高中数学必修2立体几何专题线面垂直典型例题的判定与性质

合集下载

高中 直线、平面垂直的判定与性质 知识点+例题+练习

高中 直线、平面垂直的判定与性质 知识点+例题+练习

教学过程在四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.规律方法证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面).解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.【训练1】(2013·江西卷改编)教学效果分析教学过程如图,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=2,AA1=3,E为CD上一点,DE=1,EC=3.证明:BE⊥平面BB1C1C.考点二平面与平面垂直的判定与性质【例2】(2014·深圳一模)如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC=AA1,且AC=2BC,点D是AB的中点.证明:平面ABC1⊥平面B1CD.规律方法证明两个平面垂直,首先要考虑直线与平面的垂直,也教学效果分析教学过程可简单地记为“证面面垂直,找线面垂直”,是化归思想的体现,这种思想方法与空间中的平行关系的证明非常类似,这种转化方法是本讲内容的显著特征,掌握化归与转化思想方法是解决这类问题的关键.【训练2】如图,在长方体ABCDA1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.证明:平面ABM⊥平面A1B1M.考点三平行、垂直关系的综合问题教学效果分析教学过程【例3】(2013·山东卷)如图,在四棱锥P-ABCD中,AB⊥AC,AB⊥P A,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.(1)求证:CE∥平面P AD;(2)求证:平面EFG⊥平面EMN.规律方法线面关系与面面关系的证明离不开判定定理和性质定理,而形成结论的“证据链”依然是通过挖掘题目已知条件来实现的,如图形固有的位置关系、中点形成的三角形的中位线等,都为论证提供了丰富的素材.【训练3】(2013·辽宁卷)如图,AB是圆O的直径,P A垂直圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面P AC;(2)设Q为P A的中点,G为△AOC的重心,求证:QG∥平面PBC.教学效果分析1.转化思想:垂直关系的转化2.在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.如有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直.故熟练掌握“线线垂直”、“面面垂直”间的转化条件是解决这类问题的关键.创新突破6——求解立体几何中的探索性问题【典例】(2012·北京卷)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.[反思感悟] (1)解决探索性问题一般先假设其存在,把这个假设作已知条件,和题目的其他已知条件一起进行推理论证和计算,在推理论证和计算无误的前提下,如果得到了一个合理的结论,则说明存在,如果得到了一个不合理的结论,则说明不存在.(2)在处理空间折叠问题中,要注意平面图形与空间图形在折叠前后的相互位置关系与长度关系等,关键是点、线、面位置关系的转化与平面几何知识的应用,注意平面几何与立体几何中相关知识点的异同,盲目套用容易导致错误.【自主体验】(2014·韶关模拟)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=12AB=2,点E为AC中点,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2.(1)求证:DA⊥BC;(2)在CD上找一点F,使AD∥平面EFB.基础巩固题组(建议用时:40分钟)一、填空题1.设平面α与平面β相交于直线m,直线a在平面α内,直线b 在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的________条件.2.(2014·绍兴调研)设α,β为不重合的平面,m,n为不重合的直线,则下列正确命题的序号是________.①若α⊥β,α∩β=n,m⊥n,则m⊥α;②若m⊂α,n⊂β,m⊥n,则n⊥α;③若n⊥α,n⊥β,m⊥β,则m⊥α;④若m∥α,n∥β,m⊥n,则α⊥β.3.如图,AB是圆O的直径,P A垂直于圆O所在的平面,C是圆周上不同于A,B的任一点,则图形中有________对线面垂直.4.若M是线段AB的中点,A,B到平面α的距离分别是4 cm,6 cm,则M到平面α的距离为________.5.(2014·郑州模拟)已知平面α,β,γ和直线l,m,且l⊥m,α⊥γ,α∩γ=m,β∩γ=l,给出下列四个结论:①β⊥γ;②l⊥α;③m⊥β;④α⊥β.其中正确的是________.6.如图,在四棱锥P ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为正确的条件即可)7.设α,β是空间两个不同的平面,m,n是平面α及β外的两条不同直线.从“①m⊥n;②α⊥β;③n⊥β;④m⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:________(用代号表示).8.如图,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的正投影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.二、解答题9.(2013·北京卷)如图,在四棱锥P ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面P AD⊥底面ABCD,P A⊥AD.E和F分别是CD和PC的中点.求证:(1)P A⊥底面ABCD;(2)BE∥平面P AD;(3)平面BEF⊥平面PCD.10.(2013·泉州模拟)如图所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.(1)求证:B1D1∥平面A1BD;(2)求证:MD⊥AC;(3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D.能力提升题组(建议用时:25分钟)一、填空题1.如图,在斜三棱柱ABCA1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在直线______上.2.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为________.①AC⊥BD;②AC∥截面PQMN;③AC=BD;④异面直线PM与BD所成的角为45°.3.(2013·南通二模)如图,已知六棱锥P ABCDEF的底面是正六边形,P A⊥平面ABC,P A=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面P AE;④∠PDA=45°.其中正确的有________(把所有正确的序号都填上).二、解答题4.(2014·北京西城一模)。

高中数学必修2立体几何专题-线面垂直方法总结

高中数学必修2立体几何专题-线面垂直方法总结

系;已知线面垂直时会有哪些结论,是选择线
线垂直还是选择面面垂直;要证明结论或要得
2021到/10/1哪0 个结论,就必须满足什么条件等.
4
【变式练习1】 如图,E,F分别为直角三角形ABC的直角 边 AC 和 斜 边 AB 的 中 点 , 沿 EF 将 △ AEF 折 起 到 △ A1EF 的 位 置 , 连 结 A1B , A1C. 求 证 : (1)EF⊥平面A1EC; (2)AA1⊥平面A1BC.
所 以 A B C 是 等 边 三 角 形 , B O= D O= 3,



D1D
B
B

1


D1D DO
6 3
2,O B = BP
3 = 2, 6
2 所 以 D 1D O ∽ O B P, 所 以 D 1O D + P O B= 9 0 , 所 以 2021/10/10 P O D 1O , 又 D 1O A C = O , 所 以 P O 平 面 D 1 A C1.2
31
【解析】①中n可能在α内;②n与m可以垂 直;由线面垂直与面面垂直知③④是正确 的. 答案:③④ 选题感悟:本题呈现的是空间中的线线、 线面、面面之间的位置关系,能有效的考 查考生的空间想象能力和推理能力.
2021/10/10
32
3.如图所示,在四棱锥P-ABCD中,∠ABC= ∠ ACD = 90° , ∠ BAC = ∠ CAD = 60° , PA⊥ 平面ABCD,E为PD的中点,PA=2AB=2. (1)求四棱锥P-ABCD的体积V; (2)若F为PC的中点, 求证:PC⊥平面AEF; (3)求证:CE∥平面PAB.
2021/10/10
25

高中数学必修二《直线平面平行垂直的判定及性质》

高中数学必修二《直线平面平行垂直的判定及性质》

直线、平面平行与垂直的综合运用(高三复习课)三维目标:知识与能力:1、运用直线与平面平行垂直、平面与平面平行垂直的判定定理及性质解决问题。

2、培养学生探究性思维方法和转化思想。

过程与方法:学生根据已有的知识和方法,在教师的指导下,自主完成直线平面平行垂直的相关证明,体会在立体几何中如何将空间问题转化为平面问题的方法,培养严谨的推理思维能力和协作交流、分析归纳能力。

情感态度与价值观:通过以学生为主体,教师为主导的教学方式,使学生在自主探究与合作学习中获得成功体验,增强自信心,提高学习数学的兴趣。

教学重点:直线、平面平行与垂直的判定定理和性质的运用。

教学难点:准确的书写线面平行、面面平行、线面垂直、面面垂直的证明过程。

教学过程:一、复习相关的知识1、课本P124的知识梳理2、分析高考中常出现的题型及考点内容,如何运用。

二、例题分析讲解1、例3 在正三棱柱111C B A ABC -中,的中点。

分别为AC BB F E ,,1求证:(1)EC A BF 1//平面;(2)111A ACC EC A 平面平面⊥。

思路点拨:(1)要证线面平行,需线线平行。

由E ,F 分别就成为解题方向,;证的中点的中点,想到取EO BF O C A AC BB //,11这可利用平行四边形来证明。

再由线线平行证线面平行时,需完整表达定理条件,尤其是线在面外这一条件。

(2)要证面面垂直,需有线面垂直。

由三棱柱性质易得底面几何中的垂直条件。

充分应用几何体及平面的转化过程中,要注意在面面垂直与线面垂直平面线面垂直;因此有,而侧面,从而,侧面.A A O ,//B A C A B A A 111111CC E OE F C F AC BF CC ABC ⊥⊥⊥⊥(1)由学生上台板书解题过程,(2)教师点拨其出现的问题,及其易错点。

2、练习的中点。

为,==为正三角形,,且底面,如图,三棱柱AC D AB A A BC AA C B A ABC 6A ABC -11111∆⊥()()()DBC AB A ACC D BC BCD C 111111//32-1平面求证:直线;平面求证:平面的体积;求三棱锥⊥由学生自主分析解答,书写完整的解题过程,教师查漏补缺,提醒高考中应注意的问题。

高一数学必修2立体几何 面面垂直的判定与性质

高一数学必修2立体几何 面面垂直的判定与性质

求证:平面A1C⊥平面B1D
E、F分别是AB、BC的中点, 求证: 平面A1C1FE⊥平面B1D G是BB1的中点 求证: 平面A1C1G⊥平面B1D
A1
D1 A D C
F
E B G G G G C1 B1
三、两个平面垂直的性质定理: 1.如果两个平面垂直,则在一个平面 内垂直于它们的交线的直线垂直于另 一个平面.
你发现了什么?
二、两个平面垂直的判定定理: 如果一个平面经过了另一个平面的一 条垂线,那么这两个平面互相垂直.
符号: l
l
α
β l A
线面垂直,则面面垂直
线线垂直线面垂直来自面面垂直应 用 于 生 活
建筑工人砌墙时, 如何使所砌的墙和水平面垂直?
例1:在正方体ABCD—A1B1C1D1中,
面面垂直的判定与性质
淮北一中高一数学备课组
学习目标
1、掌握平面和平面垂直的定义; 2、掌握平面和平面垂直的判定定理;
3、掌握平面和平面垂直的性质定理; 4、掌握判定定理和性质定理的应用。
一、两个平面垂直的定义:
如果两个平面所成的二面角是直角 (即成直二面角),就说这两个平面 互相垂直.
观 察 生 活
证明:过A点作AD⊥SB于D点. ∵平面SAB ⊥ 平面SBC, ∴ AD⊥平面SBC, ∴ AD⊥BC. 又∵ SA ⊥ 平面ABC, ∴SA ⊥ BC. AD∩SA=A ∴BC ⊥ 平面SAB. ∴BC ⊥AB.
S
D A B C
【总结一下★成竹在胸】
为作辅助线提 供了理论依据
三、两个平面垂直的性质定理:
2.如果两个平面垂直,那么经过第一个 平面的一点垂直于第二个平面的直线, 在第一个平面内.

高中数学必修2立体几何专题-线面、面面垂直专题总结

高中数学必修2立体几何专题-线面、面面垂直专题总结
又∵AD⊥BC,∴AD⊥平面SBC.
∵AD平面ABC,
∴平面ABC⊥平面SBC.
证法二:∵SA=SB=SC=a,又 ∠ASB=∠ASC=60°, ∴△ASB,△ASC都是等边三角形. ∴AB=AC=a. 作AD⊥平面BSC于点D, ∵AB=AC=AS, ∴D为△BSC的外心. 又∵△BSC是以BC为斜边的直角三角形,
2 3
.
即CE与底面BCD所成角的正弦值为
2 3
.
【评析】求平面的斜线与平面所成的角的一般方法是: 在斜线上找一具有特殊性的点,过该点向平面作垂线, 连接垂足和斜足,即为斜线在平面上的射影,进而作出 斜线与平面所成的角,再解直角三角形求出线面角的大 小,同时要注意其取值范围.
在三棱锥O—ABC中,三条棱OA,OB,OC两两
又∵CE∩BE=E,
∴SA⊥平面BCE.∵BC平面BCE,
图2-4-2
返回目录
∴SA⊥BC. 又∵AD⊥BC,AD∩AS=A, ∴BC⊥平面SAD.
∵SH 平面SAD,∴SH⊥BC.
又∵SH⊥AD,AD∩BC=D, ∴SH⊥平面ABC.
【评析】证明线面垂直,需先有线线垂直,抓住条件中 两个等腰三角形共用一条边,抓住公共边的中点,通过 作辅助平面,找到所需要的另一条直线.
【分析】欲证面面垂直,需证线面垂直.故找出垂线是关键.
【证明】证法一:如图1-10-4所示,取BC的中点D,连
接AD,SD.
由题意知△ASB与△ASC是等边三角形,则AB=AC,
∴AD⊥BC,SD⊥BC. 令SA=a,在△SBC中,SD=2 a,
2
又AD=AC2 -CD=2 a,2
2
∴AD2+SD2=SA2,即AD⊥SD.

线面平行垂直知识点

线面平行垂直知识点

立体几何知识点总结一、平面通常用一个平行四边形来表示.平面常用希腊字母α、β、γ…或拉丁字母M、N、P来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面AC.在立体几何中,大写字母A,B,C,…表示点,小写字母,a,b,c,…l,m,n,…表示直线,且把直线和平面看成点的集合,因而能借用集合论中的符号表示它们之间的关系,例如:a)A∈l—点A在直线l上;A∉α—点A不在平面α内;b)l⊂α—直线l在平面α内;c)a⊄α—直线a不在平面α内;d)l∩m=A—直线l与直线m相交于A点;e)α∩l=A—平面α与直线l交于A点;f)α∩β=l—平面α与平面β相交于直线l.二、平面的基本性质公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.公理2 如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.公理3 经过不在同一直线上的三个点,有且只有一个平面.根据上面的公理,可得以下推论.推论1 经过一条直线和这条直线外一点,有且只有一个平面.推论2 经过两条相交直线,有且只有一个平面.推论3 经过两条平行直线,有且只有一个平面.公理4 平行于同一条直线的两条直线互相平行三、证题方法四、空间线面的位置关系共面平行—没有公共点(1)直线与直线相交—有且只有一个公共点异面(既不平行,又不相交)直线在平面内—有无数个公共点(2)直线和平面直线不在平面内平行—没有公共点(直线在平面外) 相交—有且只有一公共点(3)平面与平面相交—有一条公共直线(无数个公共点)平行—没有公共点五、异面直线的判定证明两条直线是异面直线通常采用反证法.有时也可用定理“平面内一点与平面外一点的连线,与平面内不经过该点的直线是异面直线”.六、线面平行与垂直的判定(1)两直线平行的判定①定义:在同一个平面内,且没有公共点的两条直线平行.②如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若a∥α,a ∥β④垂直于同一平面的两直线平行,即若a⊥α,b⊥α,则a∥b(线面垂直的性质定理)⑤两平行平面与同一个平面相交,那么两条交线平行,即若α∥β,α∩γ,β∩γ=b,则a∥b(面面平行的性质公理)⑥中位线定理、平行四边形、比例线段……,α∩β=b,则a∥b.(线面平行的判定定理)③平行于同一直线的两直线平行,即若a∥b,b∥c,则a∥c.(公理4)(2)两直线垂直的判定①定义:若两直线成90°角,则这两直线互相垂直.②一条直线与两条平行直线中的一条垂直,也必与另一条垂直.即若b∥c,a⊥b,则a⊥c③一条直线垂直于一个平面,则垂直于这个平面内的任意一条直线.即若a⊥α,b⊂α,a⊥b.④三垂线定理和逆定理:在平面内的一条直线,若和这个平面的一条斜线的射影垂直,则它也和这条斜线垂直.⑤如果一条直线与一个平面平行,那么这条直线与这个平面的垂线垂直.即若a∥α,b⊥α,则a⊥b.(3)直线与平面平行的判定①定义:若一条直线和平面没有公共点,则这直线与这个平面平行.②如果平面外一条直线和这个平面内的一条直线平行,则这条直线与这个平面平行.即若a⊄α,b⊂α,a∥b,则a∥α.(线面平行的判定定理)③两个平面平行,其中一个平面内的直线平行于另一个平面,即若α∥β,l⊂α,则l∥β.(4)直线与平面垂直的判定①定义:若一条直线和一个平面内的任何一条直线垂直,则这条直线和这个平面垂直.②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.即若m⊂α,n⊂α,m∩n=B,l⊥m,l⊥n,则l⊥α.(线面垂直判定定理)③如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.即若l∥a,a⊥α,则l⊥α.④一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面,即若α∥β,l⊥β,则l⊥α.⑤如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面,即若α⊥β,a∩β=α,l⊂β,l⊥a,则l⊥α.(面面垂直的性质定理)(5)两平面平行的判定①定义:如果两个平面没有公共点,那么这两个平面平行,即无公共点⇔α∥β.②如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行,即若a,b⊂α,a∩b=P,a∥β,b ∥β,则α∥β.(面面平行判定定理)推论:一个平面内的两条直线分别平行于另一平面内的两条相交直线,则这两个平面平行,即若a,b⊂α,c,d⊂β,a∩b=P,a∥c,b∥d,则α∥β.(6)两平面垂直的判定①定义:两个平面相交,如果所成的二面角是直二面角,那么这两个平面互相垂直,即二面角α-a-β=90°⇔α⊥β.②如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直,即若l⊥β,l⊂α,则α⊥β.(面面垂直判定定理)七、空间中的各种角等角定理及其推论定理若一个角的两边和另一个角的两边分别平行,并且方向相同,则这两个角相等.推论若两条相交直线和另两条相交直线分别平行,则这两组直线所成的锐角(或直角)相等.1、异面直线所成的角(1)定义:a 、b 是两条异面直线,经过空间任意一点O ,分别引直线a ′∥a,b ′∥b,则a ′和b ′所成的锐角(或直角)叫做异面直线a 和b 所成的角.(2)取值范围:0°<θ≤90°. (3)求解方法①根据定义,通过平移,找到异面直线所成的角θ; ②解含有θ的三角形,求出角θ的大小. 2、直线和平面所成的角——斜线和射影所成的锐角 (1)取值范围0°≤θ≤90° (2)求解方法①作出斜线在平面上的射影,找到斜线与平面所成的角θ. ②解含θ的三角形,求出其大小. 3、二面角及二面角的平面角(1)半平面 直线把平面分成两个部分,每一部分都叫做半平面.(2)二面角 条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个平面叫做二面角的面,即二面角由半平面一棱一半平面组成.若两个平面相交,则以两个平面的交线为棱形成四个二面角.二面角的大小用它的平面角来度量,通常认为二面角的平面角θ的取值范围是0°<θ≤180° (3)二面角的平面角①以二面角棱上任意一点为端点,分别在两个面内作垂直于棱的射线,这两条射线所组成的角叫做二面角的平面角.如图,∠PCD 是二面角α-AB-β的平面角.平面角∠PCD 的大小与顶点C 在棱AB 上的位置无关. ②二面角的平面角具有下列性质:(i)二面角的棱垂直于它的平面角所在的平面,即AB ⊥平面PCD.(ii)从二面角的平面角的一边上任意一点(异于角的顶点)作另一面的垂线,垂足必在平面角的另一边(或其反向延长线)上.(iii)二面角的平面角所在的平面与二面角的两个面都垂直,即平面PCD ⊥α,平面PCD ⊥β. ③找(或作)二面角的平面角的主要方法.(i)定义法 (ii)垂面法 (iii)三垂线法 (Ⅳ)根据特殊图形的性质 (4)求二面角大小的常见方法先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值. 八.空间的各种距离 点到平面的距离(1)定义 面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离. (2)求点面距离常用的方法: 1)直接利用定义求①找到(或作出)表示距离的线段;②抓住线段(所求距离)所在三角形解之.2)体积法其步骤是:①在平面内选取适当三点,和已知点构成三棱锥;②求出此三棱锥的体积V 和所取三点构成三角形的面积S ;③由V=31S ·h ,求出h 即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.直线和平面的距离、平行平面的距离将线面、面面距离转化为点面距离,然后运用解三角形或体积法求解之.空间直线和平面(一)知识结构(二)平行与垂直关系的论证1、线线、线面、面面平行关系的转化:线线∥线面∥面面∥公理4 (a//b,b//ca//c)线面平行判定αβαγβγ//,//==⇒⎫⎬⎭a ba b面面平行判定1a ba ba//,//⊄⊂⇒⎫⎬⎭ααα面面平行性质a ba b Aa b⊂⊂=⇒⎫⎬⎪⎭⎪ααββαβ,//,////线面平行性质aaba b////αβαβ⊂=⇒⎫⎬⎪⎭⎪面面平行性质1αβαβ////aa⊂⇒⎫⎬⎭面面平行性质αγβγαβ//////⎫⎬⎭⇒A bα aβabα2. 线线、线面、面面垂直关系的转化:a a OA a PO a PO a AO⊂⊥⇒⊥⊥⇒⊥αα在内射影则面面垂直判定线面垂直定义l a l a⊥⊂⇒⊥⎫⎬⎭αα面面垂直性质,推论2αβαββα⊥=⊂⊥⇒⊥⎫⎬⎪⎭⎪ b a a b a , αγβγαβγ⊥⊥=⇒⊥⎫⎬⎪⎭⎪ a a面面垂直定义αβαβαβ =--⇒⊥⎫⎬⎭l l ,且二面角成直二面角3. 平行与垂直关系的转化:面面∥面面平行判定2 线面垂直性质2面面平行性质3a b a b //⊥⇒⊥⎫⎬⎭ααa b a b ⊥⊥⇒⎫⎬⎭αα//a a ⊥⊥⇒⎫⎬⎭αβαβ//αβαβ//a a ⊥⊥⎫⎬⎭a4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。

