《物理学》(第五版)第03章课外补充例题

合集下载

第五版物理化学第三章习题答案-图文

第五版物理化学第三章习题答案-图文

第五版物理化学第三章习题答案-图文以下是为大家整理的第五版物理化学第三章习题答案-图文的相关范文,本文关键词为第五,物理化学,第三章,习题,答案,图文,第三章,热力学,第,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在综合文库中查看更多范文。

第三章热力学第二定律3.1卡诺热机在(1)热机效率;(2)当向环境作功。

解:卡诺热机的效率为时,系统从高温热源吸收的热及向低温热源放出的热的高温热源和的低温热源间工作。

求根据定义3.2卡诺热机在(1)热机效率;(2)当从高温热源吸热解:(1)由卡诺循环的热机效率得出时,系统对环境作的功的高温热源和的低温热源间工作,求:及向低温热源放出的热(2)3.3卡诺热机在(1)热机效率;(2)当向低温热源放热解:(1)时,系统从高温热源吸热及对环境所作的功。

的高温热源和的低温热源间工作,求1(2)3.4试说明:在高温热源和低温热源间工作的不可逆热机与卡诺机联合操作时,若令卡诺热机得到的功wr等于不可逆热机作出的功-w。

假设不可逆热机的热机效率大于卡诺热机效率证:(反证法)设ηir>ηr不可逆热机从高温热源吸热则,向低温热源放热,对环境作功,其结果必然是有热量从低温热源流向高温热源,而违反势热力学第二定律的克劳修斯说法。

逆向卡诺热机从环境得功则从低温热源吸热向高温热源放热若使逆向卡诺热机向高温热源放出的热不可逆热机从高温热源吸收的热相等,即总的结果是:得自单一低温热源的热,变成了环境作功,违背了热力学第二定律的开尔文说法,同样也就违背了克劳修斯说法。

23.5高温热源温度低温热源,求此过程。

,低温热源温度,今有120KJ的热直接从高温热源传给解:将热源看作无限大,因此,传热过程对热源来说是可逆过程3.6不同的热机中作于情况下,当热机从高温热源吸热(1)可逆热机效率(2)不可逆热机效率(3)不可逆热机效率解:设热机向低温热源放热。

物理学(第五版)课后习题解答

物理学(第五版)课后习题解答

第十章波动1 . 一横波沿绳子传播时的波动表达式为)π4π10cos(05.0x t y -=,x ,y的单位为米,t 的单位为秒。

(1)求此波的振幅、波速、频率和波长。

(2)求绳子上各质点振动的最大速度和最大加速度。

(3)求2.0=x m 处的质点在1=t s 时的相位,它是原点处质点在哪一时刻的相位?解 (1)将题中绳波表达式0.05cos(10π4π)0.05cos 2π()0.20.5t xy t x =-=- 与一般波动表达式)(π2cos λxT t A y -=比较,得振幅05.0=A m ,s T 2.0=频率5=ν Hz ,波长5.0=λ m 。

波速5.255.0=⨯==λνu m •s-1(2)绳上各质点振动的最大速度57.105.0514.32π2max =⨯⨯⨯===A A v νω m •s-1绳上各质点振动时的最大加速度3.4905.0514.34π422222max =⨯⨯⨯===A A a νωm •s -(3)将2.0=x m ,1=t s 代入)π4π10(x t -得到所求相位π2.92.0π41π10=⨯-⨯, 2.0=x m 处质点的振动比原点处质点的振动在时间上落后08.05.22.0==u x s (5.2==λνu m •s -1),所以它是原点处质点在92.0)08.01(0=-=t s 时的相位。

2.设有一平面简谐波 )3.001.0(π2cos 02.0x t y -= , x ,y 以m 计, t 以s 计。

(1)求振幅、波长、频率和波速。

(2)求1.0=x m 处质点振动的初相位。

解(1)将题设平面简谐波的表式)3.001.0(π2cos 02.0xt y -=与一般表式)(π2cos λxT t A y -=比较,可得振幅02.0=A m ,波长3.0=λ m ,周期01.0=T s 。

因此频率10001.011===T νHz , 波速 301003.0=⨯==λνu m ·s -(2)将1.0=x m 代入波动表式,得到位于该处的质点的振动表式4题图)3π201.0π2cos(02.0)3.01.001.0(π2cos 02.0-=-=t t y 因而该处质点振动的初相位3π20-=ϕ。

《物理化学(第五版,傅献彩)》课后习题及答案

《物理化学(第五版,傅献彩)》课后习题及答案

热力学第一定律
1mol,T1,
p1=2×101.325kPa V1=11.2dm3
pT=常数 可逆
(1)T1=(p1V1)/(nR)=273K
∵ p1T1 p2T2 c

2
101325
2
101325 0.0112 8.314
K
4
101325T2
1mol,T2 p2=4×101.325kPa
V2
T2 136.6K
n, T1=293K, p1=p V1=3dm3
p1=p2
n,T2=353K p2
V2
n 101.325 3 mol 0.125mol 8.314 293
U
n
353
C 293 p,m
R
dT
0.125
353.2 18.96 3.26 103 T
293.2
dT
0.125 18.996353
V2
8.314 136.6 4 101325
m3
2.8 103 m3
(2) U
nCV ,m T2
T1
1
3 2
8.314(136.6
273)J
1701J
H 15 8.31(4 136.6 273)J 2835J 2
(3)W pdV c d( nRT T ) nR dT 2 2nRdT
T pT
T
W 2nR(T2 T1 ) 2 8.31(4 136.6 273)J 2268J 14.设有压力为 p,温度为 293K 的理想气体 3dm3,在等压下加热,直到最后的温度为 353K 为止。计算过程中的 W、ΔU、ΔH、和 Q。已知该气体的等压热容为: Cp,m=(27.28+3.26×10-3T)J·K-1·mol-1。 解:

