2012年苏州大学数学分析III考试大纲

合集下载

《数学分析》考试大纲

《数学分析》考试大纲

《数学分析》考试大纲一、课程名称:数学分析二、适用专业: 数学与应用数学三、考试方法:闭卷考试四、考试时间:100分钟五、试卷结构:总分:100分,选择题15分,填空题15分,计算题40分,证明题30分。

六、参考书目:1、华东师范大学数学系编著,《数学分析》(上、下册),高等教育出版社,2010年第4版。

2、中国科学技术大学常庚哲史济怀编著,《数学分析教程》(上、下册),高等教育出版社,2003年第1版。

七、考试的基本要求:数学分析是数学与应用数学专业专升本入学考试中专业课考试内容,考生应理解和掌握《数学分析》中函数、极限、连续、微分学、积分学和级数的基本概念、基本理论、基本方法。

应具有抽象思维能力、逻辑推理能力、运算能力和空间想象能力,能运用所学知识正确拙推理证明,准确、简捷地计算。

能综合运用数学分析中的基本理论、基本方法分析和解决实际问题。

八、考试范围第一章实数集与函数(一)考核内容实数及其性质,绝对值与不等式。

区间与邻域,有界集与确界原理。

函数概念,函数的表示法。

函数的四则运算,复合函数,反函数,初等函数。

具有某些特性的函数:有界函数、单调函数、奇函数与偶函数、周期函数。

(二)考核知识点1、实数:实数的概念,实数的性质,绝对值与不等式;2、数集、确界原理:区间与邻域,有界集与无界集,上确界与下确界,确界原理;3、函数概念:函数的定义,函数的表示法(解析法、列表法、和图象法),分段函数;4、具有某些特征的函数:有界函数,单调函数,奇函数与偶函数,周期函数。

(三)考核要求1、了解实数域及性质;2、掌握几种不等式及应用;3、熟练掌握数域,上确界,下确界,确界原理;4、牢固掌握函数复合、基本初等函数、初等函数及某些特性(单调性、周期性、奇偶性、有界性等)。

第二章数列极限(一)考核内容数列。

数列极限的定义,无穷小数列。

收敛数列性质:唯一性、有界性、保号性、不等式性质、迫敛性、四则运算法则。

子列及子列定理。

2012考研数学三考试大纲

2012考研数学三考试大纲

2012考研数学2011年全国硕士研究生入学统一考试数学考试大纲--数学三考试科目:微积分、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构微积分 56%线性代数 22%概率论与数理统计 22%四、试卷题型结构试卷题型结构为:单项选择题选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:0sinlim1xxx→=1lim1xxex→∞⎛⎫+=⎪⎝⎭函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数、反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle )定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数.当()0f x ''>时,()f x 的图形是凹的;当()0f x ''<时,()f x 的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学 考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数牛顿一莱布尼茨(Newton- Leibniz )公式 不定积分和定积分的换元积分法与分部积分法 反常(广义)积分 定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学 考试内容多元函数的概念 二元函数的几何意义二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与p级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1.了解级数的收敛与发散.收敛级数的和的概念.2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及p级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.了解xe .sin x.cos x .ln(1)x +及(1)x α+的麦克劳林(Maclaurin )展开式.六、常微分方程与差分方程 考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法. 3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.5.了解差分与差分方程及其通解与特解等概念. 6.了解一阶常系数线性差分方程的求解方法. 7.会用微分方程求解简单的经济应用问题.线 性 代 数一、行列式 考试内容行列式的概念和基本性质 行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数(){}()F x P X x x =≤-∞<<∞的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布(,)B n p 、几何分布、超几何分布、泊松(Poisson )分布()P λ及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布(,)U a b 、正态分布2(,)N μσ、指数分布及其应用,其中参数为(0)λλ>的指数分布()E λ的概率密度为()00xe f x x λλ-⎧=⎨≤⎩若x>0若5.会求随机变量函数的分布.三、多维随机变量及其分布 考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常见二维随机变量的分布两个及两个以上随机变量的函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布221212(,;,;)N u u σσρ,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗—拉普拉斯(De Moivre-Laplace)定理列维—林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩2χ分布t 分布F 分布分位数 正态总体的常用抽样分布考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为 2211()1n i i S X X n ==--∑2.了解产生2χ变量、t 变量和F 变量的典型模式;了解标准正态分布、2χ分布、t 分布和F 分布得上侧α分位数,会查相应的数值表.3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念估计量与估计值矩估计法 最大似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.。

2024考研数学三考试大纲

2024考研数学三考试大纲

2024考研数学三考试大纲
2024年考研数学三的考试大纲主要包括以下内容:
1. 随机事件和概率:这部分主要考察随机事件与样本空间的概念,事件的关系与运算,完备事件组,概率的概念和基本性质,古典型概率和几何型概率,条件概率,概率的基本公式,事件的独立性以及独立重复试验等。

2. 高等数学:这部分主要考察函数、极限、连续、一元函数微分学、一元函数积分学、多元函数微积分学、无穷级数、常微分方程与差分方程等知识点。

3. 线性代数:这部分主要考察行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型等知识点。

此外,考试中还会涉及到一些概率论与数理统计中的知识点,例如分布函数、随机变量、数字特征、参数估计、假设检验等。

需要注意的是,考研数学三的考试大纲可能会有所调整,因此建议考生在备考过程中,除了参考考试大纲外,还要参考其他权威的教材和辅导资料,全面掌握数学知识,提高自己的数学素养和能力。

