HV57908中文资料
H5077NLT;H5079NLT;H5077NL;H5079NL;中文规格书,Datasheet资料
Designed to Support 1:1 Turns Ratio
Transceivers
RoHS-6 peak reflow temperature rating 245°C° Small footprint saves board space Compliant with IEEE 802.3ab standard for 1000BASE-T
Tel: 65 6287 8998 Fax: 65 6280 0080
Pulse North Asia No. 26, Kao Ching Rd. Yang Mei Chen Taoyuan Hsien Taiwan R. O. C.
Tel: 886 3 4641811 Fax: 886 3 4641911
H5077NL 2
1
H5079NL 2
1
-18
-16
-18
-16
-12
-10
-43
-37
-33
-45 -40
-35
-12
-10
-43
-37
-33
-45 -40
-35
1. Add "T" to the end of the part number for tape-and-reel option, e.g. H5077NL becomes H5077NLT. 2. MSL = Moisture Sensitivity Level = 1 3. RoHS-6: Product does not contain 5 out of the 6 banned substances specified in the RoHS directive. Some internal connections may contain lead in
单片机w77e58中文资料
MC78908CT中文资料
3-TERMINAL 1A NEGATIVE VOLTAGE REGULATORSThe MC79XX series of three-terminal negative regulators are available in TO-220 package and with several fixed output voltages, making them useful in a wide range of applications. Each type employs internal current limiting,thermal shut-down and safe area protection, making it essentially indestructible.FEATURES• Output Current in Excess of 1A• Output Voltages of -5, -6, -8, -12, -15, -18, -24V • Internal Thermal Overload Protection • Short Circuit Protection• Output Transistor Safe-Area CompensationDeviceOutput Voltage TolerancePackage Operating TemperatureMC79XXCT (LM79XXCT) (KA79XX)± 4%KA79XXA± 2%TO-2200 ~+125°COutIn1: GND 2: Input 3: OutputORDERING INFORMATIONBLOCK DIAGRAM©1999 Fairchild Semiconductor CorporationRev. CABSOLUTE MAXIMUM RATINGS (T A =+25°C, unless otherwise specified)LM7905 ELECTRICAL CHARACTERISTICS(V I = 10V, l O = 500mA, 0°C ≤T J ≤ +125°C, C I =2.2µF, C O =1µF, unless otherwise specified.)* Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must be taken into account separately. Pulse testing with low duty is used.CharacteristicSymbol Value Unit Input VoltageV I -35V Thermal Resistance Junction-Cases Junction-Air R θJC R θJA 565°C / W °C /W Operating Temperature Range T OPR 0 ~ +125°C Storage Temperature RangeT STG- 65 ~ +150°CCharacteristicSymbol Test ConditionsMin Typ Max UnitT J =+25°C- 4.8- 5.0- 5.2 Output VoltageV OI O = 5mA to 1A, P O 15W V I = -7 to -20V- 4.75-5.0- 5.25V V I = -7 to -20V I O =1A550V I = -8 to -12V I O =1A225V I = -7.5 to -25V 750V I = -8 to -12V I O =1A750 I O = 5mA to 1.5A10100 T J =+25°CI O = 250 to 750mA 350 Quiescent Current I Q T J =+25°C 36mA I O = 5mA to 1A 0.050.5 V I = -8 to -25V 0.10.8Temperature Coefficient of V D ∆V O /∆T I O = 5mA- 0.4mV/°C Output Noise Voltage V N f = 10Hz to 100KHz T A =+25°C40µV Ripple Rejection RR f = 120Hz, I O = -35V ∆V I = 10V 5460dB Dropout Voltage V D T J =+25°C I O = 1A2V Short Circuit Current I SC T J =+25°C, V I = -35V 300mA Peak CurrentI PKT J =+25°C2.2A Load Regulation ∆V O Line Regulation∆V OT J =25°CmV mV Quiescent Current Change ∆I Q mA(V I = 11V, l O = 500mA, 0°C ≤T J ≤ +125°C, C I =2.2µF, C O = 1µF, unless otherwise specified.)* Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must be taken into account separately. Pulse testing with low duty is used.CharacteristicSymbol Test ConditionsMin Typ Max UnitT J = +25°C- 5.75- 6- 6.25 Output Voltage V O I O = 5mA to 1A, P O 15W V I = - 9 to - 21V- 5.7- 6- 6.3V V I = - 8 to - 25V10120V I = - 9 to -12V 560 T J =+ 25°CI O = 5mA to 1.5A 10120T J =+ 25°CI O = 250 to 750mA 360 Quiescent Current I Q T J =+ 25°C 36mA I O = 5mA to 1A 0.5 V I = -9 to -25V 1.3Temperature Coefficient of V D ∆V O /∆T I O = 5mA-0.5mV/°C Output Noise Voltage V N f = 10Hz to 100KHz T A =+ 25°C 130µV Ripple Rejection RR f = 120Hz ∆V I = 10V 5460dB Dropout Voltage V D T J =+ 25°C I O = 1A2V Short Circuit Current I SC T J = +25°C, V I = -35V 300mA Peak CurrentI PKT J = +25°C2.2A Line Regulation∆V OT J = 25°C∆V O Load Regulation mVmV Quiescent Current Change ∆I Q mA(V I = 14V, l O = 500mA, 0°C ≤T J ≤ +125°C, C I =2.2µF, C O = 1µF, unless otherwise specified.)* Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must be taken into account separately. Pulse testing with low duty is used.CharacteristicSymbol Test ConditionsMin Typ Max UnitT J =+ 25°C- 7.7- 8- 8.3 Output Voltage V O I O = 5mA to 1A, P O 15W V I = -1.5 to -23V- 7.6- 8- 8.4V V I = -10.5 to -25V10100V I = -11 to -17V 580 T J =+ 25°CI O = 5mA to 1.5A 12160T J =+ 25°CI O = 250 to 750mA 480 Quiescent Current I Q T J =+ 25°C 36mA I O = 5mA to 1A 0.050.5 V I = -11.5 to -25V 0.11Temperature Coefficient of V D ∆V O /∆T I O = 5mA-0.6mV/°C Output Noise Voltage V N f = 10Hz to 100KHz T A =+ 25°C 175µV Ripple Rejection RR f = 120Hz ∆V I = 10V 5460dB Dropout Voltage V D T J =+ 25°C I O = 1A2V Short Circuit Current I SC T J =+ 25°C, V I = -35V 300mA Peak CurrentI PKT J =+ 25°C2.2A Line Regulation∆V OLoad Regulation ∆V O mVmV T J = 25°CQuiescent Current Change ∆I Q mA(V I = 14V, l O = 500mA, 0°C ≤T J ≤+ 125°C, C I =2.2µF, C O = 1µF, unless otherwise specified)* Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must be taken into account separately. Pulse testing with low duty is used.CharacteristicSymbol Test ConditionsMin Typ Max UnitT J =+ 25°C- 8.7- 9.0- 9.3 Output Voltage V O I O = 5mA to 1A, P O 15W V I = -1.5 to -23V- 8.6- 9.0- 9.4V V I = -10.5 to -25V10180V I = -11 to -17V 590 T J =+ 25°CI O = 5mA to 1.5A 12180T J =+ 25°CI O = 250 to 750mA 490 Quiescent Current I Q T J =+ 25°C 36mA I O = 5mA to 1A 0.050.5 V I = -11.5 to -25V 0.11Temperature Coefficient of V D ∆V O /∆T I O = 5mA-0.6mV/°C Output Noise Voltage V N f = 10Hz to 100KHz T A =+ 25°C 175µV Ripple Rejection RR f = 120Hz ∆V I = 10V 5460dB Dropout Voltage V D T J =+ 25°C I O = 1A2V Short Circuit Current I SC T J = +25°C, V I = -35V 300mA Peak CurrentI PKT J =+25°C2.2A Line Regulation∆V OLoad Regulation ∆V O mVmV T J = 25°CQuiescent Current Change ∆I Q mA(V I = 18V, l O =500mA, 0°C ≤T J ≤ +125°C, C I =2.2µF, C O = 1µF, unless otherwise specified.)* Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must be taken into account separately. Pulse testing with low duty is used.CharacteristicSymbol Test ConditionsMin Typ Max UnitT J = +25°C-11.5-12-12.5 Output Voltage V O I O = 5mA to 1A, P O 15W V I = -15.5 to -27V-11.4-12-12.6V V I= -14.5 to -30V12240V I = -16 to -22V6120 T J =+ 25°CI O = 5mA to 1.5A 12240T J =+ 25°CI O = 250 to 750mA 4120 Quiescent Current I Q T J =+ 25°C 36mA I O = 5mA to 1A 0.050.5 V I = -15 to -30V 0.11Temperature Coefficient of V D ∆V O /∆T I O = 5mA-0.8mV/°C Output Noise Voltage V N f = 10Hz to 100KHz T A =+ 25°C 200µV Ripple Rejection RR f = 120Hz ∆V I = 10V 5460dB Dropout Voltage V D T J = +25°C I O = 1A2V Short Circuit Current I SC T J =+ 25°C, V I = -35V 300mA Peak CurrentI PKT J =+ 25°C2.2A Line RegulationLoad Regulation ∆V O∆V O mVT J = 25°C mV Quiescent Current Change ∆I Q mA(V I = 23V, I O = 500mA, 0°C ≤T J +125°C, C I =2.2µF, C O = 1µF, unless otherwise specified.)* Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must be takeninto account separately. Pulse testing with low duty is used.CharacteristicSymbolTest ConditionsMin Typ Max UnitT J =+ 25°C-14.4-15-15.6 Output Voltage V OI O = 5mA to 1A, P O 15W V I = -18 to -30V-14.25-15-15.75V V I = -17.5 to -30V 12300V I = -20 to -26V6150 T J =+ 25°CI O = 5mA to 1.5A12300T J =+ 25°CI O = 250 to 750mA4150 Quiescent Current I Q T J =+ 25°C36mA I O = 5mA to 1A0.050.5 V I = -18.5 to -30V0.11Temperature Coefficient of V D ∆V O /∆T I O = 5mA-0.9mV/°C Output Noise Voltage V Nf = 10Hz to 100KhzT A =+ 25°C 250µV Ripple Rejection RRf = 120Hz∆V I = 10V 5460dB Dropout Voltage V DT J =+25°CI O = 1A2V Short Circuit Current I SC T J =+ 25°C, V I = -35V 300mA Peak CurrentI PK T J =+ 25°C2.2A Line Regulation∆V OLoad Regulation ∆V OT J = 25°C Quiescent Current Change ∆I QmV mVmA(V I = 27V, l O = 500mA, 0°C ≤T J ≤+125°C, C I =2.2µF, C O = 1µF, unless otherwise specified.)* Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must be taken into account separately. Pulse testing with low duty is used.CharacteristicSymbol Test ConditionsMin Typ Max UnitT J =+ 25°C-17.3-18-18.7 Output Voltage V O I O = 5mA to 1A, P O 15W V I = -22.5 to -33V-17.1-18-18.9V V I = -21 to -33V15360V I = -24 to -30V8180 T J =+ 25°CI O = 5mA to 1.5A 15360T J =+ 25°CI O = 250 to 750mA 5180 Quiescent Current I Q T J =+ 25°C 36mA I O = 5mA to 1A 0.5 V I = -22 to -33V 1Temperature Coefficient of V D ∆V O /∆T I O = 5mA-1mV/°C Output Noise Voltage V N f = 10Hz to 100KHz T A =+ 25°C 300µV Ripple Rejection RR f = 120Hz ∆V I = 10V 5460dB Dropout Voltage V D T J =+ 25°C I O = 1A2V Short Circuit Current I SC T J =+ 25°C, V I = -35V 300mA Peak CurrentI PKT J =+ 25°C2.2A Quiescent Current Change ∆I Q Line Regulation∆V OLoad Regulation ∆V O T J = 25°C mV mVmA(V I = 33V, l O = 500mA, 0°C ≤T J ≤+125°C, C I =2.2µF, C O = 1µF, unless otherwise specified.)* Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must be taken into account separately. Pulse testing with low duty is used.CharacteristicSymbol Test ConditionsMin Typ Max UnitT J =+25°C- 23- 24- 25 Output Voltage V O I O = 5mA to 1A, P O ≤15W V I = -27 to -38V- 22.8- 24- 25.2V V I = - 27 to - 38V15480V I = - 30 to - 36V8180 T J = +25°CI O = 5mA to 1.5A 15480T J =+ 25°CI O = 250 to 750mA 5240 Quiescent Current I Q T J =+ 25°C 36mA I O = 5mA to 1A 0.5 V I = -27 to -38V 1Temperature Coefficient of V D ∆V O /∆T I O = 5mA-1mV/°C Output Noise Voltage V N f = 10Hz to 100KHz T A =+ 25°C 400µV Ripple Rejection RR f = 120Hz ∆V I = 10V 5460dB Dropout Voltage V D T J = +25°C I O = 1A2V Short Circuit Current I SC T J =+ 25°C, V I = -35V 300mA Peak CurrentI PKT J =+25°C2.2A Line RegulationLoad Regulation T J = 25°C∆V O ∆V OQuiescent Current Change ∆I Q mA mV mV(V I = 10V, l O = 500mA, 0°C ≤T J ≤ +125°C, C I =2.2µF, C O =1µF, unless otherwise specified.)* Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must be taken into account separately. Pulse testing with low duty is used.CharacteristicSymbol Test ConditionsMin Typ Max UnitT J =+ 25°C- 4.9- 5.0- 5.1 Output VoltageV OI O = 5mA to 1A, P O 15W V I = -7 to -20V- 4.8-5.0- 5.2V V I = -7 to -20V I O =1A550V I = -8 to -12V I O =1A225V I = -7.5 to -25V 750V I = -8 to -12V I O =1A750 I O = 5mA to 1.5A10100 T J =+ 25°CI O = 250 to 750mA 350 Quiescent Current I Q T J = +25°C 36mA I O = 5mA to 1A 0.050.5 V I = -8 to -25V 0.10.8Temperature Coefficient of V D ∆V O /∆T I O = 5mA- 0.4mV/°C Output Noise Voltage V N f = 10Hz to 100KHz T A =+ 25°C40µV Ripple Rejection RR f = 120Hz, I O = -35V ∆V I = 10V 5460dB Dropout Voltage V D T J =+ 25°C I O = 1A2V Short Circuit Current I SC T J =+ 25°C, V I = -35V 300mA Peak CurrentI PKT J =+ 25°C2.2A Load Regulation ∆V O Line Regulation∆V OT J =+25°CmV mV Quiescent Current Change ∆I Q mA(V I = 18V, l O =500mA, 0°C ≤T J ≤ +125°C, C I =2.2µF, C O = 1µF, unless otherwise specified.)* Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must be taken into account separately. Pulse testing with low duty is used.CharacteristicSymbol Test ConditionsMin Typ Max UnitT J =+ 25°C-11.75-12-12.25 Output Voltage V O I O = 5mA to 1A, P O 15W V I = -15.5 to -27V-11.5-12-12.5V V I= -14.5 to -30V12240V I = -16 to -22V6120 T J = +25°CI O = 5mA to 1.5A 12240T J =+ 25°CI O = 250 to 750mA 4120 Quiescent Current I Q T J =+ 25°C 36mA I O = 5mA to 1A 0.050.5 V I = -15 to -30V 0.11Temperature Coefficient of V D ∆V O /∆T I O = 5mA-0.8mV/°C Output Noise Voltage V N f = 10Hz to 100Khz T A =+ 25°C 200µV Ripple Rejection RR f = 120Hz ∆V I = 10V 5460dB Dropout Voltage V D T J =+ 25°C I O = 1A2V Short Circuit Current I SC T J =+ 25°C, V I = -35V 300mA Peak CurrentI PKT J =+ 25°C2.2A Line RegulationLoad Regulation ∆V O∆V O mVT J =+25°C mV Quiescent Current Change ∆I Q mA(V I = 23V, l O = 500mA, 0°C ≤T J ≤ +125°C, C I =2.2µF, C O = 1µF, unless otherwise specified.)* Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must be takeninto account separately. Pulse testing with low duty is used.CharacteristicSymbolTest ConditionsMin Typ Max UnitT J = +25°C-14.7-15-15.3 Output Voltage V OI O = 5mA to 1A, P O 15W V I = -18 to -30V-14.4-15-15.6V V I = -17.5 to -30V 12300V I = -20 to -26V6150 T J =+ 25°CI O = 5mA to 1.5A12300T J =+ 25°CI O = 250 to 750mA4150 Quiescent Current I Q T J =+ 25°C36mA I O = 5mA to 1A0.050.5 V I = -18.5 to -30V0.11Temperature Coefficient of V D ∆V O /∆T I O = 5mA-0.9mV/°C Output Noise Voltage V Nf = 10Hz to 100KHzT A =+25°C 250µV Ripple Rejection RRf = 120Hz∆V I = 10V 5460dB Dropout Voltage V DT J = +25°CI O = 1A2V Short Circuit Current I SC T J =+ 25°C, V I = -35V 300mA Peak CurrentI PK T J =+ 25°C2.2A Line Regulation∆V OLoad Regulation ∆V OT J =+25°C Quiescent Current Change ∆I QmV mVmAFig.1 Output VoltageFig. 2 Load Regulation-5-3-113579111315-40-2502550751001254.84.854.94.9555.055.1-40-25255075100125O u t p u t V o l t a g e [-V ]T A , Ambient Temperature [oC]L o a d R e g u l a t i o n [m V ]T A , Ambient Temperature [oC]Fig.3 Quiescent CurrentFig. 4 Dropout VoltageFig.5 Short Circuit Current00.511.522.533.54-40-2525507510012500.511.522.533.544.55-40-25255075100125Q u i e s c e n t C u r r e n t [m A ]D r o p o u t V o l t a g e [V ]T A , Ambient Temperature [o C]T A , Ambient Temperature [oC]-0.1-0.0500.050.10.150.20.250.30.350.40.450.50.550.6-40-250255075100125S h o r t C i r c u i t C u r r e n t [A ]T A , Ambient Temperature [o C]TYPICAL APPLICATIONSFig. 6 Negative Fixed output regulator- V - V OFig. 7 Split power supply (±12V/1A)-12V+ 15V+12VGNDNotes:(1) To specify an output voltage, substitute voltage value for “XX “(2) Required for stability. For value given, capacitormust be solid tantalum. If aluminum electronics are used, at least ten times value shown should be selected. C I is required if regulator is located an appreciabledistance from power supply filter.(3) To improve transient response. If large capacitorsare used, a high current diode from input to output (1N400l or similar) should be introduced to protect the device from momentary input short circuit.*: Against potential latch-up problems .The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not ACEx™ISOPLANAR™FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES 1. Life support devices or systems are devices or2. A critical component is any component of a lifeAdvance Information Formative orThis datasheet contains the design specifications for Preliminary First Production This datasheet contains preliminary data, andNo Identification Needed Full Production This datasheet contains final specifications. FairchildObsolete Not In Production This datasheet contains specifications on a product that hasTRADEMARKSintended to be an exhaustive list of all such trademarks.CoolFET™CROSSVOLT™E 2CMOS™FACT™FACT Quiet Series™FAST ®FASTr™GTO™HiSeC™MICROWIRE™POP™PowerT rench ®QFET™QS™Quiet Series™SuperSOT™-3SuperSOT™-6SuperSOT™-8TinyLogic™UHC™VCX™DISCLAIMERNOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.LIFE SUPPORT POLICYOR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORA TION. As used herein:systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.PRODUCT STATUS DEFINITIONS Definition of TermsDatasheet Identification Product Status Definition In Designproduct development. Specifications may change in any manner without notice.supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.Semiconductor reserves the right to make changes at any time without notice in order to improve design.been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.。
常用电子元器件
整流二极管:1N4001~1N4007 50V~1000~/1。
0A 1N5391~1N5399 50V~1000V/1。
5A 1N5400~1N54 08 50V~1000V/3。
0A开关二极管:1N4148 1N4150 1N4448肖特基二极管:1N5817~1N5819 20V~40V/1。
0A 1N5820~1N5822 20V~40V/3。
0A 1N60 1N60P小电流低压降光电耦合器:4N35 4N36 4N37晶体三极管:PNP:8550 9015 A92NPN:9012 9013 8050 9014 9018D/A转换器:AD7520 AD7521 AF7530 AD75218位(D/A):DAC0830 DAC0832 (D/A )12位:AD7541 (D/A)8位(A/D):ADC0802 ADC0803 ADC0804 ADC0831 ADC0832 ADC0834 ADC0838(A/D)跨导运算变压器:CA3080 CA3080A OTABiMOS运算变压器:CA3140 CA3140ADB3 双向触发二极管快恢复二极管:FR101~FR107 50V~1000/1。
0A三位半A/D转换器:ICL7106 ICL7107 ICL7116 ICL7117载波稳零运算放大器:ICL7650CMOS电源电压变换器:ICL7660/MAX1044单片函数发生器:ICL8038通用计数器:ICM7216 ICM7216B ICM7216D 10MHz 带BCD输出10MZ通用计数器:ICM7226A ICM7226B单/双通用定时器:ICM7555 ICM7555DTMF 收发器:ISO2-CMOS MT8880CJFET输入运算放大器:LF351FJET输入宽带高速双运算放大器:LF353三端可调电源:LM117 LM317A LM317低功耗四运算放大器:LM124 LM124 LM324 LM2920三端可调负电压调整器:LM137 LM337低功耗四电压比较器:LM139 LM239 LM339 LM2901 LM3302可关断开关电源:LM1575-3.3、LM2575-3.3、LM2575HV-3.3、LM1575- 5.0、LM2575-5.0、LM2575HV-5.0、L M1575-12、LM2575-12、LM2575HV-12、LM1575-15, LM2575-15、LM2575HV-15、LM157 5- ADJ、LM2575-ADJ LM2576-3.3、LM2576HV-3.3、LM2576-5.0、LM2576HV- 5.0、LM257 6-12、LM2576HV-12、LM2576-15、LM2576HV-15、LM2576-ADJ低功耗双运算放大器:LM158 LM258 LM358 LM2904低功耗双电压比较器:LM193 LM293 LM393 LM2903通用运算放大器:LM201 LM301 LM741精密电压频率转换器:LM231A LM231 LM331A LM331 微功耗基准电压二极管:LM285 LM358精密运算放大器:LM308A低压音频小功率放大器:LM386带温度稳定器精密电压基准电路:LM299 LM399 LM3999可调电压基准电路:LM431锁相环音频译码器:LM657 LM657C双低噪声音频功率放大器:LM831 LM833双定时LED电子钟电路:LM8365单片函数发生器;MAX038 0。
里氏硬度计选型手册
766±30HLD+15 544±40HLD+15
±12 HLD+15 12 HLD+15
5G
590±40HLG 500±40HLG
±12 HLG
12 HLG
6E
725±30HLE 508±40HLE
±12 HLE
12 HLE
7C
822±30HLC 590±40HLC
±12 HLC
12 HLC
因为都是专业的检测仪器,所以在选购时会有很多的影响因素,例如材料、试验方法、试样
CWT、ST 合金工具钢
19.8 ~
HRC 20.4~67.1
20.7~68.2
68.2
HV 80~898 80~935 100~941
22.6~70.2 82~1009
46.5 ~
HRB
Stainless steel
101.7
不锈钢
HB 85~655
HV 85~802
GC. IRON 灰铸铁
HRC HB 93~334 HV
TH120G 里氏硬度计是一种新型的便携式硬度测试仪器,主要适用于测试金属材料的硬度, 具有测试精度高、体积小、操作容易、携带方便,测量范围宽的特点。 里氏硬度计是根据里氏(Dietmar Leeb)硬度测试原理设计而成,测出里氏硬度值经过程序 自动转换成布氏等硬度值,还可以配置各种测试配件,来满足于各种测试条件和环境。 主要适用于金属材料的快速硬度测试,特别适宜对大型零部件及不可拆卸部件的现场硬度测 试。
92~326
NC、IRON 球墨铸铁
C.ALUM 铸铝合金
HRC HB 131~387 HV HB 19~164
HRB 23.8~84.6
高清网络摄像机产品说明书
产品说明书——高清网络摄像机非常感谢您购买我公司的产品,如您有任何疑问或需求请随时联系我们。
本说明书适用的产品为:高清网络摄像机(IPC)。
我公司将根据产品功能的增强或变化而更新本说明书的内容,并将定期改进及更新本说明书中描述的软件产品,更新的内容将会在本说明书的新版本中说明,恕不另行通知。
本说明书中内容仅为用户提供指导作用,不保证与实物完全一致,请以实物为准。
目录1.产品概述 (1)1.1.产品简介 (1)1.2.主要特点 (1)1.3.运行环境 (2)1.3.1.硬件设备 (2)1.3.2.软件环境 (3)2.产品安装 (4)2.1.安装注意事项 (4)3.产品检测 (5)3.1.硬件检测 (5)3.2.软件检测 (5)3.2.1.通过CMS客户端检测 (5)3.3.安装步骤 (8)3.4.安装环境介绍 (8)3.4.1.局域网有线连接 (8)3.4.2.互联网有线连接 (8)4.系统功能介绍 (9)4.1.添加设备 (9)4.2.登录 (10)4.2.1.正常登录 (10)4.2.2.临时登录 (11)4.2.3.IPC系统远程设置登录 (11)4.3.系统管理 (12)4.3.1.系统配置 (13)4.3.2.系统维护 (14)4.3.3.安全管理 (15)4.3.4.用户管理 (15)4.3.5.日志管理 (16)4.4.音视频管理 (17)4.4.1.视频配置 (17)4.4.2.音频配置 (18)4.5.图像管理 (19)4.5.1.图像配置 (19)4.5.2.OSD配置 (21)4.5.3.遮挡配置 (23)4.6.报警管理 (23)4.6.1.移动侦测 (23)4.7.网络管理 (25)4.7.1.基本配置 (25)4.7.2.高级配置 (26)4.8.存储管理 (27)4.8.1.存储配置 (27)4.8.2.计划配置 (27)4.9.云台控制 (29)4.9.1.云台控制 (29)4.10.智能分析 (29)4.10.1.人脸检测 (29)5.远程连接 (31)5.1.通过CMS实现远程连接 (31)5.2.通过NVSIP(Android&iOS)实现远程连接 (31)1.产品概述1.1.产品简介高清网络摄像机产品基于嵌入式Linux操作系统,采用低照度CMOS图像传感器,支持720P/960P/1080P高清视频,具备业界领先国际标准的H.265视频压缩算法,采用H.265编码,JPEG抓拍,完美实现高清晰图像的低网络带宽传输。
TS7905CI中文资料
