the strict regulations in the field of security technology ensure a high degree of reliability in security matters, they hinder the integrated use of new technologies from the IT world. BIS hassucceeded in harnessing the benefits of non-security-based technologies (e.g. OPC, CAD, web) and harmonizing them with the world of security technologies.•Need for complete solutionsFacility managers and integrators are demanding a single building-management solution that is nevertheless able to integrate all their security subsystems.System overviewThe Building Integration System is a versatile product made up of a basic package plus various optional components (also known as Engines) based on a common software platform. The engines can becombined to tailor building management systems to detailed requirements.These main components are:•Automation Engine •Access Engine •Video Engine •Security Engine* not available in all countriesThese engines are described in greater detail in separate datasheets.FunctionsSystem architectureThe BIS Engines provide fire and intrusion detection,access control, video surveillance plus the monitoring of HVAC and other vital systems.BIS is based on a performance-optimized multi-tier architecture especially designed for use in Intranet and Internet environments.Subsystems are connected via the well-established,world-wide OPC standard. This open standard makes it easy to insert BIS into existing OPC-compliant subsystems.Optionally, individual BIS systems can cooperate by providing data to, or consuming data from, other BISsystems. The result is a Multi-server BIS system.1. A BIS consumer server with workstations and router in a local area network (LAN)2.Wide area network (WAN)3.BIS provider servers with workstations and routers in local area networks (LAN)Organizational structure and configurationA number of automatic functions and easy-to-use tools make configuration installer-friendly, saving time and expense.Hierarchical location trees can be created by theimport of existing CAD data containing layers, named views and detector locations. Zooming and panning allow rapid navigation through the building.The user interface is web -based using dynamic HTML pages. Default pages for different screen resolutions and formats are included in the installation software,and the default pages can easily be customized using a standard HTML editor.BIS automatically detects the monitor resolution and provides the appropriate user interface.OperationThe system’s main task is to operate as the alarm-monitoring and control center for the various security systems within a site. Its graphical interface isdesigned to help the operator grasp the extent and urgency of an occurrence quickly, and to take promptand effective action.The heart of the system, the State Machine, monitors all incoming events and operator requests and, if desired, can take actions prescribed by user-defined rules or Associations, thus unburdening the operators.System securityAES encryption between BIS central server andworkstations provides additional security in addition to configurable user-access rights. If PCs within a corporate network are to be used as clientworkstations then enhanced security can be achieved by restricting operators to specific workstations or IP-addresses.Basic packageThe Building Integration System basic packageprovides many features used in common by the various Engines.•Customizable device condition counters to provide an overview of the condition of subsystems across the entire BIS system•Message processing and alarm display•Alarm queue with up to 5000 simultaneous alarmevents and detailed alarm information•Fixed assignment of operators to workstations for higher security•State machine for automated event and alarm handling.•Web-server-based platform allows client workstations to connect to BIS via just the Internet Explorer •Direct support for location maps in standardAutoCAD DWF vector format reduces configurationeffort.•Changes to architecture within a graphic (new walls,moving a door, etc.) can be implemented without changing the BIS configuration, simply import a new plot file.•Automated workflows between operators, with message broadcasting and customizable escalation paths•Huge library of standardized detector icons in standard vector format including color, event and control definitions•Direct control and monitoring of detectors via the context menus of their icons in the location maps •Direct control and monitoring of detectors via the logical tree-structure (e.g. building – floor – room) of a site, with hyperlinks to photos, manuals,instructions•Location tree generated automatically from the "named views" within the AutoCAD graphic•Action management for automatic and manual control into connected subsystems and their peripherals•Device overview for all connected subsystems, and their peripherals (detectors) and internal virtual devices (operator, server, ...) in the form of a tree structure with detailed information about address,status, type, location and notes. Control theperipherals via the context menus of their tree nodes.•Ability to compartmentalize the managed site into autonomous Divisions, and to restrict operators to the control of specific Divisions.•Ability to provide specific information to the operator in the form of free-form “miscellaneous” hypertext documents, including text, bitmaps, video images,etc.•Highly configurable operator access rights for monitoring and control of subsystems and their peripherals•Event log to ensure all events are completely documented (including messages received and actions taken)•Reporting services to quickly create reports from the event log•Linking and embedding of OPC servers from any computer in the network •Online HelpAction plans and location mapsBIS amplifies standard alarm-handling by its ability to display action plans and location maps, including graphical navigation and the alarm-dependentvisualization of layers inside those maps. This ensures optimal guidance to operators especially in stress situations, such as fire or intrusion alarms.Alarm-dependent action plans or workflows provide detailed event-dependent information such as standard operating procedures, live images, control buttons, etc. to the operator. Simply create and assign one action plan to each possible alarm type in your system, e.g. fire alarm, access denied, technical alarms, etc.With the deletion of an alarm message an unmodifiable snapshot of the displayed action plan is attached to the event log. This ensures accountability by providing a trace of all steps performed by the operator duringthe alarm response.•Location maps are a visualization of premises e.g.floors, areas or rooms, based on the popular AutoCAD vector-graphics format. Detectors and other devicesare represented by colored, animated icons thatprovide direct control via their context menus. In the case of an alarm the system zooms automatically tothe location in the map where it was triggered.• A location tree provides entry points to the locationmap and its graphical navigation functions (pan,zoom).•Alarm-dependent layer control allows the display ofadditional graphical information for specificsituations, e.g. escape routes in case of fire alarms. BIS optional accessoriesThe optional features listed below can be added to the BIS system to meet specific customer requirements. They are usable with all the BIS Engines (Automation, Access, Video and Security Engine).Alarm management packageThis package extends the standard alarm-handling of your BIS system by some additional features: Message distribution allows the definition of escalation scenarios which are activated automatically when an operator or operator group fails to acknowledge an alarm message within a defined period. BIS will then forward the message automatically to the next authorized operator group. The timer feature allows the setup of time schedules which can be used to perform automatic control commands, such as closing a barrier at 8:00 pm, as well as for time-dependent redirection of alarm messages, e.g. within time period 1 show message tooperator group 1 else to operator group 2.The operator alarm feature allows an operator to trigger an alarm manually from the location tree, for example, if informed by telephone of a dangerous situation. Such manual alarms are processed in the same way as those triggered by a detector: that is, the associated documents are displayed and all steps taken are recorded in the event log.The application launcher allows the invocation of non-BIS applications by the system based upon predefined conditions, e.g. alarms or timers. A typical application of this would be for an automatic, scheduled system backup.Building Integration System in figuresParts includedWhen ordered as Installation Media in Box the box contains:ponents1BIS Installation medium with software and installation manuals as PDF1Quick installation guide (printed)When downloaded (Version 4.0 and later) the online documentation is contained in the download.The basic package includes the following licenses: ponents1Operator client license1Division licenseTechnical specificationsMinimum technical requirements for a login or connection serverMinimum technical requirements for a client computerOrdering informationBIS is available in the following languages:•DE = German•EN = English•ES = Spanish•FR = French•HU = Hungarian•NL = Dutch•PL = Polish•PT = Portuguese•RU = Russian•TR = Turkish•ZH-CN = Simplified Chinese•ZH-TW = Traditional ChineseA BIS basic license is required when setting up a new systemBIS 4.1 Basic LicenseLicense for the use of the software as downloadedfrom the website. No physical parts are delivered andthe user documentation is contained in the download.Order number BIS-BGEN-B41BIS 4.1 Installation Media in BoxBox contains the installation medium for all languagesand the Quick Installation Guide.Order number BIS-GEN-B41-BOXBIS 4.1 Alarm Management PackageLicense for the addition to BIS of the feature specifiedOrder number BIS-FGEN-AMPK41BIS 4.1 additional 1 Operator ClientLicense for the addition to BIS of the feature specifiedOrder number BIS-XGEN-1CLI41BIS 4.1 additional 1 DivisionLicense for the addition to BIS of the feature specifiedOrder number BIS-XGEN-1DIV41BIS 4.1 Multi-Server Connect per ServerLicense for the addition to BIS of the feature specifiedOrder number BIS-FGEN-MSRV41BIS Upgrade from 3.0 to 4.xLicense for an upgrade between the versionsspecified.Order number BIS-BUPG-30TO40BIS Upgrade from 2.x to 4.xLicense for an upgrade between the versionsspecified.Order number BIS-BUPG-2XTO40BIS 4.1 BVMS ConnectivityLicense for the connection between one BIS and oneBVMS installationOrder number BIS-FGEN-BVMS41Represented by:Americas:Europe, Middle East, Africa:Asia-Pacific:China:America Latina:Bosch Security Systems, Inc. 130 Perinton Parkway Fairport, New York, 14450, USA Phone: +1 800 289 0096 Fax: +1 585 223 9180***********************.com Bosch Security Systems B.V.P.O. Box 800025617 BA Eindhoven, The NetherlandsPhone: + 31 40 2577 284Fax: +31 40 2577 330******************************Robert Bosch (SEA) Pte Ltd, SecuritySystems11 Bishan Street 21Singapore 573943Phone: +65 6571 2808Fax: +65 6571 2699*****************************Bosch (Shanghai) Security Systems Ltd.203 Building, No. 333 Fuquan RoadNorth IBPChangning District, Shanghai200335 ChinaPhone +86 21 22181111Fax: +86 21 22182398Robert Bosch Ltda Security Systems DivisionVia Anhanguera, Km 98CEP 13065-900Campinas, Sao Paulo, BrazilPhone: +55 19 2103 2860Fax: +55 19 2103 2862*****************************© Bosch Security Systems 2015 | Data subject to change without notice 181****2875|en,V7,30.Nov2015。
平台部件翻译
VOLTAGE(电压)WEIGHT OR POWER(重量或力量)INSTRUMENTATION FUNCTION IDENTIFICATION LETTERS(仪器操作识别码)e.g PRESSURE DIFFER器上压差指示器,简称PDIC)PLANT/PLATFORM IDENTIFIER(设备/平台的标志符)e.g 42 or 50. ADDITl.e.'HIGH'AND'LOW'ALARM SETTINGS UP TO LETTERS PER.H=HIGH OR OPEN.L=LOW OR CLOSED.HH=HIGH责:用缩写字母设立高低警告牌.H表示高或开放的.L表示低或关闭的.HH代表很高.LL代表很低.IDSUFFIX(相同工具的下标)e.g A,B OR C. SYSTEM CODE FOLLOWED BY INSTRUMENT TAG NUMBER TWO DIGTHREE DIGIT SEQUENTIAL TAG NO.STARTING AT 001 FOR EACH SYSTEM(工件的标记放在设备标记的后面连在3的后面,工件的编号从001开始)INSTRUMENT INDEX(设备编号):51-PDT-12123A TRANSMITTER(传器);51-PDAH-12123 ALARM(警告器).POWER(电源) TYPICAL TAG NUMBER(典型的缩写符号)MOISTURE(潮湿)USER'S CHOICE(用户的选择)USER'S CHOICE(用户的选择)PRESSURE(压力)QUANTITY OR EVENT(数量或结果)MEASURED OR INITIATING VARIABLE(测量或初始变量)CONDUCTIVITY (ELECTRICAL)(电导率)FIRST LETTER(首字母)HAND (MANUALLY OPERATED)(手动操作)CURRENT(ELECTRICAL)(电流)SEQUENTIAL CONTROL OR TIME(连续控制或按时控制)LEVEL(标准,水平,级别)SEQUENTIAL CONTROL OR TIME(连续控制或按时控制)LEVEL(标准,水平面,级别)UNCLASSIFIED(不分类)VIBRATION(振动)NUCLEAR RADIATION(放射性辐射)SPEED OR FREQUENCY(速度或频率)TEMPRATURE(温度)DIFFERENTIAL(微分)BURNER FLAME(烈火)ANALYSER(分析者)DENSITY(MASS)OR SPECIFIC GRAVITY(密度或比重)EMERGENCY SHUTDOWN(因突发事故而停工)FLOW RATE(流量)GAUGING POSITION OR LENGTH(测量位置或长度)RATIO(FRACTION)(比率)SAFETY(安全设备)SCAN(扫描)INTEGRATE/TOTALIZE(总计)MODIFIER(复核者) SAMPLE(样品)POSITION(位置)MULTIVARIABLE(多元的,多变量的)POINTS,TEST CONNECTION,INTEGR POSITION(位置)00 TO 09012304 TO 09 10 TO 1910111213141516171920-3920212223242526272829303132/3334353637 TO 3940 TO 4940414243444546 TO 4950 TO 69FUEL GAS SYSTEMS(得到燃料气体系统)VACANT(空白)UTILITY SYSTEMS(效用系统)WELLHEAD SYSTEMS(PRODUCTION)(井口系统(生产))WELLHEAD SYSTEMS(PRODUCTION STIMULATION)(井口系统(刺激生产))WELLHEAD SYSTEMS(CHEMICAL INJECTION)(井口系统(压注化学溶液))MAIN POWER DRILLING SUBSEA.REMOTE CONTROL SYSTEMS,WORKOVER CONTROL SYSTEMS LINE(钻头在海底的主要动力,遥控控制系统,油井维修控制系统和防腐蚀核心)FLARE,VENT AND BLOWDOWN SYSTEMS(FLARE STRUCTURE EXCLUDED)(照明和通风系统)OILY WATER TREATMENT SYSTEMS(石油的水净化处理系统)WELLHEAD SYSTEMS(DRILLING)(井口系统(钻井))THREE DIGIT SEQUENTIAL TAG NO.STARTING AT 001 FOR EACH SYSTEM(工件的标记放在设备标记的后面连在3的后面,工件的编号从001开始)INSTRUMENT INDEX(设备编号):51-PDT-12123A TRANSMITTER(传器);51-PDAH-12123 ALARM(警告器).GENERAL(常规)ARCHITECTURAL GENERAL-LIVING QUARTERS(建筑上的一般生存空间)SUBSEA MULTI DISCIPLINE SYSTEMS(海底的多种学科体系)TEMPORARY SYSTEMS(临时系统)VACANT(空白)WELL RELATED SYSTEMS(良好的相关体系)DRILLING SYSTEMS(钻井系统)DRILLING PROCESS SYSTEMS(钻井加工系统)GENERAL(常规)SUBSEA FLOWLINES AND SERVICE LINES,INCL FLEXIBLE JUMPERS MAIN POWER DRILLING(钻头的主要能源)EMERGENCY POWER DRILLING(钻头的紧急备用动力)GAS COMPRESSION-COOLING AND SCRUBBING(汽油冷压缩和净化)GAS TREATMENT(汽油的处理)GAS CONDITIONING(汽油清理)COMPRESSION FOR REINJECTION TO RESERVOIR(压缩后再注入油库)PROCESS SYSTEMS(加工系统)SEPARATION AND STABILIZATION(分离和稳定性)CRUDE HANDLING(粗加工)CRUDE TREATMENT(粗加工)HEATING SYSTEMS(制热系统)CHEMICAL INJECTION SYSTEMS(压注化学溶剂系统)GAS PIPELINE COMPRESSION,METERING AND TRANSFER(汽油管道的压力,测量和传送GAS SWEETENING(气体脱硫)OIL PIPELINE SYSTEMS(石油管道系统)VACANT(空白)DENSE GAS PIPELINE(厚石油管道)RISERS(冒口)J-TUBES(J型管)VACANT(空白)PROCESS SUPPORT SYSTEMS(过程支持系统)COOLING AND REFRIGERATION SYSTEMS(制冷系统)18VACANT(空白)DRY GAS PIPELINE(干气管道)505152535455565758596061626364656667686970 TO 7970717273747576787980 TO 8980818283848586888990 TO 999091BATTERY SYSTEM AND UNINTERUPTABLE POWER SUPPLY(电池系统和连续电源)STRUCTURE-GENERAL (常规组合)ELECTRICAL COMMUNICATION,INSTRUMENTATION SYSTEMS(使用带电仪器的方法)MAIN POWER GENERATION AND DISTRIBUTION 13.3KV(主要发电和配电13.3KV)MAIN POWER GENERATION AND DISTRIBUTION 6.6KV(主要发电和配电6.6KV)MAIN POWER GENERATION AND DISTRIBUTION<660V(主要发电和配电<660V)SAFETY AND FACILITY SYSTEMS(安全设备系统)FIRE AND GAS DETECTION(汽油燃烧探测)PROCESS CONTROL SYSTEM(PCS)(过程控制系统)MATERIAL HANDLING(物料输送,原材料处理)ACCOMODATION FACILITIESSAFETY GENERAL/PERSONNEL SAFETY SYSTEMS(个人安全系统)FRESH WATER SYSTEMS(淡水系)HOT WATER SYSTEM(热水系)COLD STORE AND FREEZER SYSTEM(冷藏库和速冻系统)GBS-TEMPORARY HYDRAULIC SYSTEMS(GBS的临时水力系统)CLOSED DRAIN SYSTEM(暗渠系统)VACUUM CLEANING(用真空吸尘器打扫)GBS TEMPORARY SEAWATER SYSTEMS DRY BULK LOADING SYSTEMDIESEL SYSTEM(柴油机系统)JET FUEL SYSTEM(燃料喷射系统)SEAWATER SYSTEMS(LOW TO MEDIUM PRESSURE)(海水系(低压))HIGH PRESSURE SEAWATER SYSTEM(海水高压系统)GBS PERMANENT SEAWATER SYSTEMS WORKSHOP AND STORAGE(车间和仓库)SHUTDOWN SYSTEM(关闭系统)STEAM AND CONDENSATE SYSTEM(蒸发和冷凝系统)OPEN DRAIN SYSTEM(明渠系统)HALON/CO2 SYSTEMS/MISCELLANEOUSHYDRAULIC POWER SYSTEM(水力系统)HVAC(LIVING QUARTERS)SEE ALSO SYSTEM 77 (采暖通风与空调(住舱)系统)VACANT(空白)FIREWATER AND FOAM SYSTEMS(泡沫灭火系统)COMPRESSED AIR SYSTEMS(空气压缩系统)INERT PURGE SYSTEM(惰性清除系统)STRUCTURAL SYSTEM(结构体系)ESCAPE AND PASSIVE FIRE PROTECTION HEATING AND VENTILATION(PROCESS/UTILITY 防系统(生活区))77INSTRUMENT SYSTEMS(INSTRUMENT TAG NUMBERS USE THE RELEVANT SYSTEM NUMBER A 的标签号使用相关的系统数据作为数据的一部分))87COMMUNICATION SYSTEMS(通讯系统)EARTHING AND LIGHTING SYSTEM(接地线和火线体系)INSTRUMENTATION-ESSENTIAL(使用仪器的要点)EMERGENCY POWER 6.6KV(紧急备用电力为6.6kv)EMERGENCY POWER<440V(紧急备用电力<440KV)STRUCTURE-DECK/MODULE SUPPORT FRAME(甲板/指令舱结构支撑体)9293949596979899C-1-D-3-G-6-H-9-K-15-L-25-M-50-P-100-R-S-T-IH-IC-IP-IA-ET-ST-AABBJJCCDDDEEEFGHHAB-CH-AI-CL-AP-OS-BA-PH-BB-PL-BC-PG-BO-PW-CD-SH-CG-SL-LUBE OIL(润滑油)SEAL OIL(成品油)PROCESS HYDROCARBON(PROCESS LIQUID(工艺STEAM-LP(下气孔)PROCESS-WATER(工艺用STEAM-HP(上气孔)PROCESS GAS(工业废气BULK CEMENT(散装水泥)BASE OIL(原油)CHEMICAL DRY(干燥的化学药品)CHEMICAL-GLYCOL(乙二醇)BREATHING AIR(呼吸用的空气)HYDRAULIC OIL(液压油INSTRUMENT AIR(仪表气源)PLANT AIR(工厂用压缩空气)BULK POWDERS(散装火药)BULK BARITES(大块重晶石)PROCESS MEDIA IDENTIFIER(过程标记)PLANT/PLATFORM IDENTIFIER(车间/平台标记)SEQUENTIAL NUMBER(连续的号码)SYSTEM IDENTIFIER(系统标记)MATERIAL IDENTIFIER(SECONDRY)(材料标号)MATERIAL IDENTIFIER(MAIN)(材料标号INSULATION/HEAT TRACING IDENTIFIER(绝缘/热度标识描述) PROCESS MEDIA IDENTIFIER(过程标记e.g: 6〞-PG-51-20001-6C1-1H(AA-BB-JJ-CCDDD-EEEFG-HH)LINE NUMBERS(数据行)PIPE SIZE(1-2DIGITS)(INCHES)(管道尺寸)STUCTURE-LOADING BOUY(飞机降落结构体)STRUCTURE-SUBSEA TEMPLATE(海底结构模板)AUXILIARY STRUCTURE SSTEMS(BRIDGE,FLARE BOOM,TRIPOD,ANTENNA,ETC)(辅助结构CATHODIC PROTECTION(阴极保护)STRUCTURE-MODULES/PANCAKES(指令舱/扁平结构)SUBSTRUCTURE-CONCRETE/STEEL GBS(钢筋钢/钢结构体) SUBSTRUCTURE-STEEL JACKET(钢结构体护套)LOW TEMPERATURE CARBON STEEL(低回火碳钢)CIVIL WORK(土建工程)MATERIALS IDENTIFIER(MAIN)(F)(原材料的标识符)CARBON STEEL(碳钢)INSULATION-HEAT CONSERVATION(保持绝热)API 5LB 3MM CHROME MOLYBDINIUM(铬合金)PLASTIC(塑胶)Cu-Ni(<2)GRE(2 AND ABOVE)(钴-镍合金)DUPLEX STAINLESS STEEL(二联不锈钢) ASME PRESSURE RATING(EEE)(美CL150CL300CL600HASTALLOY GLASS REINFORCED PLASTIC(纤维塑料)CL900CL1500GALVANISED CARBON STEEL(经过电镀的碳钢)CL2500CL5000CL10000 INSULATION HEAT TRACING IDENTIFIER(绝热标识符描述) MATERIAL IDENTIFIE API 5LB 3MM A519 GR 413API 5LB 3MM STAINLESS STEEL(不锈钢)TITANIUM(钛)50C1-100C1-1S1/3S1/6S1-INSULATION-COLD CONSERVATION(保持绝冷)INSULATION-PERSONNEL PROTECTION(人绝缘保护)INSULATION-ACOUSTIC(隔绝声音)HEAT TRACING-ELECTRICALLY TRACED(热-电)GALVANISED1R1-1P1-1G1-HEAT TRACING-STEAM TRACED(热-蒸汽)1C1-1C2-3C1-6C1-6C2-API 5LB 3MM API 5000 A5A519 GR 413SS(316L)0MM Cu-Ni(<2)GR ABS 0MM C.ACH-SM-CI-VA-DC-VH-DD-VL-DH-VE-DM-WB-DO-WC-EX-WD-FA-WF-FD-WG-FG-WH-FP-WI-HA-WO-HM-WP-IG-WS-MH-WT-MK-WU-ML-WW-X-JJKLCCMMNA-N-B-P-C-Q-D-R-E-S-F-T-G-U-H-V-J-W-K-X-L-Y-M-Z-B-M-C-S-D-T-E-U-G-V-H-JJ NNQQQPIPING SPECIAL ITEM NUMBERING(JJ-PPP-NNQQQ)(管道特PLANT/PLATFORM NUMBER(平台标记)VSD(VARIABLE SPEED D SEQUENTIAL NUMBER(顺 EQUIPMENT NUMBERS(JJ-KL-CC-MM-N)(设备标签)PLANT/PLATFORM IDENTIFIER(平台标示符)EQUIPMENT IDENTIFIER(设备标示符) EQUIPMENT IDENTIFIER(MAIN)(K)(设备标签)PIG LAUNCHERS/RECEIV PACKAGES(包)BULKS(散装)42-PANYU 5-1PLATFORM 51-PANYU 5-1PLATFORMSUFFIX IDENTIFIER(N)(下标)WATER-TREATED(处理过WATER UTILITY(有用的SUFFIX IDENTIFIER(下标)(WHERE TWO OR MORE IDENTICALWASTE WATER(浪费水资MISCELLANEOUS(混合器SYSTEM IDENTIFIER(系统标记)SEQUENTIAL NUMBER(续号) PLAT/PLATFORM IDESEA WATER(海水)WATER INJECTION(注水WATER OILY(油水)WATER GREY(净水)WATER HOT(热水)VENT-LP(下通风口)VENT-EXHAUST(排气口DRILLING EQUIPMENT(钻动设备)SPARE(备用的)REACTORS(反应堆)WATER-BLACK(污水)WATER COOLING(水内冷PUMPS(泵)WATER DRILLING(湿式FIREWATER(烈酒)COLUMNS(圆柱)WATER-POTABLE(饮用水FLARES & VENTS(通风VESSELS(容器)HEAT EXCHANGERS(换热器)FIRED HEATERS(火力加热器)STRAINERS & FILTERS(TANKS(罐)ATMOSPHERIC VENT(通VENT-HP(上通风口)INSTRUMENT EQUIPMENT(工具箱)COMPRESSORS(压缩机)LIFTING APPLIANCES/R SAFETY(LIFEBOATS,HOS CLOSED DRAIN(暗渠)DELUGE DRAINS(水渠)GENERATORS(发电机)HVAC (高压交流电)STEAM-MP(中间气孔)ELECTRICAL EQUIPMENT(电器设备)MISCELLANEOUS(混合器)TELECOMMUNICATIONS(CAISSONS(沉箱)OPEN DRAIN(NON-HAZARDOUS)(明渠(安全)) EXHAUST DUCTING(排气管)CHEMICAL-HYPOCHLORITE(次氯酸盐)CHEMICAL INJECTION(呀注化学溶液) EQUIPMENT IDENTIFIER(SECONDARY)(L)(设备标签)GEAR BOX(传动箱)ELECTRIC MOTOR(点动DIESEL FUEL(柴油机燃料)FUEL GAS(可燃气体,气体燃料)PURGE GAS(吹扫用的气体)OPEN DRAIN(HAZARDOUS)(明渠(危险的)) MUD DRAIN(水泥排道)COUPLINGS(连接器)DIESEL ENGINE(柴油机)EXPANSION MOTOR AIR(GAS)(汽压马达)SWITCHGEAR(TO BE INC TRANSFORMER(变压器)UPS(UNINTERUPTED POW KILL FLUID(阀门)MUD-LOW PRESSURE(低压泥浆)AVIATION FUEL(飞行器燃料)GENERATOR(发电机)HYDRAULIC MOTOR(液压马达)HALONHEATING MEDIUM(间接加热)INERT GAS(惰性气体)MUD HIGH PRESSURE(高压泥浆)PPPBEL-LF-BT-QC-CI-SG-FLA-STR-HO-TS-NAIN PROCESS LINE(粗线)UTILITY LINE(细线)UNDERGROUND LINE(虚线)EJECTOR(排出器)EXPANSION BELLOWS(风箱)FLOW STRAIGHTENER(流动矫直机)STAINER Y TYPEDIAPHRAGM SEAL(隔膜密封) LINETYPES(线形)HEAT TACED INSTRUMENT()HEAT TACED INSTRUMENT()END CAP(节流阀端盖)END PLUG(THREADED)(端塞)FEMALE HOSE CONNECTION(软管连MALE HOSE CONNECTION(软管连接FLEXIBLE HOSE(柔软管)EMERGENCY SHUTDOWN SYSTEM LOGIC INTERLOCK(紧急情况系统互锁关闭)PRESSURE SAFETY VALVE BALLOON(气球式安全施压阀)ANALYSER(分析器)QUICK CHANGE ORIFICE FITING()BURSTING DISC(防暴膜)CONCENTRIC(同心的)REDUCER FLANGED(折边的减压器)CONNECTION(线路)BLIND FLANGE(盖板边缘)PIPING SYMBOLFALL IN ELEVATION(仰角倒塌)ELECTRICAL TRACING AROUND VAL INSULATION(绝缘)PROCESS AUTOMATION SYSTEM INPUT/OUTPUT AND DISPLAY(工序自动化系统的输出/显示)PROCESS SHUTDOWN SYSTEM INPUT/OUTPUT AND DISPLAY(工序关闭系统输入/输出显示)PIPING SPECIAL ITEM(REFER 153SEAL LOOP(弯曲)ATMOSPHERIC VENT(通风口)DEADMAN HANDLE VALVE(手动阀)SHUTDOWN OR BLOWDOWN VALVE(NOT3)(封闭阀)SOLENOID VALVE(螺线阀)SOLENOID VALVE WITH MANUAL RESET(手动螺线阀)CONTROL VALVE(NOT3)(控制阀)CHECK VALVE(止回阀)ANGLE VALVE(角阀)LOCAL MOUNTED INSTRUMENT(安在当地马路上的设备)LOCAL PANEL MOUNTED INSTRUMENT(安在地方马路上的仪表)CONTROL VALVE SELF ACTING(自动控制阀)SAFETY RELIEF VALVE(NOT3)(安全卸压阀)PRESSURE/VACUUM VALVE(真空阀)GATE VALVE MOTOR DRIVEN(闸门阀动机)FLOAT VALVE(浮阀)BALL VALVE(球阀)THREE WAY MANUAL VALVE(三路手控阀)GLOBE VALVE(球心阀)BUTTERFLY VALVE(蝶形阀) INSTRUMENT SYMBOLS(工具标记)CONTROL ROOM MOUNTED PANEL INSTRUMENT()HOSE & HOSE CONNECTOR(软管连接器) SPECIALITY ITEM CODE(PPP)VALVE SYMBOL(阀类标记)STANDARD BASKET FILT QUICK COUPLING(快速SIGHT GLASS(窥镜)Y-STRAINER(Y行过滤器CONICAL STRAINER(锥SAMPLE CONNECTION(取样口)TUNDISH(漏斗)VENT AND COWL(通风帽)SCREEN(掩蔽物)FIREWATER MONITOR(防火监控气)BARRED TEE(球座)INJECTION QUILL FLAME INJECTOR GATE VALVE(闸门阀)PLUG VALVE(旋塞阀) e.g:51-STR-20001SPECIALITY ITEM CODE(特殊代号)HOSE REEL(旋转软管)BLEED OR DRIP RING(放油圈)BARRED TEE()EXPANSION BELLOW(扩充式风箱)DIAPHRAGM VALVE(隔膜阀)NEEDLE VALVE(针形阀)THREE WAY PLUG VALVE(三路旋塞阀)MAGNETIC FLOWMETER(磁流测量计ULTRASONIC FLOWMETER(超声波流VORTEX FLOWMETER(涡流流量计)CORIOLIS FLOWMETER(科里奥利流TURBINE FLOWMETER(涡轮流量计)VARIABLE AREA FLOWMETER/ROTAM FLOW ELEMENT/RESTRICTION ORIF VENTURI FLOWMETER(文氏管流量计MULTI PHASE FLOWMETER(相位计)CC LL CV LLSD DISP L/R D/P MCC ESO MCP FC MV FIP NO FO NCFY,PY,TY NNFH OHD HH ONHD HC O/S/C HS PSD H20SC H2S S/D IAS SP IG S/S INST TCP L TSO LO USD LC VFROTATING EQUTIGHT SHUT OFF(关断)UNIT SHUTDOWN()VENDOR FURNISH(设备提FOR SEA WATER FLUSHING OR DIESEL FILL.(因为海水冲洗或注满整个柴油机。