同时,考生还需要注意考试大纲中对各知识点的掌握程度和考试形式的要求,有针对性地进行备考。

数三2024考研大纲

数三2024考研大纲

数三2024考研大纲
数三2024年考研大纲主要包括以下内容:
1. 高数部分:极限、连续、函数、一元函数微积分学、无穷级数、多元函数微积分学、常微分方程差分方程。

2. 线性代数部分:行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型。

3. 概率论与数理统计部分:随机事件与样本空间、事件的关系与运算、完备事件组、概率的概念、概率的基本性质、古典型概率、几何型概率、条件概率、概率的基本公式、事件的独立性、独立重复试验。

具体要求如下:
1. 了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算。

2. 理解概率、条件概率的概念,掌握概率的基本性质,会计算古典概型和几何概型的概率。

3. 掌握随机变量及其分布函数的概念,理解分布函数的性质,会计算常见随机变量的分布函数和概率。

4. 掌握随机变量的数字特征,包括期望、方差、协方差和相关系数等。

5. 掌握大数定律和中心极限定理,了解它们在实际问题中的应用。

6. 掌握回归分析的基本概念和线性回归分析的方法,理解最小二乘法的原理及其应用。

7. 掌握时间序列分析和预测的基本方法,包括指数平滑、季节性回归和ARIMA模型等。

以上是数三2024年考研大纲的简要介绍,具体内容可能会因考试年份和考试机构的不同而有所差异。

建议考生在备考过程中仔细阅读考试大纲,了解考试内容和要求,制定合理的备考计划。

2024数学三考研大纲

2024数学三考研大纲

2024数学三考研大纲第一部分:数学分析1.实数与实数的基本性质1.1实数的完备性1.2实数序列的性质1.3实数级数的收敛性与发散性2.极限与连续2.1极限的定义与性质2.2函数的极限与连续2.3一元函数的微分学3.不定积分与定积分3.1不定积分的概念与性质3.2定积分的概念与性质3.3定积分的计算方法4.函数列与函数项级数4.1函数列的收敛性4.2函数项级数的收敛性4.3函数项级数的一致收敛性5.幂级数与傅里叶级数5.1幂级数的收敛半径与收敛域5.2幂级数的常用运算5.3傅里叶级数的性质与应用第二部分:代数与几何1.线性代数1.1实数向量空间与内积空间1.2矩阵与行列式1.3向量空间的基与维数2.线性方程组与矩阵的应用2.1线性方程组的基本概念与解法2.2矩阵的特征值与特征向量2.3矩阵的对角化与相似变换3.多元函数的微分学3.1多元函数的偏导数与全微分3.2多元函数的极值与条件极值3.3隐函数与参数方程的微分4.曲线积分与曲面积分4.1曲线积分的定义与性质4.2曲面积分的定义与性质4.3绿公式与高斯公式5.空间解析几何5.1空间中的直线与平面5.2空间曲线与曲面的方程5.3空间中的向量与坐标系第三部分:概率与统计1.随机事件与概率1.1随机事件的概念与性质1.2概率的基本概念与公理1.3概率的运算与应用2.随机变量与概率分布2.1随机变量的概念与分类2.2离散型随机变量的概率分布2.3连续型随机变量的概率密度函数3.随机变量的特征与分布3.1随机变量的数学期望与方差3.2常见离散型与连续型分布3.3多维随机变量的联合分布与边缘分布4.大数定律与中心极限定理4.1大数定律的概念与证明4.2中心极限定理的概念与应用4.3样本统计量的极限分布5.统计推断与假设检验5.1参数估计与区间估计5.2假设检验的基本原理5.3常用假设检验的方法与步骤第四部分:数学建模与应用1.数学建模的基本概念1.1数学建模的过程与方法1.2数学建模的评价标准与特点1.3数学建模在实际问题中的应用2.线性规划模型2.1线性规划问题的数学描述2.2单纯形法与对偶问题2.3整数线性规划问题与解法3.非线性规划模型3.1非线性规划的基本概念与性质3.2非线性规划的解法与应用3.3动态规划与整数规划问题4.数学建模实例分析4.1数学建模实例的选择与分析4.2实际问题的数学建模过程4.3数学建模结果的解释与应用5.模拟与优化算法5.1随机模拟与蒙特卡洛方法5.2优化算法的基本概念与分类5.3优化算法在数学建模中的应用结语数学三考研大纲是考生备战考研数学的重要参考资料,内容涵盖了数学分析、代数与几何、概率与统计、数学建模与应用等多个领域,全面系统地呈现了数学学科的基本知识与方法。

数学分析(3)试卷及答案(K12教育文档)

数学分析(3)试卷及答案(K12教育文档)

案(word版可编辑修改)的全部内容。

数学分析(3)期末试卷2005年1月13日班级_______ 学号_________ 姓名__________ 考试注意事项:2. 试卷含三大题,共100分。

3. 试卷空白页为草稿纸,请勿撕下!散卷作废!4. 遵守考试纪律。

一、填空题(每空3分,共24分)1、 设z x u ytan =,则全微分=u d __________________________。

2、 设32z xy u =,其中),(y x f z =是由xyz z y x 3333=++所确定的隐函数,则=x u _________________________。

