数字高程模型

合集下载

数字高程模型(DEM)——知识汇总

数字高程模型(DEM)——知识汇总

数字高程模型(DEM)——知识汇总一、数字高程的定义数字高程模型(Digital Elevation Model,简称DEM)是DTM中最基本的部分,它是对地球表面地形地貌的一种离散的数学表达。

DEM表示区域D上的三维向量有限序列,用函数的形式描述为:式中,X i,Y i是平面坐标,Z i是(X i ,Y i)对应的高程。

二、数字高程的特点1)表达的多样性,容易以多种形式显示地形信息。

2)精度的恒定,常规地图对着时间的推移,图纸将会变形,而DEM采用数字媒介,能够保持精度不变。

3)更新的实时性,容易实现自动化,实时化。

4)具有多比例尺特性。

三、数字地面模型(DTM)、数字高程模型(DEM)和数字地形模型(DGM)的区别表 1 三者的区别与联系四、数字高程数据1. 来源:DEM数据包括平面和高程两种信息,常用的数据来源有:影像,现有的地形图,地球本身,其他数据源。

2. 数字高程数据类型1) 分辨率①. 10米DEM数据全国10米数字高程模型数据,为栅格图像数据,图像分辨率为10米,数学基础采用2000国家大地坐标系(CGCS2000)及Albers投影。

数据像素值记录了点位高程。

高程值计量单位为米。

②. 12.5米DEM数据12.5米DEM数据是由ALOS的PALSAR传感器采集。

该传感器具有高分辨率、扫描式合成孔径雷达、极化三种观测模式。

该数据水平及垂直精度可达12米。

ALOS(Advanced Land Observing Satellite)卫星于2006年1月24日由日本发射升空,载有3个传感器:全色测绘体例测绘仪(PRISM),主要用于数字高程测绘;先进可见光与近红外辐射计-2(AVNIR-2),用于精确陆地观测;相控阵型L波段合成孔径雷达(PALSAR),用于全天时全天候陆地观测。

③. 不同分辨率下的晕渲图对比10m分辨率数据12.5m分辨率数据来源: databox.store/product/Details/344图1 不同分辨率下的晕渲图2) 遥感测量方法a) SRTM数据SRTM(Shuttle Radar Topography Mission),由美国太空总署(NASA)和国防部国家测绘局(NIMA)联合测量。