人教A版高中数学必修二课件 《空间直线、平面的垂直》(直线与直线垂直、直线与平面垂直的定义及判定)

人教A版高中数学必修二课件 《空间直线、平面的垂直》(直线与直线垂直、直线与平面垂直的定义及判定)

3.[变条件]本例中的条件“AE⊥PB 于点 E, AF⊥PC 于点 F”,改为“E,F 分别是 AB, PC 的中点,PA=AD”,其他条件不变,求证: EF⊥平面 PCD.
证明:取 PD 的中点 G,连接 AG,FG. 因为 G,F 分别是 PD,PC 的中点, 所以 GF═∥12CD,又 AE═ ∥12CD,所以 GF═ ∥AE, 所以四边形 AEFG 是平行四边形,所以 AG∥EF. 因为 PA=AD,G 是 PD 的中点, 所以 AG⊥PD,所以 EF⊥PD, 易知 CD⊥平面 PAD,AG⊂平面 PAD, 所以 CD⊥AG,所以 EF⊥CD. 因为 PD∩CD=D,所以 EF⊥平面 PCD.
8.6 空间直线、平面的垂直 第1课时直线与直线垂直、直线与平面垂直的定义及判定
第八章 立体几何初步
考点
学习目标
核心素养
会用两条异面直线所成角的
直观想象、逻辑
异面直线所成的 定义,找出或作出异面直线
推理、

所成的角,会在三角形中求简
数学运算
单的异面直线所成的角
第八章 立体几何初步
考点
学习目标
核心素养
所以∠GFE(或其补角)就是异面直线 EF 与 AB 所成的角,EG =GF. 因为 AB⊥CD,所以 EG⊥GF. 所以∠EGF=90°. 所以△EFG 为等腰直角三角形. 所以∠GFE=45°, 即 EF 与 AB 所成的角为 45°.
直线与平面垂直的定义
(1)直线 l⊥平面 α,直线 m⊂α,则 l 与 m 不可能( )
解析:当 l 与 α 内的一条直线垂直时,不能保证 l 与平面 α 垂 直,所以①不正确;当 l 与 α 不垂直时,l 可能与 α 内的无数条 平行直线垂直,所以②不正确,③正确.根据线面垂直的定义, 若 l⊥α,则 l 与 α 内的所有直线都垂直,所以④正确. 答案:③④

高中数学知识点总结(第八章 立体几何 第五节 直线、平面垂直的判定与性质)

高中数学知识点总结(第八章 立体几何 第五节 直线、平面垂直的判定与性质)

第五节 直线、平面垂直的判定与性质一、基础知识1.直线与平面垂直 (1)直线和平面垂直的定义:直线l 与平面α内的任意一条直线都垂直, 就说直线l 与平面α互相垂直.(2)直线与平面垂直的判定定理及性质定理:文字语言 图形语言符号语言判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⎭⎪⎬⎪⎫a ,b ⊂αa ∩b =Ol ⊥a l ⊥b⇒l ⊥α 性质定理 垂直于同一个平面的两条直线平行⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b⎣⎢⎡⎦⎥⎤❶如果一条直线与平面内再多(即无数条)的直线垂直,但这些直线不相交就不能说明这条直线与此平面垂直. 2.平面与平面垂直的判定定理与性质定理文字语言 图形语言符号语言判定定理一个平面过另一个平面的垂线❷,则这两个平面垂直⎭⎪⎬⎪⎫l ⊂βl ⊥α⇒α⊥β 性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直⎭⎪⎬⎪⎫α⊥βl ⊂βα∩β=a l ⊥a ⇒l ⊥α[❷要求一平面只需过另一平面的垂线.]二、常用结论直线与平面垂直的五个结论(1)若一条直线垂直于一个平面,则这条直线垂直于这个平面内的任意直线.(2)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这一条直线与另一个平面也垂直.(5)两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.考点一直线与平面垂直的判定与性质[典例]如图,在四棱锥P­ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.求证:(1)CD⊥AE;(2)PD⊥平面ABE.[证明](1)在四棱锥P­ABCD中,∵P A⊥底面ABCD,CD⊂底面ABCD,∴P A⊥CD,又∵AC⊥CD,且P A∩AC=A,∴CD⊥平面P AC.∵AE⊂平面P AC,∴CD⊥AE.(2)由P A=AB=BC,∠ABC=60°,可得AC=P A.∵E是PC的中点,∴AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,∴AE⊥平面PCD.∵PD⊂平面PCD,∴AE⊥PD.∵P A⊥底面ABCD,AB⊂底面ABCD,∴P A⊥AB.又∵AB⊥AD,且P A∩AD=A,∴AB⊥平面P AD,∵PD⊂平面P AD,∴AB⊥PD.又∵AB∩AE=A,∴PD⊥平面ABE.[解题技法]证明线面垂直的4种方法(1)线面垂直的判定定理:l ⊥a ,l ⊥b ,a ⊂α,b ⊂α,a ∩b =P ⇒l ⊥α. (2)面面垂直的性质定理:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β. (3)性质:①a ∥b ,b ⊥α⇒a ⊥α,②α∥β,a ⊥β⇒a ⊥α. (4)α⊥γ,β⊥γ,α∩β=l ⇒l ⊥γ.(客观题可用) [口诀归纳]线面垂直的关键,定义来证最常见, 判定定理也常用,它的意义要记清. 平面之内两直线,两线相交于一点, 面外还有一直线,垂直两线是条件. [题组训练]1.(2019·安徽知名示范高中联考)如图,在直三棱柱ABC ­A 1B 1C 1中,AB =BC =BB 1,AB 1∩A 1B =E ,D 为AC 上的点,B 1C ∥平面A 1BD .(1)求证:BD ⊥平面A 1ACC 1;(2)若AB =1,且AC ·AD =1,求三棱锥A ­BCB 1的体积. 解: (1)证明:如图,连接ED ,∵平面AB 1C ∩平面A 1BD =ED ,B 1C ∥平面A 1BD , ∴B 1C ∥ED , ∵E 为AB 1的中点, ∴D 为AC 的中点, ∵AB =BC ,∴BD ⊥AC .∵A 1A ⊥平面ABC ,BD ⊂平面ABC ,∴A 1A ⊥BD . 又∵A 1A ,AC 是平面A 1ACC 1内的两条相交直线, ∴BD ⊥平面A 1ACC 1.(2)由AB =1,得BC =BB 1=1,由(1)知AD =12AC ,又AC ·AD =1,∴AC 2=2,∴AC 2=2=AB 2+BC 2,∴AB ⊥BC , ∴S △ABC =12AB ·BC =12,∴V A ­BCB 1=V B 1­ABC =13S △ABC ·BB 1=13×12×1=16.2.如图,S是Rt△ABC所在平面外一点,且SA=SB=SC,D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.证明:(1)如图所示,取AB的中点E,连接SE,DE,在Rt△ABC中,D,E分别为AC,AB的中点.∴DE∥BC,∴DE⊥AB,∵SA=SB,∴SE⊥AB.又SE∩DE=E,∴AB⊥平面SDE.又SD⊂平面SDE,∴AB⊥SD.在△SAC中,∵SA=SC,D为AC的中点,∴SD⊥AC.又AC∩AB=A,∴SD⊥平面ABC.(2)∵AB=BC,∴BD⊥AC,由(1)可知,SD⊥平面ABC,又BD⊂平面ABC,∴SD⊥BD,又SD∩AC=D,∴BD⊥平面SAC.考点二面面垂直的判定与性质[典例](2018·江苏高考)在平行六面体ABCD­A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.[证明](1)在平行六面体ABCD­A1B1C1D1中,AB∥A1B1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD­A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.[解题技法] 证明面面垂直的2种方法 定义法利用面面垂直的定义,即判定两平面所成的二面角为直二面角,将证明面面垂直问题转化为证明平面角为直角的问题定理法 利用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线,把问题转化成证明线线垂直加以解决[题组训练]1.(2019·武汉调研)如图,三棱锥P ­ABC 中,底面ABC 是边长为2的正三角形,P A ⊥PC ,PB =2.求证:平面P AC ⊥平面ABC .证明:取AC 的中点O ,连接BO ,PO . 因为△ABC 是边长为2的正三角形, 所以BO ⊥AC ,BO = 3.因为P A ⊥PC ,所以PO =12AC =1.因为PB =2,所以OP 2+OB 2=PB 2,所以PO ⊥OB . 因为AC ∩OP =O , 所以BO ⊥平面P AC . 又OB ⊂平面ABC , 所以平面P AC ⊥平面ABC .2.(2018·安徽淮北一中模拟)如图,四棱锥P ­ABCD 的底面是矩形,P A ⊥平面ABCD ,E ,F 分别是AB ,PD 的中点,且P A =AD .求证:(1)AF ∥平面PEC ; (2)平面PEC ⊥平面PCD .证明:(1)取PC 的中点G ,连接FG ,EG , ∵F 为PD 的中点,G 为PC 的中点, ∴FG 为△CDP 的中位线, ∴FG ∥CD ,FG =12CD .∵四边形ABCD 为矩形,E 为AB 的中点, ∴AE ∥CD ,AE =12CD .∴FG =AE ,FG ∥AE , ∴四边形AEGF 是平行四边形,∴AF ∥EG ,又EG ⊂平面PEC ,AF ⊄平面PEC ,∴AF∥平面PEC.(2)∵P A=AD,F为PD中点,∴AF⊥PD,∵P A⊥平面ABCD,CD⊂平面ABCD,∴P A⊥CD,又∵CD⊥AD,AD∩P A=A,∴CD⊥平面P AD,∵AF⊂平面P AD,∴CD⊥AF.又PD∩CD=D,∴AF⊥平面PCD.由(1)知EG∥AF,∴EG⊥平面PCD,又EG⊂平面PEC,∴平面PEC⊥平面PCD.[课时跟踪检测]A级1.设a,b是两条不同的直线,α,β是两个不同的平面,则能得出a⊥b的是() A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β解析:选C对于C项,由α∥β,a⊂α可得a∥β,又b⊥β,得a⊥b,故选C.2.(2019·湘东五校联考)已知直线m,l,平面α,β,且m⊥α,l⊂β,给出下列命题:①若α∥β,则m⊥l;②若α⊥β,则m∥l;③若m⊥l,则α⊥β;④若m∥l,则α⊥β.其中正确的命题是()A.①④B.③④C.①②D.①③解析:选A对于①,若α∥β,m⊥α,l⊂β,则m⊥l,故①正确,排除B.对于④,若m∥l,m⊥α,则l⊥α,又l⊂β,所以α⊥β.故④正确.故选A.3.已知P A垂直于以AB为直径的圆所在的平面,C为圆上异于A,B两点的任一点,则下列关系不正确的是()A.P A⊥BC B.BC⊥平面P ACC.AC⊥PB D.PC⊥BC解析:选C由P A⊥平面ACB⇒P A⊥BC,故A不符合题意;由BC⊥P A,BC⊥AC,P A∩AC=A,可得BC⊥平面P AC,所以BC⊥PC,故B、D不符合题意;AC⊥PB显然不成立,故C符合题意.4.如图,在四面体ABCD中,已知AB⊥AC,BD⊥AC,那么点D在平面ABC内的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部解析:选A因为AB⊥AC,BD⊥AC,AB∩BD=B,所以AC⊥平央ABD,又AC⊂平面ABC,所以平面ABC⊥平面ABD,所以点D在平面ABC内的射影H必在直线AB上.5.如图,在正四面体P­ABC中,D,E,F分别是AB,BC,CA的中点,则下面四个结论不成立的是()A.BC∥平面PDFB.DF⊥平面P AEC.平面PDF⊥平面P AED.平面PDE⊥平面ABC解析:选D因为BC∥DF,DF⊂平面PDF,BC⊄平面PDF,所以BC∥平面PDF,故选项A正确.在正四面体中,AE⊥BC,PE⊥BC,AE∩PE=E,所以BC⊥平面P AE,又DF∥BC,则DF⊥平面P AE,从而平面PDF⊥平面P AE.因此选项B、C均正确.6.如图,已知∠BAC=90°,PC⊥平面ABC,则在△ABC,△P AC的边所在的直线中,与PC垂直的直线有________个;与AP垂直的直线有________个.解析:∵PC⊥平面ABC,∴PC垂直于直线AB,BC,AC.∵AB⊥AC,AB⊥PC,AC∩PC=C,∴AB⊥平面P AC,又∵AP⊂平面P AC,∴AB⊥AP,与AP垂直的直线是AB.答案:317.设α和β为不重合的两个平面,给出下列命题:①若α内的两条相交直线分别平行于β内的两条直线,则α∥β;②若α外的一条直线l与α内的一条直线平行,则l∥α;③设α∩β=l,若α内有一条直线垂直于l,则α⊥β;④直线l⊥α的充要条件是l与α内的两条直线垂直.其中所有的真命题的序号是________.解析:①正确;②正确;满足③的α与β不一定垂直,所以③错误;直线l⊥α的充要条件是l与α内的两条相交直线垂直,所以④错误.故所有的真命题的序号是①②.答案:①②8.在直三棱柱ABC­A1B1C1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正确命题的序号是________.解析:如图所示,因为AA1∥平面α,平面α∩平面AA1B1B=EH,所以AA1∥EH.同理AA1∥GF,所以EH∥GF,又ABC­A1B1C1是直三棱柱,易知EH=GF=AA1,所以四边形EFGH是平行四边形,故①正确;若平面α∥平面BB1C1C,由平面α∩平面A1B1C1=GH,平面BCC1B1∩平面A1B1C1=B1C1,知GH∥B1C1,而GH∥B1C1不一定成立,故②错误;由AA1⊥平面BCFE,结合AA1∥EH知EH⊥平面BCFE,又EH⊂平面α,所以平面α⊥平面BCFE,故③正确.答案:①③9.(2019·太原模拟)如图,在四棱锥P­ABCD中,底面ABCD是菱形,∠BAD=60°,P A=PD=AD=2,点M在线段PC上,且PM=2MC,N为AD的中点.(1)求证:AD⊥平面PNB;(2)若平面P AD⊥平面ABCD,求三棱锥P­NBM的体积.解:(1)证明:连接BD.∵P A=PD,N为AD的中点,∴PN⊥AD.又底面ABCD是菱形,∠BAD=60°,∴△ABD为等边三角形,∴BN⊥AD,又PN∩BN=N,∴AD⊥平面PNB.(2)∵P A=PD=AD=2,∴PN=NB= 3.又平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,PN⊥AD,∴PN⊥平面ABCD,∴PN⊥NB,∴S△PNB=12×3×3=32.∵AD⊥平面PNB,AD∥BC,∴BC ⊥平面PNB .又PM =2MC , ∴V P ­NBM =V M ­PNB =23V C ­PNB =23×13×32×2=23.10.如图,在直三棱柱ABC ­A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且B 1D ⊥A 1F ,A 1C 1⊥A 1B 1.求证:(1)直线DE ∥平面A 1C 1F ; (2)平面B 1DE ⊥平面A 1C 1F .证明:(1)在直三棱柱ABC ­A 1B 1C 1中,AC ∥A 1C 1, 在△ABC 中,因为D ,E 分别为AB ,BC 的中点. 所以DE ∥AC ,于是DE ∥A 1C 1,又因为DE ⊄平面A 1C 1F ,A 1C 1⊂平面A 1C 1F , 所以直线DE ∥平面A 1C 1F .(2)在直三棱柱ABC ­A 1B 1C 1中,AA 1⊥平面A 1B 1C 1, 因为A 1C 1⊂平面A 1B 1C 1,所以AA 1⊥A 1C 1,又因为A 1C 1⊥A 1B 1,A 1B 1∩AA 1=A 1,AA 1⊂平面ABB 1A 1,A 1B 1⊂平面ABB 1A 1, 所以A 1C 1⊥平面ABB 1A 1, 因为B 1D ⊂平面ABB 1A 1, 所以A 1C 1⊥B 1D ,又因为B 1D ⊥A 1F ,A 1C 1∩A 1F =A 1,A 1C 1⊂平面A 1C 1F ,A 1F ⊂平面A 1C 1F , 所以B 1D ⊥平面A 1C 1F , 因为直线B 1D ⊂平面B 1DE , 所以平面B 1DE ⊥平面A 1C 1F .B 级1.(2018·全国卷Ⅱ)如图,在三棱锥P ­ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离. 解:(1)证明:因为P A =PC =AC =4,O 为AC 的中点, 所以PO ⊥AC ,且PO =2 3. 连接OB , 因为AB =BC =22AC , 所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.所以PO 2+OB 2=PB 2,所以PO ⊥OB . 又因为AC ∩OB =O ,所以PO ⊥平面ABC . (2)作CH ⊥OM ,垂足为H , 又由(1)可得OP ⊥CH , 所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离.由题设可知OC =12AC =2,CM =23BC =423,∠ACB =45°,所以OM =253,CH =OC ·MC ·sin ∠ACB OM =455.所以点C 到平面POM 的距离为455.2.(2019·河南中原名校质量考评)如图,在四棱锥P ­ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD ,E ,F 分别是CD ,PC 的中点.求证:(1)BE ∥平面P AD ; (2)平面BEF ⊥平面PCD .证明:(1)∵AB ∥CD ,CD =2AB ,E 是CD 的中点, ∴AB ∥DE 且AB =DE , ∴四边形ABED 为平行四边形,∴AD ∥BE ,又BE ⊄平面P AD ,AD ⊂平面P AD , ∴BE ∥平面P AD .(2)∵AB ⊥AD ,∴四边形ABED 为矩形, ∴BE ⊥CD ,AD ⊥CD ,∵平面P AD ⊥底面ABCD ,平面P AD ∩底面ABCD =AD ,P A ⊥AD , ∴P A ⊥底面ABCD , ∴P A ⊥CD ,又P A ∩AD =A , ∴CD ⊥平面P AD ,∴CD ⊥PD , ∵E ,F 分别是CD ,PC 的中点, ∴PD ∥EF ,∴CD ⊥EF ,又EF ∩BE =E , ∴CD ⊥平面BEF ,∵CD ⊂平面PCD ,∴平面BEF ⊥平面PCD .。