大跨度桥梁桥面系与主桁共同作用研究
大跨度桥梁桥面系与主桁共同作用研究崔 鑫 张玉玲 潘际炎(铁道科学研究院铁道建筑研究所 北京 100081)摘 要 对于大跨度钢桁梁桥来说,在运用空间模型进行计算时应考虑桥面系中纵、横梁和主桁的相互作用问题,由于这种共同作用使得纵梁中存在轴力,端横梁存在较大面外弯矩。
针对这一问题,运用计算软件S TAAD/PRO 对标准80m 梁和大跨度斜拉桥进行计算,分析结构中的共同作用问题。
关键词 纵梁 横梁 共同作用 大跨度桥梁RESEARC H O N THE COACTIO N BETWEEN FLOO R SYSTEM AN DMAI N TRU SS OF L AR GE SPAN BRI D GECui Xin Zhang Yuling Pan Jiyan(Railwa y Engineering Research Institute ,China Acade my of Railway Science s Beijing 100081)ABSTRA CT For long span steel truss bridge ,we should take the interaction between longit udinal bea m ,c rossbea m a nd main tr uss into acco unt when calculate it in spacial model.Due to thi s coaction t her e is a xial force in longitudinal beam and large bend in side cross beam.The sof rware S TAAD/PRO that calculate a sta nda rd beam wit h 80m span a nd lar ge spa n cable 2stayed br idge is used then the coaction p roblem is a nalysed in str ucture.KEY WO R DS longit udinal beam cross beam coac tio n la rge span bridge第一作者:崔 鑫 女 1979年2月出生 硕士 研究员x @收稿日期61 前 言关于桁架桥的设计,桥规中对基本构件的计算规定是将整个桥跨结构分成若干个平面结构,再按承受各自平面上的荷载计算杆件内力。
Chapter 21 Truss Bridg1完整版
Chapter 21 Truss Bridge一、单词和短语Truss type: Deck truss bridge 上承式;Semi-through truss bridge 中承式;Through truss bridge 下承式;Double-decked 双层式补充:gusset plate/joint节点板pier 桥墩clearance 净空end post桥门架bracing 斜杆主桁架截面形式:1.walled section单壁式; 2. double wall section 双壁式界面组成形式: ttice type 格构式; 2. solid-web/fully-web 实腹式Tie plate 缀板lacing bar 缀条Gyration radius 回转半径moment inertia 惯性矩slenderness ratio长细比transformed slenderness ratio 换算长细比imaginary axis 虚轴overall bucking整体稳定local bucking 局部稳定flange 翼板web 腹板out-of-straightness 初始弯曲initial imperfection 初始偏心residual stress 残余应力torsion bucking弯扭屈曲lateral stiffness 横向刚度二、1. 桥面板活载的传力Live load path: deck—stringer—floor beam—joint—main truss (upper chord, lower chord and web)—support—pier—foundation2. Section type of the main truss主桁架截面形式:1.walled section单壁式(applied to the minor member or the light truss which has small internal force)2. double wall section 双壁式(applied to the heavy load and main trussand heavy truss)3. The effect of each member:Lower lateral bracing and upper lateral bracing( 下弦纵向联结系和上弦纵向联结系):(1)Bearing the lateral horizontal loading applied to the steel truss bridge.(2)Lateral support for the chord, reduce the effective length of the chord out-plane, prevent thebucking.横向联结系(sway strut, sway bracing, upper lateral strut or portal strut and bracing):Increase the torsional rigidity of the bridge.End post(桥门架):Make the wind load can transfer from the upper lateral bracing to the support effectively.4. 验算刚度的原因(stiffness analysis)rge deflection under the self-weightb.Cause vibration under the dynamic loadc.Easy to bending during the transportation and installation5. Two types of overall bucking for the solid-web member under the axial compression force (1)6. 实际轴心受压构件(1)out-of-straightness(2) Initial imperfection(3) Residual stress7. 三种理论(1) 压屈曲理论Based on the 欧拉critical force in the elastic stage, improve the safety coefficient to balance the effect of the out-of-straightness and the initial imperfection.(2) 边缘纤维屈服理论Take the out-of-straightness and initial imperfection into consideration, ignoring the residual stress.(3)压溃理论Take the out-of-straightness, initial imperfection and residual stress into consideration.8. The effective length of the members9. The local bucking (波状屈曲: wave bucking)Limit the width and thickness ratio to ensure the local bucking.Principle: the board cannot occur the local bucking before the overall bucking.10. ψ1 and ψ2ψ1 : Longitudinal bend coefficient for the member under the axial compression;ψ2 : longitudinal bend coefficient for the member under bending moment11. 轻型桁架和重型桁架Light steel truss: The internal force is small. The structured T section (T形截面) and angle steel combination section (walled section) are applied to the member. Each joint can transfer force with one gusset plate;Heavy steel truss: The internal force is bigger than the light steel truss, the H shape or I shape (double wall section) , each joint can transfer force with two gusset plate in vertical plane.12. 杆件端部连接方式(1)Based on the bearing capacity of the member, also as known same stability principle:Make the connection have same bearing capacity with the member. (suitable for the main truss, chord and web; or flange of the plate girder).(2) Calculate the connection based on the actual internal force of the member under the maximum force.( suitable for the secondary member or bracing.13. 节点板的强度验算(P448)(1)Check the normal stress on the vertical sectionTop edge of the gusset plate σs= N/An - N*e*y1/In <= [σ]Bottom edge of the gusset plate σx= N/An + N*e*y1/In <= [σ](2) Check the shear stress on the horizontal sectionT=(N3+N4)*cosθτ=T/An <= [τ](3) Check the zigzag failure on the connection between diagonal web and gusset plate14. 节点板设计原则(1) Make the C.G of all the section in the gusset passing one point to avoid the additional bending moment;(2) The C.G of the bolts is on the C.G axis of the section;(3) The arrangement of the gusset is tight and compact;(4) The holes are fit for the sample plate;(5) The gusset plate without re-entrant angle;(6) The distance between the end and the last row of holes >=1.5*d;(7) The splice plate should be set inside the chord if the strength of the gusset is not enough; the fill plate should be set on the thin side if the thickness is not same.(8) The inside of the gusset plate should be connected with floor beam and lower lateral bracing;(9) The actual length of the same classification should be consistent, the holes arrangement of the end should be consistent;(10) All the gusset plate, splice plate and bolts should have enough strength.15. 节点板设计步骤(1) Draw the section C.G axis of the members intersected in gusset plate;(2) Draw the outline of the chord;(3) Arrange the holes on the bracing, determine the end line of it;(4) Draw the outline of the gusset plate according to the holes on the bracing;(5) Arrange holes of the web and the lower chord , draw the outline;(6) Check the splice plate of chord and the bolts applied to it.课后习题补充1.实腹式轴心受压构件设计2. 实腹式轴心受压构件在不增大截面面积条件下, 如何提高整体稳定性?Reduce the effective length for the member.3. 以实腹式轴心受压为例,说明构件强度与稳定计算的区别?For the strength, no ψ1; For the overall bucking, with ψ1 4. 物理意义 λ1:Slenderness ratio around minimum stiffness axis of single wall (member)λy: Slenderness ratio around imaginary axisλoy: Transformed slenderness ratio around imaginary axis5. 怎样保证格构式轴心受压的分肢稳定Make the λ1 <= min { 40, λoy }6. 格构式轴心受压构件设计计算步骤212λλλ+=y oy7.怎样提高压弯构件的整体稳定?Add the lateral restraint8.压弯的截面形式Case 1: small bending moment, same with the axial compression forceCase 2: large bending moment, the section with high height or symmetric section around single axis so that the bigger flange can be under the compression.三、例21-5Known: A member with H shaped section under the compression and bending moment The effective length in plane is l0y=10m, the effective length out-of-plane is l0x=5mMaterial is Q345Unknown: Check the strength and stabilitySolution: Check the table, find the allowable [σ]=200Mpa,[σw]=210 Mpa(1) Check the strengthThe maximum bending moment M=323.4kNThe axial compression N=1185kNThe area A= , the inertial moment Iy=, Wy, σ=,(2) Check the in plane buckingThe maximum bending moment in the middle 1/3 span M=The gyration radius iy=(3) Check the out-of -plane bucking(4) Check the local buckinga. For the webb. For the flange(5) Check the stiffness。
高炉炼铁用设备材料词汇中英文翻译对照表
区域A (For Area A)Sector 段CISDI Code Description 名称English 英文CISDI代码AAA BBB CCC DDD EEE FFF GGG H 高炉本体热风炉软水回路出铁场水渣系统煤气清洗系统原料贮运系统电气自动化和仪表-公用部分Blast Furnace ProperHot StoveSoft Water CircuitCast HouseSlag Granulation SystemGas Cleaning SystemRaw Material Handling SystemElectrical Automation&Instrumentation-CommonIJK CI PCI Pulverized Coal InjectionLLLMMMNNNOOOPPPQQQZ EA 富氧系统电讯和ITV系统空调系统消防及火灾报警系统土建和钢结构厂房公辅和操作支持系统概述区域D (For Area D)Oxygen Enrichment SystemCommunication & ITV SystemAir Conditioning SystemFire Fighting & DetectionSystemCivil& Metallic StructuresBuildingUtilities& Operation SupportSystemGeneralB RT TRT 系统Turbine Recovery TopK IW高炉净环水处理厂Indirect Water Treatment Plant区域A (For Area A)A-高炉本体.....................................................................................................................BF Proper1. 2. 3. 4. 5. 6. 7. 8. 9.安全水塔出水管手动阀...........................manual valve for outlet pipe of safety water tower 安全水塔出水管止回阀.............................check valve for outlet pipe of safety water tower 安全水塔气动阀......................................................pneumatic valve for safety water tower 安全水塔手动阀...........................................................manual valve for safety water tower 泵出口电动阀..................................................................motorized valve at outlet of pump 泵出口伸缩节...................................................................retractable joint at outlet of pump 泵出口手动阀......................................................................manual valve at outlet of pump 泵出口止回阀.........................................................................check valve at outlet of pump 泵进口手动阀.........................................................................manual valve at inlet of pump10. 便携式超声波流量计...............................................................portable ultrasonic flowmeter11. 变频电机,变频调速电机..................................................................................VVVF motor12. 并罐无料钟炉顶........................................................................parallel-hopper bell-less top13. 波纹补偿器.........................................................................................bellows compensator14. 波纹管......................................................................................................................bellows15. 补水电动阀....................................................................motorized valve for water make-up16. 补水手动阀........................................................................manual valve for water make-up17. 不锈钢手动球阀..............................................................manual stainless steel ball valve18. 布料溜槽...................................................................................................distribution chute19. 超微孔炭砖.....................................................................super micro-porous carbon blocks20. 超越冷却塔手动阀...............................................overriding manual valve for cooling tower21. 称量料罐....................................................................................................weighing hopper22. 齿轮箱....................................................................................................................gear Box23. 出铁口......................................................................................................................taphole24. 除尘器氮气吹扫阀..................................................................N2purging valve for deduster25. 除尘器蒸汽吹扫阀............................................................steam purging valve for deduster26. 传动齿轮箱.........................................................................................transmission gearbox27. 大炭砖............................................................................................................carbon blocks28. 单轨小车...........................................................................................................monorail car29. 氮化硅结合碳化硅砖...................................................................................Si3N4-SiC brick30. 倒流休风管...................................................................................................back draft pipe31. 捣打料......................................................................................................ramming material32. 电动蝶阀........................................................................................motorized butterfly valve33. 斗式提升机...................................................................................................pocket elevator34. 二冷.........................................................................................................secondary cooling35. 防水耐火泥浆....................................................................................water-proof fire mortar36. 风口............................................................................................................................tuyere37. 风口大套..........................................................................................................tuyere holder38. 风口小套.....................................................................................................................tuyere39. 风口中套..........................................................................................................tuyere cooler40. 风口组合砖.................................................................................................tuyere assembly41. 刚玉质泥浆................................................................................................corundum mortar42. 刚玉砖..........................................................................................................corundum brick43. 高架蓄水池..............................................................................................elevated reservoir44. 高炉低压供水泵.................................................................low-pressure water pump for BF45. 高炉高压柴油机供水泵..........................................diesel pump for BF high-pressure water46. 高炉高压供水泵..........................................................................high pressure water pump47. 高炉回水提升泵..................................................................lifting pump for BF return water48. 高炉软水二冷水供水泵................secondary cooling water pump for BF soft water system49. 工业循环水..............................................................................industrial recirculating water50. 供水和回水主管....................................................................water supply and return mains51. 管道过滤器............................................................................................................pipe filter52. 光面冷却壁.............................................................................................................flat stave53. 滑轮............................................................................................................................pulley54. 缓冲耐火泥浆..................................................................................amortization fire mortar55. 灰铸铁冷却壁........................................................................................gray cast iron stave56. 回声探测器...................................................................................................sound detector57. 加速仪...........................................................................................................accelerometer58. 间接循环水冷却塔................................................indirect recirculating water cooling tower59. 浇注料.....................................................................................................................castable60. 接受罐............................................................................................................receiving tank61. 截止阀...............................................................................................................check valve62. 金属软管.............................................................................................................metal hose63. 进冷却塔手动阀............................................................manual valve for cooling tower inlet64. 净环水........................................................................................indirect recirculating water65. 卷扬机................................................................................................................hoist winch66. 客货两用电梯.........................................................cargo-passenger dual-purpose elevator67. 雷达式探尺...................................................................................................radar stock rod68. 冷却壁..........................................................................................................................stave69. 冷却壁设备配置......................................................................................stave configuration70. 冷却壁镶砖................................................................................................stave Inlaid brick71. 冷却循环泵....................................................................................cooling circulating pump72. 冷水池........................................................................................................cold water basin73. (高炉)利用系数....................................................................................productivity of BF74. 炉底.....................................................................................................................BF bottom75. 炉底保护砖............................................................................protection brick for BF bottom76. 炉底冷却设备...................................................................cooling equipment for BF bottom77. 炉底铺设梁及水冷管....................................................beam and water pipe for BF bottom78. 炉底水冷管........................................................................................................bottom Pipe79. 炉顶氮气吹扫阀..............................................................................BF top N2purging valve80. 炉顶结构.....................................................................................................BF top structure81. 炉顶均排压设备.......................................BF top pressure equalizing and relief equipment82. 