数字高程模型

数字高程模型

数字高程模型数字高程模型(Digital Elevation Model,简称DEM)是一种用于表示地球表面高程信息的数字模型。

它通常是基于地理空间数据采集和处理技术得到的数字地形模型,反映了地表不同位置的高程值。

数字高程模型在地理信息系统、地貌分析、水文模拟等领域具有广泛的应用价值。

数字高程模型的原理和构建方法数字高程模型是通过采集地表高程信息,构建数学模型,并进行数字化表达得到的。

构建数字高程模型的最基本方法是通过激光雷达、全球定位系统(GPS)等技术采集地面高程点,并据此构建高程表面模型。

另一种常用的方法是通过航空或卫星影像获取地表高程信息,并结合插值算法生成数字高程模型。

数字高程模型生成的过程中,需要考虑地球椭球体形状、椭球体参数、大地水准面等因素,并进行数学变换和处理以得到准确的高程数据。

常用的数字高程模型包括数字地面模型(DSM)、数字地形模型(DTM)等,它们之间的区别在于对地物表面和地表以下构造的不同描述。

数字高程模型在地理信息系统中的应用数字高程模型在地理信息系统中有广泛的应用,主要包括地形分析、三维可视化、洪水模拟、景观规划等方面。

在地形分析中,数字高程模型可以用于提取地形特征,计算坡度、坡向、流域分割线等地形参数,进而实现地貌分类、地形图绘制等功能。

三维可视化是数字高程模型应用的一个重要领域,通过将数字高程模型与空间数据结合,可以实现虚拟地形的构建和沉浸式视角的展示。

在洪水模拟和预测方面,数字高程模型可以用于模拟雨水径流路径、洪水淹没范围等,为防洪减灾提供重要的数据支持。

数字高程模型的发展趋势随着遥感技术、地理信息系统技术以及计算机处理能力的不断提升,数字高程模型的精度和分辨率也在不断提高。

未来,数字高程模型将更加精细化、高分辨率化,应用领域也将更加广泛,涉及城市规划、资源管理、环境保护等方面。

另外,数字高程模型的数据融合、多源信息整合、模型开放共享等方向也是未来发展的重点。

数字高程模型

数字高程模型

1、数字高程模型:它是用一组有序数值阵列形式表示地面高程的一种实体地面模型,是数字地形模型(简称DTM)的一个分支,是表示区域D上的三维向量有限序列。

2、DTM:数字地形模型是利用一个任意坐标系中大量选择的已知x、y、z的坐标点对连续地面的一个简单的统计表示,或者说,DTM就是地形表面形态属性信息的数字表达,是带有空间位置特征和地形属性特征的数字描述。

地形表面形态的属性信息一般包括高程、坡度、坡向等。

3、TIN:不规则三角网,通过从不规则分布的数据点生成的连续三角面来逼近地形表面。

4、测绘4D产品(即DLG数字线划图、DRG数字栅格影像、DEM、DOM数字正射影像):DLG:现有地形图上基础地理要素分层存储的矢量数据集。

数字线划图既包括空间信息也包括属性信息。

DRG:数字栅格地图是纸制地形图的栅格形式的数字化产品。

DEM:数字高程模型是以高程表达地面起伏形态的数字集合。

DOM:数字正射影像利用航空相片、遥感影像,经象元纠正,按图幅范围裁切生成的影像。

5、连续不光滑DEM:指每个数据点代表的只是连续表面上的一个采样值,而表面的一阶导数或更高阶导数不连续的情况。

6、数字地貌模型:是地貌形体及其空间组合的数字形式,是一维、二维、三维、四维空间地貌的可视描述和模拟。

7、DEM误差:DEM高程值与真实值的差异9、插值:根据不同数据集的不同方式,DEM建模可以使用一个或多个数学函数对地表进行表示。

根据若干相邻参考点的高程求出待定点上的高程值。

(内插)14、不规则镶嵌数据模型:用相互关联的不规则形状与边界的小面块集合来逼近不规则分布的地形表面15、行程编码结构:对于一幅栅格图像,常常有行或列方向上相邻的若干点具有相同的属性代码,因而可采取某种方法压缩那些重复的记录内容,即只在各行或列数据的代码发生变化时依次记录该代码以及相同代码重复的个数,从而实现压缩16、细节层次模型:对同一个区域或区域中的局部使用具有不同细节的描述方法得到的一组模型。

第7章-数字高程模型

第7章-数字高程模型

1 数字高程模型的定义
地形表面形态等多种信息的一个数字表示
DTM是定义在某一区域D上的m维向量有限序 列:
{Vi ,i 1,2,, n}
➢数字高程模型DEM(Digital Elevation Model)或 DHM(Digital Height Model) 是表示区域D上地形的三维向量有限序列
0
1 L
L
2kX
[{
0
Ck cos(
k 0
L
k
)
k 0
Ck
cos(2kX
L
k
)]}2
dX
2 z
1 2
m
(Ck
k 0
Ck )2 dX
1 2
m
(1
k 0
Ck Ck
)2 Ck2
1 2
m
[1
k 0
H (uk )]2Ck2
采样间隔和地形的复杂程度
2.利用检查点的DEM精度评定
在DEM内插时,预留一部分数据点作 为检查点,在建立DEM之后,由DEM内 插出这些点的高程,DEM的精度
“任何一个圆滑的数学表面总是可以用一 系列有规则的数学表面的总和,以任意的 精度进行逼近。”也就是一个数学表面上 某点(X,Y)处高程Z的表达式为:
n
Z f (X ,Y ) ajq(X ,Y , X j,Yj ) j 1
a1q(X ,Y , X1,Y1) a2q(X ,Y , X 2,Y2) anq(X ,Y , X n,Yn )
深度学习在DEM数据获取中的应用
1.针对激光点云的地面点和非地面点的分类处理: 一处理Lidar数据,提取每个点与周围点之间的相对高差并将其
转换为表示点特征的图像,用于神经网络的训练。分离地物点