3、 椭球面14222=-+z y x 在点)1,1,2(M 处的法线方程是__________________.4、 设,d ),()(sin 2y y x f x F xx⎰=),(y x f 有连续偏导数,则=')(x F __________________. 5、 设L 是从点(0,0)到点(1,1)的直线段,则第一型曲线积分⎰=Ls x yd _____________。

6、 在xy 面上,若圆{}122≤+=y x y x D |),(的密度函数为1),(=y x ρ,则该圆关于原点的转动惯量的二重积分表达式为_______________,其值为_____________.7、 设S 是球面1222=++z y x 的外侧,则第二型曲面积分=⎰⎰dxdy z S2_______。

二、计算题(每题8分,共56分)1、 讨论yx y x y x f 1sin 1sin )(),(-=在原点的累次极限、重极限及在R 2上的连续性。

2、 设),(2xy y x f u =具有连续的二阶偏导数,求二阶偏导数xx u 和xy u .3、 求22333),(y x x y x f --=在}16|),{(22≤+=y x y x D 上的最大值和最小值。

苏大数学专业考试大纲

苏大数学专业考试大纲

苏大数学专业考试大纲苏州大学数学专业考试大纲如下:
一、数学分析
1. 极限和连续
2. 函数的导数和微分
3. 积分
4. 级数
5. 一元函数的全局性质
二、线性代数
1. 向量空间和线性方程组
2. 矩阵和行列式
3. 特征值和特征向量
4. 线性空间的维数和内积空间
三、概率与数理统计
1. 随机事件与概率
2. 随机变量与概率密度函数
3. 多维随机变量及其分布
4. 大数定律与中心极限定理
5. 数理统计的基本概念和方法
四、常微分方程
1. 常微分方程的基本概念和分类
2. 一阶常微分方程
3. 高阶线性常微分方程
4. 线性方程组及其解法
五、偏微分方程
1. 偏导数和偏微分方程的基本概念
2. 一阶偏微分方程
3. 二阶线性偏微分方程
4. 边值问题和特解
以上是苏州大学数学专业考试的大纲内容,具体考试内容可能会有适当调整,具体以考试要求为准。

2000~2012年苏州大学数学分析考研真题

2000~2012年苏州大学数学分析考研真题

苏州大学2012年攻读硕士学位研究生入学考试数学分析试题一、下列命题中正确的给予证明,错误的举反例或说明理由。

共4题,计30分。

1. 设()f x 在[],a b 上连续,且()0ba f x dx =∫,则[],x ab ∀∈,()0f x =。

2. 在有界闭区间[],a b 上可导的函数()f x 是一致连续的。

3. 设()f x 的导函数()f x ′在有限区间I 上有界,则()f x 也在I 上有界。

4. 条件收敛的级数1n n a∞=∑任意交换求和次序得到的新级数也是收敛的。

二、下列4题每题15分,计60分。

1. 计算下列极限:(1) 111lim 12nn n →∞ +++ ; (2) sin 0lim sin x xx e e x x→−−。

2. 求积分2D I x y dxdy =−∫∫,其中(){},:01,11Dx y x y =≤≤−≤≤。

3. 设L 为单位圆周221x y +=,方向为逆时针,求积分 ()()224L x y dx x y dy I x y −++=+∫。

4. 计算曲面积分 ()42sinz S xdydz e dzdx z dxdy ++∫∫, 其中S 为半球面2221x y z ++=,0z ≥,定向为上侧。

三、下列3题,计36分。

1. 设()f x 在[],a b 上可微,证明:存在(),a b ξ∈,使成立 ()()()()()222f b f a b a f ξξ′−=−。

2. 设()2sin x f x e x =,求()()20120f 。

3. 设()f x 在闭区间[],a b 上二阶可导且()0f x ′′<,证明不等式()()2ba ab f x dx f b a + ≤−∫。

四、下列3题选做2题,计24分。

1.(1) 设{}n a 是正数列,且lim 0n n a →∞=。

证明:存在另一个正数列{}n b ,使得lim 0n n b →∞=,lim 0n n na b →∞=; (2) 设1n n a∞=∑为收敛的正项级数。

2024数学三考研大纲

2024数学三考研大纲

2024数学三考研大纲第一部分:基本概念数学是一门关于数量、结构、空间和变化等概念的科学。

它涉及到形式逻辑、抽象代数、几何、拓扑、数论、分析、概率论、数理统计等多个领域。

考研数学三科的大纲主要包括以下内容:1.数论2.代数3.几何4.分析5.概率统计第二部分:数论数论是研究整数性质的数学分支,其重要性不言而喻。

数论包括以下几个方面的内容:1.整数性质2.素数3.同余4.数论函数5.数论定理6.数论方法第三部分:代数代数是数学的一个重要分支,研究数、符号和它们的代数结构及代数方程。

