概率论第6章习题及答案

合集下载

概率论与数理统计教材第六章习题

概率论与数理统计教材第六章习题

X σ0 n
~ N(0,1)
对于置信水平1- ,总体均值的置信区间为 对于置信水平 -α,总体均值 的置信区间为
X
σ0
n
uα < < X +
2
σ0
n

2
(2)设总体 ~ N(,σ 2 ), 未知 ,求的置信区间。 设总体X~ 未知σ, 的置信区间。 设总体 的置信区间
σ 0 ,则样本函数 t = X ~ t(n 1) 用 S 代替 S n
i =1
n1
n1
F
1
α ∑ Yj 2
2 j =1
n2
(
)
2
n2
10
2 2 及 (1)设两个总体 ~ N(1,σ1 ) 及Y~ N(2 ,σ 2 ), 未知 1 2, )设两个总体X~ ~
2 σ1 的置信区间。 求 2 的置信区间。 σ2
选取样本函数 选取样本函数
2 2 S1 σ1 F = 2 2 ~ F(n1 1, n2 1) S2 σ2
∑x
i =1
n
i =1
i
n = 0.
1 p
得 p 的极大似然估计值为 p =
n
∑x
i =1
n
1 = x
i
12
1 θ 2. 设总体 服从拉普拉斯分布:f ( x;θ ) = e ,∞< x < +∞, 设总体X 服从拉普拉斯分布: 2θ 求参数 θ 其中 > 0. 如果取得样本观测值为 x1 , x2 ,L, xn , 求参数θ
第六章 参数估计
(一)基本内容
一、参数估计的概念 1 定义:取样本的一个函数θ ( X 1 , X 2 ,L , X n ), 如果以它的观测 定义:

概率论与数理统计(理工类-第四版)吴赣昌主编课后习题答案第六章

概率论与数理统计(理工类-第四版)吴赣昌主编课后习题答案第六章

第六章参数估计6.1 点估计问题概述习题1总体X在区间[0,θ]上均匀分布,X1,X2,⋯,Xn是它的样本,则下列估计量θ̂是θ的一致估计是().(A)θ̂=Xn; (B)θ̂=2Xn;(C)θ̂=X¯=1n∑i=1nXi; (D)θ̂=Max{X1,X2,⋯,Xn}.解答:应选(D).由一致估计的定义,对任意ɛ>0,P(∣Max{X1,X2,⋯,Xn}-θ∣<ɛ)=P(-ɛ+θ<Max{X1,X2,⋯,Xn}<ɛ+θ)=F(ɛ+θ)-F(-ɛ+θ).因为FX(x)={0,x<0xθ,0≤x≤θ1,x>θ,及F(x)=FMax{X1,X2,⋯,Xn}(x)=FX1(x)FX2(x)⋯FXn(x),所以F(ɛ+θ)=1, F(-ɛ+θ)=P(Max{X1,X2,⋯,Xn}<-ɛ+θ)=(1-xθ)n,故P(∣Max{X1,X2,⋯,Xn}-θ∣<ɛ)=1-(1-xθ)n→1(n→+∞).习题2设σ是总体X的标准差,X1,X2,⋯,Xn是它的样本,则样本标准差S是总体标准差σ的().(A)矩估计量; (B)最大似然估计量; (C)无偏估计量; (D)相合估计量.解答:应选(D).因为,总体标准差σ的矩估计量和最大似然估计量都是未修正的样本标准差;样本方差是总体方差的无偏估计,但是样本标准差不是总体标准差的无偏估计.可见,样本标准差S是总体标准差σ的相合估计量.习题3设总体X的数学期望为μ,X1,X2,⋯,Xn是来自X的样本,a1,a2,⋯,an是任意常数,验证(∑i=1naiXi)/∑i=1nai(∑i=1nai≠0)是μ的无偏估计量.解答:E(X)=μ,E(∑i=1naiXi∑i=1nai)=1∑i=1nai⋅∑i=1naiE(Xi)(E(Xi)=E(X)=μ)=μ∑i=1nai∑i=1n=μ,综上所证,可知∑i=1naiXi∑i=1nai是μ的无偏估计量.习题4设θ̂是参数θ的无偏估计,且有D(θ̂)>0, 试证θ̂2=(θ̂)2不是θ2的无偏估计.解答:因为D(θ̂)=E(θ̂2)-[E(θ̂)]2, 所以E(θ̂2)=D(θ̂)+[E(θ̂)]2=θ2+D(θ̂)>θ2,故(θ̂)2不是θ2的无偏估计.习题5设X1,X2,⋯,Xn是来自参数为λ的泊松分布的简单随机样本,试求λ2的无偏估计量.解答:因X服从参数为λ的泊松分布,故D(X)=λ,E(X2)=D(X)+[E(X)]2=λ+λ2=E(X)+λ2,于是E(X2)-E(X)=λ2,即E(X2-X)=λ2.用样本矩A2=1n∑i=1nXi2,A1=X¯代替相应的总体矩E(X2),E(X), 便得λ2的无偏估计量λ̂2=A2-A1=1n∑i=1nXi2-X¯.习题6设X1,X2,⋯,Xn为来自参数为n,p的二项分布总体,试求p2的无偏估计量.解答:因总体X∼b(n,p), 故E(X)=np,E(X2)=D(X)+[E(X)]2=np(1-p)+n2p2=np+n(n-1)p2=E(X)+n(n-1)p2,E(X2)-E(X)n(-1)=E[1n(n-1)(X2-X)]=p2,于是,用样本矩A2,A1分别代替相应的总体矩E(X2),E(X),便得p2的无偏估计量p̂2=A2-A1n(n-1)=1n2(n-1)∑i=1n(Xi2-Xi).习题7设总体X服从均值为θ的指数分布,其概率密度为f(x;θ)={1θe-xθ,x>00,x≤0,其中参数θ>0未知. 又设X1,X2,⋯,Xn是来自该总体的样本,试证:X¯和n(min(X1,X2,⋯,Xn))都是θ的无偏估计量,并比较哪个更有效.解答:因为E(X)=θ,而E(X¯)=E(X),所以E(X¯)=θ,X¯是θ的无偏估计量.设Z=min(X1,X2,⋯,Xn),因为FX(x)={0,x≤01-e-xθ,x>0,FZ(x)=1-[1-FX(x)]n={1-e-nxθ,x>00,x≤0,所以fZ(x)={nθe-nxθ,x>00,x≤0,这是参数为nθ的指数分布,故知E(Z)=θn,而E(nZ)=E[n(min(X1,X2,⋯,Xn)]=θ,所以nZ也是θ的无偏估计.现比较它们的方差大小.由于D(X)=θ2,故D(X¯)=θ2n.又由于D(Z)=(θn)2,故有D(nZ)=n2D(Z)=n2⋅θ2n2=θ2.当n>1时,D(nZ)>D(X¯),故X¯较nZ有效.习题8设总体X服从正态分布N(m,1),X1,X2是总体X的子样,试验证m1̂=23X1+13X2, m2̂=14X1+34X2, m3̂=12X1+12X2,都是m的无偏估计量;并问哪一个估计量的方差最小?解答:因为X服从N(m,1), 有E(Xi)=m,D(Xi)=1(i=1,2),得E(m1̂)=E(23X1+13X2)=23E(X1)+13E(X2)=23m+13m=m,D(m1̂)=D(23X1+13X2)=49D(X1)+19D(X2)=49+19=59,同理可得:E(m2̂)=m,D(m2̂)=58, E(m3̂)=m,D(m3̂)=12.所以,m1̂,m2̂,m3̂都是m的无偏估计量,并且在m1̂,m2̂,m3̂中,以m3̂的方差为最小.习题9设有k台仪器. 已知用第i台仪器测量时,测定值总体的标准差为σi(i=1,2,⋯,k), 用这些仪器独立地对某一物理量θ各观察一次,分别得到X1,X2,⋯,Xk. 设仪器都没有系统误差,即E(Xi)=θ(i=1,2,⋯,k), 问a1,a2,⋯,ak应取何值,方能使用θ̂=∑i=1kaiXi估计θ时,θ̂是无偏的,并且D(θ̂)最小?解答:因为E(Xi)=θ(i=1,2,⋯,k), 故E(θ̂)=E(∑i=1kaiXi)=∑i=1kaiE(Xi)=θ∑i=1kai,欲使E(θ̂)=θ,则要∑i=1kai=1.因此,当∑i=1kai=1时,θ̂=∑i=1kaiXi为θ的无偏估计, D(θ̂)=∑i=1kai2σi2, 要在∑i=1kai=1的条件下D(θ̂)最小,采用拉格朗日乘数法.令L(a1,a2,⋯,ak)=D(θ̂)+λ(1-∑i=1kai)=∑i=1kai2σi2+λ(1-∑i=1kai),{∂L∂ai=0,i=1,2,⋯,k∑i=1kai=1,即2aiσi2-λ=0,ai=λ2i2;又因∑i=1kai=1,所以λ∑i=1k12σi2=1,记∑i=1k1σi2=1σ02,所以λ=2σ02,于是ai=σ02σi2 (i=1,2,⋯,k),故当ai=σ02σi2(i=1,2,⋯,k)时,θ̂=∑i=1kaiXi是θ的无偏估计,且方差最小.习题6.2 点估计的常用方法习题1设X1,X2,⋯,Xn为总体的一个样本,x1,x2,⋯,xn为一相应的样本值,求下述各总体的密度函数或分布律中的未知参数的矩估计量和估计值及最大似然估计量.(1)f(x)={θcθx-(θ+1),x>c0,其它, 其中c>0为已知,θ>1,θ为未知参数.(2)f(x)={θxθ-1,0≤x≤10,其它, 其中θ>0,θ为未知参数.(3)P{X=x}=(mx)px(1-p)m-x, 其中x=0,1,2,⋯,m,0<p<1,p为未知参数.解答:(1)E(X)=∫c+∞x⋅θcθx-(θ+1)dx=θcθ∫c+∞x-θdx=θcθ-1,解出θ=E(X)E(X)-c,令X¯=E(X),于是θ̂=X¯X¯-c为矩估计量,θ的矩估计值为θ̂=x¯x¯-c,其中x¯=1n∑i=1nxi.另外,似然函数为L(θ)=∏i=1nf(xi;θ)=θncnθ(∏i=1nxi)-(θ+1),xi>c,对数似然函数为lnL(θ)=nlnθ+nθlnc-(θ+1)∑i=1nlnxi,对lnL(θ)求导,并令其为零,得dlnL(θ)dθ=nθ+nlnc-∑i=1nlnxi=0,解方程得θ=n∑i=1nlnxi-nlnc,故参数的最大似然估计量为θ̂=n∑i=1nlnXi-nlnc.(2)E(X)=∫01x⋅θxθ-1dx=θθ+1,以X¯作为E(X)的矩估计,则θ的矩估计由X¯=θθ+1解出,得θ̂=(X¯1-X¯)2,θ的矩估计值为θ̂=(x¯1-x¯)2,其中x¯=1n∑i=1nxi为样本均值的观测值.另外,似然函数为L(θ)=∏i=1nf(xi;θ)=θn/2(∏i=1nxi)θ-1,0≤xi≤1,对数似然函数为lnL(θ)=n2lnθ+(θ-1)∑i=1nlnxi,对lnL(θ)求导,并令其为零,得dlnL(θ)dθ=n2θ+12θ∑i=1nlnxi=0,解方程得θ=(-n∑i=1nlnxi)2,故参数的最大似然估计量为θ̂=(n∑i=1nlnXi)2.(3)X∼b(m,p),E(X)=mp,以X¯作为E(X)的矩估计,即X¯=E(X),则参数p的矩估计为p̂=1mX¯=1m⋅1n∑i=1nXi,p的矩估计值为p̂=1mx¯=1m⋅1n∑i=1nxi.另外,似然函数为L(θ)=∏i=1nf(xi;θ)=(∏i=1nCmxi)p∑i=1nxi(1-p)∑i=1n(m-xi),xi=0,1,⋯,m,对数似然函数为lnL(θ)=∑i=1nlnCmxi+(∑i=1nxi)lnp+(∑i=1n(m-xi))ln(1-p),对lnL(θ)求导,并令其为零,得dlnL(θ)dθ=1p∑i=1nxi-11-p∑i=1n(m-xi)=0,解方程得p=1mn∑i=1nxi,故参数的最大似然估计量为p̂=1mn∑i=1nXi=1mX¯.习题2设总体X服从均匀分布U[0,θ],它的密度函数为f(x;θ)={1θ,0≤x≤θ0,其它,(1)求未知参数θ的矩估计量;(2)当样本观察值为0.3,0.8,0.27,0.35,0.62,0.55时,求θ的矩估计值.解答:(1)因为E(X)=∫-∞+∞xf(x;θ)dx=1θ∫0θxdx=θ2,令E(X)=1n∑i=1nXi,即θ2=X¯,所以θ̂=2X¯.(2)由所给样本的观察值算得x¯=16∑i=16xi=16(0.3+0.8+0.27+0.35+0.62+0.55)=0.4817,所以θ̂=2x¯=0.9634.习题3设总体X以等概率1θ取值1,2,⋯,θ,求未知参数θ的矩估计量.解答:其中θ(0<θ<1)为未知参数. 已知取得了样本值x1=1,x2=2,x3=1, 试求θ的矩估计值和最大似然估计值.解答:E(X)=1×θ2+2×2θ(1-θ)+3×(1-θ)2=3-2θ,x¯=1/3×(1+2+1)=4/3.因为E(X)=X¯,所以θ̂=(3-x¯)/2=5/6为矩估计值,L(θ)=∏i=13P{Xi=xi}=P{X1=1}P{X2=2}P{X3=1}=θ4⋅2θ⋅(1-θ)=2θ5(1-θ),lnL(θ)=ln2+5lnθ+ln(1-θ),对θ求导,并令导数为零dlnLdθ=5θ-11-θ=0,得θL̂=56.习题6(1)设X1,X2,⋯,Xn来自总体X的一个样本, 且X∼π(λ),求P{X=0}的最大似然估计.(2)某铁路局证实一个扳道员五年内所引起的严重事故的次数服从泊松分布,求一个扳道员在五年内未引起严重事故的概率 p的最大似然估计,使用下面122个观察值统计情况. 下表中,r表示一扳道员某五年中引起严重事故的次数,s表示观察到的扳道员人数.解答:(1)已知,λ的最大似然估计为λ̂L=X¯.因此⌢P{X=0}=e-λL̂=e-X¯.(2)设X为一个扳道员在五年内引起的严重事故的次数,X服从参数为λ的泊松分布,样本容量n=122.算得样本均值为x¯=1122×∑r=05r⋯r=1122×(0×44+1×42+2×21+3×9+4×4+5×2)≈1.123,因此P̂{X=0}=e-x¯=e-1.123≈0.3253.习题6.3 置信区间习题1对参数的一种区间估计及一组观察值(x1,x2,⋯,xn)来说,下列结论中正确的是().(A)置信度越大,对参数取值范围估计越准确;(B)置信度越大,置信区间越长;(C)置信度越大,置信区间越短;(D)置信度大小与置信区间有长度无关.解答:应选(B).置信度越大,置信区间包含真值的概率就越大,置信区间的长度就越大,对未知参数的估计精度越低.反之,对参数的估计精度越高,置信区间的长度越小,它包含真值的概率就越低,置信度就越小.习题2设(θ1,θ2)是参数θ的置信度为1-α的区间估计,则以下结论正确的是().(A)参数θ落在区间(θ1,θ2)之内的概率为1-α;(B)参数θ落在区间(θ1,θ2)之外的概率为α;(C)区间(θ1,θ2)包含参数θ的概率为1-α;(D)对不同的样本观察值,区间(θ1,θ2)的长度相同.解答:应先(C).由于θ1,θ2都是统计量,即(θ1,θ2)是随机区间,而θ是一个客观存在的未知常数,故(A),(B)不正确.习题3设总体的期望μ和方差σ2均存在,如何求μ的置信度为1-α的置信区间?解答:先从总体中抽取一容量为n的样本X1,X2,⋯,Xn.根据中心极限定理,知U=X¯-μσ/n→N(0,1)(n→∞).(1)当σ2已知时,则近似得到μ的置信度为1-α的置信区间为(X¯-uα/2σn,X¯+uα/2σn).(2)当σ2未知时,用σ2的无偏估计S2代替σ2,这里仍有X¯-μS/n→N(0,1)(n→∞),于是得到μ的1-α的置信区间为(X¯-uα/2Sn,X¯+uα/2Sn),一般要求n≥30才能使用上述公式,称为大样本区间估计.习题4某总体的标准差σ=3cm,从中抽取40个个体,其样本平均数x¯=642cm,试给出总体期望值μ的95%的置信上、下限(即置信区间的上、下限).解答:因为n=40属于大样本情形,所以X¯近似服从N(μ,σ2n)的正态分布,于是μ的95%的置信区间近似为(X¯±σnuα/2),这里x¯=642,σ=3,n=40≈6.32,uα/2=1.96,从而(x¯±σnuα/2)=(642±340×1.96)≈(642±0.93),故μ的95%的置信上限为642.93, 下限为641.07.习题5某商店为了了解居民对某种商品的需要,调查了100家住户,得出每户每月平均需求量为10kg, 方差为9,如果这个商店供应10000户,试就居民对该种商品的平均需求量进行区间估计(α=0.01),并依此考虑最少要准备多少这种商品才能以0.99的概率满足需求?解答:因为n=100属于大样本问题,所以X¯近似服从N(μ,σ2/n),于是μ的99%的置信区间近似为(X¯±Snuα/2),而x¯=10,s=3,n=100, uα/2=2.58,所以(x¯±snuα/2)=(10±3100×2.58)=(10±0.774)=(9.226,10.774).试以95%的置信度,求出该品种玉米平均穗位的置信区间.解答:因为n=100属于大样本情形,所以μ的置信度为95%的置信区间上、下限近似为X¯±snuα/2,这里n=100,uα/2=1.96,还需计算出x¯和s.取a=115,c=10, 令zi=(xi-a)/c=(xi-115)/10, 用简单算公式,(1)x¯=a+cz¯; (2)sx2=c2sz2.z¯=1100∑i=19mizi=1100×(-27)=-0.27,x¯=10×(-27)+115=112.3,sz2=199∑i=19mizi2=199×313≈3.161616,sx2=102×3.161616=316.1616, sx≈17.78.于是(x¯±snuα)≈(112.3±17.7810×1.96)≈(112.3±3.485)=(108.815,115.785).习题7某城镇抽样调查的500名应就业的人中,有13名待业者,试求该城镇的待业率p的置信度为0.95置信区间.解答:这是(0-1)分布参数的区间估计问题. 待业率p的0.95置信区间为(p1̂,p2̂)=(-b-b2-4ac2a,-b+b2-4ac2a).其中a=n+uα/22,b=-2nX¯-(uα/2)2,c=nX¯2,n=500,x¯=13500,uα/2=1.96.则(p1̂,p2̂)=(0.015,0.044).习题8设X1,X2,⋯,Xn为来自正态总体N(μ,σ2)的一个样本,求μ的置信度为1-α的单侧置信限.解答:这是一个正态总体在方差未知的条件下,对μ的区间估计问题,应选取统计量:T=X¯-μS/n∼t(n-1).因为只需作单边估计,注意到t分布的对称性,故令P{T<tα(n-1)}=1-α和P{T>tα(n-1)}=1-α.由给定的置信度1-α,查自由度为n-1的t分布表可得单侧临界值tα(n-1). 将不等式T<tα(n-1)和T>tα(n-1), 即X¯-μS/n<tα(n-1)和X¯-μS/n>tα(n-1)分别变形,求出μ即得μ的1-α的置信下限为X¯-tα(n-1)Sn.μ的1-α的置信上限为X¯+tα(n-1)Sn,μ的1-α的双侧置信限(X¯-tα/2(n-1)Sn,X¯+tα/2(n-1)Sn).习题6.4 正态总体的置信区间习题1已知灯泡寿命的标准差σ=50小时,抽出25个灯泡检验,得平均寿命x¯=500小时,试以95%的可靠性对灯泡的平均寿命进行区间估计(假设灯泡寿命服从正态分布).解答:由于X∼N(μ,502),所以μ的置信度为95%的置信区间为(X¯±uα/2σn),这里x¯=500,n=25,σ=50,uα/2=1.96,所以灯泡的平均寿命的置信区间为(x¯±uα/2σn)=(500±5025×1.96)=(500±19.6)=(480.4,519.6).习题2一个随机样本来自正态总体X,总体标准差σ=1.5,抽样前希望有95%的置信水平使得μ的估计的置信区间长度为L=1.7, 试问应抽取多大的一个样本?解答:因方差已知,μ的置信区间长度为L=2uα/2⋅σn,于是n=(2σLuα/2)2.由题设知,1-α=0.95,α=0.05,α2=0.025.查标准正态分布表得u0.025=1.96,σ=1.5,L=1.7,所以,样本容量n=(2×1.5×1.961.7)2≈11.96.向上取整数得n=12, 于是欲使估计的区间长度为1.7的置信水平为95%, 所以需样本容量为n=12.习题3设某种电子管的使用寿命服从正态分布. 从中随机抽取15个进行检验,得平均使用寿命为1950小时,标准差s为300小时,以95%的可靠性估计整批电子管平均使用寿命的置信上、下限.解答:由X∼N(μ,σ2),知μ的95%的置信区间为(X¯±Sntα/2(n-1)),这里x¯=1950,s=300,n=15,tα/2(14)=2.145,于是(x¯±sntα/2(n-1))=(1950±30015×2.145)≈(1950±166.151)=(1783.85,2116.15).即整批电子管平均使用寿命的置信上限为2116.15, 下限为1783.85.习题4人的身高服从正态分布,从初一女生中随机抽取6名,测其身高如下(单位:cm):149 158.5 152.5 165 157 142求初一女生平均身高的置信区间(α=0.05).解答:X∼N(μ,σ2),μ的置信度为95%的置信区间为(X¯±Sntα/2(n-1)),这里x¯=154, s=8.0187, t0.025(5)=2.571, 于是(x¯±sntα/2(n-1))=(154±8.01876×2.571)≈(154±8.416)≈(145.58,162.42).习题5某大学数学测验,抽得20个学生的分数平均数x¯=72,样本方差s2=16, 假设分数服从正态分布,求σ2的置信度为98%的置信区间.解答:先取χ2分布变量,构造出1-α的σ2的置信区间为((n-1)S2χα/22(n-1),(n-1)S2χ1-α/22(n-1)).已知1-α=0.98,α=0.02,α2=0.01,n=20, S2=16.查χ2分布表得χ0.012(19)=36.191,χ0.992(19)=7.633,于是得σ2的98%的置信区间为(19×1636.191,19×167.633),即(8.400,39.827).习题6随机地取某种炮弹9发做试验,得炮口速度的样本标准差s=11(m/s).设炮口速度服从正态分布,求这种炮弹的炮口速度的标准差σ的置信度为0.95的置信区间.解答:已知n=9,s=11(m/s),1-α=0.95.查表得χ0.0252(8)=17.535,χ0.9752(8)=2.180,σ的0.95的置信区间为(8sχ0.0252(8),8sχ0.9752(8)),即(7.4,21.1).习题7设来自总体N(μ1,16)的一容量为15的样本,其样本均值x1¯=14.6;来自总体N(μ2,9)的一容量为20的样本,其样本均值x2¯=13.2;并且两样本是相互独立的,试求μ1-μ2的90%的置信区间.解答:1-α=0.9,α=0.1,由Φ(uα/2)=1-α2=0.95,查表,得uα/2=1.645,再由n1=15,n2=20, 得σ12n1+σ22n2=1615+920=9160≈1.232,uα/2σ12n1+σ22n2=1.645×1.232≈2.03,x¯1-x¯2=14.6-13.2=1.4,所以,μ1-μ2的90%的置信区间为(1.4-2.03,1.4+2.03)=(-0.63,3.43).习题8物理系学生可选择一学期3学分没有实验课,也可选一学期4学分有实验的课. 期未考试每一章节都考得一样,若有上实验课的12个学生平均考分为84,标准差为4,没上实验课的18个学生平均考分为77,标准差为6,假设总体均为正态分布且其方差相等,求两种课程平均分数差的置信度为99%的置信区间.解答:设有实验课的考分总体X1∼N(μ1,σ2),无实验课的考分总体X2∼N(μ2,σ2).两方差相等设测定数据分别来自分布N(μ1,σ2),N(μ2,σ2),且两样本相互独立,又μ1,μ2,σ2均为未知,试求μ1-μ2的置信水平为0.95的置信区间.对于1-α=0.95,查表得t0.025(7)=2.3646, 算得x¯=0.141,y¯=0.139; s12=8.25×10-6, s1≈0.0029.s22=5.2×10-6, s2=0.0023, sW≈0.0026, 15+14=0.6708,故得μ1-μ2的0.95置信区间为(0.141-0.139±2.3646×0.0026×0.6708),即(-0.002,0.006).习题10设两位化验员A,B独立地对某种聚合物含氯量用相同的方法各作10次测定,其测定值的样本方差依次为sA2=0.5419,sB2=0.6065. 设σA2,σB2分别为A,B所测定的测定值的总体方差,又设总体均为正态的,两样本独立,求方差比σA2/σB2的置信水平为0.95的置信区间.解答:选用随机变量F=SA2σA2/SB2σB2∼F(n1-1,n2-1),依题意,已知sA2=0.5419, sB2=0.6065, n1=n2=10.对于1-α=0.95, 查F分布表得F0.025(9,9)=1F0.025(9,9)=14.03, 于是得σA2σB2的0.95的置信区间为(sA2sB21Fα/2(9,9),sA2sB2Fα/2(9,9))≈(0.222,3.601).总习题解答习题1设总体X服从参数为λ(λ>0)的指数分布,X1,X2,⋯,Xn为一随机样本,令Y=min{X1,X2,⋯,Xn}, 问常数c为何值时,才能使cY是λ的无偏估计量.关键是求出E(Y). 为此要求Y的密度fY(y).因Xi的密度函数为fX(x)={λe-λx,x>00,x<0;Xi的分布函数为FX(x)={1-e-λx,x>00,x≤0,于是FY(y)=1-[1-FX(y)]n={1-e-nλy,y>00,y≤0.两边对y求导得fY(y)=ddyFY(y)={nλe-nλy,y>00,y≤0,即Y服从参数为nλ的指数分布,故E(Y)=nλ.为使cY成为λ的无偏估计量,需且只需E(cY)=λ,即cnλ=λ,故c=1n.习题2设X1,X2,⋯,Xn是来自总体X的一个样本,已知E(X)=μ, D(X)=σ2.(1)确定常数c, 使c∑i=1n-1(Xi+1-Xi)2为σ2的无偏估计;(2)确定常数c, 使(X¯)2-cS2是μ2的无偏估计(X¯,S2分别是样本均值和样本方差).解答:(1)E(c∑i=1n-1(Xi+1-Xi)2)=c∑i=1n-1E(Xi+12-2XiXi+1+Xi2)=c∑i=1n-1{D(Xi+1)+[E(Xi+1)]2-2E(Xi)E(Xi+1)+D(Xi)+[E(Xi)+[E(Xi)]2}=c(n-1)(σ2+μ2-2μ2+σ2+μ2)=2(n-1)σ2c.令2(n-1)σ2c=σ2, 所以c=12(n-1).(2)E[(X¯)2-cS2]=E(X¯2)-cE(S2)=D(X¯)+[E(X¯)]2-cσ2=σ2n+μ2-cσ2.令σ2n+μ2-cσ2=μ2, 则得c=1n.习题3设X1,X2,X3,X4是来自均值为θ的指数分布总体的样本,其中θ未知. 设有估计量T1=16(X1+X2)+13(X3+X4),T2=X1+2X2+3X3+4X45,T3=X1+X2+X3+X44.(1)指出T1,T2,T3中哪几个是θ的无偏估计量;(2)在上述θ的无偏估计中指出一个较为有效的.解答:(1)θ=E(X),E(Xi)=E(X)=θ,D(X)=θ2=D(Xi),i=1,2,3,4.E(T1)=E(16(X1+X2)+13(X3+X4))=(26+23)θ=θ,E(T2)=15E(X1+2X2+3X3+4X4)=15(1+2+3+4)θ=2θ,E(T3)=14E(X1+X2+X3+X4)=θ,因此,T1,T3是θ的无偏估计量.(2)D(T1)=236θ2+29θ2=1036θ2, D(T3)=116⋅4θ2=14θ2=936θ2,所以D(T3)<D(T1), 作为θ的无偏估计量,T3更为有效.习题4设从均值为μ, 方差为σ2(σ>0)的总体中,分别抽取容量为n1,n2的两独立样本,X1¯和X2¯分别是两样本的均值,试证:对于任意常数a,b(a+b=1),Y=aX1¯+bX2¯都是μ的无偏估计;并确定常数a,b, 使D(Y)达到最小.解答:E(Y)=E(aX1¯+bX2¯)=aE(X1¯)+bE(X2¯)=(a+b)μ.因为a+b=1, 所以E(Y)=μ.因此,对于常数a,b(a+b=1),Y都是μ的无偏估计,D(Y)=a2D(X1¯)+b2D(X2¯)=a2σ2n1+b2σ2n2.因a+b=1, 所以D(Y)=σ2[a2n1+1n2(1-a)2], 令dD(Y)da=0, 即2σ2(an1-1-an2)=0, 解得a=n1n1+n2,b=n2n1+n2是惟一驻点.又因为d2D(Y)da2=2σ2(1n1+1n2)>0, 故取此a,b二值时,D(Y)达到最小.习题5设有一批产品,为估计其废品率p, 随机取一样本X1,X2,⋯,Xn, 其中Xi={1,取得废品0,取得合格品, i=1,2,⋯,n,证明:p̂=X¯=1n∑i=1nXi是p的一致无偏估计量.解答:由题设条件E(Xi)=p⋅1+(1-p)⋅0=p,D(Xi)=E(Xi2)-[E(Xi)]2=p⋅12+(1-p)02-p2=p(1-p),E(p̂)=E(X¯)=E(1n∑i=1nE(Xi))=1n∑i=1nE(Xi)=1n∑i=1np=p.由定义,p̂是p的无偏估计量,又D(p̂)=D(X¯)=D(1n∑i=1nXi)=1n2∑i=1nD(Xi)=1n2∑i=1np(1-p)=1n2np(1-p)=pqn.由切比雪夫不等式,任给ɛ>0P{∣p̂-p∣≥ɛ}=P{∣X¯-p∣≥ɛ}≤1ɛ2D(X¯)=1ɛ2p(1-p)n→0,n→∞所以limn→∞P{∣p̂-p∣≥ɛ}=0, 故p̂=X¯是废品率p的一致无偏估计量.习题6设总体X∼b(k,p), k是正整数,0<p<1,k,p都未知,X1,X2,⋯,Xn是一样本,试求k和p的矩估计.解答:因总体X服从二项分布b(k,p), 故{a1=E(X)=kpa2=E(X2)=D(X)+[E(X)]2=kp(1-p)+(kp)2,解此方程组得p=a1+a12-a2a1,k=a12a1+a12-a2.用A1=1n∑i=1nXi=X¯,A2=1n∑i=1nXi2分别代替a1,a2, 即得p,k的矩估计为p̂=X¯-S2X¯,k̂=[X¯2X¯-S2],其中S2=1n∑i=1n(Xi-X¯)2,[x]表示x的最大整数部分.习题7求泊松分布中参数λ的最大似然估计.解答:总体的概率函数为P{X=k}=λkk!e-λ,k=0,1,2,⋯.设x1,x2,⋯,xn为从总体中抽取的容量为n的样本,则似然函数为L(x1,x2,⋯,xn;λ)=∏i=1nf(x i;λ)=∏i=1nλxixi!e-λ=λ∑i=1nxi∏i=1nxi!e-nλ,lnL=(∑i=1nxi)lnλ-nλ-∑i=1nlnxi!,令dlnLdλ=1λ∑i=1nxi-n=0, 得λ的最大是然估计为λ̂=1n∑i=1nxi=x¯,即x¯=1n∑i=1nxi就是参数λ的最大似然估计.习题8已知总体X的概率分布P{X=k}=C2k(1-θ)kθ2-k,k=0,1,2,求参数的矩估计.解答:总体X为离散型分布,且只含一个未知参数θ,因此,只要先求离散型随机变量的数学期望E(X), 然后解出θ并用样本均值X¯代替E(X)即可得θ的矩估计θ̂.由E(X)=∑k=02kC2k(1-θ)kθ2-k=1×2(1-θ)θ+2(1-θ)2=2-2θ,即有θ=1-E(X)2.用样本均值X¯代替上式的E(X), 得矩估计为θ̂=1-X¯2.习题9设总体X的概率密度为f(x)={(θ+1)xθ,0<x<10,其它,其中θ>-1是未知参数,X1,X2,⋯,Xn为一个样本,试求参数θ的矩估计和最大似然估计量.解答:因E(X)=∫01(θ+1)xθ+1dx=θ+1θ+2. 令E(X)=1n∑i=1nXi=X¯, 得θ+1θ+2=X¯, 解得θ的矩估计量为θ̂=2X¯-11-X¯.设x1,x2,⋯,xn是样本X1,X2,⋯,Xn的观察值,则似然函数L(x1,x2,⋯,xn,θ)=∏i=1n(θ+1)xiθ=(θ+1)n(x1x2⋯xn)θ(0<xi<1,i=1,2,⋯,n),取对数得lnL=nln(θ+1)+θ∑i=1nlnxi, 从而得对数似然方程dlnLdθ=nθ+1+∑i=1nlnxi=0,解出θ, 得θ的最大似然估计量为θ̂=-n∑i=1nlnXi.由此可知,θ的矩估计和最大似然估计是不相同的.习题10设X具有分布密度f(x,θ)={θxe-θx!,x=0,1,2,⋯0,其它,0<θ<+∞,X1,X2,⋯,Xn是X的一个样本,求θ的最大似然估计量.解答:似然函数L(θ)=∏i=1nθxie-θxi!=e-nθ∏i=1nθxixi!,lnL(θ)=-nθ+∑i=1nxilnθ-∑i=1nln(xi!),ddθ(lnL(θ))=-n+1θ∑i=1nxi,令ddθ(lnL(θ))=0, 即-n+1θ∑i=1nxi=0⇒θ=1n∑i=1nxi,故θ最大似然估计量为θ̂=X¯=1n∑i=1nXi.习题11设使用了某种仪器对同一量进行了12次独立的测量,其数据(单位:毫米)如下: 232.50 232.48 232.15 232.53 232.45 232.30232.48 232.05 232.45 232.60 232.47 232.30试用矩估计法估计测量值的均值与方差(设仪器无系统误差).解答:设测量值的均值与方差分别为μ与σ2,因为仪器无系统误差,所以θ=μ̂=X¯=1n∑i=1nXi=232+112∑i=1n(Xi-232)=232+1/12×4.76≈232.3967.用样本二阶中心矩B2估计方差σ2, 有σ̂2=1n∑i=1n(Xi-X¯)2=1n∑i=1n(Xi-a)2-(X¯-a)2=112∑i=112(Xi-232)2-(232.3967-232)2=0.1819-0.1574=0.0245.习题12设随机变量X服从二项分布P{X=k}=Cnkpk(1-p)n-k,k=0,1,2,⋯,n,X1为其一个样本,试求p2的无偏估计量.解答:\becauseX∼b(n,p),∴E(X)=np, D(X)=np(1-p)=E(X)-np2⇒p2=1n[E(X)-D(X)]=1n[E(X)-E(X2)+(EX)2]⇒p2=1n[E(X(1-X))]+1nn2p2=1nE(X(1-X))]+np2⇒p2=E[X(X-1)]n(n-1), 由于E[X(X-1)]=E[X1(X1-1)],故p̂2=X1(X1-1)n(n-1).习题13设X1,X2,⋯,Xn是来自总体X的随机样本,试证估计量X¯=1n∑i=1nXi和Y=∑i=1nCiXi(Ci≥0为常数,∑i=1nCi=1)都是总体期望E(X)的无偏估计,但X¯比Y有效.解答:依题设可得E(X¯)=1n∑i=1nE(Xi)=1n×nE(X)=E(X),E(Y)=∑i=1nCiE(Xi)=E(X)∑i=1nCi=E(X).从而X¯,Y均为E(X)的无偏估计量,由于D(X¯)=1n2∑i=1nD(Xi)=1nD(X),D(Y)=D(∑i=1nCiXi)=∑i=1nCi2D(Xi)=D(X)∑i=1nCi2.应用柯西—施瓦茨不等式可知1=(∑i=1nCi)2≤(∑i=1nCi2)(∑i=1n12)=n∑i=1nCi2, ⇒1n≤∑i=1nCi2,所以D(Y)≥D(X¯), 故X¯比Y有效.习题14设X1,X2,⋯,Xn是总体X∼U(0,θ)的一个样本,证明:θ1̂=2X¯和θ2̂=n+1nX(n)是θ的一致估计.解答:因E(θ1̂)=θ, D(θ1̂)=θ23n; E(θ2̂)=θ,D(θ2̂)=θn(n+2),X(n)=max{Xi}.依切比雪夫不等式,对任给的ɛ>0, 当n→∞时,有P{∣θ1̂-θ∣≥ɛ}≤D(θ1̂)ɛ2=θ23nɛ2→0,(n→∞)P{∣θ2̂-θ∣≥ɛ}≤D(θ2̂)ɛ2=θ2n(n+1)ɛ2→0,(n→∞)所以,θ1̂和θ2̂都是θ的一致估计量.习题15某面粉厂接到许多顾客的订货,厂内采用自动流水线灌装面粉,按每袋25千克出售. 现从中随机地抽取50袋,其结果如下:25.8, 24.7, 25.0, 24.9, 25.1, 25.0, 25.2,24.8, 25.4, 25.3, 23.1, 25.4, 24.9, 25.0,24.6, 25.0, 25.1, 25.3, 24.9, 24.8, 24.6,21.1, 25.4, 24.9, 24.8, 25.3, 25.0, 25.1,24.7, 25.0, 24.7, 25.3, 25.2, 24.8, 25.1,25.1, 24.7, 25.0, 25.3, 24.9, 25.0, 25.3,25.0, 25.1, 24.7, 25.3, 25.1, 24.9, 25.2,25.1,试求该厂自动流水线灌装袋重总体X的期望的点估计值和期望的置信区间(置信度为0.95).解答:设X为袋重总体,则E(X)的点估计为E(X̂)=X¯=150(25.8+24.7+⋯+25.1)=24.92kg.因为样本容量n=50, 可作为大样本处理,由样本值算得x¯=24.92, s2≈0.4376, s=0.6615, 则E(X)的置信度为0.95的置信区间近似为(X¯-uα/2Sn,X¯+uα/2Sn),查标准正态分布表得uα/2=u0.025=1.96, 故所求之置信区间为(24.92-1.96×0.661550,24.92+1.96×0.661550)=(24.737,25.103),即有95%的把握,保证该厂生产的面粉平均每袋重量在24.737千克至25.103千克之间.习题16在一批货物的容量为100的样本中,经检验发现有16只次品,试求这批货物次品率的置信度为0.95的置信区间.解答:这是(0-1)分布参数区间的估计问题.这批货物次品率p的1-α的置信区间为(p1̂,p2̂)=(12a(-b-b2-4ac),12a(-b+b2-4ac)).其中a=n+uα/22,b=-(2nX¯+uα/22), c=nX¯2.由题意,x¯=16100=0.16,n=100,1-α=0.95,u0.025=1.96. 算得a=100+1.962=103.842,b=-(2×100×0.16+1.962)=-35.842,c=100×0.162=2.56.p的0.95的置信区间为(p1̂,p2̂)=(12a(-b±b2-4ac)), 即(12×103.842(35.8416±221.2823)),亦即(0.101,0.244).习题17在某校的一个班体检记录中,随意抄录25名男生的身高数据,测得平均身高为170厘米,标准差为12厘米,试求该班男生的平均身高μ和身高的标准差σ的置信度为0.95的置信区间(假设测身高近似服从正态分布).解答:由题设身高X∼N(μ,σ2), n=25, x¯=170, s=12,α=0.05.(1)先求μ置信区间(σ2未知),取U=X¯-μS/n∼t(n-1),tα/2(n-1)=t0.025(24)=2.06.故μ的0.95的置信区间为(170-1225×2.06,170+1225×2.06)=(170-4.94,170+4.94)=(165.06,174,94).(2)σ2的置信区间(μ未知),取U=(n-1)S2σ2∼χ2(n-1),χα/22(n-1)=χ0.0252(24)=39.364, χ1-α/22(n-1)=χ0.9752(24)=12.401,故σ2的0.95的置信区间为(24×12239.364,24×12212.401)≈(87.80,278.69), σ的0.95的置信区间为(87.80,278.69)≈(9.34,16.69).习题18为研究某种汽车轮胎的磨损特性,随机地选择16只轮胎,每只轮胎行驶到磨坏为止. 记录所行驶的路程(以千米计)如下:41250 40187 43175 41010 39265 41872 42654 4128738970 40200 42550 41095 40680 43500 39775 40440假设这些数据来自正态总体N(μ,σ2). 其中μ,σ2未知,试求μ的置信水平为0.95的单侧置信下限.解答:由P{μ>X¯-Sntα(n-1)=1-α, 得μ的1-α的单侧置信下限为μ¯=X¯-Sntα(n-1).由所给数据算得x¯≈41119.38,s≈1345.46,n=16.查t分布表得t0.05(15)=1.7531, 则有μ的0.95的单侧置信下限为μ¯=41119.38-1345.464×1.7531≈40529.73.习题19某车间生产钢丝,设钢丝折断力服从正态分布,现随机在抽取10根,检查折断力,得数据如下(单位:N):578,572,570,568,572,570,570,572,596,584.试求钢丝折断力方差的置信区间和置信上限(置信度为0.95).解答:(1)这是一个正态总体,期望未知,对方差作双侧置信限的估计问题,应选统计量χ2=(n-1)S2σ2∼χ2(n-1).σ2的1-α的置信区间是((n-1)S2χα/22(n-1),(n-1)S2χ1-α/22(n-1)).由所给样本值得x¯=575.2, (n-1)s2=∑1=110(xi-x¯)2=681.6;根据给定的置信度1-α=0.95(即α=0.05).查自由度为10-1=9的χ2分布表,得双侧临界值χα/22(n-1)=χ0.0252(9)=19.0, χ1-α/22(n-1)=χ0.9752(9)=2.7,代入上公式得σ2的95%的置信区间为(681.619.0,681,62.70)=(35.87,232.44),即区间(35.87,232.44)包含σ2的可靠程度为0.95.(2)这是一个正态总体期望未知时,σ2的单侧区间估计问题,σ2的置信度为1-α=95%(α=0.05)的单侧置信上限为(n-1)S2χ1-α2(n-1)=∑i=110(xi-x¯)2χ1-α2(n-1),已算得(n-1)S2=∑i=110(xi-x¯)2=681.6, 根据自由度1-α=0.95.查自由度10-1=9的χ2分布表得单侧临界值χ1-α2(n-1)=χ0.952(9)=3.325,代入上式便得σ2的0.95的置信上限为681.63.325=205, 即有95%的把握,保证σ2包含在区间(0,205)之内,当然也可能碰上σ2超过上限值205的情形,但出现这种情况的可能性很小,不超过5%.习题20设某批铝材料比重X服从正态分布N(μ,σ2),现测量它的比重16次,算得x¯=2.705,s=0.029,分别求μ和σ2的置信度为0.95的置信区间。

