虚拟电厂的概念和发展

合集下载

虚拟电厂的概念及发展

虚拟电厂的概念及发展

成效评估
美国加州虚拟电厂项目的实施,有效 提高了电力系统的效率和可持续性, 降低了能源成本。同时,该项目还促 进了清洁能源的消纳和利用,减少了 温室气体排放和环境污染。
案例三:中国广东虚拟电厂项目
项目背景
实施情况
中国广东地区经济发达,电力需求量 大,同时拥有丰富的分布式能源资源 。虚拟电厂项目作为广东电力发展的 重要方向之一,旨在通过整合分布式 能源资源,提高电力系统的安全性和 经济性。
信息通信技术
虚拟电厂依赖于信息通信技术实现数据的实时采 集、传输和处理,如何确保通信的稳定性和安全 性是技术上的关键问题。
市场挑战
市场机制不完善
01
当前电力市场机制尚不完善,虚拟电厂的商业模式和市场地位
尚未明确,这给虚拟电厂的发展带来了一定的市场挑战。
价格波动风险
02
虚拟电厂的运营受电力市场价格波动的影响较大,如何有效规
虚拟电厂的概念 及发展
目录
• 虚拟电厂概述 • 虚拟电厂的技术基础 • 虚拟电厂的运营模式 • 虚拟电厂的发展现状与趋势 • 虚拟电厂面临的挑战与机遇 • 虚拟电厂的实践案例
01
虚拟电厂概述
定义与特点
• 定义:虚拟电厂(Virtual Power Plant, VPP)是一种通过先进的信息通信技术和控制系统,将分布式能源、储能系统、可 控负荷等资源进行聚合和协调优化,实现统一管理和调度的智能化电厂。
虚拟电厂将实现跨区域联动,实现不同地 区、不同类型分布式能源的互联互通和协 同优化。
05
虚拟电厂面临的挑战与机 遇
技术挑战
1 2 3
分布式能源集成
虚拟电厂需要集成大量分布式能源,如光伏、风 电、储能等,如何实现高效、稳定的能源集成是 技术上的一大挑战。

2024年虚拟电厂市场前景分析

2024年虚拟电厂市场前景分析

2024年虚拟电厂市场前景分析引言随着能源转型的加速推进和可再生能源的大规模应用,虚拟电厂作为一种全新的能源供给模式,逐渐引起了各国能源行业的关注。

本文将对虚拟电厂市场前景进行深入分析,并讨论其未来发展趋势。

1. 虚拟电厂的概念和特点虚拟电厂是指通过数字技术和智能控制手段,将多个分布式能源设备(如太阳能光伏、风力发电、储能设备等)互联互通,形成一个统一管理和调度的能源系统。

虚拟电厂具有灵活性高、可扩展性强、能效高等特点。

2. 虚拟电厂市场的发展现状目前,虚拟电厂市场正在快速发展。

各国纷纷推出相关政策,鼓励虚拟电厂的建设和应用。

欧洲、美国、日本等发达国家的虚拟电厂市场已经逐步形成,并取得了显著成效。

在发展中国家,虚拟电厂市场也呈现出快速增长的势头。

3. 虚拟电厂市场的前景分析(1)政策支持促进市场发展随着各国政策的推动,虚拟电厂市场将迎来更多机遇。

政府对于可再生能源的支持力度将进一步加大,为虚拟电厂的发展提供了坚实的基础。

(2)技术进步推动市场创新随着数字技术和智能控制技术的不断进步,虚拟电厂的运营管理效率将得到大幅提升。

同时,技术的不断创新也将带来虚拟电厂市场的新业态和新模式。

(3)能源转型加速虚拟电厂需求虚拟电厂作为一种灵活的能源供给模式,能够为能源转型提供良好的支撑。

随着能源结构逐渐向可再生能源转变,虚拟电厂的需求将呈现出快速增长的趋势。

(4)市场竞争激烈,合作共赢成趋势虚拟电厂市场竞争激烈,各个企业为了获得更多的市场份额,将加大技术研发和市场拓展。

与此同时,企业之间的合作也将成为市场发展的重要趋势,通过资源共享和协同创新实现合作共赢。

结论虚拟电厂市场具有广阔的前景和巨大的发展潜力。

政策支持、技术创新和能源转型的推动将为虚拟电厂市场的发展提供强大动力。

同时,市场竞争和合作共赢也将成为市场发展的重要特点。

未来,虚拟电厂有望在能源行业中发挥重要的作用,并为可持续发展做出积极贡献。

注:本文内容仅为作者个人观点,不代表任何机构或企业的立场。

虚拟电厂的概念及发展

虚拟电厂的概念及发展


此外,对于不具有不确定性的DER聚合,基于热电联产发电系统 和储能装置建立混合整数优化模型,并基于CPLEX软件进行了仿真;对 由电动汽车、可控负荷和联合发电系统以虚拟电厂方式聚合管理以 提供负荷频率控制功能进行了研究;基于虚拟电厂的直接负荷控制模 型并进行了实地测试;虚拟电厂的控制结构主要分为集中和分散控制。 在集中控制结构下,虚拟电厂的全部决策由中央控制单元———控制 协调中心(controlcoordinationcenter,CCC)制定。如图2所示,虚拟电 厂中的每一部分均通过通信技术与CCC相互联系,CCC多采用能量管 理系统(energymanagementsystem,EMS),其主要职责是协调机端潮 流、可控负荷和储能系统。 EMS根据其优化目标进行工作,其优化目标包括:发电成本最小 化、温室气体排放量最小化、收益最大化等。为达到上述优化目 标,EMS需要接收每一单位的状态信息并据此作出预测,尤其对于可再 生能源发电机组,如风力发电和光伏发电机组。此外,电网中可能发生 阻塞问题的信息在虚拟电厂运行的优化过程中也起到至关重要的作 用。根据接收到的信息,EMS可以选择最佳解决方案,优化电网运行。 集中控制结构最易于实现虚拟电厂最优运行,但扩展性和兼容性受到 一定的限制。 在分散控制结构中,决策权完全下放到各DG,且其中心控制器 由信息交换代理取代,如图3所示。信息交换代理只向该控制结构下 的DER提供有价值的服务,如市场价格信号、天气预报和数据采集等。 由于依靠即插即用能力,因而分散控制结构比集中控制结构具有更好 的扩展性和开放性。