大学物理第五版课后答案上完整版

大学物理第五版课后答案上完整版

3-6一架以 2 m s 解 0Δ-='v m t FN 1055.252⨯=='lm F v 鸟对飞机的平均冲力为 N 1055.25⨯-='-=F F3-7 质量为m 的物体,由水平面上点O 分析 3-8 Fx=30+4t 的合外力解 1 由分析知()s N 68230d 4302220⋅=+=+=⎰t t t t I 2 由I =300 =30t +2t 2 ,解此方程可得 t =6.86 s 另一解不合题意已舍去3 由动量定理,有 I =m v 2- m v 1由2可知t =6.86 s 时I =300 N ·s ,将I 、m 及v 1代入可得 112s m 40-⋅=+=mm I v v3-9 高空作业 51kg 的人3-10质量为m 的小球,在力F= - kx 作用下运动ωkA t t ωkA t kx t F I ωt t t t -=-=-==⎰⎰⎰2/π02121d cos d d 即()ωkA m -=v Δ3-11 在水平地面上,有一横截面S= 2()A B t S ρtv v v -==ΔΔIF , N 105.2232⨯-=-=-='v S ρF F 3-12 爆炸后 ,hgx t x x 21010==v 21121gt t h y --=v ;12121t gth -=v x x m m 2021v v = y m m 2121210v v +-=落地时,y 2 =0,由式5、6可解得第二块碎片落地点的水平位置 x 2 =500 m 3-13 A,B 两船在平静的湖面上平行逆行航行 B 船以 解()A A B A A m m m m v v v '=+- 1 ()''=+-B B A B B m m m m v v v 23-14 质量为m 丶的人手里拿着质量为m 的物体 解 取如图所示坐标.把人与物视为一系统,当人跳跃到最高点处,在向左抛物的过程中,满足动量守恒,故有u m m m α'++=cos 00v v 人的水平速率的增量为u mm mα'+=-=cos Δ0v v v 而人从最高点到地面的运动时间为 gαt sin 0v =所以,人跳跃后增加的距离()g m m αm t x '+==sin ΔΔ0v v3-15 一质量均匀柔软的绳竖直的悬挂着0N =-+F F yg l m1 y lmt F d 0d v -=' 2 而 F F '-= 3 3-16 设在地球表面附近,一初质量为 10 5解 1 以火箭发射处为原点,竖直向上为正方向.该火箭在重力场中的动力学方程为ma mg tmu=-d d 1 2 t m mg t m u d d d d v=- 分离变量后积分,有 ⎰⎰⎰-=t m m t g m m u 0d d d 00v v v3-17 质量为m 的质点在外力F 的作用下沿Ox 轴运动,已知 t=0时质点位于原点 解 2d 0000L F x x LF F W L=⎪⎭⎫⎝⎛-=⎰;mLF 0=v 3-18 如图 一绳索 5N 3-19 一物体在介质x=ct 3解 23d d ct tx==v ;3/43/242299x kc t kc k F ===v3-20 一人从 m 深的井中提水解 水桶在匀速上提过程中,a =0,拉力与水桶重力平衡,有 F +P =0在图示所取坐标下,水桶重力随位置的变化关系为P =mg -αgy 3-21 一质量为的小球 的细绳 解 1()J 53.0cos 1Δ=-==θmgl h P W P ;s F d T T ⋅=⎰W2 J 53.0k k ==E E 小球在最低位置的速率为 1PKs m 30.222-⋅===mW m Ev 3l m P F 2T v =- N 49.22T =+=lm mg F v3-22 一质量为m 的质点,系在细绳的一段,绳的另一端解 1 2202k 0k 832121v v v m m m E E W -=-=-= 1 2 由于摩擦力是一恒力,且F f =μmg ,故有mg μr πs F W 2180cos of -== 2rg πμ16320v = 3 34k0==W E n 圈3-23 如图所示,A 和B 两块板用一轻弹簧F 1 =P 1 +F 2221212121mgy ky mgy ky +=-;F 1 -F 2 =2P 1 F =P 1 +F 2 当A 板跳到N 点时,B 板刚被提起,此时弹性力F ′2 =P 2 ,且F 2 =F ′2 .由式3可得F =P 1 +P 2 =m 1 +m 2 g3-24有一自动卸货矿车W f = +′gl +x 1W f =-m -m ′ gl +x sin α 2 3-25 分铁锤敲入钉子木板 -2 解⎰⎰+=xx x x x kx x kx Δ000d d Δx = ×10 -2m3-26 m 的地球卫星, 3Re 解()E 22E E 33R m R m m G v = 则 E E 2K 621R m m G m E ==v 2 E E P 3R mm G E -=3 EE E E E E P K 636R mm G R m m G R m m G E E E -=-=+=3-27 天文观测台 冰块解 由系统的机械能守恒,有R m F θmgR 2N cos v =- o θ2.4832arccos ==;32cos RgθgR ==v v 的方向与重力P 方向的夹角为 α=90°-θ =°3-28 m= kg A 时 解 rm mg c 2v= 1()()22213Δ21c m r mg l k v += 2 由式1、2 可得 ()12m N 366Δ7-⋅==l mgr k 3-29 质量为m, 速度为v 的钢球 m 丶的靶. 解 ()1v v m m m '+= 1()20212212121kx m m m +'+=v v 2()v m m k m m x '+'=03-30 质量为m 的弹丸,穿过v v v ''+=m m m 21 l m g m h2v ''=' 2 221221hm gl m m v v ''+'='' 3glm m 52'=v 3-31 一个电子和一个3-32 质量为 x 10 -23kgαm βm m A B A cos cos 221v v v '+= 1αm βmA B sin sin 20v v '-= 2 222212m 2121A B A m v v v '+⎪⎭⎫ ⎝⎛= 3()1722s m 1069.42-⋅⨯='-=A A B v v v3-33 如图 质量为m 丶的物块 低端A 处解 在子弹与物块的撞击过程中,在沿斜面的方向上,根据动量守恒有()10cos v m m αmv '+= 1()αh αg m m μsin cos '+- ()()()21222121v v m m gh m m m m '+-'++'+= 2()1cot 2cos 202+-⎪⎭⎫ ⎝⎛'+=αμgh αm m m v v 3-34 如图 一质量为m 的小球 内壁半球形 3-35 打桩 m=10t解 1 在锤击桩之前,由于桩的自重而下沉,这时,取桩和地球为系统,根据系统的功能原理,有⎰='1h 01d 4h hK S gh m 1m 88.821='=KS gm h 2 ()v v m m m +'=0 2()()220h h h 21S 4d -211gh m m m m Kh +'-+'-=⎰+v v 3 h 2 = m ;v v ''+'-=m h g m m 20 ()23h 021d h m 354-3v ''-'-=+⎰m gh m h S 5h 3 = m3-36 一系统0332211=++x x x m m m v v v ;0332211=++y y y m m m v v v则 ()()j i 113s m 0.2s m 8.2--⋅-⋅-=v 3-37 如图 m1 = kg m2 = AB 小球m 5.1202120=+=x m m m x c ;m 9.1102110=+=y m m m y c ()t m m F m m t F x x tx2112101 ,d d +=+=⎰⎰v v v 3 ()t m m F m m t F y y ty2122101 ,d d +=+=⎰⎰v v v 4 t m m F y ty y c d d 0212cc0⎰⎰⎪⎪⎭⎫⎝⎛+=;()22212019.09.12t t m m Fy y c c +=++= 2()()()j i F F P P t t t t0.60.8d Δ021-=+==⎰4-6 一汽车 12s 3 r min 解()200s rad 1.13π2-⋅=-=-=t n n t ωωα ;()0020π221n n t ωωt αt ωθ-=-=+=4-7 某种电动机启动后 ;s()22//0s rad e 5.4e d d ---⋅===t τt τωt ωα;()rad 9.36d 1d /60060=-==-⎰⎰t e ωt ωθτt 则t = s 时电动机转过的圈数87.5π2/==θN 圈4-8 水分子 θd m J H A A 22sin 2='θd m J H B B 22cos 2='此二式相加,可得22d m J J H B B A A =+''则 m 1059.9211-''⨯=+=HB B A A m J J d由二式相比,可得 θJ J B B A A 2tan /='' 则 o 3.521.141.93arctan arctan===''B B A A J J θ 4-9 一飞轮 30cm cm4-10 如图 圆盘的质量为m 半径为R22/3222/2203215d 2 d π2πd mR r r R m r r R mr m r J R R RR ====⎰⎰⎰ 2 ;22222032392ππ3215mR R R R m m mR J =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⋅-+='4-11 用落体观察法测定飞轮的转动惯量 4-12 一燃气轮机 m2解1 在匀变速转动中,角加速度tωωα0-=,由转动定律αJ M =,可得飞轮所经历的时间4-13 如图 m1 = 16kg 圆柱体A解 1αr m αJ r F T 2121== ;a m F g m F P T T 222='-='-21222m m g m a += ;m 45.222121222=+==m m gt m at s2 ()N 2.3922121=+=-=g m m m m a g m F T 4-14 m1 m2 A B 组合轮两端()αJ J r F R F T T 2121+=- 11T T F F =',22T T F F ='解上述方程组,可得gR r m R m J J r m R m a 222121211+++-=;gr r m R m J J rm R m a 222121212+++-=g m r m R m J J Rr m r m J J F T 1222121221211++++++=;g m rm R m J J Rr m R m J J F T 2222121121212++++++= 4-15 如图所示装置,定滑轮半径rαr a a ==21 αJ r F r F T T ='-'12 11T T F F =',22T T F F =' 4-16 飞轮 60kg()0121='-+l F l l F Nd μF l ll d μF d F M N 121f 2212+=== 1 4-17 一半径为R,质量为m 的匀质圆盘;; 停止 4-18 如图 通风机J ωC t ωα-==d d 1t JCωωt ωωd d 00⎰⎰-=J Ct e ωω/0-= 22ln CJt =24-19 如图 一长 2l 的细棒AB解()αe ωml mr ωJ L t 2022sin 122--===2 ()[]αe ωml tt L M t 202sin 12d dd d --==te αωml -=202sin 2 ;αωml M 202sin 2= 4-20 m 丶 半径R 的圆盘 裂开 解 1 R ω=0v4-21 光滑水平 木杆 m1= L=40cm解 根据角动量守恒定理()ωJ J ωJ '+=212;()1212212s 1.2936-=+=+='m m m J J ωJ ωv4-22 r1 r2 薄伞形轮 4-23 的 小孩R ωωωωv +=+=010;()010100=++ωωJ ωJ 122020s 1052.9--⨯-=+-=RmR J mR ωv4-24 一转台 砂粒 Q =2t 解 在时间0→10 s 内落至台面的砂粒的质量为kg 10.0Qd s 100==⎰t m ;()ωmr J ωJ 2000+= ;112000s π80.0-=+=J mrJ ωJ ω 4-25 为使运行中的飞船4-26 m 的蜘蛛解 1 ()b a ωJ J ωJ 100+=a a b ωmm m ωJ J J ω2100+''=+=2 即22mr J =.在此过程中,由系统角动量守恒,有()c a ωJ J ωJ 100+=4-27 的均匀细棒解 1 由刚体的角动量定理得 28388Δ31arccos o 222'=⎪⎪⎭⎫ ⎝⎛-=gl m t F θ 4-28 第一颗人造卫星 5 2211v v mr mr = 12221212121r Gmm m r Gmm m EE -=-v v 2()1321121s m 1011.8-⋅⨯=+=r r r r Gm E v ;131212s m 1031.6-⋅⨯==v v r r4-29 地球对自传解 1 地球的质量m E = ×1024 kg,半径R = ×106 m,所以,地球自转的动能2 对式T ωπ2=两边微分,可得T Tωd π2d 2-= T ωT T ωΔπ2Δπ2Δ22-=-= T E ωT J ωωωJ E K K ΔπΔπ2ΔΔ3-=-== 2式中n 为一年中的天数n =365,ΔT 为一天中周期的增加量.4-30 如图 一质量为m 的小球由一绳索 ;;; 新的角速度 解 1200mr J =和20141mr J =,则00014ωωJ J ω==2 2020200211232121ωmr ωJ ωJ W =-=4-31 质量 解 1 棒绕端点的转动惯量231ml J =由转动定律M =Jα可得棒在θ 位置时的角加速度为()lθg J θM α2cos 3==;2s 418-=.α 由于θωωt ωαd d d d ==,⎰⎰=o 6000d d θαωωω ;1600s 98.7sin 3o -==l θg ω 2J 98.021==mgl E K3 由于该动能也就是转动动能,即221ωJ E K =,1s 57.832-==='l g J E ωK 4-32 如图 A B 两飞轮 J1 = kg;M解 1 取两飞轮为系统,根据系统的角动量守恒,有2 ()J 1032.12121Δ42112221⨯-=-+=ωJ ωJ J E 4-34 如图 OO 丶自由转动解()B ωmR J ωJ 2000+= 1()2220200212121BB m ωmR J mgR ωJ v ++=+ 22000mR J ωJ ωB +=2022002mRJ RωJ gR B ++=v 0ωωC = ;gR C 4=v 4-35 为使运行中飞船停止绕其中心轴转动 ,一种可能方案有()()2222122121ωl R m ωJ J '+=+ ⎪⎪⎭⎫ ⎝⎛-'+=141m m R l 4-37 一长为L, 质量为m 的均匀细棒,在光滑的;;绕质心ωJ ωJ t F-'=-Δ21;ωωml J J ω41412=+='2 22223212121ωml ωJ ωJ E ΔK -=-''=4-38 如图 细绳 大木轴 解 设木轴所受静摩擦力F f 如图所示,则有F mR J R R θR a C C 212121cos ++= ;F mR J R θR R a αC C 21211cos ++== 5-6 1964 年,盖尔曼等人 解 由于夸克可视为经典点电荷,由库仑定律F 与径向单位矢量e r 方向相同表明它们之间为斥力. 5-7 质量为m , 电荷为-e 的电子由此出发命题可证.证 由上述分析可得电子的动能为r e εm E K 202π8121==v ;3022π4mrεe ω=;432022232π4me E εωK ==v 5-8 在氯化铯 1 由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故F 1 =0.2 除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力F 2 的值为5-9 若电荷均匀地分布在长为L 的细棒 , 求证 证 1 延长线上一点P 的电场强度⎰'=Lr πεqE 202d ,利用几何关系 r ′=r -x 统一积分变量,则()220022204π12/12/1π4d π41L r QεL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.2, E rεqαE Ld π4d sin 20⎰'= 利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则5-10 一半径为R 的半球壳,均匀的带有电荷, 解由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有 5-11 水分子H2O解1 水分子的电偶极矩θer θP P cos 2cos 200==在电偶极矩延长线上 5-13 如图为电四级子解 由点电荷电场公式,得()()k k k E 42022220222206π4...321...32112π4/11/1112π4z qd εq z d z d z d z d z z εq z d z d z z εq =⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡++-+++++-=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-+-+-=; 5-14 设匀强电场的电场强度E 与半径为R 的半球面对称轴平行 5-15 如图 边长为a 的立方体,其表面同理 ()[]()2121AOEF d a E dS E E -=-⋅+=⋅=⎰⎰i j i S E Φ 5-16 分析 地球周围的大气犹如;;5-17 设在半径为R 的球体内 ,其电荷为对称分布球体内0≤r ≤R()40022πd π41π4r εk r r kr εr r E r==⎰ ,()r εkr r e E 024=球体外r >R()40022πd π41π4r εk r r kr εr r E R==⎰,()r εkR r e E 024=5-18 如图 , 一无限大均匀带电薄平板n εσe E 012=;nr x xεσe E ⎪⎪⎭⎫ ⎝⎛+--=220212 ,n rx x εσe E E E 220212+=+=在圆孔中心处x =0,则 E =0 在距离圆孔较远时x >>r ,则5-19 如图, 在电荷体密度p 的均匀带电球体证 带电球体内部一点的电场强度为r E 03ερ=r E 013ερ=,2023r E ερ-= ()210213r r E E E -=+=ερ;a E 03ερ=5-20 一个内外半径分别为R1和R2的均匀带电球壳,总电荷为Q1解 取半径为r 的同心球面为高斯面,由上述分析 r <R 1 ,该高斯面内无电荷,0=∑q ,故01=ER 1 <r <R 2 ,高斯面内电荷()31323131R R R r Q q --=∑故 ()()23132031312π4rR R εR r Q E --= R 2 <r <R 3 ,高斯面内电荷为Q 1 ,故 r >R 3 ,高斯面内电荷为Q 1 +Q 2 ,故5-21 两个带有等量异号电荷的无限长同轴圆柱面解 ∑=⋅0/π2εq rL E r <R 1 , 0=∑q 01=E 在带电面附近,电场强度大小不连续,电场强度有一跃变 R 1 <r <R 2 ,L λq =∑rελE 02π2=r >R 2, 0=∑q 03=E 5-22 如图 ,有三个点电荷Q1Q2Q3解 在任一点电荷所受合力均为零时Q Q 412-=,并由电势5-23 已知均匀带电直线附近的1 ,12012ln π2d 21r r ελU r r =⋅=⎰r E 2 不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等. 5-24 水分子电偶极矩解 由点电荷电势的叠加1 若o 0=θ V 1023.2π4320P -⨯==rεpV 2 若o45=θ V 1058.1π445cos 320o P -⨯==r εp V 3 若o90=θ 0π490cos 20oP ==r εp V5-25 一个球形雨滴半径当两个球形雨滴合并为一个较大雨滴后,雨滴半径1322R R =,带有电量q 2 =2q 1 ,雨滴表面电势5-26 电荷面密度分别为;;;两块无限大解 ()()()⎪⎪⎩⎪⎪⎨⎧><<--<=a x a x a εσa x0 2 00i E ()a x a x εσV x <<--=⋅=⎰ d 00l E()a x a εσV -<=⋅+⋅=⎰⎰- d d 0a -axl E l E ;()a x a εσV >-=⋅+⋅=⎰⎰ d d 00a -a x l E l E 5-27 两个同心球面的半径分别为R1 R2 , 各自带有解 1 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则2021011π4π4R εQ R εQ V +=若该点位于两个球面之间,即R 1 ≤r ≤R 2 ,则 202012π4π4R εQ r εQ V +=若该点位于两个球面之外,即r ≥R 2 ,则rεQ Q V 0213π4+= 2 ; ()2011012112π4π42R εQ R εQ V V U R r -=-== 5-28 一半径为R 的无限长带电细棒,其内部的电荷均匀分布当r ≤R 时02/ππ2ερl r rl E =⋅ ()02εr ρr E = 当r ≥R 时02/ππ2ερl R rl E =⋅ ()rεR ρr E 022=当r ≤R 时()()22004d 2r R ερr εr ρr V R r-==⎰当r ≥R 时()rR εR ρr r εR ρr V R r ln 2d 20202==⎰5-29 一圆盘半径R= 10 -2解 1 带电圆环激发的电势220d π2π41d x r r r σεV +=()x x Rεσxr r r εσV R-+=+=⎰22222d 2 12 轴线上任一点的电场强度为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R xεσx V 2 电场强度方向沿x 轴方向.3 将场点至盘心的距离x = cm 分别代入式1和式2,得当x >>R 时,圆盘也可以视为点电荷,其电荷为C 1065.5π82-⨯==σR q .依照点电荷电场中电势和电场强度的计算公式,有 5-30 两根同长的圆柱面 R1= 10 -2 m R2=解得 1812120m C 101.2ln/π2--⋅⨯==R R U ελ2 解得两圆柱面之间r = 处的电场强度 5-31 轻原子核结合成为较重原子核解 1 两个质子相接触时势能最大,根据能量守恒由20K021v m E =可估算出质子初始速率17k 00s m 102.1/2-⋅⨯==m E v 该速度已达到光速的4%.2.kT E E 23K K0== K 106.5329K0⨯≈=kE T 5-32 在一次典型的闪电中Kg 1098.8Δ4⨯===LqUL E m 即可融化约 90 吨冰. 2 一个家庭一年消耗的能量为5-33 两个半径为R 的圆环分别带等量异电荷 正负q解 1 由带电圆环电势的叠加,两环圆心连线的x 轴上的电势为2 当R x l x >>>>,时,化简整理得在R x >>时带电圆环等效于一对带等量异号的点电荷,即电偶极子.上式就是电偶极子延长线上一点的电势.5-34 如图 , 在Oxy 平面上倒扣着半径为R 的半球面,假设将半球面扩展为带有相同电荷面密度σ的一个完整球面,此时在A 、B 两点的电势分别为5-35 在玻尔的氢原子模型中,电子 10-10解 1 电子在玻尔轨道上作圆周运动时,它的电势能为2 电子在玻尔轨道上运动时,静电力提供电子作圆周运动所需的向心力,即()r m r εe /π4/2202v =.此时,电子的动能为电子的电离能等于外界把电子从原子中拉出来需要的最低能量 6-6 不带电的导体球A 含有两个 ; ()20π4rεq q q F d c b d +=点电荷q d 与导体球A 外表面感应电荷在球形空腔内激发的电场为零,点电 荷q b 、q c 处于球形空腔的中心,空腔内表面感应电荷均匀分布,点电荷q b 、q c 受到的作用力为零.6-7 一真空二极管,其主要构件是是一个半;;R1=解 1 电子到达阳极时,势能的减少量为 26-8 一导体球半径为R1,外罩一半径为R2r <R 1时, ()01=r E R 1<r <R 2 时,()202π4r εqr E = r >R 2 时, ()202π4r εqQ r E += r <R 1时, R 1<r <R 2 时, r >R 2 时,也可以从球面电势的叠加求电势的分布.在导体球内r <R 120101π4π4R εQR εq V += 在导体球和球壳之间R 1<r <R 2 2002π4π4R εQ r εq V +=在球壳外r >R 2 r εQ q V 03π4+= ;102001π4π4R εQR εq V V +== 102001π4π4R εQR εq V V +== 代入电场、电势的分布得 r <R 1时, 01=E ;01V V = R 1<r <R 2 时,22012012π4rR εQ R r V R E -=;r R εQR r r V R V 201012π4)(--= r >R 2 时,6-9 如图 ,在一半径为R1 = cm 的金属球 A 外面 套 解V 106.5π4π4π43302010⨯=-+-+=R εQ Q R εQ R εq V A A A A A V 105.4π4330⨯=+=R εQ Q V BA B 2 将球壳B 接地后断开,再把球A 接地,设球A 带电q A ,球A 和球壳B 的电势为 6-10 两块带电量分别为Q1,Q2的导体平板平行证明 1 设两块导体平板表面的电荷面密度分别为σ1、σ2、σ3、σ4 ,取如图b所示的圆柱面为高斯面,高斯面由侧面S 1和两个端面S 2、S 3构成,由分析可知得 0,0ΔΔ3232=+=+=∑σσS σS σq相向的两面电荷面密度大小相等符号相反.2 由电场的叠加原理,取水平向右为参考正方向,导体内P 点的电场强度为 6-11 将带电量为Q 的导体板A 从远处移至不带电的导体板B 附件解 1 如图b所示,依照题意和导体板达到静电平衡时的电荷分布规律可得()Q S σσ=+21 ;()Q S σσ=+43;041=-σσ;032=+σσSQσσσσ24321==-==两导体板间电场强度为S εQ E 02=;方向为A 指向B .两导体板间的电势差为 SεQd U AB 02=2 如图c 所示,导体板B 接地后电势为零. 两导体板间电场强度为S εQ E 0=';方向为A 指向B . SεQdU AB0=' 6-12 如图 Q>0, 内半径为a, 外半径b6-13 如图, 在真空中将半径为R 的金属球接地,在与球心 6-14 地球和电离层可当做一个球形电容器 6-15 两线输电线的线径代入数据 F 1052.512-⨯=C 6-16 电容式计算机键盘解 按下按键时电容的变化量为⎥⎦⎤⎢⎣⎡-=0011Δd d S εC ;mm 152.0ΔΔΔ00min20min =+=-=S εC d Cd d d d6-17 盖革-米勒管 可用解 1 由上述分析,利用高斯定理可得L λεrL E 01π2=⋅,则两极间的电场强度 2 当611 2.010V m E -=⨯⋅ ,R 1 = mm,R 2 = mm 时,6-18 解 1 查表可知二氧化钛的相对电容率εr =173,故充满此介质的平板电容器的电容2 C 1084.18-⨯==CU Q 2-80m C 1084.1⋅⨯==-SQσ 31-5m V 102.1⋅⨯==dUE 6-19 如图 , 半径R= 的导体球带有电荷 Q = -8C解 1 取半径为r 的同心球面为高斯面,由高斯定理得r <R 0π421=⋅r D 01=D ;01=E R <r <R +d Q r D =⋅22π422π4r Q D =;202π4r εεQ E r=r >R +d Q r D =⋅23π4;23π4r Q D =;203π4r εεQE r =r 1 =5 cm,该点在导体球内,则01=r D ;01=r Er 2 =15 cm,该点在介质层内,εr =,则2822m C 105.3π42--⋅⨯==r Q D r ;12220m V 100.8π42-⋅⨯==r εεQ E r r r 3 =25 cm,该点在空气层内,空气中ε≈ε0 ,则2823m C 103.1π43--⋅⨯==r Q D r ;12220m V 104.1π43-⋅⨯==r εQ E r 2 取无穷远处电势为零,由电势与电场强度的积分关系得 r 3 =25 cm,V 360π4d 0r 331==⋅=⎰∞rεQV r E r 2 =15 cm, ()()V480π4π4π4d d 0020r 3222=+++-=⋅+⋅=⎰⎰+∞+d R εQd R εεQ r εεQ V r r dR dR rE r E r 1 =5 cm,()()V540π4π4π4d d 000321=+++-=⋅+⋅=⎰⎰+∞+d R εQd R εεQ R εεQ V r r dR RdR rE r E3 均匀介质的极化电荷分布在介质界面上,因空气的电容率ε =ε0 ,极化电荷可忽略.故在介质外表面; 6-20 人体的某些细胞壁两侧解 1细胞壁内的电场强度V /m 108.960⨯==rεεσE ;方向指向细胞外. 2 细胞壁两表面间的电势差V 101.52-⨯==Ed U . 6-21 有一个平板电容器 = 10-5 C;M-2解 250m C 105.4Δ--⋅⨯===σSQD 16r 0m V 105.2-⋅⨯==εεDE D 、P 、E 方向相同,均由正极板指向负极板图中垂直向下.6-22 在一个半径为R1的长直导线外套有氯解 由介质中的高斯定理,有⎰=⋅=⋅L λrL D d π2S D ;r rλe D π2=r r r εελεεe D E 00π2==;r r rλε-εe E -D P π2110⎪⎪⎭⎫ ⎝⎛== 6-23 如图 , 球形电极浮在相对电容率 = 的油槽中解 R εC 01π2= ;R εεC r 02π2=6-24 如图 , 由两块相距为 mm 的 薄金属板A,B 构成的空气平板电容器解 1 13232123C C C C C C C C ++⋅=+=32122d d d ==且,故1322C C C == ,因此A 、B 间的总电容12C C =2 若电容器的一个引脚不慎与金属屏蔽盒相碰,相当于C2 或者C3 极板短接,其电容为零,则总电容6-25 如图 , 在点A 和点B 之间有五个电容器 解 1 由电容器的串、并联,有求得等效电容C AB =4 μF.2 由于AB DB CD AC Q Q Q Q ===,得V 4==AB ACABAC U C C U 6-26 如图,有一空气电热板级板面积S ,间距d 解 12 插入电介质后,电容器的电容C 1 为()()δd εδS εεδS εεQ δd SεQ Q C r r r -+=⎥⎦⎤⎢⎣⎡+-=0001/ ;()δd εδSU εεU C C r r -+==011 ()δd εδU S εεQ E r r -+=='011;()δd εδUεS εQ E r r -+==0113 插入导体达到静电平衡后,导体为等势体,其电容和极板上的电荷分别为导体中电场强度 02='E δd UE -=2 6-27 为了实时检测纺织品6-28 利用电容传感器测量油料液面高度证 由分析知,导体A 、C 构成一组柱形电容器,它们的电容分别为d D L εαln π20=;()dD L εεβr ln π20-= UX βaU CU Q +== 6-29 有一电容为 uF 的平行平板电容器解 1 V 190max ==d E U b2J 1003.92132max -⨯=CU W e6-30 半径为的长直导线,解 1 导线表面最大电荷面密度 250max m C 1066.2--⋅⨯==b E εσ 2 由上述分析得b E R ελ10max π2=,此时导线与圆筒之间各点的电场强度为()1210π2R r R rRr ελE m <<==0=E 其他 6-31 一空气平板电容器,空气厚解 ()16m V 102.3-⋅⨯=+-=δδd εVεE r r此时,因b E E > ,空气层被击穿,击穿后40 kV 电压全部加在玻璃板两侧,此时玻璃板内的电场强度由于玻璃的击穿电场强度'110V m b E M -=⋅,b E E '> ,故玻璃也将相继被击穿,电容器完全被击穿.6-32 某介质的相对电容率 er=解 16m V 1018-⋅⨯=≤b E E m 1022.2/4-⨯==b m E U d要制作电容为 μF 的平板电容器,其极板面积 210m 42.0==εεCdS 6-33 一平行板空气电容器,极板面积S,极板间距d, 充电解 1 20220221S εQ E εw e == Sεd Q V w W e e 022ΔΔ== 2 两导体极板带等量异号电荷,外力F 将其缓缓拉开时,应有F =-F e ,则外力所作的功为7-6 北京正负电子对撞机 7-7 已知铜的摩尔质量解 1M ρN n A /= 14s m 1046.4//--⋅⨯===e ρN M j ne j A m m d v 2 室温下T =300 K电子热运动的平均速率与电子漂移速率之比为 7-8 有两个同轴导体圆柱面,它们的长度均为20m解 由分析可知,在半径r = mm 的圆柱面上的电流密度 7-9 已知地球北极磁场磁感应强度B 的大小为 T解 设赤道电流为I,则由教材第7 -4 节例2 知,圆电流轴线上北极点的磁感强度 7-10 如图,有两根导线沿半径方向接到铁环 7-11 如图 几种截流导线在平面内分布解 aRIμB 800=B 0 的方向垂直纸面向外. b 将载流导线看作圆电流和长直电流,由叠加原理可得RIμR I μB π22000-=B 0 的方向垂直纸面向里. c 将载流导线看作1/2 圆电流和两段半无限长直电流,由叠加原理可得RIμR I μR I μR I μR I μB 4π24π4π4000000+=++=B 0 的方向垂直纸面向外. 7-12 截流导线形状如图, 球O 点 ;; B7-13 如图, 一个半径为R 的无限长半球圆柱面导体,解 根据分析,由于长直细线中的电流R l I I π/d d =,它在轴线上一点激发的磁感强度的大小为RIμB B x 20π== B 的方向指向Ox 轴负向. 7-14 分实验室常用所谓亥姆霍兹线圈由 0d d =xB, 解得 x =0 由0d d 022==x x B ,解得 d =R① 将磁感强度B 在两线圈中点附近用泰勒级数展开,则若x <<1;且()0d 0d =xB ;()0d 0d 22=x B .则磁感强度Bx 在中点O 附近近似为常量,场为均匀场.这表明在d =R 时,中点x =0附近区域的磁场可视为均匀磁场. 7-15 如图,截流长直导线的电流为L,求通过矩形面积的磁通量 7-16 已知 10mm2 裸铜线;; 50A在导线内r <R , 2222πππR r r R I I ==∑,因而202πRIr μB =在导线外r >R ,I I =∑,因而rIμB 2π0=2 在导线表面磁感强度连续,由I =50 A,m 1078.1π/3-⨯==s R ,得 7-17 有一同轴电缆, 其尺寸如图解 由上述分析得r <R 1 22101ππ12πr R μr B =⋅ 21012πR Ir μB =R 1 <r <R 2 I μr B 022π=⋅ rI μB 2π02= R 2 <r <R 3r >R 3 ()02π04=-=⋅I I μr B 04=B7-18 如图,N 匝线圈均匀密绕;;中空骨架上∑=⋅I μr B 02π r <R 1 02π1=⋅r B01=B R 2 >r >R 1 NI μr B 022π=⋅ rNIμB 2π02=r >R 2 02π3=⋅r B 03=B RNIμB 2π0≈7-19 电流I 均匀的流过半径为R 的圆形长直导线 7-20 设 电流均匀流过无限大导电平面 7-21 设有两无限大平行载流平面 ,解 1 取垂直于纸面向里为x 轴正向,合磁场为 2 两导体载流平面之外,合磁场的磁感强度 7-22 已知地面上空 B= -4解 1 依照B F ⋅=v q L 可知洛伦兹力L F 的方向为B ⊥v 的方向,如图所示. 2N 102.316-⨯==B F v q L N 1064.116-⨯==g m G p因而,有101095.1/⨯=G F L ,即质子所受的洛伦兹力远大于重力. 7-23 在一个显像管的电子 4 eV 解 1 B F ⨯=v q电子带负电,q <0,因而可以判断电子束将偏向东侧.2m 71.62===eBmE eB m R k v 由题知cm 20=y ,并由图中的几何关系可得电子束偏向东侧的距离m 1098.2Δ322-⨯=--=y R R x 即显示屏上的图像将整体向东平移近3 mm .这种平移并不会影响整幅图像的质量.7-24 试证明霍尔电场强度与恒流强度之比j E ρC = ;B E ⨯-=v H ; v ne =jnev ρρC ==j E ;;B E ⨯-=v H ; B/ne ρB/ρ/ρB/ρ/E E C H ===v v v / 7-25 霍尔效应 测量血流的速度7-26 磁力可以用来输送导电液体 1JBl S IBl S F p ===Δ 2 26A/m 1038.3Δ⨯==Blp J 7-27 带电粒子在过饱和液体中运动 半径7-28 从太阳射来的速率 10 7解 由带电粒子在磁场中运动的回转半径高层范艾伦辐射带中的回转半径 m 101.1311⨯==eB m R v ;m 2322==eB m R v 7-29 如图, 一根长直导线载有电流I1 = 30A I2=20Adl I I μF π22103=; ()N 1028.1π2π2321021043-⨯=+-=-=b d l I I μd l I I μF F F 合力的方向朝左,指向直导线.7-30 一直流变电站电压500kv解 1 d I μBI F B π220== ;dεU C λE F E 022π2== 由0=+E B f f 可得 2 输出功率7-31 将一电流均匀分布的无限大...B0依照右手定则可知磁场力的方向为水平指向左侧.7-32 在直径为的刚棒上解 1 因为所有电子的磁矩方向相同,则圆盘的磁矩27m A 1056.1⋅⨯==-e μN m2 由磁矩的定义,可得圆盘边缘等效电流A 100.2/3-⨯==S m I 7-33 在氢原子中,L=h/2π7-34 如图 ,半径为R 的圆片均匀带电,电荷面密度解 由上述分析可知,轴线上x 处的磁感强度大小为7-35 如图 一根长直同轴电缆, 内外解 1 取与电缆轴同心的圆为积分路径,根据磁介质中的安培环路定理,有 ∑=f I r H π2 对r <R 1 221ππr R I I f =∑ 2112πR Ir H = 01=M ,21012πR Ir μB = 对R 2 >r >R 1 I I f =∑ rI H 2π2= 填充的磁介质相对磁导率为μr ,有()r I μM r 2π12-=,rI μμB r 2π02= 对R 3 >r >R 2 03=M , 对r >R 3 0=-=∑I I I f 04=H ,04=M ,04=B 2 由r M I s 2π⋅=,磁介质内、外表面磁化电流的大小为7-36 设长L= ,截面积S= 2解 1 A N M SL ρN 0= ;2000m A 85.7-⋅===m N M SL ρNm m A 2 维持铁棒与磁场正交所需力矩等于该位置上磁矩所受的磁力矩 7-37 在实验室,为了测试;;平均周长分析 根据右手定则,磁感线与电流相互环连,磁场沿环型螺线管分布,当 环形螺线管中通以电流I 时,由安培环路定理得磁介质内部的磁场强度为 由题意可知,环内部的磁感强度S ΦB /=,而H μμB r 0=,故有解 磁介质内部的磁场强度和磁感强度分别为L NI /和S Φ/,因而。