概率论与数理统计第六章测试题

概率论与数理统计第六章测试题

第6章 参数估计选择题1.设n X X X ,...,,21是来自正态总体X 的简单随机样本,X 的分布函数F(x;θ)中含未知参数,则(A )用矩估计法和最大似然估计法求出的θ的估计量相同 (B) 用矩估计法和最大似然估计法求出的θ的估计量不同 (C )用矩估计法和最大似然估计法求出的θ的估计量不一定相同 (D) 用最大似然估计法求出的θ的估计量是唯一的2.设n X X X ,...,,21是来自正态总体X 的简单随机样本,EX=μ,DX=σ2,其中μ,σ2均为未知参数,X =1ˆμ,12ˆX =μ,下面结论哪个是错误的。

(A )X =1ˆμ是μ的无偏估计 (B) 12ˆX =μ是μ的无偏估计 (C )X =1ˆμ比12ˆX =μ 有效 (D) ∑=-ni i X n 12)(1μ是σ2的最大似然估计量 3.设n X X X ,...,,21是来自正态分布总体N(μ,σ2)的简单随机样本,其中数学期望μ已知,则总体方差σ2 的最大似然估计量是(A ) ∑=--n i i X X n 12)(11 (B) ∑=-ni i X X n 12)(1 (C ) ∑=--n i i X n 12)(11μ (D) ∑=-n i i X n 12)(1μ 4.已知总体X 在区间[0,θ]上均匀分布,其中θ是未知参数,设n X X X ,...,,21是来自X 的简单随机样本,X 是样本均值,},...,max {1)(n n X X X = 是最大观测值,则下列选项错误的是 (A ))(n X 是θ的最大似然估计量 (B) )(n X 是θ的无偏估计量 (C )X 2是θ的矩估计量 (D) X 2是θ的无偏估计量5. 设总体X~N(μ1,σ2),总体Y~N(μ2,σ2),m X X X ,...,,21和n Y Y Y ,...,,21分别是来自总体X和Y 的简单随机样本,样本方差分别为2X S 与2Y S ,则σ2 的无偏估计量是 (A )22YX S S + (B) 22)1()1(Y X S n S m -+-(C )222-++n m S S YX (D) 2)1()1(22-+-+-n m S n S m Y X6. 设X 是从总体X 中取出的简单随机样本n X X X ,...,,21的样本均值,则X 是μ的矩估计,如果(A )X~N(μ,σ2) (B) X 服从参数为μ的指数分布 (C )P (X=m )=μ(1-μ)m-1,m=1,2,… (D) X 服从[0,μ]上的均匀分布 填空题1.假设总体X 服从参数为λ的泊松分布,n X X X ,...,,21是取自总体X 的简单随机样本,其均值、方差分别为X ,S 2 ,如果2)32(ˆS a X a -+=λ为λ的无偏估计,则a= 。