立体几何(线、面平行、垂直的有关结论)必修2 立体几何线面关系的判定与性质

立体几何(线、面平行、垂直的有关结论)必修2 立体几何线面关系的判定与性质

立体几何(线面平行、垂直的有关结论)空间中线面平行、垂直关系有关的定理:1、【线面平行的判定】平面外的一条直线和平面内的一条直线平行,则这条直线和这个平面平行。

2、【线面平行的性质】如果一条直线和一个平面平行,经过这条直线的平面和这平面相交,那么这条直线就和两平面的交线平行。

3、如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面平行。

4、如果两个平面平行,其中一个平面内的任意一条直线平行于另一个平面。

5、如果一个平面内的两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。

6、如果两个平行平面同时与第三个平面相交,那么它们的交线平行。

7、一条直线与两条平行直线中的一条直线相垂直,则这条直线也与另一条直线垂直。

8、与同一条直线都垂直的两条直线相互平行。

()9、与同一个平面都垂直的两条直线相互平行。

10、两条平行直线中的一条直线与一个平面相垂直,则另一条直线也垂直于这个平面。

11、两条相互垂直的直线中的一条平行于一个平面,则另一条直线垂直于这个平面。

()12、两条相互垂直的直线中的一条垂直于以个平面,则另一条直线平行于这个平面。

()13、平面外的两条相互垂直的直线中的一条垂直于一个平面,则另一条直线平行于这个平面。

14、一条直线垂直于两个平行平面中的一个平面,那么该直线也垂直于另一个平面。

15、如果两个平面垂直于同一条直线,那么这两个平面平行。

16、两个平面都与另一个平面相垂直,则这两个平面平行。

()17、一个平面垂直于两平行平面中的一个平面,则此平面也垂直于另一个平面。

18、如果一条直线与平面内的两条相交直线都垂直,则这条直线与这个平面垂直。

19、如果一条直线垂直于一个平面,那么这条直线垂直于该平面内的任意一条直线。

20、如果一个平面过另一个平面的一条垂线,则这两个平面互相垂直。

21、如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

【知识归纳】:【典型例题】:【高考小题】:。

高中数学必修2立体几何专题线面垂直典型例题的判定与性质

高中数学必修2立体几何专题线面垂直典型例题的判定与性质

线面垂直●知识点1.直线和平面垂直定义如果一条直线和一个平面内的任何一条直线都垂直,就说这条直线和这个平面垂直.2.线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.判定定理:如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.判定定理:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.3.三垂线定理和它的逆定理.三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直.逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线在该平面上的射影垂直.●题型示例【例1】如图所示,已知点S是平面ABC外一点,∠ABC=90°,SA⊥平面ABC,点A在直线SB和SC上的射影分别为点E、F,求证:EF⊥SC.【解前点津】用分析法寻找解决问题的途径,假设EF⊥SC成立,结合AF⊥SC可推证SC⊥平面AEF,这样SC⊥AE,结合AE⊥SB,可推证AE⊥平面SBC,因此证明AE⊥平面SBC是解决本题的关键环节.由题设SA⊥平面ABC,∠ABC=90°,可以推证BC⊥AE,结合AE⊥SB完成AE⊥平例1题图面SBC的证明.【规范解答】【解后归纳】题设中条件多,图形复杂,结合题设理清图形中基本元素之间的位置关系是解决问题的关键.【例2】已知:M∩N=AB,PQ⊥M于Q,PO⊥N于O,OR⊥M于R,求证:QR⊥AB.【解前点津】由求证想判定,欲证线线垂直,方法有(1)a∥b,a⊥c⇒b⊥c;(2)a⊥α,b⊂α⇒a⊥b;(3)三垂线定理及其逆定理.由已知想性质,知线面垂直,可推出线线垂直或线线平行.【解后归纳】处于非常规位置图形上的三垂线定理或逆定理的应用问题,要抓住“一个面”、“四条线”.所谓“一个面”:就是要确定一个垂面,三条垂线共处于垂面之上.所谓“四条线”:就是垂线、斜线、射影以及平面内的第四条线,这四条线中垂线是关键的一条线,牵一发而动全身,应用时一般可按下面程序进行操作:确定垂面、抓准斜线、作出垂线、连结射影,寻第四条线.【例3】已知如图(1)所示,矩形纸片AA′A′1A1,B、C、B1、C1分别为AA′,A1A′的三等分点,将矩形纸片沿BB1,CC1折成如图(2)形状(正三棱柱),若面对角线AB1⊥BC1,求证:A1C⊥AB1.例3题图解(1)【解前点津】 题设主要条件是AB 1⊥BC ,而结论是A B1⊥A 1C,题设,题断有对答性,可在ABB 1A1上作文章,只要取A 1B1中点D 1,就把异面直线AB 1与BC 1垂直关系转换到ABB 1A1同一平面内AB 1与BD 1垂直关系,这里要感谢三垂线逆定理.自然想到题断A B1与A 1C 垂直用同法(对称原理)转换到同一平面,取AB 中点D 即可,只要证得A1D 垂直于A B1,事实上D BD1A 1,为平行四边形,解题路子清楚了.【解后归纳】 证线线垂直主要途径是:(1)三垂线正逆定理,(2)线面,线线垂直互相转化.利用三垂线正逆定理完成线线归面工作,在平面内完成作解任务.证线线垂直,线面垂直,常常利用线面垂直,线线垂直作为桥梁过渡过来,这种转化思想有普遍意义,利用割补法把几何图形规范化便于应用定义定理和公式,也是不容忽视的常用方法.【例4】 空间三条线段A B,BC ,CD ,AB ⊥BC ,BC ⊥C D,已知AB =3,BC =4,CD =6,则AD 的取值范围是 .【解前点津】 如图,在直角梯形ABCD 1中,C D1=6,AD 1的长是AD 的最小值,其中AH ⊥C D1,AH =B C=4,HD 1=3,∴AD1=5;在直角△AH D2中,CD 2=6,AD 2是A D的最大值为974)36(22222=++=+AH HD【解后归纳】 本题出题形式新颖、灵活性大,很多学生对此类题感到无从入手,其实冷静分析,找出隐藏的条件很容易得出结论.例4题图●对应训练 分阶提升一、基础夯实1.设M 表示平面,a、b 表示直线,给出下列四个命题:①M b M a b a ⊥⇒⎭⎬⎫⊥// ②b a M b M a //⇒⎭⎬⎫⊥⊥ ③⇒⎭⎬⎫⊥⊥b a M a b ∥M ④⇒⎭⎬⎫⊥b a M a //b ⊥M . 其中正确的命题是 ( )A.①② B.①②③ C.②③④ D.①②④2.下列命题中正确的是 ( )A.若一条直线垂直于一个平面内的两条直线,则这条直线垂直于这个平面B.若一条直线垂直于一个平面内的无数条直线,则这条直线垂直于这个平面C.若一条直线平行于一个平面,则垂直于这个平面的直线必定垂直于这条直线D.若一条直线垂直于一个平面,则垂直于这条直线的另一条直线必垂直于这个平面3.如图所示,在正方形ABCD 中,E 、F 分别是AB 、B C的中点.现在沿D E、DF 及EF 把△A DE 、△CDF 和△BEF 折起,使A 、B、C 三点重合,重合后的点记为P.那么,在四面体P —DEF 中,必有 ( )A.D P⊥平面PE F B .DM ⊥平面PEF C.PM ⊥平面DE F D.PF ⊥平面DEF4.设a 、b 是异面直线,下列命题正确的是 ( )A.过不在a、b 上的一点P一定可以作一条直线和a、b 都相交B .过不在a 、b 上的一点P一定可以作一个平面和a 、b 都垂直C.过a一定可以作一个平面与b垂直D.过a一定可以作一个平面与b 平行5.如果直线l ,m 与平面α,β,γ满足:l=β∩γ,l ∥α,m⊂α和m ⊥γ,那么必有 ( ) A.α⊥γ且l ⊥m B.α⊥γ且m ∥β C.m∥β且l ⊥m D.α∥β且α⊥γ6.AB是圆的直径,C 是圆周上一点,PC 垂直于圆所在平面,若B C=1,AC =2,P C=1,则P 到AB的距离为 ( )A.1B.2 C.552 D.553 7.有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;③异面直线a 、b 不垂直,那么过a的任一个平面与b 都不垂直其中正确命题的个数为 ( )A.0B.1 C.2 D.38.d 是异面直线a 、b的公垂线,平面α、β满足a ⊥α,b⊥β,则下面正确的结论是 ( )第3题图A.α与β必相交且交线m ∥d或m 与d重合B.α与β必相交且交线m∥d 但m 与d 不重合C.α与β必相交且交线m 与d 一定不平行D.α与β不一定相交9.设l、m 为直线,α为平面,且l ⊥α,给出下列命题① 若m ⊥α,则m ∥l;②若m ⊥l ,则m∥α;③若m∥α,则m ⊥l ;④若m∥l ,则m ⊥α, 其中真命题...的序号是 ( ) A.①②③ B.①②④ C .②③④ D.①③④10.已知直线l ⊥平面α,直线m 平面β,给出下列四个命题:①若α∥β,则l ⊥m;②若α⊥β,则l ∥m ;③若l∥m,则α⊥β;④若l ⊥m ,则α∥β. 其中正确的命题是 ( )A.③与④B.①与③ C.②与④ D.①与②二、思维激活11.如图所示,△ABC 是直角三角形,AB 是斜边,三个顶点在平面α的同侧,它们在α内的射影分别为A′,B′,C ′,如果△A ′B ′C ′是正三角形,且AA ′=3cm ,B B′=5cm ,CC ′=4cm ,则△A ′B ′C′的面积是 .12.如图所示,在直四棱柱A 1B 1C 1D 1—ABCD 中,当底面四边形ABCD 满足条件 时,有A 1C⊥B 1D1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)13.如图所示,在三棱锥V —AB C中,当三条侧棱VA 、VB 、VC 之间满足条件 时,有VC ⊥AB .(注:填上你认为正确的一种条件即可)三、能力提高14.如图所示,三棱锥V -AB C中,AH ⊥侧面VBC ,且H 是△VB C的垂心,BE 是VC 边上的高.(1)求证:VC ⊥AB ;(2)若二面角E —AB—C 的大小为30°,求VC 与平面AB C所成角的大小.第11题图 第12题图第13题图 第14题图15.如图所示,PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面P AD.(2)求证:MN⊥CD.(3)若∠PDA=45°,求证:MN⊥平面PCD.第15题图16.如图所示,在四棱锥P—ABCD中,底面ABCD是平行四边形,∠BAD=60°,AB=4,AD=2,侧棱PB=15,PD =3.(1)求证:BD ⊥平面P AD.(2)若PD与底面ABCD成60°的角,试求二面角P—BC—A的大小.第16题图17.已知直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=6,M是CC1的中点,求证:AB1⊥A1M.18.如图所示,正方体ABCD—A′B′C′D′的棱长为a,M是AD的中点,N是BD′上一点,且D′N∶NB=1∶2,MC与BD交于P.(1)求证:NP⊥平面ABCD.(2)求平面PNC与平面CC′D′D所成的角.(3)求点C到平面D′MB的距离.第18题图第4课 线面垂直习题解答1.A 两平行中有一条与平面垂直,则另一条也与该平面垂直,垂直于同一平面的两直线平行.2.C 由线面垂直的性质定理可知.3.A 折后DP ⊥PE ,D P⊥PF ,P E⊥PF .4.D 过a 上任一点作直线b ′∥b ,则a,b ′确定的平面与直线b平行.5.A 依题意,m⊥γ且m ⊂α,则必有α⊥γ,又因为l =β∩γ则有l ⊂γ,而m ⊥γ则l⊥m ,故选A.6.D 过P 作PD ⊥A B于D ,连CD ,则CD ⊥AB ,AB =522=+BC AC ,52=⋅=AB BC AC CD , ∴PD =55354122=+=+CD PC . 7.D 由定理及性质知三个命题均正确.8.A 显然α与β不平行.9.D 垂直于同一平面的两直线平行,两条平行线中一条与平面垂直,则另一条也与该平面垂直.10.B ∵α∥β,l⊥α,∴l ⊥m 11.23c m2 设正三角A ′B′C′的边长为a . ∴A C2=a 2+1,BC 2=a 2+1,A B2=a2+4,又AC 2+BC 2=AB 2,∴a 2=2. S△A′B′C ′=23432=⋅a cm 2. 12.在直四棱柱A 1B 1C 1D1—A BCD 中当底面四边形AB CD 满足条件AC ⊥B D(或任何能推导出这个条件的其它条件,例如A BCD 是正方形,菱形等)时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形). 点评:本题为探索性题目,由此题开辟了填空题有探索性题的新题型,此题实质考查了三垂线定理但答案不惟一,要求思维应灵活.13.VC ⊥VA ,VC ⊥AB . 由VC ⊥VA ,VC ⊥AB 知VC ⊥平面V AB .14.(1)证明:∵H 为△V BC 的垂心,∴VC ⊥B E,又AH ⊥平面VBC ,∴BE 为斜线A B在平面VBC 上的射影,∴AB ⊥VC .(2)解:由(1)知VC ⊥A B,VC ⊥BE ,∴VC ⊥平面ABE ,在平面A BE上,作ED⊥AB ,又A B⊥VC ,∴AB ⊥面D EC .∴AB ⊥CD ,∴∠EDC 为二面角E —A B—C 的平面角,∴∠ED C=30°,∵AB ⊥平面VCD ,∴VC 在底面AB C上的射影为CD .∴∠VCD 为VC 与底面ABC 所成角,又VC ⊥A B,VC ⊥BE ,∴VC ⊥面AB E,∴VC ⊥DE ,∴∠CE D=90°,故∠ECD=60°,∴VC 与面A BC 所成角为60°.15.证明:(1)如图所示,取PD 的中点E ,连结AE ,EN ,则有EN∥CD ∥AB ∥AM,E N=21C D=21AB =AM,故AMNE 为平行四边形. ∴MN ∥AE. ∵AE 平面P AD ,MN 平面P AD ,∴MN ∥平面PAD .(2)∵PA ⊥平面ABCD ,∴P A⊥AB .又A D⊥AB ,∴A B⊥平面P A D.∴A B⊥AE ,即AB ⊥MN .又C D∥AB ,∴MN ⊥CD.(3)∵P A ⊥平面ABCD ,∴P A ⊥AD .又∠PDA =45°,E 为PD 的中点.∴AE ⊥P D,即MN ⊥PD .又MN ⊥CD ,∴MN ⊥平面P CD .16.如图(1)证:由已知A B=4,AD =2,∠BAD =60°,故BD 2=AD 2+A B2-2AD ·A Bc os60°=4+16-2×2×4×21=12.又AB 2=AD 2+B D2,∴△A BD是直角三角形,∠AD B=90°,即AD ⊥BD.在△PDB 中,PD =3,PB =15,BD =12,∴PB 2=PD 2+BD 2,故得PD ⊥B D.又P D∩AD =D ,∴BD ⊥平面P AD.(2)由BD ⊥平面P AD ,BD平面A BCD .∴平面P AD ⊥平面A BCD .作PE ⊥AD 于E,又P E平面P AD ,∴PE ⊥平面ABCD ,∴∠PD E是PD 与底面AB CD所成的角.∴∠PD E=60°,∴P E=PD si n60°=23233=⨯.作EF ⊥BC 于F,连PF ,则PF ⊥BF,∴∠PF E是二面角P —BC —A的平面角.又E F=BD =12,在Rt △P EF 中,tan ∠PFE =433223==EF PE .故二面角P —BC—A 的大小为ar ctan 43. 第15题图解第16题图解17.连结AC 1,∵11112263A C CC MC AC ===. ∴Rt △ACC 1∽Rt △MC 1A 1,∴∠AC 1C =∠MA 1C1,∴∠A1MC 1+∠AC 1C =∠A 1M C1+∠MA1C1=90°.∴A1M ⊥AC 1,又ABC -A 1B1C 1为直三棱柱,∴C C1⊥B 1C 1,又B 1C1⊥A1C 1,∴B 1C 1⊥平面AC 1M .由三垂线定理知AB 1⊥A 1M .点评:要证AB 1⊥A 1M,因B 1C 1⊥平面A C1,由三垂线定理可转化成证AC 1⊥A 1M ,而AC 1⊥A 1M 一定会成立.18.(1)证明:在正方形ABCD 中,∵△MPD ∽△C PB ,且MD =21B C, ∴D P∶PB =MD ∶BC =1∶2.又已知D ′N ∶NB =1∶2,由平行截割定理的逆定理得NP∥DD′,又DD ′⊥平面ABCD ,∴NP ⊥平面ABCD .(2)∵N P∥DD ′∥CC ′,∴N P、C C′在同一平面内,CC ′为平面NPC 与平面C C′D ′D 所成二面角的棱. 又由CC ′⊥平面AB CD ,得CC ′⊥CD ,CC ′⊥CM ,∴∠MCD 为该二面角的平面角.在Rt △M CD 中可知∠MCD =arc tan 21,即为所求二面角的大小. (3)由已知棱长为a可得,等腰△MBC 面积S 1=22a ,等腰△MBD ′面积S 2=246a ,设所求距离为h ,即为三棱锥C —D′MB的高.∵三棱锥D ′—BCM 体积为h S D D S 213131='⋅, ∴.3621a S a S h =⋅=。

直线与平面垂直(两个课时)高一数学课件(人教A版2019必修第二册)

直线与平面垂直(两个课时)高一数学课件(人教A版2019必修第二册)
果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此
平面垂直.
m ,n
m nB
l m ,l n


l 五个条件:垂直、垂直、面内、面内、相交


小结
3.点到平面的距离:过一点作垂直于已知平面的直线,则该点与垂
足间的线段,叫做这个点到该平面的垂线段,垂线段的长度叫做这个
复习回顾
回顾2 什么是异面直线所成的角?我们是如何证明空间中直线与直
线垂直?
异面直线所成的角
(1)定义:已知两条异面直线,,经过空间任一点分别作直线 ′ ∥
,′ ∥ ,我们把直线′与′所成的角叫做异面直线a与b所成的角(或夹角).
(2)空间两条直线所成角的取值范围: ° ≤ ≤ ° .
∴ BC1⊥平面A1DCB1
∴A1O为斜线A1B在平面A1DCB1上的射影,∠BA1O为A1B
和平面A1DCB1所成的角
构造三角形进行角度求解!
小结
1.直线与平面垂直的定义:如果直线与平面内的任意一条直线
都垂直,则直线与平面互相垂直,记作 ⊥ .
2.直线与平面垂直的判定定理:直线和平面垂直的判定定理:如
你能得到什么结论?
垂直于同一条直线的两个平面平行
问题6 在 ⊥ 的条件下,如果平面与平面平行,你又能得到什
么结论?
概念生成
1.若 ⊥ ,则与面内的所有直线都垂直.
(若 ⊥ , ⊂ ,则 ⊥ )
2.两条平行直线垂直于同一个平面.
(若//, ⊥ ,则 ⊥ )
3.若a⊥α,则平面外与a垂直的直线//.


新课导入
下面我们研究直线与平面垂直的性质,即探究在直线与平面垂

2023年高中数学基础知识梳理及基础题型归纳-立体几何模块-第四节 直线、平面垂直的判定及其性质

2023年高中数学基础知识梳理及基础题型归纳-立体几何模块-第四节 直线、平面垂直的判定及其性质

第四节直线、平面垂直的判定及其性质【知识点15】直线与平面垂直的判定1.直线与平面垂直的定义画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直2.直线和平面垂直的判定定理典型例题:【例1】(概念的理解)下列命题中,正确的序号是________.①若直线l与平面α内的无数条直线垂直,则l⊥α;②若直线l与平面α内的一条直线垂直,则l⊥α;③若直线l不垂直于平面α,则α内没有与l垂直的直线;④若直线l不垂直于平面α,则α内也可以有无数条直线与l垂直;⑤过一点和已知平面垂直的直线有且只有一条.【反思】(1)对于线面垂直的定义要注意“直线垂直于平面内的所有直线”说法与“直线垂直于平面内无数条直线”不是一回事,后者说法是不正确的,它可以使直线与平面斜交.(2)判定定理中要注意必须是平面内两相交直线.【变式1】(1)若三条直线OA,OB,OC两两垂直,则直线OA垂直于()A.平面OAB B.平面OACC.平面OBC D.平面ABC(2)如果一条直线垂直于一个平面内的:①三角形的两边;②梯形的两边;③圆的两条直径;④正五边形的两边.能保证该直线与平面垂直的是________.(填序号)【变式2】已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中,一定能推出m⊥β的是()A.α∥β,且m⊂αB.m∥n,且n⊥β C.m⊥n,且n⊂βD.m⊥n,且n∥β【变式3】下列说法中,正确的有()①如果一条直线垂直于平面内的两条直线,那么这条直线和这个平面垂直;②过直线l外一点P,有且仅有一个平面与l垂直;③如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面;④垂直于角的两边的直线必垂直角所在的平面;⑤过点A垂直于直线a的所有直线都在过点A垂直于a的平面内.A.2个B.3个C.4个D.5个例2(线面垂直的判定)如图,在三棱锥S-ABC中,∠ABC=90°,D是AC的中点,且SA=SB=SC.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.【反思】(1)利用线面垂直的判定定理证明线面垂直的步骤①在这个平面内找两条直线,使它们和这条直线垂直;②确定这个平面内的两条直线是相交的直线;③根据判定定理得出结论.(2)平行转化法(利用推论):①a∥b,a⊥α⇒b⊥α;②α∥β,a⊥α⇒a⊥β.【变式1】如图,正方体ABCD-A1B1C1D1的棱长为2.求证:AC⊥B1D;【变式2】如图所示,直三棱柱ABC-A1B1C1的底面ABC为等腰直角三角形,∠ACB=90°,C点到AB1的距离为CE,D为AB的中点.求证:(1)CD⊥AA1;(2)AB1⊥平面CED.【练习3】如图,在四棱锥P-ABCD中,底面ABCD是矩形,P A⊥平面ABCD,AP=AB=2,BC=22,E,F分别是AD,PC的中点.证明:PC⊥平面BEF.知识点【能力提升思考】已知∠BAC在平面α内,P∠α,∠PAB=∠PAC.求证:点P在平面α内的射影在∠BAC的平分线上.【变式1】如图所示,在斜三棱柱ABC—A1B1C1中,∠BAC=90°,BC1⊥AC,C1H⊥AB,证明:点H是C1在平面ABC内的射影.【反思】(1)求直线和平面所成角的步骤①寻找过斜线上一点与平面垂直的直线;②连结垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角即为所求的角;③把该角归结在某个三角形中,通过解三角形,求出该角.(2)在上述步骤中,其中作角是关键,而确定斜线在平面内的射影是作角的关键,几何图形的特征是找射影的依据,图形中的特殊点是突破口.【知识点16】直线与平面所成的角典例讲解:【例1】(直线与平面所成的角)如图,在正方体ABCD-A1B1C1D1中,(1)求A1B与平面AA1D1D所成的角;(2)求A1B与平面BB1D1D所成的角.【反思】求直线与平面所成角的步骤:(1)寻找过斜线上一点与平面垂直的直线.(2)连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角即为所求的角.(3)把该角归结在某个三角形中,通过解三角形,求出该角.【变式1】如图所示,AB是圆柱的母线,BD是圆柱底面圆的直径,C是底面圆周上一点,且AB=BC=2,∠CBD=45°,求直线BD与平面ACD所成角的大小.【变式2】如图,已知∠BOC在平面α内,OA是平面α的斜线,且∠AOB=∠AOC=60°,OA=OB=OC=1,BC=2,求OA与平面α所成的角的大小.【思考1】把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点棱锥体积最大时,直线BD和平面ABC所成的角的大小为()A.90° B.60° C.45° D.30°【变式1】如图所示,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是()A.AC⊥SBB.AB∥平面SCDC.SA与平面SBD所成的角等于SC与平面SBD所成的角D.AB与SC所成的角等于DC与SA所成的角【例4】(综合应用)如图,P A⊥矩形ABCD所在的平面,M,N分别是AB,PC的中点.(1)求证:MN∥平面P AD;(2)若PD与平面ABCD所成的角为45°,求证:MN⊥平面PCD.【方法小结】1.直线和平面垂直的判定方法:(1)利用线面垂直的定义.(2)利用线面垂直的判定定理.(3)利用下面两个结论:①若a∥b,a⊥α,则b⊥α;②若α∥β,a⊥α,则a⊥β.2.线线垂直的判定方法:(1)异面直线所成的角是90°.(2)线面垂直,则线线垂直.3.求线面角的常用方法:(1)直接法(一作(或找)二证(或说)三计算).(2)转移法(找过点与面平行的线或面).(3)等积法(三棱锥变换顶点,属间接求法).【知识点17】距离问题典型例题:【例1】如图,已知AB是圆O的直径,C为圆上一点,AB=2,AC=1,P为∠O所在平面外一点,且PA垂直于圆O所在平面,PB与平面ABC所成的角为45°.(1)求证:BC∠平面PAC;(2)求点A到平面PBC的距离.【变式1】已知△ABC 的三条边长分别是5,12,13,点P 到A ,B ,C 三点的距离都等于7,则点P 到平面ABC 的距离为____【例2】如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点.(1)证明:PB //平面AEC ; (2)设1AP =,3AD =,三棱锥P ABD -的体积34V =,求A 到平面PBC 的距离.【反思】 求点到平面距离的方法总结:PA BCD E(1)过已知点作出平面的垂线段是关键. 作垂线段通常要借助于垂面,然后利用面面垂直性质定理作出平面的垂线.(2)作出垂线段后,通常利用等面积法求得距离.【变式1】如图,直四棱柱1111ABCD A B C D -中,//AB CD ,AD AB ⊥,2AB =,2AD =,1=3AA ,E 为CD 上一点,1DE =,3EC =.(1)证明:BE ⊥平面11BB C C ; (2)求点1B 到平面11EA C 的距离.【反思】 求点到平面距离的方法总结:(1)当直接作出垂线段比较困难时,可以考虑利用等体积法求距离. (2)用等体积法求距离,一般用三棱锥体积相等来求解.(3)可以用线面平行关系,转化到一个更容易求解的三棱锥去求距离;也可以利用比例关系,化为其他点到平面的距离来求解.【例题3】如图,在长方体1111ABCD A B C D -中,2AB =,1AD =,11A A =.ABCD EA 1B 1C 1D 1(1)证明:直线1BC 平行于平面1D AC ; (2)求直线1BC 到平面1D AC 的距离.【反思】 求直线到平面距离的方法总结:(1)求线面距离,根据直线上的点到平面距离相等,所以可以转化为点面距离来求解. (2)在转化为点面距的时候,选择合适的点会对解题有促进作用.【变式1】在直三棱柱111ABC -A B C 中,90 ABC =∠︒,11,2AB =BC =BB =,求: (1)异面直线11B C 与1A C 所成角的余弦值; (2)直线11B C 到平面BC A 1的距离.【思考】已知在直三棱柱111ABC A B C -中,4AB =,3AC BC ==,D 为AB 的中点.求异面直线1CC 和AB 的距离;ABCD A 1B 1C 1D 1ACBA 1B 1C 1C1A1B1CA BD【感悟】求两条异面直线距离的方法总结:(1)利用图形关系作出两条异面直线的公垂线,是求两异面直线距离的基本方法,但难度较大.(2)过两条异面直线中的一条直线作另一条直线的平行线,构造线面平行,将异面直线距离化为线面距离,进而转化为点面距离,是求异面直线距离的常用方法.(3)如果两条异面直线分别在两个互相平行的平面内,可以转化为求两平行平面的距离,再化为点面距离.【知识点18】二面角的概念【例1】(概念的理解)有下列结论:①两个相交平面组成的图形叫作二面角;②异面直线a,b分别和一个二面角的两个面垂直,则a,b所成的角与这个二面角的平面角相等或互补;③二面角的平面角是从棱上一点出发,分别在两个面内作射线所成的角;④二面角的大小与其平面角的顶点在棱上的位置没有关系.其中正确的是()A.①③B.②④C.③④D.①②【例2】如图,已知Rt△ABC,斜边BC⊂α,点A∉α,AO⊥α,O为垂足,∠ABO=30°,∠ACO=45°,求二面角A-BC-O的大小.【反思】(1)定义法:在二面角的棱上找一点,在两个半平面内过该点分别作垂直于棱的射线.(2)垂面法:过棱上一点作与棱垂直的平面,该平面与二面角的两个半平面形成交线,这两条射线(交线)所成的角,即为二面角的平面角.(3)垂线法:利用线面垂直的性质来寻找二面角的平面角,这是最常用也是最有效的一种方法.(1)定义:从一条直线出发的两个半平面所组成的图形.(2)相关概念:①这条直线叫做二面角的棱,②两个半平面叫做二面角的面.(3)画法:(4)记法:二面角α-l-β或α-AB-β或P-l-Q或P-AB-Q.(5)二面角的平面角:若有①O∈l;②OA⊂α,OB⊂β;③OA⊥l,OB⊥l,则二面角α-l -β的平面角是∠AOB.【变式1】如图,AB 是⊙O 的直径,P A 垂直于⊙O 所在的平面,C 是圆周上的一点,且P A =AC ,求二面角P -BC -A 的大小.【变式2】在正方体ABCD -A 1B 1C 1D 1中,截面A 1BD 与底面ABCD 所成二面角A 1-BD -A 的正切值为( ) A.32 B.22C. 2D.3【思考1】已知在直三棱柱111ABC A B C -中,4AB =,3AC BC ==,D 为AB 的中点.(1)求异面直线1CC 和AB 的距离;(2)若11AB A C ⊥,求二面角11A CD B --的平面角的余弦值.C1A1B1CA BD【变式1】如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.(1)证明:D1E⊥A1D;(2)求AE为何值时,二面角D1-EC-D的大小为45°?【方法小结】1.求二面角大小的步骤简称为“一作二证三求”.【知识点19】平面与平面垂直(1)平面与平面垂直①定义:一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.②画法:③记作:α⊥β.(2)判定定理文字语言一个平面过另一个平面的垂线,则这两个平面垂直图形语言符号语言l⊥α,l⊂β⇒α⊥β【例1】(概念理解)下列不能确定两个平面垂直的是()A.两个平面相交,所成二面角是直二面角B.一个平面垂直于另一个平面内的一条直线C.一个平面经过另一个平面的一条垂线D.平面α内的直线a垂直于平面β内的直线b【例2】已知直线m,n与平面α,β,给出下列三个结论:①若m∥α,n∥α,则m∥n;②若m∥α,n⊥α,则m⊥n;③若m⊥α,m∥β,则α⊥β.其中正确结论的个数是()A.0 B.1 C.2 D.3【变式1】过两点与一个已知平面垂直的平面()A.有且只有一个B.有无数个C .有且只有一个或无数个D .可能不存在【变式2】α,β是两个不同的平面,m ,n 是平面α及β之外的两条不同直线,给出四个论断:①m ⊥n ;②α⊥β;③n ⊥β;④m ⊥α.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题_____.【例2】(证明面面垂直)如图,在四棱锥P -ABCD 中,P A ⊥CD ,AD ∥BC ,∠ADC =∠P AB =90°,BC =CD =12AD .(1)在平面P AD 内找一点M ,使得直线CM ∥平面P AB ,并说明理由. (2)证明:平面P AB ⊥平面PBD .【延申变式1】如图,在四棱锥P -ABCD 中,P A 垂直于矩形ABCD 所在的平面,试证明:平面PCD ⊥平面P AD .【延申变式2】如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,底面ABCD 是菱形,PB =BC ,M 是PC 中点,试证明:平面MBD ⊥平面PCD .【反思】证明面面垂直常用的方法(1)定义法:即说明两个半平面所成的二面角是直二面角.(2)判定定理法:在其中一个平面内寻找一条直线与另一个平面垂直,即把问题转化为线面垂直.(3)性质法:两个平行平面中的一个垂直于第三个平面,则另一个也垂直于此平面. 【变式1】 如图,在三棱柱ABC -A 1B 1C 1中,侧棱垂直于底面,∠ACB =90°,AC =12AA 1,D 是棱AA 1的中点.证明:平面BDC 1⊥平面BDC .【变式2】如图,四棱锥P -ABCD 的底面ABCD 为正方形,P A ⊥底面ABCD ,AC ,BD 交于点E,F是PB的中点.求证:(1)EF∥平面PCD;(2)平面PBD⊥平面P AC.【思考3】如图所示,在正三棱柱ABC-A1B1C1中,E为BB1的中点,求证:截面A1CE⊥侧面ACC1A1.【方法小结】平面与平面垂直的判定定理的应用思路(1)本质:通过直线与平面垂直来证明平面与平面垂直,即线面垂直⇒面面垂直.(2)证题思路:处理面面垂直问题转化为处理线面垂直问题,进一步转化为处理线线垂直问题来解决.【能力提升】垂直问题难点突破专题【例1】(空间位置关系相关定理)如图,PA⊥平面ABCD,AD//BC,AD=2BC,AB⊥BC,点E为PD中点.(1)求证:AB⊥PD;(2)求证:CE//平面PAB.【变式1】如图,在三棱柱111ABC A B C -中,平面11A ACC ⊥平面ABC , AB =BC =2,∠ACB =30°AA 1=3, 11,BC A C E ⊥为AC 的中点.求证: 1A C ⊥平面1C EB ;求二面角1A AB C --的余弦值.【例2】(数量关系)如图,三棱锥P ABC -中,PB ⊥底面ABC ,2PB BC ==,1AC =,AB = E 为PC 的中点,点F 在PA 上,且2PF FA =.(1)求证:平面PAC ⊥平面BEF ;【变式2】已知多面体ABCDEF 中,四边形ABCD 为平行四边形, EF CE ⊥,且AC =, 1AE EC ==, 2BC EF =, //AD EF . (1)求证:平面ACE ⊥平面ADEF ;【例3】在三棱柱111ABC A B C -中,已知侧棱1CC ⊥底面,ABC M 为BC 的中点,13,2,AC AB BC CC ===.(1)证明: 1B C ⊥平面1AMC ;(2)求点1A 到平面1AMC 的距离.【变式3】.如图,直三棱柱(侧棱与底面垂直的棱柱)ABC ﹣A 1B 1C 1中,点G 是AC 的中点.(1)求证:B 1C ∥平面 A 1BG ;(2)若AB=BC , 1AC ,求证:AC 1⊥A 1B .【例4】(几何图形的特征).如图,在多面体ABCDFE中,四边形ADFE是正方形,在等腰梯形ABCD中,AD∥BC,AB=CD=AD=1,BC=2,G为BC中点,平面ADFE⊥平面ADCB.(1)证明:AC⊥BE;(2)求三棱锥A−GFC的体积.-中,PD⊥底面ABCD,底面ABCD为菱形,【变式4】已知四棱锥P ABCD=∠=,E为AB的中点.AD DAB2,60(1)证明:平面PAB⊥平面PED;(2)若PD=,求E到平面PBC的距离.-中,底面ABCD为矩形,PA⊥平面【例5】(存在性问题). 如图,四棱锥P ABCDABCD,PA=AD=1,AB=√3,点E为PD的中点,点F在棱DC上移动.(1)当点F为DC的中点时,试判断EF与平面PAC的位置关系,并说明理由;⊥.(2)求证:无论点F在DC的何处,都有PF AE。

人教高中数学必修二直线、平面垂直的判定与性质 三垂线定理 课件

人教高中数学必修二直线、平面垂直的判定与性质 三垂线定理 课件

怎样的结果?命题一定成立吗?
结论:a⊥OA
P
线斜垂直
线射垂直
逆定理
O α
定理
线射垂直
线斜垂直
逆定理
a
A
人教高中数学必修二直线、平面垂直 的判定 与性质 三垂线定理 课件
人教高中数学必修二直线、平面垂直 的判定 与性质 三垂线定理 课件
例1:如图,在正方体中,O是AC与BD的交点,直线D1O与AC
垂直吗?说明你的理由。
射影OA和a直线之间的垂直关系
α
O
2、直线a可以移动,但只能在平面内移
动。因此,直线a和斜线PA可以相交也
可以异面。
P
3、三垂线定理的实质是平面的一条斜 线和平面内的一条直线垂直的判定定理。
O α
a
A
a
A
人教高中数学必修二直线、平面垂直 的判定 与性质 三垂线定理 课件
新知探究 • 逆定理
思考:
如果将定理中的条件a⊥OA改成a⊥PA,你会得到
器和皮尺作测量工具,能否求出电塔顶与道路的距离?
解:在道边取一点C,使BC与道边所成水平角等于90°, 再在道边取一点D,使水平角CDB等于45°, 测得C、D的距离等于20m A
B
人教高中数学必修二直线、平面垂直 的判定 与性质 三垂线定理 课件
90°
C
45°
D
人教高中数学必修二直线、平面垂直 的判定 与性质 三垂线定理 课件
5. 这是一篇托物言志的铭文,本文言 简义丰 、讲究 修辞。 文章骈 散结合 ,以骈 句为主 ,句式 整齐, 节奏分 明,音 韵和谐 。
6.了解和名著有关的作家作品及相关 的诗句 、名言 、成语 和歇后 语等, 能按要 求向他 人推介 某部文 学名著 。

高中数学立体几何专题线面垂直典型例题的判定与性质

高中数学立体几何专题线面垂直典型例题的判定与性质

线面垂直●知识点1.直线和平面垂直定义如果一条直线和一个平面内的任何一条直线都垂直,就说这条直线和这个平面垂直.2.线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.判定定理:如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.判定定理:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.3.三垂线定理和它的逆定理.三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直.逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线在该平面上的射影垂直.●题型示例【例1】如图所示,已知点S是平面ABC外一点,∠ABC=90°,SA⊥平面ABC,点A在直线SB和SC上的射影分别为点E、F,求证:EF⊥SC.【解前点津】用分析法寻找解决问题的途径,假设EF⊥SC成立,结合AF⊥SC可推证SC⊥平面AEF,这样SC⊥AE,结合AE⊥SB,可推证AE⊥平面SBC,因此证明AE⊥平面SBC是解决本题的关键环节.由题设SA⊥平面ABC,∠ABC=90°,可以推证BC⊥AE,结合AE⊥SB完成AE⊥平例1题图面SBC的证明.【规范解答】【解后归纳】题设中条件多,图形复杂,结合题设理清图形中基本元素之间的位置关系是解决问题的关键.【例2】已知:M∩N=AB,PQ⊥M于Q,PO⊥N于O,OR⊥M于R,求证:QR⊥AB.【解前点津】由求证想判定,欲证线线垂直,方法有(1)a∥b,a⊥c⇒b⊥c;(2)a⊥α,b⊂α⇒a ⊥b;(3)三垂线定理及其逆定理.由已知想性质,知线面垂直,可推出线线垂直或线线平行.【解后归纳】处于非常规位置图形上的三垂线定理或逆定理的应用问题,要抓住“一个面”、“四条线”.所谓“一个面”:就是要确定一个垂面,三条垂线共处于垂面之上.所谓“四条线”:就是垂线、斜线、射影以及平面内的第四条线,这四条线中垂线是关键的一条线,牵一发而动全身,应用时一般可按下面程序进行操作:确定垂面、抓准斜线、作出垂线、连结射影,寻第四条线.【例3】已知如图(1)所示,矩形纸片AA′A′1A1,B、C、B1、C1分别为AA′,A1A′的三等分点,将矩形纸片沿BB1,CC1折成如图(2)形状(正三棱柱),若面对角线AB1⊥BC1,求证:A1C⊥AB1.例3题图解(1)【解前点津】 题设主要条件是AB 1⊥BC ,而结论是AB 1⊥A 1C ,题设,题断有对答性,可在ABB 1A 1上作文章,只要取A 1B 1中点D 1,就把异面直线AB 1与BC 1垂直关系转换到ABB 1A 1同一平面内AB 1与BD 1垂直关系,这里要感谢三垂线逆定理.自然想到题断AB 1与A 1C 垂直用同法(对称原理)转换到同一平面,取AB 中点D 即可,只要证得A 1D 垂直于AB 1,事实上DBD 1A 1,为平行四边形,解题路子清楚了.【解后归纳】 证线线垂直主要途径是:(1)三垂线正逆定理,(2)线面,线线垂直互相转化.利用三垂线正逆定理完成线线归面工作,在平面内完成作解任务.证线线垂直,线面垂直,常常利用线面垂直,线线垂直作为桥梁过渡过来,这种转化思想有普遍意义,利用割补法把几何图形规范化便于应用定义定理和公式,也是不容忽视的常用方法.【例4】 空间三条线段AB ,BC ,CD ,AB ⊥BC ,BC ⊥CD ,已知AB =3,BC =4,CD =6,则AD 的取值范围是 .【解前点津】 如图,在直角梯形ABCD 1中,CD 1=6,AD 1的长是AD 的最小值,其中AH ⊥CD 1,AH =BC =4,HD 1=3,∴AD 1=5;在直角△AHD 2中,CD 2=6,AD 2是AD 的最大值为974)36(22222=++=+AH HD【解后归纳】 本题出题形式新颖、灵活性大,很多学生对此类题感到无从入手,其实冷静分析,找出隐藏的条件很容易得出结论.例4题图●对应训练 分阶提升一、基础夯实1.设M 表示平面,a 、b 表示直线,给出下列四个命题:①M b M a b a ⊥⇒⎭⎬⎫⊥// ②b a M b M a //⇒⎭⎬⎫⊥⊥ ③⇒⎭⎬⎫⊥⊥b a M a b ∥M ④⇒⎭⎬⎫⊥b a M a //b ⊥M . 其中正确的命题是 ( )A.①②B.①②③C.②③④D.①②④2.下列命题中正确的是 ( )A.若一条直线垂直于一个平面内的两条直线,则这条直线垂直于这个平面B.若一条直线垂直于一个平面内的无数条直线,则这条直线垂直于这个平面C.若一条直线平行于一个平面,则垂直于这个平面的直线必定垂直于这条直线D.若一条直线垂直于一个平面,则垂直于这条直线的另一条直线必垂直于这个平面3.如图所示,在正方形ABCD 中,E 、F 分别是AB 、BC 的中点.现在沿DE 、DF 及EF 把△ADE 、△CDF 和△BEF 折起,使A 、B 、C 三点重合,重合后的点记为P .那么,在四面体P —DEF 中,必有 ( )A.DP ⊥平面PEFB.DM ⊥平面PEFC.PM ⊥平面DEFD.PF ⊥平面DEF4.设a 、b 是异面直线,下列命题正确的是 ( )A.过不在a 、b 上的一点P 一定可以作一条直线和a 、b 都相交B.过不在a 、b 上的一点P 一定可以作一个平面和a 、b 都垂直C.过a 一定可以作一个平面与b 垂直D.过a 一定可以作一个平面与b 平行5.如果直线l ,m 与平面α,β,γ满足:l =β∩γ,l ∥α,m ⊂α和m ⊥γ,那么必有 ( )A.α⊥γ且l ⊥mB.α⊥γ且m ∥βC.m ∥β且l ⊥mD.α∥β且α⊥γ6.AB 是圆的直径,C 是圆周上一点,PC 垂直于圆所在平面,若BC =1,AC =2,PC =1,则P 到AB 的距离为 ( )A.1B.2C.552D.553 7.有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;③异面直线a 、b 不垂直,那么过a 的任一个平面与b 都不垂直其中正确命题的个数为 ( )A.0B.1C.2D.38.d 是异面直线a 、b 的公垂线,平面α、β满足a ⊥α,b ⊥β,则下面正确的结论是 ( )第3题图A.α与β必相交且交线m ∥d 或m 与d 重合B.α与β必相交且交线m ∥d 但m 与d 不重合C.α与β必相交且交线m 与d 一定不平行D.α与β不一定相交9.设l 、m 为直线,α为平面,且l ⊥α,给出下列命题① 若m ⊥α,则m ∥l ;②若m ⊥l ,则m ∥α;③若m ∥α,则m ⊥l ;④若m ∥l ,则m ⊥α, 其中真命题...的序号是 ( ) A.①②③ B.①②④ C.②③④ D.①③④10.已知直线l ⊥平面α,直线m 平面β,给出下列四个命题:①若α∥β,则l ⊥m ;②若α⊥β,则l ∥m ;③若l ∥m ,则α⊥β;④若l ⊥m ,则α∥β. 其中正确的命题是 ( )A.③与④B.①与③C.②与④D.①与②二、思维激活11.如图所示,△ABC 是直角三角形,AB 是斜边,三个顶点在平面α的同侧,它们在α内的射影分别为A ′,B ′,C ′,如果△A ′B ′C ′是正三角形,且AA ′=3cm ,BB ′=5cm ,CC ′=4cm ,则△A ′B ′C ′的面积是 .12.如图所示,在直四棱柱A 1B 1C 1D 1—ABCD 中,当底面四边形ABCD 满足条件 时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)13.如图所示,在三棱锥V —ABC 中,当三条侧棱VA 、VB 、VC 之间满足条件 时,有VC ⊥AB .(注:填上你认为正确的一种条件即可)三、能力提高14.如图所示,三棱锥V -ABC 中,AH ⊥侧面VBC ,且H 是△VBC 的垂心,BE 是VC 边上的高.(1)求证:VC ⊥AB ;(2)若二面角E —AB —C 的大小为30°,求VC 与平面ABC所成角的大小.第11题图 第12题图第13题图 第14题图15.如图所示,P A⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面P AD.(2)求证:MN⊥CD.(3)若∠PDA=45°,求证:MN⊥平面PCD.第15题图16.如图所示,在四棱锥P—ABCD中,底面ABCD是平行四边形,∠BAD=60°,AB=4,AD =2,侧棱PB=15,PD=3.(1)求证:BD⊥平面P AD.(2)若PD与底面ABCD成60°的角,试求二面角P—BC—A的大小.第16题图17.已知直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=6,M是CC1的中点,求证:AB1⊥A1M.18.如图所示,正方体ABCD—A′B′C′D′的棱长为a,M是AD的中点,N是BD′上一点,且D′N∶NB=1∶2,MC与BD交于P.(1)求证:NP⊥平面ABCD.(2)求平面PNC与平面CC′D′D所成的角.(3)求点C到平面D′MB的距离.第18题图第4课 线面垂直习题解答1.A 两平行中有一条与平面垂直,则另一条也与该平面垂直,垂直于同一平面的两直线平行.2.C 由线面垂直的性质定理可知.3.A 折后DP ⊥PE ,DP ⊥PF ,PE ⊥PF .4.D 过a 上任一点作直线b ′∥b ,则a ,b ′确定的平面与直线b 平行.5.A 依题意,m ⊥γ且m ⊂α,则必有α⊥γ,又因为l =β∩γ则有l ⊂γ,而m ⊥γ则l ⊥m ,故选A.6.D 过P 作PD ⊥AB 于D ,连CD ,则CD ⊥AB ,AB =522=+BC AC ,52=⋅=AB BC AC CD , ∴PD =55354122=+=+CD PC . 7.D 由定理及性质知三个命题均正确.8.A 显然α与β不平行.9.D 垂直于同一平面的两直线平行,两条平行线中一条与平面垂直,则另一条也与该平面垂直.10.B ∵α∥β,l ⊥α,∴l ⊥m 11.23cm 2 设正三角A ′B ′C ′的边长为a . ∴AC 2=a 2+1,BC 2=a 2+1,AB 2=a 2+4,又AC 2+BC 2=AB 2,∴a 2=2. S △A ′B ′C ′=23432=⋅a cm 2. 12.在直四棱柱A 1B 1C 1D 1—ABCD 中当底面四边形ABCD 满足条件AC ⊥BD (或任何能推导出这个条件的其它条件,例如ABCD 是正方形,菱形等)时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形). 点评:本题为探索性题目,由此题开辟了填空题有探索性题的新题型,此题实质考查了三垂线定理但答案不惟一,要求思维应灵活.13.VC ⊥VA ,VC ⊥AB . 由VC ⊥VA ,VC ⊥AB 知VC ⊥平面VAB .14.(1)证明:∵H 为△VBC 的垂心,∴VC ⊥BE ,又AH ⊥平面VBC ,∴BE 为斜线AB 在平面VBC 上的射影,∴AB ⊥VC .(2)解:由(1)知VC ⊥AB ,VC ⊥BE ,∴VC ⊥平面ABE ,在平面ABE 上,作ED ⊥AB ,又AB ⊥VC ,∴AB ⊥面DEC .∴AB ⊥CD ,∴∠EDC 为二面角E —AB —C 的平面角,∴∠EDC =30°,∵AB ⊥平面VCD ,∴VC 在底面ABC 上的射影为CD .∴∠VCD 为VC 与底面ABC 所成角,又VC ⊥AB ,VC ⊥BE ,∴VC ⊥面ABE ,∴VC ⊥DE ,∴∠CED =90°,故∠ECD=60°,∴VC 与面ABC 所成角为60°.15.证明:(1)如图所示,取PD 的中点E ,连结AE ,EN ,则有EN ∥CD ∥AB ∥AM ,EN =21CD =21AB =AM ,故AMNE 为平行四边形. ∴MN ∥AE .∵AE 平面P AD ,MN 平面P AD ,∴MN ∥平面P AD .(2)∵P A ⊥平面ABCD ,∴P A ⊥AB .又AD ⊥AB ,∴AB ⊥平面P AD .∴AB ⊥AE ,即AB ⊥MN .又CD ∥AB ,∴MN ⊥CD .(3)∵P A ⊥平面ABCD ,∴P A ⊥AD .又∠PDA =45°,E 为PD 的中点.∴AE ⊥PD ,即MN ⊥PD .又MN ⊥CD ,∴MN ⊥平面PCD .16.如图(1)证:由已知AB =4,AD =2,∠BAD =60°,故BD 2=AD 2+AB 2-2AD ·AB cos60°=4+16-2×2×4×21=12.又AB 2=AD 2+BD 2,∴△ABD 是直角三角形,∠ADB =90°,即AD ⊥BD .在△PDB 中,PD =3,PB =15,BD =12,∴PB 2=PD 2+BD 2,故得PD ⊥BD .又PD ∩AD =D ,∴BD ⊥平面P AD .(2)由BD ⊥平面P AD ,BD 平面ABCD .∴平面P AD ⊥平面ABCD .作PE ⊥AD 于E ,又PE 平面P AD ,∴PE ⊥平面ABCD ,∴∠PDE 是PD 与底面ABCD 所成的角.∴∠PDE =60°,∴PE =PD sin60°=23233=⨯.作EF ⊥BC 于F ,连PF ,则PF ⊥BF ,∴∠PFE 是二面角P —BC —A 的平面角.又EF =BD =12,在Rt △PEF 中,tan ∠PFE =433223==EF PE .故二面角P —BC —A 的大小为arctan 43. 第15题图解第16题图解17.连结AC 1,∵11112263A C CC MC AC ===. ∴Rt △ACC 1∽Rt △MC 1A 1,∴∠AC 1C =∠MA 1C 1,∴∠A 1MC 1+∠AC 1C =∠A 1MC 1+∠MA 1C 1=90°.∴A 1M ⊥AC 1,又ABC -A 1B 1C 1为直三棱柱,∴CC 1⊥B 1C 1,又B 1C 1⊥A 1C 1,∴B 1C 1⊥平面AC 1M .由三垂线定理知AB 1⊥A 1M .点评:要证AB 1⊥A 1M ,因B 1C 1⊥平面AC 1,由三垂线定理可转化成证AC 1⊥A 1M ,而AC 1⊥A 1M 一定会成立.18.(1)证明:在正方形ABCD 中,∵△MPD ∽△CPB ,且MD =21BC , ∴DP ∶PB =MD ∶BC =1∶2.又已知D ′N ∶NB =1∶2,由平行截割定理的逆定理得NP ∥DD ′,又DD ′⊥平面ABCD ,∴NP ⊥平面ABCD .(2)∵NP ∥DD ′∥CC ′,∴NP 、CC ′在同一平面内,CC ′为平面NPC 与平面CC ′D ′D 所成二面角的棱. 又由CC ′⊥平面ABCD ,得CC ′⊥CD ,CC ′⊥CM ,∴∠MCD 为该二面角的平面角.在Rt △MCD 中可知∠MCD =arctan 21,即为所求二面角的大小. (3)由已知棱长为a 可得,等腰△MBC 面积S 1=22a ,等腰△MBD ′面积S 2=246a ,设所求距离为h ,即为三棱锥C —D ′MB 的高.∵三棱锥D ′—BCM 体积为h S D D S 213131='⋅, ∴.3621a S a S h =⋅=。

高中数学必修2点线面常用定理汇总

高中数学必修2点线面常用定理汇总

高中数学必修2 点、线、面知识小结第一部分 课本相关概念一、关于异面直线:1.定义:不同在任一平面的两条直线;既不平行也不相交的两条直线2.异面直线夹角:对于异面直线l 和m ,在空间任取一点P ,过P 分别作l 和m 的平行线1l 和1m ,我们把1l 和1m 所成的角叫做异面直线l 和m 所成的角α 其中,⎥⎦⎤⎝⎛∈20πα,3.异面直线的公垂线与两异面直线都垂直且相交的直线 两异面直线的公垂线段有且仅有一条 说明:两直线所成角θ的范围:⎥⎦⎤⎢⎣⎡∈20πθ, 二、关于线面角 1.直线与平面斜交:当直线与平面相交且不垂直时,称直线与平面斜交,直线叫做平面的斜线 2.斜线与平面所成的角:平面的一条斜线和它在平面上的射影所成的锐角α ,⎥⎦⎤⎝⎛∈20πα,当直线与平面垂直时,直线与平面所成角为︒90 3.直线与平面所成角:记作“θ”,⎥⎦⎤⎢⎣⎡∈20πθ,三、关于二面角1.半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分都叫做一个半平面2.二面角:从一条直线出发的两个半平面所组成的图形 这条直线称为二面角的棱;两个半平面称为二面角的面3.二面角的平面角:以二面角棱上任意一点为端点,在两个面内分别做垂直于棱的两条射线,这两条射线所成的角 二面角的大小用它的平面角的大小来表示 平面角是直角的二面角称为直二面角4.二面角的范围:记作“θ”,[]πθ,0∈四、空间中的距离问题:1.点到直线的距离:直线外一点到直线的垂线段长2.点到平面的距离:平面外一点到平面的垂线段长3.两异面直线间的距离:两异面直线间公垂线段的长4.平行直线到平面的距离:直线上任一点到平面的距离5.两平行平面间的距离:其中一个平面内任意一点到另一个平面的距离 五、空间中的位置关系: 1.点与直线的位置关系:点在直线上;点不在直线上; 2.点与平面的位置关系:点在平面内;点不在平面内;3.两直线的位置关系:相交,平行,异面;空间中垂直有两种:相交垂直和异面垂直 4.直线与平面间的位置关系:直线与平面平行α//l ;直线与平面相交P l =α ;直线在平面内α⊆l 直线与平面垂直是直线与平面相交的一种;直线与平面平行和直线与平面相交统称为直线不在平面内5.平面与平面的位置关系:相交l =βα ;平行βα//;重合βα=;第二部分 课本公理定理公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内 αα∈∈∈∈B A l B l A ,,,且 ⇒ α⊆l用途:常用来判断点在平面内;或者直线在平面内 公理2 过不在同一直线上的三点,有且只有一个平面 推论 ①过直线与直线外一点,有且仅有一个平面②过两条相交直线,有且仅有一个平面 ③过两条平行直线,有且仅有一个平面 用途:常用来确定平面 公理3 若两个不重合的平面有一个公共点,则它们有且只有一条过该点的公共直线.βα∈∈P P 且 ⇒ l P l ∈=且,βα用途:证明两平面相交;或三点共线;或三线共点公理4 平行于同一条直线的两条直线互相平行 b a //,c b // ⇒ c a //空间等角定理 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补若方向相同,则两角相等;若方向相反,则两角互补 异面直线的判定定理:过平面外一点与平面内一点的直线,与平面内不经过该点的直线是异面直线 l B B A l ∉∈∉⊆,,,ααα⇒AB 和l 是异面直线 线面平行判定定理 若不在平面内的一条直线与此平面内的一条直线平行,则该直线与此平面平行 m l m l //,,αα⊆⊄ ⇒ α//l面面平行判定定理 若一个平面内的两条相交直线分别与另一个平面平行,则这两个平面平行第三部分 立体几何中的唯一性定理辨析1、经过平面外一点,有无数条直线和已知平面平行 经过平面外一点,有且只有一个平面和已知平面平行2、经过平面外一点,有且只有一条直线和已知平面垂直 经过平面外一点,有无数个平面和已知平面垂直3、经过直线外一点,有且只有一条直线和已知直线平行 经过直线外一点,有无数个平面和已知直线平行4、经过直线外一点,有且只有一条直线和已知直线垂直 经过直线外一点,有无数个平面和已知直线垂直第四部分 关于平行的判定方法一、线线平行的判定 1.定义法:在同一平面内,没有公共点的两条直线 ∅≠⊆⊆l m l m ;,αα ⇒ l m //2.平行公理:平行于同一条直线的两条直线互相平行 b a //,c b // ⇒ c a //3.线面平行性质定理 若一条直线与一个平面平行,过这条直线的任意平面与此平面相交,则交线与该直线平行l m m =⊆βαβα ,,// ⇒ l m //4.面面平行性质定理 若两个平行平面同时和第三个平面相交,则它们的交线平行一、线线垂直的判定 1.定义法:两直线所成角为o90;两直线所成角,是两直线相交所得较小的角;也可以是异面直线平移后相交所得较小的角2.线面垂直性质:若一条直线垂直于一个平面,则它垂直于平面内的所有直线αα⊆⊥n l , ⇒ n l ⊥3.三垂线定理:在平面内的一条直线,若和这个平面的一条斜线的射影垂直,则它也和这条斜线垂直AB l l PB A PA ⊥⊆⊥=,,,ααα ⇒ PA l ⊥4.三垂线定理的逆定理:在平面内的一直线,若和这个平 交线的直线与另一个平面垂直 n l n l ⊥=⊆⊥,,,βααβα ⇒ β⊥l二、线面垂直的判定1.定义法:若直线和平面相交,并且和这个平面内的任意一条直线都垂直,则称这条直线和这个平面互相垂直2.线面垂直判定定理 若一条直线与一个平面内的两条相交直线都垂直,则该直线垂直于此平面n l m l P n m n m ⊥⊥=⊆⊆,;,, αα⇒α⊥l3.线面垂直性质 若一条直线垂直于垂直于两个平行平面中的一个平面,则它也垂直于另一个平面 βαα//,⊥l ⇒ β⊥l 面的一条斜线垂直,则它也和这条斜线的射影垂直PA l l PB A PA ⊥⊆⊥=,,,ααα ⇒ AB l ⊥5.线面垂直性质 若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面 α⊥l n l ,// ⇒ α⊥n6.面面垂直性质 若两个平面垂直,则一个平面内垂直于三、面面垂直的判定1.定义法:两个平面相交,若它们所成的二面角是直二面角,则这两个平面互相垂直.2.面面垂直判定定理 若一个平面过另一个平面的一条垂线,则这两个平面互相垂直 βα⊆⊥l l , ⇒ βα⊥。

高中数学必修二同步练习题库:直线、平面垂直的判定和性质(选择题:较难32,困难36)

高中数学必修二同步练习题库:直线、平面垂直的判定和性质(选择题:较难32,困难36)

直线、平面垂直的判定和性质(选择题:较难32,困难36)1、正方形ABCD与等边三角形BCE有公共边BC,若∠ABE=120°,则BE与平面ABCD所成角的大小为A. B. C. D.2、如图,三棱柱中,侧棱底面,,,,外接球的球心为,点是侧棱上的一个动点.有下列判断:①直线与直线是异面直线;②一定不垂直于;③三棱锥的体积为定值;④的最小值为.其中正确的个数是()A.1 B.2 C.3 D.43、如图,已知平面平面,,、是直线上的两点,、是平面内的两点,且,,,,,是平面上的一动点,且有,则四棱锥体积的最大值是()A. B. C. D.4、平面过正方体的面对角线,且平面平面,平面平面,则的正切值为()A. B. C. D.5、在底面是平行四边形的四棱锥中,底面,点为棱的中点,点在棱上,平面与交于点,且,,,则异面直线与所成角的正切值为()A. B. C. D.6、如图所示,已知二面角的平面角为,为垂足,且,,设到棱的距离分别为,当变化时,点的轨迹是下列图形中的()A. B. C. D.7、如图,在四棱锥中,平面,为线段的中点,底面为菱形,若,,则异面直线与所成角的正弦值为()A. B. C. D.8、如图,正四面体中,、、在棱、、上,且,,分别记二面角,,的平面角为、、,在()A. B. C. D.9、直角梯形,满足,现将其沿折叠成三棱锥,当三棱锥体积取最大值时其表面积为A. B. C. D.10、直角梯形,满足,现将其沿折叠成三棱锥,当三棱锥体积取最大值时其表面积为A. B.C. D.11、已知直角三角形的两条直角边,,为斜边上一点,沿将三角形折成直二面角,此时二面角的正切值为,则翻折后的长为()A.2 B. C. D.12、在四棱锥中,平面,底面为矩形,.若边上有且只有一个点,使得,求此时二面角的余弦值()A. B. C. D.13、如图,在正四棱锥中,分别是的中点,动点在线段上运动时,下列四个结论:①;②;③面;④面.其中恒成立的为()A.①③ B.③④ C.①② D.②③④14、如图,在正四棱锥中,分别是的中点,动点在线段上运动时,下列四个结论:①;②;③面;④面.其中恒成立的为()A.①③ B.③④ C.①② D.②③④15、如图,正四面体的顶点、、分别在两两垂直的三条射线,,上,则在下列命题中,错误的是( )A.是正三棱锥B.直线与平面相交C.直线与平面所成的角的正弦值为D.异面直线和所成角是16、在棱长为1的正方体中,是的中点,是三角形内的动点,,则的轨迹长为( )A. B. C. D.17、正方体ABCD-A1B1C1D1的棱长为6,点O在BC上,且BO=OC,过点O的直线l与直线AA1,C1D1分别交于M,N两点,则MN与面ADD1A1所成角的正弦值为( )A. B. C. D.18、如图,把画有函数部分图象的纸片沿轴折成直二面角,若、两点之间的空间距离为,则()A.-2 B. C.-1 D.19、长方体中,,,,点是平面上的点,且满足,当长方体的体积最大时,线段的最小值是( )A. B. C.8 D.20、把平面图形上的所有点在一个平面上的射影构成的图形叫做图形在这个平面上的射影,如图,在三棱锥中,,,,,,将围成三棱锥的四个三角形的面积从小到大依次记为,设面积为的三角形所在的平面为,则面积为的三角形在平面上的射影的面积是()A. B. C.10 D.3021、正方体ABCD-A1B1C1D1中,BB1与平面ACD1所成的角的余弦值为()A. B. C. D.22、已知为异面直线,平面a,平面b.直线满足,则()A.a∥b,且l∥aB.,且C.与相交,且交线垂直于D.a与b相交,且交线平行于23、如图,已知六棱锥P﹣ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB则下列结论正确的是()A.PB⊥ADB.平面PAB⊥平面PBCC.直线BC∥平面PAED.直线PD与平面ABC所成的角为45°24、如图所示,在直三棱柱ABC-A1B1C1中, BC="AC" ,AC1⊥A1B,M,N分别是A1B1,AB的中点,给出下列结论:①C1M⊥平面A1ABB1,②A1B⊥NB1 ,③平面AMC1⊥平面CBA1 ,其中正确结论的个数为()A.0 B.1 C.2 D.325、已知两条直线,两个平面,下面四个命题中不正确的是A.B.C.D.26、如图所示,在直三棱柱ABC-A1B1C1中,BC=AC,AC1⊥A1B,M,N分别是A1B1,AB的中点,给出下列结论:①C1M⊥平面A1ABB1,②A1B⊥NB1,③平面AMC1//平面CNB1,其中正确结论的个数为()A.0 B.1 C.2 D.327、在四棱柱中,平面,底面是边长为的正方形,侧棱的长为,为侧棱上的动点(包括端点),则()A.对任意的,,存在点,使得B.当且仅当时,存在点,使得C.当且仅当时,存在点,使得D.当且仅当时,存在点,使得28、下列命题中,错误的是()A.一条直线与两个平行平面中的一个相交,则必与另一个平面相交B.平行于同一平面的两条直线不一定平行C.如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面D.若直线不平行于平面,则在平面内不存在与平行的直线29、如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的个数是( )(1) AC⊥BE.(2) 若P为AA1上的一点,则P到平面BEF的距离为.(3) 三棱锥A-B EF的体积为定值.(4) 在空间与DD1,AC,B1C1都相交的直线有无数条.(5) 过CC1的中点与直线AC1所成角为40并且与平面BEF所成角为50的直线有2条.A.0 B.1 C.2 D.330、下面四个命题:①“直线a∥直线b”的充要条件是“a平行于b所在的平面”;②“直线⊥平面内所有直线”的充要条件是“⊥平面”;③“直线a、b为异面直线”的充分不必要条件是“直线a、b不相交”;④“平面∥平面”的必要不充分条件是“内存在不共线三点到的距离相等”;其中正确命题的序号是A.①② B.②③ C.③④ D.②④31、已知是直线,是平面,、,则“平面”是“且”的…………………………………………………………………………()A.充要条件. B.充分非必要条件. C.必要非充分条件. D.非充分非必要条件32、圆锥的轴截面SAB是边长为2的等边三角形,O为底面中心,M为SO的中点,动点P在圆锥底面内(包括圆周)。

高中数学《垂直的判定与性质》文字素材 新人教A版必修2

高中数学《垂直的判定与性质》文字素材 新人教A版必修2

垂直的判定与性质1. 线面垂直的定义:如果直线l 与平面α内的任意一条直线都垂直,那么直线l 与平面α互相垂直,记作l α⊥. l -平面α的垂线,α-直线l 的垂面,它们的唯一公共点P 叫做垂足.〔线线垂直→线面垂直〕2. 判定定理:一条直线与一个平面内的两条相交直线都垂直,那么这条直线与该平面垂直. 符号语言表示为:假设l ⊥m ,l ⊥n ,m ∩n =B ,m ⊂α,n ⊂α,那么l ⊥α3. 面面垂直的定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直. 记作αβ⊥.4. 判定定理:一个平面过另一个平面的垂线,那么这两个平面垂直. 〔线面垂直→面面垂直〕5. 线面垂直性质定理:垂直于同一个平面的两条直线平行. 〔线面垂直→线线平行〕6. 面面垂直性质定理:两个平面垂直,那么一个平面内垂直于交线的直线与另一个平面垂直.用符号语言表示为:假设αβ⊥,l αβ=,a α⊂,a l ⊥,那么a β⊥.〔面面垂直→线面垂直〕[例1]四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且EF AC ,90BDC ∠=,求证:BD ⊥平面ACD .[例2]棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 是A 1B 1的中点,求直线AE 与平面ABC 1D 1所成的角的正弦值.[例3]三棱锥P ABC -中,PA BC PB AC ⊥⊥,,PO ⊥平面ABC ,垂足为O ,求证:O 为底面△ABC 的垂心.BDCAE FG[例4]Rt ABC ∆,斜边BC //平面α,,A α∈AB ,AC 分别与平面α成30°和45°的角,BC =6,求BC 到平面α的距离.[例5]如图,平行六面体ABCD —A 1B 1C 1D 1的底面是菱形且∠C 1CB =∠C 1CD =∠BCD =60°,〔1〕证明:C 1C ⊥BD ; 〔2〕当1CDCC 的值为多少时,可使A 1C ⊥面C 1BD ?[例1]正方形ABCD 的边长为1,分别取边BC 、CD 的中点E 、F ,连结AE 、EF 、AF ,以AE 、EF 、FA 为折痕,折叠使点B 、C 、D 重合于一点P .〔1〕求证:AP ⊥EF ;〔2〕求证:平面APE ⊥平面APF .[例2]如图, 在空间四边形ABCD 中,,,AB BC CD DA ==,,E F G 分别是,,CD DA AC 的中点,求证:平面BEF ⊥平面BGD .C 1B 1CB A α[例3]如图,在正方体1111ABCD A B C D -中,E 是1CC 的中点,求证:1A BD BED ⊥平面平面.[例4]正三棱柱ABC —A 1B 1C 1中,AA 1=2AB ,D 、E 分别是侧棱BB 1、CC 1上的点,且EC =BC =2BD ,过A 、D 、E 作一截面,求:〔1〕截面与底面所成的角;〔2〕截面将三棱柱分成两部分的体积之比.[例5]如图,在四棱锥P —ABCD 中,底面ABCD 是矩形,侧棱PA 垂直于底面,E 、F 分别是AB 、PC 的中点.〔1〕求证:CD ⊥PD ;〔2〕求证:EF ∥平面PAD ; 〔3〕当平面PCD 与平面ABCD 成多大角时,直线EF ⊥平面PCD ?[例1]把直角三角板ABC 的直角边BC 放置于桌面,另一条直角边AC 与桌面所在的平面α垂直,a 是α内一条直线,假设斜边AB 与a 垂直,那么BC 是否与a 垂直?E DC 1B 1A 1C BA ACα B a[例2]如图,AB是圆O的直径,C是圆周上一点,PA⊥平面ABC.〔1〕求证:平面PAC⊥平面PBC;〔2〕假设D也是圆周上一点,且与C分居直径AB的两侧,试写出图中所有互相垂直的各对平面.[例3]三棱锥P ABC==,PO⊥平面ABC,垂足为O,求证:O为底面△ABC的-中,PA PB PC外心.[例4]三棱锥P ABC-中,三个侧面与底面所成的二面角相等,PO⊥平面ABC,垂足为O,求证:O为底面△ABC的内心.[例5]在斜三棱柱A1B1C1—ABC中,底面是等腰三角形,AB=AC,侧面BB1C1C⊥底面ABC.〔1〕假设D是BC的中点,求证:AD⊥CC1;〔2〕过侧面BB1C1C的对角线BC1的平面交侧棱于M,假设AM=MA1,求证:截面MBC1⊥侧面BB1C1C;〔3〕如果截面MBC1⊥平面BB1C1C,那么AM=MA1吗?请你表达判断理由.[例6]如图,在底面为平行四边形的四棱锥P ABCD⊥,PA⊥-中,AB AC平面ABCD ,且PA AB =,点E 是PD 的中点.〔1〕求证:AC PB ⊥;〔2〕求证://PB 平面AEC ;〔3〕求二面角E AC B --的大小.[例7]如图,在多面体ABCD —A 1B 1C 1D 1中,上、下底面平行且均为矩形,相对的侧面与同一底面所成的二面角大小相等,侧棱延长后相交于E ,F 两点,上、下底面矩形的长、宽分别为c ,d 与a ,b ,且a >c ,b >d ,两底面间的距离为h .〔1〕求侧面ABB 1A 1与底面ABCD 所成二面角的正切值; 〔2〕证明:EF ∥面ABCD ;〔3〕在估测该多面体的体积时,经常运用近似公式V 估=S 中截面·h 来计算.它的体积公式是V =6h〔S 上底面+4S 中截面+S 下底面〕,试判断V 估与V 的大小关系,并加以证明.〔注:与两个底面平行,且到两个底面距离相等的截面称为该多面体的中截面〕垂直的判定与性质1. 线面垂直的定义:如果直线l 与平面α内的任意一条直线都垂直,那么直线l 与平面α互相垂直,记作l α⊥. l -平面α的垂线,α-直线l 的垂面,它们的唯一公共点P 叫做垂足.〔线线垂直→线面垂直〕2. 判定定理:一条直线与一个平面内的两条相交直线都垂直,那么这条直线与该平面垂直. 符号语言表示为:假设l ⊥m ,l ⊥n ,m ∩n =B ,m ⊂α,n ⊂α,那么l ⊥α3. 面面垂直的定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直. 记作αβ⊥.4. 判定定理:一个平面过另一个平面的垂线,那么这两个平面垂直. 〔线面垂直→面面垂直〕5. 线面垂直性质定理:垂直于同一个平面的两条直线平行. 〔线面垂直→线线平行〕6. 面面垂直性质定理:两个平面垂直,那么一个平面内垂直于交线的直线与另一个平面垂直.用符号语言表示为:假设αβ⊥,l αβ=,a α⊂,a l ⊥,那么a β⊥.〔面面垂直→线面垂直〕[例1]四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且22EF AC =,90BDC ∠=,求证:BD ⊥平面ACD .证明:取CD 的中点G ,连结,EG FG ,∵,E F 分别为,AD BC 的中点,∴EG 12//AC =,12//FG BD =. 又,AC BD =∴12FG AC =,∴在EFG ∆中,222212EG FG AC EF +==,∴EG FG ⊥,∴BD AC ⊥,又90BDC ∠=,即BD CD ⊥,AC CD C =,∴BD ⊥平面ACD .[例2]棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 是A 1B 1的中点,求直线AE 与平面ABC 1D 1所成的角的正弦值.解:取CD 的中点F ,连接EF 交平面11ABC D 于O ,连AO .由正方体,易知EO ⊥平面11ABC D ,所以EAO ∠为所求. 在Rt EOA ∆中,1112222EO EF A D ===,2215()122AE =+=, 10sin 5EO EAO AE ∠==. 所以直线AE 与平面11ABC D 所成的角的正弦值为105. [例3]三棱锥P ABC -中,PA BC PB AC ⊥⊥,,PO ⊥平面ABC ,垂足为O ,求证:O 为底面△ABC 的垂心.证明:连接OA 、OB 、OC ,∵PO ⊥平面ABC , ∴,PO BC PO AC ⊥⊥.又 ∵PA BC PB AC ⊥⊥,, ∴BC PAO AC PBO ⊥⊥平面,平面,得AO BC BO AC ⊥⊥,, ∴O 为底面△ABC 的垂心.[例4]Rt ABC ∆,斜边BC //平面α,,A α∈AB ,AC 分别与平面α成30°和45°的角,BC =6,求BC 到平面α的距离.解:作1BB α⊥于1B ,1CC α⊥于1C ,那么由//BC α,得 11BB CC =,且1CC 就是BC 到平面α的距离,设1CC x =,连结11,AB AC ,那么1130,45BAB CAC ∠=∠=,C 1B 1CB AαBD CAE FG∴2,2AC x AB x ==,在Rt ABC ∆中,6,90BC BAC =∠=,∴223624x x =+,∴6x =,即BC 到平面α的距离为6.[例5]如图,平行六面体ABCD —A 1B 1C 1D 1的底面是菱形且∠C 1CB =∠C 1CD =∠BCD =60°,〔1〕证明:C 1C ⊥BD ; 〔2〕当1CDCC 的值为多少时,可使A 1C ⊥面C 1BD ?解:〔1〕证明:连结A 1C 1、AC ,AC 和BD 交于点O ,连结C 1O , ∵四边形ABCD 是菱形,∴AC ⊥BD ,BC =CD又∵∠BCC 1=∠DCC 1,C 1C 是公共边,∴△C 1BC ≌△C 1DC ,∴C 1B =C 1D ∵DO =OB ,∴C 1O ⊥BD ,但AC ⊥BD ,AC ∩C 1O =O ∴BD ⊥平面AC 1,又C 1C ⊂平面AC 1,∴C 1C ⊥BD .〔2〕由(1)知BD ⊥平面AC 1,∵A 1O ⊂平面AC 1,∴BD ⊥A 1C ,当1CDCC =1时,平行六面体的六个面是全等的菱形,同理可证BC 1⊥A 1C ,又∵BD ∩BC 1=B ,∴A 1C ⊥平面C 1BD . [例1]正方形ABCD 的边长为1,分别取边BC 、CD 的中点E 、F ,连结AE 、EF 、AF ,以AE 、EF 、FA 为折痕,折叠使点B 、C 、D 重合于一点P .〔1〕求证:AP ⊥EF ;〔2〕求证:平面APE ⊥平面APF . 证明:〔1〕如右图,∵∠APE =∠APF =90°,PE ∩PF =P , ∴PA ⊥平面PEF . ∵EF ⊂平面PEF ,∴PA ⊥EF .〔2〕∵∠APE =∠EPF =90°,AP ∩PF =P ,∴PE ⊥平面APF . 又PE ⊂平面PAE ,∴平面APE ⊥平面APF .[例2]如图, 在空间四边形ABCD 中,,,AB BC CD DA ==,,E F G 分别是,,CD DA AC 的中点,求证:平面BEF ⊥平面BGD .证明:,AB BC G =为AC 中点,所以AC BG ⊥. 同理可证,AC DG ⊥∴AC ⊥面BGD .又易知EF //AC ,那么EF ⊥面BGD .又因为EF ⊂面BEF ,所以平面BEF ⊥平面BGD .[例3]如图,在正方体1111ABCD A B C D -中,E 是1CC 的中点,求证:1A BD BED ⊥平面平面.证明:连接AC ,交BD 于F ,连接1A F ,EF ,1A E ,11A C .由正方体1111ABCD A B C D -,易得11A D A B =,ED EB =,F 是BD 的中点, 所以1,A F BD EF BD ⊥⊥,得到1A FE ∠是二面角1A BD E --的平面角.设正方体1111ABCD A B C D -的棱长为2,那么22222112(2)6A F A A AF =+=+=,222221(2)3EF CE CF =+=+=, 22222111(22)19A E A C CE =+=+=.∴22211A F EF A E +=,即1A F EF ⊥,所以1A BD BED ⊥平面平面.[例4]正三棱柱ABC —A 1B 1C 1中,AA 1=2AB ,D 、E 分别是侧棱BB 1、CC 1上的点,且EC =BC =2BD ,过A 、D 、E 作一截面,求:〔1〕截面与底面所成的角;〔2〕截面将三棱柱分成两部分的体积之比.解:〔1〕延长ED 交CB 延长线于F ,1//,,.1202DB EC BD EC FB BC AB ABF =∴==∠=︒又,∴30BAF BFA ∠=∠=︒,90FAC ∠=︒.EC 1B 1A 1∵,AA AF AC AF '⊥⊥, ∴,AF AE EAC ⊥∠为截面与底面所成二面角的平面角. 在Rt △AEC 中,EC =AC ,故得∠EAC =45°.〔2〕设AB =a ,那么31132,,,238A BCED BCED AA a BD a EC a V h S a -'===∴=⋅=,23333332,428A B C ABC ABC ADE A B C V S AA a a a V a '''''''-∆-'=⋅=⋅==.∴3ADE A B C A BCDE V S '''--=.[例5]如图,在四棱锥P —ABCD 中,底面ABCD 是矩形,侧棱PA 垂直于底面,E 、F分别是AB 、PC 的中点.〔1〕求证:CD ⊥PD ;〔2〕求证:EF ∥平面PAD ;〔3〕当平面PCD 与平面ABCD 成多大角时,直线EF ⊥平面PCD ? 解:〔1〕证明:∵PA ⊥底面ABCD ,CD ⊂平面ABCD ,∴PA ⊥CD . 又∵CD ⊥AD ,CD ⊥平面PAD . ∴CD ⊥PD .〔2〕证明:取CD 中点G ,连EG 、FG , ∵E 、F 分别是AB 、PC 的中点,∴EG ∥AD ,FG ∥PD . ∴平面EFG ∥平面PAD ,故EF ∥平面PAD .〔3〕当平面PCD 与平面ABCD 成45°角时,直线EF ⊥面PCD .证明:G 为CD 中点,那么EG ⊥CD ,由(1)知FG ⊥CD ,故∠EGF 为平面PCD 与平面ABCD 所成二面角的平面角.即∠EGF =45°,从而得∠ADP =45°,AD =AP .由Rt △PAE ≌Rt △CBE ,得PE =CE . 又F 是PC 的中点,∴EF ⊥PC ,由CD ⊥EG ,CD ⊥FG ,得CD ⊥平面EFG ,CD ⊥EF 即EF ⊥CD ,故EF ⊥平面PCD .[例1]把直角三角板ABC 的直角边BC 放置于桌面,另一条直角边AC 与桌面所在的平面α垂直,a 是α内一条直线,假设斜边AB 与a 垂直,那么BC 是否与a 垂直? 解:[例2]如图,AB 是圆O 的直径,C 是圆周上一点,PA ⊥平面ABC .〔1〕求证:平面PAC ⊥平面PBC ;〔2〕假设D 也是圆周上一点,且与C 分居直径AB 的两侧,试写出图中所有互相垂直的各对平面.解:〔1〕证明:∵C 是AB 为直径的圆O 的圆周上一点,AB 是圆O 的直径, ∴BC ⊥AC .又PA ⊥平面ABC ,BC ⊂平面ABC , ∴BC ⊥PA ,从而BC ⊥平面PAC .∵BC ⊂平面PBC , ∴平面PAC ⊥平面PBC . 〔2〕平面PAC ⊥平面ABCD ;平面PAC ⊥平面PBC ;平面PAD ⊥平面PBD ;平面PAB ⊥平面ABCD ;平面PAD ⊥平面ABCD .[例3]三棱锥P ABC -中,PA PB PC ==,PO ⊥平面ABC ,垂足为O ,求证:O 为底面△ABC 的外心.证明:连接OA 、OB 、OC ,∵PO ⊥平面ABC , ∴,,PO OA PO OB PO OC ⊥⊥⊥.在△PAO 、△PBO 、△PCO 中,90POA POB POC ∠=∠=∠=︒, PA PB PC ==, PO 边公共.⇒⎭⎬⎫⊂⊥ααa AC ⇒⎪⎭⎪⎬⎫=⊥⊥A AB AC AB a AC a BC a ABC BC ABC a ⊥⇒⎭⎬⎫⊂⊥平面平面 A C αB a∴POA POB POC ∆≅∆≅∆. ∴OA OB OC ==, 所以,O 为底面△ABC 的外心.[例4]三棱锥P ABC -中,三个侧面与底面所成的二面角相等,PO ⊥平面ABC ,垂足为O ,求证:O 为底面△ABC 的内心.[证]作PD AB ⊥于D ,PE BC ⊥于E ,PF AC ⊥于F ,连接OD 、OE 、OF .∵PO ⊥平面ABC ,∴,,PO OD PO OE PO OF ⊥⊥⊥,,,PO AB PO BC PO AC ⊥⊥⊥ .又 ∵,,PD AB PE BC PF AC ⊥⊥⊥,∴,,AB PDO BC PEO AC PFO ⊥⊥⊥平面平面平面. 得 ,,OD AB OE BC OF AC ⊥⊥⊥,∴,,PDO PEO PFO ∠∠∠为三个侧面与底面所成的二面角的平面角. 即得PDO PEO PFO ∠=∠=∠,∵ PO 边公共, ∴PDO PEO PFO ∆≅∠≅∠,得 OD OE OF ==, 又 ∵,,OD AB OE BC OF AC ⊥⊥⊥.∴O 为底面△ABC 的内心.[例5]在斜三棱柱A 1B 1C 1—ABC 中,底面是等腰三角形,AB =AC ,侧面BB 1C 1C ⊥底面ABC . 〔1〕假设D 是BC 的中点,求证:AD ⊥CC 1; 〔2〕过侧面BB 1C 1C 的对角线BC 1的平面交侧棱于M ,假设AM =MA 1,求证:截面MBC 1⊥侧面BB 1C 1C ;〔3〕如果截面MBC 1⊥平面BB 1C 1C ,那么AM =MA 1吗?请你表达判断理由.解:〔1〕证明:∵AB =AC ,D 是BC 的中点,∴AD ⊥BC .∵ 底面ABC ⊥平面BB 1C 1C , ∴AD ⊥侧面BB 1C 1C , ∴AD ⊥CC 1. 〔2〕证明:延长B 1A 1与BM 交于N ,连结C 1N .∵AM =MA 1,∴NA 1=A 1B 1。

高中数学总结归纳 点击面面垂直的判定与性质

高中数学总结归纳 点击面面垂直的判定与性质

点击面面垂直的判定与性质一、面面垂直的判定与性质1.两个平面垂直的定义:如果两个平面所成的二面角是直二面角,那么这两个平面互相垂直.2.两个平面垂直的判定定理:如果一个平面经过另一个平面的垂线,那么这两个平面垂直.3.两个平面垂直的性质定理:如果两个平面垂直,那么过其中一个平面内的一点作它的交线的垂线与另一个平面垂直.二、证明面面垂直的基本方法有:(1)利用定义证明,即利用两平面相交成直二面角来证明;(2)利用面面垂直的判定定理证明,即若a ⊥β,a α⊂,则α⊥β在证明两平面垂直时,一般方法是先从现有的直线中寻找平面的垂线,若没有这样的直线,则可通过作辅助线来解决,而作辅助线则应有理论根据并且要有利于证明,不能随意添加.在有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直.解决这类问题的关键是熟练掌握“线线垂直”“线面垂直”“面面垂直”间的转化条件和转化应用.三、典例选析例1.如下图,过S 引三条长度相等但不共面的线段SA 、SB 、SC ,且∠ASB=∠ASC=60°,∠BSC=90°,求证:平面ABC ⊥平面BSC.剖析:本题是面面垂直的证明问题.一条是从定义出发的思路,即先证明其中一个平面经过另一个平面的一条垂线.但图中似乎没有现成的这样的直线,故作辅助线.根据已知条件的特点,取BC 的中点O ,连结AO 、SO ,既可证明AO ⊥平面BSC ,又可证明SO ⊥平面ABC.另一条是从定义出发的思路,即证明两个平面所成的二面角是直二面角,注意到∠AOS 是二面角A —BC —S 的平面角,转化为证明∠AOS 是直角.证法一:取BC 的中点O ,连结AO 、SO.∵AS=BS=CS ,SO ⊥BC , 又∵∠ASB=∠ASC=60°,∴AB=AC ,从而AO ⊥BC. 设AS=a ,又∠BSC=90°,则SO=22a.又AO=22BO AB -=2221a a -=22a , ∴AS 2=AO 2+SO 2,故AO ⊥OS.从而AO ⊥平面BSC ,又AO ⊂平面ABC ,∴平面ABC ⊥平面BSC. 证法二:同证法一证得AO ⊥BC ,SO ⊥BC ,∴∠AOS 就是二面角A —BC —S 的平面角.再同证法一证得AO ⊥OS ,即∠AOS=90°. ∴平面ABC ⊥平面BSC.点评:本题揭示的是证面面垂直常用的两种方法.此外,本题中证明∠AOS=90°的方法较为特殊,即通过“算”,定量地证得直角,而不是通过位置关系定性地推理出直角,这也是立体几何中证明垂直的一种重要方法.例3.已知正三棱柱ABC —A 1B 1C 1,若过面对角线AB 1与另一面对角线BC 1平行的平面交上底面A 1B 1C 1的一边A 1C 1于点D .(1)确定D 的位置,并证明你的结论;(2)证明:平面AB 1D ⊥平面AA 1D ;(3)若AB ∶AA 1=2,求平面AB 1D 与平面AB 1A 1所成角的大小.分析:本题的结论是“开放性”的,点D 位置的确定如果仅凭已知条件推理难以得出. 由于AB 1与BC 1这两条面对角线是相邻二侧面上的异面直线,于是可考虑将BC 1沿BA 平行移动,BC 1取AE 1位置,则平面AB 1E 1一定平行BC 1,问题可以解决.(1)解:如下图,将正三棱柱ABC —A 1B 1C 1补成一直平行六面体ABCE —A 1B 1C 1E 1,由AE 1∥BC 1,AE 1⊂平面AB 1E 1,知BC 1∥平面AB 1E 1,故平面AB 1E 1应为所求平面,此时平面AB 1E 1交A 1C 1于点D ,由平行四边形对角线互相平行性质知,D 为A 1C 1的中点.(2)证明:连结AD ,从直平行六面体定义知AA 1⊥底面A 1B 1C 1D 1,且从A 1B 1C 1E 1是菱形知,B 1E 1⊥A 1C 1,据三垂线定理知,B 1E 1⊥AD .又AD ∩A 1C 1=D ,所以B 1E 1⊥平面AA 1D ,又B 1E 1⊂平面AB 1D ,所以平面AB 1D ⊥平面AA 1D .(3)解:因为平面AB 1D ∩平面AA 1D =AD ,所以过A 1作A 1H ⊥AD 于点H .作HF ⊥AB 1于点F ,连结A 1F ,从三垂线定理知A 1F ⊥AB 1.故∠A 1FH 是二面角A 1—AB 1—D 的平面角.设侧棱AA 1=1,侧棱AB =2.于是AB 1=22)2(1+=3.在Rt △AB 1A 1中,A 1F =1111AB B A AA ⨯=321⋅=36,在Rt △AA 1D 中,AA 1=1,A 1D =21A 1C 1=22,AD =2121D A AA +=26.则A 1H =ADD A AA 11⨯=33. 在Rt △A 1FH 中,sin ∠A 1FH =F A H A 11=22,所以∠A 1FH =45°. 因此可知平面AB 1D 与平面AB 1A 1所成角为45°或135°.点评:本题主要考查棱柱的性质,以及面面关系、二面角的计算,同时考查空间想象能力和综合运用知识解决问题的能力. 立体几何的计算并非单纯的数字计算,而是与作图和证明相结合的.立体几何计算题的主要步骤可以归纳为画—证—算三步.“画”是画图,添加必要的辅助线,或画出所要求的几何量,或进行必要的转化;“证”是证明,用三段论的方法证明你所画的几何量即为所求,然后进行最后一步计算.这三步之间紧密相连,环环相扣,互相制约,形成了解决立体几何计算题的思维程序,是综合考查学科能力的集中体现.例3.如下图,正四棱柱ABCD —A 1B 1C 1D 1中,底面边长为22,侧棱长为4,E 、F 分别为棱AB 、BC 的中点,EF ∩BD=G.(1)求证:平面B 1EF ⊥平面BDD 1B ;(2)求点D 1到平面B 1EF 的距离d ;(3)求三棱锥B 1—EFD 1的体积V.(1)证法一:如下图,连结AC.∵正四棱柱ABCD —A 1B 1C 1D 1的底面是正方形, ∴AC ⊥BD.又AC ⊥D 1D ,故AC ⊥平面BDD 1B 1. ∵E 、F 分别为AB 、BC 的中点,故EF ∥AC.∴EF ⊥平面BDD 1B 1.∴平面B 1EF ⊥平面BDD 1B 1. 证法二:∵BE=BF ,∠EBD=∠FBD=45°,∴EF ⊥BD. 又EF ⊥D 1D ,∴EF ⊥平面BDD 1B 1. ∴平面B 1EF ⊥平面BDD 1B 1.(2)解:在对角面BDD 1B 1中,作D 1H ⊥B 1G ,垂足为H. ∵平面B 1EF ⊥平面BDD 1B 1,且平面B 1EF ∩平面BDD 1B 1=B 1G , ∴D 1H ⊥平面B 1EF ,且垂足为H.∴点D 1到平面B 1EF 的距离d=D 1H.在Rt △D 1HB 1中,D 1H=D 1B 1·sin ∠D 1B 1H.∵D 1B 1=2A 1B 1=2·22=4,sin ∠D 1B 1H=sin ∠B 1GB=11GB B B =22144+=174,∴d=D 1H=4·174=171716. (3)解:V=V 11EFD B -=V EF B D 11-=31·d ·S EF B 1∆=31·1716·21·2·17=316. 点评:近几年立体几何的解答题一般都是一题多问,环环相扣.如本题的三小问便是如此.本题主要考查正四棱柱等基本知识,考查逻辑推理能力及空间思维能力.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线面垂直●知识点1.直线和平面垂直定义如果一条直线和一个平面内的任何一条直线都垂直,就说这条直线和这个平面垂直.2.线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.判定定理:如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.判定定理:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.3.三垂线定理和它的逆定理.三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直.逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线在该平面上的射影垂直.●题型示例【例1】如图所示,已知点S是平面ABC外一点,∠ABC=90°,SA⊥平面ABC,点A在直线SB和SC上的射影分别为点E、F,求证:EF⊥SC.【解前点津】用分析法寻找解决问题的途径,假设EF⊥SC成立,结合AF⊥SC可推证SC⊥平面AEF,这样SC⊥AE,结合AE⊥SB,可推证AE⊥平面SBC,因此证明AE⊥平面SBC是解决本题的关键环节.由题设SA⊥平面ABC,∠ABC=90°,可以推证BC⊥AE,结合AE⊥SB完成AE⊥平例1题图面SBC的证明.【规范解答】【解后归纳】题设中条件多,图形复杂,结合题设理清图形中基本元素之间的位置关系是解决问题的关键.【例2】已知:M∩N=AB,PQ⊥M于Q,PO⊥N于O,OR⊥M于R,求证:QR⊥AB.【解前点津】由求证想判定,欲证线线垂直,方法有(1)a∥b,a⊥c⇒b⊥c;(2)a⊥α,b⊂α⇒a ⊥b;(3)三垂线定理及其逆定理.由已知想性质,知线面垂直,可推出线线垂直或线线平行.【解后归纳】处于非常规位置图形上的三垂线定理或逆定理的应用问题,要抓住“一个面”、“四条线”.所谓“一个面”:就是要确定一个垂面,三条垂线共处于垂面之上.所谓“四条线”:就是垂线、斜线、射影以及平面内的第四条线,这四条线中垂线是关键的一条线,牵一发而动全身,应用时一般可按下面程序进行操作:确定垂面、抓准斜线、作出垂线、连结射影,寻第四条线.【例3】已知如图(1)所示,矩形纸片AA′A′1A1,B、C、B1、C1分别为AA′,A1A′的三等分点,将矩形纸片沿BB1,CC1折成如图(2)形状(正三棱柱),若面对角线AB1⊥BC1,求证:A1C⊥AB1.例3题图解(1)【解前点津】 题设主要条件是AB 1⊥BC ,而结论是AB 1⊥A 1C ,题设,题断有对答性,可在ABB 1A 1上作文章,只要取A 1B 1中点D 1,就把异面直线AB 1与BC 1垂直关系转换到ABB 1A 1同一平面内AB 1与BD 1垂直关系,这里要感谢三垂线逆定理.自然想到题断AB 1与A 1C 垂直用同法(对称原理)转换到同一平面,取AB 中点D 即可,只要证得A 1D 垂直于AB 1,事实上DBD 1A 1,为平行四边形,解题路子清楚了.【解后归纳】 证线线垂直主要途径是:(1)三垂线正逆定理,(2)线面,线线垂直互相转化.利用三垂线正逆定理完成线线归面工作,在平面内完成作解任务.证线线垂直,线面垂直,常常利用线面垂直,线线垂直作为桥梁过渡过来,这种转化思想有普遍意义,利用割补法把几何图形规范化便于应用定义定理和公式,也是不容忽视的常用方法.【例4】 空间三条线段AB ,BC ,CD ,AB ⊥BC ,BC ⊥CD ,已知AB =3,BC =4,CD =6,则AD 的取值范围是 .【解前点津】 如图,在直角梯形ABCD 1中,CD 1=6,AD 1的长是AD 的最小值,其中AH ⊥CD 1,AH =BC =4,HD 1=3,∴AD 1=5;在直角△AHD 2中,CD 2=6,AD 2是AD 的最大值为974)36(22222=++=+AH HD【解后归纳】 本题出题形式新颖、灵活性大,很多学生对此类题感到无从入手,其实冷静分析,找出隐藏的条件很容易得出结论.例4题图●对应训练 分阶提升一、基础夯实1.设M 表示平面,a 、b 表示直线,给出下列四个命题:①M b M a b a ⊥⇒⎭⎬⎫⊥// ②b a M b M a //⇒⎭⎬⎫⊥⊥ ③⇒⎭⎬⎫⊥⊥b a M a b ∥M ④⇒⎭⎬⎫⊥b a M a //b ⊥M . 其中正确的命题是 ( )A.①②B.①②③C.②③④D.①②④2.下列命题中正确的是 ( )A.若一条直线垂直于一个平面内的两条直线,则这条直线垂直于这个平面B.若一条直线垂直于一个平面内的无数条直线,则这条直线垂直于这个平面C.若一条直线平行于一个平面,则垂直于这个平面的直线必定垂直于这条直线D.若一条直线垂直于一个平面,则垂直于这条直线的另一条直线必垂直于这个平面3.如图所示,在正方形ABCD 中,E 、F 分别是AB 、BC 的中点.现在沿DE 、DF 及EF 把△ADE 、△CDF 和△BEF 折起,使A 、B 、C 三点重合,重合后的点记为P .那么,在四面体P —DEF 中,必有( )⊥平面PEF ⊥平面PEF ⊥平面DEF ⊥平面DEF4.设a 、b 是异面直线,下列命题正确的是 ( )A.过不在a 、b 上的一点P 一定可以作一条直线和a 、b 都相交B.过不在a 、b 上的一点P 一定可以作一个平面和a 、b 都垂直C.过a 一定可以作一个平面与b 垂直D.过a 一定可以作一个平面与b 平行5.如果直线l ,m 与平面α,β,γ满足:l =β∩γ,l ∥α,m ⊂α和m ⊥γ,那么必有 ( )A.α⊥γ且l ⊥mB.α⊥γ且m ∥β ∥β且l ⊥m D.α∥β且α⊥γ是圆的直径,C 是圆周上一点,PC 垂直于圆所在平面,若BC =1,AC =2,PC =1,则P 到AB 的距离为 ( )C.552 D.553 7.有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;③异面直线a 、b 不垂直,那么过a 的任一个平面与b 都不垂直其中正确命题的个数为 ( )是异面直线a 、b 的公垂线,平面α、β满足a ⊥α,b ⊥β,则下面正确的结论是 ( ) 第3题图A.α与β必相交且交线m ∥d 或m 与d 重合B.α与β必相交且交线m ∥d 但m 与d 不重合C.α与β必相交且交线m 与d 一定不平行D.α与β不一定相交9.设l 、m 为直线,α为平面,且l ⊥α,给出下列命题① 若m ⊥α,则m ∥l ;②若m ⊥l ,则m ∥α;③若m ∥α,则m ⊥l ;④若m ∥l ,则m ⊥α, 其中真命题...的序号是 ( ) A.①②③ B.①②④ C.②③④ D.①③④10.已知直线l ⊥平面α,直线m 平面β,给出下列四个命题:①若α∥β,则l ⊥m ;②若α⊥β,则l ∥m ;③若l ∥m ,则α⊥β;④若l ⊥m ,则α∥β. 其中正确的命题是 ( )A.③与④B.①与③C.②与④D.①与②二、思维激活11.如图所示,△ABC 是直角三角形,AB 是斜边,三个顶点在平面α的同侧,它们在α内的射影分别为A ′,B ′,C ′,如果△A ′B ′C ′是正三角形,且AA ′=3cm ,BB ′=5cm ,CC ′=4cm ,则△A ′B ′C ′的面积是.12.如图所示,在直四棱柱A 1B 1C 1D 1—ABCD 中,当底面四边形ABCD 满足条件 时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)13.如图所示,在三棱锥V —ABC 中,当三条侧棱VA 、VB 、VC 之间满足条件 时,有VC ⊥AB .(注:填上你认为正确的一种条件即可)三、能力提高14.如图所示,三棱锥V -ABC 中,AH ⊥侧面VBC ,且H 是△VBC 的垂心,BE 是VC 边上的高.(1)求证:VC ⊥AB ;(2)若二面角E —AB —C 的大小为30°,求VC 与平面ABC所成角的大小.第11题图 第12题图第13题图 第14题图15.如图所示,P A ⊥矩形ABCD 所在平面,M 、N 分别是AB 、PC 的中点.(1)求证:MN ∥平面P AD .(2)求证:MN ⊥CD .(3)若∠PDA =45°,求证:MN ⊥平面PCD .16.如图所示,在四棱锥P —ABCD 中,底面ABCD 是平行四边形,∠BAD =60°,AB =4,AD =2,侧棱PB =15,PD=3.(1)求证:BD ⊥平面P AD .(2)若PD 与底面ABCD 成60°的角,试求二面角P —BC —A 的大小.17.已知直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,∠BAC =30°,BC =1,AA 1=6,M 是CC 1的中点,求证:AB 1⊥A 1M .18.如图所示,正方体ABCD —A ′B ′C ′D ′的棱长为a ,M 是AD 的中点,N 是BD ′上一点,且D ′N ∶NB =1∶2,MC 与BD 交于P .(1)求证:NP ⊥平面ABCD .(2)求平面PNC 与平面CC ′D ′D 所成的角.(3)求点C 到平面D ′MB 的距离.第15题图第16题图第18题图第4课 线面垂直习题解答两平行中有一条与平面垂直,则另一条也与该平面垂直,垂直于同一平面的两直线平行. 由线面垂直的性质定理可知.折后DP ⊥PE ,DP ⊥PF ,PE ⊥PF .过a 上任一点作直线b ′∥b ,则a ,b ′确定的平面与直线b 平行.依题意,m ⊥γ且m ⊂α,则必有α⊥γ,又因为l =β∩γ则有l ⊂γ,而m ⊥γ则l ⊥m ,故选A. 过P 作PD ⊥AB 于D ,连CD ,则CD ⊥AB ,AB =522=+BC AC ,52=⋅=AB BC AC CD , ∴PD =55354122=+=+CD PC . 由定理及性质知三个命题均正确.显然α与β不平行.垂直于同一平面的两直线平行,两条平行线中一条与平面垂直,则另一条也与该平面垂直. ∵α∥β,l ⊥α,∴l ⊥m23 设正三角A ′B ′C ′的边长为a . ∴AC 2=a 2+1,BC 2=a 2+1,AB 2=a 2+4,又AC 2+BC 2=AB 2,∴a 2=2.S △A ′B ′C ′=23432=⋅a cm 2. 12.在直四棱柱A 1B 1C 1D 1—ABCD 中当底面四边形ABCD 满足条件AC ⊥BD (或任何能推导出这个条件的其它条件,例如ABCD 是正方形,菱形等)时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形).点评:本题为探索性题目,由此题开辟了填空题有探索性题的新题型,此题实质考查了三垂线定理但答案不惟一,要求思维应灵活.⊥VA ,VC ⊥AB . 由VC ⊥VA ,VC ⊥AB 知VC ⊥平面VAB .14.(1)证明:∵H 为△VBC 的垂心,∴VC ⊥BE ,又AH ⊥平面VBC ,∴BE 为斜线AB 在平面VBC 上的射影,∴AB ⊥VC .(2)解:由(1)知VC ⊥AB ,VC ⊥BE ,∴VC ⊥平面ABE ,在平面ABE 上,作ED ⊥AB ,又AB ⊥VC ,∴AB ⊥面DEC .∴AB ⊥CD ,∴∠EDC 为二面角E —AB —C 的平面角,∴∠EDC =30°,∵AB ⊥平面VCD ,∴VC 在底面ABC 上的射影为CD .∴∠VCD 为VC 与底面ABC 所成角,又VC ⊥AB ,VC ⊥BE ,∴VC ⊥面ABE ,∴VC ⊥DE ,∴∠CED =90°,故∠ECD=60°,∴VC 与面ABC 所成角为60°.15.证明:(1)如图所示,取PD 的中点E ,连结AE ,EN ,则有EN ∥CD ∥AB ∥AM ,EN =21CD =21AB =AM ,故AMNE 为平行四边形. ∴MN ∥AE . ∵AE 平面P AD ,MN 平面P AD ,∴MN ∥平面P AD .(2)∵P A ⊥平面ABCD ,∴P A ⊥AB .又AD ⊥AB ,∴AB ⊥平面PAD .∴AB ⊥AE ,即AB ⊥MN .又CD ∥AB ,∴MN ⊥CD .(3)∵P A ⊥平面ABCD ,∴P A ⊥AD .又∠PDA =45°,E 为PD 的中点.∴AE ⊥PD ,即MN ⊥PD .又MN ⊥CD ,∴MN ⊥平面PCD .16.如图(1)证:由已知AB =4,AD =2,∠BAD =60°,故BD 2=AD 2+AB 2-2AD ·AB cos60°=4+16-2×2×4×21=12.又AB 2=AD 2+BD 2,∴△ABD 是直角三角形,∠ADB =90°,即AD ⊥BD .在△PDB 中,PD =3,PB =15,BD =12,∴PB 2=PD 2+BD 2,故得PD ⊥BD .又PD ∩AD =D ,∴BD ⊥平面P AD .(2)由BD ⊥平面P AD ,BD 平面ABCD .∴平面P AD ⊥平面ABCD .作PE ⊥AD 于E ,又PE 平面P AD ,∴PE ⊥平面ABCD ,∴∠PDE 是PD 与底面ABCD 所成的角.∴∠PDE =60°,∴PE =PD sin60°=23233=⨯.作EF ⊥BC 于F ,连PF ,则PF ⊥BF ,∴∠PFE 是二面角P —BC —A 的平面角.又EF =BD =12,在Rt △PEF 中,tan ∠PFE =433223==EF PE .故二面角P —BC —A 的大小为arctan 43.17.连结AC 1,∵11112263A C CCMC AC ===.第15题图解 第16题图解∴Rt △ACC 1∽Rt △MC 1A 1,∴∠AC 1C =∠MA 1C 1,∴∠A 1MC 1+∠AC 1C =∠A 1MC 1+∠MA 1C 1=90°.∴A 1M ⊥AC 1,又ABC -A 1B 1C 1为直三棱柱,∴CC 1⊥B 1C 1,又B 1C 1⊥A 1C 1,∴B 1C 1⊥平面AC 1M .由三垂线定理知AB 1⊥A 1M .点评:要证AB 1⊥A 1M ,因B 1C 1⊥平面AC 1,由三垂线定理可转化成证AC 1⊥A 1M ,而AC 1⊥A 1M 一定会成立.18.(1)证明:在正方形ABCD 中,∵△MPD ∽△CPB ,且MD =21BC , ∴DP ∶PB =MD ∶BC =1∶2.又已知D ′N ∶NB =1∶2,由平行截割定理的逆定理得NP ∥DD ′,又DD ′⊥平面ABCD ,∴NP ⊥平面ABCD .(2)∵NP ∥DD ′∥CC ′,∴NP 、CC ′在同一平面内,CC ′为平面NPC 与平面CC ′D ′D 所成二面角的棱. 又由CC ′⊥平面ABCD ,得CC ′⊥CD ,CC ′⊥CM ,∴∠MCD 为该二面角的平面角.在Rt △MCD 中可知∠MCD =arctan 21,即为所求二面角的大小. (3)由已知棱长为a 可得,等腰△MBC 面积S 1=22a ,等腰△MBD ′面积S 2=246a ,设所求距离为h ,即为三棱锥C —D ′MB 的高.∵三棱锥D ′—BCM 体积为h S D D S 213131='⋅, ∴.3621a S a S h =⋅=。

相关文档
最新文档