数字高程模型

数字高程模型
数字高程模型
对地面地形的数字化模拟
01 简介
03 形式
目录
02 建立方法 04 数据来源
05 分辨率
07 产品案例
目录
06 用途
数字高程模型(Digital Elevation Model),简称DEM,是通过有限的地形高程数据实现对地面地形的数字 化模拟(即地形表面形态的数字化表达),它是用一组有序数值阵列形式表示地面高程的一种实体地面模型,是 数字地形模型(Digital Terrain Model,简称DTM)的一个分支,其它各种地形特征值均可由此派生。
(2)不规则三角。不规则三角是用不规则的三角表示的DEM,通常称DEM或TIN(Triangulated Irregular Network),由于构成TIN的每个点都是原始数据,避免了内插精度损失,所以TIN能较好地估计地貌的特征点、线, 表示复杂地形比矩形格精确。但是TIN的数据量较大,除存储其三维坐标外还要设点连线的拓扑关系,一般应用 于较大范围航摄测量方式获取数值 。
一般认为,DTM是描述包括高程在内的各种地貌因子,如坡度、坡向、坡度变化率等因子在内的线性和非线 性组合的空间分布,其中DEM是零阶单纯的单项数字地貌模型,其他如坡度、坡向及坡度变化率等地貌特性可在 DEM的基础上派生。
简介
DTM的另外两个分支是各种非地貌特性的以矩阵形式表示的数字模型,包括自然地理要素以及与地面有关的 社会经济及人文要素,如土壤类型、土地利用类型、岩层深度、地价、商业优势区等等。实际上DTM是栅格数据 模型的一种。它与图像的栅格表示形式的区别主要是:图像是用一个点代表整个像元的属性,而在DTM中,格的 点只表示点的属性,点与点之间的属性可以通过内插计算获得 。
用途
由于DEM描述的是地面高程信息,它在测绘、水文、气象、地貌、地质、土壤、工程建设、通讯、军事等国 民经济和国防建设以及人文和自然科学领域有着广泛的应用。如在工程建设上,可用于如土方量计算、通视分析 等;在防洪减灾方面,DEM是进行水文分析如汇水区分析、水系络分析、降雨分析、蓄洪计算、淹没分析等的基 础;在无线通讯上,可用于蜂窝的基站分析等等。

数字高程模型(DEM)——知识汇总

数字高程模型(DEM)——知识汇总

一、数字高程的定义数字高程模型(Digital Elevation Model,简称DEM)是DTM中最基本的部分,它是对地球表面地形地貌的一种离散的数学表达。

DEM表示区域D上的三维向量有限序列,用函数的形式描述为:V i=(X i,Y i,Z i);i=1,2,…,n式中, X i, Y i是平面坐标, Z i是(X i, Y i)对应的高程。

二、数字高程的特点1)表达的多样性,容易以多种形式显示地形信息。

2)精度的恒定,常规地图对着时间的推移,图纸将会变形,而DEM采用数字媒介,能够保持精度不变。

3)更新的实时性,容易实现自动化,实时化。

4)具有多比例尺特性。

三、数字地面模型(DTM)、数字高程模型(DEM)和数字地形模型(DGM)的区别表 1 三者的区别与联系四、数字高程数据1.来源:DEM数据包括平面和高程两种信息,常用的数据来源有:影像,现有的地形图,地球本身,其他数据源。

2.数字高程数据类型1)分辨率①.10米DEM数据全国10米数字高程模型数据,为栅格图像数据,图像分辨率为10米,数学基础采用2000国家大地坐标系(CGCS2000)及Albers投影。