虚拟电厂采用双向通信技术,它不仅能 够接收每一单元的当前状态信息,而且能够向 控制目标发送控制信号。应用于虚拟电厂中 的通信技术主要有基于互联网的技术,如基于 互联网协议的服务、虚拟专用网络、电力线 路载波技术和无线技术(如全球移动通信系统 /通用分组无线服务技术(GSM/GPRS),3G等)。 在用户住宅内,WiFi、蓝牙、Zigbee等通信技 术构成了室内通信网络。 根据不同的场合和要求,虚拟电厂可以 应用不同的通信技术。对于大型机组而言,可 以使用基于IEC60870灢5灢101或IEC60870灢5 灢104协议的普通遥测系统。随着小型分散电 力机组数量的不断增加,通信渠道和通信协议 也将起到越来越重要的作用,昂贵的遥测技术 很有可能将被基于简单的TCP/IP适配器或电 力线路载波的技术所取代。在欧盟VFCPP项 目中,设计者采用了互联网虚拟专用网络技术; 荷兰功率匹配器虚拟电厂采用了通用移动通 信技术(UTMS)无线网通信技术;在欧盟FENIX 项目中,虚拟电厂应用了GPRS技术和IEC104协 议通信技术;德国ProViPP的通信网络则由双 向无线通信技术构成。

虚拟电厂

虚拟电厂

虚拟电厂的功能特征
由虚拟电厂的概念可知,在技术层面,虚拟电厂控制中心应具有如下 功能: 3)新能源发电功率预测功能。 综合短期及中长期气象数据及预报信息,对区域内的风电机组、太阳
能发电机组等的输出功率做出较准确的预测。
4)用电负荷预测及管理功能。 对区域内的用电符合进行较准确的预测,对多种因素对负荷需求的影 响规律进行分析,并且具有对整个电网调度运行的功能。
好的可扩展性和开放性,但是该结构对虚
拟发电厂内各发电或用电单元及由其组成 的子系统提出很高的要求,需要具备日常 运行管理、故障诊断与响应等较复杂的功 能。
虚拟电厂的关键技术:信息通讯技术
虚拟电厂要采用融合能源流与信息流的双向通信技术, 控制中心不仅可以接受各单元的当前状态信息,而且能 够向控制目标发送控制信号。应用于虚拟电厂中的通信 技术主要基于互联网的技术,如互联网协议的服务、虚 拟专用网络、电力线路载波技术和无线技术。根据不同 场合和要求,虚拟电厂要应用不同的通信技术。在欧洲 进行的一些虚拟电厂项目中,主要应用有互联网虚拟专 用网络技术、移动通信技术、GPRS技术和IEC104协议通 信技术等。
虚拟电厂的功能特征
由虚拟电厂的概念可知,在技术层面,虚拟电厂控制中心应具有如下
功能: 5)数据管理及分析功能。 采集并分析处理区域中各对象的运行数据,如发电机组的出力和运行 效率、用电负荷随时间变化的规律等,并能对这些数据提供有效的检 索和调用手段。
6)电力市场中的经营能力。
包括建立区域内的发电费用、用电收益及安全约束模型,进行优化计 算,收集市场情报、制订发电计划、签订中远期市场交易合同等。
虚拟电厂的关键技术
虚拟电厂的关键技术:协调控制技术 虚拟电厂的运行控制结构可以分为: 1)集中控制 2)集中–分散控制 3)完全分散控制

虚拟电厂的概念和发展

虚拟电厂的概念和发展
促进可再生能源消纳
虚拟电厂能够整合各类分布式 能源,提高可再生能源的消纳
能力,缓解能源供需矛盾。
优化资源配置
通过智能调度和优化算法,虚 拟电厂能够实现资源的优化配 置,提高能源利用效率。
降低能源成本
虚拟电厂的规模效应和协同效 应有助于降低能源成本,提高 能源产业的竞争力。
保障能源安全
虚拟电厂的灵活性和可调度性有 助于提高能源系统的安全性和稳 定性,减少对传统能源的依赖。
03 虚拟电厂的关键技术
能源管理系统
实时监控
能源调度
能源管理系统可以对各种能源进行实 时监控,包括电力、燃气、水等,确 保能源的合理使用和有效调度。
根据实时数据和历史数据,能源管理 系统能够进行智能调度,确保能源的 稳定供应和高效利用。
数据采集与分析
能源管理系统能够采集各种能源数据, 并进行深入分析,以发现能源使用的 瓶颈和优化潜力。
特斯拉能源公司是全球领先的电动汽车制造商,近年来也开始涉足虚拟电厂领域。
特斯拉能源公司的虚拟电厂项目通过整合电动汽车、太阳能和储能技术,实现了能 源的智能管理和优化利用。
该项目的成功实施,不仅提高了特斯拉能源公司的竞争力,也为全球虚拟电厂的发 展提供了有益的借鉴和参考。
06 结论与展望
虚拟电厂的重要性和意义
智能电网建设
作为智能电网的重要组成 部分,虚拟电厂有助于提 高电网的可靠性和稳定性。
02 虚拟电厂的发展历程
起源与早期发展
20世纪90年代
虚拟电厂概念首次提出,旨在通 过智能化的手段整合分散的分布 式能源资源。
21世纪初
随着可再生能源的发展和分布式 能源的普及,虚拟电厂逐渐受到 重视,开始在欧洲和北美地区进 行试点项目。

虚拟电厂运营模式经济性及发展现状

虚拟电厂运营模式经济性及发展现状

虚拟电厂运营模式经济性及发展现状虚拟电厂是指利用分布式能源资源和能源管理技术,通过灵活的能源调度和协调,将分散的小型能源装置(如太阳能发电设备、风力发电设备、电池储能装置等)组合起来,形成一个整体的虚拟电厂。