代数包括以下内容:1.群、环、域2.线性代数3.线性空间4.向量空间5.矩阵6.线性变换7.代数方程第四部分:几何几何是研究空间和形状的数学分支,包括以下内容:1.解析几何2.向量解析几何3.立体几何4.三角学5.概率统计第五部分:分析分析是研究极限、微积分和级数等概念的数学分支,包括以下内容:1.极限2.微积分3.泛函4.序列5.级数6.偏微分方程7.多元函数第六部分:概率统计概率统计是研究随机现象的概率和统计规律的数学分支,包括以下内容:1.概率2.随机变量3.概率分布4.统计推断5.方差分析6.回归分析7.抽样调查第七部分:考试范围数学三科的考试范围主要包括上述各个分支的知识点,考生需熟练掌握这些知识,并具备一定的解题能力和应用能力。

考试的形式包括选择题、填空题、解答题和证明题等。

考试内容主要测试考生的数学思维能力和解决问题的能力。

第八部分:备考建议备考数学三科需要考生具备扎实的数学基础知识,需要通过大量的练习来提高解题能力,并且需要阅读相关的数学教材和参考书籍来拓展自己的数学知识面。

此外,考生还需要针对性地进行一些重点知识的复习和强化训练,以及针对性地进行一些题型的练习和模拟考试,来提高解题能力和应试能力。

第九部分:总结数学三科的考试大纲内容涉及面广,难度较大,要想在考试中取得好成绩需要付出大量的努力和时间。

考生需要在备考过程中切记不要死记硬背,而应以理解和灵活运用为主,同时要注重知识点之间的联系和整体把握。

2012年考研数学真题(完整版)

2012年考研数学真题(完整版)

2012年全国硕士研究生入学统一考试数学一试题一、选择题:1:8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 曲线221x x y x +=-渐近线的条数 ( )(A) 0 (B) 1 (C) 2 (D) 3 (2) 设函数2()(1)(2)()xxnx y x e ee n =---L ,其中n 为正整数,则(0)y '= ( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n -- (D) (1)!n n -(3) 如果函数(,)f x y 在(0,0)处连续,那么下列命题正确的是 ( )(A) 若极限00(,)limx y f x y x y→→+存在,则(,)f x y 在(0,0)处可微(B) 若极限2200(,)limx y f x y x y→→+存在,则(,)f x y 在(0,0)处可微 (C) 若(,)f x y 在(0,0)处可微,则 极限00(,)limx y f x y x y →→+存在(D) 若(,)f x y 在(0,0)处可微,则 极限2200(,)limx y f x y x y→→+存在 (4)设2sin (1,2,3)k x K e xdx k π==⎰I 则有 ( )(A)123I I I << (B) 321I I I << (C) 231I I I << (D)213I I I <<(5)设1100C α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2201C α⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,3311C α⎛⎫ ⎪=- ⎪ ⎪⎝⎭ ,4411C α-⎛⎫ ⎪= ⎪ ⎪⎝⎭,其中1234,,,C C C C 为任意常数,则下列向量组线性相关的为( )(A)123,,ααα (B) 124,,ααα (C)134,,ααα (D)234,,ααα(6) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002p AP -⎛⎫⎪= ⎪ ⎪⎝⎭.若P=(123,,ααα),1223(,,)ααααα=+,则1Q AQ -= ( )(A) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭(B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭(C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭(D)200020001⎛⎫ ⎪ ⎪ ⎪⎝⎭(7)设随机变量X 与Y 相互独立,且分别服从参数为1与参数为4的指数分布,则{}p X Y <=( )(A)15 (B) 13(C) 25 (D) 45 (8)将长度为1m 的木棒随机地截成两段,则两段长度的相关系数为 ( )(A) 1 (B) 12 (C) 12- (D)1-二、填空题:9:14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)若函数()f x 满足方程'''()()2()0f x f x f x +-=及''()()2f x f x e +=,则()f x =(10)2x =⎰(11)(2,1,1)()|zgrad xy +y=(12)设(){},,1,0,0,0x y z x y z x y z ∑=++=≥≥≥,则2y ds ∑=⎰⎰(13)设X 为三维单位向量,E 为三阶单位矩阵,则矩阵T E XX -的秩为 (14)设A ,B ,C 是随机变量,A 与C 互不相容,()()()11,,23p AB P C p AB C === 三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)证明21ln cos 1(11)12x x x x x x ++≥+-<<-(16)求函数222(,)x y f x y xe +-=的极值(17)求幂级数22044321nn n n x n ∞=+++∑的收敛域及和函数 (18)已知曲线(),:(0),cos 2x f t L t y tπ=⎧≤<⎨=⎩其中函数()f t 具有连续导数,且'(0)0,()0(0).2f f t t π=><<若曲线L的切线与x 轴的交点到切点的距离恒为1,求函数()f t 的表达式,并求此曲线L 与x 轴与y 轴无边界的区域的面积。

2024数学三考研大纲

2024数学三考研大纲

2024数学三考研大纲
一、推理和证明
1.数学基本概念与定义:集合、映射、函数、等价关系、序关系、数论基本概念和基本定理;
2.数学基本方法:数学归纳法、反证法、逆否命题的证明方法及
其应用;
3.常用数学工具:基本运算性质、数学公式及其推导、模运算、
数系的扩张、有理数的完备性;
4.数学基本理论:极限、函数连续性、可导性的定义、性质及其
应用。

二、数学分析
1.实数系:实数的完备性原理、实数的连续性、实数的构造与性质;
2.极限与连续:函数极限与连续性的定义、性质以及其应用;
3.一元微分学:导数的定义、性质、微分中值定理及其应用;
4.一元积分学:不定积分、定积分、积分中值定理、换元积分法、分部积分法、定积分的应用。

三、线性代数
1.矩阵与行列式:矩阵的性质、特征值特征向量、对角化及其应用;
2.线性方程组:矩阵的秩、线性方程组的解的结构、向量空间的
基和维数;
3.向量空间:线性空间的基本概念、子空间的概念与性质、子空
间与基的关系。

四、概率统计
1.基本概率论:事件的概率、条件概率、独立性、全概率公式、
贝叶斯公式;
2.随机变量:随机变量的分布函数、密度函数、分布列;随机变
量的数学期望、方差与协方差;
3.大数定律与中心极限定理:大数定律的详细描述、中心极限定理的应用。

五、微分方程
1.一阶常微分方程:一阶微分方程的解法及其应用;
2.高阶常微分方程:高阶微分方程的解法及其应用;
3.线性微分方程:齐次线性微分方程的解法、非齐次线性微分方程的解法及其应用。

数3--12真题答案

数3--12真题答案

2012年考研数学(三)试卷答案速查一、选择题(1)C (2)A (3)B (4)D (5)C (6)B (7)D (8)B 二、填空题 (9)2e− (10)1e − (11)2d d x y − (12)4ln 2(13)27− (14)34三、解答题(15)112. (16)12.(17)(Ⅰ)22(,)2061000042x y C x y x y =++++.(Ⅱ)24,26x y ==,最小成本(24,26)11118C =.(Ⅲ)边际成本为32万元,表示当甲产品产量为24件时,每增加一件甲产品,其成本增加32万元. (18)略.(19)(Ⅰ)()e xf x =.(Ⅱ)(0,0).(20)(Ⅰ)41a −.(Ⅱ)T T1,(1,1,1,1)(0,1,0,0)a k =−=+−x ,k 为任意常数.(21)1a =−,正交变换矩阵11132611132612036⎛⎫ ⎪ ⎪−⎪=⎪ ⎪− ⎪ ⎪⎝⎭Q ,标准形222326f y y =+. (22)(Ⅰ)14.(Ⅱ)23−.(23)(Ⅰ)22e ,0,()0v V v f v −⎧>=⎨ , ⎩其他.(Ⅱ)2.2012年全国硕士研究生入学统一考试数学(三)参考答案一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上. (1)【答案】C .【解答】由曲线方程及渐近线的定义可知,22(1)1(1)(1)x x x x y x x x ++==−−+,故1lim ,x y →=∞所以1x =为垂直渐近线;又由lim 1x y →∞=,故1y =为水平渐近线,无斜渐近线,故曲线渐近线的条数为2.(2)【答案】A.【解答】因为2100()(0)(e 1)(e 2)(e )(0)lim lim(1)(1)!x x nx n x x f x f n f n x x−→→−−−−'===−−,所以选A. (3)【答案】B. 【解答】由二重积分π22202cos d ()d f r r r θθ⎰⎰可知,被积函数22()f x y +,积分区域为22π{()2cos 20}={()2402}2D r,|r ,x,y |x x y x ,x θθθ=−−,所以π22202cos d ()d f r r r θθ=⎰⎰22242202d ()d x x xx f x y y −−+⎰⎰,故答案选B.(4)【答案】D. 【解答】由11(1)sin na n n n ∞=−∑绝对收敛,知1121(1)na n n ∞−=−∑绝对收敛,故32a >; 再由211(1)nan n ∞−=−∑条件收敛,有021a <−,即12a <. 综合得322α<<,故选D. (5)【答案】C.【解答】由已知可得134,,0,=ααα134,,ααα线性相关,所以选C. (6)【答案】B.【解答】1223123100(,,)(,,)110001Q ααααααα⎛⎫ ⎪=+= ⎪ ⎪⎝⎭,所以,11100110,001−−⎛⎫⎪= ⎪ ⎪⎝⎭Q AQ1100100100100100110110010110010001001002001002−⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪⎪ ⎪=−= ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭P AP ,所以选B.(7) 【答案】D.【解答】由条件可知,X Y 的概率密度函数,又二者独立所以其联合密度函数为1,0,1,(,)()()X Y x y f x y f x f y ⎧==⎨0 , ⎩其他.从而{}22221π1(,)d d d d 4Dx y P x y f x y x y x y ++===⎰⎰⎰⎰,所以选D. (8)【答案】B.【解答】由条件可知212~(0,2)X X N σ−,12~(0,1)2X X N σ−, 2342~(0,2)X X N σ+−,342~(0,1)2X X N σ+−,化简即可.二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)【答案】2e−.【解答】原式()2ππ44tan 1sec tan 1limlim1cos sin cos sin cos sin 2tan 1π4lim 1tan 1e ee x x x xx x x x x x xx x x →→−−−−−−−−→⎡⎤=+−===⎢⎥⎣⎦.(10)【答案】1e −.【解答】因为(())y f f x =,所以e ed (())()((e))(e)d x x yf f x f x f f f x==''''==,而e1(e)=ln 2x f x==,121((e))=()=(21)22x f f f x ='''−=,()e1(e)=ln 2e x f x =''=, 故ed 112d 2e ex y x==⋅=. 【注】可以先求出复合函数的表达式,再求导.因为22ln ln ,e ,ln (),()1,(())2ln 1,1e ,2()1,() 1.2(21)1, 1.x x f x f x y f f x x x f x f x x x ⎧>⎪⎧⎪⎪===−<⎨⎨−<⎪⎪⎩−−<⎪⎩所以ed d x yx==1e −.(11)【答案】2d d x y −. 【解答】由于()2(,)(0,1)2(,)22lim01x y f x y x y x y →−+−=+−,可知[](,)(0,1)lim(,)220x y f x y x y →−+−=,由于(,)z f x y =连续,可得(0,1)1f =. 又()2(,)(0,1)2(,)(0,1)2(1)lim01x y f x y f x y x y →−−+−=+−,由微分定义可知,函数在该点可微分,且2,1x y f f ''==−,故可知答案.(12)【答案】4ln 2. 【解答】曲线4y x =与y x =交点为(2,2),4y x=与4y x =交点为(1,4),故平面图形的面积1d 4ln 2DS σ==⎰⎰.(13)【答案】27−.【解答】由初等矩阵的性质可知010100001⎛⎫⎪== ⎪ ⎪⎝⎭B PA A ,所以,**27==−BA PAA .(14)【答案】34. 【解答】,A C 互不相容,()0P ABC =,()()()3(|)1()4()P ABC P AB P ABC P AB C P C P C −===−.三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上. (15)(本题满分10分)解:()2222cos 2cos 222cos 4400e e 1e e limlimx xx x xx x x x −+−−→→−−=3243300012cos 2sin 16lim lim lim 2212x x x xx x x x x x x →→→+−−====.(16)(本题满分10分) 解:如图所示,11e d d e d d xxx Dxxy x y x x y y =⎰⎰⎰⎰()12011e d 2xx x =−⎰ ()112001e 1e d 2x x x x x =−+⎰110011e e d 22xx x x =−+−=⎰.(17)(本题满分10分) 解:(Ⅰ)由条件可知(,)20,2C x y xx ∂=+∂所以 20(,)20d ()20()24xt x C x y t y x y ϕϕ⎛⎫=++=++ ⎪⎝⎭⎰,再由(,)6C x y y y ∂=+∂,所以2()6,()62y y y y y c ϕϕ'=+=++,再由固定成本为10000,得10000c =,于是22(,)2061000042x y C x y x y =++++.(Ⅱ)若50x y +=,带入成本函数可得()()222503()20650100003611550424y x x C x x y x −=++−++=−+,所以令3'()36,24,262xC x x y =−==,此时成本为11118. (Ⅲ)总产量为50件且总成本最小时甲产品的数量为24,其边际成本为32万元. 经济意义为当甲产品产量为24件时,每增加一件甲产品,其成本增加32万元.(18)(本题满分10分)yxO1 1D y x =1y x=证明:令21()ln cos 1(11)12x x f x x x x x +=+−−−<<−,则有()()f x f x =−,为偶函数.所以只需讨论0x >即可.()2211212()lnsin ln sin 11111x x x x f x x x x x x x x x x x +−+'=+−−=+−−−+−−−, ()()22422416(1)()cos 1,()sin 11x x f x x f x x x x −'''''=−−=+−−.当01x <<时,()0f x '''>,则()f x ''单调递增,且(0)2f ''=,所以()0f x ''>. 所以,当01x <<时,()f x '单调递增,且(0)0f '=,所以()f x 递增,且(0)0f =, 所以,当01x <<时,结论成立.同理,在10x −<<时,结论成立.(19)(本题满分10分)解:(Ⅰ)由()()2()0,f x f x f x '''+−=可知特征方程为220λλ+−=,通解为212e e x x y C C −=+,将其带入方程()()2e f x f x ''+=,可得2122e 5e 2e x x x C C −+=, 121,0C C ==.所以()e x f x =.(Ⅱ)由220()()d xy f x f t t =−⎰,得22'2e e d 1,xxt y x t −=+⎰2222202ee d 4ee d 2xxx t x t y t x t x −−''=++⎰⎰,令0,0y x ''==,当0x >时,0y ''>;当0x <时,0y ''<. 所以(0,0)为其拐点.(20)(本题满分11分)解:(Ⅰ)4221(1)(1)A =−=−+a a a ;(Ⅱ)由题可知当0A =时,解得1=a 或1=−a .当1a =时,增广矩阵作初等变换得,()1100101101|0011000002⎛⎫⎪− ⎪→ ⎪⎪−⎝⎭A β,()()|r r <A A β,故方程组无解;当1a =−时,增广矩阵作初等变换得,()1001001011|0011000000−⎛⎫⎪−−⎪→ ⎪− ⎪⎝⎭A β, ()()|3r r <=A A β,方程组有解,并可求得通解为T T (1,1,1,1)(0,1,0,0)x =+−k ,其中k 为任意常数.(21)(本题满分11分)解: (Ⅰ)由二次型的秩为2,知T()2r =A A ,故()2r =A ,对A 作初等变换,1011010110111000101000aa a ⎛⎫⎛⎫⎪ ⎪⎪ ⎪=→ ⎪ ⎪−+ ⎪ ⎪−⎝⎭⎝⎭A , 可得1a =−.(Ⅱ)当1a =−时,得T202022224⎛⎫⎪= ⎪ ⎪⎝⎭A A .()()T 2020*******λλλλλλλ−−⎛⎫ ⎪−=−−=−− ⎪ ⎪−−−⎝⎭E A A ,可得TA A 的特征值1230,2,6λλλ===.当10λ=时,解方程组T(0)−E A A x =0,得相应的特征向量()T11,1,1=−α;当22λ=时,解方程组T(2)−E A A x =0,得相应的特征向量()T21,1,0=−α;当36λ=时,解方程组T(6)−E A A x =0,得相应的特征向量()T31,1,2=α.因为特征值各不相等,所以特征向量相互正交,故只需单位化,得()T 111,1,13=−β,()T 211,1,02=−β,()T311,1,26=β.于是得到正交矩阵11132611132612036⎛⎫ ⎪ ⎪−⎪=⎪ ⎪− ⎪ ⎪⎝⎭Q . 在正交变换=x Qy 下,二次型的标准型为222326f y y =+. (22)(本题满分11分)解:(Ⅰ)由二维离散随机变量的分布律可知1{2}{0,0}{2,1}4P X Y P X Y P X Y ====+===. (Ⅱ)X 的概率分布为X 0 1 2 P121316故23EX =.XY 的概率分布为XY 0 1 2 4P712 13112故23EXY =.Y 的概率分布为Y 0 1 2 P131313故1EY =,可得252,33EY DY ==,而 2(,)3Cov X Y Y EXY EXEY DY −=−−=−.(23)(本题满分11分)解:(Ⅰ)X 的概率密度函数为e ,0,()0x X x f x −⎧>=⎨ , ⎩其他.分布函数为1e ,0,()0x X x F x −⎧−>=⎨ , ⎩其他.又,X Y 独立同分布,V 的分布函数2()1[1()]V X F v F v =−−,所以V 的概率密度22e ,0,()0v V v f v −⎧>=⎨ , ⎩其他.同理可得U 的概率密度2(1e )e ,0,()0u u U u f u −−⎧−>=⎨ , ⎩其他.(Ⅱ)200312(1)e d ,2e d 22u u v EU u e u EV v v +∞+∞−−−=−===⎰⎰,所以()2E U V +=.。

