【金版教程】2017届高考理科数学二轮复习训练:2-1-5 解析几何(含解析)

合集下载

【2017参考】金版教程2016高考数学文二轮复习课件2-2-5 解析几何

【2017参考】金版教程2016高考数学文二轮复习课件2-2-5 解析几何

[错因分析] [正解]
漏掉了P在x轴上的情况,即∠F1PF2=π时的情况.
设|PF2|=m,∠F1PF2=θ(0<θ≤π),
当点P在右顶点处时,θ=π.当点P不在顶点时, 由条件,得|PF1|=2m,|F1F2|2=m2+(2m)2-4m2cosθ,且||PF1|-|PF2||=m=2a. m2+2m2-4m2cosθ 2c 所以e= = = 5-4cosθ. 2a m 又-1≤cosθ<1,所以e∈(1,3].
条.当切线的斜率存在时,设方程为y-5=k(x-3),由圆心到切线的距离d= 5,可解得k=
5 ,所以切线方程为5x-12y+45=0.当过(3,5)的直线斜率不存在时,直线方程为x=3,与圆 12
相切.综上可知切线方程为5x-12y+45=0或x=3.
忽视圆的一般方程中隐含条件致误 例27 已知圆 C 的方程为 x2+y2+ax+2y+a2=0,一定点为 A(1,2),且过定点 A(1,2)作圆的切线有
(1)直线l与线段AB的交点在线段AC(除去点C)上时 直线l的倾斜角为钝角, 斜率的范围是k≤kPA. (2)直线l与线段AB的交点在线段BC(除去点C)上时,直线l的倾斜角为锐角, 斜率的范围是k≥kPB. -3-1 -2-1 3 因为kPA= =-4,kPB= = , 2- 1 -3-1 4 3 所以直线l的斜率k的取值范围是k≥ 或k≤-4. 4
3a-1 , a 1 解得a= . 6
- 1 =3a-1, 2a a 要使两直线平行,必须 1 ≠-1, 2a a
1 综合①②可得当a=0或a= 时,两直线平行. 6 1 (2)解法一:①当a=0时,直线l3的斜率不存在,直线l3:x-1=0,直线l4:y- =0,此时l3⊥l4. 2 2 2 a 1 2 ②当a≠0时,直线l3:y=- x+ 与直线l4:y=- x+ ,直线l3的斜率为k3=- ,直线l4的斜率为k4= a a 2 2 a a - ,要使两直线垂直,必须k3· k4=-1, 2 2 a - =-1,不存在实数a使得方程成立. 即- · a 2 综合①②可得当a=0时,两直线垂直. 解法二:要使直线l3:2x+ay=2和直线l4:ax+2y=1垂直,根据两直线垂直的充要条件,必须A1A2+ B1B2=0,即2a+2a=0,解得a=0,所以,当a=0时,两直线垂直.

2017届高考数学(理)二轮复习(江苏专用)课件:专题5 解析几何 第2讲

2017届高考数学(理)二轮复习(江苏专用)课件:专题5 解析几何 第2讲

解析 由双曲线方程可知 a=4,b=3, 3 所以两条渐近线方程为 y=± 4x. 3 答案 y=± 4x
x2 y2 2.(2016· 江苏卷)在平面直角坐标系 xOy 中, 双曲线 7 - 3 =1 的焦距是________.
解析 由已知,a2=7,b2=3,则 c2=7+3=10, 故焦距为 2c=2 10.
答案 (1)9 (2)(-1,3)
热点二
圆锥曲线的几何性质
【例 2】 (1)(2016· 全国Ⅲ卷改编)已知 O 为坐标原点,F 是椭 x2 y2 圆 C:a2+b2=1(a>b>0)的左焦点,A,B 分别为 C 的左, 右顶点.P 为 C 上一点, 且 PF⊥x 轴.过点 A 的直线 l 与线段 PF 交于点 M, 与 y 轴交于点 E.若直线 BM 经过 OE 的中点, 则 C 的离心率为________.



设 A(x1,y1),B(x2,y2),由题意知 y1<0,y2>0.
(1)直线 l 的方程为 y= 3(x-c),其中 c= a2-b2. 3(x-c), y= 联立 x2 y2 得(3a2+b2)y2+2 3b2cy-3b4=0. + =1, a2 b2 - 3b2(c+2a) - 3b2(c-2a) → 解得 y1= ,y2= .因为AF= 3a2+b2 3a2+b2 3b2(c+2a) - 3b2(c-2a) 2FB,所以-y1=2y2,即 =2· , 2 2 2 2 3a +b 3a +b
的中点为 D,则
am m m 0 , D 又 B, D, M 三点共线, 所以 = , , 2 ( a - c ) 2 ( a - c ) a + c
1 a=3c,e=3. (2)取 B 为双曲线右焦点,如图所示.∵四边形

2017届高考数学(理)(新课标)二轮专题复习课件:3-5解析几何

2017届高考数学(理)(新课标)二轮专题复习课件:3-5解析几何
2 2 3 a -b 3 由 e= 得 2 = ,解得 a2=4. 2 a 4
x2 所以椭圆 G 的方程为 +y2=1. 4
(2)因为 P 在长轴上,所以点 A,B,P,Q 在直线 l 上的顺序无 外乎两种:A,Q,P,B 或 A,P,Q,B,无论哪种顺序,由|AQ| =|BP|都有 AB 与 PQ 的中点重合. 因为 P,Q 不重合,直线 l 斜率存在,设其方程 y=k(x-t),且 k≠0. |kt| 由于直线 l 与圆 O 相切,则圆心 O 到 l 的距离 d= 2 =1, k +1 即 k2t2=k2+1.③ 1 2 → → 设切点 Q(x0, y0), 由OQ· PQ=0 得 x0(x0-t)+y0 =0, 即 x0= , t
2 2 x +4y =4, 联立 化简得(1+4k2)x2-8tk2x+4(t2k2-1)= y=k(x-t),
0. 8tk2 设 A(x1,y1),B(x2,y2),则有 x1+x2= . 1+4k2 8tk2 因为线段 AB, PQ 中点重合, 即有 x1+x2=t+x0, 因此 1+4k2 1 =t+ .④ t 1 联立③④化简得 k = ,将其代入③式,可得 t=± 3. 2
2
调研二 定点、定值问题 x2 y2 (2016· 北京)已知椭圆 C: 2+ 2=1(a>b>0)的离心率为 a b 3 ,A(a,0),B(0,b),O(0,0),△OAB 的面积为 1. 2 (1)求椭圆 C 的方程; (2)设 P 是椭圆 C 上一点,直线 PA 与 y 轴交于点 M,直线 PB 与 x 轴交于点 N. 求证:|AN|· |BM|为定值.
k2+2 2 ∴ AB 的 中 点 P 的 坐 标 为 ( 2 , ) , |AB| = x1 + x2 + 2 = k k 4(k2+1) . k2 k2+2 1 2 1 又 l′的斜率为- , 其方程为 y- =- (x- 2 ), 即 x=-ky k k k k 2 +3+ 2. k 2 x=-ky+3+ 2, k 消去 x 并整理,得 y2+4ky-4(3+ 22)=0. 由 k 2 y =4x, 2 2 其判别式 Δ2=(4k)2+16(3+ 2)=16( 2+k2+3)>0. k k

2017年高考新课标Ⅱ卷理科数学试题解析(精编版)(解析版)

2017年高考新课标Ⅱ卷理科数学试题解析(精编版)(解析版)

绝密★启用前2017年普通高等学校招生全国统一考试课标II理科数学【试卷点评】【命题特点】2017年高考全国新课标II数学卷,试卷结构在保持稳定的前提下,进行了微调,一是取消试卷中的第I卷与第II卷,把解答题分为必考题与选考题两部分,二是根据中学教学实际把选考题中的三选一调整为二选一.试卷坚持对基础知识、基本方法与基本技能的考查,注重数学在生活中的应用.同时在保持稳定的基础上,进行适度的改革和创新,与2016年相比难度稳中有降.具体来说还有以下几个特点:1.知识点分布保持稳定小知识点集合、复数、程序框图、线性规划、向量问题、三视图保持一道小题的占比,大知识点三角数列三小一大、概率统计一大一小、立体几何两小一大、圆锥曲线两小一大、函数导数三小一大(或两小一大).2.注重对数学文化与数学应用的考查教育部2017年新修订的《考试大纲(数学)》中增加了数学文化的考查要求. 2017高考数学全国卷II 理科第3题以《算法统宗》中的数学问题为背景进行考查,理科19题、文科18题以养殖水产为题材,贴近生活.3.注重基础,体现核心素养2017年高考数学试卷整体上保持一定比例的基础题,试卷注重通性通法在解题中的运用,另外抽象、推理和建模是数学的基本思想,也是数学研究的重要方法,试卷对此都有涉及.【命题趋势】1.函数知识:函数性质的综合应用、以导数知识为背景的函数问题是高考命题热点,函数性质重点是奇偶性、单调性及图象的应用,导数重点考查其在研究函数中的应用,注重分类讨论及化归思想的应用.2.立体几何知识:立体几何一般有两道小题一道大题,小题中三视图是必考问题,常与几何体的表面积与体积结合在一起考查,解答题一般分2步进行考查.3.解析几何知识:解析几何试题一般有3道,圆、椭圆、双曲线、抛物线一般都会涉及,双曲线一般作为客观题进行考查,多为容易题,解答题一般以椭圆与抛物线为载体进行考查,运算量较大,不过近几年高考适当控制了运算量,难度有所降低.4.三角函数与数列:三角函数与数列解答题一般轮流出现,若解答题为数列题,一般比较容易,重点考查基本量求通项及几种求和方法,若解答题为三角函数,一般是解三角形问题,此时客观题中一般会有一道与三角函数性质有关的题目,同时客观题中会有两道数列题,一易一难,数列客观题一般具有小巧活B. 3盏C. 5盏D. 9盏【试卷解析】一、选择题:本题共 12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.3 i1. -------1 iA . 1 2iB . 1 2iC. 2 iD . 2 i【答案】D【解析】试题分析:由复数除法的运算法则准:—=8)(1)= 2—乙故选D.1+i2【考点】复数的除去【名师点睛】复数的代数形式的运篁主要有加、减、乘、除,除法实际上是分母实数化的过程.在做复 数的除却必要注意利用共能复数的性质:着力7力互为共辗复数,则为七二进?二部,通过分子、分 母同乘以分母的共血复数将分母实数化,x x 2 4x m 0 .若 AI B 1 ,则 B【答案】C 【解析】B 1,3 ,故选 C.【考点】交集运算、元素与集合的关系【名师点睛】集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母 的值后,要注意检验集合中的元素是否满足互异性.两个防范:①不要忽视元素的互异性;②保证运算 的准确性.3 .我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八T请问尖头几盏灯?”意思是:一座7层塔共挂了 381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯2.设集合 A 1,2,4 , BA. 1, 3B. 1,0C. 1,3D. 1,5试题分析:由 AI B1得1 B ,即x 1是方程x 2 4x m0的根,所以14m 0,m 3,【答案】Bt解析】试题分析:设塔的顶层共有灯工缶,则各层的灯数构成一个手页为工,公比为2的等比数列,结合等比数列的求才吆■式有:弋―:)=3X1,解得工="即塔的顶层共有灯3搀,故选E. i~ 2【考点】等比数列的应用、等比数列的求和公式【名师点睛】用数列知识解相关的实际问题?关键是列印目关信息?合理建立数学模型一数列模型,判断是等差数列还是等比数列模型:求解时要明确目标,即搞清是求和、求通项、还是解通推关系问题, 所求结论对应的是解方程问题、解不等式问题、还是最值问题J然后招经量数学推理与计算得出的结果放回到实际问题中,进行检将,最终得出结论.4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.90B.63C.42D.36【答案】B【解析】试题分析:由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积2V i 3 4 36 ,上半部分是一个底面半径为3,图为6的圆枉的一半,其体积1 2V2 —( 3 6) 27 ,故该组合体的体积V V i V 36 27 63 .故选B.2【考点】三视图、组合体的体积【名师点睛】在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.2x 3y 3 05.设x, y满足约束条件2x 3y 3 0,则z 2x y的最小值是y 3 0A. 15B. 9C. 1D. 9【答案】At解析】试题分析;画出不等式组表示的平面区域如下图中阴影言吩所示,目标因数即;3=-2工+小其中£表示斜率为七二-2的直线系与可行域有交点时直城的纵截距,数形绪合可得目标脸的在点右(-。