虚拟电厂的主要特点是能源资源的多样性和分散性,以及能源的灵活调度和协调。

虚拟电厂的运营模式可以分为两种:基于能源综合服务商的模式和基于能源市场交易的模式。

基于能源综合服务商的模式是由能源供应商、电网公司和综合能源服务提供商等参与者共同组成的一个虚拟电厂运营体系。

虚拟电厂的运营商通过能源管理技术和信息通信技术,监控和管理各种能源装置的运行状态和能源消耗情况,以满足用户的能源需求。

运营商可以提供多种能源服务,包括能源供应、能源储存、能源效率优化等,从而实现能源的可持续利用和经济运营。

基于能源市场交易的模式是通过电力市场和能源交易平台等市场机制,实现虚拟电厂的能源交易和能源调度。

虚拟电厂的能源装置通过参与电力市场的电力交易和能源交易,将多种能源资源进行组合和调度,以响应市场需求和优化能源利用。

运营商可以通过参与市场交易,实现能源的价值最大化和经济效益的提高。

虚拟电厂的经济性主要表现在以下几个方面:首先,虚拟电厂可以提高能源资源的利用效率和经济效益。

通过灵活调度和协调,虚拟电厂可以最大限度地利用各种分散能源资源,减少能源的浪费和损失,提高能源的利用效率和经济效益。

其次,虚拟电厂可以降低能源成本和电力购买成本。

通过能源管理技术和市场交易机制,虚拟电厂可以选择低成本的能源供应商和能源资源,降低能源的采购成本和运营成本。

再次,虚拟电厂可以提供多种能源服务,满足用户的不同能源需求。

虚拟电厂通过灵活调度和协调,可以根据用户的能源需求,提供不同种类和规模的能源服务,满足用户的不同需求。

虚拟电厂在全球范围内的发展现状如下:目前,全球各地都在积极推进虚拟电厂的发展。

在欧洲,虚拟电厂已经形成了一定规模和较成熟的运营模式。

虚拟电厂的概念和发展全版.ppt

虚拟电厂的概念和发展全版.ppt

并网和电力市场运营的目标考虑而来,DG占据DER的主要成分;而美国的虚拟电
厂主要基于需求响应计划发展而来,兼顾考虑可再生能源的利用,因此可控负荷
占据主要成分。因此,尽管虚拟电厂的概念已提出十余年之久,但对于虚拟电厂
的框架尚无统一的定义。
对虚拟电厂不同的定义,如虚拟电厂被定义为依赖于软件系统远程、自动
• 微网相对于外部大电网表现为单一的受控单元,通过公共耦合开关,微 网既可运行于并网模式,又可运行于孤岛模式。而虚拟电厂始终与公 网相连,即只运行于并网模式。
的虚拟电厂亦各具特色。欧洲现已实施的虚拟电厂项目,如欧盟虚拟燃料电池
电厂(virtualfuelcellpowerplant,VFCPP)项目、荷兰基于功率匹配器的虚拟电厂
项目、欧盟FENIX(f lexibleelectricitynetworktointegrateexpected)项目以及德
国专业型虚拟电厂(professionalVPP,ProViPP)试点项目,主要针对实现DG可靠
目前,国内有些文献将“能效电厂”称之为虚拟电厂, 这与文中所述“虚拟电厂”的概念有所不同,但二者 都属于广义上的虚拟电厂。能效电厂是指通过采 用高效用电设备和产品、优化用电方式等途径, 形成某个地区、行业或企业节电改造计划的一揽 子行动方案,降低用电负荷,等效产生富余电能,从 而达到与实际电厂异曲同工的效果。可以看出,
分配和优化发电、需求响应和储能资源的能源互联网;虚拟电厂被定义为与自
治微网相同的网络;虚拟电厂被定义为以直接集中控制方式聚合可控分布式能
源(controllabledistributedenergy,CDE)单位或主动用户网
(activecustomernetwork效节电,而 虚拟电厂的实现形式在于电源侧有效分配和管理 DG

什么是虚拟电厂?理解虚拟电厂的五个视角

什么是虚拟电厂?理解虚拟电厂的五个视角

那么,究竟什么是虚拟电厂?其资源状况、未来发展空间如何?如何理解虚拟电厂在能源革命和现代能源体系建设中的意义和作用?当前在我国推进虚拟电厂新业态还存在哪些突出问题?如何有效克服这些问题?在这里简要梳理如下。

一什么是虚拟电厂从现有的研究和实践来看,虚拟电厂可以理解为:是将不同空间的可调节(可中断)负荷、储能、微电网、电动汽车、分布式电源等一种或多种资源聚合起来,实现自主协调优化控制,参与电力系统运行和电力市场交易的智慧能源系统。

它既可作为“正电厂”向系统供电调峰,又可作为“负电厂”加大负荷消纳配合系统填谷;既可快速响应指令配合保障系统稳定并获得经济补偿,也可等同于电厂参与容量、电量、辅助服务等各类电力市场获得经济收益。

虚拟电厂自本世纪初在德国、英国、西班牙、法国、丹麦等欧洲国家开始兴起,同期北美推进相同内涵的“电力需求响应”。

我国同时采用这两个概念,一般认为虚拟电厂的概念包含需求响应。

目前虚拟电厂理论和实践在发达国家已成熟,各国各有侧重,其中美国以可控负荷为主,规模已超3千万千瓦,占尖峰负荷的4%以上;以德国为代表的欧洲国家则以分布式电源为主;日本以用户侧储能和分布式电源为主,计划到2030年超过2500万千瓦;澳大利亚以用户侧储能为主,特斯拉公司在南澳建成了号称世界上最大的以电池组为支撑的虚拟电厂。