数据像素值记录了点位高程。

高程值计量单位为米。

②.12.5米DEM数据12.5米DEM数据是由ALOS的PALSAR传感器采集。

该传感器具有高分辨率、扫描式合成孔径雷达、极化三种观测模式。

该数据水平及垂直精度可达12米。

ALOS(AdvancedLand Observing Satellite)卫星于2006年1月24日由日本发射升空,载有3个传感器:全色测绘体例测绘仪(PRISM),主要用于数字高程测绘;先进可见光与近红外辐射计-2(A VNIR-2),用于精确陆地观测;相控阵型L波段合成孔径雷达(PALSAR),用于全天时全天候陆地观测。

③.不同分辨率下的晕渲图对比图 1 不同分辨率下的晕渲图2)遥感测量方法a)SRTM数据SRTM(Shuttle Radar Topography Mission),由美国太空总署(NASA)和国防部国家测绘局(NIMA)联合测量。

数字高程模型的认识

数字高程模型的认识

城市规划与建设
数字高程模型在城市规划与建设中具有广泛的应用价值。通过数字高程模型,规 划师可以获取城市地形信息,了解城市的地貌特征和地表形态,为城市空间布局 、道路规划、排水系统设计等提供依据。
数字高程模型还可以用于城市景观设计、绿化规划等方面,提高城市的生态环境 质量和美学价值。
土地资源调查
土地资源调查是数字高程模型应用的另一个重要领域。通 过数字高程模型,可以获取土地资源的地形信息,了解土 地资源的分布、质量和利用状况,为土地资源的合理利用 和保护提供科学依据。
数据采集
通过地面测量、航空摄影测量 和卫星遥感等方式获取地形数 据。
网格生成
将处理后的地形数据转换为数 字高程模型,通常采用规则或 不规则的网格形式进行表示。
流程
DEM的建立流程包括数据采集、 数据处理、网格生成和质量控 制等步骤。
数据处理
对采集到的地形数据进行预处 理、编辑和整理,以确保数据 的质量和准确性。
数据可视化与表达
可视化表达
将数字高程模型转换为可视化的地形图,便于分析和应用。
可视化技术
利用GIS、三维可视化等技术,实现数字高程模型的动态展示和交互操作。
04
数字高程模型的精度与 误差分析
精度影响因素
数据源
数字高程模型的数据源直接影响其精度,高质量 的数据源能够提供更准确的地面高程信息。
采样间隔
详细描述
高分辨率数字高程模型能够捕捉到更多的地形细节,对于城市规划、土地利用、地质调 查等领域具有重要意义。同时,精细化的发展趋势使得数字高程模型能够更好地模拟和
预测地形地貌的变化。
多源数据融合与集成应用
总结词
多源数据的融合和集成应用是数字高程模型 发展的重要方向,能够提高模型的准确性和 可靠性。

