2020-2021学年山西省中考数学仿真模拟试卷及答案A

合集下载

2020-2021学年山西省太原市中考数学第一次模拟试题及答案解析

2020-2021学年山西省太原市中考数学第一次模拟试题及答案解析

最新山西省太原市中考数学一模试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑.1.3的相反数是()A.﹣3 B.﹣C.3 D.2.下列运算正确的是()A.x2+x3=x6B.2x+3y=5xy C.(x3)2=x6D.x6÷x3=x23.从《陕西省页岩气地质调查与评价》获悉,我省页岩气资源储量约为4.44万亿立方米,把4.44万亿用科学记数法表示为()A.4.44×108B.4.44×1010C.4.44×1011D.4.44×10124.小明帮助做生意的父亲整理仓库,在仓库的一角整齐地堆放着若干个相同的正方体货箱,如图是小明画出的这堆货箱的三种视图,这堆正方体货箱共有()A.11箱B.10箱C.9箱D.8箱5.小明从一副扑克牌中取出3张红桃、2张黑桃共5张牌与弟弟做游戏,把这5张牌背面朝上洗匀后放在桌子上,小明与弟弟同时各抽一张,两人抽到花色相同的概率是()A.B.C.D.6.如图,四边形ABCD是⊙O的内接四边形,若∠C=140°,则∠BOD的度数为()A.70° B.80° C.90°D.100°7.解分式方程时,在方程的两边同时乘以(x﹣1)(x+1),把原方程化为x+1+2x (x﹣1)=2(x﹣1)(x+1),这一变形过程体现的数学思想主要是()A.类比思想 B.转化思想C.方程思想 D.函数思想8.不等式组的解集在数轴上可表示为()A.B.C.D.9.如图,在钝角△ABC中,AC<BC,用尺规在BC上确定一点P,使PA+PC=BC,下面是四个同学的作法(只留下了作图痕迹,未连接PA),其中正确的是()A.B.C. D.10.如图,小明把一个边长为10的正方形DEFG剪纸贴在△ABC纸片上,其中AB=AC=26,BC=20,正方形的顶点D,G分别在边AB、AC上,且AD=AG,点E、F在△ABC内部,则点E到BC的距离为()A.1 B.2 C. D.二、填空题:本大题共6个小题,每小题3分,共18分,把答案写在答题卡对应的横线上.11.因式分解:a2﹣4= .12.如图,已知AD∥BE∥CF,,DE=3,则DF的长为.13.在一个纸箱中,装有红色、黄色、绿色的塑料球共60个这些小球除颜色外其他都完全相同,将球充分摇匀后,从中随机摸出一个球,记下它的颜色后再放回箱中,不断重复这一过程,小明发现其中摸到红色球、绿色球的频率分别稳定在15%和45%,则这个纸箱中黄色球的个数可能有个.14.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,….依次规律,第n个图案有个黑棋子.(用含n的代数式表示)15.如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA=度.16.如图,直角三角形纸片ABC,按如下方式裁剪后,所得的图形恰好是一个正方体的平面展开图,如果AB=10,则该正方体的棱长为.三、解答题:本大题共8个小题,共72分,解答应写出文字说明、证明过程或演算步骤.17.(1)计算:|﹣2|+(2﹣π)0﹣4×2.(2)解方程:x2+4x﹣2=0.18.阅读与计算:请阅读以下材料,并完成相应的任务.古希腊的几何学家海伦在他的《度量》一书中给出了利用三角形的三边求三角形面积的“海伦公式”:如果一个三角形的三边长分别为a、b、c,设p=,则三角形的面积S=.我国南宋著名的数学家秦九韶,曾提出利用三角形的三边求面积的“秦九韶公式”(三斜求积术):如果一个三角形的三边长分别为a、b、c,则三角形的面积S=.(1)若一个三角形的三边长分别是5,6,7,则这个三角形的面积等于.(2)若一个三角形的三边长分别是,求这个三角形的面积.19.如图,点A(m,3)在反比例函数y=(x>0)的图象上,点B在反比例函数y=的图象上,AB∥x轴,过点A作AD⊥x轴于点D,连接OB与AD相交于点C,且AC=2CD.(1)求m的值;(2)求反比例函数y=的表达式.20.据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4mg,若一年滞尘1000mg所需的银杏树叶的片数与一年滞尘550mg所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.21.随着现代通讯工具的发展,学生带手机已经成为一种普遍现象,手机对于学生的影响越来越受到社会的关注.于是,某课题小组对此进行了问卷调查,其中的一个问题有三个选项:有利,无影响,有弊,要求每人必选且只选一项.他们随即调查了若干名学生和家长,整理并制作了如下两幅不完整的统计图,请根据统计图提供的信息,解答下列问题:(1)求这次调查的家长人数,并补全图(1);(2)求图(2)中表示“有利”的扇形圆心角的度数;(3)该地区约有10万名学生,据此估计学生认为带手机“有弊”的人数.22.如图是小明同学画出的某同学放风筝的示意图,从地面A处放飞的风筝几分钟后飞至C处,此时,点B与旗杆PQ的顶部点P以及点C恰好在一直线上,PQ⊥AB于点Q.(1)已知旗杆的高为10米,在B处测得旗杆顶部点P的仰角为30°,在A处测得点P 的仰角为45°,求A、B之间的距离;(2)此时,在A处测得风筝C的仰角为75°,设绳子AC在空中为一条线段,求AC的长.(结果保留根号)23.在学习完矩形的内容后,某课外学习小组对矩形的运动问题进行了研究,如图,在矩形ABCD中,AB=4,BC=6,点O为矩形ABCD对角线的交点.操作发现:如图(1)所示,点E为AD边上任意一点,连接EO并延长与BC边交于点F.(1)小组成员甲发现“AE=CF”,请你完成证明;(2)如图(2),连接BE、DF,小组成员乙发现“四边形BEDF的形状一定是,当AE的长为时,四边形BEDF是菱形”;探究发现:受前面两位组员的启发,小组成员丙与丁对图形进一步操作,将图(2)中的△ABE与△CDF 分别沿BE与DF进行翻折,点A与点C分别落在矩形ABCD内的点A′,C′处.(3)如图(3),连接A′D,BC′,发现“四边形BA′DC′是平行四边形”,请你证明这个结论;(4)如图(4),连接A′C′,A′C′有最小值吗?若有,请你直接写出AE的长;若没有,请说明理由.24.如图,抛物线y=x2+bx+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,﹣3),点D为顶点,连接BC、BD、CD.(1)求抛物线的表达式;(2)试判断△BCD的形状,并说明理由;(3)将该抛物线平移,使它的顶点P与点A关于直线BD对称,求点P的坐标并写出平移的方法.参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑.1.3的相反数是()A.﹣3 B.﹣C.3 D.【考点】相反数.【分析】根据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.【解答】解:根据概念,3的相反数在3的前面加﹣,则3的相反数是﹣3.故选:A.2.下列运算正确的是()A.x2+x3=x6B.2x+3y=5xy C.(x3)2=x6D.x6÷x3=x2【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方.【分析】原式各项利用合并同类项法则,幂的乘方,以及同底数幂的除法法则计算得到结果,即可作出判断.【解答】解:A、原式不能合并,错误;B、原式不能合并,错误;C、原式=x6,正确;D、原式=x3,错误.故选C.3.从《陕西省页岩气地质调查与评价》获悉,我省页岩气资源储量约为4.44万亿立方米,把4.44万亿用科学记数法表示为()A.4.44×108B.4.44×1010C.4.44×1011D.4.44×1012【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4.44万亿=4440000000000=4.44×1012,故选D.4.小明帮助做生意的父亲整理仓库,在仓库的一角整齐地堆放着若干个相同的正方体货箱,如图是小明画出的这堆货箱的三种视图,这堆正方体货箱共有()A.11箱B.10箱C.9箱D.8箱【考点】由三视图判断几何体.【分析】易得这个几何体共有3层,由俯视图可得第一层正方体的个数,由正视图和左视图可得第二层,第三层正方体的个数,相加即可.【解答】解:由俯视图可得最底层有6箱,由正视图和左视图可得第二层有2箱,第三层有1个箱,共有6+2+1=9箱.故选:C.5.小明从一副扑克牌中取出3张红桃、2张黑桃共5张牌与弟弟做游戏,把这5张牌背面朝上洗匀后放在桌子上,小明与弟弟同时各抽一张,两人抽到花色相同的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】先利用画树状图展示所有20种等可能的结果数,再找出两人抽到花色相同的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有20种等可能的结果数,其中两人抽到花色相同的结果数为8,所以两人抽到花色相同的概率==.故选D.6.如图,四边形ABCD是⊙O的内接四边形,若∠C=140°,则∠BOD的度数为()A.70° B.80° C.90°D.100°【考点】圆内接四边形的性质;圆周角定理.【分析】根据圆内接四边形的性质求出∠A的度数,根据圆周角定理解答.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°,∴∠A=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:B.7.解分式方程时,在方程的两边同时乘以(x﹣1)(x+1),把原方程化为x+1+2x (x﹣1)=2(x﹣1)(x+1),这一变形过程体现的数学思想主要是()A.类比思想 B.转化思想C.方程思想 D.函数思想【考点】解分式方程.【分析】分式方程去分母转化为整式方程,故利用的数学思想是转化思想.【解答】解:解分式方程时,在方程的两边同时乘以(x﹣1)(x+1),把原方程化为x+1+2x(x﹣1)=2(x﹣1)(x+1),这一变形过程体现的数学思想主要是转化思想,故选B.8.不等式组的解集在数轴上可表示为()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x>1,解②得x≥2.则不等式组的解集是x≥2.故选A.9.如图,在钝角△ABC中,AC<BC,用尺规在BC上确定一点P,使PA+PC=BC,下面是四个同学的作法(只留下了作图痕迹,未连接PA),其中正确的是()A.B.C. D.【考点】作图—复杂作图.【分析】首先根据线段的和差关系可得BP=AP,进而可得点P应在AB的垂直平分线上,然后从选项中确定答案即可.【解答】解:∵PA+PC=BC,BP+CP=BP,∴BP=AP,∴点P应在AB的垂直平分线上,根据线段垂直平分线的做法可得D正确;故选:D.10.如图,小明把一个边长为10的正方形DEFG剪纸贴在△ABC纸片上,其中AB=AC=26,BC=20,正方形的顶点D,G分别在边AB、AC上,且AD=AG,点E、F在△ABC内部,则点E到BC的距离为()A.1 B.2 C. D.【考点】相似三角形的判定与性质;正方形的性质.【分析】过点A作AM⊥BC,交DG于点H,BC于点M,根据等腰三角形的性质和勾股定理求出AH,再根据正方形的顶点D,G分别在边AB、AC上,且AD=AG,得出DG⊥AH,DH=HG=DG,求出DH,再根据AA证出△ADH∽△ABM,求出AD,从而得出AH,最后根据HM的长减去正方形的长就是点E到BC的距离,代值计算即可得出答案.【解答】解:过点A作AM⊥BC,交DG于点H,BC于点M,∵AB=AC,BC=20,∴BM=MC=BC=10,∴AH===24,∵正方形的顶点D,G分别在边AB、AC上,且AD=AG,∴DG⊥AH,DH=HG=DG,∵DG=10,∴DH=5,∵∠BAM=∠MAB,∠ABC=∠ADH,∴△ADH∽△ABM,∴=,∴=,∴AD=13,∴AH=HM=12,∴点E到BC的距离为:12﹣10=2;故选B.二、填空题:本大题共6个小题,每小题3分,共18分,把答案写在答题卡对应的横线上.11.因式分解:a2﹣4= (a+2)(a﹣2).【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式得出即可.【解答】解:a2﹣4=(a+2)(a﹣2).故答案为:(a+2)(a﹣2).12.如图,已知AD∥BE∥CF,,DE=3,则DF的长为7.5 .【考点】平行线分线段成比例.【分析】由平行线分线段成比例定理得出=,求出EF=4.5,DF=DE+EF,即可得出结果.【解答】解:∵AD∥BE∥CF,∴=,即=,解得:EF=4.5,∴DF=DE+EF=3+4.5=7.5.故答案为:7.5.13.在一个纸箱中,装有红色、黄色、绿色的塑料球共60个这些小球除颜色外其他都完全相同,将球充分摇匀后,从中随机摸出一个球,记下它的颜色后再放回箱中,不断重复这一过程,小明发现其中摸到红色球、绿色球的频率分别稳定在15%和45%,则这个纸箱中黄色球的个数可能有24 个.【考点】利用频率估计概率.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设未知数列出方程求解.【解答】解:∵共60个球,其中摸到红色球、绿色球的频率分别稳定在15%和45%,∴黄球所占的比例为100%﹣15%﹣45%=40%,设盒子中共有黄球x个,则,解得:x=24.故答案为:24.14.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,….依次规律,第n个图案有5n ﹣1 个黑棋子.(用含n的代数式表示)【考点】规律型:图形的变化类.【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【解答】解:观察图①有5×1﹣1=4个黑棋子;图②有5×2﹣1=9个黑棋子;图③有5×3﹣1=14个黑棋子;图④有5×4﹣1=19个黑棋子;…图n有5n﹣1个黑棋子,故答案为5n﹣1.15.如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA= 36 度.【考点】多边形内角与外角;平行线的性质.【分析】首先求得正五边形内角∠C的度数,然后根据CD=CB求得∠CDB的度数,然后利用平行线的性质求得∠DFA的度数即可.【解答】解:∵正五边形的外角为360°÷5=72°,∴∠C=180°﹣72°=108°,∵CD=CB,∴∠CDB=36°,∵AF∥CD,∴∠DFA=∠CDB=36°,故答案为:36.16.如图,直角三角形纸片ABC,按如下方式裁剪后,所得的图形恰好是一个正方体的平面展开图,如果AB=10,则该正方体的棱长为.【考点】相似三角形的判定与性质;几何体的展开图;正方形的性质.【分析】首先设这个展开图围成的正方体的棱长为x,可得EG=x,ED=3x,FG=3x,HE=x,易证得△EFG∽△AHE,然后由相似三角形的对应边成比例,可得方程,解此方程即可求得答案.【解答】解:如图,设这个展开图围成的正方体的棱长为x,则EG=x,ED=3x,FG=3x,BD=x,∵AB=10,∴AH=10﹣3x,∵EG∥AB,∴△EFG∽△AEH,∴,即,解得:x=.∴正方体的棱长为,故答案为:.三、解答题:本大题共8个小题,共72分,解答应写出文字说明、证明过程或演算步骤.17.(1)计算:|﹣2|+(2﹣π)0﹣4×2.(2)解方程:x2+4x﹣2=0.【考点】实数的运算;零指数幂;负整数指数幂;解一元二次方程-配方法.【分析】(1)原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,第三项利用负整数指数幂法则计算,最后一项利用平方根定义计算即可得到结果;(2)方程利用配方法求出解即可.【解答】解:(1)原式=2+1﹣1﹣8=3﹣9=﹣6;(2)方程整理得:x2+4x=2,配方得:x2+4x+4=6,即(x+2)2=6,开方得:x+2=±,解得:x 1=﹣2+,x2=﹣2﹣.18.阅读与计算:请阅读以下材料,并完成相应的任务.古希腊的几何学家海伦在他的《度量》一书中给出了利用三角形的三边求三角形面积的“海伦公式”:如果一个三角形的三边长分别为a、b、c,设p=,则三角形的面积S=.我国南宋著名的数学家秦九韶,曾提出利用三角形的三边求面积的“秦九韶公式”(三斜求积术):如果一个三角形的三边长分别为a、b、c,则三角形的面积S=.(1)若一个三角形的三边长分别是5,6,7,则这个三角形的面积等于6.(2)若一个三角形的三边长分别是,求这个三角形的面积.【考点】二次根式的应用.【分析】(1)把a、b、c的长代入求出S2,再开方计算即可得解;(2)把a、b、c的长代入求出S2,再开方计算即可得解.【解答】解:(1)p===9,S===6.答:这个三角形的面积等于6.(2)S=====.答:这个三角形的面积是.故答案为:6.19.如图,点A(m,3)在反比例函数y=(x>0)的图象上,点B在反比例函数y=的图象上,AB∥x轴,过点A作AD⊥x轴于点D,连接OB与AD相交于点C,且AC=2CD.(1)求m的值;(2)求反比例函数y=的表达式.【考点】反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式.【分析】(1)把A的坐标代入反比例函数的解析式即可求得.(2)过点B作BE⊥x轴于E,延长线段BA,交y轴于F,得出四边形AFOD是矩形,四边形OEBF是矩形,得出S矩形AFOD=3,S矩形OEBF=k,根据平行线分线段成比例定理证得AB=2OD,即OE=3OD,即可求得矩形OEBF的面积,根据反比例函数系数k的几何意义即可求得k的值.【解答】解:(1)∵点A(m,3)在反比例函数y=(x>0)的图象上,∴3=,解得m=1,(2)过点B作BE⊥x轴于E,延长线段BA,交y轴于F,∵AB∥x轴,∴AF⊥y轴,∴四边形AFOD是矩形,四边形OEBF是矩形,∴AF=OD,BF=OE,∴AB=DE,∵点A在双曲线y=y=(x>0)上,∴S矩形AFOD=3,同理S矩形OEBF=k,∵AB∥OD,∴==,∴AB=2OD,∴DE=2OD,∴S矩形OEBF=3S矩形AFOD=9,∴k=9,∴反比例函数y=的表达式为y=.20.据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4mg,若一年滞尘1000mg所需的银杏树叶的片数与一年滞尘550mg所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.【考点】分式方程的应用.【分析】首先设一片国槐树叶一年的平均滞尘量为x毫克,则一片银杏树叶一年的平均滞尘量为(2x﹣4)毫克,根据关键语句“若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,”可得方程=,解方程即可得到答案,注意最后一定要检验.【解答】解:设一片国槐树叶一年的平均滞尘量为x毫克,则一片银杏树叶一年的平均滞尘量为(2x﹣4)毫克,由题意得:=,解得:x=22,经检验:x=22是所列方程的解.答:一片国槐树叶一年的平均滞尘量为22毫克.21.随着现代通讯工具的发展,学生带手机已经成为一种普遍现象,手机对于学生的影响越来越受到社会的关注.于是,某课题小组对此进行了问卷调查,其中的一个问题有三个选项:有利,无影响,有弊,要求每人必选且只选一项.他们随即调查了若干名学生和家长,整理并制作了如下两幅不完整的统计图,请根据统计图提供的信息,解答下列问题:(1)求这次调查的家长人数,并补全图(1);(2)求图(2)中表示“有利”的扇形圆心角的度数;(3)该地区约有10万名学生,据此估计学生认为带手机“有弊”的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据认为无所谓的家长是80人,占20%,据此即可求得总人数;(2)利用360乘以对应的比例即可求解;(3)利用总人数乘以对应的比例即可求解.【解答】解:(1)这次调查的家长人数为80÷20%=400人,反对人数是:400﹣40﹣80=280人,补全图形如下:(2)360°×=36°,答:图(2)中表示“有利”的扇形圆心角的度数为36°.(3)×10=1.5(万人),答:估计学生认为带手机“有弊”的人数约为1.5万人.22.如图是小明同学画出的某同学放风筝的示意图,从地面A处放飞的风筝几分钟后飞至C处,此时,点B与旗杆PQ的顶部点P以及点C恰好在一直线上,PQ⊥AB于点Q.(1)已知旗杆的高为10米,在B处测得旗杆顶部点P的仰角为30°,在A处测得点P 的仰角为45°,求A、B之间的距离;(2)此时,在A处测得风筝C的仰角为75°,设绳子AC在空中为一条线段,求AC的长.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】(1)在RT△BPQ中利用tanB=求出BQ,在RT△APQ中根据等腰直角三角形性质求出AQ即可.(2)如图作AE⊥BC于E,在RT△ABE中求出AE,在RT△AEC中求出AC即可.【解答】解:(1)∵PQ⊥AB,∴∠BQP=∠AQP=90°,在RT△BPQ中,∵PQ=10,∠BQP=90°,∠B=30°,∵tanB=,∴=,∴BQ=10,在RT△APQ中,,∠PAB=45°,∴APQ=90°﹣∠PAB=45°,AQ=PQ=10,∴AB=BQ+AQ=10+10.答:A、B之间的距离为(10+10)米.(2)如图作AE⊥BC于E.在RT△ABE中,∵∠AEB=90°,∠B=30°,AB=10+10,∴AE=AB=5+5,∵∠CAD=75°,∠B=30°,∴∠C=45°,在RT△CAE中,sinC=,∴=,∴AC=(5+5)=5+5,答:AC的长为(5+5)米.23.在学习完矩形的内容后,某课外学习小组对矩形的运动问题进行了研究,如图,在矩形ABCD中,AB=4,BC=6,点O为矩形ABCD对角线的交点.操作发现:如图(1)所示,点E为AD边上任意一点,连接EO并延长与BC边交于点F.(1)小组成员甲发现“AE=CF”,请你完成证明;(2)如图(2),连接BE、DF,小组成员乙发现“四边形BEDF的形状一定是平行四边形,当AE的长为时,四边形BEDF是菱形”;探究发现:受前面两位组员的启发,小组成员丙与丁对图形进一步操作,将图(2)中的△ABE与△CDF 分别沿BE与DF进行翻折,点A与点C分别落在矩形ABCD内的点A′,C′处.(3)如图(3),连接A′D,BC′,发现“四边形BA′DC′是平行四边形”,请你证明这个结论;(4)如图(4),连接A′C′,A′C′有最小值吗?若有,请你直接写出AE的长;若没有,请说明理由.【考点】四边形综合题.【分析】(1)由矩形的性质得到OA=OC,AD∥BC从而得出△AOE≌△COF,即可;(2)由矩形的性质和菱形的性质得出线段的关系,利用勾股定理建立方程16+x2=(6﹣x)2,即可;(3)由对折的性质得出线段和角相等,判断出角相等,从而判断A′B∥C′D,利用一组对边平行且相等的四边形是平行四边形,即可;(4)由A′C′最短,只有点A′,C′在线段EF上,计算即可.【解答】(1)证明:如图1,连接AC,∴点O在线段AC上,AD∥BC,OA=OC,∴∠AOE=∠COF,∠EAO=∠FCO,∴△AOE≌△COF,∴AE=CF;(2)解:如图2,连接BD,∵四边形ABCD为矩形,∴AB=CD,∠BAE=∠DCF,由(1)有AE=CF,∴DE=BFRt△ABE≌Rt△CDF,∴BE=DF,∵EF=EF,∴四边形BEDF是平行四边形.设AE=x,则DE=6﹣x,∵四边形BEDF是菱形,∴BE=BD=6﹣x,在Rt△ABE中,AB=4,根据勾股定理,得AB2+AE2=BE2,∴16+x2=(6﹣x)2,∴x=.故答案为平行四边形,.(3)解:如图3,连接BD,由(1)有,AE=CF,∵四边形ABCD为矩形,∴∠A=∠C=90°,AB=CD,AB∥CD,∴Rt△ABE≌Rt△CDF,∴∠ABE=CDF,∵沿BE翻折,点A落在A′处,∴Rt△ABE≌Rt△A′BE,∴A′B=AB,∠ABE=∠A′BE=∠ABA′同理可得,C′D=CD,∠CDF=∠C′DF=∠C′DC,∴∠ABA′=∠C′DC,A′B=C′D,∠ABO﹣∠ABA′=∠CDO﹣∠CDC′,∴∠OBA′=∠ODC′,∴A′B∥C′D,∴四边形BA′DC′是平行四边形;(4)解:如图4,要使A′C′最小,只有点A′,C′落在矩形对角线BD上,设AE=x,∴EA′=x,DE=6﹣x,矩形的对角线BD==2,由对折有BA′=BA=4∴DA′=BD﹣BA′=2﹣4,在Rt△DEA′中,有DE2=EA′2+DA′2,∴(6﹣x)2=x2+(2﹣4)2∴x=,即:AE=.24.如图,抛物线y=x2+bx+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,﹣3),点D为顶点,连接BC、BD、CD.(1)求抛物线的表达式;(2)试判断△BCD的形状,并说明理由;(3)将该抛物线平移,使它的顶点P与点A关于直线BD对称,求点P的坐标并写出平移的方法.【考点】二次函数综合题.【分析】(1)由点B和点C的坐标可求得b、c的值,从而得到抛物线的表达式;(2)线求得点D的坐标,然后可求得CD、BD、BC,最后依据勾股定理的逆定理可证明△CDB为直角三角形;(3)如图2所示.作点A关于直线BD的对称点P交BD于点M.先求得点A的坐标,然后求得BD的解析式,从而得到直线PA的一次项系数,然后由点A的坐标可求得AP的解析式,将AP的解析式与BD的解析式联立可求得点M的坐标,然后由中点坐标公式可求得点P的坐标,由点P的坐标可判断出抛物线平移的方向和距离.【解答】解:(1)∵抛物线y=x2+bx+c经过点B(3,0),点C(0,﹣3),∴,解得:b=﹣2,C=﹣3.∴抛物线的表达式为y=x2﹣2x﹣3.(2)△BCD是直角三角形.理由如下:如图1所示:∵点B的坐标为(3,0),点C的坐标为(0,﹣3),∴OB=OC=3.在Rt△COB中,∠BOC=90°,∴BC2=OB2+OC2=18.过点D作DE⊥x轴与点E.由y=x2﹣2x﹣3=(x﹣1)2﹣4,得顶点D的坐标为(1,﹣4).∴DE=4,OE=1.∴BE=2.在Rt△DEB中,∠DEB=90°,∴BD2=DE2+BE2=20.过点C作CF⊥DE于点F,则CF=OE=1,DF=DE﹣OC=1.∴DC2=CF2+DF2=2.∴BD2=BC2+DC2.∴△BCD是直角三角形.(3)如图2所示.作点A关于直线BD的对称点P交BD于点M.当y=0时,x2﹣2x﹣3=0.解得:x1=3,x2=﹣1.∴A(﹣1,0).设BD的解析式为y=kx+b.∵将D(1,﹣4),B(3,0)代入得;,解得:k=2,b=﹣6,∴直线BD的解析式为y=2k﹣6.∵AP与BD垂直,∴直线AP的一次项系数为﹣.设直线AP的解析式为y=﹣+n.∵将A(﹣1,0)代入得:+n=0,解得n=﹣,∴直线AP的解析式为y=﹣.∵将y=x与y=2x﹣6联立,解得:x=,y=﹣.∴点M的坐标为(,﹣).由轴对称的性质可知:M是AP的中点,∴点P的坐标为(,﹣).∵抛物线y=(x﹣1)2﹣4平移后的顶点坐标为P,∴抛物线y=x﹣1)2﹣4先向右平移个单位长度,再向上平移个单位长度所得抛物线的顶点与点A关于BD对称.2016年6月6日。