“十三五”期间,我国江苏、上海、河北、广东等地也相继开展了电力需求响应和虚拟电厂的试点。

如江苏省于2016年开展了全球单次规模最大的需求响应。

国网冀北电力有限公司高标准建设需求响应支撑平台,优化创新虚拟电厂运营模式,高质量服务绿色冬奥,并参与了多个虚拟电厂国际标准制定。

二虚拟电厂的三类资源虚拟电厂赖以发展起来是以三类资源的发展为前提的。

一是可调(可中断)负荷,二是分布式电源,三是储能。

这是三类基础资源,在现实中,这三类资源往往会糅合在一起,特别是可调负荷中间越来越多地包含自用型分布式能源和储能,或者再往上发展出微网、局域能源互联网等形态,同样可以作为虚拟电厂下的一个控制单元。

虚拟电厂的基本原理

虚拟电厂的基本原理

虚拟电厂的基本原理
虚拟电厂是指通过对多个分布式能源资源进行集中管理和协调控制,使其协同运行,实现类似传统电厂的发电能力和灵活性的一种能源系统。

其基本原理可以概括如下:
1. 分布式能源资源整合:虚拟电厂通过与分布式能源资源(如太阳能光伏、风力发电、储能系统等)进行连接和整合,将它们纳入一个统一的能源系统中。

分布式能源资源被视为虚拟电厂的发电单元。

2. 灵活调度和控制:虚拟电厂使用先进的信息技术和通信技术,通过监测和预测能源需求、市场价格等多种因素,实现对分布式能源资源的灵活调度和协调控制。

通过合理的调度和控制策略,实现电力系统的灵活性和可调度性。

3. 能量交换和能源共享:虚拟电厂中的分布式能源资源之间可以进行能量交换和能源共享。

例如,当某个分布式能源资源产生过剩能量时,它可以将多余的能量输送到虚拟电厂中的其他资源进行利用。

这样可以提高能源资源的整体利用率和经济效益。

4. 能源市场参与:虚拟电厂可以参与能源市场的交易和竞争。

通过监测市场价格和需求,虚拟电厂可以根据市场条件调整产电策略,选择最佳的能源组合以最大化收益。

同时,虚拟电厂也可以参与电力市场的调度和交易,为电力系统的平衡和稳定做出贡献。

综上所述,虚拟电厂的基本原理是通过整合分布式能源资源、灵活调度和控制、能量交换和能源共享、能源市场参与等手段,实现分布式能源资源的协同运行和最佳利用,以满足电力系统的需求和市场要求。

虚拟电厂的概念与发展

虚拟电厂的概念与发展

虚拟电厂的概念与发展一、本文概述随着科技的快速发展和全球能源结构的转型,虚拟电厂这一新型能源管理模式正逐渐走进人们的视野。

本文旨在全面解析虚拟电厂的概念、特点、发展历程以及未来趋势,以期为能源行业的可持续发展提供新的思路和解决方案。

我们将对虚拟电厂的定义和基本原理进行阐述,帮助读者建立对虚拟电厂的基本认识。

接着,我们将回顾虚拟电厂的发展历程,分析其在全球能源市场中的地位和影响力。

随后,我们将深入探讨虚拟电厂的运营模式、技术挑战以及政策环境,展示其在提高能源利用效率、促进可再生能源发展等方面的优势。

我们将展望虚拟电厂的未来发展趋势,预测其在全球能源转型中的潜在影响。

通过本文的阅读,读者将能够全面了解虚拟电厂的概念与发展,为推动能源行业的绿色、智能、高效发展贡献自己的力量。

二、虚拟电厂的基本概念虚拟电厂(Virtual Power Plant, VPP)是一种创新的电力系统运营模式,它将分布式能源资源(如太阳能光伏、风能发电、储能系统、可控负荷等)通过先进的通信技术和信息管理系统整合起来,形成一个可以像传统电厂一样参与电力市场运营和调度的虚拟电厂。

虚拟电厂并非实际存在的物理电厂,而是一个集成了多种分布式能源资源的虚拟集合体,它通过软件平台和高级算法实现对分散能源资源的统一管理和优化调度。

虚拟电厂的核心在于其聚合和优化的能力。

它可以将不同地理位置、不同类型的分布式能源资源进行整合,形成一个统一的、可调度的电源。

通过先进的通信技术和数据分析,虚拟电厂可以实时收集各分布式能源的运行数据,进行预测和优化,以满足电力系统的需求。

虚拟电厂还可以与电力市场进行交互,参与电力市场的买卖,为电力市场提供灵活、可靠的电力供应。

虚拟电厂的出现,不仅提高了电力系统的灵活性和可靠性,也为可再生能源的大规模接入和消纳提供了新的解决方案。

通过虚拟电厂,可以更有效地利用分散的能源资源,减少能源浪费,降低碳排放,推动能源结构的转型和升级。

【能源转型】VPP虚拟电厂是什么?

【能源转型】VPP虚拟电厂是什么?

【能源转型】VPP虚拟电⼚是什么?虚拟电⼚(Virtual Power Plants, VPP)是实现智能配电⽹的重要技术之⼀。

它是指通过分布式能源管理系统将配电⽹中分散安装的清洁能源、可控负荷和储能系统合并作为⼀个特别的电⼚参与电⽹运⾏,从⽽很好地协调智能电⽹与分布式能源之间的⽭盾,充分挖掘分布式能源为电⽹和⽤户所带来的价值和效益。

在欧洲,虚拟电⼚也可以叫做电⽹聚合商(aggregator),在市场参与者中,电⽹聚合商负责把分布式的⼩型发电设备(新能源)的控制权集中成为⼀个池,达到参与电⼒市场的最低门槛,相当于代理商的⾓⾊。

虚拟电⼚的概念在虚拟电⼚中,分散安装在配电⽹中的清洁电源、受控负荷和储能系统合并作为⼀个特别的电⼚参与电⽹运⾏,每⼀部分均与能量管理系统(EMS)相连,控制中⼼通过智能电⽹的双向信息传送,利⽤EMS系统进⾏统⼀调度协调机端潮流、受端负荷以及储能系统,从⽽达到降低发电损耗、减少温室⽓体排放、优化资源利⽤、降低电⽹峰值负荷和提⾼供电可靠性的⽬的。