数字高程模型的概念

数字高程模型的概念

数字高程模型的概念一、引言数字高程模型(Digital Elevation Model,简称DEM)是地球表面地形形态和特征的数字表达。

它是一种数据格式,用于存储、管理和显示地球表面某一特定范围内的高程数据。

DEM在地理信息系统(GIS)、遥感(RS)、全球定位系统(GPS)等领域有着广泛的应用。

二、高程数据高程数据是数字高程模型的基础,它描述了地球表面某一特定范围内的高程信息。

高程数据可以是绝对高程或相对高程。

绝对高程是以地球质心为参考点,测量得到的高程;相对高程则是相对于某一特定基准面(如海平面)的高程。

高程数据的精度和分辨率直接影响数字高程模型的精度和详细程度。

三、地形形态地形形态是地球表面地形的高低起伏状态,包括山峰、山谷、平原、高原等地形。

数字高程模型通过表达地形形态,可以反映地球表面地形的高低起伏变化。

地形形态是数字高程模型的重要特征之一,它对于地貌分析、土地利用、水资源管理等领域具有重要意义。

四、地形特征地形特征是指地球表面地形上的特殊点或区域,如山峰、河流、湖泊等。

数字高程模型通过表达这些地形特征,可以提供更丰富的地理信息。

例如,通过提取山峰数据,可以分析山脉的分布和高度;通过提取河流数据,可以分析流域的水文特征。

地形特征对于环境监测、城市规划、交通布局等领域具有重要应用价值。

五、总结数字高程模型是地球表面地形形态和特征的数字表达,它通过高程数据、地形形态和地形特征等要素,提供了丰富的地理信息。

数字高程模型在地理信息系统、遥感、全球定位系统等领域有着广泛的应用,为地貌分析、土地利用、水资源管理、环境监测、城市规划等领域提供了重要的支持和参考。

随着科技的发展,数字高程模型的应用范围还将不断扩大,为人类提供更全面、更准确的地理信息。

数字高程模型

数字高程模型

+第一章绪论数字地形图:在测绘领域,地形图是一个专有名词。

国内的地形图(国外的不了解)一般特指那些特定比例尺系列、有着固定分幅范围的、全面表达地表面的地形、地物特征的地图。

其内容特点是全面、均衡、不突出表达某种要素。

一般包括:测量控制点、居民地、水系、交通、管线、地貌、植被等内容。

数字地形图的历史形态是模拟地形图,一般是纸质的。

数字高程模型(DEM):地形图上的地貌是用等高线、高程点、陡坎、陡崖等表达的。

等高线和高程点,外加陡坎、陡崖及其比高构成了一种“高程模型”。

通过对他们的判读,可以得到对地表高程的总体印象,是对实际地貌的一种模拟。

数字地形图上的等高线和高程点是数字高程模型的一种。

不规则三角网、规则格网都可以是数字高程模型,其核心特点是都可以对地表高程信息进行完整的模拟。

数字地面(地形)模型(DTM):地形是“地表形态”或“地貌形态”的简称。

地形可以用高程来描述,也可以用坡度、坡向等信息来描述。

数字地形模型包括数字高程模型、数字坡度模型、数字坡向模型等。

数字表面模型(DSM):DEM必须是高程信息,是对地形和地貌的模拟,DSM可以是地物表面的模拟,包括植被表面、房屋的表面,对DSM进行加工,去掉房屋、植被等信息,可以形成DEM。

模型(Model):用来表现其它事物的一个对象或概念,是按比例缩减并转变为能够理解的事物本体。

模型可用来表示系统或现象的最初状态,或表现某些假定或预测的情形。

三个层次:概念模型----基于个人的经验与知识在大脑中形成的关于状况或对象的模型。

物质模型----模拟的模型。

如沙盘,塑料地形模型。

数学模型----基于数字系统的定量模型。

用数学的语言、方法去近似地刻划实际,是由数字、字母或其它数学符号组成的,描述现实对象数量规律的数学公式、图形或算法。

•(1)按照模型的应用领域(或所属学科)如人口模型,生物模型,生态模型,交通模型,作战模型等。

•(2)按照建立模型的数学方法(或所属数学分支)如初等模型,微分方程模型、网络模型、运筹模型、随机模型等。

数字高程模型

数字高程模型

数据处理
01 数据采集:通过遥感、地形测量 等手段获取原始数据
02 数据预处理:对数据进行清洗、 格式转换等处理
03 数据融合:将不同来源的数据进 行融合,形成统一的数据格式
04 数据分析:对数据进行分析,提 取有用信息,生成数字高程模型
数据可视化
数字高程模型:将 地形数据转化为可 视化的三维模型
个高程值。
的地形表面高程数据模型。
03 DEM可以用于各种地形
04 DEM的数据来源包括遥
分析、可视化和建模应用,
感数据、地形测量数据、
如地形渲染、洪水模拟、
数字地图等。
地貌分析等。
数字高程模型的应用领域
01
地形分析:用于地形特征分 析、地貌分类等
02
工程设计:用于道路、桥梁、 水利等工程设计
03
05
激光雷达数字高程模型:利用激 光雷达技术获取高程数据,具有 较高的精度和分辨率
02
矢量数字高程模型:以矢量形式 表示高程数据,每个矢量元素都 有一个高程值
04
地形图数字高程模型:以地形图 为基础,通过数字化处理得到高 程数据
06
卫星遥感数字高程模型:利用卫 星遥感技术获取高程数据,覆盖 范围广,更新速度快