炉顶框架..........................................................................................................BF top tower83. 炉顶喷水................................................................................................BF top water spray84. 炉顶平台......................................................................................................BF top platform85. 炉顶人孔.....................................................................................................BF top manhole86. 炉顶洒水装置.................................................................................BF top sprinkling device87. 炉顶探尺....................................................................................................BF top stock rod88. 炉顶外封罩........................................................................................................BF top cone89. 炉顶循环水系统.........................................................recirculating water system for BF top90. 炉顶液压站和润滑站................................hydraulic station and greasing station for BF top91. 炉顶蒸汽吹扫阀...................................................................steam purging valve for BF top92. 炉腹..............................................................................................................................bosh93. 炉腹用铝炭砖.....................................................................aluminum-carbon brick for bosh94. 炉缸............................................................................................................................hearth95. 炉喉.............................................................................................................................throat96. 炉喉保护板...................................................................................BF throat protection plate97. 炉喉钢砖.....................................................................................................BF throat armor98. 炉喉冷却壁........................................................................................................throat stave99. 炉身..............................................................................................................................shaft 100. 炉体框架..........................................................................................................proper tower 101. 炉体冷却壁.................................................................................................BF proper stave 102. 炉体冷却水系统.................................................................BF proper cooling water system 103. 炉体清灰管......................................................................dust removing pipe for BF proper 104. 炉腰..............................................................................................................................belly 105. 铝炭砖泥浆......................................................................mortar for aluminum-carbon brick 106. 埋刮板输送机......................................................................................en masse conveyor 107. 煤气封罩.................................................................................................................top cone 108. 煤气上升管........................................................................................................gas uptakes 109. 耐热混凝土.......................................................................................heat resistant concrete 110. 逆向给料溜槽.......................................................................................reversing feed chute 111. 排气筒............................................................................................................exhaust stack 112. 排污电动阀..............................................................................motorized valve for drainage 113. 排污手动阀..................................................................................manual valve for drainage 114. 球阀.......................................................................................................................ball valve 115. 全厂工业水管网.............................................................plant industrial water pipe network 116. 热风阀..........................................................................................................Hot Blast Valve 117. 热风炉蒸汽吹扫阀.....................................................................steam purging valve for HS118. 热风围管吊挂...........................................................................hot blast bustle pipe hanger 119. 热水池..........................................................................................................hot water basin 120. 热水提升泵.........................................................................................hot water lifting pump 121. 上部炉身.............................................................................................................upper shaft 122. 上料主皮带机通廊.........................................................corridor of main charging conveyor 123. 十字测温................................................................................cross temperature measuring 124. 十字测温装置............................................................................cross temperature detector 125. 石墨碳砖............................................................................................graphite carbon block 126. 手动蝶阀............................................................................................manual butterfly valve 127. 手动阀.............................................................................................................manual valve 128. 死铁层深度..........................................................................................depth of salamander 129. 送风支管...........................................................................................................tuyere stock 130. 送风支管内模.......................................................................internal mould for tuyere stock 131. 炭素胶泥..........................................................................................mortar for carbon block 132. 炭素填料.........................................................................................carbon stuffing material 133. 碳化硅捣打料.....................................................................................SiC ramming material 134. 碳化硅耐火泥浆..................................................................silicon carbide fire-proof mortar 135. 铁口框...............................................................................................................notch frame 136. 铜冷却壁..........................................................................................................copper stave 137. 铜冷却壁喷涂料...............................................................guniting material for copper stave 138. 脱气罐..........................................................................................................degassing tank 139. 万向波纹管....................................................................................universal expansion joint 140. 微孔碳砖..................................................................................micro-porous carbon blocks 141. 无料钟炉顶........................................................................................................bell-less top 142. 无水压入泥浆..............................................................................water free press-in mortar 143. 下部排料装置...........................................................................bottom discharging facilities 144. 镶砖铸铁冷却壁...................................................................................inlaid cast iron stave 145. 循环水系统.....................................................................................circulation water system 146. 仪表罐..........................................................................................................instrument tank 147. 移动受料斗..................................................................................movable receiving hopper149. 粘土质泥浆..........................................................................................mortar of clay quality 150. 直接冷却水............................................................................................direct cooling water 151. 中心空心喉管.......................................................................................central hollow throat 152. 贮灰斗..................................................................................................dust storage hopper 153. 铸铁冷却壁....................................................................................................cast iron stave 154. 自流浇注料...............................................................................................self-flow castable1. 2. 3. 4. 5. 6. 7. 8. 9.充压阀.....................................................................................................pressurizing valve 倒流休风阀..................................................................................................back draft valve 低蠕变高铝砖.....................................................................low creeping high alumina brick 低蠕变粘土砖...................................................................................low creeping clay brick 发泡苯乙烯.................................................................................................vesicant styrene 反弹率.............................................................................................................rebound ratio 放风阀................................................................................................................snort Valve 风机房起重用手动小车.................................................manual trolley for lifting in fan room 风机房起重用手拉葫芦...................................................manual hoist for lifting in fan room10. 复合莫来石砖pound mullite brick11. 钢结构件...............................................................................................steel structure parts12. 高铝质泥浆...........................................................................................high alumina mortar13. 高铝质漂珠隔热砖...................................................................high-alumina insulation brick14. 格子砖.............................................................................................................checker brick15. 隔热板.........................................................................................................insulation board16. 更换热风阀用起重机..............................................crane for replacement of hot blast valve17. 拱顶砖.................................................................................................................dome brick18. 管道锚固件..........................................................................................anchor part for pipes19. 管道砖...................................................................................................................pipe brick20. 硅质泥浆...........................................................................................................silica mortar21. 硅砖...................................................................................................................silicon brick22. 红砖....................................................................................................................(clay)brick23. 混风管........................................................................................................mixed blast pipe24. 混风切断阀..............................................................................shutoff valve for mixed blast25. 混合煤气切断阀.........................................................................................MG shutoff valve26. 混合煤气燃烧阀.................................................................................MG combustion valve27. 混合煤气支管眼镜阀..................................................................................MG goggle valve28. 浇注料...................................................................................................................castables29. 堇青石砖.......................................................................................................cordierite brick30. 聚轻莫来石砖....................................................................................insulation mullite brick31. 冷风阀..........................................................................................................cold blast valve32. 冷风放风阀消声器.............................................................................silencer of snort valve33. 冷风支管...................................................................................................cold blast branch34. 冷风主管.......................................................................................................cold blast main35. 炉箅子及支柱.....................................................................grate and support column of HS36. 煤气放散阀...............................................................................................gas bleeder valve37. 煤气支管.............................................................................................................gas branch38. 煤气主管................................................................................................................gas main39. 煤气主管................................................................................................................gas main40. 煤气总管阀...................................................................................................gas main valve41. 煤气总管用盲板.......................................................................blind plate for gas pipe main42. 排压阀................................................................................................(pressure)relief valve43. 喷涂料........................................................................................................guniting material44. 墙砖.......................................................................................................................wall brick45. 轻质泥浆....................................................................................................insulation mortar46. 燃烧煤气放散阀...............................................................bleeder valve for combustion gas47. 燃烧器砖............................................................................................................burner brick48. 热风阀...........................................................................................................hot blast valve49. 热风炉...........................................................................................................hot stove (HS)50. 热风炉本体...........................................................................................................HS proper51. 热风炉隔墙砌体用不锈钢板..................................stainless steel plate for HS partition wall52. 热风炉混风装置................................................................................HS blast mixing facility53. 热风炉壳内侧耐酸喷涂料.............................acid resistant coating at inner side of HS shell54. 热风炉燃烧器钢桥.......................................................................steel bridge for HS burner55. 热风炉润滑站及配管.........................................................HS lubrication station and piping56. 热风炉小阀门................................................................................................HS small valve57. 热风炉液压站及配管...........................................................HS hydraulic station and piping58. 热风支管.....................................................................................................hot blast branch59. 热风主管........................................................................................................hot blast main60. 热风总管........................................................................................................hot blast main61. 砂浆...........................................................................................................................mortar62. 伸缩管......................................................................................................................bellows63. 碳化硅填料...........................................................................................SiC stuffing material64. 纤维棉................................................................................................................fiber cotton65. 纤维毯.....................................................................................................................fiber felt66. 烟道................................................................................................................................flue67. 烟道阀...................................................................................................................flue valve68. 烟道支管.............................................................................................................flue branch69. 烟道主管................................................................................................................flue main70. 烟道总管................................................................................................................flue main71. 油纸........................................................................................................................oil paper72. 粘土质泥浆..............................................................................................clay quality mortar73. 粘土质漂珠隔热砖......................................................................clay quality insulation brick74. 致密粘土砖pact clay brick75. 助燃风机出口逆止阀...................................................outlet check valve of combustion fan76. 助燃风机及附件bustion fan and its auxiliaries77. 助燃空气bustion air78. 助燃空气放散阀.................................................................bleeder valve for combustion air79. 助燃空气旁通管bustion air bypass pipe80. 助燃空气燃烧阀bustion air valve81. 助燃空气支管bustion air branch82. 助燃空气主管bustion air main83. 助燃空气总管bustion air main。
建筑材料咨讯系统翻译