(1)发电系统主要包括家庭型(domestic distributed generation,DDG)和公⽤型(public distributed generation,PDG)这2类分布式电源。

DDG的主要功能是满⾜⽤户⾃⾝负荷,如果电能盈余,则将多余的电能输送给电⽹;如果电能不⾜,则由电⽹向⽤户提供电能。

典型的DDG 系统主要是⼩型的分布式电源,为个⼈住宅、商业或⼯业分部等服务。

PDG主要是将⾃⾝所⽣产的电能输送到电⽹,其运营⽬的就是出售所⽣产的电能。

典型的PDG系统主要包含风电、光伏等新能源发电装置。

(2)能量存储系统可以补偿可再⽣能源发电出⼒波动性和不可控性,适应电⼒需求的变化,改善可再⽣能源波动所导致的电⽹薄弱性,增强系统接纳可再⽣能源发电的能⼒和提⾼能源利⽤效率。

(3)通信系统是虚拟电⼚进⾏能量管理、数据采集与监控,以及与电⼒系统调度中⼼通信的重要环节。

虚拟电厂演讲稿范文

虚拟电厂演讲稿范文

大家好!今天,我非常荣幸能在这里为大家介绍一个前沿的能源领域——虚拟电厂。

在这个全球能源转型的大背景下,虚拟电厂作为一种创新的能源管理模式,正逐渐成为我国能源行业发展的新亮点。

首先,让我们来了解一下什么是虚拟电厂。

虚拟电厂,顾名思义,就是将分散的分布式能源、储能、负荷等资源通过信息化技术整合在一起,形成一个虚拟的、可调控的电力系统。

虚拟电厂的核心优势在于提高能源利用效率、降低能源成本、优化电力资源配置,为实现能源低碳、清洁、高效发展提供有力支撑。

以下是虚拟电厂的几个特点:1. 高效节能:虚拟电厂通过优化调度,实现能源的高效利用,降低能源消耗,提高能源利用率。

2. 低碳环保:虚拟电厂将可再生能源、储能等清洁能源纳入系统,降低对传统能源的依赖,减少碳排放。

3. 电网稳定:虚拟电厂能够快速响应电网波动,提高电网稳定性,保障电力供应。

4. 智能化管理:虚拟电厂利用大数据、云计算、人工智能等技术,实现智能化调度和管理。

在我国,虚拟电厂的发展前景十分广阔。

以下是我对虚拟电厂在我国发展的几点建议:1. 加强政策支持:政府应出台相关政策,鼓励虚拟电厂的发展,提供资金、技术等方面的支持。

2. 完善基础设施建设:加快智能电网、储能设施等基础设施建设,为虚拟电厂发展提供硬件保障。

3. 深化技术创新:鼓励企业加大研发投入,推动虚拟电厂在关键技术领域的突破。

4. 推广应用:积极推广虚拟电厂在工业、商业、居民等领域的应用,提高能源利用效率。

5. 培养专业人才:加强虚拟电厂相关人才培养,为行业发展提供人才支撑。

总之,虚拟电厂作为我国能源转型的重要手段,具有广阔的发展前景。

让我们携手共进,共同推动虚拟电厂在我国的发展,为实现能源低碳、清洁、高效发展贡献力量。

谢谢大家!。

虚拟电厂《架构与功能要求》标准号

虚拟电厂《架构与功能要求》标准号

虚拟电厂《架构与功能要求》标准号分析1. 虚拟电厂的概念虚拟电厂是指利用信息通信技术和智能化控制技术,将分散的可再生能源、储能设备、灵活负荷等能源资源进行优化组合,形成一个具有一定规模和特定功能的虚拟发电厂,实现能源的高效利用和灵活调度。

虚拟电厂的出现,符合能源转型的大趋势,对于解决可再生能源消纳、提高功率系统运行灵活性、促进能源多元化利用等方面具有重要意义。

2. 虚拟电厂《架构与功能要求》标准号解析虚拟电厂《架构与功能要求》标准号是对虚拟电厂的建设和运行提出的一系列具体要求和规范,目的是为了保障虚拟电厂的安全稳定运行,推动虚拟电厂技术的规范化和标准化。

这个标准号的出台,为虚拟电厂的发展提供了标准化和规范化的指导,有助于推动虚拟电厂技术的应用和推广。

3. 《架构与功能要求》标准号的重要性虚拟电厂《架构与功能要求》标准号的出台,对虚拟电厂的发展具有重要的指导和规范作用。

这个标准号的出台有助于提高虚拟电厂的规范化水平,对于虚拟电厂的建设、调度、运行等方面提出了具体的技术要求,有助于统一虚拟电厂的建设标准,推动虚拟电厂技术的规范化和标准化。

这个标准号的出台有助于提高虚拟电厂的安全性和稳定性,对于虚拟电厂的安全保护、应急控制等方面提出了具体的技术要求,有助于提高虚拟电厂的安全性和稳定性,保障虚拟电厂的安全运行。