概率论与数理统计(茆诗松)第二版课后第六章习题参考答案

概率论与数理统计(茆诗松)第二版课后第六章习题参考答案

第六章 参数估计习题6.11. 设X 1, X 2, X 3是取自某总体容量为3的样本,试证下列统计量都是该总体均值µ 的无偏估计,在方差存在时指出哪一个估计的有效性最差?(1)3211613121ˆX X X ++=µ; (2)3212313131ˆX X X ++=µ; (3)3213326161ˆX X X ++=µ. 证:因µµµµµ=++=++=613121)(61)(31)(21)ˆ(3211X E X E X E E , µµµµµ=++=++=313131)(31)(31)(31)ˆ(3212X E X E X E E , µµµµµ=++=++=326161)(32)(61)(61)ˆ(3213X E X E X E E , 故321ˆ,ˆ,ˆµµµ都是总体均值µ 的无偏估计; 因2222321136143619141)Var(361)Var(91)Var(41)ˆVar(σσσσµ=++=++=X X X , 2222321231919191)Var(91)Var(91)Var(91)ˆVar(σσσσµ=++=++=X X X , 222232132194361361)Var(94)Var(361)Var(361)ˆVar(σσσσµ=++=++=X X X , 故)ˆVar()ˆVar()ˆVar(312µµµ<<,即2ˆµ有效性最好,1ˆµ其次,3ˆµ最差. 2. 设X 1, X 2, …, X n 是来自Exp (λ)的样本,已知X 为1/λ的无偏估计,试说明X /1是否为λ的无偏估计.解:因X 1, X 2, …, X n 相互独立且都服从指数分布Exp (λ),即都服从伽玛分布Ga (1, λ),由伽玛分布的可加性知∑==ni i X Y 1服从伽玛分布Ga (n , λ),密度函数为01e )()(>−−ΙΓ=y y n nY y n y p λλ,则λλλλλλλ1)1()(e )(e )(110201−=−Γ⋅Γ=Γ=Γ⋅=⎟⎠⎞⎜⎝⎛=⎟⎠⎞⎜⎝⎛−∞+−−∞+−−∫∫n n n n n dy y n n dy y n y n Y n E X E n n y n n yn n, 故X /1不是λ的无偏估计.3. 设θˆ是参数θ 的无偏估计,且有0)ˆ(Var >θ,试证2)ˆ(θ不是θ 2的无偏估计. 证:因θθ=)ˆ(E ,有2222)ˆVar()]ˆ([)ˆVar(])ˆ[(θθθθθθ>+=+=E E ,故2)ˆ(θ不是θ 2的无偏估计. 4. 设总体X ~ N(µ , σ 2),X 1, …, X n 是来自该总体的一个样本.试确定常数c 使∑=+−ni i i X X c 121)(为σ 2的无偏估计.解:因E [(X i + 1 − X i )2 ] = Var (X i + 1 − X i ) + [E (X i + 1 − X i )]2 = Var (X i + 1) + Var (X i ) + [E (X i + 1) − E (X i )]2 = 2σ 2,则2211211121)1(22)1(])[()(σσ−=⋅−⋅=−=⎥⎦⎤⎢⎣⎡−∑∑−=+−=+n c n c X X E c X X c E n i i i n i i i ,故当)1(21−=n c 时,21121)(σ=⎥⎦⎤⎢⎣⎡−∑−=+n i i i X X c E ,即∑−=+−1121)(n i i i X X c 是σ 2的无偏估计.5. 设X 1, X 2, …, X n 是来自下列总体中抽取的简单样本,⎪⎩⎪⎨⎧+≤≤−=.,0;2121,1);(其他θθθx x p证明样本均值X 及)(21)()1(n X X +都是θ 的无偏估计,问何者更有效? 证:因总体⎟⎠⎞⎜⎝⎛+−21,21~θθU X ,有)1,0(~21U X Y +−=θ,则21−+=θY X ,21)1()1(−+=θY X ,21)()(−+=θn n Y X ,即21)(21)(21)()1()()1(−++=+θn n Y Y X X ,可得θθθ=−+=−+=21)(21)()(Y E Y E X E ,nY n Y X 121)Var(1)Var()Var(===,因Y 的密度函数与分布函数分别为p Y ( y ) = I 0<y <1,⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(y y y y y F Y有Y (1)与Y (n )的密度函数分别为10111)1()()](1[)(<<−−Ι−=−=y n Y n Y y n y p y F n y p ,1011)()]([)(<<−−Ι==y n Y n Y n ny y p y F n y p ,且(Y (1), Y (n ))的联合密度函数为)()1()()()]()()[1(),()()1(2)1()()()1(1n y y n Y Y n Y n Y n n y p y p y F y F n n y y p <−Ι−−=102)1()()()1())(1(<<<−Ι−−=n y y n n y y n n ,则11)2()()2()1()(101)1(+=+ΓΓΓ⋅=−⋅=∫−n n n n dy y n y Y E n ,1)(101)(+=⋅=∫−n n dy ny y Y E n n , )2)(1(2)3()()3()1()(10122)1(++=+ΓΓΓ⋅=−⋅=∫−n n n n n dy y n y Y E n ,2)(10122)(+=⋅=∫−n n dy ny y Y E n n , ∫∫∫∫−−−−⋅⋅=−−⋅=11)1()()()1()(1)1(2)1()()()1()()()1()()()()1())(1()(n n y n n n n y n n n n n y y d n y y dy dy y y n n y y dy Y Y E∫∫⎥⎦⎤⎢⎣⎡⋅−+−−=−−100)1()(1)1()(01)1()()()1()()()()()(n n y n n n y n n n n dy y y y n y y y ny dy2121)(102)(10)(1)(100)1()()()()(+=+==⎥⎦⎤⎢⎣⎡−⋅−=++∫∫n y n dy y y y y dy n n n n n y n n n n n , 即)2()1(11)2)(1(2)Var(22)1(++=⎟⎠⎞⎜⎝⎛+−++=n n n n n n Y ,)2()1(12)Var(22)(++=⎟⎠⎞⎜⎝⎛+−+=n n n n n n n Y n ,且)2()1(111121),Cov(2)()1(++=+⋅+−+=n n n nn n Y Y n 可得θθ=−++=⎥⎦⎤⎢⎣⎡+21)]()([21)(21)()1()()1(n n Y E Y E X X E ,)2)(1(21)2()1(422)],Cov(2)Var()[Var(41)(21Var 2)()1()()1()()1(++=+++=++=⎥⎦⎤⎢⎣⎡+n n n n n Y Y Y Y X X n n n , 因θ=(X E ,θ=⎥⎦⎤⎢⎣⎡+)(21)()1(n X X E ,故X 及)(21)()1(n X X +都是θ 的无偏估计; 因当n > 1时,)2)(1(21)(21Var 121)Var()()1(++=⎥⎦⎤⎢⎣⎡+>=n n X X n X n , 故)(21)()1(n X X +比样本均值X 更有效. 6. 设X 1, X 2, X 3服从均匀分布U (0, θ ),试证)3(34X 及4X (1)都是θ 的无偏估计量,哪个更有效?解:因总体X 的密度函数与分布函数分别为θθ<<Ι=x x p 01)(,⎪⎩⎪⎨⎧≥<≤<=.,1;0,;0,0)(θθθx x x x x F有X (1)与X (3)的密度函数分别为θθθ<<Ι−=−=x x x p x F x p 03221)(3)()](1[3)(,θθ<<Ι==x x x p x F x p 032233)()]([3)(,则443223)(3)(043223032)1(θθθθθθθθ=⎟⎟⎠⎞⎜⎜⎝⎛+⋅−⋅=−⋅=∫x x x dx x x X E , 43433)(043032)3(θθθθθ=⋅=⋅=∫x dy x x X E , 1054233)(3)(205432303222)1(θθθθθθθθ=⎟⎟⎠⎞⎜⎜⎝⎛+⋅−⋅=−⋅=∫x x x dx x x X E , 53533)(25303222)3(θθθθθ=⋅=⋅=∫x dy x x X E , 即803410)Var(222)1(θθθ=⎟⎠⎞⎜⎝⎛−=X ,8034353)Var(222)3(θθθ=⎟⎠⎞⎜⎝⎛−=X , 因θθ=⋅=44)4()1(X E ,θθ=⋅=⎟⎠⎞⎜⎝⎛433434)3(X E ,故4X (1)及)3(34X 都是θ 的无偏估计; 因5380316)4Var(22)1(θθ=⋅=X ,1580391634Var 22)3(θθ=⋅=⎟⎠⎞⎜⎝⎛X ,有⎟⎠⎞⎜⎝⎛>)3()1(34Var )4Var(X X , 故)3(34X 比4X (1)更有效. 7. 设从均值为µ ,方差为σ 2 > 0的总体中,分别抽取容量为n 1和n 2的两独立样本,1X 和2X 分别是这两个样本的均值.试证,对于任意常数a , b (a + b = 1),21X b X a Y +=都是µ 的无偏估计,并确定常数a , b 使Var (Y ) 达到最小.解:因µµµµ=+=+=+=)()()()(21b a b a X bE X aE Y E ,故Y 是µ 的无偏估计;因22222121222122221212)1()(Var )(Var )(Var σσσ⎟⎟⎠⎞⎜⎜⎝⎛+−+=⋅−+⋅=+=n a n a n n n n n a n a X b X a Y , 令022)(Var 222121=⎟⎟⎠⎞⎜⎜⎝⎛−⋅+=σn a n n n n Y da d ,得211n n n a +=,且02)(Var 2212122>⋅+=σn n n n Y a d d , 故当211n n n a +=,2121n n n a b +=−=时,Var (Y ) 达到最小2211σn n +.8. 设总体X 的均值为µ ,方差为σ 2,X 1, …, X n 是来自该总体的一个样本,T (X 1, …, X n )为µ 的任一线性无偏估计量.证明:X 与T 的相关系数为)Var()Var(T X .证:因T(X 1, …, X n )为µ的任一线性无偏估计量,设∑==ni i i n X a X X T 11),,(L ,则µµ===∑∑==ni i ni i i a X E a T E 11)()(,即11=∑=ni i a ,因X 1, …, X n 相互独立,当i ≠ j 时,有Cov (X i , X j ) = 0,则nanX X n a X a X n X a X n T X ni in i i i i n i i i i ni i i n i i 2121111),Cov(,1Cov ,1Cov ),Cov(σσ===⎟⎠⎞⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛=∑∑∑∑∑=====,因),Cov()Var(1)Var(2T X nX n X ===σ,故X 与T 的相关系数为)Var()Var()Var()Var()Var()Var()Var(),Cov(),Corr(T X T X X T X T X T X ===.9. 设有k 台仪器,已知用第i 台仪器测量时,测定值总体的标准差为σ i (i = 1, …, k ).用这些仪器独立地对某一物理量θ 各观察一次,分别得到X 1, …, X k ,设仪器都没有系统误差.问a 1, …, a k 应取何值,方能使∑==ki i i X a 1ˆθ成为θ 的无偏估计,且方差达到最小?解:因θθθ⎟⎟⎠⎞⎜⎜⎝⎛===⎟⎟⎠⎞⎜⎜⎝⎛=∑∑∑∑====k i i ki i k i i i ki i i a a x E a x a E E 1111)()ˆ(, 则当11=∑=ki i a 时,∑==ki ii x a 1ˆθ是θ 的无偏估计, 因∑∑∑=====⎟⎟⎠⎞⎜⎜⎝⎛=ki i i k i i i k i i i a x a x a 122121)(Var Var )ˆ(Var σθ, 讨论在11=∑=ki i a 时,∑=ki i i a 122σ的条件极值,设拉格朗日函数⎟⎟⎠⎞⎜⎜⎝⎛−+=∑∑==1),,,(11221ki i ki iik a a a a L λσλL , 令⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=−=∂∂=+=∂∂=+=∂∂∑=,01,02,02122111ki i k k ka L a a L a a L λλσλσL L L L L 得2212−−++−=k σσλL ,2212−−−++=k i i a σσσL ,i = 1, …, k , 故当2212−−−++=k i i a σσσL ,i = 1, …, k 时,∑==ki ii x a 1ˆθ是θ 的无偏估计,且方差达到最小. 10.设X 1, X 2, …, X n 是来自N (θ, 1)的样本,证明g (θ ) = |θ | 没有无偏估计(提示:利用g (θ )在θ = 0处不可导).证:反证法:假设T = T (X 1, X 2, …, X n )是g (θ ) = |θ | 的任一无偏估计,因∑==ni i X n X 11是θ 的一个充分统计量,即在取定x X =条件下,样本条件分布与参数θ 无关,则)|(X T E S =与参数θ 无关,且S 是关于X 的函数,||)()()]|([)(θθ====g T E X T E E S E , 可得)(X S S =是g (θ ) = |θ | 的无偏估计,因X 1, X 2, …, X n 是来自N (θ, 1)的样本,由正态分布可加性知X 服从正态分布⎟⎠⎞⎜⎝⎛n N 1,θ,则∫∫∞+∞−+−−∞+∞−−−⋅⋅=⋅=dx x S ndx n x S S E x n x n n x nθθθ22222)(2e)(eπ2eπ2)()(,因E (S ) = |θ|,可知对任意的θ,反常积分∫∞+∞−+−⋅dx x S x n x n θ22e)(收敛,则由参数θ的任意性以及该反常积分在−∞与+∞两个方向的收敛性知∫∞+∞−⋅⋅+−⋅dx x S x n x n ||||22e)(θ收敛,因x n x S x S x n x n x n n ⋅⋅=⎥⎥⎦⎤⎢⎢⎣⎡⋅∂∂+−+−θθθ2222e )(e )(,且| y | ≤ e| y |,有||)1||(2222eex n n x n x n x n ⋅+⋅+−+−≤⋅θθ,则由∫∞+∞−⋅+⋅+−⋅dx x S x n x n ||)1|(|22e)(θ的收敛性知∫∞+∞−+−⎥⎥⎦⎤⎢⎢⎣⎡⋅∂∂dx x S x n x n θθ22e )(一致收敛, 可得∫∞+∞−+−−⋅⋅=dx x S nS E x n x n n θθ2222e)(e π2)(关于参数θ 可导,与E (S ) = |θ |在θ = 0处不可导矛盾,故g (θ ) = |θ | 没有无偏估计.11.设总体X 服从正态分布N (µ , σ 2),X 1, X 2, …, X n 为来自总体X 的样本,为了得到标准差σ 的估计量,考虑统计量:∑=−=ni i X X n Y 11||1,∑==n i i X n X 11,n ≥ 2,∑∑==−−=n i nj j i X X n n Y 112||)1(1,n ≥ 2,求常数C 1与C 2,使得C 1Y 1与C 2Y 2都是σ 的无偏估计. 解:设),0(~2θN Y ,有θθθθθθθπ2eπ22e π212e π21|||][|02022222222=−=⋅=⋅=+∞−∞+−∞+∞−⋅−∫∫y y y dy y dy y Y E , 因X X i −是独立正态变量X 1, X 2, …, X n 的线性组合, 且0()()(=−=−=−µµX E X E X X E i i ,22211,Cov 21),Cov(2)Var()Var()Var(σσσn n X n X n X X X X X X i i i i i −=⎟⎠⎞⎜⎝⎛−+=−+=−,则⎟⎠⎞⎜⎝⎛−−21,0~σn n N X X i ,σσπ)1(21π2|][|n n n n X X E i −=−⋅=−, 可得σσπ)1(2π)1(21|][|1)()(11111111n n C n n n n C X X E n C Y E C Y C E n i i −=−⋅⋅⋅=−⋅==∑=,故当)1(2π1−=n n C 时,E [C 1Y 1] = σ,C 1Y 1是σ 的无偏估计;当i ≠ j 时,X i 与X j 相互独立,都服从正态分布N (µ , σ 2),有E (X i − X j ) = E (X i ) − E (X j ) = µ − µ = 0,Var(X i − X j ) = Var(X i ) + Var(X j ) = σ 2 + σ 2 = 2σ 2,则X i − X j ~ N (0, 2σ 2),σσπ22π2|][|=⋅=−j i X X E , 当i = j 时,X i − X j = 0,E [| X i − X j |] = 0,可得σσπ2π2)()1(1|][|)1(1)()(2221122222C n n n n C X X E n n C Y E C Y C E n i nj j i =−⋅−⋅=−−⋅==∑∑==, 故当2π2=C 时,E [C 2Y 2] = σ,C 2Y 2是σ 的无偏估计. 习题6.21. 从一批电子元件中抽取8个进行寿命测试,得到如下数据(单位:h ):1050,1100,1130,1040,1250,1300,1200,1080,试对这批元件的平均寿命以及寿命分布的标准差给出矩估计.解:平均寿命µ 的矩估计75.1143ˆ==x µ;标准差σ 的矩估计8523.89*ˆ==s µ. 2. 设总体X ~ U (0, θ ),现从该总体中抽取容量为10的样本,样本值为:0.5,1.3,0.6,1.7,2.2,1.2,0.8,1.5,2.0,1.6,试对参数θ 给出矩估计.解:因X ~ U (0, θ ),有2)(θ=X E ,即θ = 2 E (X ),故θ 的矩估计68.234.122ˆ=×==x θ. 3. 设总体分布列如下,X 1, …, X n 是样本,试求未知参数的矩估计.(1)Nk X P 1}{==,k = 0, 1, 2, …, N − 1,N (正整数)是未知参数;(2)P {X = k } = (k − 1)θ 2 (1 − θ )k − 2,k = 2, 3, …,0 < θ < 1.解:(1)因21)]1(10[1)(−=−+++=N N N X E L ,即N = 2 E (X ) + 1,故N 的矩估计12ˆ+=X N ; (2)因⎥⎦⎤⎢⎣⎡−=−=−−⋅=∑∑∑+∞=+∞=+∞=−22222222222)1()1()1()1()(k k k k k k d d d d k k X E θθθθθθθθ θθθθθθθθθθθ2221)1(1)1(322222222=⋅=⎟⎠⎞⎜⎝⎛+−=⎥⎦⎤⎢⎣⎡−−−=d d d d , 则)(2X E =θ, 故θ 的矩估计X2ˆ=θ. 4. 设总体密度函数如下,X 1, …, X n 是样本,试求未知参数的矩估计.(1))(2);(2x x p −=θθθ,0 < x < θ ,θ > 0; (2)p (x ;θ ) = (θ + 1) x θ,0 < x < 1,θ > 0;(3)1);(−=θθθx x p ,0 < x < 1,θ > 0; (4)θµθµθ−−=x x p e1),;(,x > µ ,θ > 0.解:(1)因3322)(2)(032202θθθθθθθ=⎟⎟⎠⎞⎜⎜⎝⎛−⋅=−⋅=∫x x dx x x X E ,即θ = 3 E (X ),故θ 的矩估计X 3ˆ=θ; (2)因212)1()1()(10210++=+⋅+=+⋅=+∫θθθθθθθx dx x x X E ,即)(11)(2X E X E −−=θ, 故θ 的矩估计XX −−=112ˆθ; (3)因11)(101101+=+⋅=⋅=+−∫θθθθθθθxdx x x X E ,即2)(1)(⎥⎦⎤⎢⎣⎡−=X E X E θ, 故θ 的矩估计21ˆ⎟⎟⎠⎞⎜⎜⎝⎛−=XX θ; (4)因θµθµθµθµµθµµθµµθµµθµ+=−=+−=−⋅=⋅=+∞−−∞+−−+∞−−∞+−−∞+−−∫∫∫x x x x x dx x d x dx x X E eeee)1(e1)(,)(2e2ee)1(e1)(22222X E dx x x d x dx x X E x x x x θµθµθµµθµµθµµθµ+=+−=−⋅=⋅=∫∫∫∞+−−+∞−−∞+−−∞+−−= µ 2 + 2µθ + 2θ 2,则Var (X ) = E (X 2 ) − [E (X )]2 = θ 2,即)Var(X =θ,)Var()(X X E −=µ,故θ 的矩估计*ˆS =θ,*ˆS X −=µ. 5. 设总体为N (µ , 1),现对该总体观测n 次,发现有k 次观测值为正,使用频率替换方法求µ 的估计.解:因p = P {X > 0} = P {X − µ > −µ} = 1 − Φ (−µ) = Φ (µ),即µ = Φ −1 ( p ),故µ 的矩估计⎟⎠⎞⎜⎝⎛Φ=Φ=−−n k p 11)ˆ(ˆµ.6. 甲、乙两个校对员彼此独立对同一本书的样稿进行校对,校完后,甲发现a 个错字,乙发现b 个错字,其中共同发现的错字有c 个,试用矩法给出如下两个未知参数的估计: (1)该书样稿的总错字个数; (2)未被发现的错字数. 解:(1)设N 为该书样稿总错别字个数,且A 、B 分别表示甲、乙发现错别字,有A 与B 相互独立,则P (AB ) = P (A ) P (B ),使用频率替换方法,即N b N a p p N c p B A AB ⋅===ˆˆˆ,得cabN =, 故总错字个数N 的矩估计cab N=ˆ; (2)设k 为未被发现的错字数,因)()()(1)(1)(AB P B P A P B A P B A P +−−=−=U ,使用频率替换方法,即N cN b N a p p pN k pAB B A B A +−−=+−−==1ˆˆˆ1ˆ,即k = N − a − b + c , 故未被发现的错字数k 的矩估计c b a cab c b a N k+−−=+−−=ˆˆ. 7. 设总体X 服从二项分布b (m , p ),其中m , p 为未知参数,X 1, …, X n 为X 的一个样本,求m 与p 的矩估计.解:因E (X ) = mp ,Var (X ) = mp (1 − p ),有)()Var(1X E X p =−,则)()Var(1X E X p −=,)Var()()]([)(2X X E X E p X E m −==, 故m 的矩估计22*ˆS X X m −=,p 的矩估计XS p 2*1ˆ−=.习题6.31. 设总体概率函数如下,X 1, …, X n 是样本,试求未知参数的最大似然估计.(1)1);(−=θθθxx p ,0 < x < 1,θ > 0;(2)p (x ;θ ) = θ c θ x − (θ + 1) ,x > c ,c > 0已知,θ > 1. 解:(1)因1,,,01212110121)()(<<−=<<−Ι=Ι=∏n i x x x n nni x ix x x x L L L θθθθθ,当0 < x 1, x 2, …, x n < 1时,)ln()1(ln 2)(ln 21n x x x nL L −+=θθθ, 令0)ln(212)(ln 21=+=n x x x n d L d L θθθθ,得)ln(21n x x x n L −=θ,即221)ln(⎥⎦⎤⎢⎣⎡=n x x x nL θ,故θ 的最大似然估计221)ln(ˆ⎦⎤⎢⎣⎡=n X X X n L θ;(2)因c x x x n n n ni c x i n i x x x c x c L >+−=>+−Ι=Ι=∏,,,)1(211)1(21)()(L L θθθθθθθ,当x 1, x 2, …, x n > c 时,ln L (θ ) = n ln θ + n θ ln c − (θ + 1) ln (x 1 x 2 …x n ), 令0)ln(ln )(ln 21=−+=n x x x c n n d L d L θθθ,得c n x x x nn ln )ln(21−=L θ, 故θ 的最大似然估计cn X X X nn ln )ln(ˆ21−=L θ.2. 设总体概率函数如下,X 1, …, X n 是样本,试求未知参数的最大似然估计.(1)p (x ;θ ) = c θ c x − (c + 1) ,x > θ ,θ > 0,c > 0已知;(2)θµθµθ−−=x x p e1),;(,x > µ ,θ > 0;(3)p (x ;θ ) = (k θ )−1,θ < x < (k + 1)θ ,θ > 0.解:(1)因θθθθθ>+−=>+−Ι=Ι=∏n i x x x c n nc n ni x c i c x x x c x c L ,,,)1(211)1(21)()(L L ,显然θ 越大,nc θ越大,但只有x 1 , x 2 , …, x n > θ 时,才有L (θ ) > 0,即θ = min {x 1, x 2, …, x n } 时,L (θ ) 达到最大,故θ 的最大似然估计},,,min{ˆ21)1(nX X X X L ==θ;(2)因µµθµθµθθµθ>⎟⎟⎠⎞⎜⎜⎝⎛−−=>−−Ι∑=Ι==∏n n i i i i x x x n x nni x x L ,,,11211e1e1),(L ,当x 1, x 2, …, x n > µ 时,⎟⎟⎠⎞⎜⎜⎝⎛−−−=∑=µθθµθn x n L ni i 11ln ),(ln , 令01),(ln 12=⎟⎟⎠⎞⎜⎜⎝⎛−+−=∑=µθθθµθn x n d L d ni i ,解得µµθ−=⎟⎟⎠⎞⎜⎜⎝⎛−=∑=x n x n n i i11, 且显然µ越大,⎟⎟⎠⎞⎝⎛−−∑=µθn x n i i 11e 越大,但只有x 1 , x 2 , …, x n > µ 时,才有L (θ, µ) > 0,即µ = min {x 1, x 2, …, x n } 时,L (θ, µ) 才能达到最大,故µ 的最大似然估计},,,min{ˆ21)1(n X X X X L ==µ,θ 的最大似然估计)1(ˆˆX X X −=−=µθ; (3)因θθθθθθθ)1(,,,1)1(121)()()(+<<−=+<<−Ι=Ι=∏k x x x n ni k x n i k k L L ,显然θ 越小,(k θ )−n 越大,但只有θ < x 1 , x 2 , …, x n < (k + 1)θ 时,才有L (θ ) > 0,即},,,max{1121n x x x k L +=θ时,L (θ ) 达到最大, 故θ 的最大似然估计为},,,max{111ˆ21)(nn X X X k k X L +=+=θ. 3. 设总体概率函数如下,X 1, …, X n 是样本,试求未知参数的最大似然估计.(1)θθθ||e 21);(x x p −=,θ > 0;(2)p(x ;θ ) = 1,θ − 1/2 < x < θ + 1/2;(3)12211),;(θθθθ−=x p ,θ1 < x < θ2.解:(1)因∑===−=−∏ni i i x n n ni x L 1||11||e21e 21)(θθθθθ,有∑=−−−=n i i x n n L 1||1ln 2ln )(ln θθθ, 令∑=+⋅−=ni i x n d L d 12||11)(ln θθθθ,得∑==ni i x n 1||1θ, 故θ的最大似然估计∑==ni i X n 1||1ˆθ; (2)因2/1,,,2/112/12/121)(+<<−=+<<−Ι=Ι=∏θθθθθn i x x x ni x L L ,即θ − 1/2 < x (1) ≤ x (n ) < θ + 1/2,可得当x (n ) − 1/2 < θ < x (1) + 1/2时,都有L (θ ) = 1,故θ 的最大似然估计ˆθ是 (x (n ) − 1/2, x (1) + 1/2) 中任何一个值; (3)因221121,,,1211221)(11),(θθθθθθθθθθ<<=<<Ι−=Ι−=∏n i x x x n ni x L L ,显然θ 1越大且θ 2越小时,L (θ1, θ 2) 越大,但只有θ1 < x 1 , x 2 , …, x n < θ 2 时,才有L (θ1, θ 2) > 0, 即θ 1 = min {x 1, x 2, …, x n }且θ 2 = max {x 1, x 2, …, x n }时,L (θ1, θ 2)达到最大,故θ 1的最大似然估计},,,min{ˆ21)1(1nX X X X L ==θ, θ 2的最大似然估计},,,max{ˆ21)(2nn X X X X L ==θ. 4. 一地质学家为研究密歇根湖的湖滩地区的岩石成分,随机地自该地区取100个样品,每个样品有10块石子,记录了每个样品中属石灰石的石子数.假设这100次观察相互独立,求这地区石子中石灰石的比例p 的最大似然估计.该地质学家所得的数据如下: 样本中的石子数 0 1 2 3 4 5 6 7 8 9 10样品个数0 1 6 7 23 26 21 12 3 1 0解:总体X 为样品的10块石子中属石灰石的石子数,即X 服从二项分布B (10, p ),其概率函数为xx p p x x p −−⎟⎟⎠⎞⎜⎜⎝⎛=10)1(10)(,x = 1, 2, …, 10,因∑−∑⋅⎟⎟⎠⎞⎜⎜⎝⎛=−⎟⎟⎠⎞⎜⎜⎝⎛===−==−∏∏1001100110001001110)1(10)1(10)(i ii iii x x i i ni x x i p p x p p x p L ,即)1ln(1000ln 10ln )(ln 100110011001p x p x x p L i i i i i i −⋅⎟⎟⎠⎞⎜⎜⎝⎛−+⋅+⎟⎟⎠⎞⎜⎜⎝⎛=∑∑∑===, 令01110001)(ln 10011001=−⋅⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=∑∑==p x p x dp p L d i i i i ,得∑==100110001i i x p ,即∑==100110001ˆi i X p 由于49909137261101001=+×+×+×+×+=∑=i i x ,故比例p 的最大似然估计499.049910001ˆ=×=p. 5. 在遗传学研究中经常要从截尾二项分布中抽样,其总体概率函数为m k p p p k m p k X P mk m k ,,2,1,)1(1)1(};{L =−−−⎟⎟⎠⎞⎜⎜⎝⎛==−. 若已知m = 2,X 1, …, X n 是样本,试求p 的最大似然估计.解:当m = 2时,X 只能取值1或2,且p p p p p X P −−=−−−==222)1(1)1(2}1{2,ppp p X P −=−−==2)1(1}2{22, 即pp p p p p p p x X P x x x x−−=⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛−−==−−−−2)22(2222};{1212,x = 1, 2,因nnx x n ni x x p p p p p p p L ni i ni i i i )2()22(2)22()(112112−∑∑−=−−=−−=−−==∏, 即)2ln(ln )22ln(2)(ln 11p n p n x p x n p L n i i ni i −−⋅⎟⎟⎠⎞⎜⎜⎝⎛−+−⋅⎟⎟⎠⎞⎜⎜⎝⎛−=∑∑==,令02112222)(ln 11=−−⋅−⋅⎟⎟⎠⎞⎜⎜⎝⎛−+−−⋅⎟⎟⎠⎞⎜⎜⎝⎛−=∑∑==p n p n x p x n dp p L d n i i ni i ,得x x n p n i i22221−=−=∑=, 故p 的最大似然估计Xp22ˆ−=. 6. 已知在文学家萧伯纳的“An Intelligent Woman’s Guide to Socialism ”一书中,一个句子的单词数X 近似地服从对数正态分布,即Z = ln X ~ N (µ , σ 2 ).今从该书中随机地取20个句子,这些句子中的单词数分别为52, 24, 15, 67, 15, 22, 63, 26, 16, 32, 7, 33, 28, 14, 7, 29, 10, 6, 59, 30,求该书中一个句子单词数均值22e )(σµ+=X E 的最大似然估计.解:因Z = ln X ~ N (µ , σ 2 ),则µ的最大似然估计09.3)30ln 24ln 52(ln 201ln 11ˆ11=+++====∑∑==L n i in i i x n z n z µ, σ 2的最大似然估计51.0])09.330(ln )09.324(ln )09.352[(ln 201)(12221222=−++−+−=−==∑=∗∧L n i i zz z n sσ, 故由最大似然估计的不变性知22e)(σµ+=X E 的最大似然估计31.28e e )(251.009.322*===++∧zs z X E .7. 总体X ~ U (θ , 2θ ),其中θ > 0是未知参数,又X 1, …, X n 为取自该总体的样本,X 为样本均值.(1)证明X 32ˆ=θ是参数θ 的无偏估计和相合估计; (2)求θ的最大似然估计,它是无偏估计吗?是相合估计吗?解:(1)因X ~ U(θ , 2θ ),有θθθ2322)(=+=X E ,2212112)2()Var(θθθ=−=X , 故θθ=⋅===2332)(32)(32)ˆ(X E X E E ,即X 32ˆ=θ是参数θ 的无偏估计; 因n n X n X 2712194)Var(94)Var(94)ˆVar(22θθθ=⋅===,有θθ=→∞)ˆ(lim E n ,0)ˆVar(lim =∞→θn , 故X 32ˆ=θ是参数θ 的相合估计; (2)因θθθθθθθ2,,,122111)(<<=<<Ι=Ι=∏n i x x x nni x L L ,显然θ 越小,nθ1越大,但只有θ < x 1 , x 2 , …, x n < 2θ 时,才有L (θ ) > 0,即},,,max{2121n x x x L =θ时,L (θ ) 达到最大, 故θ 的最大似然估计为},,,max{2121*ˆ21)(nn X X X X L ==θ;因X 的密度函数为⎪⎩⎪⎨⎧<<=.,0;2,1)(其他θθθx x p ,分布函数为⎪⎩⎪⎨⎧≥<≤−<=.2,1;2,;,0)(θθθθθθx x x x x F则X (n ) 的密度函数⎪⎩⎪⎨⎧<<−==−−.,0;2,)()()]([)(11其他θθθθx x n x p x F n x p nn n n因θθθθθθθθθθθ11)()()()(2121)(+=+−⋅=−⋅−=−+−∫n nn x n dx x n x X E n n nn n ,有θ112)()(++=n n X E n , 且2222122)(22)()()(])[(θθθθθθθθθθθ+=+−⋅=−⋅−=−+−∫n nn x n dx x n x X E n n nn n , 则2222)()()2()1(12)Var()Var(θθθθ++=⎟⎠⎞⎜⎝⎛+−+=−=n n n n n n n X X n n , 因θθθ≠++==)1(212)(21*)ˆ()(n n X E E n ,22)()2()1(4)Var(41*)ˆVar(θθ++==n n n X n , 故)(21*ˆn X =θ不是参数θ 的无偏估计,应该修偏为)(121ˆn X n n ++=θ才是θ 的无偏估计, 因θθθ=++=→∞→∞)1(212lim *)ˆ(lim n n E n n ,0)2()1(4lim *)ˆVar(lim 22=++=∞→∞→θθn n n n n , 故θ 的最大似然估计)(21*ˆn X =θ是参数θ 的相合估计. 8. 设X 1, …, X n 是来自密度函数为p (x ;θ ) = e − (x − θ), x >θ 的样本.(1)求θ 的最大似然估计1ˆθ,它是否是相合估计?是否是无偏估计? (2)求θ 的矩估计2ˆθ,它是否是相合估计?是否是无偏估计? 解:(1)似然函数θθθθθ>+−=>−−Ι∑=Ι==∏n ni i i i x x x n x ni x x L ,,,1)(211ee)(L ,显然θ 越大,θn x ni i +−∑=1e 越大,但只有x 1 , x 2 , …, x n > θ 时,才有L (θ ) > 0, 即θ = min {x 1, x 2, …, x n } 时,L (θ ) 达到最大,故θ 的最大似然估计},,,min{ˆ21)1(1nX X X X L ==θ; 因X 的密度函数与分布函数分别为⎩⎨⎧≤>=−−.,0;,e )()(θθθx x x p x ⎩⎨⎧≤>−=−−.,0;,e 1)()(θθθx x x F x 则X (1) 的密度函数为⎩⎨⎧≤>=−=−−−.,0;,e )()](1[)()(11θθθx x n x p x F n x p x n n 可得X (1) − θ 服从指数分布Exp (n ),因n X E 1)()1(=−θ,2)1(1)Var(nX =−θ, 则θθθ≠+==nX E E 1)()ˆ()1(1,2)1()1(11)Var()Var()ˆVar(n X X =−==θθ, 故)1(1ˆX =θ不是θ 的无偏估计; 因θθθ=⎟⎠⎞⎜⎝⎛+=→∞→∞n E n n 1lim )ˆ(lim 1,01lim )ˆVar(lim 21==→∞→∞n n n θ, 故)1(1ˆX =θ是θ 的相合估计; (2)因总体X 的密度函数为p (x ;θ ) = e − (x − θ), x >θ ,有X − θ 服从指数分布Exp (1),则E (X − θ ) = E (X ) − θ = 1,即θ = E (X ) − 1,故θ 的矩估计1ˆ2−=X θ; 因E (X ) = θ + 1,Var(X ) = Var(X − θ) = θ 2,则θθ=−=−=1)(1)()ˆ(2X E X E E ,nX n X 22)Var(1)Var()ˆVar(θθ===, 故1ˆ2−=X θ是θ 的无偏估计; 因θθ=∞→)ˆ(lim 2E n ,0lim )ˆVar(lim 22==→∞→∞n n n θθ, 故1ˆ2−=X θ是θ 的相合估计. 9. 设总体X ~ Exp (1/θ ),X 1, …, X n 是样本,θ 的矩估计和最大似然估计都是X ,它也是θ 的相合估计和无偏估计,试证明在均方误差准则下存在优于X 的估计(提示:考虑X a a=θˆ,找均方误差最小者). 证:因X ~ Exp (1/θ ),有E (X ) = θ ,Var(X ) = θ 2,且X 的密度函数为⎪⎩⎪⎨⎧≤>=−.0,0;0,e 1)(x x x p xθθ故θ = E (X ),即θ 的矩估计为X =θˆ; 因似然函数0,,,110211e1e1)(>−=>−Ι∑=Ι==∏n ni ii ix x x x nni x x L L θθθθθ, 当x 1, x 2, …, x n > 0时,∑=−−=ni i x n L 11ln )(ln θθθ, 令01)(ln 12=+−=∑=ni i x n d L d θθθθ,得x x n ni i ==∑=11θ, 故θ 的最大似然估计也为X =θˆ; 因θ==)((X E X E ,nX n X 2)Var(1)Var(θ==,故X 是θ 的无偏估计;因θ=→∞)(lim X E n ,0lim)Var(lim 2==∞→∞→nX n n θ,故X 是θ 的相合估计;设X a a =θˆ,有θθa X aE E a ==)()ˆ(,na X a a 222)Var()ˆVar(θθ==, 则nnX E X X 2222)(])([)Var()MSE(θθθθθ=−+=−+=,222222212)(])ˆ([)ˆVar()ˆMSE(θθθθθθθθ⎟⎟⎠⎞⎜⎜⎝⎛+−+=−+=−+=a a n a a n a E a a a 2222111111121θθ⎥⎥⎦⎤⎢⎢⎣⎡++⎟⎠⎞⎜⎝⎛+−+=⎟⎠⎞⎜⎝⎛++++−+=n n n a n n n n n a a n n ,故当1+=n n a 时,X n n a 1ˆ+=θ的均方误差1)ˆMSE(2+=n a θθ小于X 的均方误差nX 2)MSE(θ=.10.为了估计湖中有多少条鱼,从中捞出1000条,标上记号后放回湖中,然后再捞出150条鱼,发现其中有10条鱼有记号.问湖中有多少条鱼,才能使150条鱼中出现10条带记号的鱼的概率最大?解:设湖中有N 条鱼,有湖中每条鱼带记号的概率为Np 1000=,看作总体X 服从两点分布b (1, p ),从中抽取容量为150的样本X 1, X 2, …, X 150,有101501=∑=i i x ,似然函数∑−∑=−===−=−∏ni ini iiix n x ni x x p pp p p L 11)1()1()(11,有)1ln(ln )(ln 11p x n p x p L ni i ni i −⋅⎟⎟⎠⎞⎜⎜⎝⎛−+⋅=∑∑==, 令0111)(ln 11=−−⋅⎟⎟⎠⎞⎜⎜⎝⎛−+⋅=∑∑==p x n p x dp p L d ni i n i i ,得x x n p ni i ==∑=11,即p 的最大似然估计为X p =ˆ, 因pN 1000=,由最大似然估计的不变性知X N1000ˆ=, 故湖中有150001015011000ˆ=×=N条鱼时,才能使150条鱼中出现10条带记号的鱼的概率最大. 11.证明:对正态分布N (µ , σ 2 ),若只有一个观测值,则µ , σ 2的最大似然估计不存在. 证:若只有一个观测值,似然函数222)(2eπ21),(σµσσµ−−=x L ,对于任一固定的σ,当µ = x 时,L (µ)取得最大值σπ21, 但显然σ 越小,σπ21越大,且σ 可任意接近于0,即σπ21不存在最大值,故µ , σ 2的最大似然估计不存在.习题6.41. 设总体概率函数是p (x ;θ ),X 1, …, X n 是其样本,T = T (X 1, …, X n )是θ 的充分统计量,则对g (θ )的任一估计gˆ,令)|ˆ(~T g E g =,证明:)ˆMSE()~MSE(g g ≤.这说明,在均方误差准则下,人们只需要考虑基于充分估计量的估计.解:因)|ˆ(~T g E g=,由Rao-Blackwell 定理知)ˆ()~(g E g E =,)ˆVar()~Var(g g ≤, 故)ˆMSE()]()ˆ([)ˆVar()]()~([)~Var()~MSE(22g g g E g g g E g g=−+≤−+=θθ. 2. 设T 1 , T 2分别是θ 1 , θ 2的UMVUE ,证明:对任意的(非零)常数a , b ,aT 1 + bT 2 是a θ 1 + b θ 2的UMVUE .证:因T 1 , T 2分别是θ 1 , θ 2的UMVUE ,有E (T 1) = θ 1 ,E (T 2) = θ 2 ,且对任意的满足E (ϕ) = 0的ϕ 都有Cov (T 1 , ϕ) = Cov (T 2 , ϕ) = 0, 则E (aT 1 + bT 2) = a E (T 1) + b E (T 2) = a θ 1 + b θ 2 ,且Cov (aT 1 + bT 2 , ϕ) = a Cov (T 1 , ϕ) + b Cov (T 2 , ϕ) = 0, 故aT 1 + bT 2是a θ 1 + b θ 2的UMVUE .3. 设T 是g (θ ) 的UMVUE ,gˆ是g (θ ) 的无偏估计,证明,若+∞<)ˆ(Var g ,则0)ˆ,Cov(≥g T . 证:因gˆ和T 都是g (θ ) 的无偏估计,有)()()ˆ(θg T E g E ==,即0)ˆ(=−T g E , 又因T 是g (θ ) 的UMVUE ,有0)ˆ,(Cov =−T g T ,即0),Cov()ˆ,Cov(=−T T g T , 故0),Cov()ˆ,Cov(≥=T T gT . 4. 设总体X ~ N (µ , σ 2),X 1 , …, X n 为样本,证明,∑==n i i X n X 11,∑=−−=n i i X X n S 122)(11分别为µ , σ 2的UMVUE .证:因X ~ N (µ , σ 2 ),有X 是µ 的无偏估计,S 2是σ 2的无偏估计,且样本X 1 , …, X n 的联合密度函数为===−−=−−∏ni i ix nni x n x x p 12222)(2112)(21e )π2(1e π21),;,,(µσσµσσσµL ,对任意的满足E (ϕ) = 0的ϕ (x 1 , …, x n ),有0e)π2(1)(1)(21122=∑⋅=∫∫∞+∞−∞+∞−−−=n x ndx dx E ni i L L µσϕσϕ,对E (ϕ) = 0两端关于µ 求偏导数,得∫∫∑∞+∞−∞+∞−−−=⋅−⋅==∂∂=n x ni i ndx dx x E ni i L L 1)(2112122e )(1)π2(10)(µσµσϕσµϕ∫∫∞+∞−∞+∞−−−∑⋅−⋅==n x n dx dx n x n ni i L L 1)(212122e)(1)π2(1µσµσϕσ)()]()([])[(222ϕσϕµϕσϕµσX E nE X E nX E n=−=−=,则0)(=ϕX E ,0)(()(),Cov(=⋅−=ϕϕϕE X E X E X ,故∑==ni i X n X 11是µ 的UMVUE ;对0)(=ϕX E 两端再关于µ 求偏导数,得∫∫∑∞+∞−∞+∞−−−=∑⋅−⋅==∂∂=n x n i i ndx dx x x X E ni i L L 1)(2112122e )(1)π2(10)(µσµσϕσµϕ∫∫∞+∞−∞+∞−−−∑⋅−⋅==n x n dx dx n x n x ni i L L 1)(212122e)(1)π2(1µσµσϕσ )()]()([])[(22ϕσϕµϕσϕµσX E nX E X E nX X E n=−=−=,则0)(2=ϕX E ,对0)()π2(=ϕσE n 两端关于σ 2求偏导数,得∫∫∑∞+∞−∞+∞−−−=∑⋅−⋅==∂∂=n x ni indx dx xE ni i L L 1)(211242122e)(210)]()π2[(µσµσϕσϕσ∫∫∑∞+∞−∞+∞−−−=∑⋅⎟⎟⎠⎞⎜⎜⎝⎛+−⋅==n x n i i dx dx n x n x ni i L L 1)(212124122e 221µσµµσϕ⎥⎦⎤⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛+−=∑=ϕµµσσ21222)π2(n X n X E n i i n ⎟⎟⎠⎞⎜⎜⎝⎛=⎥⎦⎤⎢⎣⎡+−⎟⎟⎠⎞⎜⎜⎝⎛=∑∑==n i i n n i i n X E E n X E n X E 122122)π2()()(22)π2(ϕσσϕµϕµϕσσ, 则012=⎟⎟⎠⎞⎜⎜⎝⎛∑=n i i X E ϕ,因⎟⎟⎠⎞⎜⎜⎝⎛−−=−−=∑∑==21212211)(11X n X n X X n S n i i n i i ,有0)(11)(2122=⎥⎦⎤⎢⎣⎡−⎟⎟⎠⎞⎜⎜⎝⎛−=∑=ϕϕϕX nE X E n S E n i i , 则Cov (S 2, ϕ ) = E (S 2ϕ ) − E (S 2) ⋅ E (ϕ) = 0,故∑=−−=ni i X X n S 122)(11是σ 2的UMVUE . 5. 设总体的概率函数为p(x ;θ ),满足定义6.4.2的条件,若二阶导数);(22θθx p ∂∂对一切的θ ∈ Θ 存在,证明费希尔信息量⎟⎟⎠⎞⎜⎜⎝⎛∂∂−=);(ln )(22θθθX p E I . 证:因θθ∂∂⋅=∂∂p p p 1ln ,2222222221ln 111ln θθθθθθθ∂∂⋅+⎟⎠⎞⎜⎝⎛∂∂−=∂∂⋅+⎟⎠⎞⎜⎝⎛∂∂⋅−=⎟⎟⎠⎞⎜⎜⎝⎛∂∂⋅∂∂=∂∂p p p p p p p p p p , 故∫∫∞+∞−∞+∞−∂∂+−=⋅∂∂⋅+−=⎟⎟⎠⎞⎜⎜⎝⎛∂∂⋅+⎟⎠⎞⎜⎝⎛∂∂−=⎟⎟⎠⎞⎜⎜⎝⎛∂∂dx p I pdx p p I p p E p E p E 222222222)(1)(1ln ln θθθθθθθ)()()(22θθθI dx x p I −=⎟⎠⎞⎜⎝⎛∂∂+−=∫∞+∞−.6. 设总体密度函数为p (x ;θ ) = θ x θ − 1, 0 < x < 1, θ > 0,X 1 , …, X n 是样本.(1)求g (θ ) = 1/θ 的最大似然估计; (2)求g (θ )的有效估计.解:(1)似然函数1,,,0121110121)()(<<−=<<−Ι=Ι=∏n i x x x n n ni x i x x x x L L L θθθθθ,当0 < x 1, x 2, …, x n < 1时,ln L (θ ) = n ln θ + (θ − 1) ln (x 1x 2…x n ),令0)ln()(ln 21=+=n x x x n d L d L θθθ,得∑=−=−=ni i n x n x x x n 121ln )ln(L θ,即∑=−=ni iX n 1ln ˆθ, 故g(θ ) = 1/θ 的最大似然估计为∑=−==ni iX n g 1ln 1ˆ/1ˆθ; (2)因θθθθθθθθ1101ln )(ln ln )(ln 10101010101−=−=⋅−=⋅=⋅=∫∫∫−x dx x x x x x d x dx x x X E ,21102102101222)(ln 2ln 2)(ln )()(ln )(ln )(ln θθθθθθθ=−=⋅−==⋅=∫∫∫−X E dx x x x x x x d x dx x x X E , 则22222112)](ln [)(ln )Var(ln θθθ=⎟⎠⎞⎜⎝⎛−−=−=X E X E X ,可得)(111)(ln 1)ˆ(1θθθg n n X E n gE n i i ==⎟⎠⎞⎜⎝⎛−⋅⋅−=−=∑=,即∑=−=n i i X n g 1ln 1ˆ是g (θ )的无偏估计, 且22212111)Var(ln 1)ˆ(Var θθn nn X ngni i =⋅⋅==∑=, 因p (x ; θ ) = θ x θ − 1 I 0 < x < 1,当0 < x < 1时,ln p (x ; θ ) = ln θ + (θ − 1) ln x ,则x x p ln 1);(ln +=∂∂θθθ,2221);(ln θθθ−=∂∂x p ,即2221);(ln )(θθθθ=⎥⎦⎤⎢⎣⎡∂∂−=X p E I ,可得g (θ ) = 1/θ 无偏估计方差的C-R 下界为)ˆ(Var 111)()]([22222g n n nI g ==⋅⎟⎠⎞⎜⎝⎛−=′θθθθθ, 故∑=−=ni i X n g1ln 1ˆ是g (θ ) = 1/θ 的有效估计. 7. 设总体密度函数为2e 2);(3x xx p θθθ−=, x > 0, θ > 0,求θ 的费希尔信息量I (θ ).解:因032e 2);(>−Ι=x x xx p θθθ,当x > 0时,2ln 3ln 2ln );(ln x x x p θθθ−−+=,。

《大学数学概率论及试验统计》第六章_课后答案(余家林主编)

《大学数学概率论及试验统计》第六章_课后答案(余家林主编)

1 1 1 1 E(X1 )+ E(X2 )= μ+ μ=μ; 2 2 2 2 1 1 1 1 1 D(X1 )+ D(X2 )= + = , 4 4 4 4 2
da
1
后 答
ˆ Eμ 1=E( X1 + X2 )=
1 3
2 3
1 2 1 2 E(X1 )+ E(X2 )= μ+ μ=μ; 3 3 3 3
使 c1 θ$
仍是θ的无偏估计量并在这一类无偏估计量中是有效估计量。
ˆ,θ ˆ是 θ 的两个互不相关的无偏估计量, 解:因为 θ 1 2 ˆ = Eθ ˆ = Eθ ,且 E c θ ˆ ˆ ˆ ˆ 所以 Eθ 1 2 1 1 + c 2θ 2 = c1 Eθ 1 + c 2 Eθ 2 = (c1 + c2 )Eθ =量, D( θ$

ˆ Dμ 1=D( X1 + X2 )=
1 3
2 3
1 4 1 4 5 D(X1 )+ D(X2 )= + = ; 9 9 9 9 9
1 3 1 3 E(X1 )+ E(X2 )= μ+ μ=μ; 4 4 4 4
1 9 1 9 5 D(X1 )+ D(X2 )= + = 16 16 16 16 8
∑ xi
i =1 n
ˆ= max{X , X ,L , X }。 所以 θ 的极大估计量为∴θ 1 2 n
λ
n ˆ= n / X = 1 。 ,∴λ的极大似然估计量 x λ ∑ i ∑ i X i =1 i =1
ww
∫ x(1 + α )x
α
dx = ∫ (1 + α )x

概率论与数理统计第六章课后习题及参考答案

概率论与数理统计第六章课后习题及参考答案

概率论与数理统计第六章课后习题及参考答案1.已知总体X ~),(2σμN ,其中2σ已知,而μ未知,设1X ,2X ,3X 是取自总体X 的样本.试问下面哪些是统计量?(1)321X X X ++;(2)μ31-X ;(3)222σ+X ;(4)21σμ++X ;(5)},,max{321X X X ;(6)σ221++X X ;(7)∑=3122i i X σ;(8)2μ-X .解:(1)(3)(4)(5)(6)(7)是,(2)(8)不是.2.求下列各组样本值的平均值和样本差.(1)18,20,19,22,20,21,19,19,20,21;(2)54,67,68,78,70,66,67,70.解:(1)9.19)21201919212022192018(101101101=+++++++++==∑=i i x x ;43.1)(9110122=-=∑=i i x x s .(2)5.67)7067667078686754(1018181=+++++++==∑=i i x x ;018.292)(718122=-=∑=i i x x s .3.(1)设总体X ~)1,0(N ,则2X ~)1(2χ.(2)设随机变量F ~),(21n n F ,则F1~),(12n n F .(3)设总体X ~),(2σμN ,则X ~),(2n N σμ,22)1(S n σ-~)1(2-n χ,nS X /μ-~)1(-n t .(4)设总体X ~)10(2χ,Y ~)15(2χ,且X 与Y 相互独立,则=+)(Y X E 25,=+)(Y X D 50.4.设随机变量X 与Y 都服从标准正态分布,则(C )A .Y X +服从正态分布B .22Y X +服从2χ分布C .2X 与2Y 均服从2χ分布D .22YX 服从F 分布5.在总体X ~)3.6,52(2N 中随机抽取一容量为36的样本,求样本平均值X 落在8.50到8.53之间的概率.解:因为X ~)3.6,52(2N ,即52=μ,223.6=σ,因为36=n ,22205.1363.6==n σ,所以X ~)05.1,52(2N .由此可得)8.538.50(≤≤X P 05.1528.50()05.1528.53(-Φ--Φ=8302.0)1429.1()7143.1(=-Φ-Φ=.6.设总体X ~)1,0(N ,1X ,2X ,…,10X 为总体的一个样本,求:(1))99.15(1012>∑=i i X P ;(2)写出1X ,2X ,…,10X 的联合概率密度函数;(3)写出X 的概率密度.解:(1)由题可知∑==1012i i X X ~)10(2χ,查2χ分布表有99.15)10(210.0=χ,可得10.0=α,即10.0)99.15(1012=>∑=i i X P .(2)1X ,2X ,…,10X 相互独立,则联合概率密度函数为}exp{321}21exp{21),,,(1012510121021∑∏==-=-=i i i i x x x x x f ππ .(3)X Y =~)1.0,0(N ,所以有2251.02)0(e 5e1.021)(y y y f -⋅--==ππ.7.设总体X ~)1,0(N ,1X ,2X ,…,5X 为总体的一个样本.确定常数c ,使25242321)(XX X X X c Y +++=~)3(t .解:因为i X ~)1,0(N ,5,,2,1 =i ,所以21X X +~)2,0(N ,)(2121X X +~)1,0(N ,252423X X X ++~)3(2χ,因为25242321252423212632XX X X X X X X X X +++=+++~)3(t ,所以有23=c .8.设1X ,2X ,3X ,4X 是来自正态总体)4,0(N 的样本.已知243221)43()2(X X b X X a Y -+-=为服从自由度为2的2χ分布,求a ,b 的值.解:由题可知i X ~)4,0(N ,4,3,2,1=i ,故有0)2(21=-X X E ,20)2(21=-X X D ,所以212X X -~)20,0(N .同理4343X X -~)100,0(N .而20)2(221X X -~)1(2χ,100)43(221X X -~)1(2χ,故有100)43(20)2(243221X X X X -+-~)2(2χ,比较可知201=a ,1001=b .9.设总体X ~)3.0,(2μN ,1X ,2X ,…,n X 为总体的一个样本,X 是样本均值,问样本容量n 至少应取多大,才能使95.0)1.0(≥<-μX P .解:易知X ~)3.0,(2nN μ,由题意有95.013(2/3.01.0/3.0()1.0(≥-Φ=<-=<-nnnX P X P μμ,即应有975.0)3(≥Φn,查正态分布表知975.0)96.1(=Φ,所以取96.13≥n,即5744.34≥n ,取35=n .10.设总体X ~)16,(μN ,1X ,2X ,…,10X 为总体的一个样本,2S 为样本方差,已知1.0)(2=>αS P ,求α的值.解:由抽样分布定理知22)1(σS n -~)1(2-n χ,因为10=n ,故有2249S ~)9(2χ,得1.0)169169()(22=>=>ααS P S P ,查2χ分布表得684.14)9(21.0=χ,即684.14169=α,解得105.26=α.11.设(1X ,2X ,…,1+n X )为来自总体X ~),(2σμN 的一个样本,记∑==n i i n X n X 11,∑=--=n i in X X n S 122(11,求证:nn n S X X n n T -⋅+=+11~)1(-n t .证:由题可知n X ~),(2nN σμ,n n X X -+1~)11(,0(2σn N +,标准化得σnX X nn 111+-+~)1,0(N .又因为∑=-=-ni inX XS n 1222)(1)1(σσ~)1(2-n χ,从而有nn nnn S XX n n n S n n X X -+=--+-++122111)1(11σσ~)1(-n t ,即nnn S X X n n T -⋅+=+11~)1(-n t .。

概率论与数理统计-第六章

概率论与数理统计-第六章
大街上随机抽取200人,进行调查。记录了
这200人的年龄数据。
总体:北京市民的年龄 随机变量:年龄X
个体:张三28岁;李四5岁;
样本:{ 28;5;14;56;23;2;39;…;69} 样本容量:200
抽样:随机抽取200人进行调查的过程
6
例2:为了确定工厂生产的电池电量分布情况,在
产品中随机抽取500个,测量其电量。记录了
x
0
F n1 , n2
F分布的分位数
x
F分布的上α分位点
对于给定的 , 0 1, 称满足条件
F n1 , n2
f x; n1 , n2 dx 的点F n1 , n2
为F n1 , n2 分布的上 分位数。F n1 , n2 的值可查F 分布表
17
不易计算!
18
抽样分布 —— 任意统计量 Q = g (X1, X2, …, Xn ) 的分布函数 抽样分布的计算: 多维随机变量(独立、同分布)的函数的分布 函数的计算问题。
得到统计量 Q 的抽样分布,就可以用来解决
关于总体 X 的统计推断问题。
19
关于随机变量独立性的两个定理
解:(1)作变换 Yi
显然Y1 , Y2 ,
2 n i 1
Xi
, Yn相互独立,且Yi N 0,1 i 1, 2,
Xi

i 1, 2,
,n
,n
于是 (

) Yi 2 2 n
2 i 1
28
n
(2)
2 ( X X ) X1 X 2 ~ N (0, 2 2 ), 1 2 2 ~ 2 (1) 2

(完整版)概率论第六章答案

(完整版)概率论第六章答案

习题6-11. 若总体(2,9)X N :, 从总体X 中抽出样本X 1, X 2, 问3X 1-2X 2服从什么分布?解 3X 1-2X 2~N(2, 117).2. 设X 1, X 2, …, X n 是取自参数为p 的两点分布的总体X 的样本, 问X 1, X 2, …, X n 的联合分布是什么?解 因为总体X 的分布律为P {X =k }= p k (1-p )1-k , k =0,1,…,所以样本X 1, X 2, …, X n 的联合分布为11221111111{,}(1)(1)(1)(1).n nnniii i x x x x x x n n X n X P X x X x p p p p p p p p ==----==⋅-⋅-⋅⋅-∑∑=⋅-…,=…习题6-21. 选择题(1) 下面关于统计量的说法不正确的是( ).(A) 统计量与总体同分布. (B) 统计量是随机变量. (C) 统计量是样本的函数. (D) 统计量不含未知参数.解 选(A).(2) 已知X 1,X 2,…,X n 是来自总体2(,)X N μσ:的样本, 则下列关系中正确的是( ).(A) ().E X n μ= (B) 2().D X σ=(C)22().E S σ= (D) 22().E B σ=解 选(C).(3) 设随机变量X 与Y 都服从标准正态分布, 则( ).(A) X +Y 服从正态分布.(B) X 2+Y 2服从2χ分布.(C)X 2和Y 2都服从2χ分布. (D)22X Y服从F 分布.解因为随机变量X 与Y 都服从标准正态分布, 但X 与Y 不一定相互独立,所以(A),(B),(D)都不对, 故选(C).2. 设X 1,X 2,…,X n 是来自总体X 的样本, 总体X 的均值μ已知,方差σ2未知. 在样本函数1nii X=∑,1nii Xμσ=-∑,1nii XSμ=-∑, n μ(21X +22X +…+2n X )中, 哪些不是统计量?解1nii Xμσ=-∑不是统计量.3. 设总体X 服从正态分布21(,)N μσ, 总体Y 服从正态分布22(,)N μσ,112,,,n X X X L 和 212,,,n Y Y Y L 分别是来自总体X 和Y 的简单随机样本, 求12221112()()2.n n i j i j X X Y Y E n n ==-+-+-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦∑∑解 因为 122111[()]1ni i E X X n σ=-=-∑, 222121[()]1n j j E Y Y n σ=-=-∑ 习题6-31.填空题 (1) 设总体~(2,25)XN ,12100,,,X X X L 是从该总体中抽取的容量为n 的样本, 则()E X = ; ()D X = ; 统计量~X .解 因为总体~(2,25)X N , 而12100,,,X X X L 是从该总体中抽出的简单随机样本, 由正态分布的性质知, 样本均值也服从正态分布, 又因为1001111(()22100)nii i E E X nX =====∑∑,而1002111125(()251001)1004ni i i D D X nX ======∑∑. 所以1~(2,)4N X .(2) 设总体X 服从正态分布2(,)N μσ,12,,,n X X X L 是来自X 的简单随机样本, 则统计量服从 分布;服从 分布;222=12(1)()nii n SXX σσ--=∑服从 分布;212()nii Xμσ=-∑服从 分布.解 由抽样分布定理知,2~(,)X N nσμ. 再由正态分布的标准化公式,服从标准正态分布.由抽样分布定理知,服从自由度为n -1的t 分布.由抽样分布定理知,22(1)n S σ-服从自由度为n -1的2χ分布.由题设, 2~(,),1,2,,i X N i μσ=L 所以~(0,1),1,2,.i X N i μσ-=L再由2χ分布的定义知, 212()nii Xμσ=-∑服从自由度为n 的2χ分布.(3) 设12,,,n X X X L,1,,n n m X X ++L 是来自正态总体2(0,)N σ的容量为n +m 的样本, 则统计量2121ni i n mi i n m X n X =+=+∑∑服从的分布是 .解 因为2121nii n mii n m Xn X=+=+∑∑=2121nii n mii n XnXm=+=+∑∑, 而2212~()nii Xn χσ=∑,2212~()n mii n Xm χσ+=+∑.由F 分布的定义, 得到2121~(,)ni i n mi i n m X F n m n X =+=+∑∑.2. 选择题(1) 设随机变量21~()(1),X t n n Y X >=, 则下列关系中正确的是( ).(A) 2~()Y n χ. (B) 2~(1)Y n χ-. (C) ~(,1)Y F n . (D) ~(1,)Y F n解 由题设知,X =, 其中2~(0,1),~()U N V n χ, 于是21Y X ==221UV V n n U =,这里22~(1)Uχ, 根据F 分布的定义知21~(,1).Y F n X=故应选(C).(2) 设z α,2αχ(n ),()t n α,12(,)F n n α分别是标准正态分布N (0,1)、2χ(n )分布、t 分布和F 分布的上α分位点, 在下列结论中错误的是( ).(A)1z z αα-=-. (B) 2αχ(n )=1-21αχ-(n ).(C) 1()()t n t n αα-=-. (D) 121211(,)(,)F n n F n n αα-=.解 应选(B).3. 在总体2(52,6.3)N 中随机抽取一个容量为36的样本, 求样本均值X落在50.8到53.8 之间的概率.解 因为2~(,)X N n σμ,所以26.3~(52,)36X N .于是, 标准化随机变量52~(0,1)6.3X N -.因此(50.852)6(52)6(53.852)6{50.853.8}{}6.3 6.36.3X P X P -⨯-⨯-⨯=≤≤剟10.87.2()()0.82936.36.3ΦΦ-=-=.4. 已知1210,,,X X X L 是来自正态总体2(0,)X N σ:的样本, 求概率{<2.82}P X S .解 由定理1知,2229(0,1),(9),XS N χσσ::因此(9)XXt S=:, 所以 { 2.82}{2.82}1{ 2.82}10.010.99.X XP XS P P S S<=<=->=-=。

概率论与数理统计答案第六章

概率论与数理统计答案第六章

第六章 样本及抽样分布1.[一] 在总体N (52,6.32)中随机抽一容量为36的样本,求样本均值X 落在50.8到53.8之间的概率。

解:8293.0)78()712(}63.68.163.65263.62.1{}8.538.50{),363.6,52(~2=-Φ-Φ=<-<-=<<X P X P N X2.[二] 在总体N (12,4)中随机抽一容量为5的样本X 1,X 2,X 3,X 4,X 5. (1)求样本均值与总体平均值之差的绝对值大于1的概率。

(2)求概率P {max (X 1,X 2,X 3,X 4,X 5)>15}. (3)求概率P {min (X 1,X 2,X 3,X 4,X 5)>10}.解:(1)⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-=>-25541225415412}112{|X P X P X P=2628.0)]25(1[2=Φ- (2)P {max (X 1,X 2,X 3,X 4,X 5)>15}=1-P {max (X 1,X 2,X 3,X 4,X 5)≤15} =.2923.0)]21215([1}15{1551=-Φ-=≤-∏=i i X P (3)P {min (X 1,X 2,X 3,X 4,X 5)<10}=1- P {min (X 1,X 2,X 3,X 4,X 5)≥10} =.5785.0)]1([1)]21210(1[1}10{15551=Φ-=-Φ--=≥-∏=i iXP 4.[四] 设X 1,X 2…,X 10为N (0,0.32)的一个样本,求}.44.1{1012>∑=i iXP解:)5(1.0}163.0{}44.1{),10(~3.0101221012221012查表=>=>∑∑∑===i i i i i i X P X P χX7.设X 1,X 2,…,X n 是来自泊松分布π (λ )的一个样本,X ,S 2分别为样本均值和样本方差,求E (X ), D (X ), E (S 2 ).解:由X ~π (λ )知E (X )= λ ,λ=)(X D∴E (X )=E (X )= λ, D (X )=.)()(,)(2λX D S E nλn X D === [六] 设总体X~b (1,p),X 1,X 2,…,X n 是来自X 的样本。

《概率论与数理统计》习题及答案 第六章

《概率论与数理统计》习题及答案  第六章

《概率论与数理统计》习题及答案第 六 章1.某厂生产玻璃板,以每块玻璃上的泡疵点个数为数量指标,已知它服从均值为λ的泊松分布,从产品中抽一个容量为n 的样本12,,,n X X X L ,求样本的分布.解 样本12(,,,)n X X X L 的分量独立且均服从与总体相同的分布,故样本的分布为11221(,,,)()nn n ii i P X k X k X k P Xk ======∏L 1!ikni i e k λλ-==∏112!!!ni i n k n e k k k λλ=-∑=L 0,1,i k =L ,1,2,,,i n =L 2.加工某种零件时,每一件需要的时间服从均值为1/λ的指数分布,今以加工时间为零件的数量指标,任取n 件零件构成一个容量为n 的样本,求样本分布。

解 零件的加工时间为总体X ,则~()X E λ,其概率密度为,0,()0,0.x e x f x x λλ-⎧>=⎨≤⎩于是样本12(,,,)n X X X L 的密度为1121,0(,,,)0,.nii ix nnx i n i e x f x x x e λλλλ=--=⎧∑⎪>==⎨⎪⎩∏K 其它 1,2,,i n =L 3.一批产品中有成品L 个,次品M 个,总计N L M =+个。

今从中取容量为2的样本(非简单样本),求样本分布,并验证:当,/N M N p →∞→时样本分布为(6.1)式中2n =的情况。

解 总体~(01)X -,即(0),(1)L MP X P X N N==== 于是样本12(,)X X 的分布如下 121(0,0)1L L P X X N N -===⋅-,12(0,1)1L M P X X N N ===⋅-12(1,0)1M L P X X N N ===⋅-,121(1,1)1M M P X X N N -===⋅- 若N →∞时M p N →,则1Lp N→-,所以2002012(0,0)(1)(1)P X X p p p +-==→-=-012112(0,1)(1)(1)P X X p p p p +-==→-=-102112(1,0)(1)(1)P X X p p p p +-==→-=-2112212(1,1)(1)P X X p p p +-==→=-以上恰好是(6.1)式中2n =的情况.4.设总体X 的容量为100的样本观察值如下:15 20 15 20 25 25 30 15 30 25 15 30 25 35 30 35 20 35 30 25 20 30 20 25 35 30 25 20 30 25 35 25 15 25 35 25 25 30 35 25 35 20 30 30 15 30 40 30 40 15 25 40 20 25 20 15 20 25 25 40 25 25 40 35 25 30 20 35 20 15 35 25 25 30 25 30 25 30 43 25 43 22 20 23 20 25 15 25 20 25 30433545304530454535作总体X 的直方图解 样本值的最小值为15,最大值为45取14.5a =,45.5b =,为保证每个小区间内都包含若干个观察值,将区间[14.5,45.5]分成8个相等的区间。

第六章 概率与概率分布练习题

第六章 概率与概率分布练习题

第六章 概率与概率分布一、填空1.用古典法求算概率.在应用上有两个缺点:①它只适用于有限样本点的情况;②它假设(机会均等 )。

2.分布函数)(x F 和)(x P 或ϕ)(x 的关系,就像向上累计频数和频率的关系一样。

所不同的是,)(x F 累计的是(概率 )。

3.如果A 和B (互斥 ),总合有P(A/B)=P 〔B/A 〕=0。

4.(大数定律 )和( 中心极限定理 )为抽样推断提供了主要理论依据。

6.抽样设计的主要标准有(最小抽样误差原则 )和(最少经济费用原则 )。

7.在抽样中,遵守(随机原则 )是计算抽样误差的先决条件。

9.若事件A 和事件B 不能同时发生,则称A 和B 是(互斥 )事件。

10.在一副扑克牌中单独抽取一次,抽到一张红桃或爱司的概率是(1/4 );在一副扑克牌中单独抽取一次,抽到一张红桃且爱司的概率是( 1/52 )。

二、单项选择1.随机试验所有可能出现的结果,称为( D )。

A 基本事件; B 样本;C 全部事件;D 样本空间。

2.在次数分布中,频率是指( )A.各组的频率相互之比B.各组的分布次数相互之比C.各组分布次数与频率之比D.各组分布次数与总次数之比 3.若不断重复某次调查,每次向随机抽取的100人提出同一个问题,则每次都能得到一个回答“是”的人数百分数,这若干百分数的分布称为:( D )。

A .总体平均数的次数分布B .样本平均的抽样分布C .总体成数的次数分布D .样本成数的抽样分布 4.以等可能性为基础的概率是(A )。

A 古典概率;B 经验概率;C 试验概率;D 主观概率。

5.古典概率的特点应为( A )。

A 基本事件是有限个,并且是等可能的;B 基本事件是无限个,并且是等可能的;C 基本事件是有限个,但可以是具有不同的可能性;D 基本事件是无限的,但可以是具有不同的可能性。

6.任一随机事件出现的概率为( D )。

A 在–1与1之间;B 小于0;C 不小于1;D 在0与1之间。

概率论与数理统计习题及答案-第6章习题详解

概率论与数理统计习题及答案-第6章习题详解

习题六1.设总体X ~N (60,152),从总体X 中抽取一个容量为100的样本,求样本均值与总体均值之差的绝对值大于3的概率. 【解】μ=60,σ2=152,n =100~(0,1)/X Z N nσ-=即 60~(0,1)15/10X Z N -=(|60|3)(||30/15)1(||2)P X P Z P Z ->=>=-<2[1(2)]2(10.9772)0.0456.=-Φ=-=2.从正态总体N (4.2,52)中抽取容量为n 的样本,若要求其样本均值位于区间(2.2,6.2)内的概率不小于0.95,则样本容量n 至少取多大? 【解】~(0,1)5/X Z N n-=2.2 4.2 6.2 4.2(2.2 6.2)()55P X P n Z n --<<=<<2(0.4)10.95,n =Φ-=则Φ(0.4n )=0.975,故0.4n >1.96,即n >24.01,所以n 至少应取253.设某厂生产的灯泡的使用寿命X ~N (1000,σ2)(单位:小时),随机抽取一容量为9的样本,并测得样本均值及样本方差.但是由于工作上的失误,事后失去了此试验的结果,只记得样本方差为S 2=1002,试求P (X >1062). 【解】μ=1000,n =9,S 2=10021000~(8)100/3/X X t t S n-==10621000(1062)()( 1.86)0.05100/3P X P t P t ->=>=>=4.从一正态总体中抽取容量为10的样本,假定有2%的样本均值与总体均值之差的绝对值在4以上,求总体的标准差.【解】~(0,1)X Z N =,由P (|X -μ|>4)=0.02得P |Z |>4(σ/n )=0.02,故210.02⎡⎤-Φ=⎢⎥⎢⎥⎝⎭⎣⎦,即0.99.σ⎛Φ= ⎝⎭查表得2.33,σ=所以5.43.2.33σ== 5.设总体X ~N (μ,16),X 1,X 2,…,X 10是来自总体X 的一个容量为10的简单随机样本,S 2为其样本方差,且P (S 2>a )=0.1,求a 之值.【解】2222299~(9),()0.1.1616S a P S a P χχχ⎛⎫=>=>= ⎪⎝⎭ 查表得914.684,16a= 所以 14.6841626.105.9a ⨯==6.设总体X 服从标准正态分布,X 1,X 2,…,X n 是来自总体X 的一个简单随机样本,试问统计量Y =∑∑==-ni ii i XX n 62512)15(,n >5服从何种分布? 【解】2522222211~(5),~(5)i nii i i XX X n χχχ====-∑∑且12χ与22χ相互独立. 所以2122/5~(5,5)/5X Y F n X n =--7.求总体X ~N (20,3)的容量分别为10,15的两个独立随机样本平均值差的绝对值大于0.3的概率. 【解】令X 的容量为10的样本均值,Y 为容量为15的样本均值,则X ~N (20,310),Y ~N (20,315),且X 与Y 相互独立. 则33~0,(0,0.5),1015X Y N N ⎛⎫-+= ⎪⎝⎭那么~(0,1),X YZ N = 所以(||0.3)||2[1(0.424)]P X Y P Z Φ⎛->=>=- ⎝2(10.6628)0.6744.=-=8.设总体X ~N (0,σ2),X 1,…,X 10,…,X 15为总体的一个样本.则Y =()21521221121022212X X X X X X ++++++ 服从 分布,参数为 . 【解】~(0,1),iX N σi =1,2, (15)那么122210152222111~(10),~(5)i i i i X X χχχχσσ==⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭∑∑且12χ与22χ相互独立, 所以222110122211152/10~(10,5)2()/5X X X Y F X X X ++==++ 所以Y ~F 分布,参数为(10,5).9.设总体X ~N (μ1,σ2),总体Y ~N (μ2,σ2),X 1,X 2,…,1n X 和Y 1,Y 2,…,2n X 分别来自总体X 和Y 的简单随机样本,则⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+-+-∑∑==2)()(21121221n n Y Y X X E n j j n i i = . 【解】令 1222212111211(),(),11n n i i i j S X X S Y Y n n ===-=---∑∑ 则122222112211()(1),()(1),n n i j i j XX n S y y n S ==-=--=-∑∑又2222221122112222(1)(1)~(1),~(1),n S n S n n χχχχσσ--=-=-那么1222112222121212()()1()22n n i j i j X X Y Y E E n n n n σχσχ==⎡⎤-+-⎢⎥⎢⎥=+⎢⎥+-+-⎢⎥⎣⎦∑∑2221212221212[()()]2[(1)(1)]2E E n n n n n n σχχσσ=++-=-+-=+-10.设总体X ~N (μ,σ2),X1,X 2,…,X 2n (n ≥2)是总体X 的一个样本,∑==ni i X n X 2121,令Y =∑=+-+ni i n iX X X12)2(,求EY .【解】令Z i =X i +X n +i , i =1,2,…,n .则Z i ~N (2μ,2σ2)(1≤i ≤n ),且Z 1,Z 2,…,Z n 相互独立.令 2211, ()/1,nni i i i Z Z S Z Z n n ====--∑∑则 21111,222nn i i i i X X Z Z n n =====∑∑ 故 2Z X = 那么22211(2)()(1),n ni n i i i i Y X X X Z Z n S +===+-=-=-∑∑所以22()(1)2(1).E Y n ES n σ=-=-11. 设总体X 的概率密度为f (x )=x-e 21 (-∞<x <+∞),X 1,X 2,…,X n 为总体X 的简单随机样本,其样本方差为S 2,求E (S 2).解: 由题意,得。

概率论习题试题集6

概率论习题试题集6

第六章 参数估计一、填空题1. 若一个样本的观测值为0,0,1,1,0,1,则总体均值的矩估计值为___________,总体方差的矩估计值为___________。

2. 设1,0,0,1,1是来自两点分布总体),1(p B 的样本观察值,则参数p q -=1的矩估计值为___________。

3. 若由总体),(θx F (θ为未知参数)的样本观察值所求得95.0)9.355.35(=<<X P ,则称___________是θ的置信度为___________的置信区间。

4. 设由来自正态总体)9.0,(~2μN X 容量为9的简单随机样本,得样本均值5=X ,则未知参数μ的置信度为0.95的置信区间为___________。

5. 设一批产品的某一指标),(~2σμN X ,从中随机地抽取容量为25的样本,测得样本方差2210=S ,则总体X 的方差2σ的置信区度为%95的置信区间为___________.二、选择题1. 设总体),(~2σμN X ,其中2σ已知,则总体均值μ的置信区间长度l 与置信度α-1的关系是( ) (A )当α-1缩小时,l 缩短; (B )当α-1缩小时,l 增大; (C )当α-1缩小时,l 不变;(D )以上说法都错。

2. 设总体),(~2σμN X ,2σ已知,若样本容量n 和α-1均不变,则对于不同的样本观测值,总体均值的置信区间的长度( )。

(A )变长;(B )变短;(C )不变;(D )不能确定。

3. 设n X X X ,,21是来自总体的一个样本,2,σμ==DX EX ,则方差2σ的无偏估计值是( )(A )当μ已知时,统计量∑=-n i i X n 12)(1μ;(B )当μ已知时,统计量∑=--n i i X n 12)(11μ; (C )当μ未知时,统计量∑=-n i i X X n 12)(1;(D )当μ已知时,统计量∑=--n i i X X n 12)(11。

概率论与数理统计第六章至第九章

概率论与数理统计第六章至第九章

═══════════════════════════════════════════════════════════════本套试题共分15页,当前页是第1页-概率论与数理统计(经管类)第六章至第九章试题课程代码:04183一、单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设总体X ~ N(2,σμ),其中μ未知,x 1,x 2,x 3,x 4为来自总体X 的一个样本,则以下关于μ的四个估计:)(41ˆ43211x x x x +++=μ,3212515151ˆx x x ++=μ,2136261ˆx x +=μ,1471ˆx =μ中,哪一个是无偏估计?( )A .1ˆμB .2ˆμC .3ˆμD .4ˆμ2.设x 1, x 2, …, x 100为来自总体X ~ N(0,42)的一个样本,以x 表示样本均值,则x ~( ) A .N(0,16) B .N(0,0.16) C .N(0,0.04)D .N(0,1.6)3.要检验变量y 和x 之间的线性关系是否显著,即考察由一组观测数据(x i ,y i ),i =1,2,…,n ,得到的回归方程x y 10ˆˆˆββ+=是否有实际意义,需要检验假设( ) A .0∶,00100≠=ββH H ∶B .0∶,0∶1110≠=ββH HC .0ˆ∶,0ˆ∶0100≠=ββH HD .0ˆ∶,0ˆ∶1110≠=ββH H4.设x 1,x 2,…,x 100为来自总体X ~N (μ,42)的一个样本,而y 1,y 2,…,y 100为来自总体Y~N (μ,32)的一个样本,且两个样本独立,以y x ,分别表示这两个样本的样本均值,则y x -~( )A .N ⎪⎭⎫⎝⎛1007,0 B .N ⎪⎭⎫ ⎝⎛41,0C .N (0,7)D .N (0,25)5.设总体X ~N (μ2σ)其中μ未知,x 1,x 2,x 3,x 4为来自总体X 的一个样本,则以下关于μ的四个无偏估计:1ˆμ=),(414321x x x x +++4321252515151ˆx x x x +++=μ 4321361626261ˆx x x x +++=μ,4321471737271ˆx x x x +++=μ中,哪一个方差最小?( )═══════════════════════════════════════════════════════════════本套试题共分15页,当前页是第2页-A .1ˆμB .2ˆμC .3ˆμD .4ˆμ6.设n 1X ,,X 为正态总体N(2,σμ)的样本,记∑=--=ni i x x n S 122)(11,则下列选项中正确的是( ) A.)1(~)1(222--n S n χσB.)(~)1(222n S n χσ-C.)1(~)1(22--n S n χD.)1(~222-n S χσ7.设有一组观测数据(x i ,y i ),i =1,2,…,n ,其散点图呈线性趋势,若要拟合一元线性回归方程x y 10ˆˆˆββ+=,且n i x y i i ,,2,1,ˆˆˆ10 =+=ββ,则估计参数β0,β1时应使( ) A .∑=-ni i i yy 1)ˆ(最小 B .∑=-ni i i yy 1)ˆ(最大 C .∑=-ni i i yy 1)ˆ(2最小 D .∑=-ni i i yy 1)ˆ(2最大 8.设x 1,x 2,…,1n x 与y 1,y 2,…,2n y 分别是来自总体),(21σμN 与),(22σμN 的两个样本,它们相互独立,且x ,y 分别为两个样本的样本均值,则y x -所服从的分布为( )A .))11(,(22121σμμn n N +- B .))11(,(22121σμμn n N -- C .))11(,(2222121σμμn n N +-D .))11(,(2222121σμμn n N --9.设总体n X X X N X ,,,),,(~212 σμ为来自总体X 的样本,2,σμ均未知,则2σ的无偏估计是( )A .∑=--ni iX Xn 12)(11B .∑=--ni iXn 12)(11μC .∑=-ni iX Xn12)(1D .∑=-+ni iXn 12)(11μ10.设总体X 服从正态分布N (μ,1),x 1,x 2,…,x n 为来自该总体的样本,x 为样本均值,s 为样本标准差,欲检验假设H 0∶μ=μ0,H 1∶μ≠μ0,则检验用的统计量是( )═══════════════════════════════════════════════════════════════本套试题共分15页,当前页是第3页-A.n/s x 0μ-B.)(0μ-x nC.10-μ-n /s xD.)(10μ--x n11.设总体X~N (μ,σ2),X 1,X 2,…,X n 为来自该总体的一个样本,X 为样本均值,S 2为样本方差.对假设检验问题:H 0:μ=μ0↔H 1:μ≠μ0,在σ2未知的情况下,应该选用的检验统计量为( ) A .n X σμ0- B .10--n X σμ C .n SX 0μ-D .10--n SX μ12.在假设检验问题中,犯第一类错误的概率α的意义是( ) A .在H 0不成立的条件下,经检验H 0被拒绝的概率 B .在H 0不成立的条件下,经检验H 0被接受的概率 C .在H 0成立的条件下,经检验H 0被拒绝的概率 D .在H 0成立的条件下,经检验H 0被接受的概率13.设总体X 服从[0,2θ]上的均匀分布(θ>0),x 1, x 2, …, x n 是来自该总体的样本,x 为样本均值,则θ的矩估计θˆ=( ) A .x 2 B .x C .2xD .x2114.设总体X~N (μ,σ2),σ2未知,X 为样本均值,S n 2=n1∑=-n1i i X X ()2,S 2=1n 1-∑=-n1i iX X()2,检验假设H o :μ=μ0时采用的统计量是( ) A .Z=n /X 0σμ- B .T=n /S X n 0μ-C .T=n/X 0σμ- D .T=n/S X 0μ-15.F 0.05(7,9)=( ) A .F 0. 95(9,7)B .)7,9(195.0F═══════════════════════════════════════════════════════════════本套试题共分15页,当前页是第4页-C .)9,7(105.0FD .)7,9(105.0F16.设(X 1,X 2)是来自总体X 的一个容量为2的样本,则在下列E (X )的无偏估计量中,最有效的估计量是( ) A .)(2121X X +B .213132X X +C .214143X X +D .215253X X +17.设总体X~N(0,0.25),从总体中取一个容量为6的样本X 1,…,X 6,设Y=26543221)X X X (X )X (X ++++,若CY 服从F(1,1)分布,则C 为( ) A.2 B.21 C.2D.2118.设α、β分别是假设检验中第一、二类错误的概率,且H 0、H 1分别为原假设和备择假设,则下列结论中正确的是( )A.在H 0成立的条件下,经检验H 1被接受的概率为βB.在H 1成立的条件下,经检验H 0被接受的概率为αC.α=βD.若要同时减少α、β,需要增加样本容量二、填空题请在每小题的空格中填上正确答案。