03
跨领域合作:不 同领域之间的合 作,实现数据共
享和整合
04
隐私保护:在数 据共享过程中, 注重保护用户隐
私和数据安全
谢谢
应用拓展
01
城市规划:用于城市地 形分析、规划设计等
02
灾害预警:用于洪水、 滑坡等自然灾害预警和 评估
03
交通规划:用于道路、 铁路等交通基础设施规 划
04
环境监测:用于水土保 持、生态评估等环境监 测和评估

数字高程模型

数字高程模型

§5 DEM的建立
2.现有地图数字化 利用手扶跟踪数字化仪或扫描数字化仪,
对已有地形图上的信息如等高线、高程点 进行采集,然后通过内插的方法生成DEM。 DEM内插方法很多,主要有分块内插、部分 内插和单点移面内插三种。目前常用的算 法是通过等高线和高程点建立不规则的三 角网(简称TIN)。然后在TIN基础上通过线性 和双线性内插建立DEM。如下图所示:
§5 DEM的建立
• 以上介绍的是DEM常用的建立方法和常见 功能,无论是哪一种建立方法,均存在着 误差,这些误差主要是由原始数据的采集 误差和高程内插误差共同决定的。如果采 集的数据点太稀会降低DEM的精度;数据 点过密,又会增大数据量、处理的工作量 和不必要的存储量。因此在DEM数据采集 之前,需按照所要达到的精度确定合理的 取样密度,或者在DEM数据采集过程中根 据地形复杂程度动态调整采样点密度。我
§5 DEM的建立
DEM的建立 建立DEM的方法有多种,以数据源及采
集方式来划分主要有以下几种。 1.地面测量
利用GPS、全站仪、RTK等仪器在野外实 地测量,并自动记录测量数据,将这些数 据通过串行通讯,输入计算机中进行处理, 直接获取各测量点的三维坐标。当点数达 到一定密度后,即可生成一定精度的DEM。
§3 DEM数据预处理
[一] DEM数据格式转换
[二] DEM数据坐标变换 1 其它坐标系向地面坐标系转换 2 地面坐标系之间的转换
§3 DEM数据预处理
[三] DEM的数据编辑
• 粗差剔除 • 交互编辑 • 补测(需要时) • 系统误差改正
§3 DEM数据预处理
[四] 栅格数据转换为矢量数据
1.二值化处理 2.滤波或形态学处理 3.边缘跟踪和细化 4.获取矢量数据