Master FormatS01 00 00 - General Requirements 一般需求S ections01 42 00 – references 参考01 54 23 - temporary scaffolding and platforms临时脚手架和工作平台01 61 13 - software licensing requiremen 软件许可要求01 66 00 - product storage and handling requiremen 产品储存和处理的要求01 76 00 - protecting installed constructi 建筑保护安装02 00 00 - Existing Conditions 现状Sections02 05 19 - Geosynthetics for Existing Conditio 土工合成材料的现状02 05 19.13 - Geotextiles for Existing Conditio 纺织品现状02 05 19.19 - Geogrids for Existing Conditio 纤维现状02 43 00 - Structure Movi 构造移动02 50 00 - Site Remediati 现场补救02 80 00 - Facility Remediati 补救设备02 86 00 - Hazardous Waste Drum Handli 危险废弃物处理03 00 00 – Concrete 混凝土Sections03 01 00 - Maintenance of Concrete混凝土维护03 05 00 - Common Work Results for Concrete混凝土常见产品03 10 00 - Concrete Forming and Accessories混凝土成形及配件03 11 00 - Concrete Forming混凝土成形03 11 16.13 - Concrete Form Liners混凝土成形线条03 11 19 - Insulating Concrete Forming缘的混凝土模板03 15 00 - Concrete Accessories混凝土附件03 15 13 – Waterstops 混土止水技术03 20 00 - Concrete Reinforcing混凝土配筋03 21 00 - Reinforcing Steel钢筋03 30 00 - Cast-In-Place Concrete浇注混凝土03 35 00 - Concrete Finishing混凝土饰面03 35 19 - Colored Concrete Finishing有色混凝土饰面03 35 33 - Stamped Concrete Finishing模压混凝土饰面03 37 00 - Specialty Placed Concrete专业输送混凝土03 37 16 - Pumped Concrete泵送混凝土03 39 00 - Concrete Curing混凝土养护03 39 23 - Membrane Concrete Curing 用膜混凝土养护03 39 23.23 - Sheet Membrane Concrete Curing簿膜养护混凝土03 40 00 - Precast Concrete预制混凝土03 41 00 - Precast Structural Concrete制构造用混凝土03 41 16 - Precast Concrete Slabs预制混凝土板03 45 00 - Precast Architectural Concrete预制建筑用混凝土03 47 00 - Site-Cast Concrete 现场浇注混凝土03 48 13 - Precast Concrete Bollards预制混凝土柱03 48 19 - Precast Concrete Stair Treads制混凝土楼梯踏板03 49 00 - Glass-Fiber-Reinforced Concrete玻璃纤维混凝土03 50 00 - Cast Decks and Underlayme 浇注平台和衬垫03 51 13 - Cementitious Wood Fiber Decks水泥木纤维平台03 51 16 - Gypsum Concrete Roof Decks膏混凝土屋顶板03 52 00 - Lightweight Concrete Roof Insulation 轻质混凝土屋顶隔热03 52 13 - Composite Concrete Roof Insulation 混凝土复合保温屋面03 54 00 - Cast Underlayme 浇注垫层混凝土03 54 13 - Gypsum Cement Underlayme 石膏水泥垫层03 60 00 – Grouting砂浆03 61 00 - Cementitious Grouting水泥砂浆03 61 13 - Dry-Pack Grouting干粉砂浆03 62 00 - Non-Shrink Grouting抗伸缩砂浆03 63 00 - Epoxy Grouti 环氧水泥地坪03 82 13 - Concrete Core Drilling混凝土钻孔04 00 00 – Masonry 砌筑Sections04 01 00 - Maintenance of Masonry砌筑维护04 01 20.41 - Unit Masonry Stabilization*砌筑单元的稳定性04 05 13 - Masonry Mortaring砌筑砂浆04 05 13.16 - Chemical-Resistant Masonry Mortaring耐化学砌筑砂浆04 05 13.23 - Surface Bonding Masonry Mortaring砌筑砂浆外表粘结04 05 13.91 - Masonry Restoration Mortaring砌筑修补灰浆04 05 16 - Masonry Grouting砌筑摸灰04 05 19 - Masonry Anchorage and Reinforcing砌筑锚固点加固04 05 19.16 - Masonry Anchors砌筑锚固04 05 19.26 - Masonry Reinforcing Bars砌筑配筋04 05 19.29 - Stone Anchors石材锚固04 05 23 - Masonry Accessories砌筑附件04 05 23.19 - Masonry Cavity Drainage, Weepholes, and Vents 筑排水孔、泄水孔、排风口04 20 00 - Unit Mason 单元砌筑04 21 00 - Clay Unit Mason 粘土砖单元砌筑04 21 13 - Brick Mason 砖块砌筑04 21 13.13 - Brick Veneer Mason 墙面砖砌筑04 21 16 - Ceramic Glazed Clay Mason 釉面砖砌筑04 21 19 - Clay Tile Mason 粘土砖砌筑04 21 23 - Structural Clay Tile Mason 粘土空心砖砌筑04 21 26 - Glazed Structural Clay Tile Mason 釉面粘土空心砖砌筑04 21 29 - Terra Cotta Mason 紫砂砖砌筑04 22 00 - Concrete Unit Mason 混凝土预制件砌筑04 22 00.13 - Concrete Unit Veneer Mason 混凝土预制薄板砌筑04 22 23.26 - Sound-Absorbing Concrete Unit Mason 预制隔声混凝土砌筑04 23 00 - Glass Unit Mason 玻璃单元砌筑04 25 00 - Unit Masonry Pane 板材单元砌筑04 27 00 - Multiple-Wythe Unit Mason 砖混单元砌筑04 40 00 - Stone Assemblies石材安装04 40 00.11 - Agglomerate*块状岩石04 40 00.17 - Granite*花岗石04 40 00.21 - Limestone*石灰石04 40 00.24 - Marble*大理石04 40 00.27 - Sandstone*砂岩04 40 00.31 - Slate*板岩04 43 00 - Stone Mason 石材砌筑04 47 00 - Reconstructed Stone石材翻修04 50 00 - Refractory Mason 耐火材料砌筑04 51 00 - Flue Liner Mason 烟道衬垫砌筑04 60 00 - Corrosion-Resistant Mason 耐腐蚀砌筑04 61 00 - Chemical-Resistant Brick Mason 耐化学砖砌筑04 70 00 - Manufactured Masonry人工砌筑04 71 00 - Manufactured Brick Mason 砖块人工砌筑04 72 00 - Cast Stone Mason 人造石砌筑04 73 00 - Manufactured Stone Mason 石材人工砌筑05 00 00 – Metal 金属Sections05 05 00 - Common Work Results for Meta 及金属相关的产品05 05 13 - Shop-Applied Coatings for Met 应用于金属上的涂料05 05 23 - Metal Fastenin 金属扣件05 05 53 - Security Metal Fastenin 平安金属扣件05 10 00 - Structural Metal Frami 金属构架05 15 00 - Wire Rope Assemblies 钢索装配05 20 00 - Metal Jois 金属托梁05 30 00 - Metal Decki 金属装饰05 31 00 - Steel Decki 钢铁装饰05 33 00 - Aluminum Decki 铝装饰05 40 00 - Cold-Formed Metal Frami 铁艺框架05 50 00 - Metal Fabricatio金属预制件05 51 00 - Metal Stai 金属楼梯05 51 00.11 - Prefabricated Stairs and Ramp 预制楼梯和坡道05 51 33 - Metal Ladde 金属楼梯05 51 33.23 - Alternating Tread Ladde 交互式踏步楼梯05 52 00 - Metal Railin 金属栏杆05 53 00 - Metal Gratin 金属栅栏05 54 00 - Metal Floor Plat 金属波纹板05 55 00 - Metal Stair Treads and Nosin 金属楼梯踏步板05 56 00 - Metal Castin 金属铸件05 58 13 - Column Cove 柱子幅面05 58 16 - Formed Metal Enclosur 金属围栏型材05 59 63 - Detention Enclosur 监狱围栏05 70 00 - Decorative Met 装饰金属05 70 00.11 - Decorative Woven Metal Fabric 金属装饰网05 73 00 - Decorative Metal Railin 金属装饰扶手05 75 00 - Decorative Formed Met 装饰金属型材05 75 00.11 - Perforated and Expanded Meta 金属穿孔板和金属网06 00 00 - Wood, Plastics, and Composites 木材,塑料,复合产品Sections06 01 00 - Maintenance of Wood, Plastics, and Composites 材、塑料和合成材料的维护06 05 23.11 - Adhesive 粘结剂06 05 23.14 - Connectors and Support 连接及支架06 05 73 - Wood Treatme 木材处理06 05 83 - Shop-Applied Wood Coatin 工厂木材油漆06 10 00.11 - Laminated and Processed Wood Panel 基层板和饰面板加工06 11 16 - Mechanically Graded Lumb 机械木材分级06 13 00 - Heavy Timb 大形木材06 15 00 - Wood Decki 木材装饰06 15 23 - Laminated Wood Decki 胶合板装饰06 16 00.11 - Fiberboard Sheet 纤维板06 16 26 –Underlayme 衬垫材料06 16 43 - Gypsum Sheathi 石膏腻子06 17 00 - Shop-Fabricated Structural Wo 工厂制作木构件06 17 33 - Wood I-Jois 木托梁06 17 36 - Metal-Web Wood Jois 金属丝网木托梁06 17 53 - Shop-Fabricated Wood Truss 工厂制作木构架06 18 00 - Glued-Laminated Constructi 多层板构架06 25 00 - Prefinished Paneli 预加工板外表整修06 26 00 - Board Paneli 预加工板06 40 00 - Architectural Woodwo 建筑木制品06 41 00.11 - Cabinet and Drawer Hardwar 橱柜和抽屉五金06 42 00 - Wood Paneli 木制预加工板06 43 00 - Wood Stairs and Railin 木制楼梯和扶手06 44 00 - Ornamental Woodwo 装饰木制品06 46 00 - Wood Tr 木材装饰06 49 19 - Exterior Wood Shutte 室外木百叶06 51 13 - Plastic Lumb 塑料仿木材料06 53 00 - Plastic Decki 塑料装饰06 60 00 - Plastic Fabricatio 塑料制作06 60 00.11 - Plastic Latti 塑料格栅06 61 00 - Simulated Stone Fabricatio 人造石装配06 61 16 - Solid Surfacing Fabricatio 实心台面装配06 63 00 - Plastic Railin 塑料栏杆06 64 00 - Plastic Paneling 塑料预制板06 65 00 - Plastic Simulated Wood Tr 塑料仿木装饰06 66 00 - Custom Ornamental Simulated Woodwo 定制仿木装饰制品06 70 00 - Structural Composit 复合构造06 71 13 - Composite Lumb 合成木材06 73 00 - Composite Decki 复合装饰06 73 13 - Composite Structural Decki 复合构造装饰06 82 00 - Glass-Fiber-Reinforced Plast 玻璃纤维增强塑料07 00 00 - Thermal and Moisture Protection 保温,防潮Sections07 01 30 - Maintenance of Steep Slope Roofi 陡峭屋顶维护07 01 40 - Maintenance of Roofing and Siding Pane 屋面材料和侧板的维护07 01 50 - Maintenance of Membrane Roofi 膜构造维护07 10 00 - Dampproofing and Waterproofi 屋顶防潮和防水07 18 00 - Traffic Coatin 交通涂料07 19 00 - Water Repellen 防水07 20 00 - Thermal Protecti 热保护07 21 00 - Thermal Insulati 隔热07 21 13 - Board Insulati 保温板07 22 00 - Roof and Deck Insulati 屋顶保温07 24 00 - Exterior Insulation and Finish Syste 外墙保温系统07 26 00 - Vapor Retarde 水气阻止剂07 27 00 - Air Barrie 气密层07 30 00 - Steep Slope Roofi 陡峭屋顶的保护07 31 00 - Shingles and Shak 瓦片和震动07 31 13 - Asphalt Shingl 沥青瓦07 31 13.13 - Fiberglass-Reinforced Asphalt Shingl 玻璃纤维增强沥青瓦07 31 16 - Metal Shingl 金属瓦07 31 26 - Slate Shingl 平板瓦07 31 29 - Wood Shingles and Shak 木制瓦片和震动07 32 00 - Roof Til 瓦片07 32 13 - Clay Roof Til 粘土瓦07 32 16 - Concrete Roof Til 水泥瓦07 32 19 - Metal Roof Til 金属瓦07 40 00 - Roofing and Siding Pane屋顶和外墙面板07 41 00 - Roof Pane 屋顶面板07 41 13 - Metal Roof Pane 金属屋顶面板07 42 00 - Wall Pane 墙板07 42 43 - Composite Wall Pane 复合墙板07 44 00 - Faced Pane 贴面板07 46 00 –Sidi 墙板- Aluminum Sidi 铝墙板07 46 19 - Steel Sidi 钢墙板07 46 23 - Wood Sidi 木墙板墙板07 46 26 - Hardboard Sidi 硬质墙板07 46 29 - Plywood Sidi 多层墙板07 46 33 - Plastic Sidi 塑料墙板07 50 00 - Membrane Roofi 膜构造07 51 00 - Built-Up Bituminous Roofi 组合沥青屋顶07 51 13.13 - Cold-Applied Built-Up Asphalt Roofi 冷作业组合沥青屋面07 51 23 - Glass-Fiber-Reinforced Asphalt Emulsion Roofi 玻璃纤维增强沥青屋面07 52 00 - Modified Bituminous Membrane Roofi 改性沥青卷材07 53 00 - Elastomeric Membrane Roofi 合成橡胶屋面卷材07 54 00 - Thermoplastic Membrane Roofi 热塑性屋面卷材07 55 51 - Built-Up Bituminous Protected Membrane Roofi 组和沥青保护膜屋面07 55 53 - Elastomeric Protected Membrane Roofi 橡胶保护膜屋面07 56 00 - Fluid-Applied Roofi 屋面涂料07 57 00 - Coated Foamed Roofi 泡沫层屋顶07 58 00 - Roll Roofi 铺屋面卷材07 60 00 - Flashing and Sheet Met 遮雨板和金属盖板07 61 00 - Sheet Metal Roofi 屋面金属板07 61 13 - Standing Seam Sheet Metal Roofi 标准接缝金属板屋面07 61 16 - Batten Seam Sheet Metal Roofi 金属扣板屋面07 61 19 - Flat Seam Sheet Metal Roofi平接缝金属板屋面07 62 00 - Sheet Metal Flashing and Tr 金属片防水板和装饰07 65 00 - Flexible Flashi 柔性防水板07 65 16 - Modified Bituminous Sheet Flashi 改性沥青防水板07 65 19 - Plastic Sheet Flashi 塑料防水板07 65 23 - Rubber Sheet Flashi 橡胶防水板07 71 00 - Roof Specialti 屋顶特性07 71 13 - Manufactured Copin 建造拼装屋顶07 71 16 - Manufactured Counterflashing Syste 建造防水板系统07 71 19 - Manufactured Gravel Stops and Fasci 建造挡石片和线脚07 71 23 - Manufactured Gutters and Downspou 建造排水沟和落水管07 71 26 –Regle 凸饰条07 71 29 - Manufactured Roof Expansion Join 建造屋顶伸缩缝07 71 33 - Manufactured Scuppe 建造排水孔07 72 00 - Roof Accessori 屋顶附件07 72 13 - Manufactured Cur 建造边沿饰条07 72 23 - Relief Ven 泻压口07 72 26 - Ridge Ven 屋脊通风口07 72 33 - Roof Hatch 屋顶开口07 72 36 - Smoke Ven 排烟口07 72 43 - Roof Walk Boar 上人屋面板07 72 46 - Roof Walkwa 屋顶走道07 72 53 - Snow Guar 雪防护装置07 76 00 - Roof Pave 屋面摊铺机07 81 00 - Applied Fireproofi 防火应用07 82 00 - Board Fireproofi 防火板07 84 00 –Firestoppi 防火系统07 86 00 - Smoke Sea 烟尘密封07 87 00 - Smoke Containment Barrie 阻烟屏障07 91 00 - Preformed Joint Sea伸缩缝密封07 91 16 - Joint Gaske 连接衬垫07 91 23 - Backer Ro 填充胶条07 91 26 - Joint Fille 接缝填充料07 92 00 - Joint Sealan 接缝密封剂07 92 19 - Acoustical Joint Sealan 接缝隔声密封剂07 95 00 - Expansion Contr 膨胀控制07 95 13 - Expansion Joint Cover Assembli 伸缩缝盖板装配08 00 00 – Openings 门窗及洞口Sectio08 10 00.11 - Door Louvers and Vision Ligh 门、天窗和光线08 11 00 - Metal Doors and Fram 金属门和框架08 11 63 - Metal Screen and Storm Doors and Frames 属屏蔽、防爆门和门框架08 11 73 - Sliding Metal Firedoo 滑动金属防火门08 11 74 - Sliding Metal Grill 金属卷帘08 13 00 - Metal Doo 金属门08 13 73 - Sliding Metal Do 滑动金属门08 14 00 - Wood Doo 木门08 15 00 - Plastic Doo 塑料门08 16 00 - Composite Doo 复合门08 17 13 - Integrated Metal Door Opening Assembli 综合金属门开启附件08 17 23 - Integrated Wood Door Opening Assembli 综合木门开启附件08 17 33 - Integrated Plastic Door Opening Assembli 综合塑料门开启附件08 17 43 - Integrated Composite Door Opening Assembli 综合复合门开启附件08 30 00 - Specialty Doors and Fram 特制门和框架08 31 00 - Access Doors and Pane 检修门和检修口盖板08 31 13 - Access Doors and Fram 检修门和框架08 31 13.53 - Security Access Doors and Fram 平安通道门和框架08 31 16 - Access Panels and Fram 通道板材和框架08 32 00 - Sliding Glass Doo 移动玻璃门08 33 00 - Coiling Doors and Grill 卷帘门和窗08 33 13 - Coiling Counter Doo 逆向卷帘08 33 23 - Overhead Coiling Doo 上置卷帘门08 33 26 - Overhead Coiling Grill 上置卷帘窗08 33 33 - Side Coiling Doo 侧面卷帘门08 33 36 - Side Coiling Grill 侧面卷帘窗08 34 16 - Hangar Doo 飞机库门08 34 19 - Industrial Doo 工厂门08 34 36 - Darkroom Doo 暗房门08 34 53 - Security Doors and Fram 平安门和框架08 34 63 - Detention Doors and Fram 监禁室门和框架08 34 73 - Sound Control Door Assembli 隔声门装配08 35 00 - Folding Doors and Grill 折叠门和窗08 35 13.23 - Folding Fire Doo 折叠防火门08 36 00 - Panel Doo 饰面板门08 36 13 - Sectional Doo 组合门08 38 00 - Traffic Doo 通道门08 39 13 - Airtight Doo 气密门08 39 19 - Watertight Doo 水密门08 39 53 - Blast-Resistant Doo 防爆门08 41 00 - Entrances and Storefron 入口和门面08 42 26 - All-Glass Entranc 全玻璃入口08 42 29 - Automatic Entranc 自动入口08 42 29.23 - Sliding Automatic Entranc 平移门自动入口08 42 33 - Revolving Door Entranc 旋转门入口08 42 36 - Balanced Door Entranc 平开门入口08 42 43 - Intensive Care Unit/Critical Care Unit Entranc 加护病房和危急病房入口08 43 00 –Storefron 店面08 44 00 - Curtain Wall and Glazed Assembli 幕墙装配08 44 13 - Glazed Aluminum Curtain Wal 玻璃铝板幕墙系统08 44 26 - Structural Glass Curtain Wal 玻璃砖幕墙08 44 26.11 - Structural Glass Curtain Wall Hardwa 玻璃砖幕墙五金件08 44 33 - Sloped Glazing Assembli 斜坡玻璃装配08 45 00 - Translucent Wall and Roof Assembli 透明墙和顶棚装配08 45 13 - Structured-Polycarbonate-Panel Assembli 建筑用聚碳酸酯板装配08 45 23 - Fiberglass-Sandwich-Panel Assembli 玻璃纤维夹芯板装配08 50 00 –Windo 窗08 50 00.11 - Replacement Windo 更换窗户08 51 00 - Metal Windo 金属窗08 51 13 - Aluminum Windo 铝合金窗08 51 16 - Bronze Windo 青铜窗08 51 19 - Stainless-Steel Windo 不锈钢窗08 51 23 - Steel Windo 钢窗08 51 66 - Metal Window Scree 金属格子窗08 51 69 - Metal Storm Windo 金属护窗〔户外百叶〕08 52 13 - Metal-Clad Wood Windo 金属面木窗08 52 16 - Plastic-Clad Wood Windo 塑料面木窗08 52 66 - Wood Window Scree 木格窗08 52 69 - Wood Storm Windo 木户外百业08 53 00 - Plastic Windo 塑料窗08 53 13 - Vinyl Windo 乙烯基窗08 53 66 - Vinyl Window Scree 乙烯基窗格08 53 69 - Vinyl Storm Windo 乙烯基户外百叶08 54 66 - Fiberglass Window Scree 玻璃纤维格子窗08 54 69 - Fiberglass Storm Windo 玻璃纤维户外百叶08 56 19 - Pass Windo 通关窗口08 56 46 - Radio-Frequency-Interference Shielding Windo 无线电屏蔽窗08 56 49 - Radiation Shielding Windo 辐射屏蔽窗08 56 53 - Security Windo 平安窗08 56 56 - Security Window Scree 平安窗格栅08 56 59 - Service and Teller Window Uni 效劳和银行窗口单元08 56 63 - Detention Windo 监禁室窗08 56 66 - Detention Window Scree 监禁室窗格栅08 56 73 - Sound Control Windo 隔声窗08 62 00 - Unit Skyligh 天窗系统08 62 13 - Domed Unit Skyligh 透明穹顶天棚系统08 62 16 - Pyramidal Unit Skyligh 透明尖顶天棚系统08 62 19 - Vaulted Unit Skyligh 透明弓形天棚系统08 63 00 - Metal-Framed Skyligh 金属框架天窗08 64 00 - Plastic-Framed Skylight塑料框架天窗08 71 00 - Door Hardwa 门五金08 71 00.11 - Exit Device 出口装置08 71 00.14 - Sliding and Folding Door Hardwar 滑动和折叠门五金08 71 00.17 - Weatherstripping, Thresholds, and Seal 门槛和密封条08 71 13 - Automatic Door Operato 自动门开关装置08 71 53 - Security Door Hardwa 平安门五金08 71 63 - Detention Door Hardwa 监禁门五金08 74 00 - Access Control Hardware 入口控制五金08 74 13 - Card Key Access Control Hardwa IC卡入口控制五金08 74 16 - Keypad Access Control Hardwa 袖珍键盘控制入口五金08 74 19 - Biometric Identity Access Control Hardwa 生物识别控制入口五金件08 75 00 - Window Hardwa 窗五金08 81 00 - Glass Glazi 玻璃窗08 81 13 - Decorative Glass Glazi 装饰玻璃窗08 83 00 –Mirro 镜子08 84 00 - Plastic Glazi 塑料窗08 84 13 - Decorative Plastic Glazi 塑料装饰窗08 85 00 - Glazing Accessori 玻璃窗附件08 87 00 - Glazing Surface Fil 玻璃窗框膜08 88 00 - Special Function Glazi 特殊功能玻璃窗08 88 00.11 - Fire-Rated Glass and Glazing System 防火玻璃和玻璃窗系统08 88 00.14 - Electronically Controlled Switchable Gla 电子调节切换玻璃08 88 19 - Hurricane-Resistant Glazi 抗飓风玻璃窗08 88 49 - Radiation-Resistant Glazi 抗辐射玻璃窗08 88 53 - Security Glazi 平安玻璃窗08 88 56 - Ballistics-Resistant Glazi 防弹玻璃窗08 90 00 - Louvers and Ven 百叶和通风口08 91 00 –Louve 百叶08 91 13 - Motorized Wall Louve 电动百叶08 91 16 - Operable Wall Louve 可调角度百叶08 91 19 - Fixed Louve 固定百叶08 91 26 - Door Louve 百叶门08 92 00 - Louvered Equipment Enclosur 设备用百叶围栏08 95 00 –Ven 风口08 95 13 - Soffit Ven 屋檐通风口08 95 16 - Wall Ven 墙风口08 95 16.10 - Brick & Block Ven 砌块形风口09 00 00 – Finishes 终饰Sections09 01 70 - Maintenance of Wall Finishes 墙外表的维护09 01 90.51 - Paint Cleani 涂料面的清洗09 21 00 - Plaster and Gypsum Board Assembli 石膏、石膏板装配09 21 13 - Plaster Assembli 石膏装配09 22 00 - Supports for Plaster and Gypsum Boa 石膏、石膏板附件09 22 13 - Metal Furri 轻钢龙骨09 22 16 - Non-Structural Metal Frami 轻钢龙骨框架09 22 26 - Suspension Syste吊顶系统09 22 36 –La 条板09 22 39 - Veneer Plaster Ba饰面石膏板09 23 00 - Gypsum Plasteri 粉刷石膏09 24 00 - Portland Cement Plasteri 硅酸盐水泥板抹灰09 25 00 - Other Plasteri 其它的抹灰09 26 00 - Veneer Plasteri 饰面板石膏抹灰09 27 00 - Plaster Fabricatio 抹灰工艺09 28 00 - Backing Boards and Underlaymen 模板和屋面衬板09 29 00 - Gypsum Boa 石膏板09 30 00 –Tili 瓷砖09 30 00.11 - Tile-Setting Material 铺设瓷砖的材料09 30 13 - Ceramic Tili 陶瓷砖09 30 16 - Quarry Tili 缸砖09 30 29 - Metal Tili 金属瓷砖09 31 00 - Thin-Set Tili 瓷砖胶贴09 31 13 - Thin-Set Ceramic Tili 陶瓷砖胶贴09 31 16 - Thin-Set Quarry Tili 缸砖胶贴09 31 29 - Thin-Set Metal Tili 金属瓷砖胶贴09 32 00 - Mortar-Bed Tili 砂浆贴瓷砖09 32 13 - Mortar-Bed Ceramic Tili 砂浆贴陶瓷砖09 32 16 - Mortar-Bed Quarry Tili 砂浆贴缸砖09 32 29 - Mortar-Bed Metal Tili 砂浆贴金属瓷砖09 33 13 - Conductive Ceramic Tili 抗静电陶瓷砖09 33 16 - Conductive Quarry Tili 抗静电缸砖09 33 29 - Conductive Metal Tili 抗静电金属砖09 34 00 - Waterproofing-Membrane Tili 防水瓷砖09 34 13 - Waterproofing-Membrane Ceramic Tili 防水陶瓷砖09 34 16 - Waterproofing-Membrane Quarry Tili 防水缸砖09 34 29 - Waterproofing-Membrane Metal Tili防水金属瓷砖09 35 00 - Chemical-Resistant Tili 耐化学瓷砖09 35 13 - Chemical-Resistant Ceramic Tili 耐化学陶瓷砖09 35 16 - Chemical-Resistant Quarry Tili 耐化学缸砖09 35 29 - Chemical-Resistant Metal Tili 耐化学金属砖09 51 00 - Acoustical Ceilin 声学天花09 53 00 - Acoustical Ceiling Suspension Assembli 声学天花悬吊装配09 54 00 - Specialty Ceilin 专业天花09 54 13 - Open Metal Mesh Ceilin 开放的金属网天花09 54 16 - Luminous Ceilin 发光天花09 54 23 - Linear Metal Ceilin 金属条板天花09 56 00 - Textured Ceilin 条纹天花09 56 16 - Metal-Panel Textured Ceilin 金属条纹板天花09 58 00 - Integrated Ceiling Assembli 综合天花装配组件09 60 00.11 - Sound Control Underlaymen *隔声衬垫材料09 61 00 - Flooring Treatme 地面处理09 62 19 - Laminate Floori 多层实木地板09 63 00 - Masonry Floori 砖石地面材料09 64 00 - Wood Floori 实木地板09 64 66 - Wood Athletic Floori 实木运动地板09 65 00 - Resilient Floori 弹性地板09 65 13 - Resilient Base and Accessori 弹性基材及附件09 65 13.23 - Resilient Stair Treads and Rise 弹性楼梯梯级板和起步板09 65 13.26 - Resilient Stair Nosin 弹性梯级口09 65 66 - Resilient Athletic Floori 弹性运动地板09 66 00 - Terrazzo Floori 水磨石地坪09 67 00 - Fluid-Applied Floori 自流平地坪09 68 00 –Carpeti 满铺地毯09 68 16 - Sheet Carpeti 块毯09 69 00 - Access Floori入口地坪09 72 00 - Wall Coverin 墙纸09 77 00 - Special Wall Surfaci 特殊墙面处理09 77 00.11 - Sanitary Wall and Ceiling Panel 卫生间墙板和天花09 80 00 - Acoustic Treatme 声学处理09 81 00 - Acoustic Insulati 隔音09 84 00 - Acoustic Room Componen 隔音房的组成09 84 16 - Fixed Sound-Reflective Pane 固定的声反射板09 84 26 - Moveable Sound-Reflective Pane 活动的声反射板09 84 36 - Sound-Absorbing Ceiling Uni 吸声天花系统09 91 00 –Painti 油漆09 93 00 - Staining and Transparent Finishi 着色和透明涂刷09 93 13.13 - Exterior Staini 外表着色09 93 23.13 - Interior Staining 内部着色09 94 00 - Decorative Finishi 装饰修正09 96 00 - High-Performance Coatin 高性能涂料09 96 23 - Graffiti-Resistant Coatin 肌理涂料09 96 43 - Fire-Retardant Coatin 防火涂料09 96 53 - Elastomeric Coatin 弹性涂料09 97 00 - Special Coatin 特种涂料10 00 00 – Specialties 专项sections10 10 00 - Information Specialti 信息专项10 11 00 - Visual Display Surfac 视觉显示屏10 11 13 –Chalkboar 黑板10 11 16 –Markerboar 画板10 11 16.53 - Electronic Markerboar 电子画板10 11 23 –Tackboar 布告板10 11 36 - Visual Display Conference Uni 会议显示单元10 11 43 - Visual Display Wall Pane 显示墙10 11 46 - Visual Display Fabri 影幕10 12 00 - Display Cas 展示柜10 13 00 –Directori 姓名地址栏10 13 13 - Electronic Directori 电子姓名地址栏10 14 00 –Signa 指示标志10 14 16 –Plaqu 金属片或瓷片10 14 19 - Dimensional Letter Signa 空间指示牌10 14 33 - Illuminated Panel Signa 指示灯箱10 14 63 - Electronic Message Signa 电子信息显示板10 17 00 - Telephone Specialti 专项10 17 16 - Telephone Enclosur 亭10 17 16.13 - Telephone Stal 摊10 17 16.16 - Telephone Alcoves 台10 18 00 - Informational Kios 信息亭10 21 00 - Compartments and Cubicl 小隔间和小卧室10 21 13 - Toilet Compartmen 盥洗室隔断10 21 13.13 - Metal Toilet Compartmen 金属厕所隔断10 21 13.19 - Plastic Toilet Compartmen 塑料厕所隔断10 21 13.23 - Particleboard Toilet Compartmen 密度板厕所隔断10 21 13.40 - Stone Toilet Compartmen 石材厕所隔断10 21 16 - Shower and Dressing Compartmen 淋浴房10 21 16.13 - Metal Shower and Dressing Compartmen 金属淋浴房10 21 16.16 - Plastic-Laminate-Clad Shower and Dressing Compartmen 合成淋浴房10 21 16.19 - Plastic Shower and Dressing Compartmen 塑料淋浴房10 21 16.23 - Particleboard Shower and Dressing Compartmen 木板淋浴房10 21 16.40 - Stone Shower and Dressing Compartments 石材淋浴房10 21 23.13 - Cubicle Curtai 卧室窗帘10 21 23.16 - Cubicle Track and Hardwa 窗帘轨道五金件10 22 13 - Wire Mesh Partitio 金属网隔断10 22 16 - Folding Gat 折叠大门10 22 19 - Demountable Partitio 可拆隔断10 22 23 - Portable Partitions, Screens, and Pane 轻便隔断、屏风、板10 22 23.23 - Movable Panel Sys 可移动板系统10 22 26 - Operable Partitio 移动隔断10 22 26.13 - Accordion Folding Partitio 折叠壁屏风10 22 26.33 - Folding Panel Partitio 折壁屏风10 22 26.43 - Sliding Partitio 移动隔断10 26 00 - Wall and Door Protecti 墙和门保护10 26 13 - Corner Guar 墙角保护10 26 16 - Bumper Guar 缓冲保护10 26 16.13 - Bumper Rai 缓冲护栏10 26 16.16 - Protective Corridor Handrai 走廊保护护栏10 26 23 - Protective Wall Coveri 墙纸保护10 26 23.13 - Impact Resistant Wall Protecti 抗撞击墙的保护10 26 33 - Door and Frame Protecti 门和门框保护10 28 00 - Toilet, Bath, and Laundry Accessori 厕所、浴室、干洗店附件10 28 13.19 - Healthcare Toilet Accessori 卫生保健厕所附件10 28 13.53 - Security Toilet Accessori 平安厕所附件10 28 19 - Tub and Shower Doo 浴缸和淋浴房门10 28 19.16 - Shower Doo 淋浴房门10 28 19.19 - Tub Doo 浴缸门10 28 23.13 - Built-In Ironing Boar 固定熨衣板10 30 00 - Fireplaces and Stoves 壁炉10 31 00 - Manufactured Fireplac 壁炉制作10 31 13 - Manufactured Fireplace Chimne 制作壁炉烟囱10 32 00 - Fireplace Specialti 壁炉专项10 32 19 - Fireplace Scree 壁炉屏风10 32 23 - Fireplace Doo 壁炉门10 40 00 - Safety Specialti 平安专项10 41 00 - Emergency Access and Information Cabine 紧急通道和控制柜10 43 00 - Emergency Aid Specialti 紧急情况救援专项10 43 13 - Defibrillator Cabine 电击控制柜10 44 00 - Fire Protection Specialti 消防专项10 51 00 –Locke 柜子10 51 00.11 - Locker Locks and Accessorie 柜子的锁和附件10 51 13 - Metal Locke 金属柜10 51 16 - Wood Locke 木制柜10 51 26 - Plastic Locke 塑料柜10 51 43 - Wire Mesh Storage Locke 金属网储存柜10 51 53 - Locker Room Benches 衣帽间长椅10 55 00 - Postal Specialti 邮政专项10 55 13 - Central Mail Delivery Box 中心邮件信箱10 55 16 - Mail Collection Box 邮箱10 55 19 - Receiving Box 接收盒10 55 23 - Mail Box 信箱10 55 23.13 - Apartment Mail Box 公寓信箱10 55 36 - Package Depositories 包裹存放箱10 56 00 - Storage Assembli 存储组件10 56 13 - Metal Storage Shelvi 金属存储架10 56 33 - Mercantile Storage Assembli 商业储存汇编10 57 00 - Wardrobe and Closet Specialti 衣橱和壁橱专项10 57 13 - Hat and Coat Rac 衣帽架10 57 23 - Closet and Utility Shelvi 壁橱衣柜10 57 33 - Closet and Utility Shelving Hardwa 壁橱衣柜五金10 71 13 - Exterior Sun Control Devic 室外阳光控制设备10 71 16 - Storm Pane 抗飓风板10 73 00 - Protective Cove 保护层10 73 13 –Awnin 雨蓬10 73 16 –Canopi 天棚10 73 23 - Car Shelte 车棚10 73 26 - Walkway Cover 人行道天棚10 73 43 - Transportation Stop Shelte 车站天棚10 74 13 - Exterior Clo 室外时钟10 74 23 –Cupol 穹顶10 74 26 –Spir 尖顶10 74 29 –Steepl塔尖10 75 00 –Flagpol 旗杆10 75 16 - Ground-Set Flagpol 埋地旗杆10 75 19 - Nautical Flagpol 船用旗杆10 75 23 - Wall-Mounted Flagpol 装在墙上的旗杆10 81 00 - Pest Control Devic 有害物控制装置10 81 13 - Bird Control Devic 鸟类控制装置10 82 00 - Grilles and Scree 格子屏风10 83 00 - Flags and Banne 旗子和横幅10 86 00 - Security Mirrors and Dom 平安球面镜11 00 00 – Equipment 设备sections11 12 00 - Parking Control Equipme 停车控制设备11 13 00 - Loading Dock Equipment 码头设备11 14 00 - Pedestrian Control Equipme 