2012考研数学(一二三)真题(含答案)

2012考研数学(一二三)真题(含答案)

f x
,
f y
,
f z

.
12、已知曲面 {(x, y, z) | x y z 1, x 0, y 0, z 0},则 y2dS

【答案】 3 12
【解析】由曲面可得 z 1 x y zx ' zy ' 1,
向 xOy 面投影 Dxy {( x, y) | x y 1, x 0, y 0},
P

3
阶可逆矩阵,且
P1
AP



1


P

1,
2
,3


2
Q 1 2,2,3 则 Q1AQ ( )
1

(A)


2

1
【答案】(B)
1

(B)


1

2
2

(C)


1

2
2

(D)


2
ex2
sin
xdx

0

I2

I1 ;
又 I3 I1
3 ex2 sin xdx

2 ex2 sin xdx

3 ex2 sin xdx ,
2
其中
3
ex2
sin
t x
xdx
2 e(t )2 sin(t )d (t ) 2 e(t )2 sin tdt 2 e(x )2 sin xdx
x y ( x, y)(0,0) 2

《数学分析》研究生考试大纲

《数学分析》研究生考试大纲

硕士《数学分析》考试大纲课程名称:数学分析科目代码:661适用专业:数学与应用数学专业参考书目:1、《数学分析》(上下册)第一版,陈纪修,於崇华,金路;高等教育出版社1999.92、《数学分析》(上下册)第二版,陈纪修,於崇华,金路;高等教育出版社2004.103、《数学分析》(上下册),卓里奇;高等教育出版社2006.124、《数学分析》(上下册),华东师范大学,高等教育出版社2010.7一、数列极限1、充分认识实数系的连续性;理解并掌握确界存在定理及相关知识。

2、充分理解数列极限的定义,熟练掌握用数列极限的定义证明有关极限问题,以及数列极限的各种性质及其运算。

3、掌握无穷大量的概念及其相关知识;熟练掌握Stolz定理的内容及其结论及应用。

4、理解单调有界数列收敛定理的内容及其结论,并能熟练解决相关的极限问题。

5、充分理解区间套定理、致密性定理、完备性定理各自的内容和结论;进一步认识实数系的连续性与实数系的完备性的关系;明确有关收敛准则中的各定理之间逻辑关系。

二、函数极限与连续函数1、充分理解函数极限的定义,熟练掌握用函数极限的定义证明有关极限问题;以及函数极限的各种性质及其运算。

2、明确数列极限与函数极限的关系;熟练掌握单侧极限以及各种极限过程的极限。

3、充分理解连续函数的概念,熟练掌握用连续函数的定义和运算解决有关函数连续性问题。

明确不连续点的类型;掌握反函数、复合函数的连续性。

4、熟练掌握无穷小(大)量的概念以及自身的比较,并能熟练应用于极限问题当中。

5、充分掌握闭区间上连续函数的各种性质;充分理解函数的一致连续性及相关定理。

三、微分1、充分理解微分的概念、导数的概念,以及可微、可导、连续三者的关系。

2、熟练掌握导数的运算、反函数、复合函数的求导法则,做到得心应手。

3、理解高阶导数和高阶微分的概念,熟练掌握高阶导数的运算法则。

四、微分中值定理及其应用1、充分理解以Lagrange中值定理为核心的各微分中值定理的内容和结论;掌握应用微分中值定理揭示函数自身的特征和函数之间的关系。

2012年数学三真题答案解析

2012年数学三真题答案解析

1
(A)
2
1
1
(B)
1
2
2
(C)
1
2
2
(D)
2
1
【答案】:(B)
1 0 0
1 0 0
【解析】:
Q
P
1
1
0
,则
Q 1
1
1
0
P
1