马文蔚第五物理第3章作业题解

马文蔚第五物理第3章作业题解

马文蔚第五版物理第3章作业题解————————————————————————————————作者:————————————————————————————————日期:3 -8 F x =30+4t (式中F x 的单位为N,t 的单位为s)的合外力作用在质量m =10 kg 的物体上,试求:(1) 在开始2s 内此力的冲量;(2) 若冲量I =300 N·s,此力作用的时间;(3) 若物体的初速度v 1 =10 m·s -1 ,方向与Fx 相同,在t =6.86s 时,此物体的速度v 2 .分析 本题可由冲量的定义式⎰=21d t t t F I ,求变力的冲量,继而根据动量定理求物体的速度v 2.解 (1) 由分析知()s N 68230d 43020220⋅=+=+=⎰t t t t I (2) 由I =300 =30t +2t 2 ,解此方程可得t =6.86 s(另一解不合题意已舍去)(3) 由动量定理,有I =m v 2- m v 1由(2)可知t =6.86 s 时I =300 N·s ,将I 、m 及v 1代入可得112s m 40-⋅=+=mm I v v 3 -9 高空作业时系安全带是非常必要的.假如一质量为51.0 kg 的人,在操作时不慎从高空竖直跌落下来,由于安全带的保护,最终使他被悬挂起来.已知此时人离原处的距离为2.0 m ,安全带弹性缓冲作用时间为0.50 s .求安全带对人的平均冲力.分析 从人受力的情况来看,可分两个阶段:在开始下落的过程中,只受重力作用,人体可看成是作自由落体运动;在安全带保护的缓冲过程中,则人体同时受重力和安全带冲力的作用,其合力是一变力,且作用时间很短.为求安全带的冲力,可以从缓冲时间内,人体运动状态(动量)的改变来分析,即运用动量定理来讨论.事实上,动量定理也可应用于整个过程.但是,这时必须分清重力和安全带冲力作用的时间是不同的;而在过程的初态和末态,人体的速度均为零.这样,运用动量定理仍可得到相同的结果.解1 以人为研究对象,按分析中的两个阶段进行讨论.在自由落体运动过程中,人跌落至2 m 处时的速度为gh 21=v (1)在缓冲过程中,人受重力和安全带冲力的作用,根据动量定理,有()12Δv v m m t -=+P F (2)由式(1)、(2)可得安全带对人的平均冲力大小为()N 1014.1Δ2ΔΔ3⨯=+=+=tgh mg t m Δmg F v 解2 从整个过程来讨论.根据动量定理有N 1014.1/2Δ3⨯=+=mg g h tmg F 3 -12 一作斜抛运动的物体,在最高点炸裂为质量相等的两块,最高点距离地面为19.6m .爆炸1.00 s 后,第一块落到爆炸点正下方的地面上,此处距抛出点的水平距离为1.00×102 m .问第二块落在距抛出点多远的地面上.(设空气的阻力不计)分析 根据抛体运动规律,物体在最高点处的位置坐标和速度是易求的.因此,若能求出第二块碎片抛出的速度,按抛体运动的规律就可求得落地的位置.为此,分析物体在最高点处爆炸的过程,由于爆炸力属内力,且远大于重力,因此,重力的冲量可忽略,物体爆炸过程中应满足动量守恒.由于炸裂后第一块碎片抛出的速度可由落体运动求出,由动量守恒定律可得炸裂后第二块碎片抛出的速度,进一步求出落地位置.解(1)求分离前的速度取如图示坐标,根据抛体运动的规律,爆炸前,物体在最高点A 的速度的水平分量为hg x t x x 21010==v (1) (2)求分离后第一块碎片的速度物体爆炸后,第一块碎片竖直落下的运动方程为21121gt t h y --=v 当该碎片落地时,有y 1 =0,t =t 1 ,则由上式得爆炸后第一块碎片抛出的速度12121t gt h -=v (2) (3)求分离后第二块碎片的速度又根据动量守恒定律,在最高点处有x x m m 2021v v = (3) y m m 2121210v v +-= (4) 联立解式(1)、(2)、(3) 和(4),可得爆炸后第二块碎片抛出时的速度分量分别为1102s m 100222-⋅===hg x x x v v 112112s m 7.1421-⋅=-==t gt h y v v (4)根据分离后第二块碎片的速度,求运动方程爆炸后,第二块碎片作斜抛运动,其运动方程为2212t v x x x += (5)2222221gt t h y y -+=v (6) 落地时,y 2 =0,由式(5)、(6)可解得第二块碎片落地点的水平位置x 2 =500 m*3 -16 设在地球表面附近,一初质量为5.00 ×105 kg 的火箭,从尾部喷出气体的速率为2.00 ×103 m·s -1 .(1) 试问:每秒需喷出多少气体,才能使火箭最初向上的加速度大小为4.90 m·s -2 .(2) 若火箭的质量比为6.00,求该火箭的最后速率.分析 这是一个系统内质量转移的问题.为了讨论火箭的运动规律,仍需建立其在重力场中的动力学方程.为此,以t 时刻质量为m 的火箭为研究对象,它在t →t +Δt 的时间内,将分离成火箭主体(包括尚剩的燃料)和排出的燃料两部分.根据它们的总动量的增量Σd P i 和系统所受的外力———重力(阻力不计),由动量定理可得到-mg =u d m′/d t +m d v /d t (推导从略,见教材),即火箭主体的动力学方程.由于在d t 时间内排出燃料的质量d m ′很小,式中m 也就可以视为此刻火箭主体的质量, 而燃料的排出率d m ′/d t 也就是火箭质量的变化率-d m /d t .这样,上述方程也可写成ma mg tm u =-d d .在特定加速度a 0 的条件下, 根据初始时刻火箭的质量m 0 ,就可求出燃料的排出率d m /d t .在火箭的质量比( 即t 时刻火箭的质量m 与火箭的初始质量m 0之比) 已知的条件下,可算出火箭所经历的时间,则火箭运动的速率可通过对其动力学方程积分后解得.解 (1) 以火箭发射处为原点,竖直向上为正方向.该火箭在重力场中的动力学方程为ma mg tm u =-d d (1) 因火箭的初始质量为m 0 =5.00 ×105 kg, 要使火箭获得最初的加速度a 0 =4.90 m·s -2,则燃气的排出率为()1300s kg 1068.3d d -⋅⨯=+=ua g m t m (2) 为求火箭的最后速率,可将式(1)改写成t m mg t m u d d d d v =-分离变量后积分,有⎰⎰⎰-=t mm t g m m u 0d d d 00v v v 火箭速率随时间的变化规律为 gt m m u --=00lnv v (2) 因火箭的质量比为6.00,故经历时间t 后,其质量为 m t t m m m 61d d 0=-= 得 tm m t d /d 650= (3) 将式(3)代入式(2),依据初始条件,可得火箭的最后速率13000s m 1047.2d /d 65ln ln-⋅⨯=-=-='tm m m m u gt m m u v 3 -19 一物体在介质中按规律x =ct 3 作直线运动,c 为一常量.设介质对物体的阻力正比于速度的平方.试求物体由x 0 =0 运动到x =l 时,阻力所作的功.(已知阻力系数为k )分析 本题是一维变力作功问题,仍需按功的定义式⎰⋅=x F d W 来求解.关键在于寻找力函数F =F (x ).根据运动学关系,可将已知力与速度的函数关系F (v ) =k v 2 变换到F (t ),进一步按x =ct 3 的关系把F (t )转换为F (x ),这样,就可按功的定义式求解.解 由运动学方程x =ct 3 ,可得物体的速度 23d d ct tx ==v 按题意及上述关系,物体所受阻力的大小为 3/43/242299x kc t kc k F ===v则阻力的功为⎰⋅=x F W d 3/73/23/403/20727d 9d 180cos d l kc x x kc x W l o l -=-==⋅=⎰⎰⎰x F3 -20 一人从10.0 m 深的井中提水,起始桶中装有10.0 kg 的水,由于水桶漏水,每升高1.00 m 要漏去0.20 kg 的水.水桶被匀速地从井中提到井口,求所作的功.分析 由于水桶在匀速上提过程中,拉力必须始终与水桶重力相平衡.水桶重力因漏水而随提升高度而变,因此,拉力作功实为变力作功.由于拉力作功也就是克服重力的功,因此,只要能写出重力随高度变化的关系,拉力作功即可题3 -20 图求出.解 水桶在匀速上提过程中,a =0,拉力与水桶重力平衡,有F +P =0在图示所取坐标下,水桶重力随位置的变化关系为P =mg -αgy其中α=0.2 kg/m,人对水桶的拉力的功为()J 882d d 1000=-=⋅=⎰⎰y agy mg W l y F3 -26 一质量为m 的地球卫星,沿半径为3R E 的圆轨道运动,RE 为地球的半径.已知地球的质量为m E .求:(1) 卫星的动能;(2) 卫星的引力势能;(3) 卫星的机械能.分析 根据势能和动能的定义,只需知道卫星的所在位置和绕地球运动的速率,其势能和动能即可算出.由于卫星在地球引力作用下作圆周运动,由此可算得卫星绕地球运动的速率和动能.由于卫星的引力势能是属于系统(卫星和地球)的,要确定特定位置的势能时,必须规定势能的零点,通常取卫星与地球相距无限远时的势能为零.这样,卫星在特定位置的势能也就能确定了.至于卫星的机械能则是动能和势能的总和.解 (1) 卫星与地球之间的万有引力提供卫星作圆周运动的向心力,由牛顿定律可得()E 22E E 33R m R m m G v = 则 EE 2K 621R m m G m E ==v 建立坐标方向(2) 取卫星与地球相距无限远(r→∞)时的势能为零,则处在轨道上的卫星所具有的势能为EE P 3R m m GE -= (3) 卫星的机械能为 EE E E E E P K 636R m m G R m m G R m m GE E E -=-=+= 3 -34 如图所示,一个质量为m 的小球,从内壁为半球形的容器边缘点A 滑下.设容器质量为m′,半径为R ,内壁光滑,并放置在摩擦可以忽略的水平桌面上.开始时小球和容器都处于静止状态.当小球沿内壁滑到容器底部的点B 时,受到向上的支持力为多大?分析 由于桌面无摩擦,容器可以在水平桌面上滑动,当小球沿容器内壁下滑时,容器在桌面上也要发生移动.将小球与容器视为系统,该系统在运动过程中沿水平桌面方向不受外力作用,系统在该方向上的动量守恒;若将小球、容器与地球视为系统,因系统无外力作用,而内力中重力是保守力,而支持力不作功,系统的机械能守恒.由两个守恒定律可解得小球和容器在惯性系中的速度.由于相对运动的存在,小球相对容器运动的轨迹是圆,而相对桌面运动的轨迹就不再是圆了,因此,在运用曲线运动中的法向动力学方程求解小球受力时,必须注意参考系的选择.若取容器为参考系(非惯性系),小球在此参考系中的轨迹仍是容器圆弧,其法向加速度可由此刻的速度(相对于容器速度)求得.在分析小球受力时,除重力和支持力外,还必须计及它所受的惯性力.小球位于容器的底部这一特殊位置时,容器的加速度为零,惯性力也为零.这样,由法向动力学方程求解小球所受的支持力就很容易了.若仍取地面为参考系(惯性系),虽然无需考虑惯性力,但是因小球的轨迹方程比较复杂,其曲率半径及法向加速度难以确定,使求解较为困难.解 根据水平方向动量守恒定律以及小球在下滑过程中机械能守恒定律可分别得0='-'m m m m v v (1)mgR m m m ='+'222121v v v (2) 式中v m 、v m ′分别表示小球、容器相对桌面的速度.由式(1)、(2)可得小球到达容器底部时小球、容器的速度大小分别为m m gR m m '+'=2v m m gR m m m m '+''='2v 由于小球相对地面运动的轨迹比较复杂,为此,可改为以容器为参考系(非惯性系).在容器底部时,小球相对容器的运动速度为()gR m m m m m m m m 2⎪⎭⎫ ⎝⎛''+=+=--='''v v v v v (3) 在容器底部,小球所受惯性力为零,其法向运动方程为Rm mg F m N 2v '=- (4) 由式(3)、(4)可得小球此时所受到的支持力为⎪⎭⎫ ⎝⎛'+=m m mg F N 23。

大学物理(第五版)课后习题答案

大学物理(第五版)课后习题答案

面向21 世纪课程教材学习辅导书习题分析与解答马文蔚主编殷实沈才康包刚编高等教育出版社前言本书是根据马文蔚教授等改编的面向21世纪课程教材《物理学》第五版一书中的习题而作的分析与解答。

与上一版相比本书增加了选择题更换了约25的习题。

所选习题覆盖了教育部非物理专业大学物理课程教学指导分委员会制定的《非大学物理课程教学基本要求讨论稿》中全部核心内容并选有少量扩展内容的习题所选习题尽可能突出基本训练和联系工程实际。

此外为了帮助学生掌握求解大学物理课程范围内的物理问题的思路和方法本书还为力学、电磁学、波动过程和光学热物理、相对论和量子物理基础等撰写了涉及这些内容的解题思路和方法以期帮助学生启迪思维提高运用物理学的基本定律来分析问题和解决问题的能力。

物理学的基本概念和规律是在分析具体物理问题的过程中逐步被建立和掌握的解题之前必须对所研究的物理问题建立一个清晰的图像从而明确解题的思路。

只有这样才能在解完习题之后留下一些值得回味的东西体会到物理问题所蕴含的奥妙和涵义通过举一反三提高自己分析问题和解决问题的能力。

有鉴于此重分析、简解答的模式成为编写本书的指导思想。

全书力求在分析中突出物理图像引导学生以科学探究的态度对待物理习题初步培养学生―即物穷理‖的精神通过解题过程体验物理科学的魅力和价值尝试―做学问‖的乐趣。

因此对于解题过程本书则尽可能做到简明扼要让学生自己去完成具体计算编者企盼这本书能对学生学习能力的提高和科学素质的培养有所帮助。

本书采用了1996 年全国自然科学名词审定委员会公布的《物理学名词》和中华人民共和国国家标准GB3100 3102 -93 中规定的法定计量单位。

本书由马文蔚教授主编由殷实、沈才康、包刚、韦娜编写西北工业大学宋士贤教授审阅了全书并提出了许多详细中肯的修改意见在此编者致以诚挚的感谢。

由于编者的水平有限敬请读者批评指正。

编者2006 年1 月于南京目录第一篇力学求解力学问题的基本思路和方法第一章质点运动学第二章牛顿定律第三章动量守恒定律和能量守恒定律第四章刚体的转动第二篇电磁学求解电磁学问题的基本思路和方法第五章静电场第六章静电场中的导体与电介质第七章恒定磁场第八章电磁感应电磁场第三篇波动过程光学求解波动过程和光学问题的基本思路和方法第九章振动第十章波动第十一章光学第四篇气体动理论热力学基础求解气体动理论和热力学问题的基本思路和方法第十二章气体动理论第十三章热力学基础第五篇近代物理基础求解近代物理问题的基本思路和方法第十四章相对论第十五章量子物理附录部分数学公式第一篇力学求解力学问题的基本思路和方法物理学是一门基础学科它研究物质运动的各种基本规律由于不同运动形式具有不同的运动规律从而要用不同的研究方法处理力学是研究物体机械运动规律的一门学科而机械运动有各种运动形态每一种形态和物体受力情况以及初始状态有密切关系掌握力的各种效应和运动状态改变之间的一系列规律是求解力学问题的重要基础但仅仅记住一些公式是远远不够的求解一个具体物理问题首先应明确研究对象的运动性质选择符合题意的恰当的模型透彻认清物体受力和运动过程的特点等等根据模型、条件和结论之间的逻辑关系运用科学合理的研究方法进而选择一个正确简便的解题切入点在这里思路和方法起着非常重要的作用1正确选择物理模型和认识运动过程力学中常有质点、质点系、刚体等模型每种模型都有特定的含义适用范围和物理规律采用何种模型既要考虑问题本身的限制又要注意解决问题的需要例如用动能定理来处理物体的运动时可把物体抽象为质点模型而用功能原理来处理时就必须把物体与地球组成一个系统来处理再如对绕固定轴转动的门或质量和形状不能不计的定滑轮来说必须把它视为刚体并用角量和相应规律来进行讨论在正确选择了物理模型后还必须对运动过程的性质和特点有充分理解如物体所受力矩是恒定的还是变化的质点作一般曲线运动还是作圆周运动等等以此决定解题时采用的解题方法和数学工具2.叠加法叠加原理是物理学中应用非常广泛的一条重要原理据此力学中任何复杂运动都可以被看成由几个较为简单运动叠加而成例如质点作一般平面运动时通常可以看成是由两个相互垂直的直线运动叠加而成而对作圆周运动的质点来说其上的外力可按运动轨迹的切向和法向分解其中切向力只改变速度的大小而法向力只改变速度的方向对刚体平面平行运动来说可以理解为任一时刻它包含了两个运动的叠加一是质心的平动二是绕质心的转动运动的独立性和叠加性是叠加原理中的两个重要原则掌握若干基本的简单运动的物理规律再运用叠加法就可以使我们化―复杂‖为―简单‖此外运用叠加法时要注意选择合适的坐标系选择什么样的坐标系就意味着运动将按相应形式分解在力学中对一般平面曲线运动多采用平面直角坐标系平面圆周运动多采用自然坐标系而对刚体绕定轴转动则采用角坐标系等等叠加原理在诸如电磁学振动、波动等其他领域内都有广泛应用是物理学研究物质运动的一种基本思想和方法需读者在解题过程中不断体会和领悟3.类比法有些不同性质运动的规律具有某些相似性理解这种相似性产生的条件和遵从的规律有利于发现和认识物质运动的概括性和统一性而且还应在学习中善于发现并充分利用这种相似性以拓宽自己的知识面例如质点的直线运动和刚体绕定轴转动是两类不同运动但是运动规律却有许多可类比和相似之处如txddv 与tθωdd taddv 与tωαdd 其实它们之间只是用角量替换了相应的线量而已这就可由比较熟悉的公式联想到不太熟悉的公式这种类比不仅运动学有动力学也有如maF 与JαM0dvvmmtF 与0dLωJωtM 2022121dvvmmxF 与2022121dωJωJθM 可以看出两类不同运动中各量的对应关系十分明显使我们可以把对质点运动的分析方法移植到刚体转动问题的分析中去当然移植时必须注意两种运动的区别一个是平动一个是转动状态变化的原因一个是力而另一个是力矩此外还有许多可以类比的实例如万有引力与库仑力、静电场与稳恒磁场电介质的极化与磁介质的磁化等等只要我们在物理学习中善于归纳类比就可以沟通不同领域内相似物理问题的研究思想和方法并由此及彼触类旁通4微积分在力学解题中的运用微积分是大学物理学习中应用很多的一种数学运算在力学中较为突出也是初学大学物理课程时遇到的一个困难要用好微积分这个数学工具首先应在思想上认识到物体在运动过程中反映其运动特征的物理量是随时空的变化而变化的一般来说它们是时空坐标的函数运用微积分可求得质点的运动方程和运动状态这是大学物理和中学物理最显著的区别例如通过对质点速度函数中的时间t 求一阶导数就可得到质点加速度函数另外对物理量数学表达式进行合理变形就可得出新的物理含义如由tddav借助积分求和运算可求得在t1 -t2 时间内质点速度的变化同样由tddvr也可求得质点的运动方程以质点运动学为例我们可用微积分把运动学问题归纳如下第一类问题已知运动方程求速度和加速度第二类问题已知质点加速度以及在起始状态时的位矢和速度可求得质点的运动方程在力学中还有很多这样的关系读者不妨自己归纳整理一下从而学会自觉运用微积分来处理物理问题运用时有以下几个问题需要引起大家的关注1 运用微积分的物理条件在力学学习中我们会发现ta0vv和2021ttarv等描述质点运动规律的公式只是式tt0ddavvv0和式tttrdd000arv在加速度a为恒矢量条件下积分后的结果此外在高中物理中只讨论了一些质点在恒力作用下的力学规律和相关物理问题而在大学物理中则主要研究在变力和变力矩作用下的力学问题微积分将成为求解上述问题的主要数学工具2 如何对矢量函数进行微积分运算我们知道很多物理量都是矢量如力学中的r、v、a、p 等物理量矢量既有大小又有方向从数学角度看它们都是―二元函数‖在大学物理学习中通常结合叠加法进行操作如对一般平面曲线运动可先将矢量在固定直角坐标系中分解分别对x、y 轴两个固定方向的分量可视为标量进行微积分运算最后再通过叠加法求得矢量的大小和方向对平面圆周运动则可按切向和法向分解对切线方向上描述大小的物理量a 、v、s 等进行微积分运算3 积分运算中的分离变量和变量代换问题以质点在变力作用下作直线运动为例如已知变力表达式和初始状态求质点的速率求解本问题一条路径是由F m a 求得a的表达式再由式dv adt 通过积分运算求得v其中如果力为时间t 的显函数则a at此时可两边直接积分即ttta0ddvvv0但如果力是速率v 的显函数则a av此时应先作分离变量后再两边积分即tta0dd1vvvv0又如力是位置x 的显函数则aax此时可利用txddv得vxtdd并取代原式中的dt再分离变量后两边积分即xxtxa0ddvvvv0 用变量代换的方法可求得vx表达式在以上积分中建议采用定积分下限为与积分元对应的初始条件上限则为待求量5.求解力学问题的几条路径综合力学中的定律可归结为三种基本路径即1 动力学方法如问题涉及到加速度此法应首选运用牛顿定律、转动定律以及运动学规律可求得几乎所有的基本力学量求解对象广泛但由于涉及到较多的过程细节对变力矩问题还将用到微积分运算故计算量较大因而只要问题不涉及加速度则应首先考虑以下路径2 角动量方法如问题不涉及加速度但涉及时间此法可首选3 能量方法如问题既不涉及加速度又不涉及时间则应首先考虑用动能定理或功能原理处理问题当然对复杂问题几种方法应同时考虑此外三个守恒定律动量守恒、能量守恒、角动量守恒定律能否成立往往是求解力学问题首先应考虑的问题总之应学会从不同角度分析与探讨问题以上只是原则上给出求解力学问题一些基本思想与方法其实求解具体力学问题并无固定模式有时全靠―悟性‖但这种―悟性‖产生于对物理基本规律的深入理解与物理学方法掌握之中要学会在解题过程中不断总结与思考从而使自己分析问题的能力不断增强第一章质点运动学1 -1 质点作曲线运动在时刻t 质点的位矢为r速度为v 速率为vt 至t Δt时间内的位移为Δr 路程为Δs 位矢大小的变化量为Δr 或称Δ r 平均速度为v平均速率为v 1 根据上述情况则必有 A Δr Δs Δr B Δr ≠ Δs ≠ Δr当Δt→0 时有 dr ds ≠ dr C Δr ≠ Δr ≠ Δs当Δt→0 时有 dr dr ≠ ds D Δr ≠ Δs ≠ Δr当Δt→0 时有 dr dr ds 2 根据上述情况则必有 A v v v v B v ≠v v ≠ v C v v v ≠ v D v ≠v v v分析与解1 质点在t 至t Δt 时间内沿曲线从P 点运动到P′点各量关系如图所示其中路程Δs PP′ 位移大小Δr PP′而Δr r - r 表示质点位矢大小的变化量三个量的物理含义不同在曲线运动中大小也不相等注在直线运动中有相等的可能但当Δt→0 时点P′无限趋近P 点则有 dr ds但却不等于dr故选B 2 由于 Δr ≠Δs故tstΔΔΔΔr即 v ≠v 但由于 dr ds故tstddddr即 v v由此可见应选C 1 -2 一运动质点在某瞬时位于位矢rxy的端点处对其速度的大小有四种意见即1trdd 2tddr 3tsdd 422ddddtytx 下述判断正确的是 A 只有12正确B 只有2正确 C 只有23正确 D 只有34正确分析与解trdd表示质点到坐标原点的距离随时间的变化率在极坐标系中叫径向速率通常用符号vr表示这是速度矢量在位矢方向上的一个分量tddr表示速度矢量在自然坐标系中速度大小可用公式tsddv计算在直角坐标系中则可由公式22ddddtytxv求解故选D 1 -3 质点作曲线运动r 表示位置矢量v表示速度a表示加速度s 表示路程a 表示切向加速度对下列表达式即1d v /dt a2dr/dt v3ds/dt v4d v /dt a 下述判断正确的是A 只有1、4是对的B 只有2、4是对的C 只有2是对的D 只有3是对的分析与解tddv表示邢蚣铀俣萢 它表示速度大小随时间的变化率是加速度矢量沿速度方向的一个分量起改变速度大小的作用trdd在极坐标系中表示径向速率vr如题1 -2 所述tsdd在自然坐标系中表示质点的速率v而tddv表示加速度的大小而不是切向加速度a 因此只有3 式表达是正确的故选D 1 -4 一个质点在做圆周运动时则有 A 切向加速度一定改变法向加速度也改变B 切向加速度可能不变法向加速度一定改变C 切向加速度可能不变法向加速度不变D 切向加速度一定改变法向加速度不变分析与解加速度的切向分量a 起改变速度大小的作用而法向分量an起改变速度方向的作用质点作圆周运动时由于速度方向不断改变相应法向加速度的方向也在不断改变因而法向加速度是一定改变的至于a 是否改变则要视质点的速率情况而定质点作匀速率圆周运动时a 恒为零质点作匀变速率圆周运动时a 为一不为零的恒量当a 改变时质点则作一般的变速率圆周运动由此可见应选B 1 -5 如图所示湖中有一小船有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动设该人以匀速率v0 收绳绳不伸长且湖水静止小船的速率为v则小船作 A 匀加速运动θcos0vv B 匀减速运动θcos0vv C 变加速运动θcos0vv D 变减速运动θcos0vv E 匀速直线运动0vv 分析与解本题关键是先求得小船速度表达式进而判断运动性质为此建立如图所示坐标系设定滑轮距水面高度为ht 时刻定滑轮距小船的绳长为l则小船的运动方程为22hlx其中绳长l 随时间t 而变化小船速度22ddddhltlltxv式中tldd表示绳长l随时间的变化率其大小即为v0代入整理后为θlhlcos/0220vvv方向沿x 轴合蛴伤俣缺泶锸娇膳卸闲〈 鞅浼铀僭硕 恃 讨论有人会将绳子速率v0按x、y 两个方向分解则小船速度θcos0vv这样做对吗1 -6 已知质点沿x 轴作直线运动其运动方程为32262ttx式中x 的单位为mt 的单位为s求1 质点在运动开始后4.0 s内的位移的大小 2 质点在该时间内所通过的路程3 t4 s时质点的速度和加速度分析位移和路程是两个完全不同的概念只有当质点作直线运动且运动方向不改变时位移的大小才会与路程相等质点在t 时间内的位移Δx 的大小可直接由运动方程得到0Δxxxt而在求路程时就必须注意到质点在运动过程中可能改变运动方向此时位移的大小和路程就不同了为此需根据0ddtx来确定其运动方向改变的时刻tp 求出0 tp 和tp t 内的位移大小Δx1 、Δx2 则t 时间内的路程21xxs如图所示至于t 4.0 s 时质点速度和加速度可用txdd和22ddtx两式计算解 1 质点在4.0 s内位移的大小m32Δ04xxx 2 由0ddtx 得知质点的换向时刻为s2pt t0不合题意则m0.8Δ021xxx m40Δ242xxx 所以质点在4.0 s时间间隔内的路程为m48ΔΔ21xxs 3 t4.0 s时1s0.4sm48ddttxv2s0.422m.s36ddttxa 1 -7 一质点沿x 轴方向作直线运动其速度与时间的关系如图a所示设t0 时x0试根据已知的v-t 图画出a-t 图以及x -t 图分析根据加速度的定义可知在直线运动中v-t曲线的斜率为加速度的大小图中AB、CD 段斜率为定值即匀变速直线运动而线段BC 的斜率为0加速度为零即匀速直线运动加速度为恒量在a-t 图上是平行于t 轴的直线由v-t 图中求出各段的斜率即可作出a-t 图线又由速度的定义可知x-t 曲线的斜率为速度的大小因此匀速直线运动所对应的x -t 图应是一直线而匀变速直线运动所对应的x–t 图为t 的二次曲线根据各段时间内的运动方程xxt求出不同时刻t 的位置x采用描数据点的方法可作出x-t 图解将曲线分为AB、BC、CD 三个过程它们对应的加速度值分别为2sm20ABABABttavv 匀加速直线运动0BCa 匀速直线运动2sm10CDCDCDttavv 匀减速直线运动根据上述结果即可作出质点的a-t 图图B 在匀变速直线运动中有2021ttxxv 由此可计算在0 2 和4 6 时间间隔内各时刻的位置分别为用描数据点的作图方法由表中数据可作0 2 和4 6 时间内的x -t 图在2 4 时间内质点是作1sm20v的匀速直线运动其x -t 图是斜率k20的一段直线图c 1 -8 已知质点的运动方程为jir222tt式中r 的单位为mt 的单位为 求 1 质点的运动轨迹2 t 0 及t 2 时质点的位矢3 由t 0 到t 2 内质点的位移Δr 和径向增量Δr 4 2 内质点所走过的路程s 分析质点的轨迹方程为y fx可由运动方程的两个分量式xt和yt中消去t 即可得到对于r、Δr、Δr、Δs 来说物理含义不同可根据其定义计算其中对s的求解用到积分方法先在轨迹上任取一段微元ds则22dddyxs最后用ssd积分求 解1 由xt和yt中消去t 后得质点轨迹方程为2412xy 这是一个抛物线方程轨迹如图a所示2 将t 0 和t 2 分别代入运动方程可得相应位矢分别为jr20 jir242 图a中的P、Q 两点即为t 0 和t 2 时质点所在位置3 由位移表达式得jijirrr24Δ020212yyxx 其中位移大小m66.5ΔΔΔ22yxr 而径向增量m47.2ΔΔ2020222202yxyxrrrr 4 如图B所示所求Δs 即为图中PQ段长度先在其间任意处取AB 微元ds则22dddyxs由轨道方程可得xxyd21d代入ds则2 内路程为m91.5d4d402xxssQP 1 -9 质点的运动方程为23010ttx 22015tty 式中xy 的单位为mt 的单位为 试求1 初速度的大小和方向2 加速度的大小和方向分析由运动方程的分量式可分别求出速度、加速度的分量再由运动合成算出速度和加速度的大小和方向解 1 速度的分量式为ttxx6010ddv ttyy4015ddv 当t 0 时vox -10 m· -1voy 15 m· -1 则初速度大小为120200sm0.18yxvvv 设vo与x 轴的夹角为α则23tan00xyαvv α123°41′ 2 加速度的分量式为2sm60ddtaxxv 2sm40ddtayyv 则加速度的大小为222sm1.72yxaaa 设a 与x 轴的夹角为β则32tanxyaaβ β-33°41′或326°19′ 1 -10 一升降机以加速度1.22 m· -2上升当上升速度为2.44 m· -1时有一螺丝自升降机的天花板上松脱天花板与升降机的底面相距2.74 m计算1螺丝从天花板落到底面所需要的时间2螺丝相对升降机外固定柱子的下降距离分析在升降机与螺丝之间有相对运动的情况下一种处理方法是取地面为参考系分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动列出这两种运动在同一坐标系中的运动方程y1 y1t和y2 y2t并考虑它们相遇即位矢相同这一条件问题即可解另一种方法是取升降机或螺丝为参考系这时螺丝或升降机相对它作匀加速运动但是此加速度应该是相对加速度升降机厢的高度就是螺丝或升降机运动的路程解1 1 以地面为参考系取如图所示的坐标系升降机与螺丝的运动方程分别为20121attyv 20221gtthyv 当螺丝落至底面时有y1 y2 即20202121gtthattvv s705.02aght 2 螺丝相对升降机外固定柱子下降的距离为m716.021202gttyhdv 解2 1以升降机为参考系此时螺丝相对它的加速度大小a′g a螺丝落至底面时有2210tagh s705.02aght 2 由于升降机在t 时间内上升的高度为2021atthv 则m716.0.。

物理学第五版东南大学马文蔚上下册1-15章节课后习题答案(个人整理)

物理学第五版东南大学马文蔚上下册1-15章节课后习题答案(个人整理)

第一章 质点运动学1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v ,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v .(1) 根据上述情况,则必有( )(A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r(C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s(D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s(2) 根据上述情况,则必有( )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v(C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故ts t ΔΔΔΔ r ,即|v |≠v .但由于|d r |=d s ,故ts t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x . 下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确(C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解 tr d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r 表示速度矢量;在自然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D). 1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t.下述判断正确的是( )(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的(C) 只有(2)是对的 (D) 只有(3)是对的分析与解td d v 表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;tr d d 在极坐标系中表示径向速率v r (如题1 -2 所述);t s d d 在自然坐标系中表示质点的速率v ;而td d v 表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D).1 -4 一个质点在做圆周运动时,则有( )(A) 切向加速度一定改变,法向加速度也改变(B) 切向加速度可能不变,法向加速度一定改变(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).*1 -5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v 0 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( )(A) 匀加速运动,θcos 0v v = (B) 匀减速运动,θcos 0v v =(C) 变加速运动,θcos 0v v = (D) 变减速运动,θcos 0v v =(E) 匀速直线运动,0v v =分析与解 本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l ,则小船的运动方程为22h l x -=,其中绳长l 随时间t 而变化.小船速度22d d d d h l t llt x -==v ,式中t l d d 表示绳长l 随时间的变化率,其大小即为v 0,代入整理后为θl h l cos /0220v v v =-=,方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(C).讨论 有人会将绳子速率v 0按x 、y 两个方向分解,则小船速度θcos 0v v =,这样做对吗?1 -6 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后4.0 s 内的位移的大小;(2) 质点在该时间内所通过的路程;(3) t =4 s 时质点的速度和加速度.分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =tx 来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ∆+∆=,如图所示,至于t =4.0 s 时质点速度和加速度可用tx d d 和22d d t x 两式计算. 解 (1) 质点在4.0 s 内位移的大小m 32Δ04-=-=x x x(2) 由 0d d =tx 得知质点的换向时刻为s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x xm 40Δ242-=-=x x x所以,质点在4.0 s 时间间隔内的路程为m 48ΔΔ21=+=x x s(3) t =4.0 s 时1s0.4s m 48d d -=⋅-==t t x v 2s0.422m.s 36d d -=-==t t x a 1 -7 一质点沿x 轴方向作直线运动,其速度与时间的关系如图(a)所示.设t =0 时,x =0.试根据已知的v -t 图,画出a -t 图以及x -t 图.分析根据加速度的定义可知,在直线运动中v-t曲线的斜率为加速度的大小(图中AB、CD 段斜率为定值,即匀变速直线运动;而线段BC 的斜率为0,加速度为零,即匀速直线运动).加速度为恒量,在a-t图上是平行于t轴的直线,由v -t 图中求出各段的斜率,即可作出a -t 图线.又由速度的定义可知,x -t 曲线的斜率为速度的大小.因此,匀速直线运动所对应的x -t 图应是一直线,而匀变速直线运动所对应的x –t 图为t 的二次曲线.根据各段时间内的运动方程x =x (t ),求出不同时刻t 的位置x ,采用描数据点的方法,可作出x -t 图.解 将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为2s m 20-⋅=--=AB A B AB t t a v v (匀加速直线运动) 0=BC a (匀速直线运动)2s m 10-⋅-=--=CD C D CD t t a v v (匀减速直线运动) 根据上述结果即可作出质点的a -t 图[图(B)].在匀变速直线运动中,有2021t t x x ++=v 由此,可计算在0~2s和4~6s时间间隔内各时刻的位置分别为用描数据点的作图方法,由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内, 质点是作1s m 20-⋅=v 的匀速直线运动, 其x -t 图是斜率k =20的一段直线[图(c)].1 -8 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求:(1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;*(4) 2 s 内质点所走过的路程s .分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,可根据其定义计算.其中对s 的求解用到积分方法,先在轨迹上任取一段微元d s ,则22)d ()d (d y x s +=,最后用⎰=s s d 积分求s.解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为2412x y -= 这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置.(3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x 其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r 而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r *(4) 如图(B)所示,所求Δs 即为图中PQ 段长度,先在其间任意处取AB 微元d s ,则22)d ()d (d y x s +=,由轨道方程可得x x y d 21d -=,代入d s ,则2s内路程为 m 91.5d 4d 402=+==⎰⎰x x s s Q P1 -9 质点的运动方程为23010t t x +-=22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t tx x 6010d d +-==v t ty y 4015d d -==v 当t =0 时, v o x =-10 m·s-1 , v o y =15 m·s-1 ,则初速度大小为 120200s m 0.18-⋅=+=y x v v v设v o 与x 轴的夹角为α,则23tan 00-==x yαv v α=123°41′(2) 加速度的分量式为2s m 60d d -⋅==t a x x v , 2s m 40d d -⋅-==ta y y v 则加速度的大小为222s m 1.72-⋅=+=y x a a a设a 与x 轴的夹角为β,则 32tan -==x y a a β β=-33°41′(或326°19′)1 -10 一升降机以加速度1.22 m·s-2上升,当上升速度为2.44 m·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m .计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y 1 =y 1(t )和y 2 =y 2(t ),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为20121at t y +=v 20221gt t h y -+=v 当螺丝落至底面时,有y 1 =y 2 ,即20202121gt t h at t -+=+v v s 705.02=+=ag h t (2) 螺丝相对升降机外固定柱子下降的距离为 m 716.021202=+-=-=gt t y h d v 解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有2)(210t a g h +-= s 705.02=+=ag h t (2) 由于升降机在t 时间内上升的高度为2021at t h +='v 则 m 716.0='-=h h d1 -11一质点P 沿半径R=3.0 m的圆周作匀速率运动,运动一周所需时间为20.0s,设t=0 时,质点位于O点.按(a)图中所示Oxy坐标系,求(1) 质点P 在任意时刻的位矢;(2)5s时的速度和加速度.分析该题属于运动学的第一类问题,即已知运动方程r=r(t)求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的O′x′y′坐标系,并采用参数方程x′=x′(t)和y′=y′(t)来表示圆周运动是比较方便的.然后,运用坐标变换x=x0 +x′和y=y0 +y′,将所得参数方程转换至Oxy坐标系中,即得Oxy坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 (1) 如图(B)所示,在O′x′y′坐标系中,因t Tθπ2=,则质点P 的参数方程为 t T R x π2sin=', t TR y π2cos -=' 坐标变换后,在O x y 坐标系中有 t T R x x π2sin='=, R t TR y y y +-=+'=π2cos 0 则质点P 的位矢方程为 j i r ⎪⎭⎫ ⎝⎛+-+=R t T R t T R π2cos π2sin j i )]π1.0(cos 1[3)π1.0(sin 3t t -+=(2) 5s时的速度和加速度分别为j j i r )s m π3.0(π2sin π2π2cos π2d d 1-⋅=+==t TT R t T T R t v i j i r a )s m π03.0(π2cos )π2(π2sin )π2(d d 222222-⋅-=+-==t TT R t T T R t 1 -12 地面上垂直竖立一高20.0 m 的旗杆,已知正午时分太阳在旗杆的正上方,求在下午2∶00 时,杆顶在地面上的影子的速度的大小.在何时刻杆影伸展至20.0 m ?分析 为求杆顶在地面上影子速度的大小,必须建立影长与时间的函数关系,即影子端点的位矢方程.根据几何关系,影长可通过太阳光线对地转动的角速度求得.由于运动的相对性,太阳光线对地转动的角速度也就是地球自转的角速度.这样,影子端点的位矢方程和速度均可求得.解 设太阳光线对地转动的角速度为ω,从正午时分开始计时,则杆的影长为s =h tg ωt ,下午2∶00 时,杆顶在地面上影子的速度大小为132s m 1094.1cos d d --⋅⨯===tωωh t s v 当杆长等于影长时,即s =h ,则 s 606034πarctan 1⨯⨯===ωh s ωt 即为下午3∶00 时.1 -13 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程.分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和tx d d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解 由分析知,应有⎰⎰=t t a 0d d 0v v v 得 03314v v +-=t t (1)由 ⎰⎰=t x x t x 0d d 0v 得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m·s-1代入(1) (2)得v 0=-1 m·s-1,x 0=0.75 m .于是可得质点运动方程为75.0121242+-=t t x 1 -14 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程.分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v 后再两边积分. 解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v v B A ta -==d d (1) 用分离变量法把式(1)改写为 t B A d d =-vv (2) 将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v vv v v得石子速度 )1(Bt e B A --=v 由此可知当,t →∞时,B A →v 为一常量,通常称为极限速度或收尾速度. (2) 再由)1(d d Bt e BA t y --==v 并考虑初始条件有 t eB A y t Bt y d )1(d 00⎰⎰--=得石子运动方程)1(2-+=-Bt e BA tB A y 1 -15 一质点具有恒定加速度a =6i +4j ,式中a 的单位为m·s-2 .在t =0时,其速度为零,位置矢量r 0 =10 m i .求:(1) 在任意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图.分析 与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量a x 和a y 分别积分,从而得到运动方程r 的两个分量式x (t )和y (t ).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即20021t a t x x x x ++=v 和20021t a t y y y y ++=v ,两个分运动均为匀变速直线运动.读者不妨自己验证一下.解 由加速度定义式,根据初始条件t 0 =0时v 0 =0,积分可得⎰⎰⎰+==t t t t 000)d 46(d d j i a v v j i t t 46+=v 又由td d r =v 及初始条件t =0 时,r 0=(10 m)i ,积分可得⎰⎰⎰+==tt r r t t t t 00)d 46(d d 0j i r v j i r 222)310(t t ++=由上述结果可得质点运动方程的分量式,即x =10+3t 2y =2t 2消去参数t ,可得运动的轨迹方程3y =2x -20 m 这是一个直线方程.直线斜率32tan d d ===αx y k ,α=33°41′.轨迹如图所示.1 -16 一质点在半径为R 的圆周上以恒定的速率运动,质点由位置A 运动到位置B,OA 和OB 所对的圆心角为Δθ.(1) 试证位置A 和B 之间的平均加速度为)Δ(/)Δcos 1(22θR θa v -=;(2) 当Δθ分别等于90°、30°、10°和1°时,平均加速度各为多少? 并对结果加以讨论.分析 瞬时加速度和平均加速度的物理含义不同,它们分别表示为t d d v =a 和tΔΔv =a .在匀速率圆周运动中,它们的大小分别为Ra n 2v =,t a ΔΔv = ,式中|Δv |可由图(B)中的几何关系得到,而Δt 可由转过的角度Δθ 求出.由计算结果能清楚地看到两者之间的关系,即瞬时加速度是平均加速度在Δt →0 时的极限值.解 (1) 由图(b)可看到Δv =v 2 -v 1 ,故θΔcos 2Δ212221v v v v -+=v)Δcos 1(2θ-=v而vv θR s t ΔΔΔ==所以 θR θt a Δ)cos Δ1(2ΔΔ2v -==v (2) 将Δθ=90°,30°,10°,1°分别代入上式,得R a 219003.0v ≈,Ra 229886.0v ≈ R a 239987.0v ≈,Ra 24000.1v ≈ 以上结果表明,当Δθ→0 时,匀速率圆周运动的平均加速度趋近于一极限值,该值即为法向加速度R2v . 1 -17 质点在Oxy 平面内运动,其运动方程为r =2.0t i +(19.0 -2.0t 2 )j ,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t 1=1.0s 到t 2 =2.0s 时间内的平均速度;(3) t 1 =1.0s时的速度及切向和法向加速度;(4) t =1.0s 时质点所在处轨道的曲率半径ρ.分析 根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即tΔΔr =v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度td d r =v .切向和法向加速度是指在自然坐标下的分矢量a t 和a n ,前者只反映质点在切线方向速度大小的变化率,即t t te a d d v =,后者只反映质点速度方向的变化,它可由总加速度a 和a t 得到.在求得t 1 时刻质点的速度和法向加速度的大小后,可由公式ρa n 2v =求ρ. 解 (1) 由参数方程x =2.0t , y =19.0-2.0t 2消去t 得质点的轨迹方程:y =19.0 -0.50x 2(2) 在t 1 =1.00s 到t 2 =2.0s时间内的平均速度j i r r 0.60.2ΔΔ1212-=--==t t t r v (3) 质点在任意时刻的速度和加速度分别为 j i j i j i t t y t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 222220.4d d d d )(-⋅-=+=s m ty t x t 则t 1 =1.00s时的速度v (t )|t =1s=2.0i -4.0j切向和法向加速度分别为t t y x t t t tt e e e a 222s 1s m 58.3)(d d d d -=⋅=+==v v v n n t n a a e e a 222s m 79.1-⋅=-=(4) t =1.0s质点的速度大小为122s m 47.4-⋅=+=y x v v v 则m 17.112==na ρv 1 -18 飞机以100 m·s-1 的速度沿水平直线飞行,在离地面高为100 m 时,驾驶员要把物品空投到前方某一地面目标处,问:(1) 此时目标在飞机正下方位置的前面多远? (2) 投放物品时,驾驶员看目标的视线和水平线成何角度?(3) 物品投出2.0s后,它的法向加速度和切向加速度各为多少?分析 物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t 时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t ,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量v x 、v y 求出,这样,也就可将重力加速度g 的切向和法向分量求得.解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =v t , y =1/2 gt 2飞机水平飞行速度v =100 m·s -1 ,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离m 4522==gy x v(2) 视线和水平线的夹角为 o 5.12arctan==x y θ (3) 在任意时刻物品的速度与水平轴的夹角为vv v gt αx y arctan arctan == 取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为2s m 88.1arctan sin sin -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a t 2s m 62.9arctan cos cos -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a n 1 -19 如图(a)所示,一小型迫击炮架设在一斜坡的底端O 处,已知斜坡倾角为α,炮身与斜坡的夹角为β,炮弹的出口速度为v 0,忽略空气阻力.求:(1)炮弹落地点P 与点O 的距离OP ;(2) 欲使炮弹能垂直击中坡面.证明α和β必须满足αβtan 21tan =并与v 0 无关. 分析 这是一个斜上抛运动,看似简单,但针对题目所问,如不能灵活运用叠加原理,建立一个恰当的坐标系,将运动分解的话,求解起来并不容易.现建立如图(a)所示坐标系,则炮弹在x 和y 两个方向的分运动均为匀减速直线运动,其初速度分别为v 0cos β和v 0sin β,其加速度分别为g sin α和gcos α.在此坐标系中炮弹落地时,应有y =0,则x =OP .如欲使炮弹垂直击中坡面,则应满足v x =0,直接列出有关运动方程和速度方程,即可求解.由于本题中加速度g 为恒矢量.故第一问也可由运动方程的矢量式计算,即20g 21t t +=v r ,做出炮弹落地时的矢量图[如图(B)所示],由图中所示几何关系也可求得OP (即图中的r 矢量).(1)解1 由分析知,炮弹在图(a)所示坐标系中两个分运动方程为αgt βt x sin 21cos 20-=v (1) αgt βt y cos 21sin 20-=v (2) 令y =0 求得时间t 后再代入式(1)得)cos(cos sin 2)sin sin cos (cos cos sin 2220220βααg ββαβααg βx OP +=-==v v 解2 做出炮弹的运动矢量图,如图(b)所示,并利用正弦定理,有βgt αt βαsin 212πsin 2πsin 20=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛--v r从中消去t 后也可得到同样结果.(2) 由分析知,如炮弹垂直击中坡面应满足y =0 和v x =0,则0sin cos 0=-=αgt βx v v (3)由(2)(3)两式消去t 后得αβsin 21tan = 由此可知.只要角α和β满足上式,炮弹就能垂直击中坡面,而与v 0 的大小无关.讨论 如将炮弹的运动按水平和竖直两个方向分解,求解本题将会比较困难,有兴趣读者不妨自己体验一下.1 -20 一直立的雨伞,张开后其边缘圆周的半径为R ,离地面的高度为h ,(1) 当伞绕伞柄以匀角速ω旋转时,求证水滴沿边缘飞出后落在地面上半径为g ωh R r /212+=的圆周上;(2) 读者能否由此定性构想一种草坪上或农田灌溉用的旋转式洒水器的方案?分析 选定伞边缘O 处的雨滴为研究对象,当伞以角速度ω旋转时,雨滴将以速度v 沿切线方向飞出,并作平抛运动.建立如图(a)所示坐标系,列出雨滴的运动方程并考虑图中所示几何关系,即可求证.由此可以想像如果让水从一个旋转的有很多小孔的喷头中飞出,从不同小孔中飞出的水滴将会落在半径不同的圆周上,为保证均匀喷洒对喷头上小孔的分布还要给予精心的考虑.解 (1) 如图(a)所示坐标系中,雨滴落地的运动方程为t ωR t x ==v (1)h gt y ==221 (2) 由式(1)(2)可得 gh ωR x 2222= 由图(a)所示几何关系得雨滴落地处圆周的半径为22221ωgh R R x r +=+= (2) 常用草坪喷水器采用如图(b)所示的球面喷头(θ0 =45°)其上有大量小孔.喷头旋转时,水滴以初速度v 0 从各个小孔中喷出,并作斜上抛运动,通常喷头表面基本上与草坪处在同一水平面上.则以φ角喷射的水柱射程为gR 2sin 0v = 为使喷头周围的草坪能被均匀喷洒,喷头上的小孔数不但很多,而且还不能均匀分布,这是喷头设计中的一个关键问题.1 -21 一足球运动员在正对球门前25.0 m 处以20.0 m·s-1 的初速率罚任意球,已知球门高为3.44 m .若要在垂直于球门的竖直平面内将足球直接踢进球门,问他应在与地面成什么角度的范围内踢出足球? (足球可视为质点)分析 被踢出后的足球,在空中作斜抛运动,其轨迹方程可由质点在竖直平面内的运动方程得到.由于水平距离x 已知,球门高度又限定了在y 方向的范围,故只需将x 、y 值代入即可求出.解 取图示坐标系Oxy ,由运动方程θt x cos v =, 221sin gt θt y -=v 消去t 得轨迹方程 222)tan 1(2tan x θg θx y +-=v以x =25.0 m,v =20.0 m·s-1 及3.44 m≥y ≥0 代入后,可解得71.11°≥θ1 ≥69.92°27.92°≥θ2 ≥18.89°如何理解上述角度的范围?在初速一定的条件下,球击中球门底线或球门上缘都将对应有两个不同的投射倾角(如图所示).如果以θ>71.11°或θ <18.89°踢出足球,都将因射程不足而不能直接射入球门;由于球门高度的限制,θ 角也并非能取71.11°与18.89°之间的任何值.当倾角取值为27.92°<θ<69.92°时,踢出的足球将越过门缘而离去,这时球也不能射入球门.因此可取的角度范围只能是解中的结果.1 -22 一质点沿半径为R 的圆周按规律2021bt t s -=v 运动,v 0 、b 都是常量.(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b ?(3) 当加速度达到b 时,质点已沿圆周运行了多少圈?分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈数自然可求得.解 (1) 质点作圆周运动的速率为bt ts -==0d d v v 其加速度的切向分量和法向分量分别为b t s a t -==22d d , Rbt R a n 202)(-==v v 故加速度的大小为R )(402222bt b a a a a t tn -+=+=v 其方向与切线之间的夹角为⎥⎦⎤⎢⎣⎡--==Rb bt a a θt n 20)(arctan arctan v (2) 要使|a |=b ,由b bt b R R=-+4022)(1v 可得 bt 0v = (3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为b s s s t 2200v =-= 因此质点运行的圈数为bRR s n π4π220v == 1 -23 一半径为0.50 m 的飞轮在启动时的短时间内,其角速度与时间的平方成正比.在t =2.0s 时测得轮缘一点的速度值为4.0 m·s-1.求:(1) 该轮在t′=0.5s的角速度,轮缘一点的切向加速度和总加速度;(2)该点在2.0s内所转过的角度.分析 首先应该确定角速度的函数关系ω=kt 2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k ,ω=ω(t )确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移.解 因ωR =v ,由题意ω∝t 2 得比例系数322s rad 2-⋅===Rtt ωk v 所以 22)(t t ωω== 则t ′=0.5s 时的角速度、角加速度和切向加速度分别为12s rad 5.02-⋅='=t ω2s rad 0.24d d -⋅='==t tωα 2s m 0.1-⋅==R αa t总加速度n t t n R ωR αe e a a a 2+=+= ()()2222s m 01.1-⋅=+=R ωR αa 在2.0s内该点所转过的角度 rad 33.532d 2d 203202200====-⎰⎰t t t t ωθθ 1 -24 一质点在半径为0.10 m 的圆周上运动,其角位置为342t θ+=,式中θ 的单位为rad,t 的单位为s.(1) 求在t =2.0s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.解 (1) 由于342t θ+=,则角速度212d d t tθω==.在t =2 s 时,法向加速度和切向加速度的数值分别为 22s 2s m 30.2-=⋅==ωr a t n2s 2s m 80.4d d -=⋅==t ωr a t t(2) 当22212/t n t a a a a +==时,有223n t a a =,即 ()()422212243t r rt = 得 3213=t 此时刻的角位置为 rad 15.3423=+=t θ(3) 要使t n a a =,则有()()422212243t r rt = t =0.55s1 -25 一无风的下雨天,一列火车以v 1=20.0 m·s-1 的速度匀速前进,在车内的旅客看见玻璃窗外的雨滴和垂线成75°角下降.求雨滴下落的速度v2 .(设下降的雨滴作匀速运动)分析 这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v 1 为S′相对S 的速度,v 2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以地面为参考系,火车相对地面运动的速度为v 1 ,雨滴相对地面竖直下落的速度为v 2 ,旅客看到雨滴下落的速度v 2′为相对速度,它们之间的关系为1'22v v v += (如图所示),于是可得1o 12s m 36.575tan -⋅==v v 1 -26 如图(a)所示,一汽车在雨中沿直线行驶,其速率为v 1 ,下落雨滴的速度方向偏于竖直方向之前θ 角,速率为v 2′,若车后有一长方形物体,问车速v 1为多大时,此物体正好不会被雨水淋湿?分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v 2′的方向)应满足hl αarctan≥.再由相对速度的矢量关系122v v v -=',即可求出所需车速v 1.解 由122v v v -='[图(b)],有θθαcos sin arctan221v v v -= 而要使hl αarctan ≥,则hl θθ≥-cos sin 221v v v ⎪⎭⎫ ⎝⎛+≥θh θl sin cos 21v v 1 -27 一人能在静水中以1.10 m·s-1 的速度划船前进.今欲横渡一宽为1.00 ×103 m 、水流速度为0.55 m·s-1 的大河.(1) 他若要从出发点横渡该河而到达正对岸的一点,那么应如何确定划行方向? 到达正对岸需多少时间? (2)如果希望用最短的时间过河,应如何确定划行方向? 船到达对岸的位置在什么地方?分析 船到达对岸所需时间是由船相对于岸的速度v 决定的.由于水流速度u 的存在, v 与船在静水中划行的速度v ′之间有v =u +v ′(如图所示).若要使船到达正对岸,则必须使v 沿正对岸方向;在划速一定的条件下,若要用最短时间过河,则必须使v 有极大值.解 (1) 由v =u +v ′可知v'=u αarcsin ,则船到达正对岸所需时间为 s 1005.1cos 3⨯='==αd d t v v (2) 由于αcos v v '=,在划速v ′一定的条件下,只有当α=0 时, v 最大(即v =v ′),此时,船过河时间t ′=d /v ′,船到达距正对岸为l 的下游处,且有m 100.52⨯='='=v d u t u l 1 -28 一质点相对观察者O 运动, 在任意时刻t , 其位置为x =v t , y =gt 2 /2,质点运动的轨迹为抛物线.若另一观察者O′以速率v 沿x 轴正向相对于O 运动.试问质点相对O′的轨迹和加速度如何?。

物理学答案(第五版)(可编辑)

物理学答案(第五版)(可编辑)

物理学答案(第五版)物理学答案第五版 --马文蔚txt人和人的心最近又最远真诚是中间的通道试金可以用火试女人可以用金试男人可以用女人--往往都经不起那么一试面向 21 世纪课程教材学习辅导书物理学第五版习题分析与解答马文蔚主编殷实沈才康包刚编高等教育出版社前言本书是根据马文蔚教授等改编的面向21世纪课程教材《物理学》第五版一书中的习题而作的分析与解答与上一版相比本书增加了选择题更换了约25%的习题所选习题覆盖了教育部非物理专业大学物理课程教学指导分委员会制定的《非大学物理课程教学基本要求讨论稿》中全部核心内容并选有少量扩展内容的习题所选习题尽可能突出基本训练和联系工程实际此外为了帮助学生掌握求解大学物理课程范围内的物理问题的思路和方法本书还为力学电磁学波动过程和光学热物理相对论和量子物理基础等撰写了涉及这些内容的解题思路和方法以期帮助学生启迪思维提高运用物理学的基本定律来分析问题和解决问题的能力物理学的基本概念和规律是在分析具体物理问题的过程中逐步被建立和掌握的解题之前必须对所研究的物理问题建立一个清晰的图像从而明确解题的思路只有这样才能在解完习题之后留下一些值得回味的东西体会到物理问题所蕴含的奥妙和涵义通过举一反三提高自己分析问题和解决问题的能力有鉴于此重分析简解答的模式成为编写本书的指导思想全书力求在分析中突出物理图像引导学生以科学探究的态度对待物理习题初步培养学生即物穷理的精神通过解题过程体验物理科学的魅力和价值尝试做学问的乐趣因此对于解题过程本书则尽可能做到简明扼要让学生自己去完成具体计算编者企盼这本书能对学生学习能力的提高和科学素质的培养有所帮助本书采用了1996 年全国自然科学名词审定委员会公布的《物理学名词》和中华人民共和国国家标准GB3100~3102 -93 中规定的法定计量单位本书由马文蔚教授主编由殷实沈才康包刚韦娜编写西北工业大学宋士贤教授审阅了全书并提出了许多详细中肯的修改意见在此编者致以诚挚的感谢由于编者的水平有限敬请读者批评指正编者2006 年1 月于南京目录第一篇力学求解力学问题的基本思路和方法第一章质点运动学第二章牛顿定律第三章动量守恒定律和能量守恒定律第四章刚体的转动第二篇电磁学求解电磁学问题的基本思路和方法第五章静电场第六章静电场中的导体与电介质第七章恒定磁场第八章电磁感应电磁场第三篇波动过程光学求解波动过程和光学问题的基本思路和方法第九章振动第十章波动第十一章光学第四篇气体动理论热力学基础求解气体动理论和热力学问题的基本思路和方法第十二章气体动理论第十三章热力学基础第五篇近代物理基础求解近代物理问题的基本思路和方法第十四章相对论第十五章量子物理附录部分数学公式第一篇力学求解力学问题的基本思路和方法物理学是一门基础学科它研究物质运动的各种基本规律.由于不同运动形式具有不同的运动规律从而要用不同的研究方法处理.力学是研究物体机械运动规律的一门学科而机械运动有各种运动形态每一种形态和物体受力情况以及初始状态有密切关系.掌握力的各种效应和运动状态改变之间的一系列规律是求解力学问题的重要基础.但仅仅记住一些公式是远远不够的.求解一个具体物理问题首先应明确研究对象的运动性质选择符合题意的恰当的模型透彻认清物体受力和运动过程的特点等等.根据模型条件和结论之间的逻辑关系运用科学合理的研究方法进而选择一个正确简便的解题切入点在这里思路和方法起着非常重要的作用.1.正确选择物理模型和认识运动过程力学中常有质点质点系刚体等模型.每种模型都有特定的含义适用范围和物理规律.采用何种模型既要考虑问题本身的限制又要注意解决问题的需要.例如用动能定理来处理物体的运动时可把物体抽象为质点模型.而用功能原理来处理时就必须把物体与地球组成一个系统来处理.再如对绕固定轴转动的门或质量和形状不能不计的定滑轮来说必须把它视为刚体并用角量和相应规律来进行讨论.在正确选择了物理模型后还必须对运动过程的性质和特点有充分理解如物体所受力矩是恒定的还是变化的质点作一般曲线运动还是作圆周运动等等以此决定解题时采用的解题方法和数学工具.2叠加法叠加原理是物理学中应用非常广泛的一条重要原理据此力学中任何复杂运动都可以被看成由几个较为简单运动叠加而成.例如质点作一般平面运动时通常可以看成是由两个相互垂直的直线运动叠加而成而对作圆周运动的质点来说其上的外力可按运动轨迹的切向和法向分解其中切向力只改变速度的大小而法向力只改变速度的方向.对刚体平面平行运动来说可以理解为任一时刻它包含了两个运动的叠加一是质心的平动二是绕质心的转动.运动的独立性和叠加性是叠加原理中的两个重要原则掌握若干基本的简单运动的物理规律再运用叠加法就可以使我们化复杂为简单.此外运用叠加法时要注意选择合适的坐标系选择什么样的坐标系就意味着运动将按相应形式分解.在力学中对一般平面曲线运动多采用平面直角坐标系平面圆周运动多采用自然坐标系而对刚体绕定轴转动则采用角坐标系等等.叠加原理在诸如电磁学振动波动等其他领域内都有广泛应用是物理学研究物质运动的一种基本思想和方法需读者在解题过程中不断体会和领悟.3类比法有些不同性质运动的规律具有某些相似性理解这种相似性产生的条件和遵从的规律有利于发现和认识物质运动的概括性和统一性.而且还应在学习中善于发现并充分利用这种相似性以拓宽自己的知识面.例如质点的直线运动和刚体绕定轴转动是两类不同运动但是运动规律却有许多可类比和相似之处如与与其实它们之间只是用角量替换了相应的线量而已这就可由比较熟悉的公式联想到不太熟悉的公式.这种类比不仅运动学有动力学也有如与与与可以看出两类不同运动中各量的对应关系十分明显使我们可以把对质点运动的分析方法移植到刚体转动问题的分析中去.当然移植时必须注意两种运动的区别一个是平动一个是转动状态变化的原因一个是力而另一个是力矩.此外还有许多可以类比的实例如万有引力与库仑力静电场与稳恒磁场电介质的极化与磁介质的磁化等等.只要我们在物理学习中善于归纳类比就可以沟通不同领域内相似物理问题的研究思想和方法并由此及彼触类旁通.4.微积分在力学解题中的运用微积分是大学物理学习中应用很多的一种数学运算在力学中较为突出也是初学大学物理课程时遇到的一个困难.要用好微积分这个数学工具首先应在思想上认识到物体在运动过程中反映其运动特征的物理量是随时空的变化而变化的.一般来说它们是时空坐标的函数.运用微积分可求得质点的运动方程和运动状态.这是大学物理和中学物理最显著的区别.例如通过对质点速度函数中的时间t 求一阶导数就可得到质点加速度函数.另外对物理量数学表达式进行合理变形就可得出新的物理含义.如由借助积分求和运算可求得在t1 -t2 时间内质点速度的变化同样由也可求得质点的运动方程.以质点运动学为例我们可用微积分把运动学问题归纳如下第一类问题已知运动方程求速度和加速度第二类问题已知质点加速度以及在起始状态时的位矢和速度可求得质点的运动方程.在力学中还有很多这样的关系读者不妨自己归纳整理一下从而学会自觉运用微积分来处理物理问题运用时有以下几个问题需要引起大家的关注1 运用微积分的物理条件.在力学学习中我们会发现和等描述质点运动规律的公式只是式和式在加速度为恒矢量条件下积分后的结果.此外在高中物理中只讨论了一些质点在恒力作用下的力学规律和相关物理问题而在大学物理中则主要研究在变力和变力矩作用下的力学问题微积分将成为求解上述问题的主要数学工具.2 如何对矢量函数进行微积分运算.我们知道很多物理量都是矢量如力学中的rvap 等物理量矢量既有大小又有方向从数学角度看它们都是二元函数在大学物理学习中通常结合叠加法进行操作如对一般平面曲线运动可先将矢量在固定直角坐标系中分解分别对xy 轴两个固定方向的分量可视为标量进行微积分运算最后再通过叠加法求得矢量的大小和方向对平面圆周运动则可按切向和法向分解对切线方向上描述大小的物理量atvs 等进行微积分运算.3 积分运算中的分离变量和变量代换问题.以质点在变力作用下作直线运动为例如已知变力表达式和初始状态求质点的速率求解本问题一条路径是由F =m a 求得a的表达式再由式dv = adt 通过积分运算求得v其中如果力为时间t 的显函数则a =a t 此时可两边直接积分即但如果力是速率v 的显函数则a = a v 此时应先作分离变量后再两边积分即又如力是位置x 的显函数则a=a x 此时可利用得并取代原式中的dt再分离变量后两边积分即用变量代换的方法可求得v x 表达式在以上积分中建议采用定积分下限为与积分元对应的初始条件上限则为待求量.5求解力学问题的几条路径综合力学中的定律可归结为三种基本路径即1 动力学方法如问题涉及到加速度此法应首选.运用牛顿定律转动定律以及运动学规律可求得几乎所有的基本力学量求解对象广泛但由于涉及到较多的过程细节对变力矩问题还将用到微积分运算故计算量较大.因而只要问题不涉及加速度则应首先考虑以下路径.2 角动量方法如问题不涉及加速度但涉及时间此法可首选.3 能量方法如问题既不涉及加速度又不涉及时间则应首先考虑用动能定理或功能原理处理问题.当然对复杂问题几种方法应同时考虑.此外三个守恒定律动量守恒能量守恒角动量守恒定律能否成立往往是求解力学问题首先应考虑的问题.总之应学会从不同角度分析与探讨问题.以上只是原则上给出求解力学问题一些基本思想与方法其实求解具体力学问题并无固定模式有时全靠悟性.但这种悟性产生于对物理基本规律的深入理解与物理学方法掌握之中要学会在解题过程中不断总结与思考从而使自己分析问题的能力不断增强.第一章质点运动学1 -1 质点作曲线运动在时刻t 质点的位矢为r速度为v 速率为vt 至 t +Δt 时间内的位移为Δr 路程为Δs 位矢大小的变化量为Δr 或称Δ|r|平均速度为平均速率为.1 根据上述情况则必有A |Δr|Δs ΔrB |Δr|≠Δs ≠Δr当Δt→0 时有|dr| ds ≠ drC |Δr|≠Δr ≠Δs当Δt→0 时有|dr| dr ≠ dsD |Δr|≠Δs ≠Δr当Δt→0 时有|dr| dr ds2 根据上述情况则必有A ||||B ||≠||≠C ||||≠D ||≠||分析与解 1 质点在t 至 t +Δt 时间内沿曲线从P 点运动到P′点各量关系如图所示其中路程Δs =PP′位移大小|Δr|=PP′而Δr =|r|-|r|表示质点位矢大小的变化量三个量的物理含义不同在曲线运动中大小也不相等注在直线运动中有相等的可能.但当Δt→0 时点P′无限趋近P点则有|dr|=ds但却不等于dr.故选 B .2 由于|Δr |≠Δs故即||≠.但由于|dr|=ds故即||=.由此可见应选 C .1 -2 一运动质点在某瞬时位于位矢r xy 的端点处对其速度的大小有四种意见即1 2 3 4 .下述判断正确的是A 只有 1 2 正确B 只有 2 正确C 只有 2 3 正确D 只有 3 4 正确分析与解表示质点到坐标原点的距离随时间的变化率在极坐标系中叫径向速率.通常用符号vr表示这是速度矢量在位矢方向上的一个分量表示速度矢量在自然坐标系中速度大小可用公式计算在直角坐标系中则可由公式求解.故选 D .1 -3 质点作曲线运动r 表示位置矢量 v表示速度a表示加速度s 表示路程 at表示切向加速度.对下列表达式即1 d v dt =a2 drdt =v3 dsdt =v4 d v dt|=at.下述判断正确的是A 只有 1 4 是对的B 只有 2 4 是对的C 只有 2 是对的D 只有 3 是对的分析与解表示切向加速度at它表示速度大小随时间的变化率是加速度矢量沿速度方向的一个分量起改变速度大小的作用在极坐标系中表示径向速率vr 如题1 -2 所述在自然坐标系中表示质点的速率v而表示加速度的大小而不是切向加速度at.因此只有 3 式表达是正确的.故选 D .1 -4 一个质点在做圆周运动时则有A 切向加速度一定改变法向加速度也改变B 切向加速度可能不变法向加速度一定改变C 切向加速度可能不变法向加速度不变D 切向加速度一定改变法向加速度不变分析与解加速度的切向分量at起改变速度大小的作用而法向分量an起改变速度方向的作用.质点作圆周运动时由于速度方向不断改变相应法向加速度的方向也在不断改变因而法向加速度是一定改变的.至于at是否改变则要视质点的速率情况而定.质点作匀速率圆周运动时 at恒为零质点作匀变速率圆周运动时 at为一不为零的恒量当at改变时质点则作一般的变速率圆周运动.由此可见应选 B .1 -5 如图所示湖中有一小船有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v0 收绳绳不伸长且湖水静止小船的速率为v则小船作A 匀加速运动B 匀减速运动C 变加速运动D 变减速运动E 匀速直线运动分析与解本题关键是先求得小船速度表达式进而判断运动性质.为此建立如图所示坐标系设定滑轮距水面高度为ht 时刻定滑轮距小船的绳长为l则小船的运动方程为其中绳长l 随时间t 而变化.小船速度式中表示绳长l 随时间的变化率其大小即为v0代入整理后为方向沿x 轴负向.由速度表达式可判断小船作变加速运动.故选 C .讨论有人会将绳子速率v0按xy 两个方向分解则小船速度这样做对吗1 -6 已知质点沿x 轴作直线运动其运动方程为式中x 的单位为mt 的单位为 s.求1 质点在运动开始后40 s内的位移的大小2 质点在该时间内所通过的路程3 t=4 s时质点的速度和加速度.分析位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到而在求路程时就必须注意到质点在运动过程中可能改变运动方向此时位移的大小和路程就不同了.为此需根据来确定其运动方向改变的时刻tp 求出0~tp 和tp~t 内的位移大小Δx1 Δx2 则t 时间内的路程如图所示至于t =40 s 时质点速度和加速度可用和两式计算.解 1 质点在40 s内位移的大小2 由得知质点的换向时刻为t=0不合题意则所以质点在40 s时间间隔内的路程为3 t=40 s时1 -7 一质点沿x 轴方向作直线运动其速度与时间的关系如图 a 所示.设t=0 时x=0.试根据已知的v-t 图画出a-t 图以及x -t 图.分析根据加速度的定义可知在直线运动中v-t曲线的斜率为加速度的大小图中ABCD 段斜率为定值即匀变速直线运动而线段BC 的斜率为0加速度为零即匀速直线运动.加速度为恒量在a-t 图上是平行于t 轴的直线由v-t 图中求出各段的斜率即可作出a-t 图线.又由速度的定义可知x-t 曲线的斜率为速度的大小.因此匀速直线运动所对应的x -t 图应是一直线而匀变速直线运动所对应的x–t 图为t 的二次曲线.根据各段时间内的运动方程x=x t 求出不同时刻t 的位置x采用描数据点的方法可作出x-t 图.解将曲线分为ABBCCD 三个过程它们对应的加速度值分别为匀加速直线运动匀速直线运动匀减速直线运动根据上述结果即可作出质点的a-t 图〔图 B 〕.在匀变速直线运动中有由此可计算在0~2s和4~6s时间间隔内各时刻的位置分别为用描数据点的作图方法由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内质点是作的匀速直线运动其x -t 图是斜率k=20的一段直线〔图 c 〕.1 -8 已知质点的运动方程为式中r 的单位为mt 的单位为s.求1 质点的运动轨迹2 t =0 及t =2s时质点的位矢3 由t =0 到t =2s内质点的位移Δr 和径向增量Δr4 2 s内质点所走过的路程s.分析质点的轨迹方程为y =f x 可由运动方程的两个分量式x t 和y t 中消去t 即可得到.对于rΔrΔrΔs 来说物理含义不同可根据其定义计算.其中对s的求解用到积分方法先在轨迹上任取一段微元ds则最后用积分求s.解 1 由x t 和y t 中消去t 后得质点轨迹方程为这是一个抛物线方程轨迹如图 a 所示.2 将t =0s和t =2s分别代入运动方程可得相应位矢分别为图 a 中的PQ 两点即为t =0s和t =2s时质点所在位置.3 由位移表达式得其中位移大小而径向增量4 如图 B 所示所求Δs 即为图中PQ段长度先在其间任意处取AB 微元ds 则由轨道方程可得代入ds则2s内路程为1 -9 质点的运动方程为式中xy 的单位为mt 的单位为s.试求 1 初速度的大小和方向 2 加速度的大小和方向.分析由运动方程的分量式可分别求出速度加速度的分量再由运动合成算出速度和加速度的大小和方向.解 1 速度的分量式为当t =0 时 vox =-10 ms-1 voy =15 ms-1 则初速度大小为设vo与x 轴的夹角为α则α=123°41′2 加速度的分量式为则加速度的大小为设a 与x 轴的夹角为β则β=-33°41′或326°19′1 -10 一升降机以加速度122 ms-2上升当上升速度为244 ms-1时有一螺丝自升降机的天花板上松脱天花板与升降机的底面相距274 m.计算 1 螺丝从天花板落到底面所需要的时间 2 螺丝相对升降机外固定柱子的下降距离.分析在升降机与螺丝之间有相对运动的情况下一种处理方法是取地面为参考系分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动列出这两种运动在同一坐标系中的运动方程y1 =y1 t 和y2 =y2 t 并考虑它们相遇即位矢相同这一条件问题即可解另一种方法是取升降机或螺丝为参考系这时螺丝或升降机相对它作匀加速运动但是此加速度应该是相对加速度.升降机厢的高度就是螺丝或升降机运动的路程.解 1 1 以地面为参考系取如图所示的坐标系升降机与螺丝的运动方程分别为当螺丝落至底面时有y1 =y2 即2 螺丝相对升降机外固定柱子下降的距离为解2 1 以升降机为参考系此时螺丝相对它的加速度大小a′=g +a螺丝落至底面时有2 由于升降机在t 时间内上升的高度为则1 -11 一质点P 沿半径R =30 m的圆周作匀速率运动运动一周所需时间为200s设t =0 时质点位于O 点.按 a 图中所示Oxy 坐标系求 1 质点P 在任意时刻的位矢2 5s时的速度和加速度.分析该题属于运动学的第一类问题即已知运动方程r =r t 求质点运动的一切信息如位置矢量位移速度加速度.在确定运动方程时若取以点 03 为原点的O′x′y′坐标系并采用参数方程x′=x′ t 和y′=y′ t 来表示圆周运动是比较方便的.然后运用坐标变换x =x0 +x′和y =y0 +y′将所得参数方程转换至Oxy 坐标系中即得Oxy 坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 1 如图 B 所示在O′x′y′坐标系中因则质点P 的参数方程为坐标变换后在Oxy 坐标系中有则质点P 的位矢方程为2 5s时的速度和加速度分别为1 -12 地面上垂直竖立一高200 m 的旗杆已知正午时分太阳在旗杆的正上方求在下午2∶00 时杆顶在地面上的影子的速度的大小.在何时刻杆影伸展至200 m分析为求杆顶在地面上影子速度的大小必须建立影长与时间的函数关系即影子端点的位矢方程.根据几何关系影长可通过太阳光线对地转动的角速度求得.由于运动的相对性太阳光线对地转动的角速度也就是地球自转的角速度.这样影子端点的位矢方程和速度均可求得.解设太阳光线对地转动的角速度为ω从正午时分开始计时则杆的影长为s=htgωt下午2∶00 时杆顶在地面上影子的速度大小为当杆长等于影长时即s =h则即为下午3∶00 时.1 -13 质点沿直线运动加速度a=4 -t2 式中a的单位为ms-2 t的单位为s.如果当t =3s时x=9 mv =2 ms-1 求质点的运动方程.分析本题属于运动学第二类问题即已知加速度求速度和运动方程必须在给定条件下用积分方法解决.由和可得和.如a=a t 或v =v t 则可两边直接积分.如果a 或v不是时间t 的显函数则应经过诸如分离变量或变量代换等数学操作后再做积分.解由分析知应有得 1由得 2将t=3s时x=9 mv=2 ms-1代入 1 2 得v0=-1 ms-1x0=075 m.于是可得质点运动方程为1 -14 一石子从空中由静止下落由于空气阻力石子并非作自由落体运动现测得其加速度a=A -Bv式中AB 为正恒量求石子下落的速度和运动方程.分析本题亦属于运动学第二类问题与上题不同之处在于加速度是速度v 的函数因此需将式dv =a v dt 分离变量为后再两边积分.解选取石子下落方向为y 轴正向下落起点为坐标原点.1 由题意知 1用分离变量法把式 1 改写为2将式 2 两边积分并考虑初始条件有得石子速度由此可知当t→∞时为一常量通常称为极限速度或收尾速度.2 再由并考虑初始条件有得石子运动方程1 -15 一质点具有恒定加速度a =6i +4j式中a的单位为ms-2 .在t =0时其速度为零位置矢量r0 =10 mi.求 1 在任意时刻的速度和位置矢量 2 质点在Oxy 平面上的轨迹方程并画出轨迹的示意图.分析与上两题不同处在于质点作平面曲线运动根据叠加原理求解时需根据加速度的两个分量ax 和ay分别积分从而得到运动方程r的两个分量式x t 和y t .由于本题中质点加速度为恒矢量故两次积分后所得运动方程为固定形式即和两个分运动均为匀变速直线运动.读者不妨自己验证一下.。

普通物理学第五版03守恒定律习题答案

普通物理学第五版03守恒定律习题答案

A
C 点:
vc2 N +F mg =m R F = k xC = k R = m g
系统机械能守恒,选C点为零势能点。 1 2 1m v 2 1 2 k xB +mg ( 2R 1.6R cos q ) = c + k xC 2 2 2 vc2 解得: vc2 = 0.8gR a n = R = 0.8g a n = 0.8×9.8=7.84m/s2 vc2 N ´=N = m R = 0.8mg N
目录 结束
(1)此质点作的是什么运动?其轨这方 程怎样? 解: ω ω x = a cos t y = b sin t 2 2 x )2 y )2 cosω t sinω t 1 (a + ( + = (1) = b dx b cos t v dy (2) vx = ω ω ω = a sin t = ω y= dt dt 当A点 (a,0) t = 0, vx = 0 vy = bω v = vy 1 m v 2 1 mb 2 2 ω =2 2
目录 结束
解: 1m v 2 v 2 2 E = E P (x)+ = m E E P (x) 2 dx 2 v = m E E P (x) = dt dx dt = 2 E E P (x) m t=

t
0
dt = 0
x
dx 2 E E P (x) m
目录 结束
3-6 一双原子分子的势能函数为 r 0 12 r0 6 E P (r) = E 0 ( ) 2 ( ) r r 式中 r 为二原子间的距离,试证明: (1)r0 为分子势能极小时的原子间距; (2)分子势能的极小值为-E。 (3)当EP (r) = 0时,原子间距为 (4)画出势能曲线简图

物理学(第五版)课后习题解答

物理学(第五版)课后习题解答

第十章波动1 . 一横波沿绳子传播时的波动表达式为)π4π10cos(05.0x t y -=,x ,y 的单位为米,t 的单位为秒。

(1)求此波的振幅、波速、频率和波长。

(2)求绳子上各质点振动的最大速度和最大加速度。

(3)求2.0=x m 处的质点在1=t s 时的相位,它是原点处质点在哪一时刻的相位?解 (1)将题中绳波表达式0.05cos(10π4π)0.05cos 2π()0.20.5t xy t x =-=- 与一般波动表达式)(π2cos λxT t A y -=比较,得振幅05.0=A m ,s T 2.0=频率5=ν Hz ,波长5.0=λ m 。

波速5.255.0=⨯==λνu m •s-1(2)绳上各质点振动的最大速度57.105.0514.32π2max =⨯⨯⨯===A A v νω m •s-1绳上各质点振动时的最大加速度3.4905.0514.34π422222max =⨯⨯⨯===A A a νωm •s-(3)将2.0=x m ,1=t s 代入)π4π10(x t -得到所求相位π2.92.0π41π10=⨯-⨯, 2.0=x m 处质点的振动比原点处质点的振动在时间上落后08.05.22.0==u x s (5.2==λνu m •s -1),所以它是原点处质点在92.0)08.01(0=-=t s 时的相位。

2.设有一平面简谐波 )3.001.0(π2cos 02.0x t y -= , x ,y 以m 计, t 以s 计。

(1)求振幅、波长、频率和波速。

(2)求1.0=x m 处质点振动的初相位。

解(1)将题设平面简谐波的表式)3.001.0(π2cos 02.0xt y -=与一般表式)(π2cos λxT t A y -=比较,可得振幅02.0=A m ,波长3.0=λ m ,周期01.0=T s 。

因此频率10001.011===T νHz , 波速 301003.0=⨯==λνu m ·s -(2)将1.0=x m 代入波动表式,得到位于该处的质点的振动表式4题图)3π201.0π2cos(02.0)3.01.001.0(π2cos 02.0-=-=t t y 因而该处质点振动的初相位3π20-=ϕ。

《物理化学(第五版,傅献彩)》课后习题及答案

《物理化学(第五版,傅献彩)》课后习题及答案

压蒸发热为 40.63kJ·mol-1。当 1mol 液态水,在 373K 和外压为 p时完全蒸发成水蒸气时,
试求:
(1)蒸发过程中体系对环境所作的功。
(2)假定液态水的体积略而不计,试求蒸发过程中的功,并计算所得结果的百分误差。
(3)假定把蒸气看作理想气体,且略去液态水的体积,求体系所作的功。
(4)求(1)中变化的△vapHm 和△vapUm。 (5)解释何故蒸发热大于体系所作的功。
T V
0
T
16.证明:
U V
p
C p
T V
p
p
证:
U V
p
H V
P
p
=
H T
T p V
p
p
=
CP
T V
p
p
证明: CP
CV
p T
V
Hp
T
V
证: CP
CV
HT
U = H p T V T
P
HT
V T
dT P
Hp
T dP
H T
V
H T
解:
Zn (s)+2 H+= Zn2++ H2(g)
VH2
RT p
8.314 291 m3 101325
0.024m 3
W pV pVg nRT 8.314 291J 2419.4J
△rUm=(Q+W)/ =(-152-2.42)kJ·mol-1
3 . 在 373.2K 和 p压力下,使 1molH2O(l)汽化。已知水在气化时吸热 40.69kJ·mol-1。
P
Hp
T Tp
V
代入上式