跑步机11 16 00 - Vault Equipme 储藏室设备11 17 00 - Teller and Service Equipme 柜员及辅助设备11 17 13 - Teller Equipment Syste 柜员系统设备11 17 16 - Automatic Banking Syste 自助银行系统11 19 00 - Detention Equipme 监禁设备11 21 00 - Mercantile and Service Equipme 商品和效劳设备11 21 23 - Vending Equipme自助贩卖机11 21 33 - Checkroom Equipme 衣物存放设备11 23 00 - Commercial Laundry and Dry Cleaning Equipme 商用干洗设备11 24 19 - Vacuum Cleaning Syste 吸尘清扫设备11 24 23 - Window Washing Syste 擦窗系统11 26 00 - Unit Kitche 厨房单元11 27 00 - Photographic Processing Equipme 照相处理设备11 28 13 –Compute 电脑11 31 00 - Residential Applianc 住宅设备11 33 00 - Retractable Stai 伸缩楼梯11 40 00 - Foodservice Equipme 食品加工机11 41 23 - Walk-In Coole 走入式冰箱11 41 26 - Walk-In Freeze 走入式冷冻库11 42 00 - Food Preparation Equipme 食物配制设备11 43 00 - Food Delivery Carts and Conveyo 食品推车和输送机11 44 00 - Food Cooking Equipme 食品烹饪设备11 46 16 - Service Line Equipme 发球界限设备11 47 00 - Ice Machin 冰淇淋机11 50 00 - Educational and Scientific Equipme 教育和科学设备11 51 00 - Library Equipme 图书馆设备11 52 00 - Audio-Visual Equipment 视听设备11 52 13 - Projection Scree 银幕11 53 00 - Laboratory Equipme 实验设备11 55 00 - Planetarium Equipme 天文设备11 61 00 - Theater and Stage Equipme 剧场舞台设备11 62 00 - Musical Equipme 音乐设备11 62 13 –Bel 铃11 62 16 –Carillo 钟乐器11 65 00 - Athletic and Recreational Equipme 运动和娱乐设备11 65 00.11 - Electronic Scoreboard电子记分牌11 66 13 - Exercise Equipme 练习设备11 66 43 - Interior Scoreboar 室内记分牌11 68 00 - Play Field Equipment and Structur 赛场设备和建筑物11 68 13 - Playground Equipme 运动场设备11 68 43 - Exterior Scoreboar 室外机分牌11 70 00 - Healthcare Equipme 卫生保健设备11 72 00 - Examination and Treatment Equipme 检查及处理设备11 73 00 - Patient Care Equipme 患者理疗设备11 78 00 - Mortuary Equipme 太平间设备11 82 00 - Solid Waste Handling Equipme 固体废物处理设备11 82 26 - Waste Compactors and Destructors 弃物打包机和垃圾燃烧设备11 91 00 - Religious Equipme 宗教设备12 00 00 – Furnishings 家具sections12 05 13 –Fabri 织物12 10 00 –A 艺术品t12 14 00 –Sculptur 雕塑12 21 00 - Window Blin 百叶帘12 22 00 - Curtains and Drap 门帘和窗帘12 22 16 - Drapery Track and Accessori 窗帘轨道和附件12 23 00 - Interior Shutte 室内百叶窗12 24 00 - Window Shad 遮光帘12 25 00 - Window Treatment Operating Hardwa 窗帘五金12 25 13 - Motorized Drapery Ro 电动卷帘杆12 30 00 –Casewo 柜子12 31 00 - Manufactured Metal Casewo 金属家具制作12 32 00 - Manufactured Wood Casewo 实木家具制作12 32 16 - Manufactured Plastic-Laminate-Clad Casewo 中密度板塑胶饰面家具12 34 00 - Manufactured Plastic Casewo 塑胶家具12 35 00 - Specialty Casewo 专业家具12 35 00.11 - Musical Instrument and Performance Casewo 音乐器具和演奏家具12 35 30 - Residential Casewo 住宅家具12 35 53 - Laboratory Casewo 实验室家具12 35 59 - Display Casewo 陈列家具12 35 70 - Healthcare Casewo 卫生保健家具12 35 91 - Religious Casewo 宗教家具12 36 00 –Counterto 工作台面12 36 16 - Metal Counterto 金属工作台面12 36 23 - Plastic Counterto 塑料工作台面12 36 40 - Stone Counterto 石材工作台面12 36 53 - Laboratory Counterto 实验室操作台面12 36 61.16 - Solid Surfacing Counterto 实心工作台面12 36 61.19 - Quartz Surfacing Counterto 石英工作台面12 46 00 - Furnishing Accessori 家居附件12 46 19 –Cloc 钟12 46 26 - Decorative Scree 装饰屏风12 48 00 - Rugs and Ma 地毯和脚垫12 48 13 - Entrance Floor Mats and Fram 入口地毯和框架12 48 13.13 - Entrance Floor Ma 入口地毯12 48 16 - Entrance Floor Grill 入口地坪方格栅12 48 19 - Entrance Floor Gratin 入口地坪条状格栅12 48 23 - Entrance Floor Gri 入口网状地垫12 48 26 - Entrance Ti 入口瓷砖12 48 43 - Floor Ma 地板垫12 48 53 –Ru 地毯12 48 53.13 –Runne 长条地毯12 50 00 –Furnitu 家具12 51 00 - Office Furnitu 办公家具。
高炉炼铁用设备材料词汇中英文翻译对照表
高炉炼铁用设备材料词汇中英文翻译对照表区域A (For Area A)Sector 段 CISDI Code Description 名称 English 英文CISDI代码A BFB HSC SWD CAE STF GCG SH HI J K CI L OE M CM N AC O FFP CS Q UT Z EA B RT K IW高炉本体热风炉软水回路出铁场水渣系统煤气清洗系统原料贮运系统电气自动化和仪表-公用部分PCI 富氧系统电讯和ITV系统空调系统消防及火灾报警系统土建和钢结构厂房公辅和操作支持系统概述区域D (For Area D)TRT 系统高炉净环水处理厂Blast Furnace Proper Hot Stove Soft Water Circuit Cast HouseSlag Granulation System Gas Cleaning SystemRaw Material Handling System ElectricalAutomation&Instrumentation - CommonPulverized Coal Injection Oxygen Enrichment System Communication & ITV System Air Conditioning System Fire Fighting & Detection SystemCivil & Metallic Structures BuildingUtilities & Operation Support SystemGeneralTurbine Recovery Top Indirect Water Treatment Plant区域A (For Area A)A-高炉本体............................................................................ ................................ BF Proper 1. 2. 3. 4. 5. 6. 7. 8. 9.安全水塔出水管手动阀 .........................manual valve for outlet pipe of safety water tower 安全水塔出水管止回阀 ........................... check valve for outlet pipe of safety water tower 安全水塔气动阀 .................................................. pneumatic valve for safety water tower 安全水塔手动阀 .......................................................manual valve for safety water tower 泵出口电动阀 ............................................................. motorized valve at outlet of pump 泵出口伸缩节 .............................................................. retractable joint at outlet of pump 泵出口手动阀 ................................................................. manual valve at outlet of pump 泵出口止回阀 ................................................................... check valve at outlet of pump 泵进口手动阀 ................................................................... manual valve at inlet of pump10. 便携式超声波流量计 ..........................................................portable ultrasonic flowmeter 11. 变频电机,变频调速电机 ........................................................................... VVVF motor 12. 并罐无料钟炉顶 ..................................................................parallel-hopper bell-less top 13. 波纹补偿器 ........................................................................... ....... bellows compensator 14. 波纹管 ........................................................................... .................................. bellows 15. 补水电动阀 .............................................................. motorized valve for water make-up 16. 补水手动valve for water make-up 17. 不锈钢手动球阀 ......................................................... manual stainless steel ball valve 18. 布料溜槽 ........................................................................... ................. distribution chute 19. 超微孔炭砖 ............................................................... super micro-porous carbon blocks 20. 超越冷却塔手动阀 ...........................................overriding manual valve for cooling tower 21. 称量料罐 ........................................................................... ..................weighing hopper 22. 齿轮箱 ........................................................................... ................................ gear Box 23. 出铁口 ........................................................................... .................................. taphole 24. 除尘器氮气吹扫阀 ............................................................ N2 purging valve for deduster 25. 除尘器蒸汽吹扫阀 .......................................................steam purging valve for deduster 26. 传动齿轮箱 ........................................................................... ...... transmission gearbox 27. 大炭砖 ........................................................................... .........................carbon blocks28. 单轨小车 ........................................................................... ........................ monorail car 29. 氮化硅结合碳化硅砖 ........................................................................... ..Si3N4-SiC brick 30. 倒流休风管 ........................................................................... ................ back draft pipe 31. 捣打料 ........................................................................... ................... ramming material 32. 电动蝶阀 ........................................................................... ...... motorized butterfly valve 33. 斗式提升机 ........................................................................... ................pocket elevator 34. 二冷 ........................................................................... ..................... secondary cooling 35. 防水耐火泥.. water-proof fire mortar 36. 风口 ........................................................................... ....................................... tuyere 37. 风口大套 ........................................................................... .......................tuyere holder 38. 风口小套 ........................................................................... ................................. tuyere 39. 风口中套 ........................................................................... ....................... tuyere cooler 40. 风口组合砖 ........................................................................... .............. tuyere assembly 41. 刚玉质泥浆 ........................................................................... ............. corundum mortar 42. 刚玉砖 ........................................................................... ...................... corundum brick 43. 高架蓄水池 ........................................................................... ............elevated reservoir 44. 高炉低压供水泵 ............................................................low-pressure water pump for BF 45. 高炉高压柴油机供水泵 .......................................diesel pump for BF high-pressure water 46. 高炉高压供水泵 ..................................................................... high pressure water pump 47. 高炉回水提升泵 ..............................................................lifting pump for BF return water 48. 高炉软水二冷水供水泵 ............... secondarycooling water pump for BF soft water system 49. 工业循环水 ........................................................................ industrial recirculating water 50. 供水和回水主管 .............................................................. water supply and return mains 51. 管道过滤器 ........................................................................... .........................pipe filter 52. 光面冷却壁 ........................................................................... ......................... flat stave 53. 滑轮 ........................................................................... ....................................... pulley 54. 缓冲耐火泥浆 ............................................................................ amortization fire mortar 55. 灰铸铁冷却...... gray cast iron stave 56. 回声探测器 ........................................................................... ................ sound detector 57. 加速仪 ........................................................................... ........................ accelerometer58. 间接循环水冷却塔 ............................................ indirect recirculating water cooling tower 59. 浇注料 ........................................................................... ................................. castable 60. 接受罐 ........................................................................... .........................receiving tank 61. 截止阀 ........................................................................... ............................ check valve 62. 金属软管 ........................................................................... .......................... metal hose 63. 进冷却塔手动阀 ....................................................... manual valve for cooling tower inlet 64. 净环水 ........................................................................... ...... indirect recirculating water 65. 卷扬机 ........................................................................... .............................hoist winch 66. 客货两用电梯 .................................................... cargo-passenger dual-purpose elevator 67. 雷达式探尺 ........................................................................... ................ radar stock rod 68. 冷却壁 ........................................................................... ..................................... stave 69. 冷却壁设备配置 ........................................................................... .... stave configuration 70. 冷却壁镶砖 ........................................................................... ............. stave Inlaid brick 71. 冷却循环泵 ........................................................................... .. cooling circulating pump 72. 冷水池 ........................................................................... ..................... cold water basin 73. (高炉)利用系数 ........................................................................... .. productivity of BF 74. 炉底 ............................................................................................................BF bottom 75. 炉底保护砖 ......................................................................prote ction brick for BF bottom 76. 炉底冷却设备 .............................................................. cooling equipment for BF bottom 77. 炉底铺设梁及水冷管 ................................................ beam and water pipe for BF bottom 78. 炉底水冷管 ........................................................................... .................... bottom Pipe 79. 炉顶氮气吹扫阀 ........................................................................ BF top N2 purging valve 80. 炉顶结构 ........................................................................... .................. BF top structure 81. 炉顶均排压设备 .................................... BF top pressure equalizing and relief equipment 82. 炉顶框架 ........................................................................... ....................... BF top tower 83. 炉顶喷水 ........................................................................... .............. BF top water spray 84. 炉顶平台 ........................................................................... ................... BF top platform 85. 炉顶人孔 ........................................................................... ...................BF top manhole 86. 炉顶洒水装置 ........................................................................... BF top sprinkling device 87. 炉顶探尺 ........................................................................... .................. BF top stock rod88. 炉顶外封罩 ........................................................................... .................... BF top cone 89. 炉顶循环水系统 ..................................................... recirculating water system for BF top 90. 炉顶液压站和润滑站 ..............................hydraulic station and greasing station for BF top 91. 炉顶蒸汽吹扫阀 ..............................................................steam purging valve for BF top 92. 炉腹 ........................................................................... ......................................... bosh 93. 炉腹用铝炭砖 ............................................................... aluminum-carbon brick for bosh 94. 炉缸 ........................................................................... .......................................hearth 95. 炉喉 ........................................................................... ........................................throat 96. 炉喉保护板 ........................................................................... .BF throat protection plate 97. 炉喉钢砖 ........................................................................... ................... BF throat armor 98. 炉喉冷却壁 ........................................................................... .....................throat stave 99. 炉身 ........................................................................... ......................................... shaft 100. 炉体框架 ........................................................................... ....................... proper tower 101. 炉体冷却壁 ........................................................................... .............. BF proper stave 102. 炉体冷却水系统 ............................................................ BF proper cooling water system 103. 炉体清灰管 ................................................................ dust removing pipe for BF proper 104. 炉腰 ........................................................................... ......................................... belly 105. 铝炭砖泥浆 ................................................................ mortar for aluminum-carbon brick 106. 埋刮板输送机 ........................................................................... .... en masse conveyor 107. 煤气封罩 ........................................................................... ..............................top cone 108. 煤气上升管 ........................................................................... .................... gas uptakes 109. 耐热混凝土 ........................................................................... .... heat resistant concrete 110. 逆向给料溜槽 ........................................................................... ..... reversing feed chute 111. 排气筒 ........................................................................... ......................... exhaust stack 112. 排污电动阀 ....................................................................... motorized valve for drainage 113. 排污手动阀 ........................................................................... manual valve for drainage 114. 球阀 ........................................................................... .................................. ball valve 115. 全厂工业水管网 .........................................................plant industrial water pipe network 116. 热风阀 ........................................................................... .......................Hot Blast Valve 117. 热风炉蒸汽吹扫阀 ............................................................... steam purging valve for HS感谢您的阅读,祝您生活愉快。
专业钢结构英语词汇表