《2017参考》金版教程2016高考数学理二轮复习训练2-1-5解析几何Word版含解析

《2017参考》金版教程2016高考数学理二轮复习训练2-1-5解析几何Word版含解析

1.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点到渐近线的距离等于实轴长,则双曲线C 的离心率为( )A.52B. 5C.2 5 D .3 5答案 B解析 易知双曲线C 的左焦点到渐近线的距离为b ,则b =2a ,因此双曲线C 的离心率为e =ca = 1+⎝ ⎛⎭⎪⎫b a 2=5,选B. 2.若动圆的圆心在抛物线x 2=12y 上,且与直线y +3=0相切,则此圆恒过定点( )A.(0,2) B .(0,-3) C.(0,3) D .(0,6)答案 C解析 直线y +3=0是抛物线x 2=12y 的准线,由抛物线的定义知抛物线上的点到直线y =-3的距离与到焦点(0,3)的距离相等,所以此圆恒过定点(0,3).3.以双曲线x 23-y 26=1的焦点为顶点,顶点为焦点的椭圆上任意一点P 与椭圆的两个焦点构成的三角形面积的最大值为( )A.3 6 B .3 2 C.2 3 D .2 2 答案 B解析 因为双曲线x 23-y 26=1的顶点坐标为(±3,0),焦点为(±3,0),所以椭圆的长半轴长a =3,半焦距c =3,短半轴长b =a 2-c 2=6,当P 为短轴端点时,P 与椭圆的两个焦点构成的三角形的面积最大,且最大值为12×23×6=32,选择B.4.已知P (x 1,y 1),Q (x 2,y 2)是椭圆x 24+y 22=1上的两个动点,且x 1+x 2=2.若线段PQ 的垂直平分线经过定点A ,则点A 的坐标为( )A.(1,0)B .(1,1)C.⎝ ⎛⎭⎪⎫12,0 D.⎝ ⎛⎭⎪⎫12,1 答案 C解析 因为P (x 1,y 1),Q (x 2,y 2)在椭圆x 24+y 22=1上,且x 1+x 2=2.当x 1≠x 2时,由⎩⎪⎨⎪⎧x 214+y 212=1x 224+y 222=1,得y 1-y 2x 1-x 2=-12·x 1+x 2y 1+y 2=-1y 1+y 2.设线段PQ 的中点为N (1,n ),所以k PQ =y 1-y 2x 1-x 2=-12n ,所以线段PQ的垂直平分线的方程为y -n =2n (x -1),即y =2n ⎝⎛⎭⎪⎫x -12,该直线恒过定点A ⎝ ⎛⎭⎪⎫12,0;当x 1=x 2时,线段PQ 的垂直平分线也过定点A ⎝ ⎛⎭⎪⎫12,0.故线段PQ 的垂直平分线恒过定点A ⎝⎛⎭⎪⎫12,0.5.已知双曲线mx 2+ny 2=1的离心率为2,且一个焦点与抛物线x 2=8y 的焦点重合,则此双曲线的方程为( )A.y 2-x23=1B .x 2-y23=1C.x 22-y 26=1 D.y 22-x 26=1答案 A解析 因为抛物线x 2=8y 的焦点坐标为(0,2),所以m <0,n >0,所以⎩⎪⎨⎪⎧1n +⎝ ⎛⎭⎪⎫-1m =421n=2,即n =1,m =-13,所以双曲线方程为y 2-x23=1.6.设F 为抛物线C :x 2=12y 的焦点,A 、B 、C 为抛物线上不同的三点,若F A →+FB →+FC →=0,则|F A |+|FB |+|FC |=( )A.3 B .9 C.12 D .18答案 D解析 设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),因为A 、B 、C 为抛物线上不同的三点,则A 、B 、C 可以构成三角形.抛物线C :x 2=12y 的焦点为F (0,3),准线方程为y =-3. 因为F A →+FB →+FC →=0,所以利用平面向量的相关知识可得点F 为△ABC 的重心,从而有x 1+x 2+x 3=0,y 1+y 2+y 3=9.又根据抛物线的定义可得|F A |=y 1-(-3)=y 1+3,|FB |=y 2-(-3)=y 2+3,|FC |=y 3-(-3)=y 3+3,所以|F A |+|FB |+|FC |=y 1+3+y 2+3+y 3+3=y 1+y 2+y 3+9=18.7.[2015·河北名校联盟质检]若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点到一条渐近线的距离等于焦距的14,则该双曲线的离心率为________.答案 233解析 双曲线的一条渐近线方程为bx -ay =0,一个焦点坐标为(c,0).根据题意:|bc -a ×0|b 2+a 2=14×2c ,所以c =2b ,a =c 2-b 2=3b ,所以e =c a =23=233.8.已知直线l 过抛物线C :y 2=2px (p >0)的焦点F ,且与C 相交于A 、B 两点,AB 的中点M 的坐标为(3,2),则抛物线C 的方程为________.答案 y 2=4x 或y 2=8x解析 由题意可设直线l 的方程为y =k ⎝ ⎛⎭⎪⎫x -p 2(k ≠0),与抛物线C 的方程y 2=2px (p >0)联立可得k 2x 2-k 2px -2px +k 2p24=0,则⎩⎪⎨⎪⎧p 2+p k 2=3p k =2,解得k =1,p =2或k =2,p =4,所以抛物线C 的方程为y 2=4x 或y 2=8x .9.已知点P 是椭圆x 225+y 29=1上的动点,且与椭圆的四个顶点不重合,F 1、F 2分别是椭圆的左、右焦点,O 为坐标原点,若点M 是∠F 1PF 2的角平分线上的一点,且F 1M ⊥MP ,则|OM |的取值范围是________.答案 (0,4)解析 解法一:如图,延长PF 2,F 1M ,交于点N ,∵PM 是∠F 1PF 2的角平分线,且F 1M ⊥MP ,∴|PN |=|PF 1|,M 为F 1N 的中点,∵O 为F 1F 2的中点,M 为F 1N 的中点,∴|OM |=12|F 2N |=12||PN |-|PF 2||=12||PF 1|-|PF 2||,对于椭圆x 2a 2+y 2b 2=1(a >b >0,xy ≠0),设点P 的坐标为(x 0,y 0)(-a <x 0<a ),则x 20a 2+y 20b 2=1,又F 1(-c,0),F 2(c,0),故|PF 1|=(x 0+c )2+y 20=(x 0+c )2+b 2-b 2x 20a 2=⎝⎛⎭⎪⎫a +c a x 02=a +ex 0,同理|PF 2|=a -ex 0,∴|OM |=12||PF 1|-|PF 2||=12|2ex 0|=12×2e |x 0|=e |x 0|,∵点P 是椭圆上与四个顶点不重合的点,故|x 0|∈(0,a ),故|OM |∈(0,c ),对于x 225+y 29=1,c =4,故|OM |的取值范围是(0,4).解法二:由椭圆的对称性,只需研究动点P 在第一象限内的情况,当点P 趋近于椭圆的上顶点时,点M 趋近于点O ,此时|OM |趋近于0;当点P 趋近于椭圆的右顶点时,点M 趋近于点F 1,此时|OM |趋近于25-9=4,所以|OM |的取值范围为(0,4).解法三:如图,延长PF 2,F 1M 交于点N ,∵PM 是∠F 1PF 2的角平分线,且F 1M ⊥MP ,∴|PN |=|PF 1|,M 为F 1N 的中点,又O 为F 1F 2的中点,∴|OM |=12|F 2N |=12||PN |-|PF 2||=12||PF 1|-|PF 2||,又|PF 1|+|PF 2|=10,∴|OM |=12|2|PF 1|-10|=||PF 1|-5|,又|PF 1|∈(1,5)∪(5,9),∴|OM |∈(0,4),故|OM |的取值范围是(0,4).10.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为e =32,M 是椭圆C 上的一点,且点M 到椭圆C 两焦点的距离之和为4.(1)求椭圆C 的方程;(2)过椭圆C 的左顶点A 的直线l 交椭圆于另一点B ,P (0,t )是y轴上一点,满足|PA |=|PB |,PA →·PB →=4,求实数t 的值.解 (1)由已知得2a =4,则a =2, 又e =c a =32,所以c =3,b 2=1, 所以椭圆C 的方程为x 24+y 2=1. (2)易知A (-2,0),设B (x 1,y 1),根据题意可知直线l 的斜率存在,可设直线l 的斜率为k ,则直线l 的方程为y =k (x +2),把它代入椭圆C 的方程,消去y ,整理得:(1+4k 2)x 2+16k 2x +(16k 2-4)=0,由根与系数的关系得-2+x 1=-16k 21+4k 2,则x 1=2-8k 21+4k 2,y 1=k (x 1+2)=4k1+4k 2,所以线段AB 的中点坐标为⎝ ⎛⎭⎪⎫-8k 21+4k 2,2k 1+4k 2. ①当k =0时,则有B (2,0),线段AB 的垂直平分线为y 轴,于是P A →=(-2,-t ),PB →=(2,-t ),由P A →·PB →=-4+t 2=4,解得t =±2 2.②当k ≠0时,则线段AB 的垂直平分线的方程为y -2k 1+4k 2=-1k⎝⎛⎭⎪⎫x +8k 21+4k 2. 因为P (0,t )是线段AB 垂直平分线上的一点, 令x =0,得t =-6k 1+4k 2,于是P A →=(-2,-t ),PB →=(x 1,y 1-t ),由P A →·PB →=-2x 1-t (y 1-t )=4(16k 4+15k 2-1)(1+4k 2)2=4,解得:k =±147, 代入t =-6k 1+4k 2,解得t =±2145. 综上,满足条件的实数t 的值为t =±22或t =±2145.。

2017年高考理科数学全国II卷(含详解)

2017年高考理科数学全国II卷(含详解)

2017年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2017•新课标Ⅱ)=()A.1+2i B.1﹣2i C.2+i D.2﹣i【解答】解:===2﹣i,故选D.2.(5分)(2017•新课标Ⅱ)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()A.{1,﹣3}B.{1,0}C.{1,3}D.{1,5}【解答】解:集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则1∈A且1∈B,可得1﹣4+m=0,解得m=3,即有B={x|x2﹣4x+3=0}={1,3}.故选:C.3.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏 B.3盏 C.5盏 D.9盏【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381==127a,解得a=3,则这个塔顶层有3盏灯,故选B.4.(5分)(2017•新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π【解答】解:由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π•32×10﹣•π•32×6=63π,故选:B.5.(5分)(2017•新课标Ⅱ)设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15 B.﹣9 C.1 D.9【解答】解:x、y满足约束条件的可行域如图:z=2x+y 经过可行域的A时,目标函数取得最小值,由解得A(﹣6,﹣3),则z=2x+y 的最小值是:﹣15.故选:A.6.(5分)(2017•新课标Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种【解答】解:4项工作分成3组,可得:=6,安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,可得:6×=36种.故选:D.7.(5分)(2017•新课标Ⅱ)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩【解答】解:四人所知只有自己看到,老师所说及最后甲说话,甲不知自己的成绩→乙丙必有一优一良,(若为两优,甲会知道自己的成绩;若是两良,甲也会知道自己的成绩)→乙看到了丙的成绩,知自己的成绩→丁看到甲、丁中也为一优一良,丁知自己的成绩,故选:D.8.(5分)(2017•新课标Ⅱ)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2 B.3 C.4 D.5【解答】解:执行程序框图,有S=0,k=1,a=﹣1,代入循环,第一次满足循环,S=﹣1,a=1,k=2;满足条件,第二次满足循环,S=1,a=﹣1,k=3;满足条件,第三次满足循环,S=﹣2,a=1,k=4;满足条件,第四次满足循环,S=2,a=﹣1,k=5;满足条件,第五次满足循环,S=﹣3,a=1,k=6;满足条件,第六次满足循环,S=3,a=﹣1,k=7;7≤6不成立,退出循环输出,S=3;故选:B.9.(5分)(2017•新课标Ⅱ)若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()A.2 B.C.D.【解答】解:双曲线C:﹣=1(a>0,b>0)的一条渐近线不妨为:bx+ay=0,圆(x﹣2)2+y2=4的圆心(2,0),半径为:2,双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,可得圆心到直线的距离为:=,解得:,可得e2=4,即e=2.故选:A.10.(5分)(2017•新课标Ⅱ)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.【解答】解:如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则AB1、BC1夹角为MN和NP夹角或其补角(因异面直线所成角为(0,]),可知MN=AB1=,NP=BC1=;作BC中点Q,则△PQM为直角三角形;∵PQ=1,MQ=AC,△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×(﹣)=7,∴AC=,∴MQ=;在△MQP中,MP==;在△PMN中,由余弦定理得cos∠MNP===﹣;又异面直线所成角的范围是(0,],∴AB1与BC1所成角的余弦值为.11.(5分)(2017•新课标Ⅱ)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1 B.﹣2e﹣3C.5e﹣3 D.1【解答】解:函数f(x)=(x2+ax﹣1)e x﹣1,可得f′(x)=(2x+a)e x﹣1+(x2+ax﹣1)e x﹣1,x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,可得:﹣4+a+(3﹣2a)=0.解得a=﹣1.可得f′(x)=(2x﹣1)e x﹣1+(x2﹣x﹣1)e x﹣1,=(x2+x﹣2)e x﹣1,函数的极值点为:x=﹣2,x=1,当x<﹣2或x>1时,f′(x)>0函数是增函数,x∈(﹣2,1)时,函数是减函数,x=1时,函数取得极小值:f(1)=(12﹣1﹣1)e1﹣1=﹣1.故选:A.12.(5分)(2017•新课标Ⅱ)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2 B.﹣ C.﹣ D.﹣1【解答】解:建立如图所示的坐标系,以BC中点为坐标原点,则A(0,),B(﹣1,0),C(1,0),设P(x,y),则=(﹣x,﹣y),=(﹣1﹣x,﹣y),=(1﹣x,﹣y),则•(+)=2x2﹣2y+2y2=2[x2+(y﹣)2﹣]∴当x=0,y=时,取得最小值2×(﹣)=﹣,故选:B三、填空题:本题共4小题,每小题5分,共20分.13.(5分)(2017•新课标Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则DX= 1.96.【解答】解:由题意可知,该事件满足独立重复试验,是一个二项分布模型,其中,p=0.02,n=100,则DX=npq=np(1﹣p)=100×0.02×0.98=1.96.故答案为:1.96.14.(5分)(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是1.【解答】解:f(x)=sin2x+cosx﹣=1﹣cos2x+cosx﹣,令cosx=t且t∈[0,1],则f(t)=﹣t2+t+=﹣(t﹣)2+1,当t=时,f(t)max=1,即f(x)的最大值为1,故答案为:115.(5分)(2017•新课标Ⅱ)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.【解答】解:等差数列{a n}的前n项和为S n,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,S n=,=,则=2[1﹣++…+]=2(1﹣)=.故答案为:.16.(5分)(2017•新课标Ⅱ)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|=6.【解答】解:抛物线C:y2=8x的焦点F(2,0),M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,可知M的横坐标为:1,则M的纵坐标为:,|FN|=2|FM|=2=6.故答案为:6.三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)(2017•新课标Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sinB=4(1﹣cosB),∵sin2B+cos2B=1,∴16(1﹣cosB)2+cos2B=1,∴(17cosB﹣15)(cosB﹣1)=0,∴cosB=;(2)由(1)可知sinB=,∵S=ac•sinB=2,△ABC∴ac=,∴b2=a2+c2﹣2accosB=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.18.(12分)(2017•新课标Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:P(K2≥k)0.0500.010 0.001 K 3.841 6.635 10.828K2=.【解答】解:(1)记B表示事件“旧养殖法的箱产量低于50kg”,C表示事件“新养殖法的箱产量不低于50kg”,由P(A)=P(BC)=P(B)P(C),则旧养殖法的箱产量低于50kg:(0.012+0.014+0.024+0.034+0.040)×5=0.62,故P(B)的估计值0.62,新养殖法的箱产量不低于50kg:(0.068+0.046+0.010+0.008)×5=0.66,故P(C)的估计值为,则事件A的概率估计值为P(A)=P(B)P(C)=0.62×0.66=0.4092;∴A发生的概率为0.4092;(2)2×2列联表:箱产量<50kg箱产量≥50kg 总计旧养殖法6238100新养殖法3466100总计96104200则K2=≈15.705,由15.705>6.635,∴有99%的把握认为箱产量与养殖方法有关;(3)由题意可知:方法一:=5×(37.5×0.004+42.5×0.020+47.5×0.044+52.5×0.068+57.5×0.046+62.5×0.010+67.5×0.008),=5×10.47,=52.35(kg).新养殖法箱产量的中位数的估计值52.35(kg)方法二:由新养殖法的箱产量频率分布直方图中,箱产量低于50kg的直方图的面积:(0.004+0.020+0.044)×5=0.034,箱产量低于55kg的直方图面积为:(0.004+0.020+0.044+0.068)×5=0.68>0.5,故新养殖法产量的中位数的估计值为:50+≈52.35(kg),新养殖法箱产量的中位数的估计值52.35(kg).19.(12分)(2017•新课标Ⅱ)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.【解答】(1)证明:取PA的中点F,连接EF,BF,因为E是PD的中点,所以EF AD,AB=BC=AD,∠BAD=∠ABC=90°,∴BC∥AD,∴BCEF是平行四边形,可得CE∥BF,BF⊂平面PAB,CF⊄平面PAB,∴直线CE∥平面PAB;(2)解:四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.取AD的中点O,M在底面ABCD上的射影N在OC上,设AD=2,则AB=BC=1,OP=,∴∠PCO=60°,直线BM与底面ABCD所成角为45°,可得:BN=MN,CN=MN,BC=1,可得:1+BN2=BN2,BN=,MN=,作NQ⊥AB于Q,连接MQ,所以∠MQN就是二面角M﹣AB﹣D的平面角,MQ==,二面角M﹣AB﹣D的余弦值为:=.20.(12分)(2017•新课标Ⅱ)设O为坐标原点,动点M在椭圆C:+y2=1上,过M做x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l 过C的左焦点F.【解答】解:(1)设M(x0,y0),由题意可得N(x0,0),设P(x,y),由点P满足=.可得(x﹣x0,y)=(0,y0),可得x﹣x0=0,y=y0,即有x0=x,y0=,代入椭圆方程+y2=1,可得+=1,即有点P的轨迹方程为圆x2+y2=2;(2)证明:设Q(﹣3,m),P(cosα,sinα),(0≤α<2π),•=1,可得(cosα,sinα)•(﹣3﹣cosα,m﹣sinα)=1,即为﹣3cosα﹣2cos2α+msinα﹣2sin2α=1,解得m=,即有Q(﹣3,),椭圆+y2=1的左焦点F(﹣1,0),由k OQ=﹣,k PF=,由k OQ•k PF=﹣1,可得过点P且垂直于OQ的直线l过C的左焦点F.21.(12分)(2017•新课标Ⅱ)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.【解答】(1)解:因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,因为h′(x)=a﹣,且当0<x<时h′(x)<0、当x>时h′(x)>0,所以h(x)min=h(),又因为h(1)=a﹣a﹣ln1=0,所以=1,解得a=1;(2)证明:由(1)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2﹣,令t′(x)=0,解得:x=,所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根x0,x2,且不妨设f′(x)在(0,x0)上为正、在(x0,x2)上为负、在(x2,+∞)上为正,所以f(x)必存在唯一极大值点x0,且2x0﹣2﹣lnx0=0,所以f(x0)=﹣x0﹣x0lnx0=﹣x0+2x0﹣2=x0﹣,由x0<可知f(x0)<(x0﹣)max=﹣+=;由f′()<0可知x0<<,所以f(x)在(0,x0)上单调递增,在(x0,)上单调递减,所以f(x0)>f()=;综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,按所做的第一题计分.[选修4-4:坐标系与参数方程](22.(10分)(2017•新课标Ⅱ)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值.【解答】解:(1)曲线C1的直角坐标方程为:x=4,设P(x,y),M(4,y0),则,∴y0=,∵|OM||OP|=16,∴=16,即(x2+y2)(1+)=16,∴x4+2x2y2+y4=16x2,即(x2+y2)2=16x2,两边开方得:x2+y2=4x,整理得:(x﹣2)2+y2=4(x≠0),∴点P的轨迹C2的直角坐标方程:(x﹣2)2+y2=4(x≠0).(2)点A的直角坐标为A(1,),显然点A在曲线C2上,|OA|=2,∴曲线C2的圆心(2,0)到弦OA的距离d==,∴△AOB的最大面积S=|OA|•(2+)=2+.[选修4-5:不等式选讲]23.(2017•新课标Ⅱ)已知a>0,b>0,a3+b3=2,证明:(1)(a+b)(a5+b5)≥4;(2)a+b≤2.【解答】证明:(1)由柯西不等式得:(a+b)(a5+b5)≥(+)2=(a3+b3)2≥4,当且仅当=,即a=b=1时取等号,(2)∵a3+b3=2,∴(a+b)(a2﹣ab+b2)=2,∴(a+b)[(a+b)2﹣3ab]=2,∴(a+b)3﹣3ab(a+b)=2,∴=ab,由均值不等式可得:=ab≤()2,∴(a+b)3﹣2≤,∴(a+b)3≤2,∴a+b≤2,当且仅当a=b=1时等号成立.参与本试卷答题和审题的老师有:caoqz;双曲线;海燕;whgcn;qiss;742048;maths;sxs123;cst;zhczcb(排名不分先后)菁优网2017年6月12日。