TS7900 series3-Terminal Fixed Negative Output Voltage RegulatorPin assignment:1. Ground2. Input3. Output (Heatsink surfaceconnected to Pin 2)Voltage Range - 5V to - 24V Output Current up to 1AGeneral DescriptionThe TS7900 series of fixed output negative voltage regulators are intended as complements to the popular TS7800 series device. These negative regulators are available in the same seven-voltage options as the TS7800 devices. In addition, one extra voltage option commonly employed in MECL systems is also available in the negative TS7900 Series. Available in fixed output voltage options from -5.0 to -24 volts, these regulators employ current limiting, thermal shutdown, and safe-area compensation--making them remarkably rugged under most operating conditions. With adequate heatsinking they can deliver output currents in excess of 1 ampere. This series is offered in 3-pin TO-220, ITO-220 package.FeaturesOutput current up to 1ANo external components required Internal thermal overload protection Internal short-circuit current limitingOutput transistor safe-area compensationOutput voltage offered in 4% toleranceOrdering InformationNote: Where xx denotes voltage option. Part No. Operating Temp. (Ambient)PackageTS79xxCZ TO-220 TS79xxCI -20 ~ +85oC ITO-220Standard ApplicationA common ground is required between the input and the output voltages. The input voltage must remain typically 2.0V above the output voltage even during the low point on the Input ripple voltage.XX = these two digits of the type number indicate voltage.* = Cin is required if regulator is located an appreciabledistance from power supply filter. ** = Co is not needed for stability; however, it does improvetransient response.Absolute Maximum RatingInput Voltage Vin * - 35 V Input VoltageVin ** - 40 V Power Dissipation TO-220 TO-220 ITO-220 Without heatsinkPt *** Without heatsink2 15 10oC/WOperating Junction Temperature Range T J 0 ~ +150 oC Storage Temperature Range T STG -65 ~ +150 o CNote : * TS7905 to TS7918 ** TS7924ITO-220TS7905 Electrical Characteristics(Vin= -10V, Iout=500mA, 0o C ≤Tj≤125o C, Cin=0.33uF, Cout=0.1uF; unless otherwise specified.)Parameter Symbol TestConditions MinTypMaxUnitTj=25o C -4.80 -5 -5.20Output voltage Vout -7.5V≤Vin≤ -20V, 10mA≤Iout≤1A,PD≤15W-4.75 -5 -5.25 V-7.5V≤Vin≤-25V --3100Line Regulation REGline Tj=25o C-8V≤Vin≤-12V --15010mA≤Iout≤1A --15100Load Regulation REGload Tj=25o C250mA≤Iout≤750mA -- 5 50mVQuiescent Current Iq Iout=0, Tj=25o C --48-7.5V≤Vin≤-25V ----1.3 Quiescent Current Change ∆lq10mA≤Iout≤1A ----0.5mAOutput Noise Voltage Vn 10Hz≤f≤100KHz, Tj=25o C -- 40 -- uVRipple Rejection Ratio RR f=120Hz, -8V≤Vin≤-18V 62 74 -- dBVoltage Drop Vdrop Iout=1.0A, Tj=25o C --2--V Peak Output Current Io peak Tj=25o C -- 2.1 -- ATemperature Coefficient of Output Voltage ∆Vout/∆Tj Iout=10mA,0o C ≤Tj≤125o C ---1--mV/o CTS7906 Electrical Characteristics(Vin=-11V, Iout=500mA, 0o C ≤Tj≤125o C, Cin=0.33uF, Cout=0.1uF; unless otherwise specified.)Parameter Symbol TestConditions MinTypMaxUnitTj=25o C -5.75 -6 -6.25Output Voltage Vout -8.5V≤Vin≤-21V, 10mA≤Iout≤1A,PD≤15W-6.3 -6 -6.3 V-8.5V≤Vin≤-25V --5120Line Regulation REGline Tj=25o C-9V≤Vin≤-13V --1.56010mA≤Iout≤1A --14120Load Regulation REGload Tj=25o C250mA≤Iout≤750mA -- 4 60mVQuiescent Current Iq Iout=0, Tj=25o C --48-8.5V≤Vin≤-25V ----1.3 Quiescent Current Change ∆lq10mA≤Iout≤1A ----0.5mAOutput Noise Voltage Vn 10Hz≤f≤100KHz, Tj=25o C -- 44 -- uVRipple Rejection Ratio RR f=120Hz, -9V≤Vin≤-19V 6073--dB Voltage Drop Vdrop Iout=1.0A, Tj=25o C --2--V Peak Output Current Io peak Tj=25o C -- 2.1 -- ATemperature Coefficient of Output Voltage ∆Vout/∆Tj Iout10mA,0o C ≤Tj≤125o C ---1--mV/o Cz Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible, and thermal effects must be taken into account separately.TS7908 Electrical Characteristics(Vin=-14V, Iout=500mA, 0o C ≤Tj≤125o C, Cin=0.33uF, Cout=0.1uF; unless otherwise specified.)Parameter Symbol TestConditions MinTypMaxUnitTj=25o C -7.69 -8 -8.32Output Voltage Vout -10.5V≤Vin≤-23V,10mA≤Iout≤1A, PD≤15W-7.61 -8 -8.40 V-10.5V≤Vin≤-25V --6160Line Regulation REGline Tj=25o C-11V≤Vin≤-17V --28010mA≤Iout≤1A --12160Load Regulation REGload Tj=25o C250mA≤Iout≤750mA -- 4 80mVQuiescent Current Iq Iout=0, Tj=25o C --48-10.5V≤Vin≤-25V ----1 Quiescent Current Change ∆lq10mA≤Iout≤1A ----0.5mAOutput Noise Voltage Vn 10Hz≤f≤100KHz, Tj=25o C -- 52 -- uVRipple Rejection Ratio RR f=120Hz, -11V≤Vin≤-21V 5672--dB Voltage Drop Vdrop Iout=1.0A, Tj=25o C --2--V Peak Output Current Io peak Tj=25o C -- 2.1 -- ATemperature Coefficient of Output Voltage ∆Vout/∆Tj Iout=10mA,0o C ≤Tj≤125o C ---1--mV/o CTS7909 Electrical Characteristics(Vin=-15V, Iout=500mA, 0o C ≤Tj≤125o C, Cin=0.33uF, Cout=0.1uF; unless otherwise specified.)Parameter Symbol TestConditions MinTypMaxUnitTj=25o C -8.65 -9 -9.36Output Voltage Vout -11.5V≤Vin≤-23V,10mA≤Iout≤1A, PD≤15W-8.57 -9 -9.45 V-11.5V≤Vin≤-26V --6180Line Regulation REGline Tj=25o C-12V≤Vin≤-17V --29010mA≤Iout≤1A --12180Load Regulation REGload Tj=25o C250mA≤Iout≤750mA -- 4 90mVQuiescent Current Iq Iout=0, Tj=25o C --48-11.5V≤Vin≤-26V ----1 Quiescent Current Change ∆lq10mA≤Iout≤1A ----0.5mAOutput Noise Voltage Vn 10Hz≤f≤100KHz, Tj=25o C -- 58 -- uVRipple Rejection Ratio RR f=120Hz, -12V≤Vin≤-22V 5671--dB Voltage Drop Vdrop Iout=1.0A, Tj=25o C --2--V Peak Output Current Io peak Tj=25o C -- 2.1 -- ATemperature Coefficient of Output Voltage ∆Vout/∆Tj Iout10mA,0o C ≤Tj≤125o C ---1--mV/o Cz Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible, and thermal effects must be taken into account separately.TS7912 Electrical Characteristics(Vin=-19V, Iout=500mA, 0o C ≤Tj≤125o C, Cin=0.33uF, Cout=0.1uF; unless otherwise specified.)Parameter Symbol TestConditions MinTypMaxUnitTj=25o C -11.53 -12 -12.48Output Voltage Vout -14.5V≤Vin≤-27V,10mA≤Iout≤1A, PD ≤15W-11.42 -12 -12.60 V-14.5V≤Vin≤-30V --10240Line Regulation REGline Tj=25o C-15V≤Vin≤-19V --312010mA≤Iout≤1A --12240Load Regulation REGload Tj=25o C250mA≤Iout≤750mA -- 4 120mVQuiescent Current Iq Tj=25o C, Iout=0 -- 4 8-14.5V≤Vin≤-30V ----1 Quiescent Current Change ∆lq10mA≤Iout≤1A ----0.5mAOutput Noise Voltage Vn 10Hz≤f≤100KHz, Tj=25o C -- 75 -- uVRipple Rejection Ratio RR f=120Hz, 15V≤Vin≤25V 5570--dB Voltage Drop Vdrop Iout=1.0A, Tj=25o C --2--V Peak Output Current Io peak Tj=25o C -- 2.1 -- ATemperature Coefficient of Output Voltage ∆Vout/∆Tj Iout=10mA,0o C ≤Tj≤125o C ---1--mV/o CTS7915 Electrical Characteristics(Vin=-23V, Iout=500mA, 0o C ≤Tj≤125o C, Cin=0.33uF, Cout=0.1uF; unless otherwise specified.)Parameter Symbol TestConditions MinTypMaxUnitTj=25o C -14.42 -15 -15.60Output Voltage Vout -17.5V≤Vin≤-30V,10mA≤Iout≤1A, PD ≤15W-14.28 -15 -15.75 V-17.5V≤Vin≤-30V --12300Line Regulation REGline Tj=25o C-18V≤Vin≤-22V --315010mA≤Iout≤1A --12300Load Regulation REGload Tj=25o C250mA≤Iout≤750mA -- 4 150mVQuiescent Current Iq Tj=25o C, Iout=0 -- 4 8-17.5V≤Vin≤-30V ----1 Quiescent Current Change ∆lq10mA≤Iout≤1A ----0.5mAOutput Noise Voltage Vn 10Hz≤f≤100KHz, Tj=25o C -- 90 -- uVRipple Rejection Ratio RR f=120Hz, -18V≤Vin≤-28V 5469--dB Voltage Drop Vdrop Iout=1.0A, Tj=25o C --2--V Peak Output Current Io peak Tj=25o C -- 2.1 -- ATemperature Coefficient of Output Voltage ∆Vout/∆Tj Iout10mA,0o C ≤Tj≤125o C ---1--mV/o Cz Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible, and thermal effects must be taken into account separately.TS79818 Electrical Characteristics(Vin=-27V, Iout=500mA, 0o C ≤Tj≤125o C, Cin=0.33uF, Cout=0.1uF; unless otherwise specified.)Parameter Symbol TestConditions MinTypMaxUnitTj=25o C -17.30 -18 -18.72Output Voltage Vout -21V≤Vin≤-33V,10mA≤Iout≤1A, PD ≤15W-17.14 -18 -18.90 V-21V≤Vin≤-33V --15360Line Regulation REGline Tj=25o C-22V≤Vin≤-26V --518010mA≤Iout≤1A --12360Load Regulation REGload Tj=25o C250mA≤Iout≤750mA -- 4 180mVQuiescent Current Iq Tj=25o C, Iout=0 -- 4 8-21V≤Vin≤-33V ----1 Quiescent Current Change ∆lq10mA≤Iout≤1A ----0.5mAOutput Noise Voltage Vn 10Hz≤f≤100KHz, Tj=25o C --110--uV Ripple Rejection Ratio RR f=120Hz, -21V≤Vin≤-31V 5368--dB Voltage Drop Vdrop Iout=1.0A, Tj=25o C --2--V Peak Output Current Io peak Tj=25o C -- 2.1 -- ATemperature Coefficient of Output Voltage ∆Vout/∆Tj Iout=10mA,0o C ≤Tj≤125o C ---1--mV/o CTS7824 Electrical Characteristics(Vin=-33V, Iout=500mA, 0o C ≤Tj≤125o C, Cin=0.33uF, Cout=0.1uF; unless otherwise specified.)Parameter Symbol TestConditions MinTypMaxUnitTj=25o C -23.07 -24 -24.96Output Voltage Vout -27V≤Vin≤-38V,10mA≤Iout≤1A, PD ≤15W-22.85 -24 -25.20 V-27V≤Vin≤-38V --18480Line Regulation REGline Tj=25o C-28V≤Vin≤-32V --624010mA≤Iout≤1A --12480Load Regulation REGload Tj=25o C250mA≤Iout≤750mA -- 4 240mVQuiescent Current Iq Iout=0, Tj=25o C --48-27V≤Vin≤-38V ----1 Quiescent Current Change ∆lq10mA≤Iout≤1A ----0.5mAOutput Noise Voltage Vn 10Hz≤f≤100KHz, Tj=25o C --170--uV Ripple Rejection Ratio RR f=120Hz, -27V≤Vin≤-37V 5065--dB Voltage Drop Vdrop Iout=1.0A, Tj=25o C --2--V Peak Output Current Io peak Tj=25o C -- 2.1 -- ATemperature Coefficient of Output Voltage ∆Vout/∆Tj Iout10mA,0o C ≤Tj≤125o C ---1--mV/o Cz Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible, and thermal effects must be taken into account separately.Electrical Characteristics CurveFIGURE 1 - Worst Case Power Dissipation v.s.Ambient TemperatureFIGURE 2 - Peak Output Current v.s. Input-Output Differential VoltageFIGURE 3 –Ripple Rejection v.s.FrequencyFIGURE 4 –Ripple Rejection v.s.Output VoltageFIGURE 5 –Output Voltage v.s.Junction TemperatureFIGURE 6 –Quiescent Current v.s.TemperatureITO-220 Mechanical Drawing。
TPS79028中文资料
SLVS299B – SEPTEMBER 2000 – REVISED MAY 2001
functional block diagram
TPS79015/18/25/28/30 IN EN 150 kΩ Vref GND Bypass Current Limit / Thermal Protection OUT
description (continued)
The TPS790xx also features a logic-enabled sleep mode to shut down the regulator, reducing quiescent current to 1 µA typical at TJ = 25°C. The TPS790xx is offered in 1.5 V, 1.8 V, 2.5 V, 2.8 V, 3.0 V.