钢结构英语词汇Aabsolute humidity 绝对湿度absolute elevation:[eli'veiʃən]绝对高程absolute error 绝对误差absorbed water 吸着水AC arc welding 交流焊accelerometer[æk,selə'rɔmitə]with strain gage type 交变式加速度计acceptable quality 合格质量acceptance lot 验收批量accident error 偶然误差accidental action 偶然作用accidental combination for act 作用效应偶然组合accidental situation 偶然状况accumulation landform 堆积地貌accumulational plain 堆积平原acid-resistant concrete 耐酸混凝土acid-resistant mortar 耐酸砂浆acid-resistant paste 耐酸胶泥acid-resistant pottery and Porcelain product 耐酸陶瓷制品aciera 钢材acked pile 压入桩action 作用actual bearing capacity of structural member 结构构件实际承载能力actual velocity of ground water flow 地下水实际流速address 地址adhesion action 胶结作用adhesive for structural timber 木结构用胶adhesive honded connection 胶结连接adit 平洞adjusted value 平差值adjustment of observation equations 间接平差adjustment of observations 测量平差Adjustment of observations 平差administration automation system ban 办公自动化系统admixture 外加剂adobe 土坯affected coefficient for increasing of deflection 挠度增大影响系数against slip coefficient between friction surface of high-strength bolted connection高强度螺栓摩擦面抗滑移系数ageing of structure 结构老画3aggregate 骨料air content 含气量air converter steel 侧吹碱性转炉钢air lock 气闸air seasoned wood,air dried wood 气干材air-dried timber 气干材air-inflated structure 气管式充气结构Alaska earthquake 阿拉斯加地运alkaline medium 碱性介质allowable grade of slope 边坡坡度容许值allowable ratio of height to sectional thickness of masonry wall or column 砌体墙,柱容许高厚比allowable slenderness ratio of steel member 钢构件容许长细比allowable slenderness ratio of timber compression member 受压木构件容许细长比allowable stress range of fatigue 疲劳容许应力幅allowable ultimate tensile strain of reinforcement 钢筋拉应变限值allowable value of crack width 裂缝宽度容许值allowable value of deflection of structural member 构件挠度容许值allowable value of deflection of timber bending member 受弯木构件挠度容许值allowable value of deformation of steel member 钢构件变形容许值allowable value of deformation of structural member 构件变形容许值allowable value of drift angle of earthquake resistant structure 抗震结构层间位移角限值amplified coefficient of eccentricity 偏心距增大系数analysis Infreyuency domain 频域分析anchor bolt 锚栓anchor of guy 纤绳地锚anchorage 锚具anchorage length of steel bar 钢筋锚固长度approval analysis during construction stage 施工阶段验算arch 拱arch with tie rod 拉捍拱arch-shaped roof truss 拱形屋架area of shear plane 剪面面积area of transformed section 换算截面面积aseismic design 建筑抗震设计assembled monolithic concrete structure 装配整体式混凝土结构automatic welding 自动焊接auxiliary steel bar 架立钢筋Bbackfilling plate 垫板balanced depth of compression zone 界限受压区高度balanced eccentricity 界限偏心距bar splice 钢筋接头bark pocket 夹皮batten plate 缀板beam 次梁bearing plane of notch 齿承压面bearing plate 支承板bearing stiffener 支承加劲肋bent-up steel bar 弯起钢筋block 砌块block masonry 砌块砌体block masonry structure 砌块砌体结构blow hole 气孔board 板材bolt 螺栓bolted connection (钢结构螺栓连接bolted joint (木结构螺栓连接bolted steel structure 螺栓连接钢结构bonded prestressed concrete structure 有粘结预应力混凝土结构bow 顺弯brake member 制动构件breadth of wall between windows 窗间墙宽度brick masonry 砖砌体brick masonry column 砖砌体柱brick masonry structure 砖砌体结构brick masonry wall 砖砌体墙broad-leaved wood 阔叶树材building structural materials 建筑结构材料building structural unit 建筑结构单元building structure 建筑结构built-up steel column 格构式钢柱bundled tube structure 成束筒结构burn-through 烧穿butt connection 对接butt joint 对接butt weld 对接焊缝Ccalculating area of compression member 受压构件计算面积calculating overturning point 计算倾覆点calculation of load-carrying capacity of member 构件承载能力计算camber of structural member 结构构件起拱cantilever beam 挑梁cap of reinforced concrete column 钢筋混凝土柱帽carbonation of concrete 混凝土碳化cast-in-situ concrete slab column structure 现浇板柱结构cast-in-situ concrete structure 现浇混凝土结构cavitation 孔洞cavity wall 空斗墙cement 水泥cement content 水泥含量cement mortar 水泥砂浆characteristic value of live load on floor or roof 楼面、屋面活荷载标准值characteristic value of wind load 风荷载标准值characteristic value of concrete compressive strength 混凝土轴心抗压强度标准值characteristic value of concrete tensile strength 混凝土轴心抗拉标准值characteristic value of cubic concrete compressive strength混凝土立方体抗压强度标准值characteristic value of earthquake action 地震作用标准值characteristic value of horizontal crane load 吊车水平荷载标准值characteristic value of masonry strength 砌体强度标准值characteristic value of permanent action 永久作用标准值characteristic value of snow load 雪荷载标准值characteristic value of strength of steel 钢材强度标准值characteristic value of strength of steel bar 钢筋强度标准值characteristic value of uniformly distributed live load 均布活标载标准值characteristic value of variable action 可变作用标准值characteristic value of vertical crane load 吊车竖向荷载标准值characteristic value of material strength 材料强度标准值checking section of log structural member,原木构件计算截面chimney 烟囱circular double-layer suspended cable 圆形双层悬索circular single-layer suspended cable 圆形单层悬索circumferential weld 环形焊缝classification for earthquake-resistance of buildings 建筑结构抗震设防类别clear height 净高clincher 扒钉coefficient of equivalent bending moment of eccentrically loaded steel member (beam-column 钢压弯构件等效弯矩系数cold bend inspection of steel bar 冷弯试验cold drawn bar 冷拉钢筋cold drawn wire 冷拉钢丝cold-formed thin-walled section steel 冷弯薄壁型钢cold-formed thin-walled steel structure 冷弯薄壁型钢结构cold-rolled deformed bar 冷轧带肋钢筋column bracing 柱间支撑combination value of live load on floor or roof 楼面、屋面活荷载组合值compaction 密实度compliance control 合格控制composite brick masonry member 组合砖砌体构件composite floor system 组合楼盖composite floor with profiled steel sheet 压型钢板楼板composite mortar 混合砂浆composite roof truss 组合屋架composite member 组合构件compound stirrup 复合箍筋compression member with large eccentricity 大偏心受压构件compression member with small eccentricity 小偏心受压构件compressive strength at an angle with slope of grain 斜纹承压强度compressive strength perpendicular to grain 横纹承压强度concentration of plastic deformation 塑性变形集中conceptual earthquake-resistant design 建筑抗震概念设计concrete 混凝土concrete column 混凝土柱concrete consistence 混凝土稠度concrete folded-plate structure 混凝土折板结构concrete foundation 混凝土基础concrete mix ratio 混凝土配合比concrete wall 混凝土墙concrete-filled steel tubular member 钢管混凝土构件conifer 针叶树材coniferous wood 针叶树材connecting plate 连接板connection 连接connections of steel structure 钢结构连接connections of timber structure 木结构连接consistency of mortar 砂浆稠度constant cross-section column 等截面柱construction and examination concentrated load 施工和检修集中荷载continuous weld 连续焊缝core area of section 截面核芯面积core tube supported structure 核心筒悬挂结构corrosion of steel bar 钢筋锈蚀coupled wall 连肢墙coupler 连接器coupling wall-beam 连梁coupling wall-column... 墙肢coursing degree of mortar 砂浆分层度cover plate 盖板covered electrode 焊条crack 裂缝crack resistance 抗裂度crack width 裂缝宽度crane girder[ɡədɚ]吊车梁crane[krein]load 吊车荷载creep of concrete 混凝土徐变crook 横弯cross beam 井字梁cup 翘弯curved support 弧形支座cylindrical brick arch 砖筒拱Ddecay 腐朽decay prevention of timber structure 木结构防腐defect in timber 木材缺陷deformation analysis 变形验算degree of gravity vertical for structure or structural member 结构构件垂直度degree of gravity vertical for wall surface 墙面垂直度degree of plainness for structural memer 构件平整度degree of plainness for wall surface 墙面平整度depth of compression zone 受压区高度depth of neutral axis 中和轴高度depth of notch 齿深design of building structures 建筑结构设计design value of earthquake-resistant strength of materials 材料抗震强度设计值design value of load-carrying capacity of members 构件承载能力设计值designations 0f steel 钢材牌号design value of material strength 材料强度设计值destructive test 破损试验detailing reintorcement 构造配筋detailing requirements 构造要求diamonding 菱形变形diaphragm 横隔板dimensional errors 尺寸偏差distribution factor of snow pressure 屋面积雪分布系数dog spike 扒钉double component concrete column 双肢柱dowelled joint 销连接down-stayed composite beam 下撑式组合粱ductile frame 延性框架dynamic design 动态设计Eearthquake-resistant design 抗震设计earthquake-resistant detailing requirements 抗震构造要求effective area of fillet weld 角焊缝有效面积effective depth of section 截面有效高度effective diameter of bolt or high-strength bolt 螺栓(或高强度螺栓有效直径effective height 计算高度effective length 计算长度effective length of fillet weld 角焊缝有效计算长度effective length of nail 钉有效长度effective span 计算跨度effective supporting length at end of beam 梁端有效支承长度effective thickness of fillet weld 角焊缝有效厚度elastic analysis scheme 弹性方案elastic foundation beam 弹性地基梁elastic foundation plate 弹性地基板elastically supported continuous girder 弹性支座连续梁elasticity modulus of materials 材料弹性模量elongation rate 伸长率embeded parts 预埋件enhanced coefficient of local bearing strength of materials 局部抗压强度提高系数entrapped air 含气量equilibrium moisture content 平衡含水率equivalent slenderness ratio 换算长细比equivalent uniformly distributed live load 等效均布活荷载etlectlve cross-section area of high-strength bolt 高强度螺栓的有效截面积ettectlve cross-section area of bolt 螺栓有效截面面积euler's critical load 欧拉临界力euler's critical stress 欧拉临界应力excessive penetration 塌陷Ffiber concrete 纤维混凝仁filler plate 填板门fillet weld 角焊缝final setting time 终凝时间finger joint 指接fired common brick 烧结普通砖fish eye 白点fish-belly beam 角腹式梁fissure 裂缝flexible connection 柔性连接flexural rigidity of section 截面弯曲刚度flexural stiffness of member 构件抗弯刚度floor plate 楼板floor system 楼盖four sides(edgessupported plate 四边支承板frame structure 框架结构frame tube structure 单框筒结构frame tube structure 框架-简体结构frame with sidesway 有侧移框架frame without sidesway 无侧移框架frange plate 翼缘板friction coefficient of masonry 砌体摩擦系数full degree of mortar at bed joint 砂浆饱满度function of acceptance 验收函数Ggang nail plate joint 钉板连接glue used for structural timber 木结构用胶glued joint 胶合接头glued laminated['læmineitid]timber 层板胶合木glued laminated timber structure 层板胶合结构girder ['gə:də]主梁,大梁,纵梁grip 夹具grith weld 环形焊缝groove [gru:v]坡口gusset['gʌsit]plate 节点板Hhanger 吊环hanging steel bar 吊筋heartwood 心材heat tempering bar 热处理钢筋height variation factor of wind pressure 风压高度变化系数helical['helikəl]weld 螺旋形僻缝high-strength bolt 高强度螺栓high-strength bolt with large hexagon['heksəgən]bea 大六角头高强度螺栓high-strength bolted bearing type join 承压型高强度螺栓连接,high-strength bolted connection 高强度螺栓连接high-strength bolted friction-type joint 摩擦型高强度螺栓连接high-strength holted steel slsteel structure 高强螺栓连接钢结构hinge support 铰轴支座hinged connection 铰接hlngeless arch 无铰拱hollow brick 空心砖hollow ratio of masonry unit 块体空心率honeycomb 蜂窝hook 弯钩hoop 箍筋hot-rolled deformed bar 热轧带肋钢筋hot-rolled plain bar 热轧光圆钢筋hot-rolled section steel 热轧型钢hunched beam 加腋梁Iimpact toughness 冲击韧性impermeability 抗渗性inclined section 斜截面inclined stirrup 斜向箍筋incomplete penetration 未焊透incomplete tusion 未溶合incompletely filled groove 未焊满indented wire 刻痕钢丝influence coefficient for load-bearing capacity of compressionmember 受压构件承载能力影响系数influence coefficient for spatial action 空间性能影响系数initial control 初步控制insect prevention of timber structure 木结构防虫(oinspection for properties of glue used in structural member 结构用胶性能检验inspection for properties of masonry units 块体性能检验inspection for properties of mortar 砂浆性能检验inspection for properties of steel bar 钢筋性能检验integral prefabricated prestressed concrete slab-column structure整体预应力板柱结构intermediate stiffener 中间加劲肋intermittent weld 断续焊缝Jjoint of reinforcement 钢筋接头Kkey joint 键连接kinetic design 动态设计knot 节子(木节)Llaced of battened compression member 格构式钢柱lacing and batten elements 缀材(缀件)lacing bar 缀条lamellar tearing 层状撕裂lap connection 叠接(搭接)lapped length of steel bar 钢筋搭接长度large panel concrete structure 混凝土大板结构large-form concrete structure 大模板结构lateral bending 侧向弯曲lateral displacement stiffness of storey 楼层侧移刚度lateral displacement stiffness of structure 结构侧移刚度lateral force resistant wall structure 抗侧力墙体结构leg size of fillet weld 角焊缝焊脚尺寸length of shear plane 剪面长度lift-slab structure 升板结构light weight aggregate concrete 轻骨料混凝土limit of acceptance 验收界限limiting value for local dimension of masonry structure砌体结构局部尺寸限值limiting value for sectional dimension 截面尺寸限值limiting value for supporting length 支承长度限值limiting value for total height of masonry structure 砌体结构总高度限值linear expansion coefficient 线膨胀系数lintel 过梁load bearing wall 承重墙load-carrying capacity per bolt 单个普通螺栓承载能力load-carrying capacity per high-strength holt 单个高强螺桂承载能力load-carrying capacity per rivet 单个铆钉承载能力log 原木log timber structure 原木结构long term rigidity of member 构件长期刚度longitude horizontal bracing 纵向水平支撑longitudinal steel bar 纵向钢筋longitudinal stiffener 纵向加劲肋longitudinal weld 纵向焊缝losses of prestress 预应力损失lump material 块体Mmain axis 强轴main beam 主梁major axis 强轴manual welding 手工焊接manufacture control 生产控制map cracking 龟裂masonry 砌体masonry lintel 砖过梁masonry member 无筋砌体构件masonry units 块体masonry-concrete structure 砖混结构masonry-timber structure 砖木结构mechanical properties of materials 材料力学性能melt-thru 烧穿method of sampling 抽样方法minimum strength class of masonry 砌体材料最低强度等级minor axles弱轴mix ratio of mortar 砂浆配合比mixing water 拌合水modified coefficient for allowable ratio of height to sectional thickness of masonry wall 砌体墙容许高厚比修正系数modulus of elasticity of concrete 混凝土弹性模量modulus of elasticity parallel to grain 顺纹弹性模量moisture content 含水率moment modified factor 弯矩调幅系数monitor frame 天窗架mortar 砂浆multi-defense system of earthquake-resistant building 多道设防抗震建筑multi-tube supported suspended structure 多筒悬挂结构Nnailed joint 钉连接net height 净高net span 净跨度net water/cement ratio 净水灰比non-destructive inspection of weld 焊缝无损检验non-destructive test 非破损检验non-load-bearing wall 非承重墙non-uniform cross-section beam 变截面粱non-uniformly distributed strain coefficient of longitudinal tensile reinforcement 纵向受拉钢筋应变不均匀系数normal concrete 普通混凝土normal section 正截面notch and tooth joint 齿连接number of sampling 抽样数量Ooblige section 斜截面oblique-angle fillet weld 斜角角焊缝one-way reinforced(or prestressedconcrete slab 单向板open web roof truss 空腹屋架ordinary concrete 普通混凝土ordinary steel bar 普通钢筋orthogonal fillet weld 直角角焊缝outstanding width of flange 翼缘板外伸宽度outstanding width of stiffener 加劲肋外伸宽度over-all stability reduction coefficient of steel beam 钢梁整体稳定系数overlap 焊瘤overturning or slip resistance analysis 抗倾覆、滑移验算Ppadding plate 垫板partial penetrated butt weld 不焊透对接焊缝partition 非承重墙penetrated butt weld 透焊对接焊缝percentage of reinforcement 配筋率perforated brick 多孔砖plastered wall 带壁柱墙pit 凹坑pith 髓心(oplain concrete structure 素混凝土结构plane hypothesis 平截面假定plane structure 平面结构plane trussed lattice grids 平面桁架系网架plank 板材plastic adaption coefficient of cross-section 截面塑性发展系数plastic design of steel structure 钢结构塑性设计plastic hinge 塑性铰plasticity coefficient of reinforced concrete member in tensile zone受拉区混凝土塑性影响系数plate-like space frame 干板型网架plate-like space truss 平板型网架plug weld 塞焊缝plywood 胶合板plywood structure 胶合板结构pockmark 麻面polygonal top-chord roof truss 多边形屋架post-tensioned prestressed concrete structure 后张法预应力混凝土结构precast reinforced concrete member 预制混凝土构件prefabricated concrete structure 装配式混凝土结构presetting time 初凝时间prestressed concrete structure 预应力混凝土结构prestressed steel structure 预应力钢结构prestressed tendon 预应力筋pre-tensioned prestressed concrete structure 先张法预应力混凝土结构primary control 初步控制production control 生产控制properties of fresh concrete 可塑混凝土性能properties of hardened concrete 硬化混凝土性能property of building structural materials 建筑结构材料性能purlin 檩条Qglue timber structure 胶合木结构quality grade of structural timber 木材质量等级quality grade of weld 焊缝质量级别quality inspection of bolted connection 螺栓连接质量检验quality inspection of masonry 砌体质量检验quality inspection of riveted connection 铆钉连接质量检验quasi-permanent value of live load on floor or roof 楼面、屋面活荷载准永久值Rradial check 辐裂ratio of axial compressive force to axial compressive ultimate capacity of section 轴压比ratio of height to sectional thickness of wall or column 砌体墙柱高、厚比ratio of reinforcement 配筋率ratio of shear span to effective depth of section 剪跨比redistribution of internal force 内力重分布reducing coefficient of compressive strength in sloping grain for bolted connection 螺栓连接斜纹承压强度降低系数reducing coefficient of live load 活荷载折减系数reducing coefficient of shearing strength for notch and tooth connection齿连接抗剪强度降低系数regular earthquake-resistant building 规则抗震建筑reinforced concrete deep beam 混凝土深梁reinforced concrete slender beam 混凝土浅梁reinforced concrete structure 钢筋混凝土结构reinforced masonry structure 配筋砌体结构reinforcement ratio 配筋率reinforcement ratio per unit volume 体积配筋率relaxation of prestressed tendon 预应筋松弛representative value of gravity load 重力荷载代表值resistance to abrasion 耐磨性resistance to freezing and thawing 抗冻融性resistance to water penetration 抗渗性reveal of reinforcement 露筋right-angle fillet weld 直角角焊缝rigid analysis scheme 刚性方案rigid connection 刚接rigid transverse wall 刚性横墙rigid zone 刚域rigid-elastic analysis scheme 刚弹性方案rigidity of section 截面刚度rigidly supported continuous girder 刚性支座连续梁ring beam 圈梁rivet 铆钉riveted connection 铆钉连接riveted steel beam 铆接钢梁riveted steel girder 铆接钢梁riveted steel structure 铆接钢结构rolled support 滚轴支座rolled steel beam 轧制型钢梁roof board 屋面板roof bracing system 屋架支撑系统roof girder 屋面梁roof plate 屋面板roof slab 屋面板roof system 屋盖roof truss 屋架rot 腐朽round wire 光圆钢丝Ssafety classes of building structures 建筑结构安全等级safety bolt 保险螺栓sapwood 边材sawn lumber+A610 方木sawn timber structure 方木结构saw-tooth joint failure 齿缝破坏scarf joint 斜搭接seamless steel pipe 无缝钢管seamless steel tube 无缝钢管second moment of area of transformed section 换算截面惯性矩second order effect due to displacement 挠曲二阶效应secondary axis 弱轴secondary beam 次粱section modulus of transformed section 换算截面模量section steel 型钢semi-automatic welding 半自动焊接separated steel column 分离式钢柱setting time 凝结时间shake 环裂shaped steel 型钢shape factor of wind load 风荷载体型系数shear plane 剪面shearing rigidity of section 截面剪变刚度shearing stiffness of member 构件抗剪刚度short stiffener 短加劲肋short term rigidity of member 构件短期刚度shrinkage 干缩shrinkage of concrete 混凝干收缩silos 贮仓skylight truss 天窗架slab 楼板slab-column structure 板柱结构slag inclusion 夹渣sloping grain 斜纹slump 坍落度snow reference pressure 基本雪压solid-web steel column 实腹式钢柱space structure 空间结构space suspended cable 悬索spacing of bars 钢筋间距spacing of rigid transverse wall 刚性横墙间距spacing of stirrup legs 箍筋肢距spacing of stirrups 箍筋间距specified concrete 特种混凝上spiral stirrup 螺旋箍筋spiral weld 螺旋形焊缝split ring joint 裂环连接square pyramid space grids 四角锥体网架stability calculation 稳定计算stability reduction coefficient of axially loaded compression 轴心受压构件稳定系数stair 楼梯static analysis scheme of building 房屋静力汁算方案static design 房屋静力汁算方案statically determinate structure 静定结构statically indeterminate structure 超静定结构steel 钢材steel bar 钢筋steel column component 钢柱分肢steel column base 钢柱脚steel fiber reinforced concrete structure 钢纤维混凝土结构steel hanger 吊筋steel mesh reinforced brick masonry member 方格网配筋砖砌体构件steel pipe 钢管steel plate 钢板steel plate element 钢板件steel strip 钢带steel support 钢支座steel tie 拉结钢筋steel tie bar for masonry 砌体拉结钢筋steel tube 钢管steel tubular structure 钢管结构steel wire 钢丝stepped column 阶形柱stiffener 加劲肋stiffness of structural member 构件刚度stiffness of transverse wall 横墙刚度stirrup 箍筋stone 石材stone masonry 石砌体stone masonry structure 石砌体结构storey height 层高straight-line joint failure 通缝破坏straightness of structural member 构件乎直度strand 钢绞线strength classes of masonry units 块体强度等级strength classes of mortar 砂浆强度等级strength classes of structural steel 钢材强度等级strength classes of structural timber 木材强度等级strength classes(grades of concrete 混凝土强度等级strength classes(grades of prestressed tendon 预应力筋强度等级strength classes(grades of steel bar 普通钢筋强度等级strength of structural timber parallel to grain 木材顺纹强度strong axis 强轴structural system composed of bar 杆系结构structural system composed of plate 板系结构structural wall 结构墙superposed reinforced concrete flexural member 叠合式混凝土受弯构件suspended crossed cable net 双向正交索网结构suspended structure 悬挂结构swirl grain 涡纹Ttensile(compressive rigidity of section 截面拉伸(压缩刚度tensile(compressive stiffness of member 构件抗拉(抗压刚度tensile(ultimate strength of steel 钢材(钢筋抗拉(极限强度test for properties of concrete structural members 构件性能检验thickness of concrete cover 混凝土保护层厚度thickness of mortarat bed joint 水平灰缝厚度thin shell 薄壳three hinged arch 三铰拱tie bar 拉结钢筋tie beam 系梁tie tod 系杆tied framework 绑扎骨架timber 木材timber roof truss 木屋架tor-shear type high-strength bolt 扭剪型高强度螺栓torsional rigidity of section 截面扭转刚度torsional stiffness of member 构件抗扭刚度total breadth of structure 结构总宽度total height of structure 结构总高度total length of structure 结构总长度transmission length of prestress 预应力传递长度transverse horizontal bracing 横向水平支撑transverse stiffener 横向加劲肋transverse weld 横向焊缝transversely distributed steel bar 横向分布钢筋trapezoid roof truss 梯形屋架triangular pyramid space grids 三角锥体网架triangular roof truss 三角形屋架trussed arch 椽架trussed rafter 桁架拱tube in tube structure 筒中筒结构tube structure 简体结构twist 扭弯two hinged arch 双铰拱two sides(edges supported plate 两边支承板two-way reinforced (or prestressed concrete slab 混凝土双向板Uultimate compressive strain of concrete 混凝土极限压应变unbounded prestressed concrete structure 无粘结预应力混凝土结构undercut 咬边uniform cross-section beam 等截面粱unseasoned timber 湿材upper flexible and lower rigid complex multistorey building 上柔下刚多层房屋upper rigid lower flexible complex multistorey building 上刚下柔多层房屋Vvalue of decompression prestress 预应力筋消压预应力值value of effective prestress 预应筋有效预应力值verification of serviceability limit states 正常使用极限状态验证verification of ultimate limit states 承载能极限状态验证vertical bracing 竖向支撑vierendal roof truss 空腹屋架visual examination of structural member 构件外观检查visual examination of structural steel member 钢构件外观检查visual examination of weld 焊缝外观检查Wwall beam 墙梁wall frame 壁式框架(门wall-slab structure 墙板结构warping 翘曲warping rigidity of section 截面翘曲刚度water retentivity of mortar 砂浆保水性water tower 水塔water/cement ratio 水灰比weak axis 弱轴weak region of earthquake-resistant building 抗震建筑薄弱部位web plate 腹板weld 焊缝weld crack 焊接裂纹weld defects 焊接缺陷weld roof 焊根weld toe 焊趾weld ability of steel bar 钢筋可焊性welded framework 焊接骨架welded steel beam 焊接钢梁welded steel girder 焊接钢梁welded steel pipe 焊接钢管welded steel structure 焊接钢结构welding connection 焊缝连接welding flux 焊剂welding rod 焊条welding wire 焊丝wind fluttering factor 风振系数wind reference pressure 基本风压wind-resistant column 抗风柱wood roof decking 屋面木基层Yyield strength (yield point of steel 钢材(钢筋屈服强度(屈服点)。
全焊连续桁梁-桁拱组合钢结构桥设计
建筑交通 |BUILDING & TRAFFICI全焊连续桁梁-桁拱组合钢结构桥设计顾越明(上海振华重工(集团)股份有限公司钢结构事业部设计二室,上海200125)摘要:文章结合某桥梁工程项目实例,研究全焊连续钢桁梁-桁拱组合钢结构桥梁的设计与施工问题。
首先对主桥结构设计过程 中的关键问题进行分析,阐述了主跨拱肋、边跨桁架、纵横向连接系统以及桥面系统的关鍵设计要点,然后研究了桥梁施工 中的注意事项以及桁架安装中的控制要点。
关键词:钢结构桥:全焊连续钢桁梁-桁拱:设计;施工 文献标识码:A中图分类号:U448文章编号:2096-4137 (2020) 06-124-02 DOI:10.13535/ki.10-1507/n.2020.06.47Design of fully welded continuous truss-truss arch composite steel structure bridgeGU Yueming(Steel Structure Division Design Room 2, Shanghai Zhenhua Heavy Industry (Group) Co., Ltd, Shanghai 200125, China) Abstract:Based on an example of a bridge project,this paper studies the design and construction of a fully welded continuoussteel truss-truss arch composite steel structure bridge.First,the key problems in the structure design of the main bridge are analyzed,and the key design points of the main span arch ribs,side span trusses,longitudinal and lateral connection systems,and bridge decksystems are explained.Secondly,the precautions in bridge construction and control points in truss installation are studied.Keywords:steel structure bridge;fully welded continuous truss-truss arch;design;construction0引言桁架梁桥结构作为以桁架为主要承重结构的梁式桥,多由两片主桁架以及纵横向连接系统形成一个完整的空间结 构。
金属和绝缘系统特殊的屋顶2010-6 FG_Metal Roof_EN_Master
1 2 3
Spa, Alveneu (CH) Penthouse, Palace Hotel, Gstaad (CH) Eglise Ste-Thérèse de Lisieux, Fribhe aesthetic point of view, metal roofs fulfil additionally the highest requirements in terms of service life, and therefore perform cost-efficiently. Since metal roofs are nearly maintenance-free, when expertly installed, the roof is also very economical in the long term.