2017年全国二卷理科数学高考真题及详解(全word版)

2017年全国二卷理科数学高考真题及详解(全word版)

2017年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项: 1.答题前,考生先将自己的XX 、XX 填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签 字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写 的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.=++i1i 3A .i 21+B .i 21-C .i 2+D .i 2-2.设集合{}4 2 1,,=A ,{}042=+-=m x x B ,若{}1=B A ,则=B A .{}3 1-, B. .{}0 1, C .{}3 1, D .{}5 1, 3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?〞意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯 A .1盏 B .3盏 C .5盏 D .9盏4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A .π90 B .π63 C .π42 D .π365.设y x 、满足约束条件⎪⎩⎪⎨⎧≥+≥+-≤-+,,,0303320332y y x y x 则y x z +=2的最小值是A .15-B .9-C .1D .96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有A .12种B .18种C .24种D .36种理科数学试题第1页〔共4页〕7.甲、乙、丙、丁四位同学一起去向老师询问成语竞猜的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩8.执行右面的程序框图,如果输入的1-=a ,则输出的=S A .2B .3C .4D .59.若双曲线)00(1:2222>>=-b a by a x C ,的一条渐近线被圆4)2(22=+-y x 所截得的弦长为2,则C 的离心率为A .2B .3C .2D .33210.已知直三棱柱111C B A ABC -中, 120=∠ABC , 2=AB , 11==CC BC , 则异面直线1AB 与1BC 所成角的余弦值为A .23 B .515 C .510 D .33 11.若2-=x 是函数12)1()(--+=x e ax x x f 的极值点,则)(x f 的极小值为A .1-B .32--eC .35-eD .112.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则)(PC PB PA +⋅的最小值是A .2-B .23-C .34- D .1-二、填空题:本题共4小题,每小题5分,共20分。