再次,这个标准号的出台有助于提高虚拟电厂的智能化水平,推动虚拟电厂技术与智能电网、大数据、人工智能等技术的融合,有助于推动虚拟电厂的智能化发展。

4. 个人观点和理解《架构与功能要求》标准号的出台,对于推动虚拟电厂的发展具有重要的作用。

作为一项新兴的能源技术,虚拟电厂的建设和运行需要明确的技术规范和标准,而这个标准号的出台正好填补了这方面的空白。

我认为,只有加强对虚拟电厂的标准化和规范化建设,才能更好地推动虚拟电厂技术的应用和推广,为能源转型和电力行业的可持续发展提供有力支撑。

总结虚拟电厂《架构与功能要求》标准号的出台,对于虚拟电厂的发展具有重要的推动作用。

虚拟电厂的概念和发展

虚拟电厂的概念和发展
第八组:
前言
• 虚拟电厂”这一术语源于1997年ShimonAwerbuch博士在其著作《虚拟公共设施:新兴 产且业以的市描 场述 为、 驱技 动术 的及 实竞体争之力间》的一一书种中灵对活虚合拟作,公这共些设实施体的不定必义拥如有下相:应虚的拟资公产共而设能施够是为独消立 费者提供其所需要的高效电能服务。正如虚拟公共设施利用新兴技术提供以消费者为 导向的电能服务一样,虚拟电厂并未改变每个DG并网的方式,而是通过先进的控制、计量、 通信等技术聚合DG、储能系统、可控负荷、电动汽车等不同类型的分布式能源 (distributedenergyresources,DER),并通过更高层面的软件构架实现多个DER的协调优化运 行能无和需,更效对有果 电利网,于更进资新行源运改的营造合理而理念能优并够化产聚配生合置社D及会ER利经对用济公。效网虚益稳,拟其定电基输厂本电的的,并概应提念用供更场快多景速强是响调电应的力的是市辅对场助外。服呈这务现种,成的方为功法 DER加入电力市场的有效方法,降低了其在市场中孤独运行的失衡风险,可以获得规模经 济的效益。同时,DER的可视化及虚拟电厂的协调控制优化大大减小了以往DER并网对公 网造成的冲击,降低了DG增长带来的调度难度,使配电管理更趋于合理有序,提高了系统 运行的稳定性。
• 目所前述,“国虚内拟有电些厂文”的献概将念“能有效所电不厂同”,称但之二为者虚都拟属电于厂广,义这上与的文虚中 拟电厂。能效电厂是指通过采用高效用电设备和产品、优 化用电方式等途径,形成某个地区、行业或企业节电改造计 划达的到一与揽实子际行电动厂方异案曲,同降工低的用效电果负。荷可,等以效看产出生, 富余电能,从而
问题范畴,但二者仍有诸多区别。
设计理念 构成条件 运行模式 运行特性
• 微网采用自下而上的设计理念,强调“自治”,即以DG与用户就地应用为主要控制目标,实现网络正 常时的并网运行以及网络发生扰动或故障时的孤岛运行。而虚拟电厂的概念强调“参与”,即吸引 并聚合各种DER参与电网调度和电力市场交易,优化DER组合以满足电力系统或市场要求为主要控 制目标,强调对外呈现的功能和效果。

虚拟电厂总体规划建设方案

虚拟电厂总体规划建设方案

05
政策支持与市场推广策略
政策法规背景分析
国家能源政策
01
分析国家能源战略和电力发展规划,明确虚拟电厂在其中的地
位和作用。
环保法规要求
02
梳理环保法规对电力行业的具体要求,确保虚拟电厂建设符合
环保标准。
行业标准与规范
03
研究电力行业标准及规范,指导虚拟电厂的规划、建设和运营

财政补贴和税收优惠政策利用
结合可再生能源发电的波动性和不确定性 ,通过虚拟电厂的灵活调度,实现可再生 能源的最大化消纳。
提升电力系统稳定性与安全性
规划依据
通过虚拟电厂的快速响应和支撑能力,增 强电力系统的稳定性和安全性,降低或延 缓电网投资。
根据国家能源政策、电力发展规划以及地区 能源供需状况等,制定符合地区实际的虚拟 电厂总体规划目标。
网络安全防护
建立完善的网络安全防护体系, 确保虚拟电厂控制系统的网络安
全、数据安全和物理安全。
04
运营管理模式创新
市场化交易机制构建
建立虚拟电厂与电力市场的衔接机制
明确虚拟电厂在电力市场中的定位,制定市场准入、交易规则、监管措施等,保障其公平 参与市场竞争。
推行双边协商与集中竞价相结合的交易模式
06
环境影响评价及社会效益分 析
环境影响评价报告编制要点
明确评价范围和对象
包括虚拟电厂建设涉及的区域、工艺 流程、排放源等。
环境现状调查与分析
收集评价区域内环境现状资料,分析 主要环境问题。
环境影响预测与评价
预测虚拟电厂建设对环境的影响程度 ,包括空气、水、声、生态等方面, 并进行综合评价。
环保措施与建议
感谢您的观看
THANKS

全球及中国虚拟电厂行业现状及发展趋势分析

全球及中国虚拟电厂行业现状及发展趋势分析

全球及中国虚拟电厂行业现状及发展趋势分析一、虚拟电厂概述1、定义及分类虚拟电厂(Virtual Power Plant,简称VPP),其核心思想就是通过运用IOT、云服务、AI等信息技术和软件系统将分布式发电、需求侧和储能资源汇聚起来,通过数字化的手段形成一个虚拟的“电厂”来做统一的管理和调度,同时作为主体参与电力市场。

从资源端来看,虚拟电厂资源包括可控负荷、分布式电源、储能三类。

虚拟电厂的发展是以三类可控资源的发展为前提的,分别是可控负荷、分布式电源与储能,以上三类电源在现实中往往糅合在一起,作为虚拟电厂的控制单元。

2、虚拟电厂运营模式发展阶段按照发展阶段,可将VPP划分为合约型、市场型和自主型三大类。

合约型(邀约型)阶段为虚拟电厂初始阶段,通过专项资金、特定合同、激励政策引导聚合商参与,完成邀约、响应和激励流程。

在不同牵头单位和市场的驱动下,虚拟电厂的组织方式将逐步从邀约型转变为市场型,在市场型阶段主体通过参与电能现货市场、辅助服务市场获得收益。

自主型阶段是高级发展阶段,将能实现跨空间自主调度,既包含可调负荷、储能和分布式能源等基础资源,也包含由这些基础资源整合而成的微网、局域能源互联网。

二、虚拟电厂行业发展背景1、虚拟电厂行业相关政策从政策方面来看,近年来,国家出台相关政策推动虚拟电厂建设。

2021年国务院发布的《2030年前碳达峰行动方案》中提出,引导虚拟电厂参与新型电力系统灵活调节。

此后虚拟电厂政策催化显著加速。

2022年《“十四五”现代能源体系规划》中提到开展工业可调节负荷、楼宇空调负荷、大数据中心负荷、用户侧储能、新能源汽车与电网(V2G)能量互动等各类资源聚台的虚拟电厂示范。