测绘技术中常见的数字高程模型介绍

测绘技术中常见的数字高程模型介绍

测绘技术中常见的数字高程模型介绍测绘技术在现代社会中发挥了重要的作用,尤其是在城市规划、土地利用以及自然灾害防治等方面。

数字高程模型(Digital Elevation Model, DEM)是测绘技术中常见且重要的一个概念。

本文将介绍数字高程模型的概念、应用以及构建方法。

一、数字高程模型的概念数字高程模型指的是一种描述地表形态及其相关信息的数学模型。

它用离散的数据点或像元来表示地面的高程信息。

数字高程模型能够精确表达地表的高低起伏,并且能够提供用于分析和测量的几何和地形属性,如高度、坡度和坡向等。

二、数字高程模型的应用数字高程模型在测绘技术中有着广泛的应用。

首先,它在地图制作中起到了至关重要的作用。

数字高程模型能够提供地形的三维信息,帮助测绘人员更加准确地绘制地图。

其次,数字高程模型也是土地规划和建设工程设计的重要工具。

通过数字高程模型,规划师和工程师能够深入了解地表形态特征,为城市规划和建设提供科学依据。

此外,数字高程模型在环境保护、水资源管理以及自然灾害预测和防治等领域也有着广泛的应用。

三、数字高程模型的构建方法数字高程模型的构建有多种方法,主要包括测量和遥感两种方式。

测量方式包括地面实地测量和空中摄影测量。

地面实地测量通常使用全站仪或GPS等测量仪器对地面进行测量,然后通过插值法将测量数据构建成数字高程模型。

空中摄影测量则是通过航空器从空中获取影像,再通过摄影测量技术提取地面高程信息,并通过数字影像处理软件构建数字高程模型。

遥感方式则是利用航天卫星或航空器搭载的遥感传感器获取地表影像数据,通过图像处理技术提取高程信息,并构建数字高程模型。

这种方式可以快速且经济地获取大范围的地表高程信息。

四、数字高程模型的分类根据数据的来源和表示方式,数字高程模型可以分为灰度 DEM、三角网 DEM 和等高线 DEM。

灰度 DEM 是最常见的一种数字高程模型,它使用灰度图像来表示地表的高程信息。

三角网 DEM 是通过将地表划分为多个三角网单元,利用分析网格单元内的高程数据构建数字高程模型。

数字高程模型

数字高程模型
数字高程模型是以数字的形式按一定结 构组织在一起,表示实际地形特征空间分布 的模型,也是地形形状大小和起伏的数字描 述。
DEM的核心是地形表面特征点的三维坐 标数据和一套对地表提供连续描述的算法, 最基本的DEM由一系列地面点 x,y 位置及 其相联系的高程 z 组成,其数学函数式表达 是
z = f(x,y),(x,y) ∈ DEM所在区域
统计各类土地面积
以H2为临界值,将数字地形的数据按照 公式进行重新分类,得到数字地形的二值图, 将该二值图与土地利用数据进行布尔逻辑运 算,统计出各类土地的淹没面积。
zi,j =
1 0
当zi,j H2 当zi,j H2
(3)剖面图的自动绘制
AB CD E
(a) DEM数据
300
300
200
a.地形简单的地区存在大量冗余数据; b.如不改变格网大小,则无法适用于起伏程度不同的 地区; c.由于栅格过于粗略,不能精确表示地形的关键特征, 如山峰、洼坑、山脊、山谷等。为了压缩栅格DTM的 冗余数据,可采用游程编码或四叉树编码方法。
3.DEM的表示方法 不规则三角网(TIN)模型
1 XYZ 2 XYZ 3 XYZ 4 XYZ 5 XYZ 6 6 XYZ 7 XYZ 8 XYZ
(8)生成坡度图、坡向图、剖面图,辅助地貌分 析,估计侵蚀和径流等。
(9)作为背景叠加各种专题信息如土壤、土地利 用及植被覆盖数据等,以进行显示与分析等等
2.DTM的数据采集 (1)以航空或航天遥感图像为数据源
左航片
全数字摄影测量
右航片
DEM
2.DTM的数据采集 (1)以航空或航天遥感图像为数据源 (2)以地形图为数据源
(2-3) (2-4)