物理学(第五版)课后习题解答

物理学(第五版)课后习题解答

第十章波动1 . 一横波沿绳子传播时的波动表达式为)π4π10cos(05.0x t y -=,x ,y 的单位为米,t 的单位为秒。

(1)求此波的振幅、波速、频率和波长。

(2)求绳子上各质点振动的最大速度和最大加速度。

(3)求2.0=x m 处的质点在1=t s 时的相位,它是原点处质点在哪一时刻的相位?解 (1)将题中绳波表达式0.05cos(10π4π)0.05cos 2π()0.20.5t xy t x =-=- 与一般波动表达式)(π2cos λxT t A y -=比较,得振幅05.0=A m ,s T 2.0=频率5=ν Hz ,波长5.0=λ m 。

波速5.255.0=⨯==λνu m •s-1(2)绳上各质点振动的最大速度57.105.0514.32π2max =⨯⨯⨯===A A v νω m •s-1绳上各质点振动时的最大加速度3.4905.0514.34π422222max =⨯⨯⨯===A A a νωm •s-(3)将2.0=x m ,1=t s 代入)π4π10(x t -得到所求相位π2.92.0π41π10=⨯-⨯, 2.0=x m 处质点的振动比原点处质点的振动在时间上落后08.05.22.0==u x s (5.2==λνu m •s -1),所以它是原点处质点在92.0)08.01(0=-=t s 时的相位。

2.设有一平面简谐波 )3.001.0(π2cos 02.0x t y -= , x ,y 以m 计, t 以s 计。

(1)求振幅、波长、频率和波速。

(2)求1.0=x m 处质点振动的初相位。

解(1)将题设平面简谐波的表式)3.001.0(π2cos 02.0xt y -=与一般表式)(π2cos λxT t A y -=比较,可得振幅02.0=A m ,波长3.0=λ m ,周期01.0=T s 。

因此频率10001.011===T νHz , 波速 301003.0=⨯==λνu m ·s -(2)将1.0=x m 代入波动表式,得到位于该处的质点的振动表式4题图)3π201.0π2cos(02.0)3.01.001.0(π2cos 02.0-=-=t t y 因而该处质点振动的初相位3π20-=ϕ。

第五版物理化学第三章习题答案

第五版物理化学第三章习题答案

第三章热力学第二定律3.1卡诺热机在的高温热源和的低温热源间工作。

求( 1)热机效率;( 2)当向环境作功时,系统从高温热源吸收的热及向低温热源放出的热。

解:卡诺热机的效率为根据定义3. 2 卡诺热机在的高温热源和的低温热源间工作,求:( 1)热机效率;( 2)当从高温热源吸热时,系统对环境作的功及向低温热源放出的热解: (1)由卡诺循环的热机效率得出(2)3. 3 卡诺热机在的高温热源和的低温热源间工作,求( 1)热机效率;( 2)当向低温热源放热时,系统从高温热源吸热及对环境所作的功。

解:(1)(2)3. 4 试说明:在高温热源和低温热源间工作的不可逆热机与卡诺机联合操作时,若令卡诺热机得到的功 W r等于不可逆热机作出的功-W 。

假设不可逆热机的热机效率大于卡诺热机效率,其结果必然是有热量从低温热源流向高温热源,而违反势热力学第二定律的克劳修斯说法。

证:(反证法)设η >ηir r不可逆热机从高温热源吸热,向低温热源放热,对环境作功则逆向卡诺热机从环境得功从低温热源吸热向高温热源放热则若使逆向卡诺热机向高温热源放出的热不可逆热机从高温热源吸收的热相等,即总的结果是:得自单一低温热源的热,变成了环境作功,违背了热3. 5 高温热源温度,低温热源温度,今有120KJ的热直接从高温热源传给低温热源,求此过程。

解:将热源看作无限大,因此,传热过程对热源来说是可逆过程3.6不同的热机中作于的高温热源及的低温热源之间。

求下列三种情况下,当热机从高温热源吸热时,两热源的总熵变。

( 1)可逆热机效率。

( 2)不可逆热机效率。

( 3)不可逆热机效率。

解:设热机向低温热源放热,根据热机效率的定义因此,上面三种过程的总熵变分别为。

3.7已知水的比定压热容。

今有1 kg,10℃的水经下列三种不同过程加热成 100℃的水,求过程的。

(1)系统与 100℃的热源接触。

(2)系统先与 55℃的热源接触至热平衡,再与 100℃的热源接触。

(完整版)大学物理学(第五版)上册课后习题选择答案_马文蔚

(完整版)大学物理学(第五版)上册课后习题选择答案_马文蔚

习题11-1 质点作曲线运动,在时刻t 质点的位矢为r r ,速度为v r ,t 至()t t +∆时间内的位移为r ∆r,路程为s ∆,位矢大小的变化量为r ∆(或称r ∆r ),平均速度为v r,平均速率为v 。

(1)根据上述情况,则必有( B ) (A )r s r ∆=∆=∆r(B )r s r ∆≠∆≠∆r ,当0t ∆→时有dr ds dr =≠r (C )r r s ∆≠∆≠∆r,当0t ∆→时有dr dr ds =≠r(D )r s r ∆=∆≠∆r ,当0t ∆→时有dr dr ds ==r(2)根据上述情况,则必有( C )(A ),v v v v ==r r (B ),v v v v ≠≠r r (C ),v v v v =≠r r(D ),v v v v ≠=rr1-2 一运动质点在某瞬间位于位矢(,)r x y r的端点处,对其速度的大小有四种意见,即(1)dr dt ;(2)dr dt r;(3)dsdt;(4下列判断正确的是:( D )(A )只有(1)(2)正确 (B )只有(2)正确 (C )只有(2)(3)正确 (D )只有(3)(4)正确1-3 质点作曲线运动,r r 表示位置矢量,v r 表示速度,a r表示加速度,s 表示路程,t a 表示切向加速度。

对下列表达式,即(1)dv dt a =;(2)dr dt v =;(3)ds dt v =;(4)t dv dt a =r。

下述判断正确的是( D )(A )只有(1)、(4)是对的 (B )只有(2)、(4)是对的 (C )只有(2)是对的 (D )只有(3)是对的 1-4 一个质点在做圆周运动时,则有( B ) (A )切向加速度一定改变,法向加速度也改变 (B )切向加速度可能不变,法向加速度一定改变 (C )切向加速度可能不变,法向加速度不变(D)切向加速度一定改变,法向加速度不变*1-5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动。

物理学(第五版)马文蔚第1至4章课后习题答案详解

物理学(第五版)马文蔚第1至4章课后习题答案详解

1 -1质点作曲线运动,在时刻t质点的位矢为r,速度为v ,速率为v,t至(t +Δt)时间内的位移为Δr, 路程为Δs, 位矢大小的变化量为Δr ( 或称Δ|r|),平均速度为v,平均速率为v.(1) 根据上述情况,则必有()(A) |Δr|= Δs = Δr(B) |Δr|≠ Δs ≠ Δr,当Δt→0 时有|d r|= d s ≠ d r(C) |Δr|≠ Δr ≠ Δs,当Δt→0 时有|d r|= d r ≠ d s(D) |Δr|≠ Δs ≠ Δr,当Δt→0 时有|d r|= d r = d s(2) 根据上述情况,则必有()(A) |v|= v,|v|= v(B) |v|≠v,|v|≠ v(C) |v|= v,|v|≠ v(D) |v|≠v,|v|= v分析与解(1) 质点在t 至(t +Δt)时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs=PP′, 位移大小|Δr|=PP′,而Δr=|r|-|r|表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt→0 时,点P′无限趋近P点,则有|d r|=d s,但却不等于d r.故选(B).(2) 由于|Δr |≠Δs ,故ts t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故ts t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x . 下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确(C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解 tr d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r 表示速度矢量;在自然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D). 1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t.下述判断正确的是( )(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的(C) 只有(2)是对的 (D) 只有(3)是对的分析与解td d v 表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;tr d d 在极坐标系中表示径向速率v r (如题1 -2 所述);t s d d 在自然坐标系中表示质点的速率v ;而td d v 表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D).1 -4 一个质点在做圆周运动时,则有( )(A) 切向加速度一定改变,法向加速度也改变(B) 切向加速度可能不变,法向加速度一定改变(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).*1 -5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v 0 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( )(A) 匀加速运动,θcos 0v v = (B) 匀减速运动,θcos 0v v =(C) 变加速运动,θcos 0v v = (D) 变减速运动,θcos 0v v =(E) 匀速直线运动,0v v =分析与解 本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l ,则小船的运动方程为22h l x -=,其中绳长l 随时间t 而变化.小船速度22d d d d h l t llt x -==v ,式中t l d d 表示绳长l 随时间的变化率,其大小即为v 0,代入整理后为θl h l cos /0220v v v =-=,方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(C).讨论 有人会将绳子速率v 0按x 、y 两个方向分解,则小船速度θcos 0v v =,这样做对吗?1 -6 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后4.0 s 内的位移的大小;(2) 质点在该时间内所通过的路程;(3) t =4 s 时质点的速度和加速度.分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =tx 来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ∆+∆=,如图所示,至于t =4.0 s 时质点速度和加速度可用tx d d 和22d d t x 两式计算. 解 (1) 质点在4.0 s 内位移的大小m 32Δ04-=-=x x x(2) 由0d d =tx 得知质点的换向时刻为s 2=p t (t =0不合题意) 则m 0.8Δ021=-=x x x m 40Δ242-=-=x x x所以,质点在4.0 s 时间间隔内的路程为m 48ΔΔ21=+=x x s(3) t =4.0 s 时1s0.4s m 48d d -=⋅-==t t x v 2s0.422m.s 36d d -=-==t t x a 1 -7 一质点沿x 轴方向作直线运动,其速度与时间的关系如图(a)所示.设t =0 时,x =0.试根据已知的v -t 图,画出a -t 图以及x -t 图.分析根据加速度的定义可知,在直线运动中v-t曲线的斜率为加速度的大小(图中AB、CD 段斜率为定值,即匀变速直线运动;而线段BC 的斜率为0,加速度为零,即匀速直线运动).加速度为恒量,在a-t图上是平行于t轴的直线,由v -t 图中求出各段的斜率,即可作出a -t 图线.又由速度的定义可知,x -t 曲线的斜率为速度的大小.因此,匀速直线运动所对应的x -t 图应是一直线,而匀变速直线运动所对应的x –t 图为t 的二次曲线.根据各段时间内的运动方程x =x (t ),求出不同时刻t 的位置x ,采用描数据点的方法,可作出x -t 图.解 将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为2s m 20-⋅=--=AB A B AB t t a v v (匀加速直线运动) 0=BC a (匀速直线运动)2s m 10-⋅-=--=CD C D CD t t a v v (匀减速直线运动) 根据上述结果即可作出质点的a -t 图[图(B)].在匀变速直线运动中,有2021t t x x ++=v 由此,可计算在0~2s和4~6s时间间隔内各时刻的位置分别为用描数据点的作图方法,由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内, 质点是作1s m 20-⋅=v 的匀速直线运动, 其x -t 图是斜率k =20的一段直线[图(c)].1 -8 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求:(1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;*(4) 2 s 内质点所走过的路程s .分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,可根据其定义计算.其中对s 的求解用到积分方法,先在轨迹上任取一段微元d s ,则22)d ()d (d y x s +=,最后用⎰=s s d 积分求s.解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为2412x y -= 这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置.(3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x 其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r 而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r *(4) 如图(B)所示,所求Δs 即为图中PQ 段长度,先在其间任意处取AB 微元d s ,则22)d ()d (d y x s +=,由轨道方程可得x x y d 21d -=,代入d s ,则2s内路程为 m 91.5d 4d 402=+==⎰⎰x x s s Q P1 -9 质点的运动方程为23010t t x +-=22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t tx x 6010d d +-==v t ty y 4015d d -==v 当t =0 时, v o x =-10 m·s-1 , v o y =15 m·s-1 ,则初速度大小为 120200s m 0.18-⋅=+=y x v v v设v o 与x 轴的夹角为α,则23tan 00-==x yαv v α=123°41′(2) 加速度的分量式为2s m 60d d -⋅==t a x x v , 2s m 40d d -⋅-==ta y y v 则加速度的大小为222s m 1.72-⋅=+=y x a a a设a 与x 轴的夹角为β,则 32tan -==x y a a β β=-33°41′(或326°19′)1 -10 一升降机以加速度1.22 m·s-2上升,当上升速度为2.44 m·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m .计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y 1 =y 1(t )和y 2 =y 2(t ),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为20121at t y +=v 20221gt t h y -+=v 当螺丝落至底面时,有y 1 =y 2 ,即20202121gt t h at t -+=+v v s 705.02=+=ag h t (2) 螺丝相对升降机外固定柱子下降的距离为 m 716.021202=+-=-=gt t y h d v 解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有2)(210t a g h +-= s 705.02=+=ag h t (2) 由于升降机在t 时间内上升的高度为2021at t h +='v 则 m 716.0='-=h h d1 -11一质点P 沿半径R=3.0 m的圆周作匀速率运动,运动一周所需时间为20.0s,设t=0 时,质点位于O点.按(a)图中所示Oxy坐标系,求(1) 质点P 在任意时刻的位矢;(2)5s时的速度和加速度.分析该题属于运动学的第一类问题,即已知运动方程r=r(t)求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的O′x′y′坐标系,并采用参数方程x′=x′(t)和y′=y′(t)来表示圆周运动是比较方便的.然后,运用坐标变换x=x0 +x′和y=y0 +y′,将所得参数方程转换至Oxy坐标系中,即得Oxy坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 (1) 如图(B)所示,在O′x′y′坐标系中,因t Tθπ2=,则质点P 的参数方程为 t T R x π2sin=', t TR y π2cos -=' 坐标变换后,在O x y 坐标系中有 t T R x x π2sin='=, R t TR y y y +-=+'=π2cos 0 则质点P 的位矢方程为 j i r ⎪⎭⎫ ⎝⎛+-+=R t T R t T R π2cos π2sin j i )]π1.0(cos 1[3)π1.0(sin 3t t -+=(2) 5s时的速度和加速度分别为j j i r )s m π3.0(π2sin π2π2cos π2d d 1-⋅=+==t TT R t T T R t v i j i r a )s m π03.0(π2cos )π2(π2sin )π2(d d 222222-⋅-=+-==t TT R t T T R t 1 -12 地面上垂直竖立一高20.0 m 的旗杆,已知正午时分太阳在旗杆的正上方,求在下午2∶00 时,杆顶在地面上的影子的速度的大小.在何时刻杆影伸展至20.0 m ?分析 为求杆顶在地面上影子速度的大小,必须建立影长与时间的函数关系,即影子端点的位矢方程.根据几何关系,影长可通过太阳光线对地转动的角速度求得.由于运动的相对性,太阳光线对地转动的角速度也就是地球自转的角速度.这样,影子端点的位矢方程和速度均可求得.解 设太阳光线对地转动的角速度为ω,从正午时分开始计时,则杆的影长为s =h tg ωt ,下午2∶00 时,杆顶在地面上影子的速度大小为132s m 1094.1cos d d --⋅⨯===tωωh t s v 当杆长等于影长时,即s =h ,则 s 606034πarctan 1⨯⨯===ωh s ωt 即为下午3∶00 时.1 -13 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程.分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和tx d d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解 由分析知,应有⎰⎰=t t a 0d d 0v v v 得 03314v v +-=t t (1)由 ⎰⎰=t x x t x 0d d 0v 得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m·s-1代入(1) (2)得v 0=-1 m·s-1,x 0=0.75 m .于是可得质点运动方程为75.0121242+-=t t x 1 -14 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程.分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v 后再两边积分. 解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v v B A ta -==d d (1) 用分离变量法把式(1)改写为 t B A d d =-vv (2) 将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v vv vv得石子速度 )1(Bt e B A --=v 由此可知当,t →∞时,B A →v 为一常量,通常称为极限速度或收尾速度. (2) 再由)1(d d Bt e BA t y --==v 并考虑初始条件有 t eB A y t Bt y d )1(d 00⎰⎰--=得石子运动方程)1(2-+=-Bt e BA tB A y 1 -15 一质点具有恒定加速度a =6i +4j ,式中a 的单位为m·s-2 .在t =0时,其速度为零,位置矢量r 0 =10 m i .求:(1) 在任意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图.分析 与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量a x 和a y 分别积分,从而得到运动方程r 的两个分量式x (t )和y (t ).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即20021t a t x x x x ++=v 和20021t a t y y y y ++=v ,两个分运动均为匀变速直线运动.读者不妨自己验证一下.解 由加速度定义式,根据初始条件t 0 =0时v 0 =0,积分可得⎰⎰⎰+==t t t t 000)d 46(d d j i a v v j i t t 46+=v 又由td d r =v 及初始条件t =0 时,r 0=(10 m)i ,积分可得⎰⎰⎰+==t t r r t t t t 00)d 46(d d 0j i r v j i r 222)310(t t ++=由上述结果可得质点运动方程的分量式,即x =10+3t 2 y =2t 2 消去参数t ,可得运动的轨迹方程 3y =2x -20 m 这是一个直线方程.直线斜率32tan d d ===αx y k ,α=33°41′.轨迹如图所示.1 -16 一质点在半径为R 的圆周上以恒定的速率运动,质点由位置A 运动到位置B,OA 和OB 所对的圆心角为Δθ.(1) 试证位置A 和B 之间的平均加速度为)Δ(/)Δcos 1(22θR θa v -=;(2) 当Δθ分别等于90°、30°、10°和1°时,平均加速度各为多少? 并对结果加以讨论.分析 瞬时加速度和平均加速度的物理含义不同,它们分别表示为t d d v =a 和tΔΔv =a .在匀速率圆周运动中,它们的大小分别为Ra n 2v =,t a ΔΔv = ,式中|Δv |可由图(B)中的几何关系得到,而Δt 可由转过的角度Δθ 求出.由计算结果能清楚地看到两者之间的关系,即瞬时加速度是平均加速度在Δt →0 时的极限值.解 (1) 由图(b)可看到Δv =v 2 -v 1 ,故θΔcos 2Δ212221v v v v -+=v)Δcos 1(2θ-=v而vv θR s t ΔΔΔ==所以 θR θt a Δ)cos Δ1(2ΔΔ2v -==v (2) 将Δθ=90°,30°,10°,1°分别代入上式,得R a 219003.0v ≈,Ra 229886.0v ≈ R a 239987.0v ≈,Ra 24000.1v ≈ 以上结果表明,当Δθ→0 时,匀速率圆周运动的平均加速度趋近于一极限值,该值即为法向加速度R2v . 1 -17 质点在Oxy 平面内运动,其运动方程为r =2.0t i +(19.0 -2.0t 2 )j ,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t 1=1.0s 到t 2 =2.0s 时间内的平均速度;(3) t 1 =1.0s时的速度及切向和法向加速度;(4)t =1.0s 时质点所在处轨道的曲率半径ρ.分析 根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即tΔΔr =v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度td d r =v .切向和法向加速度是指在自然坐标下的分矢量a t 和a n ,前者只反映质点在切线方向速度大小的变化率,即t t te a d d v =,后者只反映质点速度方向的变化,它可由总加速度a 和a t 得到.在求得t 1 时刻质点的速度和法向加速度的大小后,可由公式ρa n 2v =求ρ. 解 (1) 由参数方程x =2.0t , y =19.0-2.0t 2消去t 得质点的轨迹方程:y =19.0 -0.50x 2(2) 在t 1 =1.00s 到t 2 =2.0s时间内的平均速度j i r r 0.60.2ΔΔ1212-=--==t t t r v (3) 质点在任意时刻的速度和加速度分别为 j i j i j i t t y t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 222220.4d d d d )(-⋅-=+=s m ty t x t 则t 1 =1.00s时的速度v (t )|t =1s=2.0i -4.0j切向和法向加速度分别为t t y x t t t tt e e e a 222s 1s m 58.3)(d d d d -=⋅=+==v v v n n t n a a e e a 222s m 79.1-⋅=-=(4) t =1.0s质点的速度大小为122s m 47.4-⋅=+=y x v v v则m 17.112==na ρv 1 -18 飞机以100 m·s-1 的速度沿水平直线飞行,在离地面高为100 m 时,驾驶员要把物品空投到前方某一地面目标处,问:(1) 此时目标在飞机正下方位置的前面多远? (2) 投放物品时,驾驶员看目标的视线和水平线成何角度?(3) 物品投出2.0s后,它的法向加速度和切向加速度各为多少?分析 物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t 时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t ,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量v x 、v y 求出,这样,也就可将重力加速度g 的切向和法向分量求得.解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =v t , y =1/2 gt 2飞机水平飞行速度v =100 m·s -1 ,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离m 4522==gy x v(2) 视线和水平线的夹角为o 5.12arctan ==xy θ (3) 在任意时刻物品的速度与水平轴的夹角为vv v gt αx y arctan arctan == 取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为2s m 88.1arctan sin sin -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a t 2s m 62.9arctan cos cos -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a n 1 -19 如图(a)所示,一小型迫击炮架设在一斜坡的底端O 处,已知斜坡倾角为α,炮身与斜坡的夹角为β,炮弹的出口速度为v 0,忽略空气阻力.求:(1)炮弹落地点P 与点O 的距离OP ;(2) 欲使炮弹能垂直击中坡面.证明α和β必须满足αβtan 21tan =并与v 0 无关. 分析 这是一个斜上抛运动,看似简单,但针对题目所问,如不能灵活运用叠加原理,建立一个恰当的坐标系,将运动分解的话,求解起来并不容易.现建立如图(a)所示坐标系,则炮弹在x 和y 两个方向的分运动均为匀减速直线运动,其初速度分别为v 0cos β和v 0sin β,其加速度分别为g sin α和gcos α.在此坐标系中炮弹落地时,应有y =0,则x =OP .如欲使炮弹垂直击中坡面,则应满足v x =0,直接列出有关运动方程和速度方程,即可求解.由于本题中加速度g 为恒矢量.故第一问也可由运动方程的矢量式计算,即20g 21t t +=v r ,做出炮弹落地时的矢量图[如图(B)所示],由图中所示几何关系也可求得OP (即图中的r 矢量).(1)解1 由分析知,炮弹在图(a)所示坐标系中两个分运动方程为αgt βt x sin 21cos 20-=v (1) αgt βt y cos 21sin 20-=v (2) 令y =0 求得时间t 后再代入式(1)得)cos(cos sin 2)sin sin cos (cos cos sin 2220220βααg ββαβααg βx OP +=-==v v 解2 做出炮弹的运动矢量图,如图(b)所示,并利用正弦定理,有βgt αt βαsin 212πsin 2πsin 20=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛--v r从中消去t 后也可得到同样结果.(2) 由分析知,如炮弹垂直击中坡面应满足y =0 和v x =0,则0sin cos 0=-=αgt βx v v (3)由(2)(3)两式消去t 后得αβsin 21tan = 由此可知.只要角α和β满足上式,炮弹就能垂直击中坡面,而与v 0 的大小无关.讨论 如将炮弹的运动按水平和竖直两个方向分解,求解本题将会比较困难,有兴趣读者不妨自己体验一下.1 -20 一直立的雨伞,张开后其边缘圆周的半径为R ,离地面的高度为h ,(1) 当伞绕伞柄以匀角速ω旋转时,求证水滴沿边缘飞出后落在地面上半径为g ωh R r /212+=的圆周上;(2) 读者能否由此定性构想一种草坪上或农田灌溉用的旋转式洒水器的方案?分析 选定伞边缘O 处的雨滴为研究对象,当伞以角速度ω旋转时,雨滴将以速度v 沿切线方向飞出,并作平抛运动.建立如图(a)所示坐标系,列出雨滴的运动方程并考虑图中所示几何关系,即可求证.由此可以想像如果让水从一个旋转的有很多小孔的喷头中飞出,从不同小孔中飞出的水滴将会落在半径不同的圆周上,为保证均匀喷洒对喷头上小孔的分布还要给予精心的考虑.解 (1) 如图(a)所示坐标系中,雨滴落地的运动方程为t ωR t x ==v (1)h gt y ==221 (2) 由式(1)(2)可得 gh ωR x 2222= 由图(a)所示几何关系得雨滴落地处圆周的半径为22221ωgh R R x r +=+=(2) 常用草坪喷水器采用如图(b)所示的球面喷头(θ0 =45°)其上有大量小孔.喷头旋转时,水滴以初速度v 0 从各个小孔中喷出,并作斜上抛运动,通常喷头表面基本上与草坪处在同一水平面上.则以φ角喷射的水柱射程为gR 2sin 0v = 为使喷头周围的草坪能被均匀喷洒,喷头上的小孔数不但很多,而且还不能均匀分布,这是喷头设计中的一个关键问题.1 -21 一足球运动员在正对球门前25.0 m 处以20.0 m·s-1 的初速率罚任意球,已知球门高为3.44 m .若要在垂直于球门的竖直平面内将足球直接踢进球门,问他应在与地面成什么角度的范围内踢出足球? (足球可视为质点)分析 被踢出后的足球,在空中作斜抛运动,其轨迹方程可由质点在竖直平面内的运动方程得到.由于水平距离x 已知,球门高度又限定了在y 方向的范围,故只需将x 、y 值代入即可求出.解 取图示坐标系Oxy ,由运动方程θt x cos v =, 221sin gt θt y -=v 消去t 得轨迹方程222)tan 1(2tan x θg θx y +-=v以x =25.0 m,v =20.0 m·s-1 及3.44 m≥y ≥0 代入后,可解得71.11°≥θ1 ≥69.92°27.92°≥θ2 ≥18.89°如何理解上述角度的范围?在初速一定的条件下,球击中球门底线或球门上缘都将对应有两个不同的投射倾角(如图所示).如果以θ>71.11°或θ <18.89°踢出足球,都将因射程不足而不能直接射入球门;由于球门高度的限制,θ 角也并非能取71.11°与18.89°之间的任何值.当倾角取值为27.92°<θ <69.92°时,踢出的足球将越过门缘而离去,这时球也不能射入球门.因此可取的角度范围只能是解中的结果.1 -22 一质点沿半径为R 的圆周按规律2021bt t s -=v 运动,v 0 、b 都是常量.(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b ?(3) 当加速度达到b 时,质点已沿圆周运行了多少圈?分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈数自然可求得.解 (1) 质点作圆周运动的速率为bt ts -==0d d v v 其加速度的切向分量和法向分量分别为b t s a t -==22d d , Rbt R a n 202)(-==v v 故加速度的大小为R )(402222bt b a a a a t tn -+=+=v 其方向与切线之间的夹角为⎥⎦⎤⎢⎣⎡--==Rb bt a a θt n 20)(arctan arctan v (2) 要使|a |=b ,由b bt b R R=-+4022)(1v 可得bt 0v = (3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为bs s s t 2200v =-= 因此质点运行的圈数为bRR s n π4π220v == 1 -23 一半径为0.50 m 的飞轮在启动时的短时间内,其角速度与时间的平方成正比.在t =2.0s 时测得轮缘一点的速度值为4.0 m·s-1.求:(1) 该轮在t′=0.5s的角速度,轮缘一点的切向加速度和总加速度;(2)该点在2.0s内所转过的角度.分析 首先应该确定角速度的函数关系ω=kt 2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k ,ω=ω(t )确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移.解 因ωR =v ,由题意ω∝t 2 得比例系数322s rad 2-⋅===Rtt ωk v 所以 22)(t t ωω== 则t ′=0.5s 时的角速度、角加速度和切向加速度分别为12s rad 5.02-⋅='=t ω2s rad 0.24d d -⋅='==t tωα 2s m 0.1-⋅==R αa t总加速度n t t n R ωR αe e a a a 2+=+= ()()2222s m 01.1-⋅=+=R ωR αa在2.0s内该点所转过的角度rad 33.532d 2d 203202200====-⎰⎰t t t t ωθθ 1 -24 一质点在半径为0.10 m 的圆周上运动,其角位置为342t θ+=,式中θ 的单位为rad,t 的单位为s.(1) 求在t =2.0s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.解 (1) 由于342t θ+=,则角速度212d d t tθω==.在t =2 s 时,法向加速度和切向加速度的数值分别为 22s 2s m 30.2-=⋅==ωr a t n2s 2s m 80.4d d -=⋅==t ωr a t t(2) 当22212/t n t a a a a +==时,有223n t a a =,即 ()()422212243t r rt = 得 3213=t 此时刻的角位置为 rad 15.3423=+=t θ(3) 要使t n a a =,则有()()422212243t r rt = t =0.55s1 -25 一无风的下雨天,一列火车以v 1=20.0 m·s-1 的速度匀速前进,在车内的旅客看见玻璃窗外的雨滴和垂线成75°角下降.求雨滴下落的速度v2 .(设下降的雨滴作匀速运动)分析 这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v 1 为S′相对S 的速度,v 2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以地面为参考系,火车相对地面运动的速度为v 1 ,雨滴相对地面竖直下落的速度为v 2 ,旅客看到雨滴下落的速度v 2′为相对速度,它们之间的关系为1'22v v v += (如图所示),于是可得 1o 12s m 36.575tan -⋅==v v 1 -26 如图(a)所示,一汽车在雨中沿直线行驶,其速率为v 1 ,下落雨滴的速度方向偏于竖直方向之前θ 角,速率为v 2′,若车后有一长方形物体,问车速v 1为多大时,此物体正好不会被雨水淋湿?分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v 2′的方向)应满足hl αarctan≥.再由相对速度的矢量关系122v v v -=',即可求出所需车速v 1.解 由122v v v -='[图(b)],有θθαcos sin arctan 221v v v -= 而要使hl αarctan ≥,则 hl θθ≥-cos sin 221v v v ⎪⎭⎫ ⎝⎛+≥θh θl sin cos 21v v 1 -27 一人能在静水中以1.10 m·s-1 的速度划船前进.今欲横渡一宽为1.00 ×103 m 、水流速度为0.55 m·s-1 的大河.(1) 他若要从出发点横渡该河而到达正对岸的一点,那么应如何确定划行方向? 到达正对岸需多少时间? (2)如果希望用最短的时间过河,应如何确定划行方向? 船到达对岸的位置在什么地方?分析 船到达对岸所需时间是由船相对于岸的速度v 决定的.由于水流速度u 的存在, v 与船在静水中划行的速度v ′之间有v =u +v ′(如图所示).若要使船到达正对岸,则必须使v 沿正对岸方向;在划速一定的条件下,若要用最短时间过河,则必须使v 有极大值.解 (1) 由v =u +v ′可知v '=u αarcsin ,则船到达正对岸所需时间为 s 1005.1cos 3⨯='==αd d t v v (2) 由于αcos v v '=,在划速v ′一定的条件下,只有当α=0 时, v 最大(即v =v ′),此时,船过河时间t ′=d /v ′,船到达距正对岸为l 的下游处,且有。