2020年山西省中考数学模拟试卷 (含答案解析)

2020年山西省中考数学模拟试卷 (含答案解析)

2020年山西省中考数学模拟试卷一、选择题(本大题共10小题,共30.0分)1. 计算(−47)÷(−314)÷(−23)的结果是( ) A. −169 B. −4 C. 4 D. −449 2. 下列四个图案中,不是轴对称图案的是( )A. B.C. D.3. 下列计算正确的是( )A. (a 4b)3=a 7b 3B. −2b(4a −b 2)=−8ab −2b 3C. aa 3+a 2a 2=2a 4D. (a −5)2=a 2−254. 四个大小相同的正方体搭成的几何体如图所示,其左视图是( )A. B. C. D.5. 在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一栋楼的影长为90m ,则这栋楼的高度为( )A. 54mB. 135mC. 150mD. 162m6. 不等式组{3x −1≥x +1x +4<4x −2的解集是( ) A. x >2 B. x ≥1 C. 1≤x <2 D. x ≥−17. 若点A(x 1,−6),B(x 2,−2),C(x 3,3)在反比例函数的图象上,则x 1,x 2,x 3的大小关系是( )A. x 1<x 2<x 3B. x 3<x 1<x 2C. x 2<x 1<x 3D. x 3<x 2<x 18. 9.如图所示,有一个半径为2的扇形,∠AOB =90°,其中OC 平分∠AOB ,BE ⊥OC ,CD ⊥AO ,则图中阴影面积为( )A. π−1B. π−2C. 3π4−2D. 2π3−19.从地面竖直向上抛出一小球,小球的高度y(米)与小球运动的时间x(秒)之间的关系式为y=ax2+bx+c(a≠0).若小球在第7秒与第14秒时的高度相同,则在下列时间中小球所在高度最高的是()A. 第8秒B. 第10秒C. 第12秒D. 第15秒10.如图,四边形ABCD是菱形,E、F、G、H分别是各边的中点,随机向菱形ABCD内部掷一粒米,则米粒落到阴影区域内的概率是()A. 14B. 12C. 18D. 23二、填空题(本大题共5小题,共15.0分)11.计算:√32−√3(√6−√3)=______.12.观察下列图形:它们是按一定规律排列的,依照此规律,第5个图形中的五角星的个数为______,第n个图形中的五角星(n为正整数)个数为______(用含n的代数式表示).13.为从甲、乙两名射击运动员中选出一人参加市锦标赛,特统计了他们最近10次射击训练的成绩,其中,他们射击的平均成绩都为8.9环,方差分别是S甲2=0.8,S乙2=1.3,从稳定性的角度来看______ 的成绩更稳定.(填“甲”或“乙”)14.将长为5,宽为4的矩形,沿四个边剪去宽为x的4个小正方形,剩余部分的面积为12,则剪去小正方形的边长x为_________.15.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,AD⊥BC于点D,则△ACD与△ABC的面积比为______.三、计算题(本大题共1小题,共10.0分)16.(1)计算:(12−3+56−712)÷(−136)(2)化简:(3a−2−12a2−4)÷1a+2四、解答题(本大题共7小题,共65.0分)17.“双十一”期间,合肥市各大商场起购物狂潮,现有甲、乙、两三个商场开展的促销活动如表所示:商场优惠活动甲全场按标价的6折销售乙实行“满100元送100元的购物券”的优惠,购物券可以在再购买时冲抵现金(如:顾客购衣服220元,券200元,再购买裤子时可冲抵现金,不再送券)丙实行“满100元减50元的优惠”(比如:某顾客购物220元,他只需付款120元)根据以上活动倍息,解决以下问题(1)三个商场同时出售一件标价290元的上衣和一条标价270元的裤子,王回满想买这一套衣服,应该选择家商场⋅(2)黄先生发现在甲、乙商场同时出售一件标价380元的上衣和一条标价300多元的裤子,最后付款额也一样,请问这条裤子的标价是多少元⋅(3)丙商场又推出“打折活动”(打折与满减只能参加一种),张先生买了一件标价为630元的上衣参加“打折活动”,张先生发现竟然比“满减活动”多付了48元钱,问丙商场先打了多少折后再参加活动⋅18.如图,PA、PB分别与⊙O相切于A,B两点,点C在⊙O上,∠P=60°,(1)求∠C的度数;(2)若⊙O半径为1,求PA的长.19.从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.如图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是______亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同)他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示)20.如图,在△ABC中,AB=5,AC=12,BC=13,BC的垂直平分线分别交AC、BC于点D、E,求CD的长.21.图1中是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,从侧面看图2,立柱DE高1.7m,AD长0.3m,踏板静止时从侧面看与AE上点B 重合,BE长0.2m,当踏板旋转到C处时,测得∠CAB=42°,求此时点C距离地面EF的高度.(结果精确到0.1m)(参考数据:sin42°=0.67,cos42°=0.74,tan42°=0.90)22.如图,四边形ABCD是正方形,E,F分别在线段BC和CD上,∠EAF=45°.连接EF.将△ADF绕着点A顺时针旋转90°,得到△ABF′.(1)证明:△AEF≌△AEF′;(2)证明:EF=BE+DF.(3)已知正方形ABCD边长是6,EF=5,求线段BE的长.23.如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=−2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.-------- 答案与解析 --------1.答案:B解析:【分析】此题主要考查了有理数的除法,关键是正确判断出结果的符号.根据有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数可得答案.【解答】解:原式=−(47×143×32)=−4,故选:B.2.答案:B解析:【分析】本题考查了轴对称图形的概念.轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,解答此题根据轴对称的定义解答即可.【解答】解:A.是轴对称图形;B.不是轴对称图形;C.是轴对称图形;D.是轴对称图形.故选B.3.答案:C解析:解:A、(a4b)3=a12b3,故此选项不合题意;B、−2b(4a−b2)=−8ab+2b3,故此选项不合题意;C、aa3+a2a2=2a4,故此选项符合题意;D、(a−5)2=a2−10a+25,故此选项不合题意;故选:C.直接利用积的乘方运算法则以及合并同类项法则和完全平方公式分别判断得出答案.此题主要考查了积的乘方运算以及合并同类项和完全平方公式,正确掌握相关运算法则是解题关键.4.答案:D解析:解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:D.根据从左边看得到的图形是左视图,可得答案.本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.答案:A解析:解:设这栋楼的高度为hm,∵在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一栋楼的影长为90m,∴1.83=ℎ90,解得ℎ=54(m).故选:A.根据同一时刻物高与影长成正比即可得出结论.本题考查平行投影及相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.6.答案:A解析:解:解不等式3x−1≥x+1,得:x≥1,解不等式x+4<4x−2,得:x>2,则不等式组的解集为x>2,故选:A.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.答案:B解析:【分析】本题考查了反比例函数图象上点的坐标特征及反比例函数的性质,熟练掌握反比例函数的性质是本题的关键.先根据反比例函数y=−1x的系数−1<0判断出函数图象在二、四象限,在每个象限内,y随x的增大而增大,再根据−6<−2<0<3,判断出x1,x2,x3的大小.【解答】解:∵k=−1<0,∴函数图象在第二、四象限,在每个象限内,y随x的增大而增大,又∵−6<−2<0<3,∴点A(x1,−6),B(x2,−2)在第四象限,点C(x3,3)在第二象限,∴x3<x1<x2.故选B.8.答案:B解析:分析:首先证明△COD,△BOE是等腰直角三角形,由OB=OC=2,推出OD=CD=OE=BE=√2,根据S阴=S扇形AOB−S△CDO−S△BOE计算即可.详解:∵∠AOB=90°,OC平分∠AOB,∴∠AOC=∠BOC=45°,∵BE⊥OC,CD⊥AO,∴△COD,△BOE是等腰直角三角形,∵OB=OC=2,∴OD=CD=OE=BE=√2,∴S阴=S扇形AOB−S△CDO−S△BOE=90π⋅22360−12×√2×√2−12×√2×√2=π−2,故选:B.点睛:本题考查扇形的面积,角平分线的性质,等腰直角三角形的判定和性质等知识.解题的关键是学会利用分割法求阴影部分的面积,是中考常考的题型.9.答案:B解析:【分析】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.根据题意可以求得该函数的对称轴,然后根据二次函数具有对称性,离对称轴越近,对应的y值越大,即可解答本题.【解答】解:由题意可得,当x=7+142=10.5时,y取得最大值,∵二次函数具有对称性,∴当t=8,10,12,15时,t取10时,y取得最大值,故选:B.10.答案:B解析:【分析】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.先求出阴影部分的面积与菱形的面积之比,再根据概率公式即可得出答案.【解答】解:∵四边形ABCD是菱形,E、F、G、H分别是各边的中点,∴四边形HGFE的面积是菱形ABCD面积的12,∴米粒落到阴影区域内的概率是12.故选B.11.答案:3+√2解析:解:原式=4√2−3√2+3=3+√2.故答案为3+√2.先进行二次根式的乘法运算,然后化简后合并即可.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可. 12.答案:22 1+n +2n−1(n 为正整数)解析:【分析】本题考查了图形变化规律的问题,把五角星分成三部分进行考虑,并找出第n 个图形五角星的个数的表达式是解题的关键.解:∵第1个图形中五角星的个数3=1+1+1,根据每个图形观察发现,每个图形上、左、右的五角星个数个图形序号一致,下方只有一个,根据规律即可求出答案.【解答】第2个图形中五角星的个数5=1+2+2,第3个图形中五角星的个数8=1+3+22,第4个图形中五角星的个数13=1+4+23,∴第5个图形中五角星的个数为1+5+24=22,则第n 个图形中的五角星(n 为正整数)个数为1+n +2n−1(n 为正整数).故答案为22;1+n +2n−1(n 为正整数).13.答案:甲解析:解:∵S 甲2=0.8,S 乙2=1.3,∴S 甲2<S 乙2,∴成绩最稳定的运动员是甲,故答案是:甲.根据方差的意义即可得.本题主要考查方差,熟练掌握方差的意义:方差越小,数据的密集度越高,波动幅度越小是解题的关键.14.答案:√2解析:【分析】本题考查了一元二次方程的应用,读懂题意,找到等量关系准确的列出式子是解题的关键,注意:剩余部分面积用原矩形面积减去4个小正方形面积,用长方形的面积减去四个小正方形的面积即为剩余部分面积,根据已知可列出方程求解.【解答】解:如图,矩形ABCD 的长为5,宽为4,沿四个边剪去宽为x 的4个小正方形后,剩余部分如图,依题意得5×4−4x 2=12,解之得x=√2,x=−√2(不合题意,舍去).所以剪去小正方形的宽x为√2故答案为√2.15.答案:9:25解析:解:在Rt△ABC中,∵∠BAC=90°,AB=4,AC=3,∴BC=√32+42=5,∵∠C=∠C,∠ADC=∠CAB=90°,∴△ACD∽△BCA,∴AC2=CD⋅CB,∴CD=95,∴S△ACD:S△ABC=(12⋅CD⋅AD):(12⋅BC⋅AD)=CD:BC=9:25,故答案为9:25.本题考查相似三角形的判定和性质、勾股定理、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.根据S△ACD:S△ABC=(12⋅CD⋅AD):(12⋅BC⋅AD)=CD:BC,只要求出CD、BC即可解决问题.16.答案:解:(1)原式=(12−3+56−712)×(−36)=−12+108−30+21=87;(2)原式=[3a+6(a+2)(a−2)−12(a+2)(a−2)]⋅(a+2)=3(a−2)(a+2)(a−2)⋅(a+2)=3.解析:(1)将除法转化为乘法,再利用乘法分配律计算可得.(2)先计算括号内分式的减法、将除法转化为乘法,再约分即可得.本题主要考查分式和实数的混合运算,解题的关键是熟练掌握分式和实数的混合运算顺序和运算法则.17.答案:解:(1)选甲商城需付费用为(290+270)×0.6=336(元);选乙商城需付费用为290+(270−200)=360(元);选丙商城需付费用为290+270−5×50=310(元).∵310<336<360,∴选择丙商城最实惠.(2)设这条裤子的标价为x元,根据题意得:(380+x)×0.6=380+x−100×3,解得:x=370,答:这条裤子的标价为370元.(3)设丙商场先打了y折后再参加活动,根据题意得:630×y10−(630−6×50)=48,解得y=6,答:丙商场先打了6折后再参加活动.解析:本题考查了一元一次方程的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程进行求解.(1)按照不同的优惠方案算出实际花的钱数,再比较得出答案即可;(2)设这条裤子的标价为x元,按照优惠方案算出实际付款数,根据付款额一样,列方程求解即可;(3)先设丙商场先打了y折后再参加活动,根据题意列方程求解即可.18.答案:解:(1)连接OA、OB,∵PA、PB分别与⊙O相切于A、B两点,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠AOB=180°−∠P=180°−60°=120°,∴∠C=12∠AOB=12×120°=60°.(2)连OP,∴∠APO=∠BPO=30°,∴OP=2OA=2,∴PA=√OP2−OA2=√3.解析:(1)先利用切线的性质得∠OAP=∠OBP=90°,再利用四边形的内角和计算出∠AOB的度数,然后根据圆周角定理计算∠C的度数.(2)利用含30°的直角三角形的性质解答即可.本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.19.答案:(1)①2038;②“知识技能”的增长率为:610−200200×100%=205%,“资金”的增长率为:20863−1000010000≈109%,由此可知,“知识技能”领域交易额较小,其增长率最高,达到200%以上,其发展速度惊人.(3)画树状图为:共有12种等可能的结果数,其中抽到“共享出行”和“共享知识”的结果数为2,所以抽到“共享出行”和“共享知识”的概率=212=16.解析:解:(1)①由图可知,2016年七个重点领域的交易额分别为70、245、610、2038、3300、7233、20863,2016年交易额的中位数是2038亿元,故答案为:2038;②见答案.(3)见答案.【分析】(1)根据图表将2016年七个重点领域的交易额从小到大罗列出来,根据中位数的定义即可得;(2)将(2016年的资金−2015年的资金)÷2015年的资金可分别求得两领域的增长率,结合增长率提出合理的认识即可;(3)画树状图列出所有等可能结果,根据概率公式求解可得.本题主要考查条形统计图、折线统计图和列表法与树状图法求概率,根据条形图得出解题所需数据及画树状图列出所有等可能结果是解题的关键.20.答案:解:连接DB,在△ACB中,∵AB2+AC2=52+122=169,又∵BC2 =132 =169,∴AB2+AC2=BC2.∴△ACB是直角三角形,∠A=90°,∵DE垂直平分BC,∴DC=DB,设DC=DB=x,则AD=12−x.在Rt△ABD中,∠A=90°,AB2+AD2=BD2,即52+(12−x)2=x2,解得x=16924,即CD=16924.解析:本题考查了勾股定理的逆定理,线段的垂直平分线的性质,正确的作出辅助线是解题的关键,连接DB,根据勾股定理的逆定理得到∠A=90°,根据线段垂直平分线的性质可知DC=DB,设DC= DB=x,则AD=12−x,根据勾股定理即可得到结论.21.答案:解:由题意,得AE=DE−AD=1.7−0.3=1.4m,AB=AE−BE=1.4−0.2=1.2m,由旋转,得AC=AB=1.2m,过点C作CG⊥AB于G,过点C作CH⊥EF于点H,在Rt△ACG中,∠AGC=90°,∠CAG=42°,cos∠CAG=AG,AC∴AG=AC⋅cos∠CAG=1.2×cos42°=1.2×0.74≈0.9m,∴EG=AE−AG≈1.4−0.9=0.5m,∴CH=EG=0.5m.解析:过点C作CG⊥AB于G,通过解余弦函数求得AG,然后根据EG=AE−AG求得即可.此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.22.答案:解:(1)由旋转的性质可得AF=AF′,DF=BF′,∠DAF=BAF′,B、C、F′三点共线,∵∠EAF=45°,∠BAD=90°,∴∠DAF+∠BAE=∠BAD−∠EAF=45°,∴∠EAF′=∠BAF′+∠BAE=∠DAF+∠BAE=45°=∠EAF,∵AF=AF′,∠EAF′=∠EAF,AE=AE,∴△AEF≌△AEF′(SAS);(2)∵△AEF≌△AEF′,∴EF=EF′=BE+BF′,又∵DF=BF′,∴EF=BE+DF;(3)设BE=x,∵EF=BE+DF,EF=5∴DF=5−x.又∵正方形ABCD边长是6,即BC=CD=6∴CE=BC−BE=6−x,CF=CD−DF=6−(5−x)=x+1,在Rt△CEF中,有CE2+CF2=EF2即(6−x)2+(x+1)2=52,解得x1=2,x2=3,∴线段BE的长为2或3.解析:本题考查了四边形的综合问题,主要考查旋转的性质,全等三角形的判定与性质,正方形的性质,勾股定理,证明△AEF≌△AEF′是解题的关键.(1)由旋转的性质可得AF=AF′,DF=BF′,∠DAF=BAF′,由“SAS”可证△AEF≌△AEF′;(2)由全等三角形的性质可得EF=EF′=BE+BF′,即可得结论;(3)设BE=x,可得DF=5−x,由勾股定理可求BE的长.23.答案:解:(1)由题意得:x=−b2a =−b2=−2,c=2,解得:b=4,c=2,则此抛物线的解析式为y=x2+4x+2;(2)∵抛物线对称轴为直线x=−2,BC=6,∴B横坐标为−5,C横坐标为1,把x=1代入抛物线解析式得:y=7,∴B(−5,7),C(1,7),设直线AB解析式为y=kx+2,把B坐标代入得:k=−1,即y=−x+2,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,可得△AQH∽△ABM,∴QHBM =AQAB,∵点P在x轴上,直线CP将△ABC面积分成2:3两部分,∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:AB=3:5,∵BM=5,∴QH=2或QH=3,当QH=2时,把x=−2代入直线AB解析式得:y=4,此时Q(−2,4),直线CQ解析式为y=x+6,令y=0,得到x=−6,即P(−6,0);当QH=3时,把x=−3代入直线AB解析式得:y=5,此时Q(−3,5),直线CQ解析式为y=12x+132,令y=0,得到x=−13,此时P(−13,0),综上,P的坐标为(−6,0)或(−13,0).解析:(1)由对称轴直线x=2,以及A点坐标确定出b与c的值,即可求出抛物线解析式;(2)由抛物线的对称轴及BC的长,确定出B与C的横坐标,代入抛物线解析式求出纵坐标,确定出B与C坐标,利用待定系数法求出直线AB解析式,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,由已知面积之比求出QH的长,确定出Q横坐标,代入直线AB解析式求出纵坐标,确定出Q坐标,再利用待定系数法求出直线CQ解析式,即可确定出P的坐标.此题考查了待定系数法求二次函数解析式,二次函数性质,以及二次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.。

2020-2021学年山西省大同市中考数学模拟试题及答案解析

2020-2021学年山西省大同市中考数学模拟试题及答案解析

最新山西省中考数学模拟试卷一、选择题(共10小题,每小题3分,满分30分)1.在下列四个数中,比0小的数是()A.0.2 B.|﹣1| C.D.2.“珍惜生命,注意安全”是一永恒的话题.在现代化的城市,交通安全晚不能被忽视,下列几个图形是国际通用的几种交通标志,其中不是中心对称图形是()A. B.C.D.3.如图,小明用6个相同的小正方体搭成的立体图形研究几何体的三视图的变化情况,若由图(1)变到图(2),不改变的是()A.主视图B.主视图和左视图C.主视图和俯视图D.左视图和俯视图4.一条直线y=kx+b,其中k+b=﹣5,kb=6,那么该直线经过()A.第二、四象限 B.第一、二、三象限C.第一、三象限 D.第二、三、四象限5.在解分式方程+=2时,我们第一步通常是去分母,即方程两边同乘以最简公分母(x﹣1),把分式方程变形为整式方程求解.解决这个问题的方法用到的数学思想是()A.数形结合 B.转化思想C.模型思想 D.特殊到一般6.如图,已知E(﹣4,2),F(﹣1,﹣1),以原点O为位似中心,按比例尺2:1把△EFO缩小,则E点对应点E′的坐标为()A.(2,1)B.(,)C.(2,﹣1)D.(2,﹣)7.如图,正方形AEFG的边AE放置在正方形ABCD的对角线AC上,EF与CD交于点M,得四边形AEMD,且两正方形的边长均为2,则两正方形重合部分(阴影部分)的面积为()A.﹣4+4B.4+4 C.8﹣4D.+18.正六边形的边心距为,则该正六边形的边长是()A.B.2 C.3 D.29.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙丙丁测试成绩(百分制)面试86 92 90 83笔试90 83 83 92 如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取()A.甲B.乙C.丙D.丁10.如图,正方形ABCD的对角线BD长为2,若直线l满足:①点D到直线l的距离为;②A、C两点到直线l的距离相等.则符合题意的直线l的条数为()A.1 B.2 C.3 D.4二、填空题(本大题共有10小题,每小题3分,共30分)11.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= 度.12.如果菱形的两条对角线的长为a和b,且a,b满足(a﹣1)2+=0,那么菱形的面积等于.13.请举反例说明命题“对于任意实数x,x2+5x+5的值总是正数”是假命题,你举的反例是x= (写出一个x的值即可).14.某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为.15.如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF= .16.如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C 时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若点P,Q 同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数关系图象如图2,有下列四个结论:①AE=6cm;②sin∠EBC=;③当0<t≤10时,y=t2;④当t=12s时,△PBQ是等腰三角形.其中正确结论的序号是.三、解答题(本大题共8个小题,共72分,解答题应写出文字说明、证明过程或演算步骤)17.(1)计算:(﹣2)2sin60°﹣(﹣)•﹣(﹣)0;(2)已知x,y满足方程组,求2x﹣2y的值.18.已知A=﹣.(1)化简A;(2)当x满足不等式组,且x为奇数时,求A的值.19.(1)如图,在△ABC中用直尺和圆规作AB边上的高CD(保留作图痕迹,不写作法).(2)图中的实线表示从A到B需经过C点的公路,且AC=10km,∠CAB=25°,∠CBA=37°.现因城市改造需要在A、B两地之间改建一条笔直的公路.问:公路改造后比原来缩短了多少千米?(参考数据:sin25°≈0.41,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75,结果精确到0.01)20.暑假快要到了,某市准备组织同学们分别到A、B、C、D四个地方进行夏令营活动,前往四个地方的人数如图所示:(1)去B地参加夏令营活动人数占总人数的40%,根据统计图求去B地的人数.(2)若把同学们去A、B、C、D四个地点的人数情况绘制成扇形统计图,则“去B地”的扇形圆心角为多少?(3)若一对姐弟中只能有一人参加夏令营,姐弟俩提议让父亲决定.父亲说:现有4张卡片上分别写有1,2,3,4四个整数,先让姐姐随机地抽取一张后放回,再由弟弟随机地抽取一张.若抽取的两张卡片上的数字之和是5的倍数则姐姐参加,若抽取的两张卡片上的数字之和是3的倍数则弟弟参加.用列表法或树状图分析这种方法对姐弟俩是否公平?说明理由.21.如图,已知AB是⊙O的弦,CD是⊙O的直径,CD⊥AB,垂足为E,且点E是OD 的中点,⊙O的切线BM与AO的延长线相交于点M,连接AC,CM.(1)若AB=4,求的长;(结果保留π)(2)求证:四边形ABMC是菱形.22.如图,一次函数y1=mx+n的图象分别交x轴、y轴于A、C两点,交反比例函数y2=(k>0)的图象于P、Q两点.过点P作PB⊥x轴于点B,若点P的坐标为(2,2),△PAB 的面积为4.(1)求一次函数与反比例函数的解析式.(2)当x为何值时,y1<y2?23.问题情境:如图将边长为8cm的正方形纸片ABCD折叠,使点B恰好落在AD边的中点F处,折痕EG分别交AB、CD于点E、G,FN与DC交于点M,连接BF交EG于点P.独立思考:(1)AE= cm,△FDM的周长为cm;(2)猜想EG与BF之间的位置关系与数量关系,并证明你的结论.拓展延伸:如图2,若点F不是AD的中点,且不与点A、D重合:①△FDM的周长是否发生变化,并证明你的结论.②判断(2)中的结论是否仍然成立,若不成立请直接写出新的结论(不需证明).24.如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A 出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.在下列四个数中,比0小的数是()A.0.2 B.|﹣1| C.D.【考点】实数大小比较.【分析】根据绝对值得定义和立方根的定义得出各个数的符号,即可得出结果.【解答】解:∵0.2>0,|﹣1|=1>0,=﹣2<0,>0,∴比0小的数是﹣2;故选:C.2.“珍惜生命,注意安全”是一永恒的话题.在现代化的城市,交通安全晚不能被忽视,下列几个图形是国际通用的几种交通标志,其中不是中心对称图形是()A.B.C. D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.【解答】解:根据中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,可知A、C、D是中心对称图形,B不是中心对称图形.故选B.3.如图,小明用6个相同的小正方体搭成的立体图形研究几何体的三视图的变化情况,若由图(1)变到图(2),不改变的是()A.主视图B.主视图和左视图C.主视图和俯视图D.左视图和俯视图【考点】简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,从左边看得到的图形是左视图,可得答案.【解答】解:从上边看得到的图形都是第一层一个小正方形,第二层是三个小正方形,从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:D.4.一条直线y=kx+b,其中k+b=﹣5,kb=6,那么该直线经过()A.第二、四象限 B.第一、二、三象限C.第一、三象限 D.第二、三、四象限【考点】一次函数图象与系数的关系.【分析】首先根据k+b=﹣5、kb=6得到k、b的符号,再根据图象与系数的关系确定直线经过的象限即可.【解答】解:∵k+b=﹣5、kb=6,∴k<0,b<0∴直线y=kx+b经过二、三、四象限,故选D.5.在解分式方程+=2时,我们第一步通常是去分母,即方程两边同乘以最简公分母(x﹣1),把分式方程变形为整式方程求解.解决这个问题的方法用到的数学思想是()A.数形结合 B.转化思想C.模型思想 D.特殊到一般【考点】解分式方程;最简公分母.【分析】分式方程去分母转化为整式方程,确定出用到的数学思想即可.【解答】解:在解分式方程+=2时,我们第一步通常是去分母,即方程两边同乘以最简公分母(x﹣1),把分式方程变形为整式方程求解.解决这个问题的方法用到的数学思想是转化思想,故选B6.如图,已知E(﹣4,2),F(﹣1,﹣1),以原点O为位似中心,按比例尺2:1把△EFO缩小,则E点对应点E′的坐标为()A.(2,1)B.(,)C.(2,﹣1)D.(2,﹣)【考点】位似变换;坐标与图形性质.【分析】以O为位似中心,按比例尺2:1,把△EFO缩小,结合图形得出,则点E的对应点E′的坐标是E(﹣4,2)的坐标同时乘以﹣,因而得到的点E′的坐标为(2,﹣1).【解答】解:根据题意可知,点E的对应点E′的坐标是E(﹣4,2)的坐标同时乘以﹣,所以点E′的坐标为(2,﹣1).故选:C.7.如图,正方形AEFG的边AE放置在正方形ABCD的对角线AC上,EF与CD交于点M,得四边形AEMD,且两正方形的边长均为2,则两正方形重合部分(阴影部分)的面积为()A.﹣4+4B.4+4 C.8﹣4D.+1【考点】正方形的性质.【分析】阴影部分的面积=S△ACD﹣S△MEC,△ACD和△MEC都是等腰直角三角形,利用面积公式即可求解.【解答】解:∵四边形ABCD是正方形,∴∠D=90°,∠ACD=45°,AD=CD=2,则S△ACD=AD•CD=×2×2=2;AC=AD=2,则EC=2﹣2,∵△MEC是等腰直角三角形,∴S △MEC=ME•EC=(2﹣2)2=6﹣4,∴阴影部分的面积=S △ACD﹣S△MEC=2﹣(6﹣4)=4﹣4.故选:A.8.正六边形的边心距为,则该正六边形的边长是()A.B.2 C.3 D.2【考点】正多边形和圆;勾股定理.【分析】运用正六边形的性质,正六边形边长等于外接圆的半径,再利用勾股定理解决.【解答】解:∵正六边形的边心距为,∴OB=,AB=OA,∵OA2=AB2+OB2,∴OA2=(OA)2+()2,解得OA=2.故选:B.9.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙丙丁测试成绩(百分制)面试86 92 90 83笔试90 83 83 92 如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取()A.甲B.乙C.丙D.丁【考点】加权平均数.【分析】根据题意先算出甲、乙、丙、丁四位候选人的加权平均数,再进行比较,即可得出答案.【解答】解:甲的平均成绩为:(86×6+90×4)÷10=87.6(分),乙的平均成绩为:(92×6+83×4)÷10=88.4(分),丙的平均成绩为:(90×6+83×4)÷10=87.2(分),丁的平均成绩为:(83×6+92×4)÷10=86.6(分),因为乙的平均分数最高,所以乙将被录取.故选:B.10.如图,正方形ABCD的对角线BD长为2,若直线l满足:①点D到直线l的距离为;②A、C两点到直线l的距离相等.则符合题意的直线l的条数为()A.1 B.2 C.3 D.4【考点】正方形的性质.【分析】连接AC与BD相交于O,根据正方形的性质求出OD=,然后根据点到直线的距离和平行线间的距离相等解答.【解答】解:如图,连接AC与BD相交于O,∵正方形ABCD的对角线BD长为2,∴OD=,∴直线l∥AC并且到D的距离为,同理,在点D的另一侧还有一条直线满足条件,故共有2条直线l.故选:B.二、填空题(本大题共有10小题,每小题3分,共30分)11.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= 80 度.【考点】平行线的性质.【分析】根据平行线的性质求出∠C,根据三角形外角性质求出即可.【解答】解:∵AB∥CD,∠1=45°,∴∠C=∠1=45°,∵∠2=35°,∴∠3=∠∠2+∠C=35°+45°=80°,故答案为:80.12.如果菱形的两条对角线的长为a和b,且a,b满足(a﹣1)2+=0,那么菱形的面积等于 2 .【考点】菱形的性质;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】根据非负数的性质列式求出a、b,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.【解答】解:由题意得,a﹣1=0,b﹣4=0,解得a=1,b=4,∵菱形的两条对角线的长为a和b,∴菱形的面积=×1×4=2.故答案为:2.13.请举反例说明命题“对于任意实数x,x2+5x+5的值总是正数”是假命题,你举的反例是x= ﹣(写出一个x的值即可).【考点】命题与定理.【分析】先进行配方得到x2+5x+5=x2+5x+﹣=(x+)2﹣,当x=﹣时,则有x2+5x+5=﹣<0.【解答】解:x2+5x+5=x2+5x+﹣=(x+)2﹣,当x=﹣时,x2+5x+5=﹣<0,∴是假命题.故答案为:﹣.14.某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为20% .【考点】一元二次方程的应用.【分析】解答此题利用的数量关系是:商品原来价格×(1﹣每次降价的百分率)2=现在价格,设出未知数,列方程解答即可.【解答】解:设这种商品平均每次降价的百分率为x,根据题意列方程得,125(1﹣x)2=80,解得x1=0.2=20%,x2=1.8(不合题意,舍去);故答案为:20%15.如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF= 5 .【考点】旋转的性质.【分析】根据旋转的性质,EC=BC=4,DC=AC=6,∠ACD=∠ACB=90°,由点F是DE 的中点,可求出EG、GF,因为AE=AC﹣EC=2,可求出AG,然后运用勾股定理求出AF.【解答】解:作FG⊥AC,根据旋转的性质,EC=BC=4,DC=AC=6,∠ACD=∠ACB=90°,∵点F是DE的中点,∴FG∥CD∴GF=CD=AC=3EG=EC=BC=2∵AC=6,EC=BC=4∴AE=2∴AG=4根据勾股定理,AF=5.16.如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C 时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若点P,Q 同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数关系图象如图2,有下列四个结论:①AE=6cm;②sin∠EBC=;③当0<t≤10时,y=t2;④当t=12s时,△PBQ是等腰三角形.其中正确结论的序号是①②③.【考点】动点问题的函数图象.【分析】由图2可知,在点(10,40)至点(14,40)区间,△BPQ的面积不变,因此可推论BC=BE,由此分析动点P的运动过程如下:(1)在BE段,BP=BQ;持续时间10s,则BE=BC=10;y是t的二次函数;(2)在ED段,y=40是定值,持续时间4s,则ED=4;(3)在DC段,y持续减小直至为0,y是t的一次函数.【解答】解:(1)分析函数图象可知,BC=10cm,ED=4cm,故AE=AD﹣ED=BC﹣ED=10﹣4=6cm,故①正确;(2)如答图1所示,连接EC,过点E作EF⊥BC于点F,由函数图象可知,BC=BE=10cm,S△BEC=40=BC•EF=×10×EF,∴EF=8,∴sin∠EBC=,故②正确;(3)如答图2所示,过点P作PG⊥BQ于点G,∵BQ=BP=t,∴y=S△BPQ=BQ•PG=BQ•BP•sin∠EBC=t•t•=t2.故③正确;(4)结论D错误.理由如下:当t=12s时,点Q与点C重合,点P运动到ED的中点,设为N,如答图3所示,连接NB,NC.此时AN=8,ND=2,由勾股定理求得:NB=8,NC=2,∵BC=10,∴△BCN不是等腰三角形,即此时△PBQ不是等腰三角形.故④错误;故答案为:①②③.三、解答题(本大题共8个小题,共72分,解答题应写出文字说明、证明过程或演算步骤)17.(1)计算:(﹣2)2sin60°﹣(﹣)•﹣(﹣)0;(2)已知x,y满足方程组,求2x﹣2y的值.【考点】实数的运算;二元一次方程组的解;特殊角的三角函数值.【分析】(1)原式利用乘方的意义,特殊角的三角函数值,二次根式性质,以及零指数幂法则计算即可得到结果;(2)方程组两方程相减求出x﹣y的值,代入原式计算即可得到结果.【解答】解:(1)原式=4×+×2﹣1=3﹣1;(2),②﹣①得:x﹣y=﹣2,则2x﹣2y=2(x﹣y)=﹣4.18.已知A=﹣.(1)化简A;(2)当x满足不等式组,且x为奇数时,求A的值.【考点】分式的化简求值;一元一次不等式组的整数解.【分析】(1)先通分,再把分子相加减即可;(2)求出不等式的解集,再求出x为奇数时A的值即可.【解答】解:(1)A=﹣=﹣==;(2),由①得,x≥1,由②得,x<5,故不等式的解集为:1≤x<5,又∵x为奇数,且x≠1,∴x=3,∴A==﹣1.19.(1)如图,在△ABC中用直尺和圆规作AB边上的高CD(保留作图痕迹,不写作法).(2)图中的实线表示从A到B需经过C点的公路,且AC=10km,∠CAB=25°,∠CBA=37°.现因城市改造需要在A、B两地之间改建一条笔直的公路.问:公路改造后比原来缩短了多少千米?(参考数据:sin25°≈0.41,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75,结果精确到0.01)【考点】作图—基本作图;解直角三角形的应用.【分析】(1)直接利用过直线外一点作直线的垂线作法得出答案;(2)直接利用锐角三角函数关系分别得出AD,CD,BD的长进而得出答案.【解答】解:(1)如图所示:D点即为所求;(2)在Rt△ACD中,CD=ACsin25°≈4.1(km),AD=ACcos25°≈9.1(km),在Rt△BCD中BD=CD÷tan37°≈5.467(km),AB=AD+DB=14.567km,BC=CD÷sin37°≈6.833(km),∴AC+BC﹣AB≈2.27(km),答:公路改造后比原来缩短了2.27千米.20.暑假快要到了,某市准备组织同学们分别到A、B、C、D四个地方进行夏令营活动,前往四个地方的人数如图所示:(1)去B地参加夏令营活动人数占总人数的40%,根据统计图求去B地的人数.(2)若把同学们去A、B、C、D四个地点的人数情况绘制成扇形统计图,则“去B地”的扇形圆心角为多少?(3)若一对姐弟中只能有一人参加夏令营,姐弟俩提议让父亲决定.父亲说:现有4张卡片上分别写有1,2,3,4四个整数,先让姐姐随机地抽取一张后放回,再由弟弟随机地抽取一张.若抽取的两张卡片上的数字之和是5的倍数则姐姐参加,若抽取的两张卡片上的数字之和是3的倍数则弟弟参加.用列表法或树状图分析这种方法对姐弟俩是否公平?说明理由.【考点】游戏公平性;扇形统计图;列表法与树状图法.【分析】(1)假设去B地的人数为x人,根据去B地参加夏令营活动人数占总人数的40%,进而得出方程求出即可;(2)根据扇形圆心角的计算解答即可;(3)根据已知列表得出所有可能,进而利用概率公式求出即可.【解答】解(1)设去B地x人,则,解得x=40,答:去B地的人数是40;(2)“去B地”的扇形圆心角为;(3)不公平,列表:4 (1,4)(2,4)(3,4)(4,4)3 (1,3)(2,3)(3,3)(4,3)2 (1,2)(2,2)(3,2)(4,2)1 (1,1)(2,1)(3,1)(4,1)1 2 3 4∴P(姐姐)=P(弟弟)=又∵此游戏结果共有16种,且每种发生的可能性相同∴此游戏不公平.21.如图,已知AB是⊙O的弦,CD是⊙O的直径,CD⊥AB,垂足为E,且点E是OD 的中点,⊙O的切线BM与AO的延长线相交于点M,连接AC,CM.(1)若AB=4,求的长;(结果保留π)(2)求证:四边形ABMC是菱形.【考点】切线的性质;菱形的判定;弧长的计算.【分析】(1)连接OB,由E为OD中点,得到OE等于OA的一半,在直角三角形AOE 中,得出∠OAB=30°,进而求出∠AOE与∠AOB的度数,设OA=x,利用勾股定理求出x的值,确定出圆的半径,利用弧长公式即可求出的长;(2)由第一问得到∠BAM=∠BMA,利用等角对等边得到AB=MB,利用SAS得到三角形OCM与三角形OBM全等,利用全等三角形对应边相等得到CM=BM,等量代换得到CM=AB,再利用全等三角形对应角相等及等量代换得到一对内错角相等,进而确定出CM 与AB平行,利用一组对边平行且相等的四边形为平行四边形得到ABMC为平行四边形,最后由邻边相等的平行四边形为菱形即可得证.【解答】(1)解:∵OA=OB,E为AB的中点,∴∠AOE=∠BOE,OE⊥AB,∵OE⊥AB,E为OD中点,∴OE=OD=OA,∴在Rt△AOE中,∠OAB=30°,∠AOE=60°,∠AOB=120°,设OA=x,则OE=x,AE=x,∵AB=4,∴AB=2AE=x=4,解得:x=4,则的长l==;(2)证明:由(1)得∠OAB=∠OBA=30°,∠BOM=∠COM=60°,∠AMB=30°,∴∠BAM=∠BMA=30°,∴AB=BM,∵BM为圆O的切线,∴OB⊥BM,在△COM和△BOM中,,∴△COM≌△BOM(SAS),∴CM=BM,∠CMO=∠BMO=30°,∴CM=AB,∠CMO=∠MAB,∴CM∥AB,∴四边形ABMC为菱形.22.如图,一次函数y1=mx+n的图象分别交x轴、y轴于A、C两点,交反比例函数y2=(k>0)的图象于P、Q两点.过点P作PB⊥x轴于点B,若点P的坐标为(2,2),△PAB 的面积为4.(1)求一次函数与反比例函数的解析式.(2)当x为何值时,y1<y2?【考点】反比例函数与一次函数的交点问题.【分析】(1)由反比例函数图象上点坐标的特点可求出k值的大小,从而得出反比例函数解析式;由三角形的面积公式可得出AB=4,结合点B坐标可得出点A的坐标,由A、P点的坐标利用待定系数法即可求出一次函数的解析式;(2)令y1=y2,求出x的值,从而得出点Q的横坐标,结合两函数图象的位置关系即可得出结论.【解答】解:(1)∵点P的坐标为(2,2),∴k=2×2=4,∴反比例函数解析式为y2=.∵S△ABC=AB•PB=4,∴AB=4,∴点A(﹣2,0).∵点A、P在一次函数图象上,∴有,解得:.∴一次函数解析式为y1=x+1.(2)令y1=x+1=y2=,即x2+2x﹣8=0,解得:x1=﹣4,x2=2.即点Q横坐标为﹣4,点P横坐标为2.结合两函数图象可知:当x<﹣4和0<x<2时,一次函数图象在反比例函数图象下方,则当x<﹣4或0<x<2时,y1<y2.23.问题情境:如图将边长为8cm的正方形纸片ABCD折叠,使点B恰好落在AD边的中点F处,折痕EG分别交AB、CD于点E、G,FN与DC交于点M,连接BF交EG于点P.独立思考:(1)AE= 3 cm,△FDM的周长为16 cm;(2)猜想EG与BF之间的位置关系与数量关系,并证明你的结论.拓展延伸:如图2,若点F不是AD的中点,且不与点A、D重合:①△FDM的周长是否发生变化,并证明你的结论.②判断(2)中的结论是否仍然成立,若不成立请直接写出新的结论(不需证明).【考点】四边形综合题.【分析】(1)根据直角三角形勾股定理即可得出结论,(2)利用三角形相似对边比例关系计算出三角形各边长即可计算出结果,①根据题意,利用三角形全等即可证明结论,②根据勾股定理得出AE,然后利用全等三角形得出AF、AK,即可得出结果.【解答】解:(1)设AE=x,则EF=8﹣x,AF=4,∠A=90°,42+x2=(8﹣x)2,x=3,∴AE=3cm,EF=5cm,EG=BF,∵∠MFE=90°,∴∠DFM+∠AFE=90°,又∵∠A=∠D=90°,∠AFE=∠DMF,∴△AEF∽△DFM,∴,又∵AE=3,AF=DF=4,EF=5,∴,∴△FMD的周长=4++=16,故答案为:3,16;(2)EG⊥BF,EG=BF,则∠EGH+∠GEB=90°,由折叠知,点B、F关于直线GE所在直线对称,∴∠FBE=∠EGH,∵四边形ABCD是正方形,∴AB=BC,∠C=∠ABC=90°,四边形GHBC是矩形,∴GH=BC=AB,∴△AFB≌△HEG,∴BF=EG;①△FDM的周长不发生变化,由折叠知∠EFM=∠ABC=90°,∴∠DFM+∠AFE=90°,∵四边形ABCD为正方形,∠A=∠D=90°,∴∠DFM+∠DMF=90°,∴∠AFE=∠DMF,∴△AEF∽△DFM,∴,设AF为x,FD=8﹣x,∴,解得:,∴,∴FMD的周长=,∴△FMD的周长不变,②由折叠知∠FBE=∠EGH,∵四边形ABCD是正方形,∴AB=BC,∠C=∠ABC=90°,四边形GHBC是矩形,∴GH=BC=AB,∴△AFB≌△HEG,∴BF=EG,所以(2)中结论成立.24.如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A 出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?【考点】二次函数综合题.【分析】(1)首先求出点A、B坐标,然后求出直线BD的解析式,求得点D坐标,代入抛物线解析式,求得k的值;(2)因为点P在第一象限内的抛物线上,所以∠ABP为钝角.因此若两个三角形相似,只可能是△ABC∽△APB或△ABC∽△PAB.如答图2,按照以上两种情况进行分类讨论,分别计算;(3)由题意,动点M运动的路径为折线AF+DF,运动时间:t=AF+DF.如答图3,作辅助线,将AF+DF转化为AF+FG;再由垂线段最短,得到垂线段AH与直线BD的交点,即为所求的F点.【解答】解:(1)抛物线y=(x+2)(x﹣4),令y=0,解得x=﹣2或x=4,∴A(﹣2,0),B(4,0).∵直线y=﹣x+b经过点B(4,0),∴﹣×4+b=0,解得b=,∴直线BD解析式为:y=﹣x+.当x=﹣5时,y=3,∴D(﹣5,3).∵点D(﹣5,3)在抛物线y=(x+2)(x﹣4)上,∴(﹣5+2)(﹣5﹣4)=3,∴k=.∴抛物线的函数表达式为:y=(x+2)(x﹣4).(2)方法一:由抛物线解析式,令x=0,得y=﹣k,∴C(0,﹣k),OC=k.因为点P在第一象限内的抛物线上,所以∠ABP为钝角.因此若两个三角形相似,只可能是△ABC∽△APB或△ABC∽△PAB.①若△ABC∽△APB,则有∠BAC=∠PAB,如答图2﹣1所示.设P(x,y),过点P作PN⊥x轴于点N,则ON=x,PN=y.tan∠BAC=tan∠PAB,即:,∴y=x+k.∴P(x,x+k),代入抛物线解析式y=(x+2)(x﹣4),得(x+2)(x﹣4)=x+k,整理得:x2﹣6x﹣16=0,解得:x=8或x=﹣2(与点A重合,舍去),∴P(8,5k).∵△ABC∽△APB,∴,即,解得:k=.②若△ABC∽△PAB,则有∠ABC=∠PAB,如答图2﹣2所示.与①同理,可求得:k=.综上所述,k=或k=.方法二:∵点P在第一象限内的抛物线上,∴∠ABP为钝角,①若△ABC∽△APB,则有∠BAC=∠PAB,∴K AP+K AC=0,∵C(0,﹣k),A(﹣2,0),∴K AC=﹣,∴K AP=,∵A(﹣2,0),∴l AP:y=x+k,∵抛物线:y=(x+2)(x﹣4),∴x2﹣6x﹣16=0,解得:x=8或x=2(舍)∴P(8,5k),∵△ABC∽△APB,∴,∴,∴k=,②若△ABC∽△APB,则有∠ABC=∠PAB,同理可得:k=;(3)方法一:如答图3,由(1)知:D(﹣5,3),如答图2﹣2,过点D作DN⊥x轴于点N,则DN=3,ON=5,BN=4+5=9,∴tan∠DBA===,∴∠DBA=30°.过点D作DK∥x轴,则∠KDF=∠DBA=30°.过点F作FG⊥DK于点G,则FG=DF.由题意,动点M运动的路径为折线AF+DF,运动时间:t=AF+DF,∴t=AF+FG,即运动的时间值等于折线AF+FG的长度值.由垂线段最短可知,折线AF+FG的长度的最小值为DK与x轴之间的垂线段.过点A作AH⊥DK于点H,则t最小=AH,AH与直线BD的交点,即为所求之F点.∵A点横坐标为﹣2,直线BD解析式为:y=﹣x+,∴y=﹣×(﹣2)+=2,∴F(﹣2,2).综上所述,当点F坐标为(﹣2,2)时,点M在整个运动过程中用时最少.方法二:作DK∥AB,AH⊥DK,AH交直线BD于点F,∵∠DBA=30°,∴∠BDH=30°,∴FH=DF×sin30°=,∴当且仅当AH⊥DK时,AF+FH最小,点M在整个运动中用时为:t=,∵l BD:y=﹣x+,∴F X=A X=﹣2,∴F(﹣2,).2016年6月14日。

中考数学仿真模拟测试题(附答案解析)

中考数学仿真模拟测试题(附答案解析)

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________(满分120分,考试用时120分钟)一、填空题(本大题共6小题,每小题3分,共18分)1.(2020•盱眙县校级模拟)若m与﹣2互为相反数,则m的值为.2.(2021•东港市模拟)在式子中,x的取值范围是.3.(2021•成都模拟)已知x1,x2是关于x的一元二次方程x2﹣3x+a=0的两个实数根,且x12+x22=5,则a =.4.(2021•山西模拟)已知,A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,则反比例函数的解析式为.5.(2021春•长白县期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).6.(2021•和平区一模)如图,在四边形ABCD中,∠DAB=∠BCD=90°,对角线AC与BD相交于点E,点F,G分别是AC,BD的中点,当∠CBD=15°,EG=EC,FG=时,则线段AC的长为.二、选择题(本大题共8小题,每小题4分,共32分,每小题正确的选项只用一个)7.(2021•裕华区模拟)全国已有29个省份在政府工作报告中设定:2021年GDP增速目标不低于6%.已知河北省2020年GDP总量为36206.9亿元,若今年比上年增长6%,则河北省2021年GDP总量用科学记数法(精确到百亿位)表示为()A.5.8×1011元B.3.41×1012元C.3.83×1012元D.3.84×1012元8.(2021•南关区一模)如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的左视图为()A.B.C.D.9.(2021•山西模拟)下列运算正确的是()A.a2•a3=a6B.(3a2)3=9a6C.2﹣3÷2﹣5=D.(﹣ab2)3=﹣a3b610.(2021•赣州模拟)本学期某校举行了四次数学测试,李娜同学四次的成绩(单位:分)分别为80,70,90,70,王玥同学四次的成绩分别为80,a(a≥70),70,90,且李娜同学四次成绩的中位数比王玥同学四次成绩的中位数少5分,则下列说法正确的是()A.a的值为70B.两位同学成绩的平均数相同C.李娜同学成绩的众数比王玥同学成绩的众数大D.王玥同学的成绩比李娜同学的成绩稳定11.(2021•碑林区校级二模)如图,在△ABC中,AB=10,BC=16,点D、E分别是边AB、AC的中点,点F是线段DE上的一点,连接AF、BF,若∠AFB=90°,则线段EF的长为()A.2B.3C.4D.512.(2021•武汉模拟)如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种13.(2021•莱州市模拟)如图,AB是⊙O的直径,弦CD⊥AB,延长弦AF,DC交于点E.若∠DFC=48°,则∠CFE的度数为()A.60°B.66°C.68°D.72°14.(2021•长清区二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,以点A为圆心、AC的长为半径作交AB于点E,以点B为圆心、BC的长为半径作交AB于点D,则阴影部分的面积为()A.π一2B.2π﹣4C.4π﹣8D.2π﹣2三、解答题(本大题共9小题,共70分)15.(本小题满分6分)(2021•铁西区二模)计算:(﹣2)2+2×(tan60°﹣20210)﹣|﹣2|.16.(本小题满分6分)(2021•常州一模)如图,△ABC中,AB=AC,点D、E是BC边上不重合的两点,BD =CE.(1)求证:AD=AE;(2)若DA⊥AE,∠B=26°,求∠BAD的大小.17.(本小题满分8分)(2021•南通一模)某校组织学生参加”防疫卫生知识竞赛”(满分为100分).竞赛结束后,随机抽取甲、乙两班各40名学生的成绩,并对数据(成绩)进行了整理、描述和答案.下面给出了部分信息.信息一:甲、乙两班40名学生数学成绩的频数分布统计表:成绩班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲41113102乙6315122 (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)信息二:甲班成绩在70≤x<80这一组的是:70,70,70,71,74,75,75,75,76,76,76,76,78信息三:甲、乙两班成绩的平均分、中位数、众数:班级平均分中位数众数甲74.2n85乙73.57384根据以上信息,回答下列问题:(1)写出表中n的值.(2)在此次测试中,某学生的成绩是74分,在他所属班级排在前20名,由表中数据可知该学生是班的学生(填”甲”或”乙”),给出理由.(3)假设学校1200名学生都参加此次竞赛,估计成绩优秀的学生人数.18.(本小题满分6分)(2021•广东模拟)为提升青少年的身体素质,在全市中小学推行”阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?19.(本小题满分7分)(2021•前郭县三模)嫦娥、神舟、北斗、天问被称为中国航天的”四大天王”.2020年”北斗”组网、”天问”问天、”嫦五”探月,一个个好消息从太空传来,照亮了中国航天界的未来!小玲对航空航天非常感兴趣,她收集到了嫦娥五号、神舟十一号、北斗三号、天问一号的模型图,依次制成编号为A、B、C、D的四张卡片(背面完全相同),将这四张卡片背面朝上,洗匀放好.(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为;(2)小玲先从四张卡片中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率.20.(本小题满分8分)(2021•余姚市一模)如图,已知二次函数y=x2﹣x+c的图象经过点P(﹣3,6).(1)求该二次函数的表达式.(2)求该二次函数图象的顶点坐标.(3)点Q(m,n)在该二次函数图象上,若点Q到y轴的距离小于3.请根据图象直接写出n的取值范围.21.(本小题满分8分)(2021•宁波模拟)如图,已知四边形ABCD是菱形,点E,F分别在线段AB,AD上,EG∥BC,FH∥DC,点G,H分别在线段CD,BC上,EG和FH相交于点P,BE=DF.(1)求证:四边形HCGP是菱形.(2)若四边形BHPE是菱形,求证:点E是线段AB的中点.22.(本小题满分9分)(2021•台安县模拟)某商店购进了一种新款小电器,为了制定合适的销售价格,进行了为期4周的试营销,试营销的情况如下表所示:第1周第2周第3周第4周售价/(元/台)50456055销售/台360390300330已知该款小电器的进价每台40元,设该款小电器每台的售价为x元,每周的销售量为y台.(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;(2)若想每周的销售利润为6000元,则其售价应定为多少元?(3)若每台小电器的售价不低于45元,但又不能高于进价的1.5倍,则如何定价才能使每周的销售利润最大?23.(本小题满分12分)(2021•泉州模拟)如图1,在⊙O中,点A是优弧BAC上的一点,点I为△ABC的内心,连接AI并延长交⊙O于点D,连接OD交BC于点E,连接BI.(1)求证:OD⊥BC;(2)连接DB,求证:DB=DI;(3)如图2,若BC=24,tan∠OBC=,当B、O、I三点共线时,过点D作DG∥BI,交⊙O于点G,求DG的长.参考答案四、填空题(本大题共6小题,每小题3分,共18分)1.(2020•盱眙县校级模拟)若m与﹣2互为相反数,则m的值为.【答案】2.【解析】解:∵﹣2的相反数是2,∴m=2.故答案为:2.2.(2021•东港市模拟)在式子中,x的取值范围是.【答案】x>﹣1.【解析】解:由题意得,x+1>0,解得,x>﹣1,故答案为:x>﹣1.3.(2021•成都模拟)已知x1,x2是关于x的一元二次方程x2﹣3x+a=0的两个实数根,且x12+x22=5,则a =.【答案】2.【解析】解:根据题意得:△=9﹣4a≥0,解得:a,x1+x2=3,x1x2=a,x12+x22=﹣2x1x2=9﹣2a=5,解得:a=2(符合题意),故答案为:2.4.(2021•山西模拟)已知,A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,则反比例函数的解析式为.【答案】:y=﹣..【解析】解:∵A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,∴n=,2=,即m=﹣3n,m=2(3n﹣6),消去m得:﹣3n=2(3n﹣6),解得:n=,把n=代入得:m=﹣4,则反比例函数解析式为y=﹣.故答案为:y=﹣.5.(2021春•长白县期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).【答案】①②③.【解析】解:①∠A与∠1是同位角,此结论正确;②∠A与∠B是同旁内角,此结论正确;③∠4与∠1是内错角,此结论正确;④∠1与∠3不是同位角,原来的结论错误;故答案为:①②③.6.(2021•和平区一模)如图,在四边形ABCD中,∠DAB=∠BCD=90°,对角线AC与BD相交于点E,点F,G分别是AC,BD的中点,当∠CBD=15°,EG=EC,FG=时,则线段AC的长为.【答案】6.【解析】解:如图所示,连接AG,CG,由题意,△ABD与△BCD均是BD为斜边的直角三角形,∴AG=BD,CG=BD,即:AG=CG,∴△ACG为等腰三角形,∵∠CBD=15°,CG=BG,∴∠CGE=2∠CBD=30°,∵EC=EG,∴∠ECD=∠CGE=30°,又∵F为AC的中点,∴GF为△ACG的中线,AF=CF,∴由”三线合一”知,GF⊥AC,∠GFC=90°,∵FG=,∴CF=FG=3,∴AC=2FC=6,故答案为:6.五、选择题(本大题共8小题,每小题4分,共32分,每小题正确的选项只用一个)7.(2021•裕华区模拟)全国已有29个省份在政府工作报告中设定:2021年GDP增速目标不低于6%.已知河北省2020年GDP总量为36206.9亿元,若今年比上年增长6%,则河北省2021年GDP总量用科学记数法(精确到百亿位)表示为()A.5.8×1011元B.3.41×1012元C.3.83×1012元D.3.84×1012元【答案】D.【解析】解:36206.9×(1+6%)=38379.314亿元≈38400亿元=3840000000000元=3.84×1012元.故选:D.8.(2021•南关区一模)如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的左视图为()A.B.C.D.【答案】B.【解析】解:立体图形的左视图是.故选:B.9.(2021•山西模拟)下列运算正确的是()A.a2•a3=a6B.(3a2)3=9a6C.2﹣3÷2﹣5=D.(﹣ab2)3=﹣a3b6【答案】D.【解析】解:A.a2•a3=a2+3=a5,故A运算不符合题意,B.(3a2)3=33•(a2)3=27a6,故B运算不符合题意,C.2﹣3÷2﹣5=2﹣3﹣(﹣5)=22,故C运算不符合题意,D.(﹣ab2)3=﹣a3b2×3=﹣a3b6,故D运算符合题意,故选:D.10.(2021•赣州模拟)本学期某校举行了四次数学测试,李娜同学四次的成绩(单位:分)分别为80,70,90,70,王玥同学四次的成绩分别为80,a(a≥70),70,90,且李娜同学四次成绩的中位数比王玥同学四次成绩的中位数少5分,则下列说法正确的是()A.a的值为70B.两位同学成绩的平均数相同C.李娜同学成绩的众数比王玥同学成绩的众数大D.王玥同学的成绩比李娜同学的成绩稳定【答案】D.【解析】解:∵李娜同学四次的成绩的中位数为=75(分),∴由题意知王玥同学四次的成绩的中位数为80分,则a=80分,故A选项错误;李娜成绩的平均数为=77.5(分),王玥成绩的平均数为=80(分),故B选项错误;李娜同学成绩的众数为70分,王玥同学成绩的众数为80分,故C选项错误;王玥同学的成绩的方差为×[(70﹣80)2+2×(80﹣80)2+(90﹣80)2]=50,李娜同学的成绩的方差为×[2×(70﹣77.5)2+(80﹣77.5)2+(90﹣77.5)2]=68.75,∴王玥同学的成绩比李娜同学的成绩稳定,故D选项正确;故选:D.11.(2021•碑林区校级二模)如图,在△ABC中,AB=10,BC=16,点D、E分别是边AB、AC的中点,点F是线段DE上的一点,连接AF、BF,若∠AFB=90°,则线段EF的长为()A.2B.3C.4D.5【答案】解:∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∵BC=16,∴DE=BC=8.∵∠AFB=90°,D是AB的中点,AB=10,∴DF=AB=5,∴EF=DE﹣DF=8﹣5=3.故选:B.【解析】利用三角形中位线定理得到DE=BC.由直角三角形斜边上的中线等于斜边的一半得到DF =AB.所以由图中线段间的和差关系来求线段EF的长度即可.12.(2021•武汉模拟)如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种【答案】C.【解析】解:如图所示,直线代表一个1×2的小矩形纸片:1+4+3=8(种).答:不同的覆盖方法有8种.故选:C.13.(2021•莱州市模拟)如图,AB是⊙O的直径,弦CD⊥AB,延长弦AF,DC交于点E.若∠DFC=48°,则∠CFE的度数为()A.60°B.66°C.68°D.72°【答案】B.【解析】解:连接AD,∵AB是⊙O的直径,弦CD⊥AB,∴=,∴∠DAB=∠DFC=×48°=24°,∴∠ADC=90°﹣∠DAB=90°﹣24°=66°,∵四边形ADCF内接与⊙O,∴∠CFE=∠ADC=66°,故选:B.14.(2021•长清区二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,以点A为圆心、AC的长为半径作交AB于点E,以点B为圆心、BC的长为半径作交AB于点D,则阴影部分的面积为()A.π一2B.2π﹣4C.4π﹣8D.2π﹣2【答案】C.【解析】解:∵∠ACB=90°,AC=BC=4,∴S△ABC=×4×4=8,S扇形BCD==2π,S空白=2×(8﹣2π)=16﹣4π,S阴影=S△ABC﹣S空白=8﹣16+4π=4π﹣8,故选:C.六、解答题(本大题共9小题,共70分)15.(本小题满分6分)(2021•铁西区二模)计算:(﹣2)2+2×(tan60°﹣20210)﹣|﹣2|.【答案】解:原式=4+2×(﹣1)﹣2=4+2﹣2﹣2=2.【解析】直接利用特殊角的三角函数值以及绝对值的性质、零指数幂的性质分别计算得出答案.16.(本小题满分6分)(2021•常州一模)如图,△ABC中,AB=AC,点D、E是BC边上不重合的两点,BD =CE.(1)求证:AD=AE;(2)若DA⊥AE,∠B=26°,求∠BAD的大小.【答案】.证明:(1)∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE;(2)∵∠C=∠B=26°,∴∠BAC=180°﹣(26°+26°)=128°,∵∠BAC=128°,∠DAE=90°,∴∠BAD+∠CAE=128°﹣90°=38°,∵△ABD≌△ACE,∴∠BAD=∠CAE,∴∠BAD=38°÷2=19°.【解析】(1)由”SAS”可证△ABD≌△ACE,可得AD=AE;(2)由全等三角形的性质可得∠BAD=∠CAE,由三角形内角和定理可求解17.(本小题满分8分)(2021•南通一模)某校组织学生参加”防疫卫生知识竞赛”(满分为100分).竞赛结束后,随机抽取甲、乙两班各40名学生的成绩,并对数据(成绩)进行了整理、描述和答案.下面给出了部分信息.信息一:甲、乙两班40名学生数学成绩的频数分布统计表:成绩班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲41113102乙6315122 (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)信息二:甲班成绩在70≤x<80这一组的是:70,70,70,71,74,75,75,75,76,76,76,76,78信息三:甲、乙两班成绩的平均分、中位数、众数:班级平均分中位数众数甲74.2n85乙73.57384根据以上信息,回答下列问题:(1)写出表中n的值.(2)在此次测试中,某学生的成绩是74分,在他所属班级排在前20名,由表中数据可知该学生是班的学生(填”甲”或”乙”),给出理由.(3)假设学校1200名学生都参加此次竞赛,估计成绩优秀的学生人数.【答案】解:(1)这组数据的中位数是第20、21个数据的平均数,所以中位数n==74.5,故答案为:74.5;(2)这名学生的成绩为74分,小于甲班样本数据的中位数74.5分,大于乙班样本数据的中位数73分,说明这名学生是乙班的学生,故答案为:乙,这名学生的成绩为74分,小于甲班样本数据的中位数74.5分,大于乙班样本数据的中位数73分,说明这名学生是乙班的学生;(3)1200×=390(人),答:学校1200名学生中成绩优秀的大约有390人.【解析】(1)根据中位数的定义求解可得;(2)根据这名学生的成绩为74分,大于甲班样本数据的中位数72.5分,小于乙班样本数据的中位数76分可得;(3)利用样本估计总体思想求解可得.18.(本小题满分6分)(2021•广东模拟)为提升青少年的身体素质,在全市中小学推行”阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?【答案】解:(1)设跳绳的单价为x元,则键球的单价为x元,依题意得:﹣=24,解得:x=45,经检验,x=45是原方程的解,且符合题意,∴x=18(元).答:键球的单价为18元,跳绳的单价为45元.(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,依题意得:45m+18(100﹣m)≤2700,解得:m≤.又∵m为正整数,∴m的最大值为33.答:最多可以购买33条跳绳.【解析】(1)设跳绳的单价为x元,则键球的单价为x元,根据数量=总价÷单价,结合用720元购买键球的个数比购买跳绳的条数多24,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,根据总价=单价×数量,结合总价不多于2700元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最大整数值即可得出结论.19.(本小题满分7分)(2021•前郭县三模)嫦娥、神舟、北斗、天问被称为中国航天的”四大天王”.2020年”北斗”组网、”天问”问天、”嫦五”探月,一个个好消息从太空传来,照亮了中国航天界的未来!小玲对航空航天非常感兴趣,她收集到了嫦娥五号、神舟十一号、北斗三号、天问一号的模型图,依次制成编号为A、B、C、D的四张卡片(背面完全相同),将这四张卡片背面朝上,洗匀放好.(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为;(2)小玲先从四张卡片中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率.【答案】解:(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为,故答案为:;(2)画树状图如图:共有12种等可能的情况,其中抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的有2种情况,∴抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率为=.【解析】(1)根据概率公式直接得出答案;(2)先画树状图列出所有等可能的结果数,两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的结果数为2种,再根据概率公式求解可得.20.(本小题满分8分)(2021•余姚市一模)如图,已知二次函数y=x2﹣x+c的图象经过点P(﹣3,6).(1)求该二次函数的表达式.(2)求该二次函数图象的顶点坐标.(3)点Q(m,n)在该二次函数图象上,若点Q到y轴的距离小于3.请根据图象直接写出n的取值范围.【答案】解:(1)把点P(﹣3,6)代入y=x2﹣x+c中,得:6=×(﹣3)2﹣(﹣3)+c,解得:c=﹣,∴该二次函数的表达式为y=x2﹣x﹣;(2)y=x2﹣x﹣=(x﹣1)2﹣2,∴该二次函数图象的顶点坐标为(1,﹣2);(3)∵点Q到y轴的距离小于3,∴|m|<3,∴﹣3<m<3,∵x=﹣3时,y=x2﹣x﹣=×(﹣3)2﹣(﹣3)﹣=6,x=3时,y=x2﹣x﹣=×32﹣3﹣=0,又∵顶点坐标为(1,﹣2),∴﹣3<m<3时,n≥2,∴﹣2≤n<6.【解析】(1)把点P(﹣3,6)代入y=x2﹣x+c中,即可求解;(2)把二次函数的表达式化为顶点式即可得该二次函数图象的顶点坐标;(3)由点Q到y轴的距离小于3,可得﹣3<m<3,在此范围内求n即可.21.(本小题满分8分)(2021•宁波模拟)如图,已知四边形ABCD是菱形,点E,F分别在线段AB,AD上,EG∥BC,FH∥DC,点G,H分别在线段CD,BC上,EG和FH相交于点P,BE=DF.(1)求证:四边形HCGP是菱形.(2)若四边形BHPE是菱形,求证:点E是线段AB的中点.【答案】证明:(1)∵四边形ABCD是菱形,∴AB∥CD,AD∥BC,∵EG∥BC,FH∥DC,∴四边形HCGP、四边形BCGE、四边形CDFH都是平行四边形,∴BE=CG,CH=DF,∵BE=DF,∴CG=CH,∴平行四边形HCGP是菱形;(2)由(1)可知,BE=CG=CH,∵四边形BHPE是菱形,∴BE=BH,∴BE=BH=CH=BC,∵四边形ABCD是菱形,∴AB=BC,∴BE=AB,∴点E是线段AB的中点.【解析】(1)先证四边形HCGP、四边形BCGE、四边形CDFH都是平行四边形,得BE=CG,CH=DF,再证CG=CH,即可得出结论;(2)由(1)可知,BE=CG=CH,再由菱形的性质得BE=BH,AB=BC,则BE=BH=CH=BC=AB,即可得出结论.22.(本小题满分9分)(2021•台安县模拟)某商店购进了一种新款小电器,为了制定合适的销售价格,进行了为期4周的试营销,试营销的情况如下表所示:第1周第2周第3周第4周售价/(元/台)50456055销售/台360390300330已知该款小电器的进价每台40元,设该款小电器每台的售价为x元,每周的销售量为y台.(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;(2)若想每周的销售利润为6000元,则其售价应定为多少元?(3)若每台小电器的售价不低于45元,但又不能高于进价的1.5倍,则如何定价才能使每周的销售利润最大?【答案】解:(1)y与x满足一次函数关系,设y与x的函数关系式为y=kx+b,,解得:,即这个函数关系式是y=﹣6x+660;(2)由题意可得,(x﹣40)(﹣6x+660)=6000,解得,x1=60,x2=90,答:若想每周的利润为6000元,则其售价应定为每台60元或每台90元;(3)设每周的销售利润为w元,定价为x元,由题意可得,w=(x﹣40)(﹣6x+660)=﹣6(x﹣75)2+7350,45≤x≤40×1.5,即45≤x≤60,∵y=﹣6x+660,∵﹣6<0,对称轴为直线x=75,∴x<75时,y随x的增大而增大,∴当x=60时,w取得最大值,答:定价为60元/台时,才能使每周的销售利润最大.【解析】(1)根据题意和表格中的数据可以判断出y与x的函数关系,并求出这个函数关系式;(2)根据题意可以得到每周的利润为6000元,则其售价应定为多少元;(3)设每周的销售利润为w元,定价为x元,根据题意和(1)中的函数关系式,利用一次函数的性质可以解析本题.23.(本小题满分12分)(2021•泉州模拟)如图1,在⊙O中,点A是优弧BAC上的一点,点I为△ABC的内心,连接AI并延长交⊙O于点D,连接OD交BC于点E,连接BI.(1)求证:OD⊥BC;(2)连接DB,求证:DB=DI;(3)如图2,若BC=24,tan∠OBC=,当B、O、I三点共线时,过点D作DG∥BI,交⊙O于点G,求DG的长.【答案】(1)证明:如图1中,∵I是△ABC的内心,∴∠BAD=∠CAD,∴=,∴OD⊥BC.(2)证明:如图1中,连接BD.∵I是△ABC的内心,∴∠BAI=∠CAI,∠ABI=∠CBI,∵∠DIB=∠BAI+∠ABI,∠DBI=∠CBI+∠CBD,∠CBD=∠CAI,∴∠DBI=∠DIB,∴DB=DI.(3)解:如图2中,连接OG,过点O作OH⊥DG于H.∵OD⊥BC,∴BE=EC=12,∵tan∠OBE==,∴OE=5,∵DG∥OB,∴∠BOE=∠ODH,∵∠BEO=∠OHD=90°,OB=OD,∴△OBE≌△ODH(AAS),∴OE=DH=5,∵OH⊥DG,∴DH=HG=5,∴DG=10.【解析】(1)证明=,再利用垂径定理可得结论.(2)想办法证明∠DBI=∠DIB,即可解决问题.(3)如图2中,连接OG,过点O作OH⊥CG于H,解直角三角形求出OE,再利用全等三角形的性质求出DH,可得结论.。

2020-2021学年山西省中考数学仿真模拟试题及答案解析

2020-2021学年山西省中考数学仿真模拟试题及答案解析

山西中考数学试题第Ⅰ卷 选择题(共24分)一.选择题 (本大题共12个小题,每小题2分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.计算2×(-3)的结果是( )A. 6 B. -6 C. -1 D. 52.不等式组的解集在数轴上表示为( )3.如图是一个长方体包装盒,则它的平面展开图是( )4.某班实行每周量化考核制学期末对考核成绩进行统计,结果显示甲、乙的平均成绩相同,方差是甲=36,=30,则廉租成绩的稳定性:( )A.甲组比乙组的成绩稳定;B. 乙组比甲组的成绩稳定;C. 甲、乙组成绩一样稳定;D.无法确定。

5.下列计算错误的是( )A.x 3+x 3=2x 3;B.a 6÷a 3=a 2;C.3212=;D.1)31(-=3. 6.解分式方程31212=-++-xx x 时,去分母后变形为( ) A.2+(x+2)=3(x-1); B.2-x+2=3(x-1); C.2-(x+2)=3(1-x); D.2-(x+2)=3(x-1).7.下表是我国11个地市5月份某日最高气温(ºC )的统计结果:太原大同 朔州 忻州 阳泉 晋中 吕梁 长治 晋城 临汾 运城 27 27 28 28 27 29 28 28 30 30 31 该日最高气温的众数和中位数分别是( )A.27ºC ,28ºC ;B.28ºC ,28ºC ;C. 27ºC ,27ºC ,D. 29ºC ,29ºC 。

8.如图,正方形地砖的图案是轴对称图形,该图形的对称轴有( )条。

A. 1 ;B. 2;C. 4;D. 8.9.王先生先到银行存了一笔三年的定期存款,年利率是4.25%,如果到期后取出的本息和为33825元,设王先生存入的本金为x 元,则下面所列方程正确的是( )A.x+3×4.25%=33825;B.x+4.25%x=33825;C. 3×4.25%x=33825;D.3(x+4.25%x )=33825.10.如图,某地修建高速公路,要从B 地向C 地修一座隧道(B 、C 在同一水平面上),为了测量B 、C 两地之间的距离,某工程队乘坐热气球从C 地出发垂直上升100m 到达A 处,在A 处观察B 地的仰角为30º,则BC 两地间的距离为( )m 。

2020-2021学年最新5月山西省中考数学模拟试卷及答案

2020-2021学年最新5月山西省中考数学模拟试卷及答案

山西省中考数学模拟试卷(5月份)一. 选择题(共10小题,满分30分,每小题3分)1. 在-3, - 1, 0, 1这四个数中,最小的数是() A. - 3 B. - 1 C. 0 D. 12. 在如图所示的5>5方格纸中,图(1)中的图形N 平•移后如图(2)所示,则下列关丁图形 N 的平移方法中,正确的是( )A. 先向下平■移1格,再向左平■移1格B. 先向下平■移1格,再向左平■移2格C. ,先向下』平移2格,再向左平■移1格D. 先向下平■移2格,再向左平■移2格3.下列运算正确的是( ) A. a 6^a 2=aB. (2a+b ) (2a — b ) =4a - b 2C. ( — a ) 2?a 3=a 6D. 5a+2b=7ab 4. 如图,直线AB//CD,则下列结论正确的是(5. 生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了 132 件.如果全组共有x 名同学,贝U 根据题意列出,的方程是()A. x (x+1) =132B. x (x- 1) =132 B. Z3=Z4C. Z1+Z 3=180°D. Z3+Z 4=180°■ :■: ■ . J. ■ J J® (1) 圉催)A. Z1=Z2C.葛(时1)二132X二D. x (x-1) =132>28.如图,AD 是CD O 的弦,过点O 作AD 的垂线,垂足为点切线,交OF 的延长线丁点E.若CO=1, AD=^5,则图中阴影部分的面积为(A. 4龙一旦兀B.为成一二■兀C. 4彩一二兀D.才& 一兀 9. 某校为了了解七年级女同学的 800米跑步情况,随机抽取部分女同学进行 800米跑测试,按照成绩分为优秀、良好、合格、不合格四个等级,绘制了如图所示统计图.该校七年级 有400名女生,则估计800米跑不合格的约有( )6.拒绝“餐桌浪费 ,刻不容缓.节约一粒米的帐:一个人一日三餐少浪费一粒米,全国一 年就可以节省3240万斤,这些粮食可供9万人吃一年.“3240万”这个数据用科学记数法 表小为(A. 0.324X08B. 32.4X06C. 3.24>107 _ . 8D. 324X07.如图,正方形 ABCD 和正方形CEF 引,点D 在CG 上,BC=1, CE=3 CHL AF 于点 H,那么 C,交OO 丁点F,过点A 作CDO 的CH 的长是E二. 填空题(共5小题,满分15分,每小题3分)11 .分解因式:x 2 - 4=.12.如图,是一个正方体包装盒的表面展开图,若在其中的三个正方形 A 、B 、C 内分别填上适当•的数,使得将这个表面展开图折成正方体后,相对面上的两个数互为相反数,则填在 B 内的数为.13.下面是用棋子摆成的 上 字:第一个'上导字 第二个抹上”宇 第三个,上”字如果按照以上规律继续摆下去,那么通过观察,可以发现:第 n 个“上”字需用 枚棋子.14.如图,将直线y=x 向下平■移b 个单位长度后得到直线l, l 与反比例函数y 今(x>0)的图 象相交丁点A,与x 轴相交丁点B,则OA2-。

2021届山西中考数学仿真模拟卷

2021届山西中考数学仿真模拟卷

2021届山西中考数学仿真模拟卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.计算()()123-÷-的结果等于( ). A.15-B.4-C.15D.42.图所示的“数字图形”中,既是轴对称图形,又是中心对称图形的有( )A.1个B.2个C.3个D.4个3.下列计算正确的是( ) A.236a a a ⋅=B.222(2)4ab a b -=C.22434x x x +=D.623623a a a -÷=-4.如图,一个几何体由5个相同的小正方体搭成,该几何体的俯视图是( )A. B. C. D.5.如图,在ABC 中,108BAC ∠=︒,将ABC 绕点A 按逆时针方向旋转得到AB C ''.若点B '恰好落在BC 边上,且AB CB ''=,则C '∠的度数为( )A.18︒B.20︒C.24︒D.28︒6.不等式组1051x x ->⎧⎨-⎩的整数解共有( )A.1个B.2个C.3个D.4个7.若点()()()123,5,,2,,5A x B x C x -都在反比例函数10y x=的图象上,则123,,x x x 的大小关系是( ) A.123x x x <<B.231x x x <<C.132x x x <<D.312x x x <<8.如图,从一块直径为2 m 的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为( )A.2πm 22m C.2πm D.22m9.小明将如图所示的转盘分成n (n 是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标注连续偶数数字2,4,6,…,2n (每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是56,则n 的取值为( )A.36B.30C.24D.18 10.关于二次函数22(2)33y x =-+-的图象与性质,下列结论错误的是( )A.当2x =-时,函数有最大值3-B.当2x <-时,y 随x 的增大而增大C.抛物线可由223y x =-经过平移得到D.该函数的图象与x 轴有两个交点二、解答题 11.计算:(1)2()(3)x y y x y ++-; (2)2241611a a a a a ⎛⎫--+÷ ⎪--⎝⎭. 12.为加强中小学生安全教育,某校组织了“防溺水”知识竞赛,对表现优异的班级进行奖励,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116元;购买3副乒乓球拍和2副羽毛球拍共需204元.(1)求购买1副乒乓球拍和1副羽毛球拍各需多少元;(2)若学校购买乒乓球拍和羽毛球拍共30副,且支出不超过1480元,则最多能够购买多少副羽毛球拍?13.如图,在ABC 中,,AC BC D =是AB 上一点,O 经过点A C D ,,,交BC 于点E ,过点D 作//DF BC ,交O 于点F .求证:(1)四边形DBCF 是平行四边形; (2)AF EF =.14.某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请将条形统计图补全; (2)获得一等奖的同学中有14来自七年级,有14来自八年级,其他同学均来自九年级.现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.15.通过对《勾股定理》的学习,我们知道:如果一个三角形中,两边的平方和等于第三边的平方,那么这个三角形一定是直角三角形.如果我们新定义一种三角形:两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形.(1)根据奇异三角形的定义,可知等边三角形________奇异三角形(填“是”或“不是”);(2)若某三角形的三边长分别为12,问该三角形是不是奇异三角形?请作出判断并写出判断依据;(3)在Rt ABC 中,边长分别为a 、b 、c ,且2250,100a c ==,问这个三角形是不是奇异三角形?请作出判断并写出判断依据;(4)在Rt ABC 中,90,,,C AB c AC b BC a ∠====,且b a >,若Rt ABC 是奇异三角形,求222::a b c .16.为了测量竖直旗杆AB 的高度,某综合实践小组在地面D 处竖直放置标杆CD ,并在地面上水平放置一个平面镜E ,使得B ,E ,D 在同一水平线上,如图所示.该小组在标杆的F 处通过平面镜E恰好观测到旗杆顶A (此时AEB FED ∠=∠).在F 处测得旗杆顶A 的仰角为39.3°平面镜E 的俯角为45°, 1.8FD =m ,问旗杆AB 的高度约为多少米?(结果保留整数,参考数据:tan39.30.82tan84.310.02︒≈︒≈,)17.问题探究:小红遇到这样一个问题:如图1,ABC 中,64AB AC AD ==,,是中线,求AD 的取值范围.她的做法是:延长AD 到E ,使DE AD =,连接BE ,证明BED CAD ≌,经过推理和计算使问题得到解决.请回答:(1)小红证明BED CAD ≌的判定定理是:____________; (2)AD 的取值范围是____________; 方法运用:(3)如图2,AD 是ABC 的中线,在AD 上取一点F ,连接BF 并延长交AC 于点E ,使AE EF =,求证:BF AC =.(4)如图3,在矩形ABCD 中,12AB BC =,在BD 上取一点F ,以BF 为斜边作Rt BEF ,且12EF BE =,点G 是DF 的中点,连接,EG CG ,求证:EG CG =.18.抛物线2y x bx c =++经过点()3,0A -和点()2,0B ,与y 轴交于点C .(1)求该抛物线的函数表达式;(2)点P 是该抛物线上的动点,且位于y 轴的左侧.①如图1,过点P 作PD x ⊥轴于点D ,作PE y ⊥轴于点E ,当2PD PE =时,求PE 的长; ②如图2,该抛物线上是否存在点P ,使得ACP OCB ∠=∠?若存在,请求出所有点P 的坐标;若不存在,请说明理由.三、填空题19.已知x =2x -的值是____________.20.在平面直角坐标系中,点()P x y ,经过某种变换后得到点(1,2)P y x '-++,我们把点(1,2)P y x '-++叫做点()P x y ,的终结点已知点1P 的终结点为2P ,点2P 的终结点为3P ,点3P 的终结点为4P ,这样由1P 依次得到234n P P P P ⋯,,,,若点1P 的坐标为()2,0,则点2017P 的坐标为___________.21.据统计:2019年,邵阳市在教育扶贫方面,共资助学生91.3万人次,全市没有一名学生因贫失学,其中,某校老师承担了对甲、乙两名学生每周“送教上门”的任务,以下是甲、乙两名学生某十周每周接受“送教上门”的时间(单位:小时): 甲:7,8,8,9,7,8,8,9,7,9; 乙:6,8,7,7,8,9,10,7,9,9.从接受“送教上门”的时间波动大小来看,__________学生每周接受“送教上门”的时间更稳定.(填“甲”或“乙”)22.《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?根据题意得,长比宽多_________步. 23.如图,某数学兴趣小组为了测量河对岸1l 的两棵古树A B ,之间的距离,他们在河边沿着与AB 平行的直线2l 上取C D ,两点,测得15,45ACB ACD ∠∠==,若12,l l 之间的距离为50m ,则古树A B ,之间的距离为__________.参考答案1.答案:D 解析:2.答案:C解析:第一个图形不是轴对称图形,是中心对称图形;第二、三、四个图形是轴对称图形,也是中心对称图形;故选:C. 3.答案:B解析:A 选项中,235a a a ⋅=,故错误;B 选项中,222222(2)(2)4ab a b a b -=-=,故正确:C 选项中22234x x x +=,故错误;D 选项中,624623a a a -÷=-,故错误.故选B. 4.答案:C解析:本题考查了简单几何体的三视图.的俯视图是.故选C.5.答案:C解析:本题考查了旋转的性质、等腰三角形的性质.设C m ∠=,,AB CB CAB C m ∠∠'''=∴==,2AB B m ∠'∴=.由旋转的性质知AB AB '=,(2)ABB AB B m ∠∠''∴==.180ACB CAB ABC ∠+∠+∠=,即(2)108180m m ++=︒,解得24m =.故选C.6.答案:C解析:本题考查解一元一次不等式组、不等式组的整数解.解不等式10x ->,得1x >;解不等式51x -≥,得4x ≤,∴不等式组的解集为14x <≤,整数解有2,3,4,共3个,故选C.7.答案:C解析:本题考查反比例函数图象上点的坐标特征.点,,A B C 都在反比例函数10y x=的图象上,1231322,5,2,225,x x x x x x ∴=-==-<<∴<<,故选C.8.答案:A解析:本题考查圆周角定理、勾股定理、扇形的面积公式.如图,连接.AC 从一块直径为2 m 的圆形铁皮上剪出一个圆心角为90°的扇形,即90ABC ∠=︒,AC ∴为直径,即2222m,.AC AB BC AB BC AC ==+=,m AB BC ∴==,∴阴影部分的面积是()290π21πm 3602⨯=,故选A.9.答案:C解析:因为“指针所落区域标注的数字大于8”的概率为56,所以456n n -=,所以24n =.故选C. 10.答案:D解析:20,3a =-<∴当2x =-时,函数有最大值3-,A 正确;由0a <,得2x <-时,y 随x 的增大而增大,B 正确;由a 都等于23-,得抛物线可由223y x =-经过平移得到,C 正确;2222817(2)33333y x x x =-+-=---,而28217Δ40,333⎛⎫⎛⎫⎛⎫=--⨯-⨯-<∴ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭该函数的图象与x 轴没有交点,D 错误.故选D.11.答案:(1)原式22223x xy y xy y =+++-25x xy =+.(2)原式22241611a a a a a a -+--=÷-- 411(4)(4)a a a a a --=⋅-+- 14a =-+. 解析:12.答案:(1)设购买1副乒乓球拍需x 元,1副羽毛球拍需y 元. 由题意,得211632204x y x y +=⎧⎨+=⎩,解得2860x y =⎧⎨=⎩.答:购买1副乒乓球拍需28元,1副羽毛球拍需60元. (2)设购买a 副羽毛球拍,则购买()30a -副乒乓球拍. 由题意,得()6028301480a a +-≤,解得20a ≤. 答:最多能够购买20副羽毛球拍. 解析:13.答案:(1)证明:AC BC BAC B =∴∠=∠,.//,DF BC ADF B ∴∠=∠.又,BAC CFD ADF CFD ∠=∠∴∠=∠. //BD CF ∴.又//DF BC ,∴四边形DBCF 是平行四边形.(2)证明:如图,连接AE .ADF B ADF AEF ∠=∠∠=∠,,AEF B ∴∠=∠.四边形AECF 是O 的内接四边形, 180ECF EAF ∴∠+∠=︒. //180BD CF ECF B ∴∠+∠=︒,EAF B ∴∠=∠. AEF EAF ∴∠=∠ AF EF ∴=.解析:14.答案:解:(1)补全条形统计图,如图1所示.(2)由(1)得,七年级有1人获得一等奖,八年级有1人获得一等奖,九年级有2人获得一等奖,设七年级同学为甲,八年级同学为乙,九年级同学为丙、丁.则用图2的树状图列举出所有可能出现的结果,或用图3的表格列举出所有可能出现的结果.由上可知,出现等可能性的结果共12种,其中既有七年级同学又有九年级同学的结果有4种,所以P(既有七年级同学又有九年级同学)41 123 ==.解析:15.答案:(1)设等边形的边长为a,2222,a a a+=∴等边三角形是奇异三角形.(2)是.2221(7)22+=⨯,∴该三角形是奇异三角形.(3)当c为斜边长时,22250b c a=-=,Rt ABC∴不是奇异三角形;当b为斜边长时,222150b c a=+=,222501502100,2a b c+=⨯∴+=,Rt ABC∴是奇异三角形.(4)在Rt ABC中,22290,C a b c∠=∴+=,222222,2,2c b a c b a a b c>>∴>+<+,Rt ABC是奇异三角形,22222222,2b ac b a a b∴=+∴=++,22222,3b a c a ∴=∴=,222::1:2:3a b c ∴=.解析:16.答案:解:方法一:由题意知45AEB FED ∠=∠=︒,90AEF ∴∠=︒.在Rt AEF 中,tan tan84.310.02AE AFE FE∠==≈, 在ABE 和FDE 中,90ABE FDE ∠=∠=︒,AEB FED ∠=∠,ABE FDE ∴~,10.02AB AE FD FE∴==, 10.0218.03618AB FD ∴=⨯=≈(m ).答:旗杆AB 的高度约为18m.方法二:如图,过点F 作FG AB ⊥于点G ,则 1.8AG AB GB AB FD AB =-=-=-.由题意知:ABE 和FDE 均为等腰直角三角形,1.8AB BE DE FD ∴===,(m ),1.8FG DB DE BE AB ∴==+=+.在Rt AFG 中,tan AG FG AFG =⋅∠,1.80.82( 1.8)AB AB ∴-≈+,解得18.218AB =≈(m ).答:旗杆AB 的高度约为18m.解析:17.答案:解:(1)SAS.(2)15AD <<.(3)证明:如图,延长AD 至点A ',使.A D AD '=AD 是ABC 的中线,.BD CD ∴=在ADC 和A DB '中,,,,AD A D ADC A DB CD BD ∠∠=⎧⎪=⎨⎪='⎩' ,,.ADC A DB CAD A AC A B ∠∠''∴∴=='≌ 又,AE EF =,.CAD AFE A AFE ∠∠∠∠∴=∴=' 又,AFE BFD ∠∠=,.BFD A BF A B ∠∠∴='∴'= 又,A B AC '=.BF AC ∴=(4)证明:如图,延长CG 至点H 使HG CG =,连接,,.HF CE HE∵点G 为FD 的中点,.FG DG ∴=在HGF 和CGD 中,,,HG CG HGF CGB FG DG ∠∠=⎧⎪=⎨⎪=⎩,,.HGF CGD HF CD HFG CDG ∠∠∴∴==≌ 在Rt BEF 中,1,2EF BE = 1tan .2EBF ∠∴= 又矩形ABCD 中,1,2AB BC = 11,tan ,22AB ADB AD ∠∴=∴= .EBF ADB ∠∠∴=又//,,AD BC ADB DBC ∠∠∴=.EBF ADB DBC ∠∠∠∴==又EFD ∠为BEF 的外角,,EFD EBF BEF ∠∠∠∴=+即0.9EFH HFD EBF ∠∠∠+=+9,0ADB BDC ∠∠+=,EFH HFD EBF ADB BDC ∠∠∠∠∠∴+=++2,EFH EBF ∠∠∴=即.EFH EBC ∠∠= 在EFH 和EBC 中,11,,22EF HF BE BC == .EF HF BE BC ∴= 又,EBC EFH ∠∠=,,EFH EBC FEH BEC ∠∠∴∴=∽,HEC CEF BEF CEF ∠∠∠∠∴+=+9,0HEC BEF ∠∠∴==CEH ∴是直角三角形.G 为CH 的中点,1,2EG CH ∴=即.EG CG = 解析:18.答案:(1)∵抛物线2y x bx c =++经过点(3,0),(2,0)A B -,930420b c b c -+=⎧∴⎨++=⎩.解得16b c =⎧⎨=-⎩. 所以抛物线的函数表达式为26y x x =+-.(2)①设()0PE t t =>,则2PD t =因为点P 是抛物线上的动点且位于y 轴左侧,当点P 在x 轴上时,点P 与A 重合,不合题意,故舍去,因此分为以下两种情况讨论:i.如图1,当点P 在第三象限时,点P 坐标为(),2t t --,则262t t t --=-即260t t +-=解得122,3t t ==- (舍去)2PE ∴=ii.如图2,当点P 在第二象限时,点P 坐标为(),2t t -,则262t t t --=即2360t t --= 解得12333333,t t +-== (舍去)333PE +∴= 综上所述,PE 的长为2或333+. ②存在点P ,使得ACP OCB ∠=∠,理由如下:当0x =时,6y =-()0,6C ∴-,6OC ∴=在Rt AOC 中,22223635AC OA OC =+=+=过点A 作AH AC ⊥于点A ,交直线CP 于点H ,则CAH COB ∠=∠又ACP OCB∠=∠~CAH COB ∴△△ 2163AH OB AC OC ∴=== 过点H 作HM x ⊥轴于点M ,则HMA AOC ∠=∠90MAH OAC ∠+∠=︒,90OAC OCA ∠+∠=︒.MAH OCA ∴∠=∠~HMA AOC ∴△△MH MA AH OA OC AC ∴==即1363MH MA == 1,2MH MA ∴==i.如图3,当点P 在第三象限时,点H 的坐标为()5,1--由()5,1H --和()0,6C -得直线CP 的解析式为6y x =--于是有266x x x +-=--,即220x x +=解得122,0x x =-= (舍去)∴点P 的坐标为()2,4--ii.如图4,当点P 在第二象限时,点H 的坐标为()1,1-由()1,1H -和()0,6C -得直线CP 的解析式为76y x =--于是有2676x x x +-=--,即280x x +=解得128,0x x =-= (舍去)∴点P 的坐标为()8,50-综上所述,点P 的坐标为(-2,-4)或()8,50-.解析:19.答案:4解析:6x x =+-2226,4x x -+=∴-=.20.答案:()2,0解析:1P 的坐标为()2,0,则2P 的坐标为()1,4,3P 的坐标为()33-,,4P 的坐标为()21--,,5P 的坐标为()2,0,……,20172016145041=+=⨯+,2017P ∴与1P 重合,2017?P ∴的坐标为()2,021.答案:甲解析:甲的“送教上门”时间的平均数:7889788979=810+++++++++, 乙的“送教上门”时间的平均数:68778910799810+++++++++=, 甲的方差:22223(78)4(88)3(98)3105s ⨯-+⨯-+⨯-==甲, 乙的方差:222222(68)3(78)2(88)3(98)(108)7105s -+⨯-+⨯-+⨯-+-==乙,因为3755<,所以甲的方差小,故甲学生每周接受“送教上门”的时间更稳定. 22.答案:12解析:设长为x 步,则宽为(60)x -步,由60x x >-得30x >. 由题意得(60)864x x -=,解得1236,24x x ==(舍去),∴当36x =时,6024x -=,∴长比宽多362412-=(步).23.答案:50-解析:如图,过点A 作AM DC ⊥于点M ,过点B 作BN DC ⊥于点N .则,AB MN AM BN ==.在Rt Acm 中,45,50m,50m Acm AM cm AM ∠==∴==. ∵在Rt BCN 中,6050m BCN ACB ACD BN ∠=∠+∠=︒=,,tan 603BN CN ∴===,50m AB MN cm CN ⎛∴==-= ⎝⎭.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山西省中考数学真题试题第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)-+的结果是()1.计算12A.-3 B.-1 C.1 D.3【答案】C.【解析】试题分析:﹣1+2=1.故选C.考点:有理数的加法.判定直线a与b平行的是()2.如图,直线a,b被直线c所截,下列条件不能..A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠4【答案】D.考点:平行线的判定.3.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( )A .众数B .平均数C .中位数D .方差【答案】D .【解析】试题分析:由于方差能反映数据的稳定性,需要比较这两名学生立定跳远成绩的方差.故选D . 考点:在数轴上表示不等式的解集;解一元一次不等式组.5.下列运算错误..的是( ) A .0(31)1-= B .291(3)44-÷= C .22256x x x -=- D .3224(2)(2)m m m ÷= 【答案】B .考点:有理数的除法;合并同类项;整式的除法;零指数幂.6.如图,将矩形纸片ABCD 沿BD 折叠,得到△BC ′D ,C ′D 与AB 交于点E .若∠1=35°,则∠2的度数为( )A .20oB .30oC .35oD .55o【答案】A .【解析】试题分析:由翻折的性质得,∠DBC=∠DBC ′,∵∠C=90°,∴∠DBC=∠DBC ′=90°-35°=55°,∵矩形的对边AB ∥DC ,∴∠1=∠DBA=35°,∴∠2=∠DBC ′-∠DBA=55°-35°=20°.故选A . 考点:平行线的性质;翻折变换(折叠问题).7.化简2442x x x x ---的结果是( ) A .22x x -+ B .26x x -+ C .2x x -+ D .2x x - 【答案】C .考点:分式的加减法.8.5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为( )A .818610⨯吨B .918.610⨯吨C .101.8610⨯吨D .110.18610⨯吨【答案】C .【解析】试题分析:将186亿用科学记数法表示为:101.8610⨯.故选C .考点:科学记数法—表示较大的数.9.公元前5,导致了第一次数是无理数的证明如下:假设是有理数,那么它可以表示成q p(p 与q 是互质的两个正整数).于是22()2q p==,所以,222q p =.于是2q 是偶数,进而q 是偶数.从而可设2q m =,所以2222(2)2,2m p p m ==,于是可得p 也是偶数.这与“p 与q 是互质的两个正整数”矛盾,是无理数.是无理数”的方法是( )A .综合法B .反证法C .举反例法D .数学归纳法【答案】B .【解析】试题分析:显然选项A 中13不是“正方形数”;选项B 、D 中等式右侧并不是两个相邻“三角形数”之和.故选B .考点:反证法.10.右图是某商品的标志图案,AC 与BD 是⊙O 的两条直径,首尾顺次连接点A 、B 、C 、D ,得到四边形ABCD .若AC=10cm ,∠BAC=36°,则图中阴影部分的面积为( )A .25cm πB .210cm πC .215cm πD .220cm π【答案】B .考点:矩形的性质;扇形面积的计算;圆周角定理第Ⅱ卷 非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.计算:41892-= . 【答案】32.【解析】试题分析:原式=122923232考点:二次根式的加减法.12.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为 元.【答案】1.08a .【解析】试题分析:根据题意得:a •(1+20%)×90%=1.08a ;故答案为:1.08a .考点:列代数式.13.如图,已知△ABC 三个顶点的坐标分别为A (0,4),B (-1,1),C (-2,2).将△ABC 向右平移4个单位,得到A B C '''∆,点A 、B 、C 的对应点分别为,,A B C ''',再将A B C '''∆绕点B '顺时针旋转90o,得到A B C ''''''∆,点,,A B C '''的对应点分别为,,A B C '''''',则点A ''的坐标为 .【答案】(6,0).考点:平移的性质;旋转的性质;综合题.14.如图,创新小组要测量公园内一棵树的高度AB ,其中一名小组成员站在距离树10米的点E 处,测得树顶A 的仰角为54°.已知测角仪的架高CE=1.5米,则这颗树的高度为 米(结果保留一位小数.参考数据:sin540.8090=o ,cos540.5878=o ,tan54 1.3764=o).【答案】15.3.【解析】试题分析:如图,在Rt △ACD 中,AD=CD •tan54°≈10×1.3764=13.764米,AC ≈1.5+13.764≈15.3米.故答案为:15.3米.考点:解直角三角形的应用﹣仰角俯角问题.15.一副三角板按如图方式摆放,得到△ABD 和△BCD ,其中∠ADB=∠BCD=90°,∠A=60°,∠CBD=45°.E 为AB 的中点,过点E 作EF ⊥CD 于点F .若AD=4cm ,则EF 的长为 cm .26.考点:直角三角形的性质;梯形中位线定理;综合题.三、解答题 (本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(1)计算:321(2)()8sin 453--+-o g . (2)分解因式:22(2)(2)y x x y +-+.【答案】(1)-1;(2)3()()x y x y +- .考点:实数的运算;完全平方公式;平方差公式;负整数指数幂;特殊角的三角函数值.17.已知:如图,在Y ABCD 中,延长线AB 至点E ,延长CD 至点F ,使得BE=DF .连接EF ,与对角线AC 交于点O .求证:OE=OF .【答案】证明见解析.【解析】试题分析:先由平行四边形的性质得出AB=CD ,AB ∥DC ,再得出∠F=∠E ,CF=AE ,∠DCA=∠CAB ,即可推出△COF ≌△AOE ,从而得到结论.试题解析:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥DC ,∴∠F=∠E ,∠DCA=∠CAB ,∵AB=CD ,FD=BE ,∴CF=AE ,在△COF 和△AOE 中,∵∠F=∠E ,CF=AE ,∠DCA=∠CAB ,∴△COF ≌△AOE ,∴∴OE=OF .考点:平行四边形的性质;全等三角形的判定与性质.18.如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,其边长为2,点A ,点C 分别在x 轴,y 轴的正半轴上.函数2y x =的图象与CB 交于点D ,函数k y x=(k 为常数,0k ≠)的图象经过点D ,与AB 交于点E ,与函数2y x =的图象在第三象限内交于点F ,连接AF 、EF .(1)求函数kyx=的表达式,并直接写出E、F两点的坐标.(2)求△AEF的面积.【答案】(1)2yx=,E(2,1),f(-1,-2);(2)32.考点:反比例函数综合题.19.“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg.请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2),若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?【答案】(1)300;(2)25.考点:一元一次不等式的应用;二元一次方程组的应用.20.从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.下图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是_________亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同).他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示).【答案】(1)①2038;②答案见解析;(2)16.②“知识技能”的增长率=610200200-=2.05=205%“资金”的增长率=208631000010000-=1.0863≈109%对两个领域的认识,答案不唯一.例如:“知识技能”领域交易额较小,但增长率最高,达到了200%以上,其发展速度惊人,或“资金”交易额最大,2016年达到2万亿以上,成倍增长,带动共享经济市场规模不断扩大.21教育名师原创作品(2)列表如下:由列表可知一共有12种可能出现的结果,且每种结果出现的可能性相同,其中抽到“共享出行”和“共享知识”的结果有2种,∴,P(抽到“共享出行”和“共享知识”)=212=16.考点:列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.21.如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O 的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.【答案】(1)5;(2)∠CDE=2∠A.(2)∠CDE=2∠A.理由如下:连结OC,∵OA=OC,∴∠1=∠A,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE.∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.考点:切线的性质;探究型;和差倍分.22.综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三,股四,弦五”.它被记载于我国古代著名数学著作《周髀算经》中.为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形.例如:三边长分别为9,12,15或32,42,52的三角形就是(3,4,5)型三角形.用矩形纸片按下面的操作方法可以折出这种类型的三角形.【出处:21教育名师】实践操作如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.21·世纪*教育网问题解决(1)请在图2中证明四边形AEFD是正方形.(2)请在图4中判断NF与ND′的数量关系,并加以证明.(3)请在图4中证明△AEN是(3,4,5)型三角形.探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.【答案】(1)证明见解析;(2)NF=ND′,证明见解析;(3)证明见解析;(4)△MFN,△MD′H,△MDA.考点:勾股定理的应用;新定义;阅读型;探究型;压轴题.23.综合与探究如图,抛物线232333y x x =-++与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC .点P 沿AC 以每秒1个单位长度的速度由点A 向点C 运动,同时,点Q 沿BO 以每秒2个单位长度的速度由点B 向点O 运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ ,过点Q 作QD ⊥x 轴,与抛物线交于点D ,与BC 交于点E .连接PD ,与BC 交于点F .设点P 的运动时间为t 秒(0t >).(1)求直线BC 的函数表达式.(2)①直接写出P 、D 两点的坐标(用含t 的代数式表示,结果需化简).②在点P 、Q 运动的过程中,当PQ=PD 时,求t 的值.(3)试探究在点P 、Q 运动的过程中,是否存在某一时刻,使得点F 为PD 的中点.若存在,请直接写出此时t 的值与点F 的坐标;若不存在,请说明理由.【版权所有:21教育】【答案】(1)333y =+(2)①P (132t -,3),D (92t -,24383 );②154;(3)t=3,F (34113).(3)由中点坐标公式和F 在直线BC 上得到2690t t -+=,解得t=3.把t=3代入得到F 的坐标. 试题解析:(1)由y=0,得2323330x x -++=,解得:13x =-,29x =,∴点A 的坐标为(-3,0),点B 的坐标为(9,0).由x=0,得33y =,∴点C 的坐标为(0,33 ).(2)①过点P 作PG ⊥x 轴于点G .∵A (-3,0),B (9,0),C (0,33)∴AO=3,BO=9,OC=33tan ∠CAO=3333CO AO ==,∴∠CAO=60°,∴∠APG=30°,∵AP=t ,∴AG=12t ,PG=32,∴OG=3-12t ,∴P (132t -,32t ).∵OQ=92t -,∴D 的横坐标为92t -,∵D 在抛物线23233393y x x =-++上,∴D 的纵坐标为23232)2)3393y t t =--+-+=243393t -+,∴ D D (92t -,24383t t -+ ). 综上所述:P (132t -,3t ),D (92t -,24383t t -+ ); ②过点P 作PG ⊥x 轴于点G ,PH ⊥QD 于点H .∵QD ⊥x 轴,∴四边形PGQH 是矩形,∴HQ=PG .∵PQ=PD ,PH ⊥QD ,∴QD=2HQ=2PG .∵P 、D 两点的坐标分别为P (132t -,32t ),D (92t -,2438393t t -+ ),∴2438393t t -+=322t ⨯,解得:10t =(舍去),2154t =,∴当PQ=PD 时,t 的值为154.考点:二次函数综合题;动点型;存在型;压轴题.。

相关文档
最新文档