了解测绘技术中的数字高程模型原理

了解测绘技术中的数字高程模型原理

了解测绘技术中的数字高程模型原理数字高程模型(Digital Elevation Model,简称DEM)是测绘技术中的一项重要内容,它用于描述地表的高程信息。

通过DEM,我们可以获得地形的三维数据,为地质勘探、灾害预测、地理信息系统等领域提供了重要的支持。

本文将介绍数字高程模型的原理和应用。

一、数字高程模型的定义和分类数字高程模型是一种以离散的方式表示地表高程的数学模型。

它通过一系列坐标点的高程数据来描述地表的高低变化。

通常情况下,数字高程模型可以分为两种类型:栅格型和三角网型。

1. 栅格型数字高程模型栅格型数字高程模型是将地表划分为规则的网格或像素单元,并在每个单元中储存该点的高程数值。

这种数据表达方式简单直观,适合进行栅格运算和分析。

例如,在地理信息系统中,我们可以使用栅格型数字高程模型进行地形分析、洪水模拟等工作。

2. 三角网型数字高程模型三角网型数字高程模型是通过一系列相邻的三角形来描述地表的高程。

这种数据表达方式可以提供更精确的地形信息,并适用于地形建模、三维重建等工作。

例如,在建筑行业,我们可以利用三角网型数字高程模型进行地表开挖、地形平整等工程规划。

二、数字高程模型的原理数字高程模型的原理主要包括地面采样、数据成像和数据处理三个步骤。

1. 地面采样地面采样是指在实地进行高程数据收集的过程。

常用的高程数据采集方法包括全站仪、GPS、激光雷达等。

这些设备可以快速、准确地获取地表高程数据,并将其存储为点云数据。

2. 数据成像数据成像是指将地面采样得到的点云数据转换成数字高程模型的过程。

栅格型数字高程模型的数据成像方法较为简单,可以直接将点云数据投影到栅格单元中,并且采用插值算法得到高程数值。

而三角网型数字高程模型的数据成像相对复杂,需要进行三角网剖分和插值等操作。

3. 数据处理数据处理是指对生成的数字高程模型进行处理和优化的过程。

这一步骤主要包括噪声滤波、数据平滑、数据融合等操作,以提高数字高程模型的准确度和可靠性。

数字高程模型教程期末总结

数字高程模型教程期末总结

数字高程模型教程期末总结一、概念及基本原理数字高程模型(DEM)是由空间地理点的地形高程值构成的矩阵数据模型。

DEM通过离散化垂直空间上的地形高程、以矩阵形式表达出来,可以实现高程信息的数字化、可视化和存储。

数字高程模型主要有两种类型:栅格型DEM和矢量型DEM。

栅格型DEM是将地表划分成等大的像元单元,每个像元上的高程值代表该区域的平均高程。

矢量型DEM则将地表看作由离散的点和线构成,每个点和线上的高程值表示该点或线对应的地点或地段上的高程。

栅格型DEM的主要特点是数据量大、空间精度较低。

而矢量型DEM的数据量相对较小,可以实现较高的空间精度。

在实际应用中,可以根据需要选择不同类型的DEM。

二、数据来源与获取数字高程模型的数据源主要有以下几种:1. 遥感数据:遥感数据是获取DEM的主要途径之一。

常用的遥感数据包括卫星影像、航空影像等,通过对这些影像进行处理和解译,可以得到地表的高程信息。

2. 激光雷达:激光雷达是获取高精度DEM的重要手段。

激光雷达通过发射激光束并测量激光束的返回时间来确定地面的高程信息,具有高精度、高分辨率的特点。

3. 地形测量:使用测量仪器对地表进行实地测量可以获取DEM数据。

地形测量常用的仪器有全站仪、GPS等,通过测量地点的坐标和高程值,可以建立数字高程模型。

4. 数据插值:通过对已知高程点进行插值处理,可以推算出其他点的高程值。

常用的插值方法包括三角网格法、反距离加权法、克里金法等。

在实际应用中,常常需要结合多种数据来源进行DEM的获取,以提高数据的准确性和精度。

三、DEM处理方法1. 数据预处理:对原始数据进行处理,包括数据格式转换、数据清理、数据去噪、数据校正等。

2. 数据融合:将来自不同数据源的DEM进行融合,以提高数据的精度和准确性。

3. 数据插值:对缺失或不完整的高程数据进行插值处理,以填补缺失值。

常用的插值方法包括反距离加权插值、克里金插值等。

4. 数据平滑:对DEM数据进行平滑处理,以去除小尺度噪声和不规则性,提取出地表的整体特征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档