【高考模拟】全国普通高等学校2017届高考数学二模试卷(理科)(衡水金卷)含答案解析

【高考模拟】全国普通高等学校2017届高考数学二模试卷(理科)(衡水金卷)含答案解析

2017年全国普通高等学校高考数学二模试卷(理科)(衡水金卷)一、选择题(共12小题,每小题5分,满分60分)在每小题给出的四个选项中,只有一项是符合题目要求的1.已知复数z1=2﹣i,z2=1+i,其中i为虚数单位,设复数z=,若a﹣z为纯虚数,则实数a的值为()A.B.C.﹣D.﹣2.命题“∀x∈[0,+∞),sinx+x≥0”的否定是()A.∃x0∈(﹣∞,0),sinx0+x0<0 B.∀x∈(﹣∞,0),sinx+x≥0 C.∃x0∈[0,+∞),sinx0+x0<0 D.∃x0∈[0,+∞),sinx0+x0≥03.已知集合M={x|y=lg(x﹣2),N={x|x≥a},若集合M∩N=N,则实数a的取值范围是()A.(2,+∞) B.[2,+∞)C.(﹣∞,0)D.(﹣∞,0]4.已知中心在坐标原点,焦点在坐标轴上的双曲线的渐近线方程为y=±x则该双曲线的离心率为()A.B.C.或D.或5.甲、乙、丙、丁、戊5人排成一排照相,要求甲不站在两侧,且乙、丙两人站在一起,那么不同的排法种数为()A.12 B.24 C.36 D.726.如图,正方形ABCD中,P,Q分别是边BC,CD的中点,若=x+y,则xy=()A.2 B.C.D.7.《九章算术》是我国古代著名数学经典.其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深一寸,锯道长一尺.问这块圆柱形木料的直径是多少?长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦AB=1尺,弓形高CD=1寸,估算该木材镶嵌在墙中的体积约为()(注:1丈=10尺=100寸,π≈3.14,sin22.5°≈)A.600立方寸B.610立方寸C.620立方寸D.633立方寸8.将函数f(x)=2sin(πx)的图象向左平移φ(0<φ<4)个单位,得到函数y=g(x)的图象,若实数x1,x2满足|f(x1)﹣g(x2)|=4,且|x1﹣x2|min=2,则φ=()A.1 B.2 C.3 D.1或39.若如图的程序框图运行的结构为S=﹣,则判断框①中可以填入的是()A.i>4?B.i≥4?C.i>3?D.i≥3?10.多项式(x2﹣x﹣y)5的展开式中,x7y项的系数为()A.20 B.40 C.﹣15 D.16011.如图,是圆锥一部分和四分之一球组成的组合体的三视图,则此几何体的体积为()A.B.C.D.12.已知函数f(x)=+bx﹣2a(a∈R),其中b=(2sin•cos)dt,若∃x∈(1,2),使得f′(x)•x+f(x)>0成立,则实数a的取值范围为()A.(﹣∞,1)B.(0,1]C.(﹣∞,)D.(﹣∞,]二、填空题(共4小题,每小题5分,满分20分)13.某校高三年级的一次测验成绩的频率分布直方图如图所示,现要按如图所示的4个分数段进行分层抽样,抽取100人了解情况,已知70~80分数段抽取了30人,则全体高三年级学生的平均分数为(以各组区间的中点值代表改组的取值)14.若以椭圆=1的右顶点为圆心的圆与直线x+y+2=0相切,则该圆的标准方程是.15.设x,y满足约束条件,若目标函数z=kx+y的最大值为9,则实数k的值为.16.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,c=,C=,点D在边AB上,且•=0,则线段CD 的最大值为 .三、解答题:解答应写出文字说明,证明过程或演算步骤(共5小题,满分60分)17.(12分)已知数列{a n }的前n 项和为S n ,且满足a n =2﹣3S n (n ∈N *) (Ⅰ)求数列{a n }的通项公式 (Ⅱ)设b n =log 2a n ,求数列{}的前n 项和T n .18.(12分)在三棱柱ABC ﹣A 1B 1C 1中,已知侧按AA 1⊥底面ABC ,且四边形AA 1B 1B 是边长为2的正方形,CA=CB ,点M 为棱AB 的中点,点E ,F 分别在按AA 1,A 1B 1上(Ⅰ)若点F 为棱A 1B 1的中点,证明:平面ABC 1⊥平面CMF(Ⅱ)若AE=,A 1F=,且CA ⊥CB ,求直线AC 1与平面CEF 所成角的正弦值.19.(12分)根据《环境空气质量指数(AQI )技术规定(试行)》(HJ633﹣2012)规定,空气污染指数划分为六档,指数越大,级别越高,说明污染越严重,对人体健康的影响也越明显,如表(1)所示,若表(2)、表(3)分别是石家庄市、北京市近期空气质量记录. 表一:(Ⅰ)根据表(2)、表(3)中的数据,通过研究1月1日至7日石家庄市、北京市近一周空气污染指数的平均值,比较石家庄市、北京市近一周空气污染的严重程度(结果保留两位有效数字)(Ⅱ)将1月1日至7日分别记为x,x=1,2,3,4,5,6,7,其对应的空气污染指数为y,根据表中提供的数据,用变量y与x的相关系数说明石家庄市空气污染指数y与日期x之间线性相关关系的强弱,丙说明理由(Ⅲ)小明在北京经营一家洗车店,经小明统计,AQI指数不高于200时,洗车店平均每天亏损约200元,AQI指数在200至400时,洗车店平均每天收入约400元,AQI指数大于400时,洗车店平均每天收入约700元,求小明的洗车店在近两周每天收入的数学期望(结构保留整数部分)附:相关系数r=,r∈[0.30,0.75)时,相关性一般,r∈[0.75,1]时,相关性很强参考数据:=28,(y1﹣)2≈123134,(x i﹣)(y1﹣)=68,≈1857.20.(12分)已知抛物线ω:y2=ax(a>0)上一点,P(t,2)到焦点F的距离为2t(Ⅰ)求抛物线ω的方程(Ⅱ)如图已知点D的坐标为(4,0),过抛物线ω的焦点F的直线交抛物线ω于M,N两点,若过D和N两点的直线交抛物线ω的准线于Q点,求证:直线MQ与x轴交于一定点.21.(12分)设函数f(x)=2lnx+x2﹣2ax(a>0).(Ⅰ)若函数f(x)在区间[1,2]上的最小值为0,求实数a的值;(Ⅱ)若x1,x2(x1<x2)是函数f(x)的两个极值点,且f(x1)﹣f(x2)>m 恒成立,求实数m的取值范围.[选修4-4:坐标系与参数方程]22.(10分)已知平面直角坐标系中,曲线C1的直角坐标方程为(x+1)2+(y ﹣1)2=1,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcos(θ+)=2(Ⅰ)求曲线C1与曲线C2的参数方程(Ⅱ)若点A,B分别在曲线C1与曲线C2上,求|AB|的最小值.[选修4-5;不等式选讲]23.已知函数f(x)=|x﹣t|,t∈R(Ⅰ)若t=1,解不等式f(x)+f(x+1)≤2(Ⅱ)若t=2,a<0,求证:f(ax)﹣f(2a)≥af(x)2017年全国普通高等学校高考数学二模试卷(理科)(衡水金卷)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)在每小题给出的四个选项中,只有一项是符合题目要求的1.已知复数z1=2﹣i,z2=1+i,其中i为虚数单位,设复数z=,若a﹣z为纯虚数,则实数a的值为()A.B.C.﹣D.﹣【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则、纯虚数的定义即可得出.【解答】解:复数z====,∵a﹣z=a﹣+i为纯虚数,∴a﹣=0,解得a=.故选:B.【点评】本题考查了复数的运算法则、纯虚数的定义,考查了推理能力与计算能力,属于基础题.2.命题“∀x∈[0,+∞),sinx+x≥0”的否定是()A.∃x0∈(﹣∞,0),sinx0+x0<0 B.∀x∈(﹣∞,0),sinx+x≥0 C.∃x0∈[0,+∞),sinx0+x0<0 D.∃x0∈[0,+∞),sinx0+x0≥0【考点】21:四种命题.【分析】利用全称命题的否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题.所以命题“∀x∈[0,+∞),sinx+x ≥0”的否定是:∃∃x0∈[0,+∞),sinx0+x0<0;故选:C.【点评】本题考查命题的否定,特称命题与全称命题的否定关系.3.已知集合M={x|y=lg(x﹣2),N={x|x≥a},若集合M∩N=N,则实数a的取值范围是()A.(2,+∞) B.[2,+∞)C.(﹣∞,0)D.(﹣∞,0]【考点】18:集合的包含关系判断及应用.【分析】先将集合M化简,然后集合M∩N=N,则N⊂M,得实数a.【解答】解:集合M={x|y=lg(x﹣2)}={x|x>2},N={x|x≥a},若集合M∩N=N,则N⊂M,∴a>2,即(2,+∞).故选:A.【点评】本题考查集合的包含关系,考查数形结合的数学思想,属于基础题.4.已知中心在坐标原点,焦点在坐标轴上的双曲线的渐近线方程为y=±x则该双曲线的离心率为()A.B.C.或D.或【考点】KC:双曲线的简单性质.【分析】当双曲线的焦点坐标在x轴上时,设双曲线方程为,由已知条件推导出;当双曲线的焦点在y轴上时,设双曲线方程为,由已知条件推导出.由此利用分类讨论思想能求出该双曲线的离心率.【解答】解:∵中心在坐标原点,焦点在坐标轴上的双曲线的渐近线方程为y=±x,∴双曲线的焦点坐标在x轴上或在y轴上,①当双曲线的焦点坐标在x轴上时,设双曲线方程为,它的渐近线方程为y=±,∴,∴e===;当双曲线的焦点在y轴上时,设双曲线方程为,它的渐近线方程为y=,∴,∴,∴e===.综上所述,该双曲线的离心率为或.故选:C.【点评】本题考查双曲线的离心率的求法,是中档题,解题时要认真审题,注意分类讨论思想的合理运用.5.甲、乙、丙、丁、戊5人排成一排照相,要求甲不站在两侧,且乙、丙两人站在一起,那么不同的排法种数为()A.12 B.24 C.36 D.72【考点】D8:排列、组合的实际应用.【分析】根据题意,分3步进行分析:①、乙、丙两人站在一起,用捆绑法将2人看成一个整体进行分析;②、将这个整体与丁、戊进行全排列,③、分析甲的站法数目,进而由分步计数原理计算可得答案.【解答】解:根据题意,分3步进行分析:①、乙、丙两人站在一起,将2人看成一个整体,考虑其顺序有A22种顺序;②、将这个整体与丁、戊进行全排列,有A33种情况;③、甲不站在两侧,则乙丙的整体与丁、戊有2个空位可选,有2种情况,则不同的排法有A22×A33×2=24种;故选:B.【点评】本题考查排列、组合的综合应用,注意优先分析受到限制的元素.6.如图,正方形ABCD中,P,Q分别是边BC,CD的中点,若=x+y,则xy=()A.2 B.C.D.【考点】9H:平面向量的基本定理及其意义.【分析】y(=x()+y()=(x﹣)+()=.可得x﹣=1,=1,即可【解答】解:∵y(=x()+y()=(x﹣)+()=.可得x﹣=1,=1,解得x=,y=,∴xy=故选:D【点评】本题考查了向量的线性运算,属于中档题.7.《九章算术》是我国古代著名数学经典.其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深一寸,锯道长一尺.问这块圆柱形木料的直径是多少?长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦AB=1尺,弓形高CD=1寸,估算该木材镶嵌在墙中的体积约为()(注:1丈=10尺=100寸,π≈3.14,sin22.5°≈)A.600立方寸B.610立方寸C.620立方寸D.633立方寸【考点】LF:棱柱、棱锥、棱台的体积.【分析】由题意画出图形,求出圆柱的底面半径,进一步求出弓形面积,代入体积公式得答案.【解答】解:如图,AB=10(寸),则AD=5(寸),CD=1(寸),设圆O的半径为x(寸),则OD=(x﹣1)(寸),在Rt△ADO中,由勾股定理可得:52+(x﹣1)2=x2,解得:x=13(寸).∴sin∠AOD=,即∠AOD≈22.5°,则∠AOB=45°.则弓形的面积S=≈6.33(平方寸).则算该木材镶嵌在墙中的体积约为V=6.33×100=633(立方寸).故选:D.【点评】本题考查棱柱、棱锥、棱台体积的求法,关键是对题意的理解,是中档题.8.将函数f(x)=2sin(πx)的图象向左平移φ(0<φ<4)个单位,得到函数y=g(x)的图象,若实数x1,x2满足|f(x1)﹣g(x2)|=4,且|x1﹣x2|min=2,则φ=()A.1 B.2 C.3 D.1或3【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】结合正弦函数的图象和性质可得|x1﹣x2|min=2,得φ的值【解答】解:将函数f(x)=2sin(πx)的图象向左平移φ(0<φ<4)个单位,得到函数y=g(x)=2sin(πx+φπ)的图象,故f(x)的最大值为2,最小值为﹣2,g(x)的最大值为2,最小值为﹣2.若实数x1,x2满足|f(x1)﹣g(x2)|=4,且|x1﹣x2|=2,两个函数的最大值与最小值的差为2,有|x1﹣x2|min=2.不妨假设f(x1)=2,g(x2)=﹣2,则πx1=2kπ+,πx2+πφ=2nπ﹣,k、n ∈Z,即x1=2k+,x2=2n﹣﹣φ,此时,有|x1﹣x2|min=2=|2k﹣2n+1+φ|=1+φ,或|x1﹣x2|min=2=|2k﹣2n+1+φ|=﹣2+1+φ,∴φ=1 或φ=3,故选:D.【点评】本题考查三角函数的图象平移,函数的最值以及函数的周期的应用,考查分析问题解决问题的能力,是好题,题目新颖,有一定难度,属于中档题.9.若如图的程序框图运行的结构为S=﹣,则判断框①中可以填入的是()A.i>4?B.i≥4?C.i>3?D.i≥3?【考点】EF:程序框图.【分析】模拟运行程序,可得结论.【解答】解:模拟运行程序,可得S=﹣,i=2;S=﹣+2cos=﹣,i=3;S=﹣+3cosπ=,i=4;S=+4cos=﹣,i=5,循环结束,故选A.【点评】本题是当型循环结构的程序框图,解题的关键是判断程序框图功能及判断终止程序的k值.10.多项式(x2﹣x﹣y)5的展开式中,x7y项的系数为()A.20 B.40 C.﹣15 D.160【考点】DB:二项式系数的性质.【分析】由题意知,当其中一个因式取﹣y,一个因式取﹣x,其余的3个因式都取x2时,可得含x7y的项,由此求得结果.【解答】解:多项式(x2﹣x﹣y)5表示5个因式(x2﹣x﹣y)的乘积,当只有一个因式取﹣y,一个因式取﹣x,其余的3个因式都取x2时,才可得到含x7y的项;所以x7y的系数为••=20.故选:A.【点评】本题考查了排列组合、二项式定理和乘方的应用问题,是基础题.11.如图,是圆锥一部分和四分之一球组成的组合体的三视图,则此几何体的体积为()A.B.C.D.【考点】L!:由三视图求面积、体积.【分析】由已知中的三视图可得:该几何体是一个以正视图为底面的四分之一球与半圆锥的组合体,分别计算它们的体积,相加可得答案.【解答】解:由已知中的三视图可得:该几何体是一个以正视图为底面的四分之一球与半圆锥的组合体,底面(四分之一球)的半径R=2,故四分之一球的体积V==,半圆锥的底面面积S==2π,高h=3,故半圆锥的体积为:2π,故组合体的体积V=,故选:C【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.12.已知函数f (x )=+bx ﹣2a (a ∈R ),其中b=(2sin •cos )dt ,若∃x ∈(1,2),使得f′(x )•x +f (x )>0成立,则实数a 的取值范围为( )A .(﹣∞,1)B .(0,1]C .(﹣∞,)D .(﹣∞,]【考点】67:定积分.【分析】先利用微积分基本定理求出a ,得到函数的解析式,再求导函数,根据导数和函数的单调性关系,求出函数y=x +的最大值即可.【解答】解:b=(2sin •cos )dt=sintdt=﹣cost |=﹣(cos﹣cos0)=1,∴f (x )=+x ﹣2a ,设g (x )=xf (x )=2lnx +a 2+x 2﹣2ax ,∴g′(x )=+2x ﹣2a ,g′(x )=f′(x )•x +f (x ), ∵∃x ∈(1,2),使得f′(x )•x +f (x )>0成立,∴∃x ∈(1,2),使得+2x ﹣2a >0,∴∃x ∈(1,2),使得a <+x ,又y=x+在(1,2)上单调递增,∴a<(+x)max<+2=,∴a<,故选:C【点评】本题以函数为载体,考查微积分基本定理,导数的运用,考查了学生的运算能力和转化能力,属于中档题二、填空题(共4小题,每小题5分,满分20分)13.某校高三年级的一次测验成绩的频率分布直方图如图所示,现要按如图所示的4个分数段进行分层抽样,抽取100人了解情况,已知70~80分数段抽取了30人,则全体高三年级学生的平均分数为82(以各组区间的中点值代表改组的取值)【考点】B8:频率分布直方图.【分析】先求出70~80分数段与90~100分数段的频率,再求平均分.【解答】解:根据频率分布直方图知,70~80分数段的频率为=0.3,∴90~100分数段的频率为1﹣(0.1+0.3+0.4)=0.2,∴平均分为=0.1×65+0.3×75+0.4×85+0.2×95=82,故答案为:82.【点评】本题考查了利用频率分布直方图求平均数的应用问题,是基础题.14.若以椭圆=1的右顶点为圆心的圆与直线x+y+2=0相切,则该圆的标准方程是(x﹣2)2+y2=4.【考点】K4:椭圆的简单性质.【分析】求得椭圆的右顶点,利用点到直线的距离公式,即可圆的半径,即可求得圆的标准方程.【解答】解:椭圆=1的右顶点(2,0),则圆心(2,0),设圆心到直线x+y+2=0的距离为d,则d==2,∴该圆的标准方程的方程(x﹣2)2+y2=4,故答案为:(x﹣2)2+y2=4.【点评】求得椭圆的右顶点,利用点到直线的距离公式,属于基础题.15.设x,y满足约束条件,若目标函数z=kx+y的最大值为9,则实数k的值为﹣5或2.【考点】7C:简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合以及分类讨论的思想进行求解即可.【解答】解:作出不等式组对应的平面区域如图:由z=kx+y得y=﹣kx+z,则直线截距最大时,z最大,∵目标函数z=kx+y的最大值为9,∴y+kx=9,即y=﹣kx+9,则目标函数过定点(0,9),当k=0时,y=z,此时直线过点A时,直线的截距最大,由得,即A(2,5),此时最大值z=5不满足条件.当k>0时,目标函数的斜率为﹣k<0,平移直线y=﹣kx+z,则直线经过点A(2,5)时,截距最大,此时z=9=2k+5,得2k=4,k=2,当k<0时,目标函数的斜率为﹣k>0,平移直线y=﹣kx+z,则直线经过点C时,截距最大,由得,即C(﹣,)此时z=9=﹣k+,得﹣3k=15,得k=﹣5,满足条件.综上k=﹣5或k=2,故答案为:﹣5或2【点评】本题主要考查线性规划的应用,根据目标函数的几何意义,利用数形结合是解决本题的关键.注意本题要对k进行分类讨论.16.在△ABC中,角A,B,C所对的边分别为a,b,c,c=,C=,点D在边AB上,且•=0,则线段CD的最大值为.【考点】9R:平面向量数量积的运算.【分析】根据||=||=得出a2+b2=3+ab,再利用基本不等式得出ab的范围,根据面积公式得出CD关于ab的表达式,从而得出CD的最值.【解答】解:=abcos=,∵||=||=,∴=3,即a2+b2=3+ab,又a2+b2≥2ab,∴3+ab≥2ab,∴ab≤3.∵•=0,∴CD⊥AB,∴S==×CD×c,即ab=CD,∴CD=ab≤,故答案为:.【点评】本题考查了平面向量的应用与数量积运算,面积公式及基本不等式,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤(共5小题,满分60分)17.(12分)(2017•衡水金卷二模)已知数列{a n}的前n项和为S n,且满足a n=2﹣3S n(n∈N*)(Ⅰ)求数列{a n}的通项公式(Ⅱ)设b n=log2a n,求数列{}的前n项和T n.【考点】8E:数列的求和;8H:数列递推式.【分析】(Ⅰ)当n≥2时,由已知条件a n=2﹣3S n得到a n﹣1=2﹣3S n﹣1,将这两个式子相减,再结合数列{a n}的前n项和S n的定义易得数列{a n}的通项公式(Ⅱ)利用(Ⅰ)中求得的通项公式不难推出:b n=log2a n=1﹣2n,所以利用裂项相消法来求数列{}的前n项和T n.【解答】解:(Ⅰ)当n≥2时,∵a n=2﹣3S n…①∴a n﹣1=2﹣3S n﹣1…②①﹣②得:a n﹣a n﹣1=﹣3(S n﹣S n﹣1)=﹣3a n;即=,∴4a n=a n﹣1又a1=2﹣3S1=2﹣3a1;得:a1=,∴数列{a n}是以为首项,为公比的等比数列∴a n=×()n﹣1=21﹣2n(n∈N*),即a n=21﹣2n(n∈N*),(Ⅱ)∵a n=21﹣2n(n∈N*),b n=log2a n,∴b n=log2a n=log221﹣2n=1﹣2n,∴==(﹣).∴T n=(1﹣+﹣+…+﹣),=(1﹣),=(n∈N*).【点评】本题主要考查数列通项公式和前n项和的求解,利用裂项相消求和法是解决本题的关键.18.(12分)(2017•衡水金卷二模)在三棱柱ABC﹣A1B1C1中,已知侧按AA1⊥底面ABC,且四边形AA1B1B是边长为2的正方形,CA=CB,点M为棱AB 的中点,点E,F分别在按AA1,A1B1上(Ⅰ)若点F为棱A1B1的中点,证明:平面ABC1⊥平面CMF(Ⅱ)若AE=,A1F=,且CA⊥CB,求直线AC1与平面CEF所成角的正弦值.【考点】MI:直线与平面所成的角;LY:平面与平面垂直的判定.【分析】(Ⅰ)推导出AA1⊥AB,AB⊥FM,CM⊥AB,从而AB⊥平面CMF,由此能证明平面ABC1⊥平面CMF.(Ⅱ)记线段A1B1的中点为N,连结MN,以M为原点,MC为x轴,MA为y轴,MN为z轴,建立空间直角坐标系,利用向量法能求出直线AC1与平面CEF所成角的正弦值.【解答】证明:(Ⅰ)∵AA1B1B是边长为2的正方形,∴AA1⊥AB,又在正方形ABB1A1中,F,M分别是线段A1B1,AB的中点,∴FM∥A1A,∴AB⊥FM,在△ABC中,CA=CB,且点M是线段AB的中点,∴CM⊥AB,又CM∩FM=M,∴AB⊥平面CMF,又AB⊂平面ABC1,∴平面ABC1⊥平面CMF.解:(Ⅱ)在等腰△CAB中,由CA⊥CB,AB=2,知CA=CB=,且CM=1,记线段A1B1的中点为N,连结MN,由(Ⅰ)知MC、MA、MN两两互相垂直,以M为原点,MC为x轴,MA为y轴,MN为z轴,建立空间直角坐标系,则C(1,0,0),E(0,1,),F(0,,2),A(0,1,0),C1(1,0,2),=(﹣1,1,),=(0,﹣,),=(1,﹣1,2),设平面CEF的一个法向量=(x,y,z),则,取z=2,得=(5,4,2),设直线AC1与平面CEF所成角为θ,则sinθ=|cos<>|===,∴直线AC1与平面CEF所成角的正弦值为.【点评】本题考查面面垂直的证明,考查线面角的正弦值的求法,考查线面角、空间中线线、线面、面面的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.19.(12分)(2017•衡水金卷二模)根据《环境空气质量指数(AQI)技术规定(试行)》(HJ633﹣2012)规定,空气污染指数划分为六档,指数越大,级别越高,说明污染越严重,对人体健康的影响也越明显,如表(1)所示,若表(2)、表(3)分别是石家庄市、北京市近期空气质量记录.表一:(Ⅰ)根据表(2)、表(3)中的数据,通过研究1月1日至7日石家庄市、北京市近一周空气污染指数的平均值,比较石家庄市、北京市近一周空气污染的严重程度(结果保留两位有效数字)(Ⅱ)将1月1日至7日分别记为x,x=1,2,3,4,5,6,7,其对应的空气污染指数为y,根据表中提供的数据,用变量y与x的相关系数说明石家庄市空气污染指数y与日期x之间线性相关关系的强弱,丙说明理由(Ⅲ)小明在北京经营一家洗车店,经小明统计,AQI指数不高于200时,洗车店平均每天亏损约200元,AQI指数在200至400时,洗车店平均每天收入约400元,AQI指数大于400时,洗车店平均每天收入约700元,求小明的洗车店在近两周每天收入的数学期望(结构保留整数部分)附:相关系数r=,r∈[0.30,0.75)时,相关性一般,r∈[0.75,1]时,相关性很强参考数据:=28,(y1﹣)2≈123134,(x i﹣)(y1﹣)=68,≈1857.【考点】BK:线性回归方程.【分析】(Ⅰ)求出平均数,比较即可;(Ⅱ)求出r,根据r的范围判断即可;(Ⅲ)设洗车店平均每天收入为X元,则X可能的取值为﹣200,400,700分别求出P(X=﹣200),P(X=400),P(X=700),求出E(X)的值即可.【解答】解:(Ⅰ)石家庄市近一周空气污染指数的平均值为:≈293.43,北京市近一周空气污染指数的平均数为:≈262.71,∴石家庄市与北京市的空气都处于重度污染,且石家庄市比北京市的污染更严重;(Ⅱ)r=≈≈≈0.31,∵r∈[0.30,0.75),∴石家庄市空气污染指数y与日期x之间线性相关关系一般;(Ⅲ)设洗车店平均每天收入为X元,则X可能的取值为﹣200,400,700,P(X=﹣200)==,P(X=400)==,P(X=700)=,则X的分布列为:故E(X)=﹣200×+400×+700×=≈164(元),故小明的洗车店在近两周每天收入的数学期望是164元.【点评】本题考查了平均数问题,考查相关系数的计算以及数学期望问题,是一道中档题.20.(12分)(2017•衡水金卷二模)已知抛物线ω:y2=ax(a>0)上一点,P (t,2)到焦点F的距离为2t(Ⅰ)求抛物线ω的方程(Ⅱ)如图已知点D的坐标为(4,0),过抛物线ω的焦点F的直线交抛物线ω于M,N两点,若过D和N两点的直线交抛物线ω的准线于Q点,求证:直线MQ与x轴交于一定点.【考点】K8:抛物线的简单性质.【分析】(Ⅰ)根据抛物线的定义,可得a=4t,将P代入抛物线方程,求得at=4,代入即可求得a的值,求得抛物线ω的方程;(Ⅱ)设A(x1,y1),B(x2,y2),设直线MN的方程为x=my+1,联立方程组,表示出直线ND的方程,与抛物线ω的准线方程构成方程组,解得Q的坐标,求出直线MQ的斜率,得到直线MQ的方程,求出交点坐标即可.【解答】解:(Ⅰ)由抛物线的定义可知丨PF丨=t+=2t,则a=4t,由点P(t,2)在抛物线上,则at=4,∴a×=4,则a2=16,由a>0,则a=4,∴抛物线的方程y2=4x;(Ⅱ)证明:设M(x1,y1),N(x2,y2),设直线MN的方程为x=my+1,整理得:y2﹣4my﹣4=0,由韦达定理可知:y1•y2=﹣4,依题意,直线ND与x轴不垂直,∴x2=4.∴直线ND的方程可表示为,y=(x﹣4)①∵抛物线ω的准线方程为,x=﹣1②由①,②联立方程组可求得Q的坐标为(﹣1,﹣)∴Q的坐标可化为(﹣1,),∴k MQ=,∴直线MQ的方程为y﹣y1=(x﹣x1),令y=0,可得x=x1﹣=,∴直线MQ与x轴交于定点(,0).【点评】本题考查抛物线的方程,考查直线与抛物线的位置关系,考查直线过定点,考查学生分析解决问题的能力,属于中档题.21.(12分)(2017•衡水金卷二模)设函数f(x)=2lnx+x2﹣2ax(a>0).(Ⅰ)若函数f(x)在区间[1,2]上的最小值为0,求实数a的值;(Ⅱ)若x1,x2(x1<x2)是函数f(x)的两个极值点,且f(x1)﹣f(x2)>m 恒成立,求实数m的取值范围.【考点】6D:利用导数研究函数的极值;6B:利用导数研究函数的单调性.【分析】(Ⅰ)求导数,分类讨论,确定函数的单调性,利用函数f(x)在区间[1,2]上的最小值为0,求实数a的值;(Ⅱ)f(x1)﹣f(x2)=(2lnx1+x12﹣2ax1)﹣(2lnx2+x22﹣2ax2)=﹣x12+2lnx12,令x12=t,则t>1,g(t)=﹣t﹣2lnt,x,求导,确定函数的单调性,求最值,即可求实数m的取值范围.【解答】解:(Ⅰ)f′(x)=,0<a≤2,f′(x)≥0,f(x)在区间[1,2]上单调递增,∴f(x)min=f(1)=1﹣2a=0,∴a=;a>2,令f′(x)=0,则x1=,x2=,2<a<,x1=<1,x2=∈(1,2),∴函数在(1,x1)内单调递减,在(x1,2)内单调递增,∴f(x)min=f(x1)<f(1)=1﹣2a<0.a≥,x1=,x2=≥2,∴函数在(1,2)内单调递减,∴f(x)min=f(2)=2ln2+4﹣4a=0.∴a=ln2+1<(舍去)综上所述,a=;(Ⅱ)x1,x2是f′(x)=在(0,+∞)内的两个零点,是方程x2﹣ax+1=0的两个正根,∴x1+x2=a>0,x1x2=1,△>0,∴a>2,∴x1>1∴f(x1)﹣f(x2)=(2lnx1+x12﹣2ax1)﹣(2lnx2+x22﹣2ax2)=﹣x12+2lnx12,令x12=t,则t>1,g(t)=﹣t﹣2lnt,∴g′(t)=﹣<0,∴g(x)在(1,+∞)上单调递减,∴g(t)>g(1)=0,∴m≤0.【点评】本题考查导数知识的综合运用,考查函数的单调性与最值,正确构造函数,合理求导是关键.[选修4-4:坐标系与参数方程]22.(10分)(2017•衡水金卷二模)已知平面直角坐标系中,曲线C1的直角坐标方程为(x+1)2+(y﹣1)2=1,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcos(θ+)=2(Ⅰ)求曲线C1与曲线C2的参数方程(Ⅱ)若点A,B分别在曲线C1与曲线C2上,求|AB|的最小值.【考点】Q4:简单曲线的极坐标方程.【分析】(Ⅰ)利用三种方程的转化方法,即可求曲线C1与曲线C2的参数方程(Ⅱ)若点A,B分别在曲线C1与曲线C2上,求|AB|的最小值,即求出A到曲线C2距离的最小值.【解答】解:(Ⅰ)曲线C1的直角坐标方程为(x+1)2+(y﹣1)2=1,参数方程为(α为参数);曲线C2的极坐标方程为ρcos(θ+)=2,直角坐标方程为x﹣y﹣4=0,参数方程为(t为参数);(Ⅱ)设A(﹣1+c osα,1+sinα),A到曲线C2的距离d==,∴sin(α﹣45°)=﹣1时,|AB|的最小值为3﹣1.【点评】本题考查三种方程的转化,考查点到直线距离公式的运用,考查学生的计算能力,属于中档题.[选修4-5;不等式选讲]23.(2017•衡水金卷二模)已知函数f(x)=|x﹣t|,t∈R(Ⅰ)若t=1,解不等式f(x)+f(x+1)≤2(Ⅱ)若t=2,a<0,求证:f(ax)﹣f(2a)≥af(x)【考点】R4:绝对值三角不等式;R5:绝对值不等式的解法.【分析】(I)由题意可得|x﹣1|+|x|≤2,对x讨论,去掉绝对值,解不等式,求并集即可得到所求解集;(II)由题意可证f(ax)﹣af(x)≥f(2a),运用绝对值不等式的性质,求得左边的最小值,即可得证.【解答】(I)解:由题意,得f(x)+f(x+1)=|x﹣1|+|x|,因此只须解不等式|x﹣1|+|x|≤2,当x≤0时,原不等式等价于﹣2x+1≤2,即﹣≤x≤0;当0<x≤1时,原不等式等价于1≤2,即0<x≤1;当x>1时,原不等式等价于2x﹣1≤2,即1<x≤.综上,原不等式的解集为{x|﹣≤x≤}.(II)证明:由题意得f(ax)﹣af(x)=|ax﹣2|﹣a|x﹣2|=|ax﹣2|+|2a﹣ax|≥|ax﹣2+2a﹣ax|=|2a﹣2|=f(2a).所以f(ax)﹣f(2a)≥af(x)成立.【点评】本题考查绝对值不等式的解法,注意运用分类讨论的思想方法,考查不等式的证明,注意运用绝对值不等式的性质,考查运算能力和推理能力,属于中档题.。