概率论与数理统计 第6章

概率论与数理统计  第6章
第 6 章 数理统计的基本概念
6.1 基本概念 6.2 抽样分布 习题 6
数理统计是具有广泛应用的一个数学分支,它以概率论 为基础,根据试验或观察得到的数据来研究随机现象,对研 究对象的客观规律性作出种种合理的估计和判断。数理统计 的内容包括:如何收集、整理数据资料;如何对所得的数据
资料进行分析、研究,从而对所研究的对象的性质、特点作
设总体 X 的分布律为 P ( X = x ) = p ( x ), X 1 , X
2
,…, X n为来自总体 X 的一个样本,则 X 1 , X 2 ,…, , X 2 ,…, X n)的联合分布律为
X n的分布律都是 P ( X i = x ) = p ( x ),从而 n 维随机变量(X
1
设总体 X 的概率密度为 f ( x ), X 1 , X 2 ,…, X n为 来自总体 X 的一个样本,则 X 1 , X 2 ,…, X n的概率密度 都是 f ( x ),从而 n 维随机变量(X 1 , X 2 ,…, X n)的联合 概率密度为
( n ) ,则称函数
为总体 X 的经验分布函数。
需要指出的是,若在 F n (x )的定义中将样本值换成对 应的样本,则当 n 固定时,它是一个随机变量,此时仍称之 为总体 X 的经验分布函数。所以用样本值定义的 F n (x )其 实是经验分布函数的观察值,在不致混淆的情况下统称为总 体 X 的经验分布函数。
出推断。数理统计的重要分支有统计推断、试验设计、多元 分析等,其具体方法甚多,应用相当广泛,已成为各学科从
事科学研究及生产、经济等部门进行有效工作的必不可少的
数学工具。

本章从数理统计的基本概念开始,讨论抽样分布及其重 要定理,这些抽样分布及其重要定理在概率论中尚未提到,

概率论与数理统计(茆诗松)第二版课后第六章习题参考答案

概率论与数理统计(茆诗松)第二版课后第六章习题参考答案
第六章 参数估计
习题 6.1
1. 设 X1, X2, X3 是取自某总体容量为 3 的样本,试证下列统计量都是该总体均值µ 的无偏估计,在方差存 在时指出哪一个估计的有效性最差?
(1) µˆ1
=
1 2
X1
+
1 3
X
2
+
1 6
X3 ;
(2) µˆ2
=
1 3
X1
+
1 3
X
2
+
1 3
X
3

(3) µˆ3
=
n1 + n2
n1 + n2
n1 + n2
8. 设总体 X 的均值为µ ,方差为σ 2,X1, …, Xn 是来自该总体的一个样本,T (X1, …, Xn)为µ 的任一线性
无偏估计量.证明: X 与 T 的相关系数为 Var( X ) Var(T ) .
n
∑ 证:因 T (X1, …, Xn)为µ 的任一线性无偏估计量,设 T ( X1, L, X n ) = ai X i , i=1
2. 设 X1, X2, …, Xn 是来自 Exp(λ)的样本,已知 X 为 1/λ的无偏估计,试说明1/ X 是否为λ的无偏估计. 解:因 X1, X2, …, Xn 相互独立且都服从指数分布 Exp(λ),即都服从伽玛分布 Ga(1, λ),
n
∑ 由伽玛分布的可加性知 Y = X i 服从伽玛分布 Ga(n, λ),密度函数为 i=1
=
(n
2 + 1)(n
+
2)

E(Y(2n) )
=
1 y 2 ⋅ nyn−1dy = n ,

概率论第六章习题解答(全)

概率论第六章习题解答(全)

1 P{0.3 2 ( X Y ) 2 0.3 2} 1 (0.3 2) (0.3 2) 2 2 (0.3 2) 2 2 (0.42) 2(1 0.6628) 2 0.3372 0.6744
4、 (1) 设 X 1 , X 2 , , X 6 样本是来自总体 N (0,1) , Y ( X1 X 2 X 3 ) ( X 4 X 5 X 6 ) ,
(
1 10 i1 2 2 ) e 2
( xi )2
10

X
1 10 1 10 1 10 X i , E( X ) E( X i ) E( X i ) 10 i 1 10 i 1 10 i 1 1 10 1 D( X ) D( X i ) 2 10 i 1 10
i 1 5 i 1 5 5
1 (1 P{
i 1 5
X i 12 10 12 }) 2 2
5
1 (1 (1)) 1 (1)
i 1 i 1
1 (0.8413)5 1 04215 0.5285
3、求总体 N (20,3) 的容量分别为 10,15 的两个独立样本均值差的绝对值不超过 0.3 的概率。 解 则 设容量为 10 的样本均值为 X ,样本容量为 15 的样本均值为 Y ,

X1 X 2 2 2 2 , X 3 X 4 X 5 相互独立,于是由 t 分布的定义知 2 X1 X 2 X1 X 2 3 2 t (3) 2 2 2 2 X3 X4 X5 2 ( X X 2 X 2 ) 12 3 4 5 3
因此所求常数为
C

概率论与数理统计6.第六章:样本及抽样分布

概率论与数理统计6.第六章:样本及抽样分布

),
,
,
,
是来
Z=
(

证明统计量 Z 服从自由度为 2 的 t 分布。
14
),
,
,
,
是来 , .ຫໍສະໝຸດ 自 总 体 X 的 样 本 , E( ) 则 ,D( )=
是来自总体 X ,D(X)= . ,
,D( )=
11
3. 设 , 本 ,E(X)=
, , 为来自总体 X 的样 ,D(X)=9, 为样本均值 , 试用 < ≥ ,
切比雪夫不等式估计 P{ P{ 4.设 , 则当 K= > ≤ , , . 是总体 X
lim f (t ) (t )
n
1 e 2
t2 2
, x
3.分位点 设 T~t(n), 若对 :0<<1,存在 t(n)>0,
4
满足 P{Tt(n)}=, 则称 t(n)为 t(n)的上侧分位点 注: t1 (n) t (n) 三、F—分布 1.构造 若 1 ~2(n1), 2~2(n2),1, 2 独立,则
y0
2. F—分布的分位点 对于 :0<<1,若存在 F(n1, n2)>0, 满足 P{FF(n1, n2)}=, 则称 F(n1, n2)
5
为 F(n1, n2)的上侧 分位点; 注: F1 (n1 , n2 )
1 F (n2 , n1 )
§ 6.3 正态总体的抽样分布定理
X Y /n ~ t ( n)
t(n)称为自由度为 n 的 t—分布。 t(n) 的概率密度为
n 1 ) 1 t 2 n2 2 f (t ) (1 ) , t n n n ( ) 2 (

概率论课后习题第6章答案

概率论课后习题第6章答案

第六章 数理统计的基本概念1.设样本均值为X ,则由题意,有6,4.1(~2n N X ,或)1,0(~/64.1N nX −,于是由1)3(2/64.34.5/64.3/64.34.1}4.54.1{95.0−Φ=⎭⎬⎫⎩⎨⎧−<−<−=<<≤nn n X nP X P⇒ 975.03(≥Φn ⇒ 96.13≥n⇒5744.34≥n 故样本容量至少应取35. 2.由题意可知)1,0(~/2.0N na X n −,又122/2.01.0/2.0}1.0|{|95.0−⎟⎟⎠⎞⎜⎜⎝⎛Φ=⎭⎫⎩⎨⎧<−=<−≤n n n a X P a X P n n 故有 975.0)2(≥Φn ⇒ 96.12≥n⇒ 3664.15≥n 因此至少应等于16.n 3. 由正态分布的性质及样本的独立性知,212X X −和4343X X −均服从正态分布,由于,0)2(21=−X X E 20)(4)()2(2121=+=−X D X D X X D以及,0)43(43=−X X E 100)(16)(9)43(4343=+=−X D X D X X D所以,有)20,0(~221N X X −⇒)1,0(~20221N X X −)100,0(~4343N X X − ⇒)1,0(~104343N X X −于是由分布的定义知,当2χ,201=a 1001=b 时,有 ()())2(~10432024322243221243221χ⎟⎠⎞⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−=−+−=X X X X X X b X X a X 4. 由正态分布的性质及样本的独立性知, ⇒ )9,0(~2921N X X X +++")1,0(~)(91921N X X X +++" 又)1,0(~3N Y i, 9,,2,1"=i 所以 )9(~)(913332292221292221χY Y Y Y Y Y +++=⎟⎠⎞⎜⎝⎛++⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛""由于两个总体是X 和Y 相互独立的,所以其相应的样本也是相互独立的,故)9(9121X X X +++"与)(21Y 912922Y Y +++"也相互独立,于是由t 分布的定义知,)9(~9/)(91)(91292191292191t Y Y X X YY X X U +++=++++=""""5.由题意知,)1,0(~2N X i,,故有 15,,2,1"=i )10(~22)(4122102121021χ⎟⎠⎞⎜⎝⎛++⎟⎠⎞⎜⎝⎛=+=X X X X U "" )5(~22)(412215211215211χ⎟⎠⎞⎜⎝⎛++⎟⎠⎞⎜⎝⎛=+=X X X X V ""利用样本的独立性以及F 分布的定义,有)5,10(~5/10/)(221521121021F V U X X X X Y =++++="" 6.解法1 考虑n n n n X X X X X X 22211,,,+++++",将其视为取自正态总体的简单随机样本,则其样本均值为 )2,2(2σμN X X n X X n ni i n i i n i 21)(1211==+∑∑==+样本方差为 Y n 11−由于2211σ=⎟⎠⎞⎜⎝⎛−Y n E ,所以 22)1(2)2)(1()(σσ−=−=n n Y E 解法2 记,11∑==′n i i X n X ,11∑=+=′ni i n X n X 显然有X X X ′′+′=2,因此[]⎭⎬⎫⎩⎨⎧′′−+′−=⎥⎦⎤⎢⎣⎡−+=∑∑=+=+n i i n i n i i n i X X X X E X X X E Y E 1212)()()2()( []⎭⎬⎫⎩⎨⎧′′−+′′−′−+′−=∑=++n i i n i n i i X X X X X X X X E 122)())((2)(222)1(2)1(0)1(σσσ−=−++−=n n n 7.记(未知),易见2)(σ=X D )()(21Y E Y E =, ,6/)(21σ=Y D 3/)(22σ=Y D 由于相互独立,故有21,Y Y ,0)(21=−Y Y E 236)(22221σσσ=+=−Y Y D从而 )1,0(~2/21N Y Y U σ−=,又 )2(~22222χσχS =由于与相互独立,与独立,由定理 6.3.2,与独立,所以1Y 2Y 1Y 2S 2Y 2S 21Y Y −与独立,于是由t 分布的定义,知 2S )2(~2/)(2221t USY Y Z χ=−=8.由)1(~)1(222−−n S n χσ,其中由题意知,25=n , ,于是1002=σ}12)125({)1(50)1(}50{22222>−=⎭⎬⎫⎩⎨⎧−>−=>χσσP n S n P S P975.0}12)24({2≥>=χP 上式中的不等式是查表得到的,所以所求的概率至少为0.9759. 本题要用到这样一个结论,即Γ分布),(βαΓ关于第一个参数具有可加性,即若),(~1βαΓU ,),(~2βαΓV ,且U 与V 相互独立,则),(~21βαα+Γ+V U ,其中),(βαΓ的概率密度为: ⎪⎩⎪⎨⎧=)(x f αβ>其它0,x βΓ−)(1/1e x α−0x α可利用卷积公式证明.回到本题,当λβα11=,=,分布就是参数为Γλ的指数分布,所以样本的独立性及Γ分布的可加性,有 )1,(~21λn X +X X n Γ++"即的概率密度为 ∑=ni i X 1⎪⎩⎪⎨⎧>−=−−其它00,)!1()(1x e x n x g x n nλλ 因此∑==ni i X n X 11的概率密度为 ⎪⎩⎪⎨⎧≤>−==−−0,00,)!1()()()(1y y e y n n ny ng y h ny n n λλ 10. (1) 根据正态分布的性质,与21X X +21X X −服从二维正态分布,所以要证明它们相互独立,只需它们不相关,由于0)()()])([(22212121=−=−+X E X E X X X X E 0)()(2121=−+X X E X X E 所以 0),(2121=−+X X X X Cov 即与相互独立21X X +21X X −(2) 由于0=μ,所以)2,0(~221σN X X +⇒)1,0(~221N X X σ+ ⇒)1(~212221χσ⎟⎠⎞⎜⎝⎛+X X⇒)2,0(~221σN X X −)1,0(~221N X X σ− ⇒)1(~212221χσ⎟⎠⎞⎜⎝⎛−X X由上面证明的独立性,再由F 分布的定义知)1,1(~2/2/)()(21221221221F X X X X X X X X F ⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛+=−+=σσ 所以 25.0}83.5{}4{4)()(221221=<<<=⎭⎬⎫⎩⎨⎧<−+F P F P X X X X P。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 数理统计习题
一、填空题
1.若n ξξξ,,,21Λ是取自正态总体),(2
σμN 的样本,则∑==n
i i n 1
1ξξ服从分布
)n
,(N 2
σμ
2. 设随机变量ξ与η相互独立, 且都服从正态分布(0,9)N , 而129(,,,)
x x x L 和
129(,,,)
y y y L 是分别来自总体ξ和η的简单随机样本, 则统计量
129
222129
~U y y y =+++L (9)t .
3. 设~(0,16),~(0,9),,X N Y N X Y 相互独立, 129,,,X X X L 与1216
,,,Y Y Y L 分别 为X 与Y 的一个简单随机样本,
则22
2
129222
1216X X X Y Y Y ++++++L L 服从的分布为 (9,16).F 二、选择题
1、设总体ξ服从正态分布,其中μ已知,σ未知,321,,ξξξ是取自总体ξ的
个样本,则非统计量是( D ).
A 、)(3
1321ξξξ++ B 、μξξ221++ C 、),,m ax (321ξξξ
D 、
)(1
2322212
ξξξσ++
2、设)2,1(~2
N ξ,n ξξξK ,,21为ξ的样本,则( C ).
221N n ξ⎛⎫ ⎪⎝⎭:,
A 、
)1,0(~2
1N -ξ B 、)1.0(~41
N -ξ C 、)1,0(~/21N n -ξ D 、
)1,0(~/21
N n
-ξ 3、设n ξξξΛ,,21是总体)1,0(~N ξ的样本,S ,ξ分别是样本的均值和样本标准差,
则有( C )
A 、)1,0(~N n ξ
B 、)1,0(~N ξ
C 、
∑=n
i i
n x 1
22)(~ξ
D 、)1(~/-n t S ξ
三、计算题
1、在总体)2,30(~2N X 中随机地抽取一个容量为16的样本,求样本均值X 在 29到31之间取值的概率.
解:因)2,30(~2
N X ,故)162,30(~2N X ,即))2
1
(,30(~2N X
{}
()()()()()111
2222930303130293122212221
X P X P ⎧⎫
---≤≤=≤≤=Φ-Φ-⎨⎬⎩⎭
=Φ--Φ=Φ-⎡⎤⎣⎦ )22
130
2()3120(<-<
-=<<∴X P X P 9544.01)2(2)2()2(=-Φ=-Φ-Φ= 2、设总体)1,0(~N X ,从此总体中取一个容量为6的样本654321,,,,,X X X X X X , 设26542321)()(X X X X X X Y +++++=,试决定常数C ,使随机变量CY 服从卡方分布 ()()01,0,1i X N X N ::,
解:)3,0(~321N X X X ++,
()()()()1231230E X X X E X E X E X ++=++= ()()()()1231233D X X X D X D X D X ++=++=
)3,0(~654N X X X ++
()()()()4564560E X X X E X E X E X ++=++=
()()()()4564563D X X X D X D X D X ++=++=
)1,0(~3
321N X X X ++∴,)1,0(~3654N X X X ++
)2(~)3()3(226542321x X X X X X X +++++∴
即)2(~)(3
1
)(31226542321x X X X X X X +++++ 3
1
=∴C 时,)2(~2x CY。

相关文档
最新文档