0 0 1
0 0 1
1 0 0
1 0 0 1 0 01
1 0 0 1

Q 1
AQ
1
1
0
P
1
AP
1
1
0
1
1
0
0 0 1
【答案】:-27
【解析】:由于 B E12 A ,故 BA* E12 A A* | A | E12 3E12 ,
所以, | BA* || 3E12 | 33 | E12 | 27 * (1) 27 .
(14)设
A,
B, C
是随机事件,
A, C
互不相容,
P( AB)
1
,
P(C )
1
,则
P(AB C)
【答案】: 4
dy
【解析】:
f ' f (x) f '(x)
f ' f (0) f '(0) f ' 1 f '(0)
dx x0
x0
由 f (x) 的表达式可知 f '0 f '(1) 2 ,可知 dy 4
dx x0
(11)
函数 z
f (x, y) 满足 lim x0 y 1
f (x, y) 2x y 2 x2 ( y 1)2

712-数学分析

712-数学分析

数学分析考试大纲《数学分析》(712)考试大纲本考试大纲由数学科学与计算技术学院教授委员会于2013年7月7日通过。

I.考试性质数学分析考试是为中南大学招收数学学科硕士研究生而设置的具有选拔性质的业务水平考试,其目的是科学、公平、有效地测试考生对数学分析基本内容的掌握程度和应用相关知识解决问题的能力。

II.考查目标要求考生理解数学分析的基本概念和基本理论,掌握数学分析的基本思想和方法,具有抽象思维能力、逻辑推理能力、运算能力和综合运用所学的知识分析问题和解决问题的能力。

Ⅲ.考试形式和试卷结构1、试卷满分及考试时间本试卷满分为150 分,考试时间为180 分钟2、答题方式答题方式为闭卷,笔试。

3、试卷内容结构分析基础约20 %一元微积分约30 %多元微积分约30 %级数约20 %Ⅳ.考查内容一、分析基础1. 实数概念、确界2. 函数概念3. 序列极限与函数极限4. 无穷大与无穷小5. 连续概念与基本性质,一致连续性6. 实数完备性定理二、一元微分学1.导数概念与几何意义2.求导公式求导法则3.高阶导数4.微分5.微分中值定理6.L’Hospital法则7.Taylor公式8.应用导数研究函数三、一元积分学1.不定积分法与可积函数类2.定积分的概念、性质与计算3.定积分的应用4.反常积分四、级数1.数项级数的敛散判别与性质2.函数项级数与一致收敛性3.幂级数4.Fourier级数五、多元微分学1、多元函数的极限2、多元连续函数3、偏导数与微分4、隐函数定理5、方向导数与梯度6、Taylor公式7、多元微分学的几何应用8、多元函数的极值六、多元积分学1、重积分的概念与性质2、重积分的计算3、二重、三重积分4、含参变量的正常积分和反常积分5、曲线积分与Green公式6、曲面积分7、Gauss公式、Stokes公式、线积分与路径无关。

苏州大学历年考研数学分析及高等代数答案(2021年整理)

苏州大学历年考研数学分析及高等代数答案(2021年整理)

苏州大学历年考研数学分析及高等代数答案(word版可编辑修改)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(苏州大学历年考研数学分析及高等代数答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为苏州大学历年考研数学分析及高等代数答案(word版可编辑修改)的全部内容。

数三考试大纲2025

数三考试大纲2025

数三考试大纲2025
对不起,由于我是一个人工智能模型,我无法预测未来的考试大纲。

然而,我可以为您提供一个一般的数三(高等数学)考试大纲的参考版本。

请注意,这个大纲可能与您需要的具体信息有所不同。

# 高等数学(数三)考试大纲
## 第一部分:微积分
1. 极限与连续性
- 数列和函数的极限概念
- 极限的运算性质
- 函数的连续性
2. 导数与微分
- 导数的概念和计算
- 微分及其应用
- 高阶导数
3. 积分学
- 不定积分与定积分的概念与计算
- 定积分的应用
- 广义积分
4. 多元函数微积分
- 偏导数与全微分
- 多元函数的极值问题
- 二重积分
## 第二部分:线性代数
1. 行列式
- 行列式的定义与性质
- 行列式的计算
2. 矩阵
- 矩阵的运算
- 矩阵的逆与秩
- 矩阵的初等变换与线性方程组
3. 向量空间
- 向量空间的基本概念
- 向量的线性相关性与基底
- 向量的内积与正交性
4. 特征值与特征向量
- 特征值与特征向量的概念
- 相似矩阵与对角化
## 第三部分:概率论与数理统计
1. 概率论基础
- 随机事件与概率
- 条件概率与独立性
- 随机变量及其分布
2. 数理统计基础
- 抽样分布
- 参数估计
- 假设检验。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档