Ground Current – µ A IO = 50 mA IO = 1 mA
15 –40 –25 –10 5 20 35 50 65 80 95 110 125 TJ – Junction Temperature – °C TPS78930
OUTPUT SPECTRAL NOISE DENSITY vs FREQUENCY
元器件交易网
TPS79015, TPS79018, TPS79025, TPS79028, TPS79030 ULTRALOW-POWER LOW-NOISE 50-mA LOW-DROPOUT LINEAR REGULATORS
SLVS299B – SEPTEMBER 2000 – REVISED MAY 2001
SLVS299B – SEPTEMBER 2000 – REVISED MAY 2001
UPC7908AHF中文资料
Document No. G10640EJ3V0DS00 (3rd edition) (Previous No. IC-3486)Date Published March 1997 N Printed in Japan ©19942EQUIVALENT CIRCUITCONNECTION DIAGRAMGND INPUT OUTPUTTYPICAL CONNECTIONOUTPUTC IN : More than 2.2 µF C OUT : More than 0.33 µFD 1: Needed for V IN > V O D 2: Needed for V O > GNDABSOLUTE MAXIMUM REATINGS (T A = 25 ˚C)Parameter Symbol Rating Unit Input Voltage V IN–35/–40Note 1V Internal Power Dissipation P T15Note 2W Operating Ambient Temperature Range T A–30 to +85˚C Operating Junction Temperature Range T J–30 to +150˚C Storage Temperature Range T stg–55 to +150˚C Thermal Resistance (junction to case)R th(J-C) 5.0˚C/W Thermal Resistance (junction to ambient)R th(J-A)65˚C/W Note 1.µPC7905A, 08A, 12A, 15A, 18A: –35 V, µPC7924A: –40 V2.Internally limitedRECOMMENDED OPERATING CONDITIONSParameter Symbol Part Number MIN.TYP.MAX.UnitInput Voltage V INµPC7905AHF–7–10–25VµPC7908AHF–10.5–14–25µPC7912AHF–14.5–19–30µPC7915AHF–17.5–23–30µPC7918AHF–21–27–33µPC7924AHF–27–33–38Output Current I O All0.0051AOperating Ambient T A All–30+85˚C TemperatureOperating Junction T J All–30+125˚C Temperature Range3ELECTRICAL CHARACTERISTICS (T A = 25 ˚C)µPC7905A(V IN = –10 V, I o = 500 mA, 0 ˚C ≤ T J≤ +125 ˚C)Parameter Symbol Conditions MIN.TYP.MAX.UnitOutput Voltage V O T J = 25 ˚C–4.8–5.0–5.2V–7 V ≤ V IN≤ –20 V, 5 mA ≤ I O≤ 1 A,–4.75–5.25P T≤ 15 W–30 ˚C ≤ T J≤ +125 ˚C–4.75–5.25Line Regulation REG IN T J = 25 ˚C, –7 V ≤ V IN≤ –25 V25100mVT J = 25 ˚C, –8 V ≤ V IN≤ –12 V350Load Regulation REG L T J = 25 ˚C, 5 mA ≤ I O≤ 1.5 A30100mVT J = 25 ˚C, 250 mA ≤ I O≤ 750 mA750Quiescent Current I BIAS T J = 25 ˚C 3.6 6.0mA Quiescent Current Change∆I BIAS–7 V ≤ V IN≤ –25 V 1.3mA5 mA ≤ I O≤ 1 A0.5Output Noize Voltage V n T J = 25 ˚C, 10 Hz ≤ f ≤ 100 kHz77µVr.m.sRipple Rejection R•R T J = 25 ˚C, f = 120 Hz, –8 V ≤ V IN≤ –18 V,5663dBI O = 500 mADropout Voltage V DIF T J = 25 ˚C, I O = 1A 1.2V Peak Output Current I Opeak T J = 25 ˚C 1.6 2.2 2.8ATemperature Coefficient|∆V O/∆T|I O = 5 mA0.36mV/˚C of Output VoltageµPC7908A(V IN = –14 V, I O = 500 mA, 0 ˚C ≤ T J≤ +125 ˚C)Parameter Symbol Conditions MIN.TYP.MAX.Unit Output Voltage V O T J = 25 ˚C–7.7–8.0–8.3V–10.5 V ≤ V IN≤ –23 V, 5 mA ≤ I O≤ 1 A,–7.6–8.4P T≤ 15 W–30 ˚C ≤ T J≤ +125 ˚C–7.6–8.4Line Regulation REG IN T J = 25 ˚C, –10.5 V ≤ V IN≤ –25 V33150mVT J = 25 ˚C, –11 V ≤ V IN≤ –17 V1475Load Regulation REG L T J = 25 ˚C, 5 mA ≤ I O≤ 1.5 A40160mVT J = 25 ˚C, 250 mA ≤ I O≤ 750 mA1480Quiescent Current I BIAS T J = 25 ˚C 3.9 6.0mA Quiescent Current Change∆I BIAS–10.5 V ≤ V IN≤ –25 V 1.0mA5 mA ≤ I O≤ 1 A0.5Output Noize Voltage V n T J = 25 ˚C, 10 Hz ≤ f ≤ 100 kHz130µVr.m.sRipple Rejection R•R T J = 25 ˚C, –11.5 V ≤ V IN≤ –21.5 V,5258dBf = 120 Hz, I O = 500 mADropout Voltage V DIF T J = 25 ˚C, I O = 1 A 1.2V Peak Output Current I Opeak T J = 25 ˚C 1.6 2.2 2.8ATemperature Coefficient|∆V O/∆T|I O = 5 mA0.32mV/˚C of Output Voltage4µPC7912A(V IN = –19 V, I O = 500 mA, 0 ˚C ≤ T J≤ +125 ˚C)Parameter Symbol Conditions MIN.TYP.MAX.UnitOutput Voltage V O T J = 25 ˚C–11.5–12–12.5V–14.5 V ≤ V IN≤ –27 V, 5 mA ≤ I O≤ 1 A,–11.4–12.6P T≤ 15 W–30 ˚C ≤ T J≤ +125 ˚C–11.4–12.6Line Regulation REG IN T J = 25 ˚C, –14.5 V ≤ V IN≤ –30 V60200mVT J = 25 ˚C, –16 V ≤ V IN≤ –22 V25100Load Regulation REG L T J = 25 ˚C, 5 mA ≤ I O≤ 1.5 A70220mVT J = 25 ˚C, 250 mA ≤ I O≤ 750 mA20110Quiescent Current I BIAS T J = 25 ˚C 4.1 6.2mA Quiescent Current Change∆I BIAS–14.5 V ≤ V IN≤ –30 V 1.0mA5 mA ≤ I O≤ 1A0.5Output Noize Voltage V n T J = 25 ˚C, 10 Hz ≤ f ≤ 100 kHz140µVr.m.sRipple Rejection R•R T J = 25 ˚C, f = 120 Hz, –15 V ≤ V IN≤ –25 V,4956dBI O = 500 mADropout Voltage V DIF T J = 25 ˚C, I O = 1A 1.2V Peak Output Current I Opeak T J = 25 ˚C 1.6 2.2 2.8ATemperature Coefficient|∆V O/∆T|I O = 5 mA0.04mV/˚C of Output VoltageµPC7915A(V IN = –23 V, I O = 500 mA, 0 ˚C ≤ T J≤ +125 ˚C)Parameter Symbol Conditions MIN.TYP.MAX.Unit Output Voltage V O T J = 25 ˚C–14.4–15–15.6V–17.5 V ≤ V IN≤ –30 V, 5 mA ≤ I O≤ 1 A,–14.25–15.75P T≤ 15 W–30 ˚C ≤ T J≤ +125 ˚C–14.25–15.75Line Regulation REG IN T J = 25 ˚C, –17.5 V ≤ V IN≤ –30 V60200mVT J = 25 ˚C, –20 V ≤ V IN≤ –26 V30100Load Regulation REG L T J = 25 ˚C, 5 mA ≤ I O≤ 1.5 A100300mVT J = 25 ˚C, 250 mA ≤ I O≤ 750 mA30150Quiescent Current I BIAS T J = 25 ˚C 4.2 6.2mA Quiescent Current Change∆I BIAS–17.5 V ≤ V IN≤ –30 V 1.0mA5 mA ≤ I O≤ 1 A0.5Output Noize Voltage V n T J = 25 ˚C, 10 Hz ≤ f ≤ 100 kHz240µVr.m.sRipple Rejection R•R T J = 25 ˚C, f = 120 Hz,4754dB–18.5 V ≤ V IN≤ –28.5 V, I O = 500 mADropout Voltage V DIF T J = 25 ˚C, I O = 1 A 1.2V Peak Output Current I Opeak T J = 25 ˚C 1.6 2.2 2.8ATemperature Coefficient|∆V O/∆T|I O = 5 mA 1.2mV/˚C of Output Voltage5µPC7918A(V IN = –27 V, I O = 500 mA, 0 ˚C ≤ T J≤ +125 ˚C)Parameter Symbol Conditions MIN.TYP.MAX.UnitOutput Voltage V O T J = 25 ˚C–17.3–18–18.7V–21 V ≤ V IN≤ –33 V, 5 mA ≤ I O≤ 1 A,–17.1–18.9P T≤ 15 W–30 ˚C ≤ T J≤ +125 ˚C–17.1–18.9Line Regulation REG IN T J = 25 ˚C, –21 V ≤ V IN≤ –33 V60240mVT J = 25 ˚C, –24 V ≤ V IN≤ –30 V30120Load Regulation REG L T J = 25 ˚C, 5 mA ≤ I O≤ 1.5 A125360mVT J = 25 ˚C, 250 mA ≤ I O≤ 750 mA47180Quiescent Current I BIAS T J = 25 ˚C 4.1 6.5mA Quiescent Current Change∆I BIAS–21 V ≤ V IN≤ –33 V 1.0mA5 mA ≤ I O≤ 1 A0.5Output Noize Voltage V n T J = 25 ˚C, 10 Hz ≤ f ≤ 100 kHz190µVr.m.sRipple Rejection R•R T J = 25 ˚C, f = 120 Hz, –22 V ≤ V IN≤ –32 V,4553dBI O = 500 mADropout Voltage V DIF T J = 25 ˚C, I O = 1 A 1.2V Peak Output Current I Opeak T J = 25 ˚C 1.6 2.2 2.8ATemperature Coefficient|∆V O/∆T|I O = 5 mA0.24mV/˚C of Output VoltageµPC7924A(V IN = –33 V, I O = 500 mA, 0 ˚C ≤ T J≤ +125 ˚C)Parameter Symbol Conditions MIN.TYP.MAX.Unit Output Voltage V O T J = 25 ˚C–23.0–24–25.0V–27 V ≤ V IN≤ –38 V, 5 mA ≤ I O≤ 1 A,–22.8–25.2P T≤ 15 W–30 ˚C ≤ T J≤ +125 ˚C–22.8–25.2Line Regulation REG IN T J = 25 ˚C, –27 V ≤ V IN≤ –38 V70280mVT J = 25 ˚C, –30 V ≤ V IN≤ –36 V37140Load Regulation REG L T J = 25 ˚C, 5 mA ≤ I O≤ 1.5 A160480mVT J = 25 ˚C, 250 mA ≤ I O≤ 750 mA60240Quiescent Current I BIAS T J = 25 ˚C 4.2 6.5mA Quiescent Current Change∆I BIAS–27 V ≤ V IN≤ –38 V 1.0mA5 mA ≤ I O≤ 1 A0.5Output Noize Voltage V n T J = 25 ˚C, 10 Hz ≤ f ≤ 100 kHz240µVr.m.sRipple Rejection R•R T J = 25 ˚C, f = 120 Hz, –28 V ≤ V IN≤ –38 V,4349dBI O = 500 mADropout Voltage V DIF T J = 25 ˚C, I O = 1 A 1.2V Peak Output Current I Opeak T J = 25 ˚C 1.6 2.2 2.8ATemperature Coefficient|∆V O/∆T|I O = 5 mA 1.1mV/˚C of Output Voltage6µPC7900A Series7TYPICAL CHARACTERISTICS (T A = 25 ˚C)–2525507510012515050250–25–50–75–100–125–150–175–200∆V O - O u t p u t V o l t a g e D e v i a t i o n -m VT J - Junction Temperature - ˚C1V DIF - I OI O - Output Current - A15020P T - T AP T - T o t al P o w e r D i s s i p a t i o n - WT A - Operating Ambient Temperature - ˚C02031I Opeak - (V IN - V OUT )I O p e a k - P e a k O u t p u t C u r r e n t - A(V IN - V OUT ) - Input to Output Differential Voltage - V0.10.20.30.40.50.60.70.80.904812162.521.5105100R·R - fR ·R - R i p p l e R e j e c t i o n - d Bf - Frequency - Hz10101010908070605040302010015105125100755025µPC7900AHF Series3PIN PLASTIC SIP (MP-45G)NOTE8RECOMMENDED SOLDERING CONDITIONSWhen soldering this product, it is highly recommended to observe the conditions as shown below. If other soldering processes are used, or if the soldering is performed under different conditions, please make sure to consult with our sales offices.For more details, refer to our document “SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL”(C10535E).TYPES OF THROUGH HOLE MOUNT DEVICEµPC7900AHF SeriesSoldering Process Soldering Conditions SymbolWave soldering Solder temperature: 260 ˚C or below.Flow Time: 10 seconds or below.REFERENCEDocument Name Document No.NEC semiconductor device reliability/quality control system.IEI-1212Quality grade on NEC semiconductor devices.C11531E Semiconductor device mounting technology manual.C10535EIC package manual.C10943XGuide to quality assurance for semiconductor devices.MEI-1202 Semiconductors selection guide.X10679E9[MEMO] 10[MEMO]11[MEMO]No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from useof such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.NEC devices are classified into the following three quality grades:"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications ofa device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.Standard:Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronicequipment and industrial robotsSpecial: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designedfor life support)Specific:Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.Anti-radioactive design is not implemented in this product.M4 96.5。
SN65HVD1794中文资料
CABLE LENGTH 1500 m 150 m 50 m
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
H
Receive inverted bus High
H
Fail-safe high output
L
Failsafe inverted output
H
Fail-safe high output
L
Failsafe inverted output
H
Fail-safe high output
L
Failsafe inverted output
INV Input Can Correct for Crossed Wires
VFAULT up to 70 V
PART NUMBER SN65HVD1794 SN65HVD1795 PREVIEW SN65HVD1796 PREVIEW
PRODUCT SELECTION GUIDE
DUPLEX Half Half Half
ABSOLUTE MAXIMUM RATINGS(1)
VCC Supply voltage Voltage range at A and B pins Input voltage range at any logic pin Voltage input range, transient pulse, A and B, through 100 Ω Receiver output current
维氏硬度计 HV-5讲解
HV-5
维氏硬度计
HV-5
维氏硬度计
一、产品简介
HV-5型维氏硬度计是光机电一体化的高新技术产品,该机器造型新颖,具有良好的可靠性,可操作性和直观性,是采用精密机械技术和光电技术的新型维氏和努普硬度测试仪器。
该机采用计算机软件编程,光学测量系统。
通过软键输入,可选择维氏和努氏硬度的测量、能调节测量光源的强弱,能选择保荷时间,在LCD 显示屏上能显示试验方法、试验力,通过
面板输入测量压痕对角线长度、屏幕直接读出硬度值,简便了查表的繁琐。
使用方便,测量精度高。
硬度计适用于测定微小、薄形、表面渗镀层试件的维氏硬度和测定玻璃、陶瓷、玛瑙、人造宝石等较脆而又硬材料的努普硬度。
是科研机构、企业及质检部门进行研究和检测的理想的硬度测试仪器。
二、技术指标
★试验力:2.94N(0.3Kgf、4.9N(0.5Kgf、9.8N(1.0Kgf、19.6(2.0Kgf、
29.4N(3.0Kgf、49.0N(5.0Kgf
★硬度测试范围:8HV0.3~2900HV10
★试验力施加方法:自动加卸试验力
★测量显微镜放大倍率:200×(测试时用)100×(观察时)
★试验力保荷时间:0~60s (每秒为一单位,任意键入)
★最小检测单位:0.5μm
★试件最大高度:160mm
★压头中心到外壁距离:135mm
★主机重量:约40Kg
★电源:AC220V/50Hz
★外型尺寸(长×宽×高):(520×190×650mm。
LM7905中文资料
1
元器件交易网
LM79XX
PARAMETER
Input voltage Thermal resistance junction-air Thermal resistance junction-cases Operating Temperature Storage Temperature
54
Contek7906 ELECTRICAL CHARACTERISTICS
(Refer to test circuits, 0<Tj<125 C,Io=500mA,Vi=-11V,Ci=2.2uF,Co=1uF,unless otherwise specified) PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNIT
54
-0.5 130 60 2 300 2.2
Contek Microelectronics Co.,Ltd.
CONTEK
E-mail:sales@
2
元器件交易网
LM79XX
LINEAR INTEGRATED CIRCUIT
Output voltage Line regulation Load regulation Quiescent current Quiescent current change Output voltage drift Output noise voltage Ripple rejection Dropout voltage Short circuit current peak current Vo DVo DVo IQ DIQ DVo/DT VN RR Vo Isc Ipk Tj=25 C 5.0mA<Io<1.0A,Po<15W Vi=-8V to -21V Tj=25 C,Vi=-8V to -25V Tj=25 C,Vi=-9V to -13V Tj=25 C,Io=5.0mA to 1.5A Tj=25 C,Io=250mA to 750mA Tj=25 C Io=5mA to 1.0A Vi=-8V to -25V Io=5mA f=10hz to 100kHz,Ta=25 C f=120Hz, Vi=-9V to -19V Io=1.0A,Tj=25 C Vi=-35V,Ta=25 C Tj=25 C -5.75 -5.7 -6.00 -6.0 10 5 10 3 3 6-.25 -6.3 120 60 120 60 6 0.5 1.3 V V mV mV mV mV mA mA mA mV/ C mV dB V mA A
HPMD-7905中文资料
Agilent HPMD-7905 FBAR Duplexer for US PCS BandData SheetGeneral DescriptionThe HPMD-7905 is a miniaturized duplexer designed for US PCS handset, designed using Agilent Technologies’ Film Bulk Acoustic Resonator (FBAR) Technology. The HPMD-7905 features a very small size: it is less than 2 mm thick and has a footprint of only 5.6 x 11.9 mm2.The HPMD-7905 enhances the sensitivity and dynamic range of CDMA receivers, providing more than 49 dB attenuation of transmitted signal at the receiver input, and more than 37 dB rejection of the transmit-generated noise in the receive band. Typical insertion loss in the Tx channel is only 2.5 dB, minimizing current drain from the power amplifier. Typical insertion loss in the Rx channel is 3.0 dB, improving receiver sensitivity.Agilent’s thin-Film Bulk Acoustic Resonator (FBAR) technology makes possible high-Q filters at a fraction their usual size. The excellent power handling of the bulk-mode resonators supports the high output powers needed in PCS handsets, with virtually no added distortion.Features•Miniature size: less than 2 mm high;5.6 x 11.9 footprint•Rx Band: 1930-1990 MHzTypical performance:Rx noise blocking: 42dBInsertion loss: 3.0 dB•Tx Band: 1850-1910 MHzTypical performance:Tx interferer blocking: 54dBInsertion Loss: 2.5 dB•30 dBm Tx power handlingApplications•Handsets or data terminalsoperating in the US PCS frequencybandBoard DiagramFunctional Block Diagramport numbers are circledHPMD-7905 Electrical Specifications, Z O = 50Ω, T C[1] as indicated+25°C[1,3] +85°C[1,2,3]–30°C[1,2,3] Symbol Parameters Units Min Typ Max Min Max Min Max f RX Receive Bandwidth MHz1930.6—1989.41930.61989.41930.61989.4 S23 Rx Attenuation in Transmit Band dB48——47—45—(1850.6–1853 MHz)S23 Rx Attenuation in Transmit Band dB5054—47—47—(1853–1909.4 MHz)S23 Rx Insertion Loss in Receive Band dB—— 3.5— 3.5— 4.5 (1930.6–1935 MHz)S23 Rx Insertion Loss in Receive Band dB— 3.0 3.5— 3.8— 3.8 (1935–1987 MHz)S23 Rx Insertion Loss in Receive Band dB—— 3.5— 3.8— 3.5 (1987–1989.4 MHZ)∆ S23Ripple in Receive Band dB— 1.5—————S22 Rx Return Loss in Receive Band dB8.0——8.0—8.0—f TX Transmit Bandwidth MHz1850.6—1909.41850.61909.41850.61909.4 S31 Tx Attenuation in Receive Band dB39——37.5—32.5—(1930.6–1931 MHz)S31 Tx Attenuation in Receive Band dB39——37.5—35—(1931–1934 MHz)S31 Tx Attenuation in Receive Band dB3942—37.5—37.5—(1934–1987 MHz)S31 Tx Attenuation in Receive Band dB37.5——35—37.5—(1987–1989.4 MHz)S31 Tx Insertion Loss in Transmit Band dB— 2.5 3.0— 3.8— 3.8 (1850.6–1853 MHz)S31 Tx Insertion Loss in Transmit Band dB— 2.5 3.0— 3.5— 3.5 (1853–1907 MHz)S31 Tx Insertion Loss in Transmit Band dB—— 3.0— 3.8— 3.0 (1907–1909.4 MHz)∆ S31Ripple in Transmit Band dB— 2.0—————S11 Tx Return Loss in Transmit Band dB8.0——8.0—8.0—IP3Third Order Intercept Point dBm—>60—————S21Tx-Rx Isolation (1850.6–1860 MHz)dB49——47—47—S21Tx-Rx Isolation (1860–1907 MHz)dB5054—48—47—S21Tx-Rx Isolation (1907–1909.4 MHz)dB5054—45—48—S21Tx-Rx Isolation (1930.6–1934 MHz)dB3942—38—35—S21Tx-Rx Isolation (1934–1972 MHz)dB3942—38—38—S21Tx-Rx Isolation (1972–1975 MHz)dB3942—37—38—S21Tx-Rx Isolation (1975–1989.4 MHz)dB37——35—37—Absolute Maximum Ratings[4] Parameter Unit Value Operating temperature[1]°C-30 to +85 Storage temperature[1]°C-30 to +100Notes:1.TCis defined as case temperature, the temperature of the underside of the duplexer where it makes contact with the circuit board.2.Specifications are given at operating temperature limits and room temperature. To estimateperformance at some intermediate temperature, use linear interpolation.3.Specifications are guaranteed over the given temperature range, with the input power to the T xport equal to +30 dBm (or lower) over all Tx frequencies. The application of input power levels in excess of +30 dBm will not destroy the duplexer, but its performance may exceed the specification limits given above.4.Operation in excess of any one of these conditions may result in permanent damage to the device.-10-20-30-40-50-60-70I N S E R T I O N L O S S A N D R E J E C T I O N (d B )FREQUENCY (GHz)Figure 1. Tx and Rx Port Insertion Loss (typical). 1.821.84 1.86 1.88 1.90 1.92 1.94 1.962.001.98 2.02FREQUENCY (GHz)Figure 2. Insertion Loss Detail (typical).0-5-10-15-20R E T U R N LO S S (d B )1.821.84 1.86 1.88 1.90 1.92 1.94 1.962.001.98 2.02FREQUENCY (GHz)S 11S 22Figure 3. Tx and Rx Port Return Loss (typical).0-5-10-15-20R E T U R N L O S S (d B )1.821.84 1.86 1.88 1.90 1.92 1.94 1.962.001.98 2.02FREQUENCY (GHz)S 33Figure 4. Ant Port Return Loss (typical).freq (1.850 GHz to 1.910 GHz)Figure 5. S11, Tx Port Impedance (typical).The plots below provide typical performance obtained from samples of the HPMD-7905duplexer.In order to obtain the best performance from theHPMD-7905 duplexer, refer to Design Note D007, which isavailable from your Agilent Technologies technical support or sales departments.freq (1.930 GHz to 1.990 GHz)Figure 6. S22, Rx Port Impedance (typical).A: freq (1.850 GHz to 1.910 GHz)B: freq (1.930 GHz to 1.990 GHz)Figure 7. S33, Ant Port Impedance.AB-20-30-40-50-60-70-80I S O L A T I O N (d B )1.821.84 1.86 1.88 1.90 1.92 1.94 1.962.001.98 2.02FREQUENCY (GHz)Figure 8. S21, Isolation (typical).S 210-5-10-15-20-25-30-35-40-45-50R E T U R N L O S S (d B )2.02.53.03.54.04.55.05.56.0FREQUENCY (GHz)Figure 9. Wideband Insertion Loss (typical).S 31S 23-10-15-20-25-30-35-40-45-50I S O L A T I O N (d B )2.02.53.03.54.04.55.05.56.0FREQUENCY (GHz)Figure 10. Wideband Isolation (typical).S 21Note that the specifications given on page 2 are guaranteed when the duplexer is mounted on a ground surface with a hole pattern like that one shown in Figure 11. See Design Note D007,Figure 11. Mounting (grounding) Pattern.Figure 12. Outline Drawing.which is available from your Agilent Technologies technical support or sales departments.Note that it is important that proper heat sinking be provided in order to remove the heatgenerated in the Tx filter by the handset’s power amplifier.Failure to do so may result in excessive losses, especially at the top end of the Tx band.0.86.14.63.87.36.02.511.371.88 ± 0.1± 0.1BOTTOM VIEWPin Number/Description 1 Tx Port 3 Ant Port 2 Rx Port 4 GroundNote:All dimensions in millimeters.5.63 TOP VIEW2. Material: polystyrene3. Surface resistivity: 1x109 ohm-mm2+1.00"-0.50"-0 +1.00"-0.50"Notes:1. All dimensions in mm.2. 10 sprocket hole pitch accumulative tolerance ± 0.10 mm3. Camber not exceed 1 mm in 250 mm4. Pocket dimensions measured on a plane 0.3 mm above the bottom of the pocket.5. Pocket depth measured from a plane on the inside bottom of the pocket to the top surface of the carrier.6. Pocket position on relative to sprocket hole measure as true position of pocket, not the pocket hole. Figure 13. Tape Drawing.Figure 14. Reel Drawing.Solder RecommendationsThe HPMD-7905 FBAR duplexer (and its variants) is an assembly consisting of two LCC ceramic packages, containing the Tx and Rx filters, mounted to a small circuit board. Both packages on the circuit board are mounted in place using Sn96.5/Ag3.5 solder (shaded in Table 1).Figure 15. Device Orientation.USER FEEDCOVER TAPEUser Feed DirectionTop ViewEmpty Pocket/CavityLeader: 100 pocket – 1 Meter Trailer: 100 pocket – 1 MeterEnd Viewxx xx 1x DO xx xx 1xDO xx xx 1x DO xx xx 1xDO xx xx 1x DO xx xx 1xDO xx xx 1x DO xx xx 1xDO The recommended solder profile for the FBAR duplexer is shown in Figure 16. Guidelines and a typical profile are both shown.This typical profile was tested on ten samples of the duplexer, each of which was subjected to the profile six times without effect upon the mechanical or electricalcharacteristics of the device.Alloy typeMelting temp.Recommended working Comments(o C)temperature (o C)Sn42Bi58138160 – 180Lead freeSn43Pb43Bi14144 – 163165 – 185Contains lead – some customers prohibit it.Sn63Pb37183200 – 240Contains lead – some customers prohibit it.Sn60Pb40186200 – 240Contains lead – some customers prohibit it.Sn91/Zn9199200 – 240May have oxidation problems Sn96.2Ag2.5Cu0.8Sb0.5216235 – 255Popular lead free composition Sn95.8Ag3.5Cu0.7217235 – 255Other alloy ratios are available Sn100232260 – 280Too hot – will melt the duplexer Sn95Sb5235260 – 280Too hot – will melt the duplexer Sn97Cu3240260 – 300Too hot – will melt the duplexerTable 1. Solder Compositions Solder temperatures and times in excess of those given in theguidelines of Table 1 may result in damage to the duplexer or changes in its characteristics./semiconductorsFor product information and a complete list of distributors, please go to our web site.For technical assistance call:Americas/Canada: +1 (800) 235-0312 or (408) 654-8675Europe: +49 (0) 6441 92460China: 10800 650 0017Hong Kong: (+65) 6271 2451India, Australia, New Zealand: (+65) 6271 2394Japan: (+81 3) 3335-8152(Domestic/International), or 0120-61-1280(Domestic Only)Korea: (+65) 6271 2194Malaysia, Singapore: (+65) 6271 2054Taiwan: (+65) 6271 2654Data subject to change.Copyright © 2002 Agilent Technologies, Inc.Obsoletes 5988-6611EN August 1, 200250100150200250TIME, secondsT E M P E R A T U R E , °CFigure 16. Recommended Solder Profile.Part Number Ordering Information Part NumberNo. of DevicesContainerHPMD-7905-BLK 25antistatic bag HPMD-7905-TR1100013" reel。
GRACO 高压流体加热器 VISCON HP 说明书
309605N说明高压流体加热器VISCON HP适用于各种流体加热。
7250 psi (50 MPa, 500 bar) 最大工作压力重要安全说明请阅读本手册的所有警告及说明。
妥善保存这些说明。
见第2页的型号、描述和核准信息。
目录见第页的3页。
危险场所加热器简图型号2309605N型号危险场所加热器请见第 4 页警告部分的特殊情况的安全使用。
非危险场所加热器型号系列VAC (50/60 赫兹单相)/瓦特/安培核准情况245867A 120 / 2300 / 19.2245868A 200 / 4000 / 20.0245869A 240 / 4000 / 16.7245870A 480 / 4000 / 8.30246276A380 / 4000 / 10.5II 2 G9902471符合UL 标准 61010-1CSA 标准 22.2 No. 1010-1-92目录309605N 3目录型号 . . . . . . . . . . . . . . . . . . . . . 2译文 . . . . . . . . . . . . . . . . . . . . . 3手册中的约定 . . . . . . . . . . . . . . . . . 3警告 . . . . . . . . . . . . . . . . . . . . . 4安装 . . . . . . . . . . . . . . . . . . . . . 6选择管道 . . . . . . . . . . . . . . . . . 7安装加热器 . . . . . . . . . . . . . . . . 8流体连接和附件 . . . . . . . . . . . . . . 9电气连接 . . . . . . . . . . . . . . . . .10确定适当的流体温度 . . . . . . . . . . . .12操作 . . . . . . . . . . . . . . . . . . . . .14泄压步骤 . . . . . . . . . . . . . . . . .14首次冲洗 . . . . . . . . . . . . . . . . .14准备系统 . . . . . . . . . . . . . . . . .14设置加热器控制 . . . . . . . . . . . . . .15喷射调节 . . . . . . . . . . . . . . . . .15维护 . . . . . . . . . . . . . . . . . . . . .16冲洗 . . . . . . . . . . . . . . . . . . .16放空加热器 . . . . . . . . . . . . . . . .16清洁流体通道 . . . . . . . . . . . . . . .16故障排除 . . . . . . . . . . . . . . . . . . .17修理 . . . . . . . . . . . . . . . . . . . . .18主恒温器和探针 . . . . . . . . . . . . . .18备用恒温器 . . . . . . . . . . . . . . . .18限热传感器 . . . . . . . . . . . . . . . .20控制旋钮 . . . . . . . . . . . . . . . . .20加热器机体 . . . . . . . . . . . . . . . .20零部件 . . . . . . . . . . . . . . . . . . . 22危险场所加热器 . . . . . . . . . . . . . 22仅限非危险场所加热器 . . . . . . . . . . 24附件 . . . . . . . . . . . . . . . . . . . . 26技术数据 . . . . . . . . . . . . . . . . . . 28尺寸 . . . . . . . . . . . . . . . . . . . . 29Graco Standard Warranty . . . . . . . . . . . 30Graco Information . . . . . . . . . . . . . . 30译文本手册有下列语言: 手册中的约定警告告诫注释重要事项手动语言309524English 309555法语309556西班牙语309557德语309558瑞典语309605中文309606韩语309607日语为您注释额外的帮助性资料。
AT7908E资料
Features Array•Smart Card Interface–Compliance with Standards• ISO/IEC 7816-1, 2, 3 and 4• EMV 2000• CB• Mondex®, Proton, ZKA, Other: Contact Gemplus®–Supported Smart Cards• Number of Smart Cards Supported: 1• Asynchronous Cards: T=0 and T=1• Synchronous/Memory Cards Using a Command Interpreter• EMV or Non EMV Cards•Electrical Interface• Transmission Speed: 9.6 Kbps to 115 Kbps• Card Power Supply: 1.8V/3V/5V• ESD Protection On Card Pins: 4 KV - Human Body Model• Card Presence or Insertion Detection• Short Circuit Current Limitation•Host Interface–Physical Layer• Serial Asynchronous Link• Programmable Transmission Speed From 1,200 bps to 115,200 bps• Format: 8 bits, No Parity, 1 Stop Bit• Adjustable Signal Voltage–Protocol• Gemplus Block Protocol (GBP)• GBP Interface Library Kit Source Code•Chip Power Supply–Voltage: V CC- 2.85V to 5.4V–Consumption: 8 mA Typical, 150 mA Max - Smart Card Powered–Power Down Mode• 100 µA Max Power Down Current• Power-down/Power-up by Host Command•Additional Features–Operating Temperature Range: 0°C to +70°C (-40°C to +85°C)–Package: SS0P24, QFN32–LED Management: The LED is On When the Card is Powered OnDescriptionAT83C21GC is designed to simplify the integration of smart card interfaces in elec-tronic devices.It manages the electrical interface and communication with ISO 7816 –1/2/3/4 com-patible smart cards and memory cards.Figure 1. Basic Architecture of a Smart Card ReaderHostProcessor AT83C21GCSmart CardSmart CardConnector Array This is a summary Document. A complete document isavailable on the Gemplus Web site. 24247DS–SCR–03/07AT83C21GCThe connection with the host processor is achieved via a serial asynchronous link; the rate can be selected from a range from 1200 to 115,200 bps.The software inside the GemCore chip handles a communication protocol with the host system called the Gemplus Block Protocol (GBP).A co m p l e t e s et o f d o cu m e n t at i o n i s ava i l a b l e o n t h e G em pl u s w eb s i t e:.A GBP Interface Library Kit can be provided, upon request. It consists of the source code of the GBP communication layer between the host and GemCore. It is written in the C language. See the Gemplus developers’ site at . Enquiries can also be posted to cardreader@.For general information on the device, please refer to the AT83C5121 datasheet available on the Atmel web site, .34247DS–SCR–03/07AT83C21GCOrdering informationxxx : Firmware versionPart Number Temperature RangePackage Packing AT83C21GCxxx-ICSIL Industrial SSOP24Stick AT83C21GCxxx-ICRIL Industrial SSOP24Tape & ReelAT83C21GCxxx-ICSUL Industrial & Green SSOP24Stick AT83C21GCxxx-ICRUL Industrial & Green SSOP24Stick AT83C21GCxxx-PUTUL Industrial & Green QFN32Tray AT83C21GCxxx-PURULIndustrial & GreenQFN32Tape & Reel44247DS–SCR–03/07AT83C21GCPin DescriptionFigure 2. 24-pin SSOP PinoutFigure 3. 32-pin QFN PinoutP1.1/CC8 P1.4/CCLK P1.0/CIORSTP1.5/CRST 1 P1.3/CC4P1.2/CPRES XTAL1P3.3/INT1/OEP3.2/INT0P3.4/T0P3.5/CIO1/T1LIC V CC CVSSV CC E V CC VSSP3.0/RxD P3.1/TxD23 4 56 78 9 10 1112242322212019181716 15 1413P3.6/CCLK1/LED0XTAL2P3.7/CRST1/LED1D V CC SSOP24N /C QFN32Vss P1.1/CC8P1.0/CIOP1.2/CPRES CVcc P1.4/CCLK P 3.6/C C L K 1/L E D 0N /C X T A L 1P 3.7/C R S T 1/L E D 1N /CX T A L 2P3.5/CIO1/T1P1.3/CC4P1.5/CRST V c cC V s sE V c c N /CD V c c P3.4/T0 P3.0/RxD 2827261234567242322212019181211109131415RST81617VssP3.1/TxDL IN /C2529303132N /CP3.2/INT0P3.3/INT1/OE N /CTable 1. Port Signal DescriptionPort Signal Name InternalPower Supply ESD Type DescriptionP1.0CIOCV CC4 kVI/OSmart Card Interface FunctionCard I/O – Pull-up medium is lower than 20K ΩP1.1CC8CV CC4 kV I/OSmart Card Interface FunctionCard contact 8 – Pull-up medium must be less than 20K ΩP1.2CPRESV CC4 kV ISmart Card Interface Function Card presence54247DS–SCR–03/07AT83C21GCP1.3CC4CV CC4 kVI/OSmart Card Interface FunctionCard contact 4 – Pull-up medium must be less than 20K ΩP1.4CCLKCV CC4 kV OSmart Card Interface Function Card clockP1.5CRSTCV CC4 kV OSmart Card Interface FunctionCard reset – Pull-up medium must be less than 20K ΩP3.0RxDEV CCIUART Function Receive data input P3.1TxDEV CCOUART Function Transmit data output.P3.2INT0DV CCI/OInput/Output FunctionP3.2 is a bi-directional I/O port with internal pull-ups.P3.3INT1EV CCI/OInput/Output FunctionP3.3 is a bi-directional I/O port with internal pull-ups.P3.4EV CCI/OInput/Output FunctionP3.4 is a bi-directional I/O port with internal pull-ups.P3.5CIO1DV CCI/OAlternate Card FunctionCard I/O: Pull-up medium must be less than 20K P3.6CCLK1DV CCOLED functionThese pins can be directly connected to the cathode of the standard LED without external current limiting resistors. The typical current of each output can be programmed by software to 2, 4 or 10 mA (LEDCON register).P3.7CRST1DV CC I/O Input/Output FunctionP3.7 is a bi-directional I/O port with internal pull-ups.RSTV CCI/OReset InputHolding this pin low for 64 oscillator periods while the oscillatoris running resets the device. The Port pins are driven to their reset conditions when a voltage lower than V IL is applied, whether or not the oscillator is running. This pin has an internal pull-upresistor which allows the device to be reset by connecting a capacitor between this pin and VSS. Asserting RST when the chip is in Idle mode or Power-down mode returns the chip to normal operation. The output is active for at least 12 oscillator periods when an internal reset occurs.XTAL1V CCIInput to the on-chip Inverting Oscillator AmplifierTo use the internal oscillator, a crystal/resonator circuit is connected to this pin. If an external oscillator is used, its output is connected to this pin.XTAL2V CCOOutput of the on-chip Inverting Oscillator AmplifierTo use the internal oscillator, a crystal/resonator circuit is connected to this pin. If an external oscillator is used, XTAL2 may be left unconnected.V CCPWRSupply VoltageV CC is used to power the internal voltage regulators and internal I/O’s.LIPWRDC/DC InputLI must be tied to V CC through an external coil (typically 4, 7 µH) and provide the current for the pump charge of the DC/DC converter.Table 1. Port Signal Description (Continued)Port Signal Name InternalPower Supply ESD Type Description64247DS–SCR–03/07AT83C21GCCV CCPWRCard Supply VoltageCV CC is the programmable voltage output for the Card interface. It must be connected to an external decoupling capacitor.DV CCPWRDigital Supply VoltageDV CC is used to supply the digital core and internal I/Os. It is internally connected to the output of a 3V regulator and must be connected to an external decoupling capacitor.EV CCV CCPWRExtra Supply VoltageEV CC is used to supply the level shifters of UART interface I/O pins. It must beconnected to an external decoupling capacitor. This reference voltage is generated internally (automatically or not), or it can be connected to an external voltage reference.CVSSGNDDC/DC GroundCVSS is used to sink high shunt currents from the external coil.VSSGNDGroundTable 1. Port Signal Description (Continued)Port Signal NameInternalPower SupplyESDType Description4247DS–SCR–03/07©2007 Atmel Corporation . All rights reserved. Atmel ®, logo and combinations thereof, are registered trademarks, and Everywhere You Are ®are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise,to anyintellectu-alproperty right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORYWAR-RANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICU-LARPURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMA-TION) ARISING OUTOF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-AGES. Atmel makes norepresentationsor warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specificationsand product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein.Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended,authorized, or warranted for useas components in applications intended to support or sustainlife.Atmel CorporationAtmel Operations2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311Fax: 1(408) 487-2600Regional HeadquartersEuropeAtmel SarlRoute des Arsenaux 41Case Postale 80CH-1705 Fribourg SwitzerlandTel: (41) 26-426-5555Fax: (41) 26-426-5500AsiaRoom 1219Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong KongTel: (852) 2721-9778Fax: (852) 2722-1369Japan9F, Tonetsu Shinkawa Bldg.1-24-8 ShinkawaChuo-ku, Tokyo 104-0033JapanTel: (81) 3-3523-3551Fax: (81) 3-3523-7581Memory2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311Fax: 1(408) 436-4314Microcontrollers2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311Fax: 1(408) 436-4314La Chantrerie BP 7060244306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18Fax: (33) 2-40-18-19-60ASIC/ASSP/Smart CardsZone Industrielle13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00Fax: (33) 4-42-53-60-011150 East Cheyenne Mtn. Blvd.Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300Fax: 1(719) 540-1759Scottish Enterprise Technology Park Maxwell BuildingEast Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000Fax: (44) 1355-242-743RF/AutomotiveTheresienstrasse 2Postfach 353574025 Heilbronn, Germany Tel: (49) 71-31-67-0Fax: (49) 71-31-67-23401150 East Cheyenne Mtn. Blvd.Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300Fax: 1(719) 540-1759Biometrics/Imaging/Hi-Rel MPU/High Speed Converters/RF DatacomAvenue de Rochepleine BP 12338521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00Fax: (33) 4-76-58-34-80Literature Requests/literature。
AN7908T资料
V I P D T opr T stgV V W ˚C ˚C–35 *1–40 *215 *310.25 *3–30 to +80–55 to +150Input voltage Power dissipation Operating ambient temperature Storage temperatureAN7900T Series AN7900F Series *1 AN7905T/F, AN7906T/F, AN7907T/F, AN7908T/F, AN7909T/F, AN7910T/F, AN7912T/F, AN7915T/F, AN7918T/F *2 AN7920T/F, AN7924T/F *3 Follow the derating curve. When T j exceeds 150˚C, the internal circuit shuts off the output.ParameterSymbol Rating Unit s Absolute Maximum Ratings (Ta =25˚C)typ Output voltage V O –5.2V –5Output voltage tolerance V O V V I =–7 to –20V, I O =5mA to 1A, P D *Line regulation REG IN 100mV 3V I =–7 to –25V, T j =25˚CmV Load regulation REG L mV 10I O =5mA to 1.5A, T j =25˚C mV I O =250 to 750mA, T j =25˚C V I =–8 to –12V, T j =25˚C mA 2T j =25˚C1Bias current I bias mA V I =–7 to –25V, T j =25˚C Input bias fluctuation mA Load bias current fluctuation µV 40I O =5mA to 1A, T j =25˚C Output noise voltage V no dB f =10Hz to 100kHz, Ta =25˚C 1.30.550–5.2510050462–4.8–4.75Ripple rejection ratioRR V I =–8 to –18V, I O =100mA, f =120Hz V 1.1I O =1A, T j =25˚C Minimum i/o voltage difference A 2.1374Peak output current– 0.4Output voltage temperature coefficientParameterSymbol Conditionmin max Unit T j =25˚CI O =5mA, T j =0 to 125˚CT j =25˚C∆I bias (IN)∆I bias (L)V DIF (min.)I O (Peak)mV/˚C∆V O /TaNote 1) The specified condition T j =25˚C means that the test should be carried out with the test time so short (within 10ms) that the drift in characteristic value due to the rise in chip junction temperature can be ignored.Note 2) Unless otherwise specified, V I =–10V, I O =500mA, C I =2µF, C O =1µF, T j =0 to 125˚C * AN7900T series : 15W, AN7900F series : 10.25Ws Electrical Characteristics (Ta =25˚C)• AN7905T/AN7905F (–5V Type)<=V O –6.25V –6V O V REG IN 120mV 4mV REG L mV 10mV mA 21.5I bias mA mA 44V no dB 1.30.560–6.312060460–5.75–5.7RR V 1.1A 2.1373– 0.5typ Output voltage Output voltage tolerance Line regulation Load regulation Bias current Input bias fluctuation Load bias current fluctuation Output noise voltage Ripple rejection ratioMinimum i/o voltage difference Peak output currentOutput voltage temperature coefficientParameterSymbol Conditionmin max Unit V I =–8 to –21V, I O =5mA to 1A, P D *V I =–8 to –25V, T j =25˚C I O =5mA to 1.5A, T j =25˚C I O =250 to 750mA, T j =25˚C V I =–9 to –13V, T j =25˚C T j =25˚CV I =–8 to –25V, T j =25˚C µV I O =5mA to 1A, T j =25˚C f =10Hz to 100kHz, Ta =25˚C V I =–9 to –19V, I O =100mA, f =120Hz I O =1A, T j =25˚C T j =25˚CI O =5mA, T j =0 to 125˚CT j =25˚C∆I bias (IN)∆I bias (L)V DIF (min.)I O (Peak)mV/˚C∆V O /TaNote 1) The specified condition T j =25˚C means that the test should be carried out with the test time so short (within 10ms) that the drift in characteristic value due to the rise in chip junction temperature can be ignored.Note 2) Unless otherwise specified, V I =–11V, I O =500mA, C I =2µF, C O =1µF, T j =0 to 125˚C * AN7900T series : 15W, AN7900F series : 10.25W<=V O –7.3V –7V O V REG IN 140mV 5mV REG L mV 12mV mA 21.5I bias mA mA 48V no dB 1.30.570–7.3514070458–6.7–6.65RR V 1.1A 2.1472– 0.5typ Output voltage Output voltage tolerance Line regulation Load regulation Bias current Input bias fluctuation Load bias current fluctuation Output noise voltage Ripple rejection ratioMinimum input/output voltage difference Peak output currentOutput voltage temperature coefficientParameterSymbol Conditionmin max Unit V I =–79 to –22V, I O =5mA to 1A, P D *V I =–9 to –25V, T j =25˚C I O =5mA to 1.5A, T j =25˚C I O =250 to 750mA, T j =25˚C V I =–10 to –14V, T j =25˚C T j =25˚CV I =–9 to –25V, T j =25˚C µV I O =5mA to 1A, T j =25˚C f =10Hz to 100kHz, Ta =25˚C V I =–10 to –20V, I O =100mA, f =120Hz I O =1A, T j =25˚C T j =25˚CI O =5mA, T j =0 to 125˚CT j =25˚C∆I bias (IN)∆I bias (L)V DIF (min.)I O (Peak)mV/˚C∆V O /TaNote 1) The specified condition T j =25˚C means that the test should be carried out with the test time so short (within 10ms) that the drift in characteristic value due to the rise in chip junction temperature can be ignored.Note 2) Unless otherwise specified, V I =–12V, I O =500mA, C I =2µF, C O =1µF, T j =0 to 125˚C * AN7900T series : 15W, AN7900F series : 10.25W• AN7907T/AN7907F (–7V Type)<=V O –8.3V –8V O V REG IN 160mV 6mV REG L mV 12mV mA 2.22I bias mA mA 52V no dB 10.580–8.4160804.556–7.7–7.6RR V 1.1A 2.1471– 0.6typ Output voltage Output voltage tolerance Line regulation Load regulation Bias current Input bias fluctuation Load bias current fluctuation Output noise voltage Ripple rejection ratioMinimum input/output voltage difference Peak output currentOutput voltage temperature coefficientParameterSymbol Conditionmin max Unit V I =–10 to –23V, I O =5mA to 1A, P D *V I =–10.5 to –25V, T j =25˚C I O =5mA to 1.5A, T j =25˚C I O =250 to 750mA, T j =25˚C V I =–11 to –17V, T j =25˚C T j =25˚CV I =–10.5 to –25V, T j =25˚C µV I O =5mA to 1A, T j =25˚C f =10Hz to 100kHz, Ta =25˚C V I =–11 to –21V, I O =100mA, f =120Hz I O =1A, T j =25˚C T j =25˚CI O =5mA, T j =0 to 125˚CT j =25˚C∆I bias (IN)∆I bias (L)V DIF (min.)I O (Peak)mV/˚C∆V O /TaNote 1) The specified condition T j =25˚C means that the test should be carried out with the test time so short (within 10ms) that the drift in characteristic value due to the rise in chip junction temperature can be ignored.Note 2) Unless otherwise specified, V I =–14V, I O =500mA, C I =2µF, C O =1µF, T j =0 to 125˚C * AN7900T series : 15W, AN7900F series : 10.25W<=V O –9.35V –9V O V REG IN 180mV 7mV REG L mV 12mV mA 2.22I bias mA mA 58dB 10.590–9.45180904.556–8.65–8.55RR V 1.1A 2.1471–0.6typ Output voltage tolerance Input bias fluctuation Load bias current fluctuation Output noise voltage Ripple rejection ratioMinimum input/output voltage difference Peak output currentOutput voltage temperature coefficientParameterSymbol Conditionmin max Unit Output voltage Line regulation Load regulation Bias current V no V I =–11.5 to –24V, I O =5mA to 1A, P D *V I =–11.5 to –26V, T j =25˚C I O =5mA to 1.5A, T j =25˚C I O =250 to 750mA, T j =25˚C V I =–12 to –18V, T j =25˚C T j =25˚CV I =–11.5 to –26V, T j =25˚C µV I O =5mA to 1A, T j =25˚C f =10Hz to 100kHz, Ta =25˚C V I =–12 to –22V, I O =100mA, f =120Hz I O =1A, T j =25˚C T j =25˚CI O =5mA, T j =0 to 125˚CT j =25˚C∆I bias (IN)∆I bias (L)V DIF (min.)I O (Peak)mV/˚C∆V O /TaNote 1) The specified condition T j =25˚C means that the test should be carried out with the test time so short (within 10ms) that the drift in characteristic value due to the rise in chip junction temperature can be ignored.Note 2) Unless otherwise specified, V I =–15V, I O =500mA, C I =2µF, C O =1µF, T j =0 to 125˚C * AN7900T series : 15W, AN7900F series : 10.25W• AN7909T/AN7909F (–9V Type)<=V O –10.4V –10V O V REG IN 200mV 8mV REG L mV 12mV mA 2.52.5I bias mA mA 64V no dB 10.5100–10.5200100556–9.6–9.5RR V 1.1A 2.1471– 0.7typ Output voltage Output voltage tolerance Line regulation Load regulation Bias current Input bias fluctuation Load bias current fluctuation Output noise voltage Ripple rejection ratioMinimum input/output voltage difference Peak output currentOutput voltage temperature coefficientParameterSymbol Conditionmin max Unit V I =–12.5 to –25V, I O =5mA to 1A, P D *V I =–12.5 to –27V, T j =25˚C I O =5mA to 1.5A, T j =25˚C I O =250 to 750mA, T j =25˚C V I =–13 to –19V, T j =25˚C T j =25˚CV I =–12.5 to –27V, T j =25˚C µV I O =5mA to 1A, T j =25˚C f =10Hz to 100kHz, Ta =25˚C V I =–13 to –23V, I O =100mA, f =120Hz I O =1A, T j =25˚C T j =25˚CI O =5mA, T j =0 to 125˚CT j =25˚C∆I bias (IN)∆I bias (L)V DIF (min.)I O (Peak)mV/˚C∆V O /TaNote 1) The specified condition T j =25˚C means that the test should be carried out with the test time so short (within 10ms) that the drift in characteristic value due to the rise in chip junction temperature can be ignored.Note 2) Unless otherwise specified, V I =–16V, I O =500mA, C I =2µF, C O =1µF, T j =0 to 125˚C * AN7900T series : 15W, AN7900F series : 10.25W<=V O –12.5V –12V O V REG IN 240mV 10mV REG L mV 12mV mA 2.53I bias mA mA 75V no dB 10.5120–12.6240120555–11.5–11.4RR V 1.1A 2.1470– 0.8typ Output voltage Output voltage tolerance Line regulation Load regulation Bias current Input bias fluctuation Load bias current fluctuation Output noise voltage Ripple rejection ratioMinimum input/output voltage difference Peak output currentOutput voltage temperature coefficientParameterSymbol Conditionmin max Unit V I =–14.5 to –27V, I O =5mA to 1A, P D *V I =–14.5 to –30V, T j =25˚C I O =5mA to 1.5A, T j =25˚C I O =250 to 750mA, T j =25˚C V I =–16 to –22V, T j =25˚C T j =25˚CV I =–14.5 to –30V, T j =25˚C µV I O =5mA to 1A, T j =25˚C f =10Hz to 100kHz, Ta =25˚C V I =–15 to –25V, I O =100mA, f =120Hz I O =1A, T j =25˚C T j =25˚CI O =5mA, T j =0 to 125˚CT j =25˚C∆I bias (IN)∆I bias (L)V DIF (min.)I O (Peak)mV/˚C∆V O /TaNote 1) The specified condition T j =25˚C means that the test should be carried out with the test time so short (within 10ms) that the drift in characteristic value due to the rise in chip junction temperature can be ignored.Note 2) Unless otherwise specified, V I =–19V, I O =500mA, C I =2µF, C O =1µF, T j =0 to 125˚C * AN7900T series : 15W, AN7900F series : 10.25W• AN7912T/AN7912F (–12V Type)<=V O –15.6V –15V O V REG IN 300mV 11mV REG L mV 12mV mA 2.53I bias mA mA 90V no dB 10.5150–15.75300150554–14.4–14.25RR V 1.1A 2.1469–0.9typ Output voltage Output voltage tolerance Line regulation Load regulation Bias current Input bias fluctuation Load bias current fluctuation Output noise voltage Ripple rejection ratioMinimum input/output voltage difference Peak output currentOutput voltage temperature coefficientParameterSymbol Conditionmin max Unit V I =–17.5 to –30V, I O =5mA to 1A, P D *V I =–17.5 to –30V, T j =25˚C V I =–20 to –26V, T j =25˚C V I =–17.5 to –30V, T j =25˚C µV V I =–18.5 to –28.5V, I O =100mA, f =120Hz ∆I bias (IN)∆I bias (L)V DIF (min.)I O (Peak)mV/˚C∆V O /TaNote 1) The specified condition T j =25˚C means that the test should be carried out with the test time so short (within 10ms) that the drift in characteristic value due to the rise in chip junction temperature can be ignored.Note 2) Unless otherwise specified, V I =–23V, I O =500mA, C I =2µF, C O =1µF, T j =0 to 125˚C * AN7900T series : 15W, AN7900F series : 10.25W<=I O =5mA to 1.5A, T j =25˚C I O =250 to 750mA, T j =25˚C T j =25˚CI O =5mA to 1A, T j =25˚C f =10Hz to 100kHz, Ta =25˚C I O =1A, T j =25˚C T j =25˚CI O =5mA, T j =0 to 125˚CT j =25˚CV O –18.7V –18V O V REG IN 360mV 15mV REG L mV 12mV mA 2.55I bias mA mA 110V no dB 10.5180–18.9360180553–17.3–17.1RR V 1.1A 2.1468–1typ Output voltage Output voltage tolerance Line regulation Load regulation Bias current Input bias fluctuation Load bias current fluctuation Output noise voltage Ripple rejection ratioMinimum input/output voltage difference Peak output currentOutput voltage temperature coefficientParameterSymbol Conditionmin max Unit V I =–21 to –33V, I O =5mA to 1A, P D *V I =–21 to –33V, T j =25˚C I O =5mA to 1.5A, T j =25˚C I O =250 to 750mA, T j =25˚C V I =–24 to –30V, T j =25˚C T j =25˚CV I =–21 to –33V, T j =25˚C µV I O =5mA to 1A, T j =25˚C f =10Hz to 100kHz, Ta =25˚C V I =–22 to –32V, I O =100mA, f =120Hz I O =1A, T j =25˚C T j =25˚CI O =5mA, T j =0 to 125˚CT j =25˚C∆I bias (IN)∆I bias (L)V DIF (min.)I O (Peak)mV/˚C∆V O /TaNote 1) The specified condition T j =25˚C means that the test should be carried out with the test time so short (within 10ms) that the drift in characteristic value due to the rise in chip junction temperature can be ignored.Note 2) Unless otherwise specified, V I =–27V, I O =500mA, C I =2µF, C O =1µF, T j =0 to 125˚C * AN7900T series : 15W, AN7900F series : 10.25W• AN7918T/AN7918F (–18V Type)<=V O –20.8V –20V O V REG IN 400mV 16mV REG L mV 12mV mA 35.5I bias mA mA 135V no dB 10.5200–21400200552–19.2–19RR V 1.1A 2.1467–1typ Output voltage Output voltage tolerance Line regulation Load regulation Bias current Input bias fluctuation Load bias current fluctuation Output noise voltage Ripple rejection ratioMinimum input/output voltage difference Peak output currentOutput voltage temperature coefficientParameterSymbol Conditionmin max Unit V I =–23 to –35V, I O =5mA to 1A, P D *V I =–23 to –35V, T j =25˚C I O =5mA to 1.5A, T j =25˚C I O =250 to 750mA, T j =25˚C V I =–26 to –32V, T j =25˚C T j =25˚CV I =–23 to –35V, T j =25˚C µV I O =5mA to 1A, T j =25˚C f =10Hz to 100kHz, Ta =25˚C V I =–24 to –34V, I O =100mA, f =120Hz I O =1A, T j =25˚C T j =25˚CI O =5mA, T j =0 to 125˚CT j =25˚C∆I bias (IN)∆I bias (L)V DIF (min.)I O (Peak)mV/˚C∆V O /TaNote 1) The specified condition T j =25˚C means that the test should be carried out with the test time so short (within 10ms) that the drift in characteristic value due to the rise in chip junction temperature can be ignored.Note 2) Unless otherwise specified, V I =–29V, I O =500mA, C I =2µF, C O =1µF, T j =0 to 125˚C * AN7900T series : 15W, AN7900F series : 10.25W<=V O –25V –24V O V REG IN 480mV 18mV REG L mV 12mV mA 36I bias mA mA 170V no dB 10.5240–25.2480240550–23–22.8RR V 1.1A 2.1465–1typ Output voltage Output voltage tolerance Line regulation Load regulation Bias current Input bias fluctuation Load bias current fluctuation Output noise voltage Ripple rejection ratioMinimum input/output voltage difference Peak output currentOutput voltage temperature coefficientParameterSymbol Conditionmin max Unit V I =–27 to –38V, I O =5mA to 1A, P D *V I =–27 to –38V, T j =25˚C I O =5mA to 1.5A, T j =25˚C I O =250 to 750mA, T j =25˚C V I =–30 to –36V, T j =25˚C T j =25˚CV I =–27 to –38V, T j =25˚C µV I O =5mA to 1A, T j =25˚C f =10Hz to 100kHz, Ta =25˚C V I =–28 to –38V, I O =100mA, f =120Hz I O =1A, T j =25˚C T j =25˚CI O =5mA, T j =0 to 125˚CT j =25˚C∆I bias (IN)∆I bias (L)V DIF (min.)I O (Peak)mV/˚C∆V O /TaNote 1) The specified condition T j =25˚C means that the test should be carried out with the test time so short (within 10ms) that the drift in characteristic value due to the rise in chip junction temperature can be ignored.Note 2) Unless otherwise specified, V I =–33V, I O =500mA, C I =2µF, C O =1µF, T j =0 to 125˚C * AN7900T series : 15W, AN7900F series : 10.25W• AN7924T/AN7924F (–24V Type)<=。
常用HV、HB、HRC硬度对照表,硬度检测到底有多少种?一文看懂
常用HV、HB、HRC硬度对照表,硬度检测到底有多少种?一文看懂常用HV、HB、HRC硬度对照表金属材料的硬度硬度是指材料抵抗局部变形,特别是塑性变形、压痕或划痕的能力。
它是衡量材料软硬的指标。
按测试方法的不同,硬度分为三种类型。
①划痕硬度。
主要用于比较不同矿物的软硬程度,方法是选一根一端硬一端软的棒,将被测材料沿棒划过,根据出现划痕的位置确定被测材料的软硬。
定性地说,硬物体划出的划痕长,软物体划出的划痕短。
②压入硬度。
主要用于金属材料,方法是用一定的载荷将规定的压头压入被测材料,以材料表面局部塑性变形的大小比较被测材料的软硬。
由于压头、载荷以及载荷持续时间的不同,压入硬度有多种,主要是布氏硬度、洛氏硬度、维氏硬度和显微硬度等几种。
③回跳硬度。
主要用于金属材料,方法是使一特制的小锤从一定高度自由下落冲击被测材料的试样,并以试样在冲击过程中储存(继而释放)应变能的多少(通过小锤的回跳高度测定)确定材料的硬度。
金属材料最常见到的布氏硬度、洛氏硬度和维氏硬度属于压入硬度,硬度值表示材料表面抵抗另一物体压入时所引起的塑性变形的能力;回跳法(肖氏、里氏)测量硬度,硬度值代表金属弹性变形功能的大小。
1、布氏硬度 Brinell Hardness用直径D的淬火钢球或硬质合金球作压头,以相应的试验力F压入试件表面,经规定的保持时间后,卸除试验力,得到一直径为d的压痕。
用试验力除以压痕表面积,所得值即为布氏硬度值,符号用HBS或HBW表示。
HBS和HBW的区别是压头的不同。
HBS表示压头为淬硬钢球,用于测定布氏硬度值在450以下的材料,如软钢、灰铸铁和有色金属等。
HBW表示压头为硬质合金,用于测定布氏硬度值在650以下的材料。
同样的试块,当其它试验条件完全相同的情况下,两种试验结果不同,HBW值往往大于HBS值,而且并无定量的规律所循。
2003年以后,我国已经等效采用国际标准,取消了钢球压头,全部采用硬质合金球头。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
HV57908Device80 Lead Quad 80 Lead Quad 80 Lead Quad Ceramic Gullwing Plastic Gullwing Ceramic Gullwing Die (MIL-STD-883 Processed*)HV57908HV57908DGHV57908PGRBHV57908DGHV57908X*For Hi-Rel process flows, please refer to page 5-3 in the Databook.Ordering InformationPackage OptionsAbsolute Maximum RatingsSupply voltage, V DD 1-0.5V to +7.5V Output voltage, V PP -0.5V to +90V Logic input levels -0.3V to V DD +0.3VGround current 21.5A Continuous total power dissipation 3Plastic 1200mW Ceramic1900mW Operating temperature range Plastic -40°C to 85°C Ceramic-55°C to 125°C Storage temperature range-65°C to +150°CLead temperature 1.6mm (1/16 inch)from case for 10 seconds260°CNotes:1.All voltages are referenced to GND.2.Limited by the total power dissipated in the package.3.For operation above 25°C ambient derate linearly to maximum operatingtemperature at 20mW/°C for plastic and at 19mW/°C for ceramic.Features❏Processed with HVCMOS ® technology ❏5V CMOS logic❏Output voltages up to 80V ❏Low power level shifting ❏8MHz data rate ❏Latched data outputs❏Forward and reverse shifting options (DIR pin)❏Diode to V PP allows efficient power recovery ❏Outputs may be hot switched ❏Hi-Rel processing available8 MHz, 64-Channel Serial To Parallel ConverterWith Push-Pull OutputsGeneral DescriptionThe HV579 is a low-voltage serial to high-voltage parallel con-verter with push-pull outputs. This device has been designed for use as a driver for electroluminescent displays. It can also be used in any application requiring multiple output high-voltage current sourcing and sinking capability such as driving plasma panels,vacuum fluorescent displays, or large matrix LCD displays.The device consists of a 64-bit shift register, 64 latches, and control logic to perform the polarity select and blanking of the outputs. HVout1 is connected to the first stage of the shift register through the polarity and blanking logic. Data is shifted through the shift registers on the logic low to high transition of the clock. The DIR pin causes CCW shifting when connected to GND, and CW shifting when connected to V DD . A data output buffer is provided for cascading devices. This output reflects the current status of the last bit of the shift register (HV OUT 64). Operation of the shift register is not affected by the LE (latch enable), BL (blanking), or the POL (polarity) inputs. Transfer of data from the shift registers to the latches occurs when the LE (latch enable) input is high. The data in the latches is stored when LE is low.11/12/01Supertex Inc. does not recommend the use of its products in life support applications and will not knowingly sell its products for use in such applications unless it receives an adequate "products liability indemnification insurance agreement." Supertex does not assume responsibility for use of devices described and limits its liability to the replacement of devices determined to be defective due to 元器件交易网Symbol Parameter Min Max Units V DD Logic supply voltage 4.5 5.5V V PP Output voltage 880V V IH High-level input voltage V DD -0.5V V IL Low-level input voltage 00.5V f CLK Clock frequency8MHz T AOperating free-air temperaturePlastic -40+85°CCeramic-55+125Note: Power-up sequence should be the following:1.Connect ground.2.Apply V DD .3.Set all inputs (Data, CLK, Enable, etc.) to a known state.4.Apply V PP .5.The V PP should not drop below V DD or float during operation.Power-down sequence should be the reverse of the above.Electrical Characteristics (over recommended operating conditions unless noted, T A=-40°C to +85°C)DC CharacteristicsSymbol Parameter MinMax Units Conditions I DD V DD supply current 15mA V DD = V DD max f CLK = 8MHz I PP High voltage supply current 100µA Outputs high 100µA Outputs low I DDQ Quiescent V DD supply current 100µA All V IN = V DDV OH High-level output HV OUT 65V I O = -15mA, V PP = 80V Data out V DD - 0.5V I O = -100µAV OL Low-level outputHV OUT 7V I O = 12mA, V PP = 80V Data out0.5V I O = 100µA I IH High-level logic input current 1µA V IH = V DD I IL Low-level logic input current -1µA V IL = 0V V OCHigh voltage clamp diode1VI OC = 1mARecommended Operating ConditionsAC Characteristics (T A = 85°C max. Logic signal inputs and Data inputs have t r , t f ≤ 5ns [10% and 90% points])Symbol Parameter MinMax Units Conditionsf CLK Clock frequency 8MHz t WL ,t WH Clock width high or low62ns t SU Data set-up time before clock rises 10ns t H Data hold time after clock rises 15ns t ON , t OFF Time from latch enable to HV OUT 500ns C L = 15pF t DHL Delay time clock to data high to low 70ns C L = 15pF t DLH Delay time clock to data low to high 70ns C L = 15pF t DLE *Delay time clock to LE low to high 25ns t WLE Width of LE pulse25ns t SLELE set-up time before clock rises0ns* t DLE is not required but is recommended to produce stable HV outputs and thus minimize power dissipation and current spikes (allows internal SR output to stabilize).LE HV OUTw/ S/R LOWData InputCLKData OutHV OUTw/ S/R HIGH V IH V IL V IH V IL V OH V OL V OH V OL V IH V OLV OH V OLV OH V OLInput and Output Equivalent Circuits Switching WaveformsHV OUT 2•••60 Additional Outputs•••POL BL LE ClockHV OUT 63HV OUT 1DIRHV OUT 64D IOAFunctional Block DiagramInputsOutputsFunction Shift RegHV OutputsData OutAll O/P High X X X L L X H All O/P Low X X X L H X L O/P Normal X X X H H X No inversion O/P Inverted X X X H L X InversionL H H H X L L H H H H X H H L H H L X L H H H H L X H L Data Stored X X L H H X *Stored Data Latches Loaded X X L H L X *Inversion of Stored DataD IOA X X X H Q n → Q n +1-D IOB D IOBXXXLQ n → Q n -1-D IOA Data CLK LE BL POL DIR Data Falls Through (Latches Transparent)↑↑↑↑↑↑Function TableI/O RelationNote:= dependent on previous stage’s state.1235 Bordeaux Drive, Sunnyvale, CA 94089TEL: (408) 744-0100 • FAX: (408) 222-489511/12/01802540top view80-pin Gullwing Package2539•••••H 2H 1•••••PinOUTOUT OUT OUTOUT OUTD IOA D IOBNote:Pin designation for DIR = H/L.Example:For DIR = H, pin 41 is HV OUT 64.For DIR = L, pin 41 is HV OUT 1.Pin ConfigurationsHV57980-pin Gullwing Pin Function 1HV OUT 24/412HV OUT 23/423HV OUT 22/434HV OUT 21/445HV OUT 20/456HV OUT 19/467HV OUT 18/478HV OUT 17/489HV OUT 16/4910HV OUT 15/5011HV OUT 14/5112HV OUT 13/5213HV OUT 12/5314HV OUT 11/5415HV OUT 10/5516HV OUT 9/5617HV OUT 8/5718HV OUT 7/5819HV OUT 6/5920HV OUT 5/6021HV OUT 4/6122HV OUT 3/6223HV OUT 2/6324HV OUT 1/6425D IOA 26N/C 27N/C 28N/C 29LE 30CLK 31BL 32V DD 33DIR 34GND 3536N/C 37N/C 38N/C 39D IOB 40V PPPin Function 41HV OUT 64/142HV OUT 63/243HV OUT 62/344HV OUT 61/445HV OUT 60/546HV OUT 59/647HV OUT 58/748HV OUT 57/849HV OUT 56/950HV OUT 55/1051HV OUT 54/1152HV OUT 53/1253HV OUT 52/1354HV OUT 51/1455HV OUT 50/1556HV OUT 49/1657HV OUT 48/1758HV OUT 47/1859HV OUT 46/1960HV OUT 45/2061HV OUT 44/2162HV OUT 43/2263HV OUT 42/2364HV OUT 41/2465HV OUT 40/2566HV OUT 39/2667HV OUT 38/2768HV OUT 37/2869HV OUT 36/2970HV OUT 35/3071HV OUT 34/3172HV OUT 33/3273HV OUT 32/3374HV OUT 31/3475HV OUT 30/3576HV OUT 29/3677HV OUT 28/3778HV OUT 27/3879HV OUT 26/3980HV OUT 25/40Package Outline。