2、虚拟电厂发展技术背景从技术端来看,主要包括计量技术、通信技术、智能调度决策技术、信息安全防护技术四类。

精准的计量是虚拟电厂建立的基础,可靠的通信是虚拟电厂可靠生产的条件,智能调度决策技术是虚拟电厂发挥作用的重要保证,而信息防护技术是保证虚拟电厂稳定运行的底线思维。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

厂中的每一部分均通过通信技术与CCC相互联系,CCC多采用能量管
理系统(energymanagementsystem,EMS),其主要职责是协调机端潮
流、可控负荷和储能系统。

EMS根据其优化目标进行工作,其优化目标包括:发电成本最小
化、温室气体排放量最小化、收益最大化等。为达到上述优化目
标,EMS需要接收每一单位的状态信息并据此作出预测,尤其对于可再
生能源发电机组,如风力发电和光伏发电机组。此外,电网中可能发生
阻塞问题的信息在虚拟电厂运行的优化过程中也起到至关重要的作
用。根据接收到的信息,EMS可以选择最佳解决方案,优化电网运行。
集中控制结构最易于实现虚拟电厂最优运行,但扩展性和兼容性受到
一定的限制。

在分散控制结构中,决策权完全下放到各DG,且其中心控制器
1.商业型虚拟电厂

商业型虚拟电厂是从商业收益角度考虑的虚
拟电厂,是DER投资组合的一种灵活表述。其基本
功能是基于用户需求、负荷预测和发电潜力预测,
的虚拟电厂亦各具特色。欧洲现已实施的虚拟电厂项目,如欧盟虚拟燃料电池
电厂(virtualfuelcellpowerplant,VFCPP)项目、荷兰基于功率匹配器的虚拟电厂
项目、欧盟FENIX(f lexibleelectricitynetworktointegrateexpected)项目以及德
国专业型虚拟电厂(professionalVPP,ProViPP)试点项目,主要针对实现DG可靠
误差等特点,因此,将其大规模并网必须考虑不确定性
的影响。这就要求储能系统、可分配发电机组、可控
负荷与之合理配合,以保证电能质量并提高发电经济性。
为实现上述目标,通常规划入虚拟电厂的DG一般由若
干可再生能源发电站和至少一座传统能源发电站构成,
并建立了线性规划优化分配模型;将区域风力发电机组
和常规水、火电机组及储能设备聚合为虚拟电厂,建立
(advancedmeteringinfrastructure,AMI)
能够远程测量实时用户信息,合理管理
数据,并将其发送给相关各方。对于用
户而言,所有的计量数据都可通过用户
室内网(homeareanetwork,HAN)在电
脑上显示。因此,用户能够直观地看到
自己消费或生产的电能以及相应费用
等信息,以此采取合理的调节措施。
能够实现自我控制、保护和管理的自治系统,既可以与
外部电网并网运行,也可以孤立运行。微网技术的提出
旨在解决DG并网运行时的主要问题,同时由于它具备
一定的能量管理功能,并尽可能维持功率的局部优化与
平衡,可有效降低系统运行人员的调度难度。实际上,尽
管虚拟电厂和微网都是基于考虑解决DG及其他元件整
合并网问题范畴,但二者仍有诸多区别。
分配和优化发电、需求响应和储能资源的能源互联网;虚拟电厂被定义为与自
治微网相同的网络;虚拟电厂被定义为以直接集中控制方式聚合可控分布式能
源(controllabledistributedenergy,CDE)单位或主动用户网
(activecustomernetworks,ACN)的信息通信系统。
欧洲FENIX项目将虚拟电厂的概念定义为:虚拟电 厂聚合众多不同容量的DER,通过综合表征每一 DER的参数建立整体的运行模式,并能够包含聚 合DER输出的网络影响。虚拟电厂是DER投资组 合的一种灵活表现,可以在电力市场签订合同并 为系统操作员提供各种服务。
能效电厂的实现形式在于需求侧的有效节电,而 虚拟电厂的实现形式在于电源侧有效分配和管理 DG发电、储能充放电和可控负荷。
2虚拟电厂与微网的区别

虚拟电厂和微网是目前实现DG并网最具创造力
和吸引力的2种形式。对于微网的定义,国内一般认为:
微网是指由DG、储能装置、能量转换装置、相关负荷
和监控、保护装置汇集而成的小型发配电系统,是一个
在用户住宅内,WiFi、蓝牙、Zigbee等通信技
术构成了室内通信网络。

根据不同的场合和要求,虚拟电厂可以
应用不同的通信技术。对于大型机组而言,可
以使用基于IEC60870灢5灢101或IEC60870灢5
灢104协议的普通遥测系统。随着小型分散电
力机组数量的不断增加,通信渠道和通信协议
也将起到越来越重要的作用,昂贵的遥测技术
虚拟电厂的概念与发展
1虚拟电厂的定义

目前,从整个世界范围来看,虚拟电厂的研究和实施主要集中于欧洲和北美。
根据派克研究公司(PikeResearch)公布的数据,截至2009年底,全球虚拟电厂总
容量为19.4GW,其中欧洲占51%,美国占44%;截至2011年底,全球虚拟电厂总容量
增至55.6GW。然而,欧洲与美国虚拟电厂的应用形式有着显著的不同,欧洲各国
特殊电厂,其与系统相互作用的要求比微网更为严格,可用常规电厂的统计数 据和运行特性来衡量虚拟电厂的效用,如:有功/无功负载能力、出力计划、爬 坡速度、备用容量、响应特性和运行成本特性等;其辖域内配电网的运行特性 则由配电电系统操作员(distributionsystemoperator,DSO)进行衡量。
向无线通信技术构成。
4虚拟电厂的运行
虚拟电厂最具吸引力的功能 在于能够聚合DER参与电力市场 和辅助服务市场运行,为配电网 和输电网提供管理和辅助服务。 为实现其最佳效益,进行了诸多 研究,例如:建立了DG和可控负荷 参与日前电力市场的运行框架和 模型;按功能不同,虚拟电厂可划 分为两大模块———商业型虚拟 电厂(commercialVPP,CVPP)和 技术型虚拟电厂 (technicalVPP,TVPP),其运行的 基本框架如图4所示。图中:TSO 表示输电系统操作员。下文将基 于此两大模块,对虚拟电厂的运 行进行具体阐述。
并网和电力市场运营的目标考虑而来,DG占据DER的主要成分;而美国的虚拟电
厂主要基于需求响应计划发展而来,兼顾考虑可再生能源的利用,因此可控负荷
占据主要成分。因此,尽管虚拟电厂的概念已提出十余年之久,但对于虚拟电厂
的框架尚无统一的定义。

对虚拟电厂不同的定义,如虚拟电厂被定义为依赖于软件系统远程、自动
设计理念 构成条件 运行模式
• 微网采用自下而上的设计理念,强调“自治”,即以DG与用户就地应用为 主要控制目标,实现网络正常时的并网运行以及网络发生扰动或故障 时的孤岛运行。而虚拟电厂的概念强调“参与”,即吸引并聚合各种DER 参与电网调度和电力市场交易,优化DER组合以满足电力系统或市场 要求为主要控制目标,强调对外呈现的功能和效果。
• 微网的构成依赖于元件(DG、储能、负荷、电力线路等)的整合,由于电网拓 展的成本昂贵,因此微网主要整合地理位置上接近的DG,无法包含相对偏远和 孤立的分布式发电设施。虚拟电厂的构成则依赖于软件和技术:其辖域(聚合) 范围以及与市场的交互取决于通信的覆盖范围及可靠性;辖域内各DER的参数 采集与状态监控取决于智能计量(smartmetering)系统的应用;DER的优化组 合由中央控制或信息代理单元进行协调、处理及决策。因此,引入虚拟电厂的 概念不必对原有电网进行拓展,而能够聚合微网所辖范围之外的DG。
由信息交换代理取代,如图3所示。信息交换代理只向该控制结构下
的DER提供有价值的服务,如市场价格信号、天气预报和数据采集等。
由于依靠即插即用能力,因而分散控制结构比集中控制结构具有更好
的扩展性和开放性。
2.智能计量技术

智能计量技术是虚拟电厂的一个
重要组成部分,是实现虚拟电厂对DG和
可控负荷等监测和控制的重要基础。
3虚拟电厂的关键技术 1.协调控制技术

虚拟电厂的控制对象主要包括各种DG、储能系
统、可控负荷以及电动汽车。由于虚拟电厂的概念强
调对外呈现的功能和效果,因此,聚合多样化的DER实
现对系统高要求的电能输出是虚拟电厂协调控制的重
点和难点。实际上,一些可再生能源发电站(如风力发
电站和光伏发电站)具有间歇性或随机性以及存在预测
智能计量系统最基本的作用是自动测
量和读取用户住宅内的电、气、热、
水的消耗量或生产量,即自动抄表
(automatedmeteredreading,AMR),以
此为虚拟电厂提供电源和需求侧的实
时信息。作为AMR的发展,自动计量管
理(automaticmetermanagement,AMM)
和高级计量体系
虚拟电厂数据模型,并采用实际电网运行数据验证了方
案的可行性;研究了小型核反应堆与沿海风电场以虚拟
电厂形式聚合后风电的波动问题;研究了高风电渗透率
电力系统中聚合需求响应资源的优化运行问题。

此外,对于不具有不确定性的DER聚合,基于热电联产发电系统
和储能装置建立混合整数优化模型,并基于CPLEX软件进行了仿真;对
综合看来,虚拟电厂概念的核心可以总结为“通信” 和“聚合”。虚拟电厂可认为是通过先进信息通信 技术和软件系统,实现DG、储能系统、可控负荷、 电动汽车等DER的聚合和协调优化,以作为一个 特殊电厂参与电力市场和电网运行的电源协调管 理系统。图1中:G表示机组;L表示负荷。
目前,国内有些文献将“能效电厂”称之为虚拟电厂, 这与文中所述“虚拟电厂”的概念有所不同,但二者 都属于广义上的虚拟电厂。能效电厂是指通过采 用高效用电设备和产品、优化用电方式等途径, 形成某个地区、行业或企业节电改造计划的一揽 子行动方案,降低用电负荷,等效产生富余电能,从 而达到与实际电厂异曲同工的效果。可以看出,
第八组:
前言
虚拟电厂”这一术语源于1997年ShimonAwerbuch博士在其著作 《虚拟公共设施:新兴产业的描述、技术及竞争力》一书中对虚拟公共 设施的定义如下:虚拟公共设施是独立且以市场为驱动的实体之间的一 种灵活合作,这些实体不必拥有相应的资产而能够为消费者提供其所需 要的高效电能服务。正如虚拟公共设施利用新兴技术提供以消费者为 导向的电能服务一样,虚拟电厂并未改变每个DG并网的方式,而是通过 先进的控制、计量、通信等技术聚合DG、储能系统、可控负荷、电动 汽车等不同类型的分布式能源(distributedenergyresources,DER),并通 过更高层面的软件构架实现多个DER的协调优化运行,更有利于资源的 合理优化配置及利用。虚拟电厂的概念更多强调的是对外呈现的功能 和效果,更新运营理念并产生社会经济效益,其基本的应用场景是电力市 场。这种方法无需对电网进行改造而能够聚合DER对公网稳定输电,并 提供快速响应的辅助服务,成为DER加入电力市场的有效方法,降低了其 在市场中孤独运行的失衡风险,可以获得规模经济的效益。同时,DER的 可视化及虚拟电厂的协调控制优化大大减小了以往DER并网对公网造 成的冲击,降低了DG增长带来的调度难度,使配电管理更趋于合理有序, 提高了系统运行的稳定性。
相关文档
最新文档