钢结构屋顶安装方案中英文对照
Method Statement for Roof Steel Structure Installation 钢结构屋顶安装方案(指导施工)英文1.Roof Steel Structure IntroductionThe roof steel structure elements includes the the steel truss、secondary "H" beams、corrugated steel profile sheet-concrete composite slab. And the steel structure system showing as following figure:Figure 1This method statement includes the drawings and code reference,structure element descriptions,equipment and tools,steel truss installation procedures,QA/QC,non-destructive testing ,HSE. And now we take the swimming pool steel structure roof system as the sample to introduce the installation method.2.Drawings and code reference2.1Drawings reference:19AH03M-J2-49g2/53g2/54g2/19AH03M-J2-57g1~65g1.2.2Code reference:GB50205-2001《Code for acceptance of construction quality of steel structure》3.Structure Element Descriptions3.1Steel TrussThe span of steel truss is 25.8m and is divided into three parts which has been fabricated at factory. The site installation includes the assembly of three parts by welding and hoisting the assembly steel truss to connect to the concrete corbel by the embedded bolt .Figure 23.2Secondary “H” beamsAs our design ,we take the HN450*200*9*14 as the secondary “H” beam ,most of them connects to the main steel truss by the bolt and the balance of them connect to the concrete structure by welding to the embedded steel plate at the axis 1-2. The connection showing as following figure:Figure 33.3Corrugated steel profile sheet-concrete composite slabThe corrugated steel profile sheet will be fixed to the secondary “H” beams by the shear stud and the reinforcement will be erected after the completion of the installation of profile sheet. Then the concrete will be poured.4.Equipment and ToolsTower Crane Mobile Crane(25t)Chain block (10t/5t)Lifting Belt(5t/3t)Wire rope Wire rope clip()Pully(3t)“D” shackles(10t) Shear stud ARC welding machine Welding machine5.Installation Procedures5.1The base plate level and the center line of the truss shall be marked based on the reference datum and coordinate points ,all the location and level shall be marked as per approved drawings.5.2 Install the assembly platform which made of the “U”(120*60*6mm) channel and the “U” channel also be used as the separate steel truss transportation rail,the separate steel truss will be moved to the design axis location by chain block on the transportation rail showing as the following figure .5.3 After three separate steel truss be moved to the design axis location , the site measurement to be taken and the truss length to be confirmed before the assembly ,the separate parts shall be assemble on platform at site to joint the truss as one unit by maintaining the level and measurement .5.4 Hoisting the joint steel truss by chain block showing as following sketch5.5 After the installation of the steel truss,the secondary “H” beams will be erected to the truss and connected by the blot.The “H” beams will be lifted by the tower crane or chain block.5.6 After the completion of the erection of the “H” beams ,the corrugated steel profile sheet be fixed to the “H” beams by the shear stud . And the shear stud will be welded by the special ARC stud welding machine.6.QA/QC under the standard GB50205-2001 <Code for acceptance of construction quality of steel structure>6.1Check the surface of the truss in a same level ,dimension and then tack weld to be done.6.2The weld surface to be cleaned properly and ensure free from any particles like oil,grease,etc.6.3The joints to be properly arrested to withstand heat formation during the welding and to resist any deformation.6.4Welding to done at the perfectly aligned ,arrested joints.6.5After the completion of the welding,remove the welding spatter and confirm there will be no defects of cracks ,undercut,fusion,exceeded slag-lines,roof gaps.In case of need of repairs these will be done according to approved procedures and double of ultrasonic examination.6.6Anti-rust painting will be applied to the welding joint area after the welding inspection.7.Non-Destructive Testing (NDT)7.1Visual test will be done before,during and after the welding process to control the weldingquality.7.2The Ultrasonic test which can be available will be arrange for the steel truss welding .The diagnostic wave enters into the materials,the graphical and parametric readings will show the nature of the welding quality.7.3After the ARC welding for the shear stud, the hammer impact test will be arranged to check the welding quality , the work can be accepted if there is no crack after the hammer impact.7.4Magnetic particle test (MPT) will be used to detect surface or subsurface discontinuities during the construction progress when the the apparatus can be available at site. Otherwise ,the Ultrasonic will be arranged to confirm the quality of completed welding.7.5 All the test will be done under the witness of the Employer’s representatives .8.Storage8.1Every effort will be made to the keep steel work that is stacked clean and free from water collection and to ensure that is adequately supported.8.2All provisions will be taken to ensure that damage from corrosion or handling is kept to a minimum be the use of appropriate slings and skids.9.Paint Treatment9.1After the inspect of the welding joint and confirm the quality ,polish the welding joint to remove the welding particles , surface oil and then apply the anti-rust primer paint and surface painting.9.2The steel structure will be members will be applied by the non-expansion fire protection paint 20mm with fire standing 2.0 hours. And the method statement will be submitted separately for engineer’s review and approval.10.R ecordsAll inspections and test records will be retained for a minimum period of five years,or longer if required by the contract.8.HSE8.1 Tool box meeting will be arranged for the erection team to point out potential danger during the hoisting、welding、and erection.8.2 The site safety engineer will be on duty during the steel structure elements lifting.8.3 All the temporary support system and equipment has been confirmed by the designer to promise the safety during the installation and avoid the overload.。
Eaton B-Line系列电缆梯型结构钢节省方法指南说明书
Structural steel savings SSS-17Engineers guide to structural steel savings with B-Line series cable ladder systemTable of ContentsCable Ladder Best Practice ......................................................................................3-4 Evolution of Project Savings .. (5)Structural Steel Savings T echnical White Paper .....................................................6-7 Vertical Inside / Outside Bend RecommendationsOption 1 | ½ Span (8)Option 2 | Dual Support (9)Option 3 | Dual Support (10)Option 4 | Floating (11)Horizontal Bend RecommendationsOption 1 | ½ Span (12)Option 2 | Dual Support (13)Option 3 | Floating (14)Horizontal T ee RecommendationsOption 1 | ½ Span (15)Option 2 | ½ Span / Dual Support (16)Option 3 | Dual Support (17)Option 4 | Floating (18)Horizontal Cross RecommendationsOption 1 | ½ Span (19)Option 2 | ½ Span / Dual Support (20)Option 3 | Dual Support (21)Option 4 | Floating (22)Reducer Fitting Recommendations (23)Vertical Adjustable Splice Plate Recommendations (24)Heavy Duty Expansion Splice Plate Recommendations (25)Case Study (26)Additional Resources (27)2Engineers guide to structural steel savings with B-Line series cable ladder system /sssEngineers guide to structural steel savings with B-Line series cable ladder system /sss3Lower total install cost solution through reduction of structural steel supportsEaton provides solutions that de-risk by design and drive value to our end customers. With Eaton’s B-Line series cable ladder, Eaton provides support recommendations that meet and exceed NEMA VE-2 requirements. These methods have been applied across the globe on multiple applications and projects, and have saved customers millions of dollars on structural steel.This brochure provides an overview of Eaton’s recommendations for structural steel supports when utilizing Eaton’s B-Line series cable ladder, fittings and splice plates. For additional information, and online resources and tools, visit /SSS.Cable ladder best practiceT o maximize cost savings on any cable ladder project, it is essential that:• Electrical and structural engineers and contractors communicate effectively• Support plans and layouts are discussed early on within the project life cycle (FEED - Front End Engineering Design) to ensure proper support placement, minimize construction complexity, and reduce budget spend Mid-Span - The method of placing supports at 1/2 span away from a splice plate location on continuous runs. • Excessive system deflection and stress experienced compared to 1/4 span support methodology• Requires additional supports to account for proper thermal expansion and contraction• Splice plate performance becomes more influential on deflection• See Fig. 2A and Fig. 2B for visual stress comparison Simple Beam (Over Support) - The method of placing supports directly under the splice plate locations on continuous runs.• Maximum system deflection and stress experienced • Leads to possible installation issues not allowing for proper thermal expansion and contraction• See Fig. 3A and Fig. 3B for visual stress comparisonFig. 2A Fig. 3A¼ Span Fig. 1A Fig. 2A Fig. 1A Fig. 2AFig. 3AFig. 1AEngineers guide to structural steel savings with B-Line series cable ladder system /sss4NEMA vs IEC StandardsNational Electrical Manufacturer Association vs. International Electrotechnical Commission.NEMA & IEC both provide technical requirementsregarding the construction, testing, and performance of metallic cable tray systems. However, testing methods differ drastically, showing different performance results. Choosing a manufacturer with proven success with both standards, such as Eaton’s B-Line Division, is crucial to help ensure proper system design.• IEC has 5 continuous span testing methods where NEMA has only 1 simple beam test method • IEC test methods are deflection based while NEMA tests to destruction• Splice plates are included within IEC test methods and not for NEMA• IEC does not detail support recommendations, the IEC standard refers back to NEMA VE 2• IEC requires 3rd party witness verification (such as DNV) while NEMA is internal. However 3rd party verification for NEMA (such as CSA or DNV) is common practice among top cable tray manufacturers.• IEC requires product impact testing with extreme temperaturesUnderstanding Electrical ContinuityThe National Electric Code (NEC) Article 392 states that a cable tray system can be utilized as an EGC (equipment grounding conductor) per the limitations of table 392.60(A). • Only mechanically discontinuous locations(i.e. expansion splice plates & gaps) need bonding jumpers (required on both side rails)• Indoor cable tray runs (when temperature controlled) do not require expansion joints, and therefore,bonding jumpers are not required to maintain electrical continuity• Please see Fig. (4): Cable Ladder Amperage• Cable tray and ladder systems are tested per UL, CSA, and/or IEC standards Understanding Thermal Expansion• Understanding where and how often to allow for thermal expansion and contraction is an essential measure to the longevity of a cable tray system• Reduced system performance or failure is often due to improper system design NOT allowing for adequate thermal expansion and contractiono See Fig. (5): Max Spacing Between Expansion Locationso See Fig. (6): Thermal Gap Settingso See Fig. (7): Guide vs. Clamp - HD Expansion ConsiderationsMaximum Fuse Ampere Rating.Circuit Breaker Ampere T rip Setting, or Circuit Breaker Protective Relay Ampere T rip Setting for Ground-Fault Protection of Any Cable Circuit In the Cable T ray SystemFor SI units: one square inch=645 square millimeters.* T otal cross-sectional area of both side rails for ladder or trough cable trays; or the minimum cross-sectional area of metal in channel cable trays or cable trays of one-piece constuction.** Steel cable trays shall not be used as equipment grounding conductors for circuits with ground-fault protection above 600amperes. Aluminum cable trays shall not be used as equipment grounding conductors for circuits with ground- fault protection above 2000 amperes.6010020040060010001200160020000.200.200.200.400.400.601.001.502.00**0.20 0.40 0.70 1.00 1.50**------------Aluminum Cable T raysSteel Cable T raysMinimum Cross-Section Area of Metal* In Square Inches NEC T able 392.60(A).Metal Area Requirements for Cable T rays Used as Equipment Grounding ConductorsFig (4): Cable Ladder AmperageEngineers guide to structural steel savings with B-Line series cable ladder system /sss5Evolution of Project SavingsEaton’s B-Line series engineered cable ladder solutions are leading the way for lower total installed cost.*the cost of the cable ladder system all together.*All support details will meet and exceed NEMA VE-2 requirements.Longer Spans Fitting Supports Elevation Transitions Expansion SupportsMatt CombesProduct Line ManagerCable Management - North America B-Line series solutions Eaton, Highland, IL, USAOverview / IntroductionEaton’s B-Line series metallic cableladder systems are engineered to provide superior strength to weight ratio while providing the lowest total installed cost of any cable management system in the industry today. This is achieved through continuous innovation, market and customer based knowledge.To achieve the lowest total installed cost, Eaton’s engineers developed an innovative means to significantly reduce the number of structural steel supports needed in cable ladder installations, without diminishing the load carrying capacity of the system. In addition, extensive laboratory testing has enabled the Eaton B-Line seriescable ladder to exceed the National Electrical Manufacturer’s Association (NEMA) VE-2 support recommendationsfor cable ladder installations.Lowering your total installed cost through structural steel savingsThe NEMA recommendations are created by active cable ladder manufacturers in North America, and are intended to provide a basic installation guideline for all cable ladder systems.However, individual manufacturers can provide recommendations for their systems that exceed the basic guidelines outlined by NEMA VE-2(section 3.5.1).F .Y .I..I.Y .I. Eaton has been an active member of NEMA for two decades and our representative has held the chair position with the NEMA VE-2 Technical Committee. NEMA guidelines are written by cable tray manufacturers for cable tray manufacturers. “Unless otherwise recommended by themanufacturer” allows cable tray manufacturers to highlight differentiating factors for their cable tray.When assessing a project for the lowest total installed cost, Eaton recommends focusing on four keydesign considerations: (1) Longer straight section spans (2) Fittings support locations (3) Vertical adjustable support locations (4) Thermal expansion support locationsUtilizing Longer Straight Section SpansNEMA VE-2, (section 3.4.1) defines an allowable straight section support span as the following: “straight section support span should not exceed the straight section length”. Therefore, to eliminate supports, one option is to increase the length of cable ladder.For example, transitioning from 10ft (3m) spans to 20ft (6m) spans reduces supports by 50%.To create even more savings, Eaton offers B-Line series cable ladder systems that are capable of 30ft (9m) and 40ft (12m) support spans; dramatically reducing the overallquantity of structural supports needed on a job site.The B-Line series cable ladder features a highly engineered I-beam rail, which maximizes the strength to weight ratio of the system, and allows for longer span capability.Thought leadership White paperEaton B-Line Division 509 West Monroe Street Highland, IL 62249United States /sssEaton1000 Eaton Boulevard Cleveland, OH 44122United States © 2017 EatonAll Rights Reserved Printed in USAPublication No. WP302012EN July 2017 WPSSS-17White Paper WP302012ENEffective June 2017Structural steel savingsThe breadth of materials and sizes enables Eaton to offer the ideal B-Line series solution to meet a variety of customer applications and load criteria. (Refer to Structural Steel Savings (SSS-17) technical reference for support designconsiderations.)F .Y .I..I.Y .I.B-Line series aluminum cable ladder can range up to 40ft (12m) in length while steel can range up to 24ft (7.3m).This difference in length is due to the strength to weight ratio of aluminum.Fitting Support Location RecommendationsWhen it comes to installing supports, cable tray fittings are one of the biggest challenges. Eaton’s B-Line series cable ladder is engineered to provide flexibility in selecting the proper support locations for fittings.Eaton’s industry-leading 3in (75mm) or 4in (100mm) tangents help maximize the strength and load carrying capacity of splice plates at fitting locations which allows for a reduction in support requirements.In fact, NEMA documentation does not require the testingof fitting locations altogether. However, Eaton has conducted extensive testing on its B-Line series cable ladder to provide several alternative options for supporting horizontal bends, tees, crosses, and vertical bends as compared to the NEMAVE-2 section 3.5.1 recommendations.F .Y .I..I.Y .I.NEMA VE-2 (section 3.5.1). states, “Recommended support locations follow, unless otherwise recommended by the manufacturer”. (Refer to Structural Steel Savings (SSS-17) technical reference for support design considerations.) Supports are not limited to structural steel, but can be defined as strut channel and angle iron. The same recommendations apply to these supports as well.Vertical Adjustable Supports LocationsFor changes in elevation, with intermediate angles, and for cables not requiring a large radius, vertical adjustable splice plates are often the best solution.NEMA VE-2 (section 3.4.3) states that a support is required within 2ft (600mm) on both sides of every vertical adjustable splice plate regardless of series or span.Eaton has conducted extensive testing to prove that pairing B-Line series cable ladder and vertical splice plate, installers can forego transitional supports up to half span for steel, stainless steel, and aluminum cable ladder systems (2-5 and metric cable ladder series). This allows a 20ft (6m) ladder to span 10ft (3m) unsupported between adjustable splice plates. Similarly, cable ladder series are designed for 30ft (9m) spans and can be unsupported up to 15ft (4.5m) between vertical adjustable splice plates and up to 20ft (6m) unsupportedspans can be utilized with 40ft (12m) ladders.F .Y .I..I.Y .I.Refer to Structural Steel Savings (SSS-17) technical reference for support design considerations. The vertical adjustable splice plate is an unparalleled “Eaton B-Line series only solution”, and is applicable for both NEMA and IEC industrial style cable ladders.Thermal Expansion Support LocationDesigning and accounting for proper thermal expansion and contraction is key to the longevity of a cable ladder installation.As NEMA VE-2 details in section 3.4.1, “it is ideal to lay out the system so that splice joints fall between the support and the quarter point.” It is important to note that placing expansion splice plates directly on top of supports does not comply with NEMA VE 2 section 3.4.2, and is therefore not recommended.Conversely, Eaton’s patented B-Line series heavy dutyexpansion splice plate eliminates the need to install additional supports within 2ft (600 mm) on each side of the expansion location when placed at the quarter point of a support span. Similar to the fitting supports detailed above, theperformance of Eaton’s highly engineered B-Line seriesheavy duty expansion splice plate complies with and exceeds NEMA VE-2 recommendations as detailed in section 3.4.2.This equates to the elimination of 2 supports every 65ft (20m) with the typical 20ft (6m) aluminum ladder with a100°F temperature differential. F .Y .I..I.Y .I.The heavy duty expansion splice plate is available for all industrial B-Line series cable ladder. Reach out to B-Line series technical sales for more information.ConclusionIn conclusion, Eaton is committed to supplying its customers with innovative solutions that will result in the lowest total installed cost.The most significant cost driver of cable ladder installations is the cost of the supports, whether it is an industrial or commercial application.Depending on the complexity and location of the project, supports can range anywhere from $500 to over $15,000 each. By incorporating Eaton’s support recommendations withstraight sections, fittings, vertical adjustable splice plates, and heavy duty expansion splice plates, B-Line series cable ladder solutions can help eliminate substantial costs in both labor and support materials on any given project.Please feel free to contact your local Eaton B-Line series cable ladder representative to address any additional questions regarding this information or for assistance in optimizing your support layout.For more information, visit /sssEaton is a registered trademark.All other trademarks are property of their respective owners.Follow us on social media to get thelatest product and support information.Engineers guide to structural steel savings with B-Line series cable ladder system /sss8I-Beam supportmethod *Strut support methodIsometric viewOption 1“½ Span”Support recommendations apply to B-Line series 2-5 steel and aluminum cable ladder, HDL *Note: Support profile may be placed at any location underneath splice plate.Elevation viewEngineers guide to structural steel savings with B-Line series cable ladder system /sss9I-Beam supportmethod *Strut support methodIsometric view*Note: Support profile may be placed at any location underneath splice plate.Option 2“Dual Support”Support recommendations apply to B-Line series 2-5 steel and aluminum cable ladder, HDL Elevation viewEngineers guide to structural steel savings with B-Line series cable ladder system /sss10I-Beam supportmethod *Strut supportmethodIsometric viewOption 3“Dual Support”(3m) Support recommendations apply to B-Line series 2-5 steel and aluminum cable ladder, HDL *Note: Support profile may be placed at any location underneath splice plate.Elevation viewVertical Inside / Outside Bend Support RecommendationOption 4“Floating”NEMA RecommendationSupport recommendations apply to B-Line series 2-5 steel and aluminum cable ladder, HDL Elevation viewOption 1“½ Span”Plan viewSupport recommendations apply to B-Line series 2-5 steel and aluminum cable ladder, HDL series, and SDL series steel cable ladder products.3030½ span or 10' (3m) max½ span or 10' (3m) max 12" - 36" [300-900mm]bend radius.If larger use NEMA VE-2Option 2“Dual Support”Support recommendations apply to B-Line series 2-5 steel and aluminum cable ladder, HDL series, and SDL series steel cable ladder products.Note: Depicted support memberacts as dual support forboth straight section andfitting when locatedunderneath the splice plate.Plan viewOption 3“Floating”Support recommendations apply to B-Line series 2-5 steel and aluminum cable ladder, HDL series, and SDL series steel cable ladder products.Plan viewOption 1“½ Span”Support recommendations apply to B-Line series 2-5 steel and aluminum cable ladder, HDL series, and SDL series steel cable ladder products.½ span or 10' (3m) max.12"-36" [300-900mm] bend radius.if larger use NEMA VE-2.Support under fitting (2 places typ.)Plan viewOption 2“Dual Support”Support recommendations apply to B-Line series 2-5 steel and aluminum cable ladder, HDL Plan viewOption 3“½ Span / Dual Support”Support recommendations apply to B-Line series 2-5 steel and aluminum cable ladder, HDL Plan viewOption 4“Floating”Support recommendations apply to B-Line series 2-5 steel and aluminum cable ladder, HDL series, and SDL series steel cable ladder products.Plan viewOption 1“½ Span”Support recommendations apply to B-Line series 2-5 steel and aluminum cable ladder, HDLseries, and SDL series steel cable ladder products.½ Span or10' (3m) max½ Span or10' (3m) max12" - 36" [300-900mm] bend radius½ Span or10' (3m) maxPlan viewSupportfitting(2 places typ.)Option 2“½ Span / Dual Support”Support recommendations apply to B-Line series 2-5 steel and aluminum cable ladder, HDL series, and SDL series steel cable ladder products.Full spanFull span½ Span or 10' (3m) max½ span or 10' (3m) max12" - 36" [300-900mm] bend radiusif larger use NEMA VE-2.Note: Depicted support member acts as dual support for section and fitting when locatedunderneath the splice plate.Plan view21Isometric viewOption 3“Dual Support”Support recommendations apply to B-Line series 2-5 steel and aluminum cable ladder, HDL series, and SDL series steel cable ladder products.*Note: Support profile may be placed atany location underneath splice plate.I-Beam supportmethod*Strut supportmethodPlan viewEngineers guide to structural steel savings with B-Line series cable ladder system /sss22Isometric viewOption 4“Floating”Support recommendations apply to B-Line series 2-5 steel and aluminum cable ladder, HDL series, and SDL series steel cable ladder products.I-Beam supportmethodStrut supportmethodAluminum SteelPlan viewEngineers guide to structural steel savings with B-Line series cable ladder system /sssEngineers guide to structural steel savings with B-Line series cable ladder system /sss23Isometric viewNote: Fitting support profile may be placed at any location underneath reducer or splice plate.methodFull SpanHD ExpansionSplice2' (600mm)max¼ Span¼ Span¼ Span¼ SpanEngineers guide to structural steel savings with B-Line series cable ladder system /sss25Isometric viewVertical Adjustable Splice PlatesSupport RecommendationNEMA RecommendationElevation viewSupport recommendations apply to B-Line series 2-5 steel and aluminum cable ladder, HDLseries, and SDL series steel cable ladder products.I-Beam supportmethod Strut support methodEngineers guide to structural steel savings with B-Line series cable ladder system /sss26Case StudyDue to Eaton’s B-Line series cable ladder solutions, engineers across the globe have experienced significant support savings on various commerical, industrial, oil and gas, and other cable management projects. This has yielded significant savings for our customers, and they are speaking up.Length of Cable Ladder System Horizontal BendsHorizontal T eesHorizontal CrossesReducersVertical Inside/Vertical OutsideVertical Adjustable T emperature DifferentialLNG Facility - $1.1M Total Bill of MaterialsT otal Project Savings ($USD)So, how much can you really save? Let’s take a look at a case study based on a typical bill of materials for a liquified natural gas (LNG) terminal facility and its cable management requirements.*By incorporating any or all of Eaton’s B-Line series cable ladder support recommendations, customers often realize support savings greater than the full cable ladder cost, resulting in a lower total installed cost solution. T o learn more, visit at /SSS.27Cable tray systemsAdditional ResourcesFor additional information, visit /SSS.Engineers guide to structural steel savings with B-Line series cable ladder systemT echnical GuideCatalogSpecification T echnical White Papervisit /SSS.Lowering your total installed cost through structural steel savingsSERIESBy email contact ******************************* to answer any questions you may have on subject matter, and/or call: 1-800-851-7415 > 2 > and ask for technical support.Follow us on social media to get the latest product and support information.By email contact ******************************* to answer any questions you may have on subject matter, and/or call: 1-800-851-7415 > 2 > and ask for technical support.U.S. Customer Service Center is staffedMonday through Friday from 7 a.m. to 5 p.m. Central Standard Time.Eaton is a registered trademark. All other trademarks are property of their respective owners.Eaton1000 Eaton Boulevard Cleveland, OH 44122United States B-Line Division509 West Monroe Street Highland, IL © 2020 EatonAll Rights Reserved Printed in USAPublication No. CA302004EN March 2020 SSS-17Eaton509 West Monroe Street Highland, IL 62249United States 800-851-7415Eaton5925 McLaughlin Road Mississauga, ON L5R 1B8Canada800-569-3660EatonBuilding 2, Argosy Court,Whitley Business Park, Scimitar Way Coventry, CV3 4GA United KingdomEatonPO Box 70160 - Al Khobar - 31952Kingdom of Saudi Arabia 00966 3 812 2236Eaton13201 Dahlia St., Ste. 200Fontana, CA 92337United States。
Nailor 钢制板式窗帘安装说明 (模型:1700)说明书
INSTALLATION INSTRUCTIONSSTEEL LOUVERSSTATIONARY & OPERABLEMODEL SERIES: 1700I. General1.The following guidelines provide basic assembly and installation instructions for standard Nailor formed steel stationary blade and operablelouvers. Nailor standard louvers are designed to resist a 25 psf wind load.2.Consult with the Engineer of record for the size, type, and quantity of anchors required to secure the louver to the surrounding condition.3.Refer to job-specific submittal drawings for additional details when provided.4.Carefully lift louver sections by their frames or support members using multiple lifting points if necessary to avoid distortion, racking or damage.WARNING:Do not apply excessive force to a single point and never lift units by louver blades, linkage, or actuator. Take necessary precautions to prevent damaging the louver finish.5.Caulk and anchors are by others.II. ReceivingUpon delivery, inspect shipping containers and contents closely. If containers are damaged, contents may also be damaged. Note any damage on freight carrier’s delivery receipt. Contact the freight company within 24 hours to initiate a claim and schedule an inspection. All products ship F.O.B Nailor plant and the receiver of the shipment is responsible for filing freight claims with the freight companyIII. StorageStore louvers in a cool, dry, and safe location in an orderly manner away from construction sites, warehouse traffic, other materials, etc. to prevent damage. Do not expose louvers to excessive heat. Cover with plastic sheeting to protect from excessive moisture, dirt, and debris. IV. Preparation1.Louvers and Hardwarea.Locate all crates, boxes, cartons, etc.b.Remove louvers from packaging, inspect for damage, confirm quantities and sizes with packing list, and organize parts in order ofinstallation. If installation hardware or Extended Sills were ordered they will typically be shipped loose.c.Notify your Nailor sales representative immediately of any shortages should they occur.2.Openingsa.Inspect openings for damage, repair as needed, and remove obstructions and debris as required.b.Verify that openings are square, plumb, and that the louvers will fit properly prior to installation.V. Single Section Louver Installation1.Locate Extended Sills, if applicable. (Optional by Nailor). Ensure the sill of the opening and the underside of the Extended Sill is free from debris.2.Apply caulk to the opening and firmly set the Extended Sill in place. (Caulk by others).3.Locate and anchor clip angles 1.5"x1.5"x12 gauge x 2"long (38 x 38 x 2.75 x 51) as required to establish proper louver depth and position. SeeFig. 2.1 for required spacing for stationary and operable louvers. (Clip angles are by others or optional by Nailor).4.Place the louver section into the opening. See Fig. 2.2, 2.3 (stationary only), 2.4 and 2.5.5.Shim around the perimeter of the louver to maintain the proper sealant joint clearance and to level the louver. (Shims are by others).6.When the louver is level and in the proper position, fasten louver frame to clip angles with (2) minimum #10 s.m. screws. (Fasteners are byothers).7.Install backer rod and caulk around the entire perimeter of the louver, as required. (Backer rod and caulk are by others). WARNING:Do not caulkbetween louver and sill flashing to allow for drainage.VI. Multiple Section Louver Installation1.Locate Extended Sills, if applicable. (Optional by Nailor). Ensure the sill of the opening and the underside of the Extended Sill is free from dirt and debris.2.Apply caulk to the opening and firmly set the Extended Sill in place. (Caulk by others).3.Locate and anchor clip angles as required to establish proper louver depth and position. See Fig. 2.1 for required spacing. (Clip angles are byothers or optional by Nailor).4.If single section high/multiple sections wide, install the left section first (as viewed from the exterior) following steps 4-6 above in Section V. Ifmultiple sections high, install the upper left section(s) first. Install remaining sections from left to right, across the top, and then install bottom louvers from left to right, across the bottom.5.Install Universal Splice Angle (USA) to jamb at horizontal mullion and, if required, install Hidden Blade Support Angle Splice where required. SeeFig. 2.2, and if required, 2.3.6.For visible mullions, install mullion cover on right hand jamb (as viewed from the exterior). See figure 2.4.7.Install backer rod and caulk around the entire perimeter of the louver, as required. (Backer rod and caulk are by others). WARNING:Do not caulkbetween louver and sill flashing to allow for drainage.8.WARNING:Do not apply excessive force to a single point and never lift units by louver blades, support angles, or splices.VII. Actuator Connection1.All electrical and pneumatic connections should be done in accordance with local code requirements and actuator installation documentation.Before you apply power to the actuator, verify power requirements. After appropriate power has been connected to the actuator, cycle the louver to ensure proper operation.2.Refer to job-specific submittal drawings for additional details when provided.VIII. Protecting and repairing the finishToday’s high quality painted finishes are extremely durable and despite this fact, even the best finishes require maintenance. Even with the most careful treatment of louvers during shipment, installation, and daily use, occasional damage may occur.1.Care & Cleaning: Powder Coat Finishesa.When selecting a cleaning solution, use mild soap solutions that are safe for use with your bare hands and are not caustic or corrosive.Avoid the use of strong acid or alkali cleaners as they may damage the finish.b.Solvents equivalent to denatured alcohol or mineral spirits may be used to remove sealants, grease, or other materials. Never mixcleaners and/ or solvents as the resultant mixture can cause harmful results.c.Do not use abrasive cleaners or abrasive materials (i.e. steel wool, steel brushes, etc.) which can also harm the finish.d.Once sealant, grease, or other materials are removed, the mild soap solution can be applied with a soft sponge, cloth, or brush.e.Rinse the surface thoroughly with clean water and let air dry.After installation of your louver, field touch up work (by others) may be required to remedy any damages during shipping, handling, or installation.2.Field Touch Upa.Minor painted surface damage can be sanded prior to touchup painting with excellent results. For superficial scratches and gouges, usea relatively course grit sandpaper to remove the damage, then use progressively finer grit paper to remove the sanding marks, finishingwith a 180 to 220 grit paper.b.Touchup paint can be ordered by contacting your Nailor representative. It is intended to cover up small blemishes or to touchup exposedends on fabricated parts. The color will closely match the factory applied painted or anodized finish, however the touchup finish will not be as durable as the original finish.IX. Adjustable Louver and Combination Louver/Damper MaintenanceAll adjustable louvers and combination louver/dampers should be checked and serviced on a regular schedule. Inspection intervals depend on system usage and atmospheric conditions within the system.1.All louvers and dampers should be checked for freedom of movement. Shafts, bearings, pivot points, etc. should be cleaned and lubricated with alight spray oil. Any and all access should be removed.2.Blades should be checked in the closed position to insure tight closure. Adjustments should be made at linkage to correct any misalignment.3.Motors (Optional by Nailor or by others), where applicable, should be visually checked through their complete cycle for defects, binding ormisalignment. Operator anchorage and fittings should also be checked.4.Blades should be checked for freedom of movement. Blades should be disconnected from their operators and manually checked (Blades shouldmove freely with no binding or twisting).5.Pins, straps and bushings should be checked for wear, corrosion or rust. Replace or paint (by others) as required.6.Check louver or damper blade edge and jamb seals (where applicable).7.Check all linkage, connecting bars and operator connections for proper alignment and fit.8.Check overall installation to insure that louver or damper was installed in a perfectly plumb and square position and proper clearance was allowedfor blade linkage and operator movement.Dimensions are in inches (mm).Calgary, Canada Tel: 403-279-8619Houston, Texas Tel: 281-590-1172Toronto, Canada Tel: 416-744-3300Las Vegas, Nevada Tel: 702-648-5400MULTI SECTION LOUVER INSTALLATIONFIG. 2.2 - JAMB SPLICE AT HORIZONTAL MULLION Fig. 2.4 - MULTI-SECTION WIDE VERTICAL MULLION24" (610)MAX.LOWER LOUVER #10 x 1" (25)SCREWS 4 TYP.BLADE。
布斯奇建筑集成系统(BIS)安全与安全文件说明书
party system: Facility Management (planning and costs), ERP (SAP, Time & Attendance), SCADA
Workstation
Workstation
Workstation
Workstation
fire & life safety
▶ Easily access post-event reporting and forensic analysis to help in future process optimization
▶ Protect your investment by being open, flexible and always backward compatible for maximum return on investment
MS-GB-en-01_F01U560768_01.indd 1-2
When designing comprehensive security and safety systems, both planners and building operators often choose to mix and match fire protection, public address, access control, video surveillance and management systems from multiple vendors.