物理化学上册第五版天津大学出版社第三章热力学第二定律习题答案

物理化学上册第五版天津大学出版社第三章热力学第二定律习题答案

物理化学上册第五版天津大学出版社第三章热力学第二定律习题答案3-1 卡诺热机在 T 1=600K 的高温热源和T 2=300K 的低温热源间工作,求:(1) 热机的效率;(2)当环境作功 –W=100kJ 时,系统从高温热源Q 1及向低温热源放出的 –Q 2。

解:(1)5.0600/)300600(/)(/1211=-=-=-=T T T Q W η (2)5.0/100/11==-Q kJ Q W ,得kJ Q 2001=kJ W Q Q 10021=-=+;kJ Q W Q 100)(21=-=--3-2卡诺热机在T 1=795K 的高温热源和T 2=300K 的低温热源间工作,求:(1)热机的效率;(2)当从高温热源吸热Q 1=250 kJ 时,系统对环境作的功 -W 及向低温热源放出的 –Q 2。

解:(1)6.0750/)300750(/)(/1211=-=-=-=T T T Q W η (2)kJ kJ Q W 1502506.01=⨯==-ηkJ W Q Q 15021=-=+;kJ Q W Q 100)(21=-=--3-3 卡诺热机在T 1=900K 的高温热源和T 2=300K 的低温热源间工作,求:(1)热机的效率;(2)当向低温热源放出的 –Q 2=100kJ 时,从高温热源吸热Q 1及对环境作的功 -W 。

解:(1)6667.0900/)300900(/)(/1211=-=-=-=T T T Q W η (2)6667.0/1=-Q W (a )W kJ Q -=-1001(b )联立求解得:Q 1=300 kJ ;-W=200kJ3-4 试证明:在高温热源和低温热源间工作的不可逆热机与卡诺热机联合操作时,若令卡诺热机得到的功W r 等于不可逆热机作出的功 – W ,假设不可逆热机的热机效率η大于卡诺热机的热机效率ηr ,其结果必然有热量从低温热源流向高温热源,而违反热力学第二定律的克劳修斯说法。

衡水学院_《物理化学》第三章_热力学第二定律_作业及答案

衡水学院_《物理化学》第三章_热力学第二定律_作业及答案

H冰 = H冰1 + H冰2 = m冰 fush + m冰cp(T - T冰) H水 + H冰 = 0即: 1000 4.184 (T – 353.15) + 500 333.3 + 500 4.184 (T – 273.15) = 0 T = 299.93 K [146-27] 已知常压下冰的熔点为0℃,摩尔熔化焓fusHm(H2O) = 6.004 kJ·mol-1,苯的熔点为5.51℃,摩尔熔化焓fusHm(C6H6) = 9.832 kJ·mol1。液态水合固态苯的摩尔定压热容分别为Cp,m(H2O, l) = 75.37 J·mol1·K-1及Cp,m(C6H6, l) = 122.59 J·mol-1·K-1,今有两个用绝热层包围的 容器,一容器中为0℃的8 mol H2O(s)与2 mol H2O (l)成平衡,另一容 器中为5.51℃的5 mol C6H6 (l)与2 mol C6H6 (s)成平衡。现将两容器接 触,去掉两容器间的绝热层,使两容器达到新的平衡态。求过程的
⑵过程的Q,ΔU,ΔH及ΔS。 解:⑴
⑵H = nvapH m = 0.1 25104 = 2510.4 (J) 恒容W = 0
Q = ΔU = H - ngRT = 2510.4 – 0.1 8.3114 308.66 = 2253.8 (J) [147-33] 已知25℃时,液态水的标准生成吉布斯函数(H2O, l) = -237.129
焓,过冷水和冰的饱和蒸气压分别为及。今在100 kPa下,有-5℃ 1 kg的过冷水变为同样温度、压力下的冰,设计可逆途径,分别按可 逆途径计算过程的ΔG及ΔS。
解:
H2O(l) p = 100 kPa H2O(l) p* (l) = 0.422 kPa H2O(g) p* (l) = 0.422 kPa H2O(g) p* (s) = 0.414 kPa H2O(s) p* (s) = 0.414 kPa H2O(s) p* (s) = 100 kPa
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 动量守恒和能量守恒
12
A
R=4 m O m=2 kg
v B
不动
v=6 m·s-1
第三章 动量守恒和能量守恒
9
物理学
第三章补充例题
第五版
解法1 解法 应用动能定理求 A R=4m O 1 WG + WFf + WFN = mv 2 − 0 2 m=2kg WG = mgR; WFN = 0 v B 1 v=6m·s-1 ∴WFf = mv 2 − mgR = −44 J 不动 2 Ff θ 解法2 解法 应用功能原理求 FN WFf = Ek 2 + Ep2 − (Ek1 + Ep1) θ 1 2 = mv − mgR G=mg 2
0 0
所以, 所以,当 t = 2 s 得 W = 36 J 时,
第三章 动量守恒和能量守恒
7
物理学
第三章补充例题
第五版
7 质量为 m = 0.5 kg 的质点 在平面内 的质点, 运动, 运动 方程为 x = 5tm,y = 0.5t 2 m ,求从 这段时间内, t = 2 s 到 t = 4 s 这段时间内,外力对质点作 的功. 的功
第三章 动量守恒和能量守恒
3
物理学
第三章补充例题
第五版
4 一质量为 kg 一质量为5 的物体, 的物体,其所受力 F 随时间的变化关系如 图,设物体从静止开 始运动,则20 s末物 始运动, 末物 体的速度为多少? 体的速度为多少
F/N 10 5 0 -5 10 20 t/s
1 解 Q Fdt = d (mv) ∴ dv = Fdt m 1 20 1 1 −1 v = ∫ Fdt = (10 × 10 − 5 ×10) = 5 m ⋅ s m 0 5 2
mv0 = −mv1 + M V M>>m, V<<v m 设 M = 200 m, v0= v1 =v ∴V = ( v 0 + v1 ) 则 V=0.01v M
第三章 动量守恒和能量守恒
2
物理学
第三章补充例题
第五版
3 下列说法哪种正确: 下列说法哪种正确: (A)如果物体的动能不变,则动量也一定不变 )如果物体的动能不变, (B)如果物体的动能变化,则动量不一定变化 )如果物体的动能变化, (C)如果物体的动量变化,则动能也一定变化 )如果物体的动量变化, (D)如果物体的动量不变,则动能也一定不变 )如果物体的动量不变,
第三章 动量守恒和能量守恒
10
物理学
第三章补充例题
第五版
9 已知在半径为 的光滑球面上,一物 已知在半径为R的光滑球面上 的光滑球面上, 体自顶端静止下滑, 问物体在何处脱离球面? 体自顶端静止下滑 问物体在何处脱离球面
v 解 mg cos θ − FN = m R 1 2 mgR(1 − cos θ ) = mv 2
当物体在A处脱离球 面时, 面时, FN = 0
2
FN R
θ
A mg
2 解得: 解得: cos θ = 3
第三章 动量守恒和能量守恒
11
物理学
第三章补充例题
第五版
10 一人造地球卫星质量为 在地球 一人造地球卫星质量为m, 表面上空2倍于地球半径 倍于地球半径R的高度沿圆轨道 表面上空 倍于地球半径 的高度沿圆轨道 运行, 和地球质量M 运行,用m、R、引力常数 和地球质量 、 、引力常数G和地球质量 表示( )卫星的动能; )系统的引力势能. 表示(1)卫星的动能;(2)系统的引力势能 2 v Mm Mm 2 =G ,得 mv = G 解 (1) 由 m ) 2 3R (3R ) 3R 1 Mm 2 ∴ Ek = mv = G R 2R 2 6R Mm (2) EP = −G ) 3R
a = 3 + 5t
= 10∫ (3 + 5t )dt = 160 N ⋅ s
0
第三章 动量守恒和能量守恒
6
物理学
第三章补充例题
第五版
6 设作用在质量为 2 kg 上的物体上 的力 F = 6 t N,若物体由静止出发沿直线 , 运动, 内该力作的功. 运动,求在开始的 2s 内该力作的功
v t dv 有 ∫ dv = ∫ 3tdt 解 由 F = 6t = m 0 0 dt dx 2 2 得 v = 1.5t ,又v = , ∴ dx = 1.5t dt dt x t 2 4 因 W = Fdx = 6t × 1.5t dt = 2.25t ∫ ∫
dy dx = t, = 5, v y = 解 因 vx = dt dt 2 2 有 v = t + 25 1 2 1 2 应用动能定理, 应用动能定理,得 W = mv2 − mv1 = 3 J 2 2
第三章 动量守恒和能量守恒
8
物理学
第三章补充例题
第五版
8 如图,物体质 如图, 量 m = 2 kg ,沿固定 的四分之一圆弧由A静 的四分之一圆弧由 静 止滑下,到达B点时的 止滑下,到达 点时的 −1 速率 v = 6 m ⋅ s ,求摩 擦力作的功. 擦力作的功.
第三章 动量守恒和能量守恒
4
物理学
第三章补充例题
第五版
5 一吊车底板上放一质量 的物体, 为10 kg的物体,若吊车底板加 的物体 速上升, 速上升,加速度为 a = 3 + 5t , 求:2 s内吊车底板给物体的冲 内吊车底板给物体的冲 量大小和2 内物体动量的增量 量大小和 s内物体动量的增量 大小.式中a的单位是 的单位是m·s 大小.式中 的单位是 -2.
FN
a mg
第三章 动量守恒和能量守恒
5
物理学
第三章补充例题
第五版
解 Q FN − mg = ma
2
FN = m(g + a)dt N = 356 N⋅ s Qa = dv / dt
2
FN
a mg
∴dv = adt
2 0
∴ ∆p = m∆v = m ∫ adt


2
0
(30 + 40t )dt = 140 N ⋅ s
−1
(2) 应用质点动量定理 mv2 − mv0 = I )
v 代入数据解得: 代入数据解得: 2 = 24 m ⋅ s
第三章 动量守恒和能量守恒
1
物理学
第三章补充例题
第五版
2 不怕重锤击的人.杂技演员仰卧在 不怕重锤击的人. 胸口放一重铁板, 地,胸口放一重铁板,一大力士高举重铁锤 用力击铁板,演员安然无恙,原因何在? 用力击铁板,演员安然无恙,原因何在 设铁板重M,铁锤重m, 解 设铁板重 ,铁锤重 ,铁锤击铁 板速度为v 弹起的速度为v 板速度为 0,弹起的速度为 1,铁板获得的 速度为V,应用动量守恒定律, 速度为 ,应用动量守恒定律,有
物理学
第三章补充例题
第五版
1 质量 m = 10 kg的质点受力F = 30 + 40t 作用,且力方向不变. 时从v 的作用,且力方向不变.t=0 s时从 0=10 m·s-1 时从 开始作直线运动(v0方向与力向相同),求: 开始作直线运动( 方向与力向相同),求 ), (1)0~2 s内,力的冲量 I;(2)t=2 s时质点的速 ) 内 ; ) 时质点的速 率v2.(式中力的单位为 ,时间单位为s.) 式中力的单位为N,时间单位为 ) 力的单位为 解 (1)I = F (t ) ⋅ dt= )
相关文档
最新文档