2017届高考数学(理)二轮复习(江苏专用)课件:专题5 解析几何 第1讲

2017届高考数学(理)二轮复习(江苏专用)课件:专题5 解析几何 第1讲

4.处理有关圆的问题,要特别注意圆心、半径及平面几何知
识的应用,如弦心距、半径、弦长的一半构成直角三角形
经常用到,利用圆的一些特殊几何性质解题,往往使问题 简化. 5.直线与圆中常见的最值问题 (1)圆外一点与圆上任一点的距离的最值.
(2)直线与圆相离,圆上任一点到直线的距离的最值.
(3)过圆内一定点的直线被圆截得弦长的最值. (4)直线与圆相离,过直线上一点作圆的切线,切线长的最 小值问题. (5)两圆相离,两圆上点的距离的最值.
解 (1)由 x2+y2-6x+5=0,得(x-3)2+y2=4, 所以圆 C1 的圆心坐标为(3,0). (2)设线段 AB 的中点 M 的坐标点(x,y),①当线段 AB 不在 x y y 轴上时,有 C1M⊥AB,则 kC1M·kAB=-1,即 ·x=-1, x-3
32 2 9 整理得x-2 +y = ,又当直线 4
2
(2)依题意得△OO1A 是直角三角形, ∴OO1= 5+20=5, 1 AB 1 S△OO1A=2· 2 ·OO1=2·OA·AO1, 2·OA·AO1 2× 5×2 5 因此 AB= = =4. OO1 5
答案 4 (1)5π (2)4
探究提高 (1)直线与圆相切时利用“切线与 过切点的半径垂直,圆心到切线的距离等于 半径”建立切线斜率的等式,所以求切线方
【训练 1】 (2016· 苏北四市调研)若圆上一点 A(2,3)关 于直线 x+2y=0 的对称点仍在圆上,且圆与直线 x- y+1=0 相交的弦长为 2 2,则圆的方程是________.
解析
设圆的方程为(x-a)2+(y-b)2=r2,点 A(2,3)关于直线
x+2y=0 的对称点仍在圆上,说明圆心在直线 x+2y=0 上, 即有 a+2b=0,又(2-a)2+(3-b)2=r2,而圆与直线 x-y+1 =0 相交的弦长为 2 2,故 r

2017年高考数学试题分项版—解析几何(解析版)

2017年高考数学试题分项版—解析几何(解析版)

2017年高考数学试题分项版—解析几何(解析版)一、选择题1.(2017·全国Ⅰ文,5)已知F 是双曲线C :x 2-y 23=1的右焦点,P 是C 上一点,且PF 与x轴垂直,点A 的坐标是(1,3),则△APF 的面积为( ) A .13 B .12 C .23 D .321.【答案】D【解析】因为F 是双曲线C :x 2-y 23=1的右焦点,所以F (2,0).因为PF ⊥x 轴,所以可设P 的坐标为(2,y P ). 因为P 是C 上一点,所以4-y 2P3=1,解得y P =±3,所以P (2,±3),|PF |=3.又因为A (1,3),所以点A 到直线PF 的距离为1, 所以S △APF =12×|PF |×1=12×3×1=32.故选D.2.(2017·全国Ⅰ文,12)设A ,B 是椭圆C :x 23+y 2m =1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( ) A .(0,1]∪[9,+∞) B .(0,3]∪[9,+∞) C .(0,1]∪[4,+∞) D .(0,3]∪[4,+∞)2.【答案】A【解析】方法一 设焦点在x 轴上,点M (x ,y ). 过点M 作x 轴的垂线,交x 轴于点N , 则N (x,0).故tan ∠AMB =tan(∠AMN +∠BMN ) =3+x |y |+3-x|y |1-3+x |y |·3-x |y |=23|y |x 2+y 2-3.又tan ∠AMB =tan 120°=-3, 且由x 23+y 2m =1,可得x 2=3-3y 2m ,则23|y |3-3y 2m +y 2-3=23|y |(1-3m)y2=- 3.解得|y |=2m3-m.又0<|y |≤m ,即0<2m3-m ≤m ,结合0<m <3解得0<m ≤1.对于焦点在y 轴上的情况,同理亦可得m ≥9. 则m 的取值范围是(0,1]∪[9,+∞). 故选A.方法二 当0<m <3时,焦点在x 轴上, 要使C 上存在点M 满足∠AMB =120°, 则a b ≥tan 60°=3,即3m ≥3, 解得0<m ≤1.当m >3时,焦点在y 轴上,要使C 上存在点M 满足∠AMB =120°, 则a b ≥tan 60°=3,即m3≥3,解得m ≥9. 故m 的取值范围为(0,1]∪[9,+∞). 故选A.3.(2017·全国Ⅱ文,5)若a >1,则双曲线x 2a 2-y 2=1的离心率的取值范围是( )A .(2,+∞)B .(2,2)C .(1,2)D .(1,2)3.【答案】C【解析】由题意得双曲线的离心率e =a 2+1a .∴e 2=a 2+1a 2=1+1a2.∵a >1,∴0<1a 2<1,∴1<1+1a 2<2,∴1<e < 2. 故选C.4.(2017·全国Ⅱ文,12)过抛物线C :y 2=4x 的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN ⊥l ,则M 到直线NF 的距离为( )A.5B .22C .23D .3 3 4.【答案】C【解析】抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.由直线方程的点斜式可得直线MF 的方程为y =3(x -1).联立得方程组⎩⎨⎧y =3(x -1),y 2=4x ,解得⎩⎨⎧x =13,y =-233或⎩⎨⎧x =3,y =2 3.∵点M 在x 轴的上方,∴M (3,23). ∵MN ⊥l ,∴N (-1,23).∴|NF |=(1+1)2+(0-23)2=4, |MF |=|MN |=3-(-1)=4.∴△MNF 是边长为4的等边三角形. ∴点M 到直线NF 的距离为2 3. 故选C.5.(2017·全国Ⅲ文,11)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则椭圆C 的离心率为( ) A .63 B .33 C .23 D .135.【答案】A【解析】由题意知以A 1A 2为直径的圆的圆心坐标为(0,0),半径为a . 又直线bx -ay +2ab =0与圆相切, ∴圆心到直线的距离d =2aba 2+b 2=a ,解得a =3b, ∴b a =13,∴e =ca =a 2-b 2a=1-⎝⎛⎭⎫b a 2=1-⎝⎛⎭⎫132=63. 6.(2017·天津文,5)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,点A 在双曲线的渐近线上,△OAF 是边长为2的等边三角形(O 为原点),则双曲线的方程为( ) A .x 24-y 212=1B .x 212-y 24=1C .x 23-y 2=1D .x 2-y 23=16.【答案】D【解析】根据题意画出草图如图所示⎝⎛⎭⎫不妨设点A 在渐近线y =ba x 上.由△AOF 是边长为2的等边三角形得到∠AOF =60°,c =|OF |=2. 又点A 在双曲线的渐近线y =b a x 上,∴ba =tan 60°= 3.又a 2+b 2=4,∴a =1,b =3, ∴双曲线的方程为x 2-y 23=1.故选D.7.(2017·浙江,2)椭圆x 29+y 24=1的离心率是( )A .133B .53C .23D .597.【答案】B【解析】∵椭圆方程为x 29+y 24=1,∴a =3,c =a 2-b 2=9-4= 5. ∴e =c a =53.故选B.8.(2017·全国Ⅰ理,10)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为( )A .16B .14C .12D .10 8.【答案】A【解析】因为F 为y 2=4x 的焦点,所以F (1,0).由题意知直线l 1,l 2的斜率均存在,且不为0,设l 1的斜率为k ,则l 2的斜率为-1k ,故直线l 1,l 2的方程分别为y =k (x -1),y =-1k(x -1).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 2+4k 2,x 1x 2=1,所以|AB |=1+k 2·|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =1+k 2·⎝⎛⎭⎫2k 2+4k 22-4=4(1+k 2)k 2.同理可得|DE |=4(1+k 2).所以|AB |+|DE |=4(1+k 2)k 2+4(1+k 2) =4⎝⎛⎭⎫1k 2+1+1+k 2 =8+4⎝⎛⎭⎫k 2+1k 2≥8+4×2=16, 当且仅当k 2=1k 2,即k =±1时,取得等号.故选A.9.(2017·全国Ⅱ理,9)若双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线被圆(x -2)2+y 2=4所截得的弦长为2,则C 的离心率为( ) A .2 B . 3 C . 2D .2339.【答案】A【解析】设双曲线的一条渐近线方程为y =b a x ,圆的圆心为(2,0),半径为2,由弦长为2得出圆心到渐近线的距离为22-12= 3. 根据点到直线的距离公式,得|2b |a 2+b 2=3,解得b 2=3a 2. 所以C 的离心率e =ca =c 2a 2=1+b 2a2=2. 故选A.10.(2017·全国Ⅲ理,5)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( )A .x 28-y 210=1B .x 24-y 25=1C .x 25-y 24=1D .x 24-y 23=110.【答案】B 【解析】由y =52x ,可得b a =52.① 由椭圆x 212+y 23=1的焦点为(3,0),(-3,0),可得a 2+b 2=9.② 由①②可得a 2=4,b 2=5. 所以C 的方程为x 24-y 25=1.故选B.11.(2017·全国Ⅲ理,10)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( ) A .63B .33C .23D .1311.【答案】A【解析】由题意知,以A 1A 2为直径的圆的圆心为(0,0),半径为a .又直线bx -ay +2ab =0与圆相切,∴圆心到直线的距离d =2aba 2+b 2=a ,解得a =3b ,∴b a =13, ∴e =c a =a 2-b 2a =1-⎝⎛⎭⎫b a 2=1-⎝⎛⎭⎫132=63.故选A.12.(2017·天津理,5)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为F ,离心率为 2.若经过F和P (0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( ) A .x 24-y 24=1B .x 28-y 28=1C .x 24-y 28=1D .x 28-y 24=112.【答案】B【解析】由题意可得ca =2,即c =2a .又左焦点F (-c,0),P (0,4),则直线PF 的方程为y -04-0=x +c 0+c,化简即得y =4c x +4.结合已知条件和图象易知直线PF 与y =b a x 平行,则4c =ba,即4a =bc .由⎩⎪⎨⎪⎧c =2a ,4a =bc ,a 2+b 2=c 2,解得⎩⎪⎨⎪⎧a 2=8,b 2=8,故双曲线方程为x 28-y 28=1.故选B. 二、填空题1.(2017·全国Ⅲ文,14)双曲线x 2a 2-y 29=1(a >0)的一条渐近线方程为y =35x ,则a =________.1.【答案】5【解析】∵双曲线的标准方程为x 2a 2-y 29=1(a >0),∴双曲线的渐近线方程为y =±3ax .又双曲线的一条渐近线方程为y =35x ,∴a =5.2.(2017·北京文,10)若双曲线x 2-y 2m=1的离心率为3,则实数m =________.2.【答案】2【解析】由双曲线的标准方程知a =1,b 2=m ,c =1+m , 故双曲线的离心率e =ca =1+m =3,∴1+m =3,∴m =2.3.(2017·北京文,12)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO →·AP →的最大值为________. 3.【答案】6【解析】方法一 根据题意作出图象,如图所示,A (-2,0),P (x ,y ).由点P 向x 轴作垂线交x 轴于点Q ,则点Q 的坐标为(x,0). AO →·AP →=|AO →|·|AP →|cos θ, |AO →|=2,|AP →|=(x +2)2+y 2, cos θ=AQAP =x +2(x +2)2+y 2,所以AO →·AP →=2(x +2)=2x +4.点P 在圆x 2+y 2=1上,所以x ∈[-1,1]. 所以AO →·AP →的最大值为2+4=6.方法二 如图所示,因为点P 在圆x 2+y 2=1上, 所以可设P (cos α,sin α)(0≤α<2π), 所以AO →=(2,0),AP →=(cos α+2,sin α), AO →·AP →=2cos α+4≤2+4=6,当且仅当cos α=1,即α=0,P (1,0)时“=”号成立.4.(2017·天津文,12)设抛物线y 2=4x 的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A .若∠F AC =120°,则圆的方程为________.4.【答案】(x +1)2+(y -3)2=1【解析】由y 2=4x 可得点F 的坐标为(1,0),准线l 的方程为x =-1.由圆心C 在l 上,且圆C 与y 轴正半轴相切(如图),可得点C 的横坐标为-1,圆的半径为1,∠CAO =90°.又因为∠F AC =120°, 所以∠OAF =30°,所以|OA |=3, 所以点C 的纵坐标为 3.所以圆的方程为(x +1)2+(y -3)2=1.5.(2017·山东文,15)在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右支与焦点为F 的抛物线x 2=2py (p >0)交于A ,B 两点,若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为________. 5.【答案】y =±22x【解析】设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x 2a 2-y 2b 2=1,x 2=2py ,得a 2y 2-2pb 2y +a 2b 2=0, ∴y 1+y 2=2pb 2a 2.又∵|AF |+|BF |=4|OF |,∴y 1+p 2+y 2+p 2=4×p2,∴y 1+y 2=p ,∴2pb 2a 2=p ,即b 2a 2=12,∴b a =22, ∴双曲线的渐近线方程为y =±22x .6.(2017·江苏,8)在平面直角坐标系xOy 中,双曲线x 23-y 2=1的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1,F 2,则四边形F 1PF 2Q 的面积是________.6.【答案】2 3【解析】如图所示,双曲线x 23-y 2=1的焦点为F 1(-2,0),F 2(2,0),所以|F 1F 2|=4.双曲线x 23-y 2=1的右准线方程为x =a 2c =32,渐近线方程为y =±33x .由⎩⎨⎧x =32,y =33x得P ⎝⎛⎭⎫32,32.同理可得Q ⎝⎛⎭⎫32,-32.∴|PQ |=3,∴S 四边形12F PF Q =12·|F 1F 2|·|PQ |=12×4×3=2 3.7.(2017·江苏,13)在平面直角坐标系xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上,若P A →·PB →≤20,则点P 的横坐标的取值范围是________. 7.【答案】[-52,1]【解析】方法一 因为点P 在圆O :x 2+y 2=50上, 所以设P 点坐标为(x ,±50-x 2)(-52≤x ≤52). 因为A (-12,0),B (0,6),所以P A →=(-12-x ,-50-x 2)或P A →=(-12-x ,50-x 2), PB →=(-x,6-50-x 2)或PB →=(-x,6+50-x 2). 因为P A →·PB →≤20,先取P (x ,50-x 2)进行计算, 所以(-12-x )·(-x )+(-50-x 2)(6-50-x 2)≤20, 即2x +5≤50-x 2.当2x +5<0,即x <-52时,上式恒成立.当2x +5≥0,即x ≥-52时,(2x +5)2≤50-x 2,解得-52≤x ≤1,故x ≤1.同理可得P (x ,-50-x 2)时,x ≤-5. 又-52≤x ≤52,所以-52≤x ≤1. 故点P 的横坐标的取值范围为[-52,1]. 方法二 设P (x ,y ),则P A →=(-12-x ,-y ),PB →=(-x,6-y ). ∵P A →·PB →≤20,∴(-12-x )·(-x )+(-y )·(6-y )≤20, 即2x -y +5≤0.如图,作圆O :x 2+y 2=50,直线2x -y +5=0与⊙O 交于E ,F 两点,∵P 在圆O 上且满足2x -y +5≤0,∴点P 在 EDF 上.由⎩⎪⎨⎪⎧x 2+y 2=50,2x -y +5=0得F 点的横坐标为1, 又D 点的横坐标为-52,∴P 点的横坐标的取值范围为[-52,1].8.(2017·全国Ⅰ理,15)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点为A ,以A 为圆心,b为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为________. 8.【答案】233【解析】如图,由题意知点A (a,0),双曲线的一条渐近线l 的方程为y =ba x ,即bx -ay =0,∴点A 到l 的距离d =aba 2+b 2. 又∠MAN =60°,MA =NA =b ,∴△MAN 为等边三角形, ∴d =32MA =32b ,即ab a 2+b2=32b ,∴a 2=3b 2, ∴e =ca=a 2+b 2a 2=233.9.(2017·全国Ⅱ理,16)已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________. 9.【答案】6【解析】如图,不妨设点M 位于第一象限内,抛物线C 的准线交x 轴于点A ,过点M 作准线的垂线,垂足为点B ,交y 轴于点P ,∴PM ∥OF .由题意知,F (2,0),|FO |=|AO |=2. ∵点M 为FN 的中点,PM ∥OF , ∴|MP |=12|FO |=1.又|BP |=|AO |=2, ∴|MB |=|MP |+|BP |=3.由抛物线的定义知|MF |=|MB |=3,故|FN |=2|MF |=6.10.(2017·北京理,9)若双曲线x 2-y 2m=1的离心率为3,则实数m =________.10.【答案】2【解析】由双曲线的标准方程知a =1,b 2=m ,c =1+m , 故双曲线的离心率e =ca=1+m =3,∴1+m =3,解得m =2.11.(2017·北京理,14)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点A i 的横、纵坐标分别为第i 名工人上午的工作时间和加工的零件数,点B i 的横、纵坐标分别为第i 名工人下午的工作时间和加工的零件数,i =1,2,3.①记Q i 为第i 名工人在这一天中加工的零件总数,则Q 1,Q 2,Q 3中最大的是________. ②记p i 为第i 名工人在这一天中平均每小时加工的零件数,则p 1,p 2,p 3中最大的是________.11.【答案】Q 1 p 2【解析】设A 1(xA 1,yA 1),B 1(xB 1,yB 1),线段A 1B 1的中点为E 1(x 1,y 1),则Q 1=yA 1+yB 1=2y 1.因此,要比较Q 1,Q 2,Q 3的大小,只需比较线段A 1B 1,A 2B 2,A 3B 3中点纵坐标的大小,作图比较知Q 1最大.又p 1=yA 1+yB 1xA 1+xB 1=2y 12x 1=y 1x 1=y 1-0x 1-0,其几何意义为线段A 1B 1的中点E 1与坐标原点连线的斜率,因此,要比较p 1,p 2,p 3的大小,只需比较线段A 1B 1,A 2B 2,A 3B 3中点与坐标原点连线的斜率,作图比较知p 2最大.12.(2017·山东理,14)在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右支与焦点为F 的抛物线x 2=2py (p >0)交于A ,B 两点,若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为________. 12.【答案】y =±22x【解析】设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2a 2-y 2b 2=1,x 2=2py ,得a 2y 2-2pb 2y +a 2b 2=0, ∴y 1+y 2=2pb 2a 2.又∵|AF |+|BF |=4|OF |,∴y 1+p 2+y 2+p 2=4×p2,即y 1+y 2=p ,∴2pb 2a 2=p ,即b 2a 2=12,∴b a =22, ∴双曲线的渐近线方程为y =±22x .三、解答题1.(2017·全国Ⅰ文,20)设A ,B 为曲线C :y =x 24上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.1.解 (1)设A (x 1,y 1),B (x 2,y 2), 则x 1≠x 2,y 1=x 214,y 2=x 224,x 1+x 2=4,于是直线AB 的斜率k =y 1-y 2x 1-x 2=x 1+x 24=1.(2)由y =x 24,得y ′=x2.设M (x 3,y 3),由题设知x 32=1,解得x 3=2,于是M (2,1).设直线AB 的方程为y =x +m ,故线段AB 的中点为N (2,2+m ),|MN |=|m +1|. 将y =x +m 代入y =x 24,得x 2-4x -4m =0.当Δ=16(m +1)>0,即m >-1时,x 1,2=2±2m +1. 从而|AB |=2|x 1-x 2|=42(m +1).由题设知|AB |=2|MN |,即42(m +1)=2(m +1),解得m =7. 所以直线AB 的方程为y =x +7.2.(2017·全国Ⅱ文,20)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP →=2NM →. (1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP →·PQ →=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .2.(1)解 设P (x ,y ),M (x 0,y 0),则N (x 0,0),NP →=(x -x 0,y ),NM →=(0,y 0).由NP →=2NM →得x 0=x ,y 0=22y .因为M (x 0,y 0)在C 上,所以x 22+y 22=1.因此点P 的轨迹方程为x 2+y 2=2. (2)证明 由题意知F (-1,0).设Q (-3,t ),P (m ,n ),则OQ →=(-3,t ), PF →=(-1-m ,-n ),OQ →·PF →=3+3m -tn , OP →=(m ,n ),PQ →=(-3-m ,t -n ). 由OP →·PQ →=1,得-3m -m 2+tn -n 2=1. 又由(1)知m 2+n 2=2,故3+3m -tn =0. 所以OQ →·PF →=0,即OQ →⊥PF →. 又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .3.(2017·全国Ⅲ文,20)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题: (1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 3.(1)解 不能出现AC ⊥BC 的情况.理由如下: 设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0, 所以x 1x 2=-2. 又点C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC 的情况.(2)证明 BC 的中点坐标为⎝⎛⎭⎫x 22,12,可得BC 的中垂线方程为y -12=x 2⎝⎛⎭⎫x -x 22. 由(1)可得x 1+x 2=-m , 所以AB 的中垂线方程为x =-m2.联立⎩⎨⎧x =-m2,y -12=x 2⎝⎛⎭⎫x -x 22,又x 22+mx 2-2=0,可得⎩⎨⎧x =-m 2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为⎝⎛⎭⎫-m 2,-12,半径r =m 2+92. 故圆在y 轴上截得的弦长为2r 2-⎝⎛⎭⎫m 22=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.4.(2017·北京文,19)已知椭圆C 的两个顶点分别为A (-2,0),B (2,0),焦点在x 轴上,离心率为32. (1)求椭圆C 的方程;(2)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4∶5. 4.(1)解 设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),由题意得⎩⎪⎨⎪⎧a =2,c a =32,解得c =3,所以b 2=a 2-c 2=1, 所以椭圆C 的方程为x 24+y 2=1.(2)证明 设M (m ,n ),则D (m,0),N (m ,-n ), 由题设知m ≠±2,且n ≠0. 直线AM 的斜率k AM =nm +2, 故直线DE 的斜率k DE =-m +2n ,所以直线DE 的方程为y =-m +2n(x -m ), 直线BN 的方程为y =n2-m(x -2).联立⎩⎨⎧y =-m +2n(x -m ),y =n2-m (x -2),解得点E 的纵坐标y E =-n (4-m 2)4-m 2+n 2.由点M 在椭圆C 上,得4-m 2=4n 2,所以y E =-45n .又S △BDE =12|BD |·|y E |=25|BD |·|n |,S △BDN =12|BD |·|n |,所以△BDE 与△BDN 的面积之比为4∶5.5.(2017·天津文,20)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-c,0),右顶点为A ,点E 的坐标为(0,c ),△EF A 的面积为b 22.(1)求椭圆的离心率;(2)设点Q 在线段AE 上,|FQ |=3c2,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM∥QN ,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c . ①求直线FP 的斜率; ②求椭圆的方程.5.解 (1)设椭圆的离心率为e . 由已知可得12(c +a )c =b 22.又由b 2=a 2-c 2,可得2c 2+ac -a 2=0, 即2e 2+e -1=0,解得e =-1或e =12.又因为0<e <1,所以e =12.所以椭圆的离心率为12.(2)①依题意,设直线FP 的方程为x =my -c (m >0),则直线FP 的斜率为1m.由(1)知a =2c ,可得直线AE 的方程为x 2c +yc =1,即x +2y -2c =0,与直线FP 的方程联立,可解得x =(2m -2)c m +2,y =3cm +2,即点Q 的坐标为⎝⎛⎭⎪⎫(2m -2)c m +2,3c m +2.由已知|FQ |=3c 2,有⎣⎢⎡⎦⎥⎤(2m -2)c m +2+c 2+⎝⎛⎭⎫3c m +22=⎝⎛⎭⎫3c 22,整理得3m 2-4m =0,所以m =43(m =0舍去),即直线FP 的斜率为34.②由a =2c ,可得b =3c , 故椭圆方程可以表示为x 24c 2+y 23c2=1.由①得直线FP 的方程为3x -4y +3c =0,与椭圆方程联立⎩⎪⎨⎪⎧3x -4y +3c =0,x 24c 2+y 23c 2=1,消去y ,整理得7x 2+6cx -13c 2=0,解得x =-13c7(舍去)或x =c .因此可得点P ⎝⎛⎭⎫c ,3c 2, 进而可得|FP |=(c +c )2+⎝⎛⎭⎫3c 22=5c2,所以|PQ |=|FP |-|FQ |=5c 2-3c2=c .由已知,线段PQ 的长即为PM 与QN 这两条平行直线间的距离,故直线PM 和QN 都垂直于直线FP .因为QN ⊥FP ,所以|QN |=|FQ |·tan ∠QFN =3c 2×34=9c 8,所以△FQN 的面积为12|FQ ||QN |=27c 232.同理△FPM 的面积等于75c 232.由四边形PQNM 的面积为3c ,得75c 232-27c 232=3c ,整理得c 2=2c ,又由c >0,得c =2. 所以椭圆的方程为x 216+y 212=1.6.(2017·山东文,21)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,椭圆C 截直线y =1所得线段的长度为2 2. (1)求椭圆C 的方程;(2)动直线l :y =kx +m (m ≠0)交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,⊙N 的半径为|NO |.设D 为AB 的中点,DE ,DF 与⊙N 分别相切于点E ,F ,求∠EDF 的最小值.6.解 (1)由椭圆的离心率为22,得a 2=2(a 2-b 2), 又当y =1时,x 2=a 2-a 2b 2,得a 2-a 2b2=2, 所以a 2=4,b 2=2.因此椭圆方程为x 24+y 22=1.(2)设A (x 1,y 1),B (x 2,y 2). 联立方程,得⎩⎪⎨⎪⎧y =kx +m ,x 24+y 22=1,得(2k 2+1)x 2+4kmx +2m 2-4=0. 由Δ>0,得m 2<4k 2+2,(*) 且x 1+x 2=-4km2k 2+1,因此y 1+y 2=2m2k 2+1,所以D ⎝⎛⎭⎫-2km 2k 2+1,m2k 2+1.又N (0,-m ),所以|ND |2=⎝⎛⎭⎫-2km 2k 2+12+⎝⎛⎭⎫m2k 2+1+m 2,整理得|ND |2=4m 2(1+3k 2+k 4)(2k 2+1)2.因为|NF |=|m |,所以|ND |2|NF |2=4(k 4+3k 2+1)(2k 2+1)2=1+8k 2+3(2k 2+1)2.令t =8k 2+3,t ≥3, 故2k 2+1=t +14.所以|ND |2|NF |2=1+16t (1+t )2=1+16t +1t +2. 令y =t +1t ,所以y ′=1-1t 2.当t ≥3时,y ′>0,从而y =t +1t 在[3,+∞)上单调递增,因此t +1t ≥103,当且仅当t =3时等号成立,此时k =0, 所以|ND |2|NF |2≤1+3=4.由(*)得-2<m <2且m ≠0,故|NF ||ND |≥12. 设∠EDF =2θ,则sin θ=|NF ||ND |≥12,所以θ的最小值为π6,从而∠EDF 的最小值为π3,此时直线l 的斜率是0.综上所述,当k =0,m ∈(-2,0)∪(0,2)时,∠EDF 取到最小值π3.7.(2017·浙江,21)如图,已知抛物线x 2=y ,点A ⎝⎛⎭⎫-12,14,B ⎝⎛⎭⎫32,94,抛物线上的点P (x ,y )⎝⎛⎭⎫-12<x <32,过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围; (2)求|P A |·|PQ |的最大值.7.解 (1)设直线AP 的斜率为k ,k =x 2-14x +12=x -12,因为-12<x <32.所以直线AP 斜率的取值范围为(-1,1).(2)联立直线AP 与BQ 的方程⎩⎨⎧kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标是x Q =-k 2+4k +32 k 2+1.因为|P A |=1+k 2⎝⎛⎭⎫x +12=1+k 2(k +1),|PQ |=1+k 2(x Q -x )=-(k -1)(k +1)2k 2+1, 所以|P A |·|PQ |=-(k -1)(k +1)3, 令f (k )=-(k -1)(k +1)3, 因为f ′(k )=-(4k -2)(k +1)2,所以f (k )在区间⎝⎛⎭⎫-1,12上单调递增,⎝⎛⎭⎫12,1上单调递减. 因此当k =12时,|P A |·|PQ |取得最大值2716.8.(2017·江苏,17)如图,在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点F 1作直线PF 1的垂线l 1,过点F 2作直线PF 2的垂线l 2.(1)求椭圆E 的标准方程;(2)若直线l 1,l 2的交点Q 在椭圆E 上,求点P 的坐标. 8.解 (1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以c a =12,2a 2c =8,解得a =2,c =1,于是b =a 2-c 2=3, 因此椭圆E 的标准方程是x 24+y 23=1.(2)由(1)知,F 1(-1,0),F 2(1,0).设P (x 0,y 0),因为P 为第一象限的点,故x 0>0,y 0>0. 当x 0=1时,l 2与l 1相交于F 1,与题设不符.当x 0≠1时,直线PF 1的斜率为y 0x 0+1,直线PF 2的斜率为y 0x 0-1.因为l 1⊥PF 1,l 2⊥PF 2, 所以直线l 1的斜率为-x 0+1y 0,直线l 2的斜率为-x 0-1y 0,从而直线l 1的方程为y =-x 0+1y 0(x +1),① 直线l 2的方程为y =-x 0-1y 0(x -1).②由①②,解得x =-x 0,y =x 20-1y 0,所以Q ⎝⎛⎭⎫-x 0,x 20-1y 0.因为点Q 在椭圆E 上,由对称性,得x 20-1y 0=±y 0,即x 20-y 20=1或x 20+y 20=1.又点P 在椭圆E 上,故x 204+y 203=1.由⎩⎪⎨⎪⎧ x 20-y 20=1,x 204+y 203=1,解得x 0=477,y 0=377; ⎩⎪⎨⎪⎧x 20+y 20=1,x 204+y 203=1无解. 因此点P 的坐标为⎝⎛⎭⎫477,377.9.(2017·全国Ⅰ理,20)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝⎛⎭⎫-1,32,P 4⎝⎛⎭⎫1,32中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.9.(1)解 由于P 3,P 4两点关于y 轴对称,故由题设知椭圆C 经过P 3,P 4两点. 又由1a 2+1b 2>1a 2+34b 2知,椭圆C 不经过点P 1,所以点P 2在椭圆C 上.因此⎩⎨⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)证明 设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为⎝ ⎛⎭⎪⎫t ,4-t 22,⎝⎛⎭⎪⎫t ,-4-t 22,则k 1+k 2=4-t 2-22t -4-t 2+22t =-1,得t =2,不符合题设. 从而可设l :y =kx +m (m ≠1). 将y =kx +m 代入x 24+y 2=1,得(4k 2+1)x 2+8kmx +4m 2-4=0. 由题设可知Δ=16(4k 2-m 2+1)>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1.而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+(m -1)(x 1+x 2)x 1x 2.由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0. 即(2k +1)·4m 2-44k 2+1+(m -1)·-8km4k 2+1=0,解得k =-m +12.当且仅当m >-1时,Δ>0, 于是l :y =-m +12x +m ,即y +1=-m +12(x -2),所以l 过定点(2,-1).10.(2017·全国Ⅱ理,20)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP →=2NM →. (1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP →·PQ →=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .10.解 (1)设P (x ,y ),M (x 0,y 0),则N (x 0,0), NP →=(x -x 0,y ),NM →=(0,y 0). 由NP →=2NM →,得x 0=x ,y 0=22y ,因为M (x 0,y 0)在C 上,所以x 22+y 22=1.因此点P 的轨迹方程为x 2+y 2=2.(2)由题意知F (-1,0).设Q (-3,t ),P (m ,n ),则OQ →=(-3,t ),PF →=(-1-m ,-n ), OQ →·PF →=3+3m -tn ,OP →=(m ,n ),PQ →=(-3-m ,t -n ), 由OP →·PQ →=1,得-3m -m 2+tn -n 2=1, 又由(1)知m 2+n 2=2,故3+3m -tn =0,所以OQ →·PF →=0,即OQ →⊥PF →,又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .11.(2017·全国Ⅲ理,20)已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆. (1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M 的方程. 11.(1)证明 设A (x 1,y 1),B (x 2,y 2),l :x =my +2.由⎩⎪⎨⎪⎧x =my +2,y 2=2x ,可得y 2-2my -4=0,则y 1y 2=-4. 又x 1=y 212,x 2=y 222,故x 1x 2=(y 1y 2)24=4.因此OA 的斜率与OB 的斜率之积为y 1x 1·y 2x 2=-44=-1,所以OA ⊥OB ,故坐标原点O 在圆M 上. (2)解 由(1)可得y 1+y 2=2m , x 1+x 2=m (y 1+y 2)+4=2m 2+4, 故圆心M 的坐标为(m 2+2,m ), 圆M 的半径r =(m 2+2)2+m 2.由于圆M 过点P (4,-2),因此AP →·BP →=0, 故(x 1-4)(x 2-4)+(y 1+2)(y 2+2)=0, 即x 1x 2-4(x 1+x 2)+y 1y 2+2(y 1+y 2)+20=0. 由(1)可知y 1y 2=-4,x 1x 2=4,所以2m 2-m -1=0,解得m =1或m =-12.当m =1时,直线l 的方程为x -y -2=0,圆心M 的坐标为(3,1),圆M 的半径为10, 圆M 的方程为(x -3)2+(y -1)2=10.当m =-12时,直线l 的方程为2x +y -4=0,圆心M 的坐标为⎝⎛⎭⎫94,-12,圆M 的半径为854, 圆M 的方程为⎝⎛⎭⎫x -942+⎝⎛⎭⎫y +122=8516. 12.(2017·北京理,18)已知抛物线C :y 2=2px 过点P (1,1),过点⎝⎛⎭⎫0,12作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.12.(1)解:由抛物线C ∶y 2=2px 过点P (1,1),得p =12,所以抛物线C 的方程为y 2=x ,抛物线C 的焦点坐标为⎝⎛⎭⎫14,0,准线方程为x =-14. (2)证明:由题意,设直线l 的方程为y =kx +12(k ≠0),l 与抛物线C 的交点为M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +12,y 2=x ,得4k 2x 2+(4k -4)x +1=0,则x 1+x 2=1-k k 2,x 1x 2=14k 2.因为点P 的坐标为(1,1),所以直线OP 的方程为y =x ,点A 的坐标为(x 1,x 1). 直线ON 的方程为y =y 2x 2x ,点B 的坐标为⎝⎛⎭⎫x 1,y 2x 1x 2. 因为y 1+y 2x 1x 2-2x 1=y 1x 2+y 2x 1-2x 1x 2x 2=⎝⎛⎭⎫kx 1+12x 2+⎝⎛⎭⎫kx 2+12x 1-2x 1x 2x 2=(2k -2)x 1x 2+12(x 2+x 1)x 2=(2k -2)×14k 2+1-k2k2x 2=0,所以y 1+y 2x 1x 2=2x 1,故A 为线段BM 的中点.13.(2017·天津理,19)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线y 2=2px (p >0)的焦点,F 到抛物线的准线l 的距离为12.(1)求椭圆的方程和抛物线的方程;(2)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若△APD 的面积为62,求直线AP 的方程. 13.解 (1)设点F 的坐标为(-c,0),依题意,得c a =12,p 2=a ,a -c =12,解得a =1,c =12,p =2,于是b 2=a 2-c 2=34.所以,椭圆的方程为x 2+4y 23=1,抛物线的方程为y 2=4x .(2)设直线AP 的方程为x =my +1(m ≠0),与直线l 的方程x =-1联立, 可得点P ⎝⎛⎭⎫-1,-2m , 故点Q ⎝⎛⎭⎫-1,2m . 将x =my +1与x 2+4y 23=1联立,消去x ,整理得(3m 2+4)y 2+6my =0,解得y =0或y =-6m3m 2+4.由点B 异于点A ,可得点B ⎝ ⎛⎭⎪⎫-3m 2+43m 2+4,-6m 3m 2+4, 由Q ⎝⎛⎭⎫-1,2m ,可得直线BQ 的方程为 ⎝ ⎛⎭⎪⎫-6m 3m 2+4-2m (x +1)-⎝ ⎛⎭⎪⎫-3m 2+43m 2+4+1⎝⎛⎭⎫y -2m =0, 令y =0,解得x =2-3m 23m 2+2,故点D ⎝ ⎛⎭⎪⎫2-3m 23m 2+2,0. 所以|AD |=1-2-3m 23m 2+2=6m 23m 2+2.又因为△APD 的面积为62, 故12×6m 23m 2+2×2|m |=62, 整理得3m 2-26|m |+2=0, 解得|m |=63,所以m =±63. 所以,直线AP 的方程为3x +6y -3=0或3x -6y -3=0.14.(2017·山东理,21)在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,焦距为2.(1)求椭圆E 的方程; (2)如图,动直线l :y =k 1x -32交椭圆E 于A ,B 两点,C 是椭圆E 上一点,直线OC 的斜率为k 2,且k 1k 2=24.M 是线段OC 延长线上一点,且|MC |∶|AB |=2∶3,⊙M 的半径为|MC |,OS ,OT 是⊙M 的两条切线,切点分别为S ,T .求∠SOT 的最大值,并求取得最大值时直线l 的斜率.14.解 (1)由题意知e =c a =22,2c =2,所以c =1,所以a =2,b =1,所以椭圆E 的方程为x 22+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),联立方程⎩⎨⎧x 22+y 2=1,y =k 1x -32,得(4k 21+2)x 2-43k 1x -1=0.由题意知Δ>0,且x 1+x 2=23k 12k 21+1,x 1x 2=-12(2k 21+1), 所以|AB |=1+k 21|x 1-x 2|=21+k 211+8k 211+2k 21.由题意可知,圆M 的半径r 为r =23|AB |=223·1+k 211+8k 212k 21+1, 由题设知k 1k 2=24, 所以k 2=24k 1,因此直线OC 的方程为y =24k 1x . 联立方程⎩⎨⎧x 22+y 2=1,y =24k 1x ,得x 2=8k 211+4k 21,y 2=11+4k 21, 因此|OC |=x 2+y 2=1+8k 211+4k 21. 由题意可知,sin ∠SOT 2=r r +|OC |=11+|OC |r .而|OC |r =1+8k 211+4k 21223·1+k 211+8k 211+2k 21 =324·1+2k 211+4k 211+k 21, 令t =1+2k 21,则t >1,1t ∈(0,1), 因此|OC |r =32·t 2t 2+t -1=32·12+1t -1t 2=32·1-⎝⎛⎭⎫1t -122+94≥1, 当且仅当1t =12,即t =2时等号成立,此时k 1=±22,所以sin∠SOT 2≤12,因此∠SOT 2≤π6, 所以∠SOT 的最大值为π3.综上所述,∠SOT 的最大值为π3,取得最大值时直线l 的斜率为k 1=±22.。

2017高考数学理科二轮(通用版)复习对点练:第1部分专题六解析几何第3讲演练含解析

2017高考数学理科二轮(通用版)复习对点练:第1部分专题六解析几何第3讲演练含解析

第一部分专题六第3讲1.设双曲线错误!-错误!=1(a〉0,b〉0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线,两垂线交于点D。

若D到直线BC的距离小于a+错误!,则该双曲线的渐近线斜率的取值范围是(A)A.(-1,0)∪(0,1) B.(-∞,-1)∪(1,+∞)C.(-2,0)∪(0,错误!) D.(-∞,-错误!)∪(2,+∞)解析:由题知F(c,0),A(a,0),不妨令B点在第一象限,则B错误!,C错误!,k AB=错误!,∵CD⊥AB,∴k CD=错误!,∴直线CD的方程为y+错误!=错误!(x-c).由双曲线的对称性,知点D在x轴上,得x D=错误!+c,点D到直线BC的距离为c-x D,∴错误!<a+错误!=a+c,b4<a2(c-a)·(c+a)=a2·b2,b2<a2,2〈1.错误!又该双曲线的渐近线的斜率为错误!或-错误!,∴双曲线渐近线斜率的取值范围是(-1,0)∪(0,1).选A.2.设P,Q分别为圆x2+(y-6)2=2和椭圆x210+y2=1上的点,则P,Q两点间的最大距离是(D)A.5 2 B.错误!+错误!C.7+错误!D.6错误!解析:设Q(10cos θ,sin θ),圆心为M,由已知得M(0,6),则|MQ|=错误!=错误!=错误!=错误!≤5错误!错误!,故|PQ|max=5错误!+错误!=6错误!。

3.已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,错误!·错误!=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是( B)A.2 B.3C.错误!D.错误!解析:依题意不妨设A(x1,错误!),B(x2,-错误!),则错误!·错误!=2⇒x1x2-错误!=2⇒错误!=2或错误!=-1(舍去).当x1=x2时,有x1=x2=2,则S△ABO+S△AFO=2错误!+错误!=错误!;当x1≠x2时,直线AB的方程为y-错误!=错误!(x-x1),则直线AB与x轴的交点坐标为(2,0).则S△ABO+S△AFO=错误!×2(错误!+错误!)+错误!×错误!错误!=错误!错误!+错误!≥2错误!=3错误!,而错误!〉3,故选B。

2017高考数学理科二轮(通用版)复习对点练:第1部分专题六解析几何第2讲特训含解析

2017高考数学理科二轮(通用版)复习对点练:第1部分专题六解析几何第2讲特训含解析

第一部分专题六第2讲1.(2016·河北石家庄一模)已知抛物线y2=2px(p>0)的焦点F 恰好是双曲线错误!-错误!=1(a>0,b>0)的右焦点,且两曲线的交点的连线过点F,则该双曲线的离心率为(C)A.错误!B.错误!C.1+错误!D.1+错误!解析:因为两曲线的交点的连线过点F,所以两曲线的交点坐标为错误!,代入双曲线方程可得错误!-错误!=1,因为错误!=c,所以c4-6a2c2+a4=0,所以e4-6e2+1=0,又e〉1解得e=1+错误!,故选C.2.将离心率为e1的双曲线C1的实半轴长a和虚半轴长b(a≠b)同时增加m(m>0)个单位长度,得到离心率e2的双曲线C2,则( D)A.对任意的a,b,e1>e2B.当a>b时,e1>e2;当a<b时,e1<e2C.对任意的a,b,e1<e2D.当a>b时,e1<e2;当a<b时,e1>e2解析:依题意有e1=错误!=错误!,e 2=错误!=错误!。

而错误!-错误!=错误!,∵a 〉0,b >0,m >0,∴当a 〉b 时,b a <b +m a +m,有e 1〈e 2; 当a 〈b 时,错误!〉错误!,有e 1〉e 2。

故选D 。

3.(2016·江西八校联考)已知圆C 1:x 2+2cx +y 2=0,圆C 2:x 2-2cx +y 2=0,椭圆C :错误!+错误!=1(a >b >0),c >0,且c 2=a 2-b 2。

若圆C 1,C 2都在椭圆内,则椭圆离心率的取值范围是( B )A .错误!B .错误!C .错误!D .错误!解析:圆C 1,C 2都在椭圆内等价于圆C 2的右顶点(2c ,0),上顶点(c ,c )在椭圆内部,∴只需错误!。

可得错误!结合e ∈(0,1),可得0〈e ≤错误!.故选B 。

4.(2015·福建厦门月考)已知方程错误!+错误!=1表示焦点在y 轴上的椭圆,则实数k 的取值范围是( C )A .错误!B .(1,+∞)C .(1,2)D .错误!解析:由题意可得,2k -1>2-k >0,即错误!解得1〈k〈2,故实数k的取值范围是(1,2).故选C.5.(2016·东北三校联考)抛物线y2=2px(p>0)的焦点为F,O 为坐标原点,M为抛物线上的一点,且|MF|=4|OF|,△MFO 的面积为4错误!,则抛物线方程为(B)A.y2=6x B.y2=8xC.y2=16x D.y2=错误!x解析:依题意,设M(x,y),因为|OF|=错误!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高效抢分训练1.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点到渐近线的距离等于实轴长,则双曲线C 的离心率为( )A.52B. 5C.2 5 D .3 5答案 B解析 易知双曲线C 的左焦点到渐近线的距离为b ,则b =2a ,因此双曲线C 的离心率为e =ca = 1+⎝ ⎛⎭⎪⎫b a 2=5,选B. 2.若动圆的圆心在抛物线x 2=12y 上,且与直线y +3=0相切,则此圆恒过定点( )A.(0,2) B .(0,-3) C.(0,3) D .(0,6)答案 C解析 直线y +3=0是抛物线x 2=12y 的准线,由抛物线的定义知抛物线上的点到直线y =-3的距离与到焦点(0,3)的距离相等,所以此圆恒过定点(0,3).3.以双曲线x 23-y 26=1的焦点为顶点,顶点为焦点的椭圆上任意一点P 与椭圆的两个焦点构成的三角形面积的最大值为( )A.3 6 B .3 2 C.2 3 D .2 2 答案 B解析 因为双曲线x 23-y 26=1的顶点坐标为(±3,0),焦点为(±3,0),所以椭圆的长半轴长a =3,半焦距c =3,短半轴长b =a 2-c 2=6,当P 为短轴端点时,P 与椭圆的两个焦点构成的三角形的面积最大,且最大值为12×23×6=32,选择B.4.已知P (x 1,y 1),Q (x 2,y 2)是椭圆x 24+y 22=1上的两个动点,且x 1+x 2=2.若线段PQ 的垂直平分线经过定点A ,则点A 的坐标为( )A.(1,0)B .(1,1)C.⎝ ⎛⎭⎪⎫12,0 D.⎝ ⎛⎭⎪⎫12,1 答案 C解析 因为P (x 1,y 1),Q (x 2,y 2)在椭圆x 24+y 22=1上,且x 1+x 2=2.当x 1≠x 2时,由⎩⎪⎨⎪⎧x 214+y 212=1x 224+y 222=1,得y 1-y 2x 1-x 2=-12·x 1+x 2y 1+y 2=-1y 1+y 2.设线段PQ 的中点为N (1,n ),所以k PQ =y 1-y 2x 1-x 2=-12n ,所以线段PQ 的垂直平分线的方程为y -n =2n (x -1),即y =2n ⎝ ⎛⎭⎪⎫x -12,该直线恒过定点A ⎝ ⎛⎭⎪⎫12,0;当x 1=x 2时,线段PQ 的垂直平分线也过定点A ⎝ ⎛⎭⎪⎫12,0.故线段PQ 的垂直平分线恒过定点A ⎝ ⎛⎭⎪⎫12,0.5.已知双曲线mx 2+ny 2=1的离心率为2,且一个焦点与抛物线x 2=8y 的焦点重合,则此双曲线的方程为( )A.y 2-x23=1B .x 2-y23=1C.x 22-y 26=1 D.y 22-x 26=1答案 A解析 因为抛物线x 2=8y 的焦点坐标为(0,2),所以m <0,n >0,所以⎩⎪⎨⎪⎧1n +⎝ ⎛⎭⎪⎫-1m =421n=2,即n =1,m =-13,所以双曲线方程为y 2-x23=1.6.设F 为抛物线C :x 2=12y 的焦点,A 、B 、C 为抛物线上不同的三点,若F A →+FB →+FC →=0,则|F A |+|FB |+|FC |=( )A.3 B .9 C.12 D .18答案 D解析 设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),因为A 、B 、C 为抛物线上不同的三点,则A 、B 、C 可以构成三角形.抛物线C :x 2=12y 的焦点为F (0,3),准线方程为y =-3. 因为F A →+FB →+FC →=0,所以利用平面向量的相关知识可得点F 为△ABC 的重心,从而有x 1+x 2+x 3=0,y 1+y 2+y 3=9.又根据抛物线的定义可得|F A |=y 1-(-3)=y 1+3,|FB |=y 2-(-3)=y 2+3,|FC |=y 3-(-3)=y 3+3,所以|F A |+|FB |+|FC |=y 1+3+y 2+3+y 3+3=y 1+y 2+y 3+9=18.7.[2015·河北名校联盟质检]若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点到一条渐近线的距离等于焦距的14,则该双曲线的离心率为________.答案 233解析 双曲线的一条渐近线方程为bx -ay =0,一个焦点坐标为(c,0).根据题意:|bc -a ×0|b 2+a2=14×2c ,所以c =2b ,a =c 2-b 2=3b ,所以e =c a =23=233.8.已知直线l 过抛物线C :y 2=2px (p >0)的焦点F ,且与C 相交于A 、B 两点,AB 的中点M 的坐标为(3,2),则抛物线C 的方程为________.答案 y 2=4x 或y 2=8x解析 由题意可设直线l 的方程为y =k ⎝ ⎛⎭⎪⎫x -p 2(k ≠0),与抛物线C的方程y 2=2px (p >0)联立可得k 2x 2-k 2px -2px +k 2p 24=0,则⎩⎪⎨⎪⎧p 2+p k 2=3p k =2,解得k =1,p =2或k =2,p =4,所以抛物线C 的方程为y 2=4x 或y 2=8x .9.已知点P 是椭圆x 225+y 29=1上的动点,且与椭圆的四个顶点不重合,F 1、F 2分别是椭圆的左、右焦点,O 为坐标原点,若点M 是∠F 1PF 2的角平分线上的一点,且F 1M ⊥MP ,则|OM |的取值范围是________.答案 (0,4)解析 解法一:如图,延长PF 2,F 1M ,交于点N ,∵PM 是∠F 1PF 2的角平分线,且F 1M ⊥MP ,∴|PN |=|PF 1|,M 为F 1N 的中点,∵O 为F 1F 2的中点,M 为F 1N 的中点,∴|OM |=12|F 2N |=12||PN |-|PF 2||=12||PF 1|-|PF 2||,对于椭圆x 2a 2+y 2b 2=1(a >b >0,xy ≠0),设点P 的坐标为(x 0,y 0)(-a <x 0<a ),则x 20a 2+y 20b 2=1,又F 1(-c,0),F 2(c,0),故|PF 1|=(x 0+c )2+y 20=(x 0+c )2+b 2-b 2x 20a 2=⎝⎛⎭⎪⎫a +c a x 02=a +ex 0,同理|PF 2|=a -ex 0,∴|OM |=12||PF 1|-|PF 2||=12|2ex 0|=12×2e |x 0|=e |x 0|,∵点P 是椭圆上与四个顶点不重合的点,故|x 0|∈(0,a ),故|OM |∈(0,c ),对于x 225+y 29=1,c =4,故|OM |的取值范围是(0,4).解法二:由椭圆的对称性,只需研究动点P 在第一象限内的情况,当点P 趋近于椭圆的上顶点时,点M 趋近于点O ,此时|OM |趋近于0;当点P 趋近于椭圆的右顶点时,点M 趋近于点F 1,此时|OM |趋近于25-9=4,所以|OM |的取值范围为(0,4).解法三:如图,延长PF 2,F 1M 交于点N ,∵PM 是∠F 1PF 2的角平分线,且F 1M ⊥MP ,∴|PN |=|PF 1|,M 为F 1N 的中点,又O 为F 1F 2的中点,∴|OM |=12|F 2N |=12||PN |-|PF 2||=12||PF 1|-|PF 2||,又|PF 1|+|PF 2|=10,∴|OM |=12|2|PF 1|-10|=||PF 1|-5|,又|PF 1|∈(1,5)∪(5,9),∴|OM |∈(0,4),故|OM |的取值范围是(0,4).10.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为e =32,M 是椭圆C 上的一点,且点M 到椭圆C 两焦点的距离之和为4.(1)求椭圆C 的方程;(2)过椭圆C 的左顶点A 的直线l 交椭圆于另一点B ,P (0,t )是y 轴上一点,满足|PA |=|PB |,PA →·PB →=4,求实数t 的值.解 (1)由已知得2a =4,则a =2, 又e =c a =32,所以c =3,b 2=1, 所以椭圆C 的方程为x 24+y 2=1. (2)易知A (-2,0),设B (x 1,y 1),根据题意可知直线l 的斜率存在,可设直线l 的斜率为k ,则直线l 的方程为y =k (x +2),把它代入椭圆C 的方程,消去y ,整理得:(1+4k 2)x 2+16k 2x +(16k 2-4)=0,由根与系数的关系得-2+x 1=-16k 21+4k 2,则x 1=2-8k 21+4k 2,y 1=k (x 1+2)=4k1+4k 2,所以线段AB 的中点坐标为⎝ ⎛⎭⎪⎫-8k 21+4k 2,2k 1+4k 2. ①当k =0时,则有B (2,0),线段AB 的垂直平分线为y 轴,于是P A →=(-2,-t ),PB →=(2,-t ),由P A →·PB →=-4+t 2=4,解得t =±2 2.②当k ≠0时,则线段AB 的垂直平分线的方程为y -2k 1+4k 2=-1k⎝ ⎛⎭⎪⎫x +8k 21+4k 2. 因为P (0,t )是线段AB 垂直平分线上的一点, 令x =0,得t =-6k1+4k 2,于是P A →=(-2,-t ),PB →=(x 1,y 1-t ),由P A →·PB →=-2x 1-t (y 1-t )=4(16k 4+15k 2-1)(1+4k 2)2=4,解得:k =±147,代入t =-6k 1+4k 2,解得t =±2145.综上,满足条件的实数t 的值为t =±22或t =±2145.。

相关文档
最新文档