▶ Connect and integrate an extensive range of Bosch and 3rd party security and safety products for maximum design flexibility
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Integrated System for Steel Truss BridgeAuthors:R. Pandia Raj, Research Student, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK, rp317@ V. Kalyanaraman, Professor, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai – 600 036, India, kalyan@iitm.ac.inA BSTRACTA number of authors have previously used genetic algorithms to optimize structural systems. This paper illustrates use of simple genetic algorithms for optimum design of large scale steel truss bridge superstructure for railway loadings. Object-Oriented Methodology is used to simplify the design software development process. Optimal design of practical structures is illustrated, considering system topology, configuration and member sizes represented by mixed design variables (continuous and discrete). Complex design domain requirements conforming to Indian Railways design standard consisting of constraints corresponding to material strength, buckling strength as well as fatigue strength limit have been considered and the objective function to be minimized represents the total cost of the superstructure including cost of fabrication. The paper also demonstrates the efficient integration of genetic algorithms for optimization with the design software, both implemented in an object-oriented environment.I NTRODUCTIONSteel truss girders are interesting as exciting structural forms. They have been used successfully in the intermediate and long span railway and highway bridges, since the internal forces in the members are essentially only tensile or compressive. However, mathematical representation of the design problem is complex.The computer assisted design process often requires integration of different computing methods such as database management, numerical analysis, optimization method, and even graphical representation. Incorporation of all these into a single environment make the software development process difficult. This is particularly so in the case of complete design of large scale complex system. Object-Oriented Methodology can simplify the software development process for the entire engineering of large scale practical structures – this paper will explain how.L ITERATURE S URVEYIn the last decade, Genetic Algorithms (GAs) has proved to be successful and powerful in solving various practical structural optimization problems (Jenkins 1991, 1992; Rajeev and Krishnamoorthy 1997; Adeli 1993; Ohsaki 1995; Rajan 1995; Galante 1996). By using GAs, which can deal with the mixed design variable problem, complex design domain requirement as well as complex constraint equations and objective function, one D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y C H A N G 'A N U N I V E R S I T Y o n 11/17/13. C o p y r i g h t A S C E . F o r p e r s o n a l u s e o n l y ; a l l r i g h t s re s e r v e d .can arrive at feasible optimal designs both from the mathematical as well as the practical point of view (Krishnamoorthy 2001; Pandia Raj and Kalyanaraman 2005). Recently, the object-oriented design and implementation of a core genetic algorithm library consisting of all of the genetic operators with an interface to a generic objective function is discussed by Krishnamoorthy et al. (2002). Cappello (2003) presents a method to find optimal topology and shape of structures. Renner (2003) gives an overview of applications of genetic algorithms to different domains of engineering design. Sivakumar et al. (2004) presents a new approach for the optimization of steel lattice towers by combining genetic algorithms and an object-oriented approach.For any system to be robust, they should possess an architecture that can easily incorporate any new software or hardware technology, as well as domain advances and should be able to integrate them with the existing ones without excessively disturbing the implementations already made in nearly seamless fashion. The object-oriented paradigm seems to be ideally suited to take care of these requirements (Miller 1991; Sause et al. 1992; Garrett et al. 1992; Abdalla et al. 1995; Moni et al. 1996; Sivakumar et al. 2004; Pandia Raj and Kalyanaraman 2005). This is due to the inherent modularity and extensibility obtained in the object-oriented system.The problem of system optimization requires a consideration of elements of the system, all design variables and constraint equations simultaneously. Whereas, the Object-Oriented Methodology represents the design space as a collection of nearly independent object modules. The difficulty in reconciling with these extremes might be the reason for the existence of a few applications of GAs based optimization procedures in an Object-Oriented environment. In the present work, details of a user-friendly software for structural optimization of steel truss girder bridge superstructure using GAs and integrated in the object-oriented environment is presented. This software can be used to perform both conventional and optimal design of steel bridge girder superstructure.B RIDGE D ESIGN S YSTEM (BDS)The software, named as Bridge Design System (Figure 1), consists mainly of four modules namely: master module, optimization module, FEA module, and data retrieval system (DRS). In the master module, data and methodology has been represented in an object-oriented fashion for easy representation, incremental development and possible future modification. In the optimization module optimal design of various truss configurations has been formulated in an object-oriented environment. The FEA module analyses the truss girder superstructure for IRS loadings. The data retrieval system is used to fetch discrete section sizes from a database, as well as data used for design checking and fitness evaluation.O BJECT -O RIENTED M ODELINGIn object-oriented modeling, we first identify the classes and objects that are common to all applications within a given domain. For example, superstructure, substructure, foundation etc. are common to all types of bridges. The relationship between the classes and class hierarchy at the higher-level of abstraction has to be explored. Once the classes and objects are identified from the problem domain, the next task is to find out the D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y C H A N G 'A N U N I V E R S I T Y o n 11/17/13. C o p y r i g h t A S C E . F o r p e r s o n a l u s e o n l y ; a l l r i g h t s re s e r v e d .relation between the classes so that it can be modeled according to standard object-oriented notations.FIGURE 1S OFTWARE (BDS) A RCHITECTUREObject-Oriented Analysis (OOA) of Steel Truss BridgesFIGURE 2 OOA OF S TEEL T RUSS G IRDER S UPERSTRUCTURE (W HOLE / P ART H IERARCHY )The object-oriented analysis of steel truss girder superstructure is shown in Figure 2, and the hierarchy is termed as whole / part hierarchy. The whole structure is decomposed into whole / part until basic components are reached. The lower level abstraction of truss girder is difficult as the inter-dependency among the different components of the system is very high. For example, ‘Chord’, ‘Diagonal’, and ‘Vertical’ are highly inter-dependent as they model a type of ‘Main Vertical Truss’. As a result, the high inter dependency among the different components should be modeled accordingly even though the components can be modeled in separate classes. These can be modeled effectively by D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y C H A N G 'A N U N I V E R S I T Y o n 11/17/13. C o p y r i g h t A S C E . F o r p e r s o n a l u s e o n l y ; a l l r i g h t s re s e r v e d .using the concept of ‘aggregation’ relationship, which represents a physical containment. The truss girder superstructure is constructed of or contains many components like Main Vertical Truss, Floor System, Bracing System, Portal Bracing, Sway Bracing, Bearings, etc. The ‘aggregation’ relationship is also termed as ‘has’ relationship. Object-Oriented Design (OOD) of Steel Truss Bridges The first step in OOD is to identify the attributes and methods in all objects in greater detail, as well as their status namely whether they are private, protected or public innature. Subsequently, the sequence of message passing among different objects and their dynamic states are explored. The static as well as dynamic views of objects and their message passing can be represented using ‘object interaction’ diagrams. The significance of proper design process as well as design standards representations can be seen in this phase. Figure 3 shows the static view of class ‘Bracing System’. The subclasses ‘Top Lateral Bracing’ and ‘Bottom Lateral Bracing’ inherit public attributes and methods from the super class ‘Bracing System’. In addition to these inherited attributes and methods, the subclasses have their own attributes and methods.FIGURE 3S TATIC V IEW OF ‘B RACING S YSTEM ’ C LASSObject Interaction Diagrams (Dynamic View)The interaction diagrams capture the behavior, showing the pattern of interaction among objects. Sequencing of messages can be shown in two kinds of diagrams, sequence diagrams and collaboration diagrams.Sequence DiagramsA sequence diagram shows a set of messages arranged in time sequence. Each classifier role is shown as a lifeline - that is, a vertical line that represents the role over time through the entire interaction. Messages are shown as arrows between lifelines (Rumbaugh 1999). Figure 4 shows the sequence diagram of the design of Truss girder railway bridge superstructure. For simplifying the figure, only important messages are D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y C H A N G 'A N U N I V E R S I T Y o n 11/17/13. C o p y r i g h t A S C E . F o r p e r s o n a l u s e o n l y ; a l l r i g h t s re s e r v e d .shown. It is clear from the figure that the ‘Chord Member’, ‘Diagonal Member’ and ‘Vertical Member’ objects are created and their operations takes place only after the creation of ‘Main Truss Girder’ object (i.e. they are tightly coupled). Whereas, the design of floor system can be done in any order without affecting the overall main truss girder design process (i.e. they are loosely coupled). The diagram also clearly indicates that inner objects have a lesser life than their parent. Sequence diagrams help us not only to find interaction among objects, but also to assess the strength of these interactions (i.e. tightly coupled or loosely coupled).FIGURE 4S EQUENCE D IAGRAM FOR T RUSS G IRDER S UPERSTRUCTURE D ESIGN (D YNAMIC V IEW )Collaboration DiagramCollaboration diagram permits the software designer to see multiple roles that a class may play in various operations. This view can be constructed by taking the union of all the collaborations needed to describe all the operations of the class. In a collaboration diagram, the class is depicted by a rectangle with the name of the object in it, preceded by a colon and underlined. Arrows indicate the messages sent by the objects and their direction and the sequences are indicated by numbering the messages. Figure 5 shows the collaboration between ‘ObjMainTrussGirder’, ‘ObjFloorSystem’, ‘ObjBridgeRules’, ‘ObjStringer’, ‘ObjStringerBracing’, ‘ObjXGirder’ and ‘ObjSteelBridgeCode’ objects to design the floor system of truss girder superstructure deck. The necessary data for floor system design is supplied by the main truss girder object.Floor system object interacts with bridge rules objects to get loads for stringers and cross girder design. Steel bridge code, stringer and cross girder objects are created in floor system object. Stringer object designs the stringer girder and checks the stresses and deflection by interacting with steel bridge code object. Stringer object also creates a stringer bracing object and designs it. Cross girder designs the cross girder after receiving D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y C H A N G 'A N U N I V E R S I T Y o n 11/17/13. C o p y r i g h t A S C E . F o r p e r s o n a l u s e o n l y ; a l l r i g h t s re s e r v e d .stringers reaction from floor system object and checks stresses and deflection with steel bridge code object.1: Create MainTrussGirder Object2: Create FloorSystem Object and Pass DataFIGURE 5C OLLABORATIOND IAGRAM S HOWING F LOOR S YSTEM D ESIGNObject oriented design methods emphasize the proper and effective structuring of complex systems. The object oriented design, by using the model of the domain obtained from OOA, generates a blueprint for completely implementing the system in a programming environment.O PTIMAL D ESIGN F ORMULATIONSThe design variables, objective function, a set of constraints that define the limits on the design problem have to be identified.Design VariablesThe sizing design variables considered in this study are either cross-sectional dimensions using continuous variable for lateral dimensions and discrete design variables for thickness. The standard cross section is described in terms of integer pointing to a row in a table of available cross sections. A boolean variable is used to specify parallel chord system and non parallel chord system.A typical truss configuration used in Indian Railway (Figure 6) is taken for illustrating member grouping, selection of cross sections, identification of continuous and discontinuous variables, choice of different bracing patterns and their influence on the string length used to represent the design variables.There are three different top chord member, four bottom chord member, three diagonals and four vertical members, taking advantage of symmetry. The shape of the member is kept the same for members belonging to the same type. In addition to this, D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y C H A N G 'A N U N I V E R S I T Y o n 11/17/13. C o p y r i g h t A S C E . F o r p e r s o n a l u s e o n l y ; a l l r i g h t s re s e r v e d .there is one group each for each type of end diagonal, stringers, cross girders, portal girder, sway girder, bottom lateral bracings and top lateral bracings. Thus 21 different member groups are identified for this particular problem. Number of different possible shapes exists for each type of members. A discrete variable for representing a cross section of each member in the truss girder such as top chords, bottom chords, end diagonals, diagonals, verticals, portal girders, sway girders, top lateral bracings and bottom lateral bracings is used in the genetic model. Thus up to 9 discrete variables are needed to represent the shape of the cross sectionFIGURE 6S KELETON OF A T HROUGH T YPE S TEEL T RUSS R AILWAY B RIDGE S UPERSTRUCTUREFrom the fabrication and aesthetic point of view, it is required to keep a few parameters constant throughout the bridge. The possible web bracings are also numbered to be represented as discrete variables. For instance, width of all the main members (top and bottom chords) is generally kept constant so as to be able to connect them properly to gusset plate. For continuous design variable values sixty four (26) possibilities are considered, whereas for discrete design variable values eight (23) possibilities are considered.Objective FunctionIn the present study, the aim is to minimize the cost expressed as the objective function. The total cost of superstructure comprises material costs and fabrication costs. Joints costs depend upon the number of joints, the number of members joining at the node and the forces to be transferred at the joint. In the present study, various web bracing configuration is considered in the genetic evolution process. The constrained form of the optimization problem can be formulated as⎟⎟⎠⎞⎜⎜⎝⎛∑∑+×⎟⎟⎠⎞⎜⎜⎝⎛∑××====j mj m n j n r r st N i i i C C l A MinimizeC 111ρ (1)Subject to the following constraints: D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y C H A N G 'A N U N I V E R S I T Y o n 11/17/13. C o p y r i g h t A S C E . F o r p e r s o n a l u s e o n l y ; a l l r i g h t s re s e r v e d .Material strength, buckling strength as well as fatigue strength limit.Deflection limit.Where C = objective function; A i , l i and ρ = area, length and weight density of the ith member, respectively; C st = cost of steel per kN; n mj = number of members meeting at the nodes and C r = cost of joining each member depending upon its force.The objective of the optimum design problem is to minimize the total cost of the superstructure, which is represented by (1).ConstraintsAn optimal solution is the best solution among a set of feasible solutions, which satisfy all the constraints imposed upon them. In GAs based optimal design process, the constraints can be implicit constraints - the lower and upper bounds values for design variables or explicit constraints - functional constraints imposed on material strength, buckling strength as well as fatigue strength limit, deflection limit, and the unsupported projection of any plate.The genetic algorithms can be used for optimizing unconstrained objective functions. In this implementation of GAs the constrained problem is converted into unconstrained problem, using penalty function, to obtain an augmented objective function and fitness values, as given below:()c aug P C f +×=1 (2) ()()()()∑×+×+×=i implicit d deflection s stress c P C P C P C P (3) Where f aug = Augmented Objective Function; C = Objective function given by Eq. 6; P c = Total penalized constraints violations; C stress , C deflection and C implicit = stress, defection and implicit constraint violations respectively; and P s , P d and P i = penalty factors for stress constraints, deflection constraints and implicit constraints, respectively.To evaluate the fitness, F i , of a solution, the value of the augmented objective function has to be subtracted from a large number. Usually this large number is taken as the sum of the maximum and minimum objective function values in the population (4).i aug i f f f F ,min max −+= (4) Where f max , f min = maximum, minimum value of augmented objective function in a generation.O PTIMIZATION M ODULEThe optimization module is implemented entirely in object oriented environment with the GAs process implemented using the concepts of object oriented method. The core GAs attributes and methods, which are independent of the problem domain, are completely encapsulated and the access to the GAs process from outside is given only through a well-defined interface. The features available in object-oriented models such as D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y C H A N G 'A N U N I V E R S I T Y o n 11/17/13. C o p y r i g h t A S C E . F o r p e r s o n a l u s e o n l y ; a l l r i g h t s re s e r v e d .‘aggregation’ make the interface implementation easier. Figure 7 shows the schematic diagram, representing the object-oriented implementation of GAs process. Object-oriented implementation of GAs as methods in a class by abstracting the problem-independent genetic operations part and the problem-dependent function evaluation part has enabled effective encapsulation, inheritance and better memory management.FIGURE 7O BJECT -O RIENTED I MPLEMENTATION OF G ENETIC A LGORITHMSS UMMARY A ND C ONCLUSIONSThe GAs based optimal design formulation presented in this paper is certainly not new. One of the early applications of GAs to engineering design problems is the optimization of gas pipeline control by Goldberg (1983) and GAs has been used in much work since; a recent application of GAs in a large scale practical structure has been explained by Krishnamoorthy (2001). Although application of GAs in steel truss girder is not new, the present paper does give a new and simple implementation procedure for the entire engineering of steel truss girder bridge superstructure, and outlines it in an object oriented fashion. A novel feature is the use of an object technology to model both conventional and optimal design system.An important feature of this paper is that it links GAs into computer aided design software in a single environment. The computer aided design software has not been used as extensively by the profession as the computer aided analysis software due to the inability of this software to capture the complex process of design, which is an open ended problem.The aim of this work is not just applying GAs for optimal design of steel truss girder bridge superstructures, but answering questions such as when a large scale practical structure optimization involves with complex design requirments, considering system topology, configuration, and member sizes represented by mixed design variables. Of particular relevance here is that the GAs based optimal design formulation is efficiently integrated with a conventional design software, both implemented in an object oriented environment.D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y C H A N G 'A N U N I VE R S I T Y o n 11/17/13. C o p y r i g h t A S C E .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s re s e r v e d .A CKNOWLEDGEMENTWe gratefully acknowledge the support of the DST and RDSO, Ministry of Indian Railways.R EFERENCE [1] Abdalla, J. A. and G. H. Powell, An object design frame work for structural engineering. Engineering with Computers , 11, 213-226, 1995.[2] Adeli, H . and Cheng, N., Integrated genetic algorithm for optimization of space structures. J. Aerosp. Eng., 6(4), 315-328, 1993.[3] Bridge rules . Rules specifying the loads for design of super-structure and sub-structure of bridges and for assessment of the strength of existing bridges. Ministry of Railways, Government of India, New Delhi, 1964.[4] Cappello, F., and Mancuso, A ., A genetic algorithm for combined topology and shape optimisations. Computer-Aided Design 35, 761–769, 2003.[5] Chen, S.Y., and S. D. Rajan, Using Genetic Algorithm as An Automatic Structural Design Tool, Short Paper Proceedings of 3rd World Congress of Structural and Multidisciplinary Optimization , Vol. 1, 263-265, Buffalo, NY, 1999.[6] Galante, M., Genetic algorithms for as an approach to optimize real-world trusses. International Journal for Numerical Methods in Engineering, 39, 361–382, 1996.[7] Garret, J. A. and M. H. Maher, Object-oriented model of engineering design standards. Journal of Computing in Civil Engineering , 6(3), 323-347, 1992.[8] Goldberg, D. E., Computer aided gas pipeline operation using genetic algorithms and rule learning. Dissertation Abstracts International , 44(10), 3174(B), 1983.[9] Jenkins, W. M., Structural Optimization with the Genetic Algorithms, The Structural Engineer , 69(24), 418-422, 1991.[10] Krishnamoorthy, C. S., Structural optimization in practice: Potential applications of genetic algorithms. Structural Engineering and Mechanics, 11(1), 151–170, 2001.[11] Krishnamoorthy, C. S., Venkatesh, P. P., and Sudarshan, R., Object-oriented framework for genetic algorithms with application to space truss optimization. Journal of Computing in Civil Engineering, 16(1), 66–75, 2002.[12] Miller, G. R., An object-oriented approach to structural analysis and design. Computers and Structures , 40(1), 75-82, 1991.[13] Moni, S. and W. W. Donald, Frame view: Object-oriented visualization system for frame analysis. Journal of Computing in Civil Engineering , 10(4), 276-285, 1996.[14] Ohsaki, M., Genetic algorithm for topology optimization of trusses. Computers and Structures, 57(2), 219–225, 1995.[15] Pandia Raj, R., and Kalyanaraman, V., GA based Optimal Design of Steel Truss Bridge. 6th World Congress of Structural and Multidisciplinary Optimization , Rio de Janeiro, Brazil, 30 May – 03 June, 2005.[16] Rajan, S. D., Sizing, shape, and topology design optimization of trusses using genetic algorithm. Journal of Structural Engineering, ASCE, 121(10), 1480–1487, 1995.[17] Rajeev, S., and Krishnamoorthy, C. S., Genetic algorithms-based methodology for design optimization of trusses. Journal of Structural Engineering, 123(3), 350–358, 1997.[18] Renner, G., and Ekart, A., Genetic algorithms in computer aided design. Computer-Aided Design 35, 709–726, 2003.[19] Rumbaugh, J., I. Jacobson and G. Booch The unified modeling language reference manual . Addison-Wesley, Replika Press Pvt. Ltd., New Delhi, 1999.[20] Sause, R., M. Kirk and H. P. Graham, Object-oriented approaches for integrated engineering design systems. Journal of Computing in Civil Engineering , 6(3), 248-265, 1992.[21] Sivakumar, P., Rajaraman, A., Samuel Knight, G.M, and Ramachandramurhty, D.S., Object-Oriented Optimization Approach using Genetic Algorithms for Lattice Towers. Journal of computing in Civil Engineering , 18(2), 162-171, 2004.D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y C H A N G 'A N U N I VE R S I T Y o n 11/17/13. C o p y r i g h t A S C E .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .。