八年级数学二次根式提高培优

合集下载

部编数学八年级下册二次根式专项提升训练(重难点培优)【拔尖特训】2023年培优【人教版】含答案

部编数学八年级下册二次根式专项提升训练(重难点培优)【拔尖特训】2023年培优【人教版】含答案

【拔尖特训】2022-2023学年八年级数学下册尖子生培优必刷题【人教版】专题16.1专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022秋•南湖区校级期中)要使二次根式有意义,x的值可以是( )A.4B.2C.1D.0【分析】根据二次根式有意义的条件可得x﹣3≥0,再解即可.【解答】解:要使二次根式有意义,则x﹣3≥0,解得:x≥3,故x的值可以是4.故选:A.2.(2022秋•北碚区校级期中)要使式子有意义,则a的取值范围是( )A.a≠0B.a≥﹣2C.a>﹣2且a≠0D.a≥﹣2且a≠0【分析】根据分子的被开方数不能为负数,分母不能为零,可得答案.【解答】解:由题意得,a+2≥0且a≠0,即a≥﹣2且a≠0,故选:D.3.(2022秋•惠山区期中)下列各式中,一定是二次根式的是( )A.B.C.D.【分析】根据二次根式的定义进行判断.【解答】解:A.被开方数为负数,不是二次根式,故此选项不合题意;B.根指数是3,不是二次根式,故此选项不合题意;C.a﹣1的值不确定,被开方数的符号也不确定,不能确定是二次根式,故此选项不合题意;D.被开方数恒为正数,是二次根式,故此选项符合题意.4.(2022秋•奉贤区期中)使二次根式有意义的x的取值范围是( )A.B.C.D.【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【解答】解:由题意得:2x﹣1>0,解得:x>,故选:B.5.(2022秋•南湖区校级期中)已知y=++4,y x的平方根是( )A.16B.8C.±4D.±2【分析】根据二次根式有意义的条件可得,据此可得x的值,进而得出y的值,再代入所求式子计算即可.【解答】解:∵y=++4,∴,解得x=2,∴y=4,∴y x=42=16.∴y x的平方根是±4.故选:C.6.(2022秋•通州区期中)已知n是一个正整数,且是整数,那么n的最小值是( )A.6B.36C.3D.2【分析】先把=2,从而判断出6n是完全平方数,所以得出答案正整数n的最小值是6.【解答】解:=2,则6n是完全平方数,∴正整数n的最小值是6,故选:A.7.(2022秋•新蔡县校级月考)已知x、y为实数,且y=+1,则x+y的值是( )A.2022B.2023C.2024D.2025【分析】根据二次根式有意义的条件:被开方数是非负数求出x的值,代入求得y的值,代入代数式求【解答】解:∵x﹣2023≥0,2023﹣x≥0,∴x﹣2023=0,∴x=2023,∴y=1,∴x+y=2023+1=2024,故选:C.8.(2022春•东平县期中)已知a满足|2018﹣a|+=a,则a﹣20182=( )A.0B.1C.2018D.2019【分析】根据二次根式的被开方数是非负数求出a的取值范围,化简绝对值即可得出答案.【解答】解:根据题意得:a﹣2019≥0,∴a≥2019,∴原式可变形为:a﹣2018+=a,∴=2018,∴a﹣2019=20182,∴a﹣20182=2019.故选:D.9.已知a为实数,若在实数范围内有意义,那么等于( )A.a B.﹣a C.﹣1D.0【分析】根据非负数的性质与被开方数大于等于0列式计算即可得解.【解答】解:根据非负数的性质a2≥0,所以,﹣a2≤0,又∵﹣a2≥0,∴﹣a2=0,∴=0.故选:D.10.(2022春•荣昌区校级期末)若二次根式有意义,且关于分式方程﹣3=有正整数解,则符合条件的整数m的和是( )A.5B.3C.﹣2D.0【分析】根据二次根式有意义,可得m≤4,解出关于x的分式方程﹣3=的解为x=,解为正整数解,进而确定m的取值范围,注意增根时m的值除外,再根据m为整数,确定m的所有可能的整数值,求和即可.【解答】解:去分母得,2﹣3(x﹣1)=﹣m,解得x=,∵关于x的分式方程﹣3=有正整数解,∴>0,∴m>﹣5,又∵x=1是增根,当x=1时,=1,即m=﹣2∴m≠﹣2,∵有意义,∴4﹣m≥0,∴m≤4,因此﹣5<m≤4且m≠﹣2,∵m为整数且关于x的分式方程﹣3=有正整数解,∴m可以为1,4,其和为5.故选:A.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2022秋•南安市期中)若二次根式在实数范围内有意义,则x的取值范围是 x≤4 .【分析】根据二次根式的被开方数是非负数列出不等式,解不等式得到答案.【解答】解:由题意得:12﹣3x≥0,解得x≤4,故答案为:x≤4.12.(2022秋•罗湖区校级期中)若在实数范围内有意义,则x的取值范围是 x<4 .【分析】根据二次根式有意义的条件和分母不为0,即可求出x的取值范围.【解答】解:根据题意得:4﹣x>0,故答案为:x<4.13.(2022秋•海曙区校级期中)若,则x y= .【分析】直接利用二次根式有意义的条件得出x,y的值,进而代入得出答案.【解答】解:∵,∴2x﹣3≥0且3﹣2x≥0,解得:x=,则y=2,则x y=()2=.故答案为:.14.(2022秋•卧龙区校级月考)若y=+﹣3,则点P(x,y)在第 四 象限.【分析】根据二次根式的被开方数是非负数,求出x的值,进而得到y的值,再根据点的坐标特征解答即可.【解答】解:根据题意,得x﹣4≥0且4﹣x≥0,.所以x=4.所以y=﹣3.所以P(4,﹣3),位于第四象限.故答案为:四.15.(2022春•东莞市校级期中)若是整数,则满足条件的最小正整数n的值为 6 .【分析】24=22×6,所以要想能开平方,必须再乘一个6.【解答】解:=2,∵是整数,∴满足条件的最小正整数n=6.故答案为:6.16.(2022春•东平县期中)已知y=++2022,则x2+y﹣3的值为 2023 .【分析】根据二次根式有意义的条件得到x2=4,进而求出y的值,代入代数式求值即可.【解答】解:根据题意得:x2﹣4≥0,4﹣x2≥0,∴y=2022,∴原式=4+2022﹣3=2023.故答案为:2023.17.(2022•沙坪坝区校级开学)已知a,b分别为等腰三角形的两条边长,且a,b满足,则该三角形的周长为 10 .【分析】根据题意求出a、b的值,根据等腰三角形的三边关系确定三角形的边长,求出此三角形的周长.【解答】解:由题意得,a﹣2≥0,2﹣a≥0,解得a≥2,a≤2,∴a=2,则b=4,∵2+2=4,∴2、2、4不能组成三角形,∴该三角形的三边分别为2、4、4,∴此三角形的周长为2+4+4=10.18.(2021春•南通期中)实数a、b在数轴上对应点的位置如图所示,,b为整数,则a+b= ﹣2 .【分析】通过识图可得a<b<,从而利用二次根式的性质进行化简.【解答】解:∵a<b<,∵|b﹣2|=b﹣2,∵a+4≥0,b﹣2≥0,∴b≥2,∵b<,∴2≤b<,b为整数,∴b=2,将b=2代入|b﹣2|=b﹣2,∴a+b=﹣4+2=﹣2,故答案为:﹣2.三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2021春•新泰市期中)(1)已知2a﹣1的平方根是±3,3a+b﹣1的平方根是±4,求a+2b的平方根;(2)若x,y都是实数,且y=+8,求x+3y的立方根.【分析】(1)根据平方根的定义求出a、b的值,然后代入a+2b即可求出答案.(2)根据二次根式有意义的条件可求出x与y的值,然后代入原式即可求出答案.【解答】解:(1)由题意可知:2a﹣1=9,3a+b﹣1=16,∴a=5,b=2,∴a+2b=5+4=9,∴9的平方根是±3,即a+2b的平方根为±3.(2)由题意可知:,∴x=3,∴y=8,∴x+3y=3+24=27,∴27的立方根是3,即x+3y的立方根是320.(2019秋•松北区期末)已知a,b分别为等腰三角形的两条边长,且a,b满足b=4++3,求此三角形的周长.【分析】根据题意求出a、b的值,根据三角形的三边关系确定三角形的边长,求出此三角形的周长.【解答】解:由题意得,3a﹣6≥0,2﹣a≥0,解得,a≥2,a≤2,则a=2,则b=4,∵2+2=4,∴2、2、4不能组成三角形,∴此三角形的周长为2+4+4=10.21.(2022秋•济南期中)已知实数a,b,c满足:.(1)a= ﹣3 ;b= 5 ;c= 2 ;(2)求﹣b﹣3a+2c的平方根.【分析】(1)根据二次根式有意义的条件求得b=5,再根据绝对值以及算术平方根的非负性求得a与c.(2)将(1)中a、b与c的值代入,再求得﹣b﹣3a+2c的平方根.【解答】解:(1)由题意得,b﹣5≥0,5﹣b≥0.∴b=5.∴|a+3|+=0.∵|a+3|≥0,,∴a+3=0,c﹣2=0.∴a=﹣3,c=2.故答案为:﹣3;5;2.(2)由(1)得,a=﹣3,b=5,c=2.∴﹣b﹣3a+2c=﹣5+9+4=8.∴﹣b﹣3a+2c的平方根是±=.22.(2022秋•锦江区校级月考)(1)若m﹣2=+,求n m的值;(2)已知有理数a,b,c在数轴上对应位置如图所示:①用“<”或“>”填空:a+c < 0,b﹣c > 0;②化简:|a+c|﹣+.【分析】(1)利用二次根式有意义的条件得到n﹣3≥0且3﹣n≥0,则n=3,所以m﹣2=0,则m=2,然后利用乘方的意义计算n m;(2)①利用数轴表示数的方法进行判断;②根据二次根式的性质和立方根的定义得到原式|=|a+c|﹣|b﹣c|+b+c,再利用①中的结论去绝对值,然后取括号合并即可.【解答】解:(1)根据题意得n﹣3≥0且3﹣n≥0,解得n=3,∴m﹣2=0,解得m=2,∴n m=32=9;(2)①a+c<0,b﹣c>0;故答案为:<,>;②|a+c|﹣+=|a+c|﹣|b﹣c|+b+c=﹣(a+c)﹣(b﹣c)+b+c=﹣a﹣c﹣b+c+b+c=﹣a+c.23.(2022春•定远县期末)在学习了算术平方根和二次根式等内容后,我们知道以下的结论:结论①:若实数a≥0时,=a;结论②:对于任意实数a,=|a|.请根据上面的结论,对下列问题进行探索:(1)若m<2,化简:+|m﹣3|.(2)若=4,|b|=8,且ab>0,求a+b的值.(3)若A=+|1﹣m|有意义,化简A.【分析】(1)先根据二次根式的性质和绝对值进行计算,再算加减即可;(2)先根据二次根式的性质和绝对值求出a、b的值,再求出a+b的值即可;(3)根据二次根式的性质得出m﹣2≥0,求出m≥2,再进行化简即可.【解答】解:(1)分为两种情况:①当m≤﹣3时,+|m﹣3|.=|m+3|+|m﹣3|=﹣m﹣3﹣m+3=﹣2m,②当﹣3<m<2时,+|m﹣3|=|m+3|+|m﹣3|=m+3+3﹣m=6;(2)∵,∴|a|=4,∴a=±4,∵|b|=8,∴b=±8,∵ab>0,∴a=4,b=8或a=﹣4,b=﹣8,当a=4,b=8时,则a+b=4+8=12,当a=﹣4,b=﹣8时,则a+b=﹣4﹣8=﹣12,∴a+b=±12;(3)∵有意义,∴m﹣2≥0,∴m≥2,∴1﹣m<0,∴A=m﹣2+m﹣1=2m﹣3.24.(2022春•天门校级月考)二次根式的双重非负性是指被开方数a≥0,其化简的结果≥0,利用的双重非负性解决以下问题:(1)已知=0,则a+b的值为 ﹣2 ;(2)若x,y为实数,且x2=+9,求x+y的值;(3)已知实数m,n(n≠0)满足|2m﹣4|+|n+2|++4=2m,求m+n的值.【分析】(1)利用非负数的性质,可求a,b的值,从而求得a+b的值为﹣2;(2)利用二次根式有意义的条件,可得y值,进而求x值,最终得x+y的值;(3)是上两个题目的综合运用,利用(1)(2)可出得m+n的值.【解答】解:(1)∵,且,∴a﹣1=0,且3+b=0,∴a=1,b=﹣3,∴a+b=﹣2.(2)∵,∴y﹣5≥0且5﹣y≥0,∴y≥5且y≤5,∴y=5,∴x2=9,∴x=±3,当x=3时,x+y=3+5=8;当x=﹣3时,x+y=﹣3+5=2.(3)∵|2m﹣4|+|n+2|++4=2m,∴(m﹣3)n2≥0,∴m≥3,∴2m﹣4>0,∴|2m﹣4|+|n+2|++4=2m2m﹣4+|n+2|++4=2m∴|n+2|+=0,∵|n+2|≥0,≥0,∴n+2=0,(m﹣3)n2=0,∴n=﹣2,m=3,∴m+n=3﹣2=1.。

2023年八年级数学期末专题培优训练(二次根式)【含答案】

2023年八年级数学期末专题培优训练(二次根式)【含答案】

2023年八年级数学期末专题培优训练(二次根式)一、选择题(每题2分,共16分)1可化简成 ( )A .一2B .4C .2D 2.下列计算中正确的是()A .B +=3=C .D =3=-3.下列式子一定是二次根式的是 ()A B C D .4.下列各组二次根式中,是同类二次根式的是 ()A B C D .5.下列根式中,是最简二次根式的是 ()A B c D6有意义,那么的取值范围是 ( )x A .≥0 B .≠1C .>0D .≥0且≠1x x x x x7.已知1≤的结果是 ( )a 2- A .B .C .3D . 123a -23a +8.如图所示,将一张边长为8的正方形纸片ABCD 折叠,使点D 落在BC 的中点E 处,点A 落在点F 处,折痕为MN ,则线段MN 的长为 ( )A .10B .C .D .二、填空题(每题2分,共22分)9.函数中,的取值范围是 .y =x10是同类二次根式的是 .11.若=.y =12.已知:△ABC 中,,,则△ABC 的面积等于 .13 .+=14.如果,那么的取值范围是 .1a +=a15.若最简二次根式.x -x =16.若整数满足条件,则的值是 .m 1m =+m 17.实数=a 2-.18,则.0==19.已知为有理数分别表示,a b 、m 、n 7-24amn bn +=则= .2a b +三、解答题(共54分)20.计算:(每题4分,共8分)(1) 293(3)π-⨯+-(2) 2-+÷+21.化简:(每题4分,共12分)(1) ≥3((b 0)>x +0)(3)化简.40,0)a b 〉〉22.(本题6分)已知是正整数,且满足,求的平方根.x 41y x =+-x y +23.(本题6分)先化简,再求值,其中22()a b ab b a a a--÷-1a =+24.(本题6分)若实数在数轴上的位置如图所示,且,a b c 、、a b =化简.a a ++25.(本题8分)已知是△ABC 的三边,化简:a b c 、、.3a b c -+++26.(本题8分)阅读下列材料,然后回答问题:这样的式子,其实我们还可以将其进一步化简:.1=-1(1)(2)+⋅⋅⋅+27.(本题8分)现有一组有规律排列的数:1、-11、-1、……其中,1、- 1这六个数按此规律重复出现.问:(1)第50个数是什么数?(2)把从第1个数开始的前2015个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方加起来,如果和为520,则共有多少个数的平方相加?参考答案一、1.C 2.B 3.C 4.A 5.C 6.D 7.A 8.B二、9.>3 10 11.12.13.一14.≤1 15.2 x 72a16.0 17.1 18. 19.4三、20.(1)4(2)521.(1) (2) (3)-- 22.∵Y 要有意义,∴2一≥0且一1≠0,∴≤2且≠l ,又∵是正整数,x x x x x∴=2,∴.当=2时,,,∴的平方根为.x 4y =6x y +=x y +23·原式,当,时,原式1a b=-1a =1b =24.由图得:,又,∴;原式0,0a b <>a b =0,0,0a b c a c +=-><=2a o c a c -+---2a c a c c =--++=2fff :一口一c+口+2c—f .25.∵a 、b 、C 是△ABC 的三边,∴,,.0a b c --<0a b c -+>0a b c +->∴原式=23a b c a b c a b c----+++-22233364a b c a b c a b c b c=-++-+-++-=-26.(1)方法一:原式=方法二:原式=(2)1-27.(1)∵50682÷= ∴第50个数是-1(2)∵2015÷6=335……5,(1(1)+-++=∴从第1个数开始的前2015(3)∵((2222221(1)12+-++++=,52012434÷= 且()222114+-+=∴ 43×6+3=261,即共有261个数的平方相加。

二次根式培优提高训练

二次根式培优提高训练

《二次根式》培优一、知识讲解1.根式中的相关概念⑴二次根式:形如)0a ≥的代数式叫做二次根式。

⑵ nn 次根式.其中若n 为偶数,则必须满足0a ≥。

⑶最简二次根式:满足以下两个条件的二次根式叫做最简二次根式:①被开方数的因数是整数,因式是整式;②被开方数中不含有能开方的因数或因式。

⑷同类二次根式:几个二次根式化成最简二次根式之后,如果被开方数相同,则这几个根式叫做同类二次根式。

时,a c +=+ 2. 二次根式的性质 (1)()20a a =≥. (200 0 0a a a a a a >⎧⎪===⎨⎪-<⎩当时,当时,当时.3.二次根式的运算法则:对于二次更是的加减,先把二次根式化为最简二次根式,然后再合并同类二次根式即可. (1)(a b =+ (2)0,0a b ≥≥(3))0,0a b =≥> (4))0ma =≥(5)若0a b >>>4. 分母有理化(1)把分母中的根号化去叫做分母有理化.(2)互为有理数因式:两个含有根式的代数式相乘,如果它们的积不含有根式,则这两个代数式互为有理化因式.互为有理数因式。

分母有理化时,一定要保证有理化因式的值不为0.二、习题讲解基础巩固1.化简:(1) (2(3(4)(5(6) 解:(1). (23. (3)(43. (5)232-.(6)2. 设y =,求使y 有意义的x 的取值范围.解:由题知2102010x x x -≥⎧⎪-≥⎨⎪->⎩,解得1221x x x ⎧≥⎪⎪≤⎨⎪>⎪⎩,所以x 的取值范围为122x ≤≤.3.(1)已知最简二次根式ba = ,b = . (2)已知0=,则2mn n +-的倒数的算术平方根为 .解:(1)由题知:2322b a b b a -=⎧⎨=-+⎩,解得02a b =⎧⎨=⎩.(2)因为0≥,2160m -≥0=所以221016040n m m m -+=⎧⎪-=⎨⎪->⎩,解得49m n =-⎧⎨=-⎩.所以15===.所以2mn n +-的倒数的算术平方根为15.4. (1)若m=,试确定m 的值.(2)已知x 、y为实数,13y x =-,求56x y +.解:(1)因为19901990x y x y -+≥⎧⎨--≥⎩,即199199x y x y +≥⎧⎨+≤⎩,所以199x y+=①.所以0=.又因为0≥0≥,所以3520 230 x y m x y m +--=⎧⎨+-=⎩②③.由①,②,③可得:2001m =.5.在、1999有多少个?解:由题知:==19个.6.计算:(1)((1617解:(1)原式((16=⎡⎤⎣⎦()(16=1211-(2)(5+解:原式(()=5555256+-(3)22-解:原式22=⎤⎤+-⎦⎦=⎤⎤+⎦⎦===(4)计算:(1111x x +++解:原式((1111x x ⎡⎤⎡⎤=++-⎣⎦⎣⎦()()()()222311111x x x x x x ⎡⎤=-+-=-++=-⎢⎥⎣⎦(5)(解:原式{}{}⎤⎤⎡⎡=⎦⎦⎣⎣()()523235⎡⎤⎡⎤=--+-⎣⎦⎣⎦=24=.7.化简:=..A. BCD解:()()⎣⎦=⎡⎡+⎣⎣()()222+=-=212==12=+8.计算:.解:原式()()4172x x --=())())417247x x x x --=---)12=-3=-.9.设x =,y =,n 为自然数,如果22219721993x xy y ++=成立,求n的值.解:由题知:()2222197221931993x xy y x y xy ++=++=x y +=22+==42n =+.1xy ==.当x y +==-1xy =时,()224219311993n ++⨯=,即()242900n +=. 因为n 为自然数,所以4230n +=,解得7n =.10. 若正整数a 、m 、n=,则a 、m 、n 的值依次是 . 解:因为0≥0≥,即m n ≥.由题知:22=,即2a m n -=+-所以2a m n =+=.故有8mn=.因为a 、m、n 为正整数,所以8m =,1n =,3a =. 11.(1))))201220112010121412010--+= .解:原式)))20102112142010⎡⎤=--+⎢⎥⎣⎦)2010151242010⎡⎤=+--+⎣⎦2010=.(2)化简:解:原式==3=3=3==3===.二、拓展提高1.已知x=,y=,求22y xx y+的值.解:由题知:原式()()()()()()()2 22332223x y x y xy x y x xy yy xxy xyxy⎡⎤++-+-++⎣⎦===x y+=22+=10=,1xy==. 当10x y+=,1xy=时,原式()22101031⨯-=970=.2.(1)). 5A-1B-. 5C. 1D(2)代数式.解:(1)=)21=2=,==3=-.所以231=+-=,故答案选D.(2)222=+82818=++=因为0≥==3.若1x =,则54322171816x x x x x +--+-的值为 .解:因为1x =,所以()221x -=,化简的22160x x --=.原式543322216216216x x x x x x x x =+---+++-()()222161x x x x =+--+()201x x =⨯-+0=4. 已知非零实数a 、b 满足等式542b a a b ab b a ++=+的值. 解:由542b a a b ab b a++=+可得:22542b a a b ++=+,即()()22120b a -+-=,解得2a =,1b =.所以原式1===.5.22006= 解:令2006x =,由题知: 原式2x =2x =2x =2x =221x x x =+--1200612005x =-=-=.6. 已知2=的值为 .解:令m =n 22210m n m n -=⎧⎨-=⎩. 所以()()()22210x y x y x y x y -=+-=+=5m n =+=.7.化简:.解:原式=-==2==5=.8.计算:⋅⋅⋅+.解:原式==+⋅⋅⋅+4512025=-1145=-4445=.9.⋅⋅⋅+解:原式=37132612=++⋅⋅⋅1111111112233420102011⎛⎫⎛⎫⎛⎫⎛⎫=++++++⋅⋅++⎪ ⎪ ⎪ ⎪⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭⎝⎭1112010122320102011=+++⋅⋅+⨯⨯⨯111112010122320102011=+-+-+⋅⋅+-1201012011=+-201020102011=。

二次根式培优专题(一)

二次根式培优专题(一)

二次根式(g ēnsh ì)培优专题 (一)一、基础知识回顾(hu íg ù)1.二次根式(g ēnsh ì):式子(sh ì zi)(≥0)叫做(ji àozu ò)二次根式。

2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。

3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

4.二次根式的性质: (1)(a ≥0); (2)5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.二、精典考题类型一:考查二次根式的概念(求自变量取值范围)a (a >(a <1、下列(xiàliè)各式中,不是二次根式的是()A .B .C .D .2、二次根式(gēnshì)有意义(yìyì)时的的取值范围(fànwéi)是。

3、已知:,则= 。

类型二:考查二次根式(g ēnshì)的性质(非负性、化简)4、代数式的最大值是。

5、实数在数轴上的位置如图1所示,化简。

(图6、把的根号外的因式移到根号内得;的平方根是。

7、化简:;。

类型三:考查同类二次根式与最简二次根式(化简)8、把,,,按由大到小的顺序排列为:类型四:考查二次根式的运算(加减乘除混合运算、分母有理化)9、若,,则a与b的关系是()A.互为相反数;B.互为倒数;C.互为负倒数;D.以上均不对。

《二次根式》培优试题及答案

《二次根式》培优试题及答案

《二次根式》提高测试(一)判断题:(每小题1分,共5分)1.ab 2)2(-=-2ab .…………………()【提示】2)2(-=|-2|=2.【答案】×.2.3-2的倒数是3+2.( )【提示】231-=4323-+=-(3+2).【答案】×.3.2)1(-x =2)1(-x .…()【提示】2)1(-x =|x -1|,2)1(-x =x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×. 4.ab 、31b a 3、bax 2-是同类二次根式.…( )【提示】31b a 3、ba x 2-化成最简二次根式后再判断.【答案】√. 5.x 8,31,29x +都不是最简二次根式.( )29x +是最简二次根式.【答案】×.(二)填空题:(每小题2分,共20分)6.当x __________时,式子31-x 有意义.【提示】x 何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0且x ≠9. 7.化简-81527102÷31225a =_.【答案】-2aa .【点评】注意除法法则和积的算术平方根性质的运用. 8.a -12-a 的有理化因式是____________.【提示】(a -12-a )(________)=a 2-22)1(-a .a +12-a .【答案】a +12-a . 9.当1<x <4时,|x -4|+122+-x x =________________.【提示】x 2-2x +1=( )2,x -1.当1<x <4时,x -4,x -1是正数还是负数? x -4是负数,x -1是正数.【答案】3.10.方程2(x -1)=x +1的解是____________.【提示】把方程整理成ax =b 的形式后,a 、b 分别是多少?12-,12+.【答案】x =3+22.11.已知a 、b 、c 为正数,d 为负数,化简2222d c ab d c ab +-=______.【提示】22d c =|cd |=-cd .【答案】ab +cd .【点评】∵ ab =2)(ab (ab >0),∴ ab -c 2d 2=(cd ab +)(cd ab -).12.比较大小:-721_________-341.【提示】27=28,43=48.【答案】<.【点评】先比较28,48的大小,再比较281,481的大小,最后比较-281与-481的大小.13.化简:(7-52)2000·(-7-52)2001=______________. 【提示】(-7-52)2001=(-7-52)2000·(_________)[-7-52.] (7-52)·(-7-52)=?[1.]【答案】-7-52. 【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14.若1+x +3-y =0,则(x -1)2+(y +3)2=____________.【答案】40. 【点评】1+x ≥0,3-y ≥0.当1+x +3-y =0时,x +1=0,y -3=0.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________.【提示】∵ 3<11<4,∴_______<8-11<__________.[4,5].由于8-11介于4与5之间,则其整数部分x =?小数部分y =?[x =4,y =4-11]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了. (三)选择题:(每小题3分,共15分)16.已知233x x +=-x 3+x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤0【答案】D . 【点评】本题考查积的算术平方根性质成立的条件,(A )、(C )不正确是因为只考虑了其中一个算术平方根的意义. 17.若x <y <0,则222y xy x +-+222y xy x ++=………………………( )(A )2x (B )2y (C )-2x (D )-2y 【提示】∵ x <y <0,∴ x -y <0,x +y <0.∴222y xy x +-=2)(y x -=|x -y |=y -x .222y xy x ++=2)(y x +=|x +y |=-x -y .【答案】C . 【点评】本题考查二次根式的性质2a =|a |.18.若0<x <1,则4)1(2+-x x -4)1(2-+xx 等于………………………()(A )x 2 (B )-x 2(C )-2x (D )2x【提示】(x -x 1)2+4=(x +x 1)2,(x +x 1)2-4=(x -x 1)2.又∵ 0<x <1,∴ x +x 1>0,x -x1<0.【答案】D .【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注意当0<x <1时,x -x1<0.19.化简aa 3-(a <0)得………………………………………………………………( )(A )a - (B )-a (C )-a - (D )a【提示】3a -=2a a ⋅-=a -·2a =|a |a -=-a a -.【答案】C . 20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………( )(A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a ---【提示】∵ a <0,b <0,∴ -a >0,-b >0.并且-a =2)(a -,-b =2)(b -,ab =))((b a --.【答案】C .【点评】本题考查逆向运用公式2)(a =a (a ≥0)和完全平方公式.注意(A )、(B )不正确是因为a <0,b <0时,a 、b 都没有意义.(四)在实数范围内因式分解:(每小题3分,共6分)21.9x 2-5y 2;【提示】用平方差公式分解,并注意到5y 2=2)5(y .【答案】(3x +5y )(3x -5y ). 22.4x 4-4x 2+1.【提示】先用完全平方公式,再用平方差公式分解.【答案】(2x +1)2(2x -1)2.(五)计算题:(每小题6分,共24分)23.(235+-)(235--); 【提示】将35-看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(35-)2-2)2(=5-215+3-2=6-215.24.1145--7114--732+;【提示】先分别分母有理化,再合并同类二次根式.【解】原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1.25.(a 2m n -m ab mn +m n n m )÷a 2b 2mn; 【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式. 【解】原式=(a 2m n-mab mn +mn n m )·221b a nm=21b n m m n ⋅-mab 1n m m n ⋅+22b ma n n m n m ⋅ =21b -ab 1+221b a =2221ba ab a +-. 26.(a +ba abb +-)÷(b ab a ++a ab b --ab b a +)(a ≠b ). 【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式=b a ab b ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=b a b a ++÷))((2222b a b a ab b a b ab b ab a a -++----=ba b a ++·)())((b a ab b a b a ab +-+-=-b a +.【点评】本题如果先分母有理化,那么计算较烦琐. (六)求值:(每小题7分,共14分)27.已知x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值. 【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值. 【解】∵ x =2323-+=2)23(+=5+26,y =2323+-=2)23(-=5-26.∴x +y =10,x -y =46,xy =52-(26)2=1.32234232y x y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +-=10164⨯=652. 【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷. 28.当x =1-2时,求2222ax x a x x+-++222222ax x x a x x +-+-+221ax +的值.【提示】注意:x 2+a 2=222)(a x +,∴ x 2+a 2-x22a x +=22a x +(22a x +-x ),x 2-x22a x +=-x (22a x +-x ).【解】原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+-=)()(22222222222222x a x a x x x a x x a x a x x x -++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++=x1.当x =1-2时,原式=211-=-1-2.【点评】本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)11(2222a x x a x +--+-)11(22x x a x --++221a x +=x1. 七、解答题:(每小题8分,共16分)29.计算(25+1)(211++321++431++…+100991+).【提示】先将每个部分分母有理化后,再计算. 【解】原式=(25+1)(1212--+2323--+3434--+…+9910099100--)=(25+1)[(12-)+(23-)+(34-)+…+(99100-)] =(25+1)(1100-) =9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法. 30.若x ,y 为实数,且y =x 41-+14-x +21.求xy y x ++2-xyy x +-2的值.【提示】要使y 有意义,必须满足什么条件?].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗?].2141[⎪⎪⎩⎪⎪⎨⎧==y x 【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴ x =41.当x =41时,y =21.又∵x y y x ++2-xyy x +-2=2)(x y y x +-2)(xy y x -=|xy y x +|-|xy y x -|∵ x =41,y =21,∴ y x <x y .∴ 原式=x y y x+-y x xy+=2yx 当x =41,y =21时,原式=22141=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.。

《二次根式》培优试题及答案精编版

《二次根式》培优试题及答案精编版

《二次根式》提高测试(一)判断题:(每小题1分,共5分)1.ab 2)2(-=-2ab .…………………()【提示】2)2(-=|-2|=2.【答案】×.2.3-2的倒数是3+2.()【提示】231-=4323-+=-(3+2).【答案】×.3.2)1(-x =2)1(-x .…()【提示】2)1(-x =|x -1|,2)1(-x =x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×. 4.ab 、31b a 3、ba x 2-是同类二次根式.…( )【提示】31b a 3、ba x 2-化成最简二次根式后再判断.【答案】√. 5.x 8,31,29x +都不是最简二次根式.( )29x +是最简二次根式.【答案】×.(二)填空题:(每小题2分,共20分)6.当x __________时,式子31-x 有意义.【提示】x 何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0且x ≠9. 7.化简-81527102÷31225a =_.【答案】-2aa .【点评】注意除法法则和积的算术平方根性质的运用. 8.a -12-a 的有理化因式是____________.【提示】(a -12-a )(________)=a 2-22)1(-a .a +12-a .【答案】a +12-a . 9.当1<x <4时,|x -4|+122+-x x =________________.【提示】x 2-2x +1=( )2,x -1.当1<x <4时,x -4,x -1是正数还是负数? x -4是负数,x -1是正数.【答案】3.10.方程2(x -1)=x +1的解是____________.【提示】把方程整理成ax =b 的形式后,a 、b 分别是多少?12-,12+.【答案】x =3+22.11.已知a 、b 、c 为正数,d 为负数,化简2222d c ab d c ab +-=______.【提示】22d c =|cd |=-cd .【答案】ab +cd .【点评】∵ ab =2)(ab (ab >0),∴ ab -c 2d 2=(cd ab +)(cd ab -).12.比较大小:-721_________-341.【提示】27=28,43=48.【答案】<.【点评】先比较28,48的大小,再比较281,481的大小,最后比较-281与-481的大小.13.化简:(7-52)2000·(-7-52)2001=______________.【提示】(-7-52)2001=(-7-52)2000·(_________)[-7-52.] (7-52)·(-7-52)=?[1.]【答案】-7-52.【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14.若1+x +3-y =0,则(x -1)2+(y +3)2=____________.【答案】40. 【点评】1+x ≥0,3-y ≥0.当1+x +3-y =0时,x +1=0,y -3=0.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________.【提示】∵ 3<11<4,∴_______<8-11<__________.[4,5].由于8-11介于4与5之间,则其整数部分x =?小数部分y =?[x =4,y =4-11]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了. (三)选择题:(每小题3分,共15分)16.已知233x x +=-x 3+x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤0【答案】D . 【点评】本题考查积的算术平方根性质成立的条件,(A )、(C )不正确是因为只考虑了其中一个算术平方根的意义. 17.若x <y <0,则222y xy x +-+222y xy x ++=………………………( )(A )2x (B )2y (C )-2x (D )-2y 【提示】∵ x <y <0,∴ x -y <0,x +y <0.∴222y xy x +-=2)(y x -=|x -y |=y -x .222y xy x ++=2)(y x +=|x +y |=-x -y .【答案】C . 【点评】本题考查二次根式的性质2a =|a |.18.若0<x <1,则4)1(2+-x x -4)1(2-+xx 等于………………………()(A )x 2 (B )-x 2(C )-2x (D )2x【提示】(x -x 1)2+4=(x +x 1)2,(x +x 1)2-4=(x -x 1)2.又∵ 0<x <1,∴ x +x 1>0,x -x1<0.【答案】D .【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注意当0<x <1时,x -x1<0. 19.化简aa 3-(a <0)得………………………………………………………………()(A )a - (B )-a (C )-a - (D )a【提示】3a -=2a a ⋅-=a -·2a =|a |a -=-a a -.【答案】C . 20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………( )(A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a ---【提示】∵ a <0,b <0,∴ -a >0,-b >0.并且-a =2)(a -,-b =2)(b -,ab =))((b a --.【答案】C .【点评】本题考查逆向运用公式2)(a =a (a ≥0)和完全平方公式.注意(A )、(B )不正确是因为a <0,b <0时,a 、b 都没有意义. (四)在实数范围内因式分解:(每小题3分,共6分)21.9x 2-5y 2;【提示】用平方差公式分解,并注意到5y 2=2)5(y .【答案】(3x +5y )(3x -5y ).22.4x 4-4x 2+1.【提示】先用完全平方公式,再用平方差公式分解.【答案】(2x +1)2(2x -1)2.(五)计算题:(每小题6分,共24分)23.(235+-)(235--);【提示】将35-看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(35-)2-2)2(=5-215+3-2=6-215.24.1145--7114--732+;【提示】先分别分母有理化,再合并同类二次根式.【解】原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1.25.(a 2m n -m ab mn +m n nm)÷a 2b 2m n ;【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式. 【解】原式=(a 2mn-m ab mn +m n n m )·221ba n m=21bn m m n ⋅-mab 1n m mn ⋅+22b ma n n m n m ⋅ =21b-ab 1+221b a =2221b a ab a +-. 26.(a +ba abb +-)÷(b ab a ++a ab b --ab b a +)(a ≠b ).【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式=ba ab b ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=b a ba ++÷))((2222b a b a ab b a b ab b ab a a -++----=ba b a ++·)())((b a ab b a b a ab +-+-=-b a +.【点评】本题如果先分母有理化,那么计算较烦琐. (六)求值:(每小题7分,共14分)27.已知x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值.【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值. 【解】∵ x =2323-+=2)23(+=5+26,y =2323+-=2)23(-=5-26.∴x +y =10,x -y =46,xy =52-(26)2=1.32234232y x y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy yx +-=10164⨯=652. 【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷. 28.当x =1-2时,求2222ax x a x x+-++222222ax x x a x x +-+-+221ax +的值.【提示】注意:x 2+a 2=222)(a x +,∴ x 2+a 2-x22a x +=22a x +(22a x +-x ),x 2-x22a x +=-x (22a x +-x ).【解】原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+-=)()(22222222222222x a x a x x x a x x a x a x x x -++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++=x 1.当x =1-2时,原式=211-=-1-2.【点评】本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)11(2222a x x a x +--+-)11(22x x a x --++221a x +=x1.七、解答题:(每小题8分,共16分)29.计算(25+1)(211++321++431++…+100991+).【提示】先将每个部分分母有理化后,再计算. 【解】原式=(25+1)(1212--+2323--+3434--+…+9910099100--)=(25+1)[(12-)+(23-)+(34-)+…+(99100-)]=(25+1)(1100-)=9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法. 30.若x ,y 为实数,且y =x 41-+14-x +21.求xy y x ++2-xyy x +-2的值.【提示】要使y 有意义,必须满足什么条件?].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗?].2141[⎪⎪⎩⎪⎪⎨⎧==y x 【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴ x =41.当x =41时,y =21.又∵x y y x ++2-xyy x +-2=2)(x y y x +-2)(xy y x - =|xy yx +|-|x y y x -|∵ x =41,y =21,∴yx<xy .∴ 原式=x y y x +-y x xy+=2yx 当x =41,y =21时,原式=22141=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.。

八年级数学二次根式提高培优

八年级数学二次根式提高培优

学习资料收集于网络,仅供学习和参考,如有侵权,请联系网站删除二次根式典型习题训练一、概念(一)二次根式下列式子,哪些是二次根式,哪些不是二次根式114303x222yx? 0).0、,、-y、、、、x>0()?、≥(、x≥yx?x(二)最简二次根式x(y>0)化为最简二次根式结果是(.把二次根式).1y xyx xy.(y>0) C D.以上都不对(y>0)AB..)(y>0yy242x?xy=_________.(x2≥.化简0)a?1?化简二次根式号后的结果是_________.3.a2a?yx?xy的正确结果为4._________0已知.,化简二次根式2x(三)同类二次根式22327122是同类二次根式的是(①;④②)中,;与③.;1.以下二次根式:3A.①和②B.②和③C.①和④D.③和④122138125a30.2a9a75a3是同类二次-2、、2、.在、、、3中,与3a38根式的有______ (四)“分母有理化”与“有理化因式”32y的有理化因式是_________x-.的有理化因式是________;1. +1x?1x?的有理化因式是_______ --.2.把下列各式的分母有理化112?4233)4.(3);(;)()(1 ;25?11?2324?332?6学习资料.学习资料收集于网络,仅供学习和参考,如有侵权,请联系网站删除二、二次根式有意义的条件:3x?1在实数范围内有意义?是多少时,当x 1.(1)13?2x在实数范围内有意义?(2)当x是多少时,+x?12x?32+x在实数范围内有意义?是多少时,3)当x (x__________x?x?2?12有意义。

当时,(4)25)x??( 2.)个.使式子x有(有意义的未知数 3. .无数2 .A .0 B1 C. D x2x?x2?的值.+ 3.已知+5y=,求y?23xx3??x=_______有意义,则+.4.若1??m有意义,则的取值范围是若。

八年级数学上----二次根式培优练习题

八年级数学上----二次根式培优练习题

八年级数学上--——二次根式培优练习题1、二次根式:1。

有意义的条件是 。

2. 当__________3. 11m +有意义,则m 的取值范围是 .4. 当__________x 是二次根式。

5。

2x =,则x 的取值范围是 。

6. 若1a b -+互为相反数,则()2005_____________a b -=。

7。

2x =-,则x 的取值范围是 .8. )1x 的结果是 。

9. 当15x ≤5_____________x -=。

10. 把的根号外的因式移到根号内等于 。

11. 11x =+成立的条件是 。

12. )()()230,2,12,20,3,1,x y y x xx x y +=--++中,二次根式有( ) A. 2个 B 。

3个 C. 4个 D. 5个13、 下列各式一定是二次根式的是(。

14、 若23a ,则-)A 。

52a -B 。

12a -C 。

25a -D 。

21a -15。

若A ==( )A 。

24a + B. 22a + C 。

()222a + D 。

()224a +16、 若1a ≤ )A 。

(1a -B. (1a -C. (1a - D 。

(1a -17. =x 的取值范围是( ) A. 2x ≠ B 。

0x ≥ C 。

2xD. 2x ≥18)A. 0B. 42a- C. 24a- D. 24a-或42a-19. 下面的推导中开始出错的步骤是()A。

()1 B. ()2 C。

()3 D. ()4()()()()231233224==-==∴=-∴=-202440y y-+=,则xy= 。

21. 当a取值时,代数式1取值最小,并求出这个最小值是。

22。

去掉下列各根式内的分母:())10x())21x23。

已知2310x x-+=,.24。

已知,a b(10b-=,求20052006a b-的值。

2 、二次根式的乘除:1。

当0a ≤,0b时__________=。

人教版初二数学8年级下册 第16章(二次根式)经典好题培优提升训练(附答案)

人教版初二数学8年级下册 第16章(二次根式)经典好题培优提升训练(附答案)

人教版八年级数学下册第16章二次根式经典好题培优提升训练(附答案)1.下列计算正确的是( )A.=B.=×C.4=3D.=2.下列各数:﹣3.141592,﹣,﹣0.16,,﹣π,0.1010010001…,,,﹣0.,是无理数的有( )个.A.5B.3C.4D.23.下列二次根式中属于最简二次根式的是( )A.B.C.D.4.已知a=+2,b=﹣2,则a2+b2的值为( )A.4B.14C.D.14+45.若化成最简二次根式后,能与合并,则a的值不可以是( )A.B.8C.18D.286.我们把形如a+b(a,b为有理数,为最简二次根式)的数叫做型无理数,如3+1是型无理数,则()2是( )A.型无理数B.型无理数C.型无理数D.型无理数7.已知是正整数,则实数n的最小值是( )A.3B.2C.1D.8.实数5不能写成的形式是( )A.B.C.D.9.化简,结果是( )A.6x﹣6B.﹣6x+6C.﹣4D.410.当,分式的结果为a,则 )A.a>1B.C.D.11.当代数式有意义时,x应满足的条件 .12.若a≤0,化简|a﹣|的结果是 .13.把中根号外的(a﹣1)移入根号内得 .14.当a>0时,化简的结果是 .15.若=3a﹣1,则a的取值范围是 .16.计算:2×= .17.把二次根式化为最简二次根式是 .18.计算:(﹣+)(+﹣)= .19.实数a,b在数轴上的位置如图所示,则化简|a﹣b|﹣﹣= .20.已知|a|=6,=10,且|a﹣b|=b﹣a,则= .21.计算:(1)9÷×;(2)++﹣+;(3)(﹣+)•;(4)2a﹣﹣6ab(b≥0).22.已知x+y=﹣6,xy=3,求+的值.洪庆同学的解答过程如下解:+=+=+=(+)=∵x+y=﹣6,xy=3,∴原式=﹣2你认为洪庆同学的解答过程完全正确吗?如果你认为不完全正确,请你写出你的正确解答过程.23.对于“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答是:+=+=+﹣a=﹣a=;乙的解答是:+=+=+a﹣=a=.(1) 的解答是错误的;(2)错误的解答在于未能正确运用二次根式的性质: .(3)化简并求值:|1﹣a|+,其中a=2.24.计算:(1)÷3×(﹣5)(2)5x÷3×(3)5•(﹣)÷3.25.老师在黑板上写出下面的一道题:已知=a,=b,用含a,b的代数式表示.两位在黑板上分别板书了自己的解答:同学甲:====.同学乙:====×=×=.(1)你认为两位同学的解答都正确吗?(2)同学并得出的结果为.老师说是正确的,你知道丙是怎样做的吗?请你写出丙的解答过程.26.阅读材料,回答问题:化简:===﹣1;化简::====.(1)以上化简过程运用了哪个乘法公式?(2)依照上述化简方法化简;(3)计算:+++…+的值.参考答案1.解:A、+,无法计算,故此选项错误;B、=×,故此选项错误;C、4﹣=3,故此选项错误;D、•=,故此选项正确.故选:D.2.解:﹣3.141592,﹣,﹣0.16,=10,﹣π,0.1010010001…,,,﹣0.,=2是无理数的有:﹣,﹣π,0.1010010001…,,共5个.故选:A.3.解:A、=4,不是最简二次根式,不符合题意;B、=2x,不是最简二次根式,不符合题意;C、=,不是最简二次根式,不符合题意;D、是最简二次根式,符合题意;故选:D.4.解:∵a=+2,b=﹣2,∴a+b=(+2+﹣2)=2,ab=(+2)(﹣2)=﹣1,∴a2+b2=(a+b)2﹣2ab=(2)2﹣2×(﹣1)=14,故选:B.5.解:A、=,能与合并,a的值可以是,本选项不符合题意;B、==2,能与合并,a的值可以是8,本选项不符合题意;C、==3,能与合并,a的值可以是18,本选项不符合题意;D、==2,不能与合并,a的值不可以是28,本选项符合题意;故选:D.6.解:()2=2++10=,所以()2是型无理数,故选:C.7.解:是正整数,则实数n的最小值为.故选:D.8.解:A、=5,B、=5,C、()2=5,D、﹣=﹣5,故选:D.9.解:由二次根式的非负性及被开方数的非负性可得:3x﹣5≥0∴x≥∴1﹣3x<0∴=﹣(3x﹣5)=3x﹣1﹣3x+5=4故选:D.10.解:+=+==,当x=+1时,原式===,即a=,∵<<1,∴<a<1,故选:B.11.解:∵代数式有意义,∴4﹣x≥0,x2﹣1≠0,解得,x≤4且x≠±1,故答案为:x≤4且x≠±1.12.解:|a﹣|=|a﹣|a||∵a≤0,∴原式=|a+a|=|2a|=﹣2a,故答案为:﹣2a.13.解:∵﹣>0,∴a<1,∴a﹣1<0,∴=﹣(1﹣a)=﹣•=﹣=﹣.故答案是:﹣14.解:∵a>0时,∴b≤0∴=﹣ab.故答案为:﹣ab.15.解:∵=3a﹣1,∴3a﹣1≥0.∴a.故答案为:a.16.解:2×=3=15.故答案为:15.17.解:=﹣a,故答案为:﹣a.18.解:原式=[﹣(﹣)][+(﹣)]=()2﹣(﹣)2=2﹣5+10﹣10=10﹣13,故答案为:10﹣13.19.解:由数轴可知,a<0<b,∴a﹣b<0,∴|a﹣b|﹣﹣=b﹣a﹣b+a+a=a,故答案为:a.20.解:∵|a|=6,∴a=±6,∵=10,∴b=±10,∵|a﹣b|=b﹣a,∴a≤b,当a=﹣6,b=10时,=2,当a=6,b=10时,=4,故答案为:2或4.21.解:(1)=÷×,=××,=;(2)==;(3)===16;(4)=2ab=.22.解:不正确.∵x+y=﹣6,xy=3,∴x<0,y<0,∴+=﹣﹣=﹣(+)=﹣==2.23.解:(1)乙的解答是错误的,故答案为:乙.(2)错误的解答在于未能正确运用二次根式的性质:=|a|,故答案为:=|a|.(3)∵a=2,∴|1﹣a|+=a﹣1+4a﹣1=5a﹣2=8.24.解:(1)÷3×(﹣5)=××(﹣)=﹣;(2)5x÷3×=5x÷×=5x××=;(3)5•(﹣)÷3=﹣×=﹣a2b.25.解:(1)这两位同学解答的都正确;(2)丙同学的过程是:=7=.26.解:(1)化简过程运用了平方差公式;(2)====﹣;(3)+++…+=﹣1+﹣+2﹣+…+10﹣3=10﹣1=9.。

八年级数学二次根式培优专题

八年级数学二次根式培优专题

第 1 页 共 2 页《二次根式》培优习题训练【知识要点】 1.二次根式的定义:形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义. 2. ()()a aa 20=≥. 3. 公式a a a a a a 200==≥-<⎧⎨⎩||()()与()()a aa 20=≥的区别与联系. (1)a 2表示求一个数的平方的算术根,a 的范围是一切实数.(2)()a 2表示一个数的算术平方根的平方,a 的范围是非负数. (3)a 2和()a 2的运算结果都是非负的. 4、性质:(1)非负性:a a ()≥0是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到. (2).()()a aa 20=≥.注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完 全平方的形式:a a a =≥()()2(3) a a a aa a 200==≥-<⎧⎨⎩||()() 注意:(1)字母不一定是正数.(2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替. (3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外. 5、(1)最简二次根式:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或因式; 分母中不含根号.(2)同类二次根式(可合并根式): 几个二次根式化成最简二次根式后,如果被开方数相同, 这几个二次根式就叫做同类二次根式,即可以合并的两个根式。

6、(1)分母有理化:把分母中的根号化去,叫做分母有理化。

(2)有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。

有 理化因式确定方法如下: ①单项二次根式:利用a =来确定,如:,b a -与b a -等分别互为有理化因式。

②两项二次根式:利用平方差公式来确定。

如a +与a,(3)分母有理化的方法与步骤:①先将分子、分母化成最简二次根式; ②将分子、分母都乘以分母的有理化因式,使分母中不含根式;③最后结果必须化成最简二次根式或有理式 7、二次根式的运算: (1)二次根式的乘法法则:两个因式的算术平方根的积, 等于这两个因式积的算术平方根。

二次根式提高培优(完整资料).doc

二次根式提高培优(完整资料).doc

【最新整理,下载后即可编辑】二次根式典型习题训练一、概念(一)二次根式1x、x>0)1x y+(x≥0,y•≥0).(二)最简二次根式1y>0)化为最简二次根式结果是().A(y>0)By>0)C(y>0)D2.(x≥0)3._________.4. 已知〉xy0,化简二次根式_________.(三)同类二次根式1是同类二次根式的是().A.①和②B.②和③C.①和④D.③和④2、是同类二次根式的有______3.若最简根式3a是同类二次根式,求a、b的值.【最新整理,下载后即可编辑】4.n是同类二次根式,求m、n的值.(四)“分母有理化”与“有理化因式”1.+的有理化因式是________;x-的有理化因式是_________.-的有理化因式是_______.2.把下列各式的分母有理化(1;(2;(3(4.二、二次根式有意义的条件:1.(1)当x在实数范围内有意义?(2)当x是多少时,+11x+在实数范围内有意义?(3)当x2在实数范围内有意义?(4)当__________2.x有()个.A.0 B.1 C.2 D.无数3.已知,求xy的值.4.5.若11m +有意义,则m 的取值范围是 。

6.要是下列式子有意义求字母的取值范围(1(2) (3)三、二次根式的非负数性1=0,求a 2004+b 2004的值.2,求x y 的3.2440y y -+=,求xy 的值。

四、⎪⎩⎪⎨⎧==a a a 2 的应用 1. a ≥0,比较它们的结果,下面四个选项中正确的是( ).A B C D .2.先化简再求值:当a=9时,求a ≥0x解答如下:甲的解答为:原式(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.3.若│1995-a│,求a-19952的值.4. 若-3≤x≤2时,试化简│x-2│5.化简).B C.D.A6.把(a-1a-1)移入根号内得().AB C.D.五、求值问题:求x2-xy+y2的值1.当x=2.已知a=3+23.已知4.已知4x 2+y 2-4x-6y+10=0,求(23+y -(x 的值.52.236-()的值.(结果精确到0.01)6.先化简,再求值.(-(,其中x=32,y=27.7.当(结果用最简二次根式表示)8. 已知2310-+=x x六、大小的比较的大小。

部编数学八年级下册二次根式的求值问题大题提升训练(重难点培优30题)【拔尖特训】2023年培优含答案

部编数学八年级下册二次根式的求值问题大题提升训练(重难点培优30题)【拔尖特训】2023年培优含答案

【拔尖特训】2022-2023学年八年级数学下册尖子生培优必刷题【人教版】专题16.5二次根式的求值问题大题提升训练(重难点培优30题)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一.解答题(共30小题)1.(2022春•灵宝市月考)若a=,b=,求下列代数式的值.(1)a2b+ab2;(2)a2﹣ab+b2.【分析】(1)根据二次根式的加法法则、减法法则分别求出ab,a+b,再根据平方差公式计算;(2)根据完全平方公式计算.【解答】解:∵a=,b=,∴ab))=4,a+b)+)=(1)a2b+ab2=ab(a+b)=4×=(2)a2﹣ab+b2=(a+b)2﹣3ab=(2﹣12=20﹣12=8.2.(2022秋•龙岗区期中)已知a=2b=2(1)填空:a+b= 4 ,ab= ﹣2 ;(2)求a2﹣3ab+b2+(a+1)(b+1)的值.【分析】(1)根据二次根式的加法法则、乘法法则计算即可;(2)根据完全平方公式、多项式乘多项式的运算法则把原式变形,代入计算,得到答案.【解答】解:(1)∵a=2+b=2∴a+b=(2+(24,ab=(2(24﹣6=﹣2,故答案为:4;﹣2;(2)a2﹣3ab+b2+(a+1)(b+1)=a2﹣3ab+b2+ab+a+b+1=a2+2ab+b2﹣4ab+a+b+1=(a+b)2﹣4ab+a+b+1=42﹣4×(﹣2)+4+1=16+8+4+1=29.3.(2022秋•宁德期中)已知:x=y=(1)填空:|x﹣y|= (2)求代数式x2+y2﹣2xy的值.【分析】(1)根据二次根式的减法运算法则计算即可.(2)将代数式转化为(x﹣y)2,再分别求出x﹣y和xy的值,进而可得答案.【解答】解:(1)|x﹣y|=||=+=故答案为:(2)x2+y2﹣5xy=(x﹣y)2,∵x﹣y=∴(x﹣y)2﹣3xy=(2=8.即代数式x2+y2﹣2xy的值为8.4.(2022秋•三水区期中)(1)计算(直接写结果):(3+2=2=(2)把4+a+b)2的形式为 (1+(3)已知a,求代数式a2+2a+3的值.【分析】(1)用完全平方公式展开,再合并即可;(2)用完全平方公式可得答案;(3)将已知变形,可得a2+2a+1=7,从而可得答案.【解答】解:(1)(32=+2=(12=1﹣+5=6﹣故答案为:6﹣(2)+2=(1+2,故答案为:(1+2;(3)∵a=1,∴a+1=∴a2+2a+1=7,∴a2+2a+3=9.5.(2022秋•重庆期中)(1+⋯+(2)已知:a=a2+5a−1a的值.【分析】(1)先分母有理化,再相加合并同类二次根式;(2)将a的值分母有理化后代入计算即可.【解答】解:(1)原式=++...+(2)∵a2,∴a2+5a−1 a2)2+52)−1=5﹣10+2)=5﹣102=﹣3.6.(2022秋•济南期中)已知x 2,y=2.(1)对x,y进行化简;(2)求x2+xy+y2的值.【分析】(1)利用分母有理化即可;(2)先计算出x +y =xy =2,再根据完全平方公式得到x 2+xy +y 2=(x +y )2﹣xy ,然后利用整体代入的方法计算.【解答】解:(1)x =2=1,y =2=+1;(2)∵x =1,y =1,∴x +y =xy =3﹣1=2,∴x 2+xy +y 2=(x +y )2﹣xy =(2﹣2=10.7.(2022秋•x =5,y =15.【分析】利用二次根式的相应的法则进行化简,再代入相应的值运算即可.【解答】解:x−y==当x =5,y =15时,原式==8.(2022秋•锦江区校级月考)已知x =2y =2+(1)求xy 2﹣x 2y 的值;(2)若x 的小数部分是a ,y 的整数部分是b ,求ax +by 的值.【分析】(1)利用提公因式法,进行计算即可解答;(2)先估算出22+a ,b 的值,然后代入式子中进行计算即可解答.【解答】解:(1)∵x =2y =2+∴xy =(2(2+4﹣3=1,y ﹣x =2+(222+=∴xy 2﹣x 2y=xy(y﹣x)=1×=(2)∵1<3<4,∴12,∴3<2+4,∴23,∴b=3,∵12,∴﹣2<−1,∴0<21,∴20,小数部分=20=2∴a=2∴ax+by=(2(2+3(2=7﹣=13∴ax+by的值为139.(2022秋•皇姑区校级期中)阅读理解:已知x=1,求代数式x2﹣2x﹣5的值.王红的做法是:根据x+1得(x﹣1)2=2,∴x2﹣2x+1=2,得:x2﹣2x=1.把x2﹣2x作为整体代入:得x2﹣2x﹣5=1﹣5=﹣4.即:把已知条件适当变形,再整体代入解决问题.请你用上述方法解决下面问题:(1)已知x2,求代数式x2+4x﹣5的值;(2)已知x x3+x2+1的值.【分析】(1)仿照阅读材料解答即可;(2)把已知变形可得x2+x=1,代入即可求出答案.【解答】解:(1)∵x2,∴x+2=∴(x+2)22,∴x 2+4x =﹣1,∴x 2+4x ﹣5=﹣6;(2)∵x =2,∴2x +1=∴(2x +1)22,变形整理得:x 2+x =1,∴x 3+x 2+1=x (x 2+x )+1=x +1110.(2022秋•嘉定区月考)已知m =1,n =1,求m 2﹣mn +n 2的值.【分析】先根据分母有理化化简m 与n 的值,然后利用配方法即可求出答案.【解答】解:由题意可知:m ==2n ==2,∴m +n =﹣mn =(2(2)=﹣1,∴原式=(m +n )2﹣3mn=12﹣3×(﹣1)=15.11.(2022秋•虹口区校级期中)已知a +b =﹣4,ab =1,求:【分析】根据题意确定a 、b 的符号,根据二次根式的性质、完全平方公式把原式变形,代入计算即可.【解答】解:∵a +b =﹣4,ab =1,∴a <0,b <0,则原式=﹣a b =(a b +b a)==•(a b)2−2abab=﹣1×(−4)2−21=﹣14.12.(2022春•彭州市校级月考)已知x=y (1)xy;(2)x2+3xy+y2.【分析】(1)利用平方差公式进行运算即可;(2)利用完全平方公式及平方差公式进行运算即可.【解答】解:(1)xy=11=1 7−5=1 2;(2)x2+3xy+y2=(x+y)2+xy=(11)2+122+1 22+12=7+12=712.13.(2022秋•海淀区校级期末)已知x=y x2+3xy+y2的值.【分析】把所求的式子变形成(x+y)2+xy的形式,然后代入数值计算即可.【解答】解:原式=(x+y)2+xy,当x=y=原式=(2+=12+3﹣2=14.14.(2022秋•嘉定区校级月考)已知x =1,求代数式1x −x 2−5x 4的值.【分析】利用分母有理化把x 的值化简,根据分式的混合运算法则把原式化简,代入计算即可.【解答】解:x =1=2+4,∴原式=1x −=1x+x−4(x−4)(x−1) =1x +1x−1=2+=2+15.(2022秋•武侯区校级月考)已知a =b (1)a 2﹣ab +b 2;(2)b a+a b .【分析】利用分母有理化把a 、b 化简,根据二次根式的加法法则求出a +b ,根据二次根式的乘法法则求出ab ;(1)根据完全平方公式把原式变形,代入计算即可;(2)根据分式的加法法则、完全平方公式把原式变形,代入计算,得到答案.【解答】解:a ===3﹣b ==则a +b =3﹣+6,ab =(3﹣(1,(1)a 2﹣ab +b 2=(a +b )2﹣3ab=36﹣3=33;(2)b a +a b =a 2b 2ab =(a b )2−2ab ab=34.16.(2022秋•安溪县校级月考)已知x =1,y =1.①化简x 和y .②求代数式x 2y +xy 2的值.【分析】①利用分母有理化化简x 和y ;②先计算出x +y 与xy 的值,再利用因式分解法得到x 2y +xy 2=xy (x +y ),然后利用整体代入的方法计算.【解答】解:①x ==2y =12②∵x +y =4,xy =4﹣3=1,∴x 2y +xy 2=xy (x +y )=1×4=4.17.(2022秋•杏花岭区校级月考)小明在解决问题:已知a =1.求2a 2﹣8a +1的值,他是这样分析与解的:∵a =12a ﹣2=∴(a ﹣2)2=3,a 2﹣4a +4=3∴a 2﹣4a =﹣1∴2a 2﹣8a +1=2(a 2﹣4a )+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1)化简111⋯(2(填“>”或“<”)(3)A 题:若a =+1,则a 2﹣2a +3= 4 .B 题:若a 1,则4a 2﹣+7= 5 .【分析】(1)根据分母有理化的方法化简即可;(2(3)A 题:由a =+1,可得a ﹣1=(a ﹣1)2=2,从而可得a 2﹣2a =1,进一步求解即可;B 题:由a =1,可得a 2a 1,两边同时作平方,可得4a 2=−2,进一步求解即可.【解答】解:(1⋯=+⋯==;(2)1=故答案为:>;(3)A 题:∵a =1,∴a ﹣1=∴(a ﹣1)2=2,即a 2﹣2a +1=2,∴a 2﹣2a =1,∴a 2﹣2a +3=4,故答案为:4;B 题:∵a 1,∴a∴2a 1,∴2=1,即4a 2+3=1,∴4a 2=−2,∴4a 2﹣+7=5,故答案为:5.18.(2022秋•榆树市月考)已知a =4﹣b =(1)求ab ,a ﹣b 的值;(2)求2a 2+2b 2﹣a 2b +ab 2的值.【分析】(1)根据二次根式的乘法法则和二次根式的减法法则求出即可;(2)先分解因式得出原式=2[(a ﹣b )2+2ab ]﹣ab (a ﹣b ),代入后根据二次根式的运算法则进行计算即可.【解答】解:(1)∵a=4﹣b=∴ab=(4﹣×(=42﹣(2=16﹣12=4;a﹣b=(4﹣=4﹣4﹣=﹣(2)由(1)知:ab=4,a﹣b=﹣所以2a2+2b2﹣a2b+ab2=2(a2+b2)﹣ab(a﹣b)=2[(a﹣b)2+2ab]﹣ab(a﹣b)=2×[(﹣2+2×4]﹣4×(﹣=2×(48+8)=2×=19.(2022秋•沈阳月考)已知:x=y=(1)填空:|x﹣y|= 2(2)求代数式x2+y2﹣5xy的值.【分析】(1)根据二次根式的减法运算法则计算即可.(2)将代数式转化为(x﹣y)2﹣3xy,再分别求出x﹣y和xy的值,进而可得答案.【解答】解:(1)|x﹣y|=||=+=故答案为:(2)x2+y2﹣5xy=(x﹣y)2﹣3xy,∵x﹣y=xy×3﹣2=1,∴(x﹣y)2﹣3xy=(2−3×1=8﹣3=5.即代数式x2+y2﹣5xy的值为5.20.(2021秋•苏州期中)已知x=y(1)x2﹣y2;(2)x2﹣2xy+y2.【分析】(1)将x、y的值代入到原式=(x+y)(x﹣y)计算即可;(2)将x、y的值代入到原式=(x﹣y)2计算即可.【解答】解:(1)当x y=原式=(x+y)(x﹣y)×=2×(1=2﹣(2)当x=y原式=(x﹣y)22=(12=1﹣2=3﹣21.(2022春•阳新县期末)计算:(1)(2+22﹣;(2)化简求值:已知a=1,求a2−a−a28a16a4的值.【分析】(1)利用完全平方公式和二次根式的乘法法则运算;(2)先利用完全平方公式和二次根式的性质化简得到原式=a(a−1)|a−1|−(a+4),再利用a的值去绝对值,然后合并即可.【解答】解:(1)原式=2﹣12=18;(2)原式a=a(a−1)|a−1|−(a+4),∵a1,∴a﹣1=2>0,∴原式=a(a−1)(a−1)−a﹣4=a﹣a﹣4=﹣4.22.(2021秋•洛宁县月考)学习了二次根式的乘除后,李老师给同学们出了这样一道题:已知a,解:原式=a−1(a1)(a−1)=1a1.当a时,原式11=李老师看了之后说:小明错误地运用了二次根式的性质,请你指出小明错误地运用了二次根式的哪条性质,并写出正确的解题过程.|a|这条性质;利用a=1得到a﹣1<0,则原式=−(a−1)(a1)(a−1),约分得到原式=−1a1,然后把a的值代入计算即可.|a|这条性质;正确解法为:原式=|a−1|(a1)(a−1),∵a1,∴a﹣1<0,∴原式=−(a−1) (a1)(a−1)=−1 a1=−11=23.(2019春•番禺区月考)已知x=+1,y=1,求下列各式的值:(1)x2+2xy+y2,(2)yx−xy【分析】(1)将所求式子因式分解得到x 2+2xy +y 2=(x +y )2,再将已知代入即可;(2)化简所求式子得到y x −x y =(y x)(y−x)xy,再将已知代入.【解答】解:(1)∵x +1,y 1,∴x 2+2xy +y 2=(x +y )211)2=(2=12;(2)y x −x y =y 2−x 2xy =(y x)(y−x)xy ==−24.(2021春•江汉区期中)(1)已知x =2,y =2,求下列各式的值:①1x+1y ;②x 2﹣xy +y 2;(2+=8【分析】(1)①根据x =+2,y =2,可以得到xy 、x +y 的值,然后即可求得所求式子的值;②将所求式子变形,然后根据x =2,y 2,可以得到xy 、x +y 的值,从而可以求得所求式子的值;(2)根据完全平方公式和换元法可以求得所求式子的值.【解答】解:(1)①1x+1y =y x xy ,∵x +2,y 2,∴x +y =xy =3,当x +y =xy =3时,原式=②x 2﹣xy +y 2=(x +y )2﹣3xy ,∵x +2,y 2,∴x +y =xy =3,当x +y =xy =3时,原式=(2﹣3×3=19;(2=x y ,则39﹣a 2=x 2,5+a 2=y 2,∴x 2+y 2=44,8,∴(x +y )2=64,∴x 2+2xy +y 2=64,∴2xy =64﹣(x 2+y 2)=64﹣44=20,∴(x ﹣y )2=x 2﹣2xy +y 2=44﹣20=24,∴x ﹣y =±4<−故答案为:﹣25.(2020春•海陵区校级期中)当a +1a a 的值.【分析】根据二次根式的性质、分式的混合运算法则计算即可.【解答】解:∵a =∴a ﹣1<0,∴原式=1a a =1−a a(a−1)+1a a=−1a +1a a =1.26.(2019秋•|b−3|=0(1)求1(2)设x =y =,求1x+1y 的值.【分析】(1)先利用非负数的性质得到a =2,b =3+和二次根式的除法法则运算;(2)由于x y =,则1x +1y =11,然后分母有理化后合并即可.【解答】解:(1+|b−3|=0,∴a ﹣2=0,b ﹣3=0,∴a =2,b =3,∴1=1(2)∵x ==y +∴1x +1y =11+=27.(2018秋•东营区校级期中)求值:(1)已知a =b =3﹣a 2+ab +b 2的值;(2)已知:y 25﹣3x 的值.【分析】(1)根据a =b =3﹣a +b )2﹣ab 进行计算即可;(2)依据被开方数为非负数,即可得到x =23,进而得出y >2+5﹣3x 的值.【解答】解:(1)∵a =b =3﹣∴a 2+ab +b 2=a 2+2ab +b 2﹣ab=(a +b )2﹣ab=36﹣1=35;(2)∵3x−2≥02−3x ≥0,∴x ≥23x ≤23,∴x =23,∴y >2,5﹣3x5﹣3x =|y−2|−(y−2)+5﹣3x=﹣1+5﹣3x=4﹣3x =4﹣3×23=2.28.(2022秋•灞桥区校级月考)已知a =1,b 1,求代数式【分析】先将a ,b 分母有理化,再计算出a ﹣b 与ab 而可得出答案.【解答】解:∵a ==b =1=∴a ﹣b =ab =1,=29.(2022春•藁城区校级期中)求代数式a a =1011,如图所示的是小亮和小芳的解答过程.(1) 小亮 的解法是错误的;(2)求代数式a a =﹣2022.【分析】(1)先将被开方式进行因式分解,然后根据二次根式的性质进行化简,从而作出判断;(2)先将被开方式进行因式分解,然后根据二次根式的性质进行化简,最后代入求值.【解答】解:(1)小亮的解法是错误的,理由如下:原式=a +∵a =1011,∴1﹣a <0,∴原式=a +a ﹣1=2a ﹣1=2×1011﹣1=2021,故答案为:小亮;(2)原式=a ∵a =﹣2022,∴a ﹣3<0,∴原式=a +2(3﹣a )=a +6﹣2a=6﹣a=6﹣(﹣2022)=6+2022=2028.30.(2022春•赤坎区校级期末)阅读下面的材料,解答后面给出的问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因11.这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘,2(1)请你写出3+的有理化因式: 3−(2b ≥0且b ≠1);(3)已知a 1,b =1,求【分析】(1)根据有理化因式的定义即可解答;(2)根据一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法进行化简;(3)通过分母有理化可化简a 、b ,从而求出a +b 、ab =a +b ,ab 的值代入即可求解.【解答】解:(1)∵(3+(39﹣11=﹣2,∴33故答案为:3(2)1−b=1(3)∵a =1=2,b 1=2∴a +b =﹣ab =﹣1,====4.。

部编数学八年级下册专题考前必做30题之二次根式小题培优提升(压轴篇,八下册人教)2023复习含答案

部编数学八年级下册专题考前必做30题之二次根式小题培优提升(压轴篇,八下册人教)2023复习含答案

2022-2023学年八年级数学下学期复习备考高分秘籍【人教版】专题6.1考前必做30题之二次根式小题培优提升(压轴篇,八下人教)本套试题主要针对期中期末考试的选择填空压轴题,所选题目典型性和代表性强,均为中等偏上和较难的题目,具有一定的综合性,适合学生的培优拔高训练.试题共30题,选择20道,每题3分,填空10道,每题4分,总分100分.涉及的考点主要有以下方面:1.二次根式的概念与性质:二次根式的识别及有意义的条件、二次根式的性质和化简2.二次根式的乘除:二次根式的乘法法则及计算、二次根式的除法法则及计算、最简二次根式3.二次根式的加减:二次根式的加减、二次根式的混合运算、乘法公式在二次根式计算中的应用、二次根式的化简及求值、二次根式的应用、二次根式的规律探究题、二次根式的材料综合阅读题一、单选题1.(2023秋·贵州铜仁·x的取值范围是( )A.x≥2,且x≠0B.x≥2C.x≤2D.x>2【答案】B【分析】根据二次根式的性质及分式的有意义的条件求解即可.【详解】解:由题意得:x−2≥0x≠0,解得:x≥2,故选:B.【点睛】本题考查了二次根式和分式有意义的条件,二次根式的被开方数是非负数,分式的分母不为零,掌握知识点是解题关键.2.(2022秋·重庆北碚·)A.9B.10C.11D.123.(2023春·八年级单元测试)若|a−2|+b2+4b+4+=0)A.B.4C.1D.84.(2023秋·河南南阳·九年级统考期末)已知m为实数,且m,下列说法:①x≥1;②当x=52时,m的值是4或−2;③m≥1;>0.其中正确的个数是()A.1B.2C.3D.45.(2023春·浙江·八年级专题练习)若y,则x+y的立方根是( )A.1B.5C.−5D.−16.(2023秋·福建泉州·八年级统考期末)若a=2020×2022−2020×2021,b==a,b,c的大小关系是()A.c>b>a B.c>a>b C.b>a>c D.b>c>a【答案】A7.(2022秋·福建·九年级统考期末)下列与)A B C D8.(2022·浙江·九年级自主招生)若A+⋯则[A]=()(其中[A]表示不超过A的最大整数)A.2019B.2020C.2021D.2022【答案】C9.(2022秋·江苏·八年级统考期末)如图,长方形内有两个相邻的正方形,其面积分别为6和24,则图中阴影部分面积为()A.5B.C.6D.10.(2021·浙江·九年级自主招生)已知A==A3+B3的整数部分为()A.11B.12C.13D.1411.(2023秋·四川宜宾·=a+b=()A.1B.2C.3D.5∴a+b=3+2=5;故选D.【点睛】本题考查二次根式的减法法则.熟练掌握二次根式的减法法则是解题的关键.12.(2022·四川绵阳·东辰国际学校校考模拟预测)实数a、b在数轴上的位置如图所示,则化简(a−b 的结果是()A B C.D.13.(2023春·八年级单元测试)规定a⊗b=a−b,则2的值是()a bA.5+B.C.D.9+14.(2023·全国·九年级专题练习)已知|a+b2−4b+4=0,则(ab)2的值是()A.18B.C.6D.1215.(2023秋·四川宜宾·>1),则x+1x的值为()A B.3C.5D.716.(2021春·山东威海·八年级校考期中)计算+20182019正确的结果是( )A .BC .1D17.(2022春·广东惠州·八年级统考期末)已知T 1=32,T 276,T 3==1312,…T n =n 为正整数.设S n =T 1+T 2+T 3+⋯+T n ,则S 2022值是( )A .202220222023B .202320222023C .202212023D .20231202218.(2022秋·河北秦皇岛·八年级校联考阶段练习)对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,=1,[−2.5]=−3.现对82进行如下操作:82第一次=9,第二次=3,第三次=1,这样对82只需进行3次操作后即可变为1,类似地,对300只需进行多少次操作后即可变为1()A.3B.4C.5D.6==;第2个19.(2022秋·河南驻马店·九年级校考阶段练习)观察下列等式:第1个等式:a等式:a 2=1=3个等式:a 3=1=4个等式:a 4=1=,……,按照上述规律,计算:a 1+a 2+a 3+⋅⋅⋅⋅⋅⋅+a 99=( )A .B .C .9D .820.(2023春·重庆九龙坡·八年级重庆实验外国语学校校考开学考试)有依次排列的一列式子:1,,1,,1…小红对式子进行计算得:第1=;第2个式子:1=根据小红的观察和计算,她得到以下几个结论:①第8个式子为1;②对第n 个式子进行计算的结果为③前100;④将第n 个式子记为a n ,令b n =1a n ,且9a 2n +19a nb n +9b 2n=575,则正整数n=15.小红得到的结论中正确的有()A.1个B.2个C.3个D.4个二、填空题三、21.(2023秋·海南海口·九年级校联考期末)已知−1<x<3+1|=_______.22.(2022春·广东河源·八年级校考期中)若b a b=________.【答案】1【分析】根据二次根式的性质,求得a,b,即可求解.【详解】解:由二次根式的性质可得,a−3≥0,3−a≥0,解得a=3,则b=0,∴a b=30=1,故答案为:1.【点睛】此题考查了二次根式的性质及零次幂的运算,解题的关键是掌握二次根式有意义的条件,正确求得a,b.23.(2022秋·河南开封·八年级统考期末)计算:(2+|=______.【答案】3++324.(2023春·浙江宁波·八年级校考阶段练习)已知x+y=−2,xy=3____________;25.(2023春·全国·八年级专题练习)实数m在数轴上的位置如图所示,则化简|m−1|___.26.(2023春·全国·八年级专题练习)已知△ABC的三边分别为a、b、c,___________.【答案】4c【分析】根据三角形三边的关系得到a+b+c>0,a<b+c,b<a+c,c<a+b,据此化简二次根式,然后根据整式的加减计算法则化简即可得答案.【详解】解:∵△ABC的三边分别为a、b、c,∴a+b+c>0,a<b+c,b<a+c,c<a+b,∴a+b+c>0,a<b+c,b<a+c,c<a+b,∴原式=(a+b+c)+(b+c−a)+(c+a−b)−(a+b−c)=a+b+c+c+b−a+c+a−b−a−b+c=4c.故答案为:4c.【点睛】本题主要考查了二次根式的化简,整式的加减计算,三角形三边的关系,正确根据三角形三边的关系得到a+b+c>0,a<b+c,b<a+c,c<a+b是解题的关键.27.(2022秋·河北秦皇岛·八年级校联考阶段练习)两个含有二次根式的代数式相乘,若它们的积不含二次+1.(1的有理化因式为___________;(2“>”“<”或“=”);(3)计算:111+⋯+1___________.28.(2022秋·辽宁丹东·八年级统考期末)若5+a,b,则a+b=______.29.(2023秋·河北石家庄·八年级统考期末)使用手机支付宝付款时,常常需要用到密码.嘉淇学完二次根式后,突发奇想,决定用“二次根式法”13,中间加一个大写字母X,就得到一个六位密码“169X13”密码是__________.30.(2022秋·四川遂宁·九年级统考期末)观察下列等式:x1==32=1+11×2;x2==76=1+12×3;x3==1312=1+13×4;……根据以上规律,计算x1+x2+x3+…+x2023−2023=______.。

八年级数学二次根式提高培优

八年级数学二次根式提高培优

二次根式典型习题训练一、观点(一)二次根式以下式子,哪些是二次根式,哪些不是二次根式2、33、 1 、x (x>0)、0、4 2、- 2 、1、 x y (x≥0,y?≥0).x x y(二)最简二次根式1.把二次根式x(y>0)化为最简二次根式结果是().yA.x(y>0)B.xy (y>0)C.xy(y>0)D.以上都不对y y化简x4x2 y2=_________.(x≥0)a1a化简二次根式号后的结果是_________ .a2已知 xy0,化简二次根式x y的正确结果为 _________ .x2(三)同类二次根式1.以下二次根式:①12 ;②22;③2;④27 中,与 3 是同类二次根式的是().3A.①和②B.②和③C.①和④D.③和④2.在8、175a 、29a 、125 、23a3、30.2 、-21中,与3a 是同类二次33a8根式的有 ______(四)“分母有理化”与“有理化因式”2 +3 的有理化因式是________ ;x-y 的有理化因式是_________ .-x 1 -x 1 的有理化因式是_______ .2.把以下各式的分母有理化(1)1;( 2)1;(3)2;(4)3 34 2 .5112362 3 342二、二次根式存心义的条件:1.( 1)当 x 是多少时,3x 1 在实数范围内存心义( 2)当 x 是多少时,2x 3 +1在实数范围内存心义x1当 x 是多少时,2x3+x2在实数范围内存心义x( 4)当__________时,x 21 2 x 存心义。

使式子( x 5)2存心义的未知数x 有()个.A.0B. 1C.2D.无数3.已知 y= 2 x +x 2 +5,求x的值.y若3 x + x 3 存心义,则x 2 =_______.若1存心义,则 m 的取值范围是mm 16.假以以下式子存心义求字母的取值范围(1)(2) (3) (4)1 1 x3x2x 5x(5)x 2 2 x(6)x 2 2x 1三、二次根式的非负数性1.若a 1 +b 1 =0,求 a 2004 +b 2004 的值.2.已知x y 1 + x 3 =0,求 x y的若 x y y 2 4 y 4 0,求 xy 的值。

部编数学八年级下册二次根式的应用大题提升训练(重难点培优30题)【拔尖特训】2023年培优(含答案

部编数学八年级下册二次根式的应用大题提升训练(重难点培优30题)【拔尖特训】2023年培优(含答案

【拔尖特训】2022-2023学年八年级数学下册尖子生培优必刷题【人教版】专题16.6二次根式的应用大题提升训练(重难点培优30题)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一.解答题(共30小题)1.(2022秋•桥西区期中)交通警察通常根据刹车后车轮划过的距离估计车辆行驶的速度,所依据的经验公式是v=v表示车速(单位:km/h),d表示刹车后车轮划过的距离(单位:m),f表示摩擦系数,在某次交通事故调查中测得d=20m,f=1.2.(1)求肇事汽车的速度;(2)若此路段限速70km/h,请通过计算判断肇事汽车是否超速?【分析】(1)直接用题目中速度公式和计算即可求出;(2)比较两个速度的大小即可.【解答】解:(1)当d=20m,f=1.2时,v==km/h),答:肇事汽车的速度是/h;(2)v=78>70,∴肇事汽车已经超速.2.(2022秋•社旗县期中)(1)计算:(﹣2x)3•(3x2﹣xy﹣1)(2)高空抛物严重威胁着人们的“头顶安全”,即便是常见小物件,一旦高空落下,也威力惊人,而且用时很短,常常避让不及.据研究,高空物体自由下落到地面的时间t(单位:s)和高度h(单位:m)近似满足公式t g≈9.8t/s2).已知一幢大楼高78.4m,若一个鸡蛋从楼顶自由落下,求落到地面所用时间.【分析】直接将h=78.4,g=9.8代入公式计算即可.【解答】解:将h=78.4,g=9.8代入公式t得:t==4,答:落到地面所用时间为4s.3.(2022秋•南岸区校级期中)某居民小区有一块形状为长方形ABCD的绿地,长方形绿地的长BC为,宽AB,现要在长方形绿地中修建一个长方形花坛(即图中阴影部分),长方形花坛的1)m1)m.(1)长方形ABCD的周长是多少?(结果化为最简二次根式)(2)除去修建花坛的地方.其他地方全修建成通道,通道上要铺上造价为50元每平方米的地砖,若铺完整个通道,则购买地砖需要花费多少元?【分析】(1)长方形ABCD的周长是2(m);(2)先求出空白部分的面积,再根据通道上要铺上造价为50元每平方米的地砖列式计算即可.【解答】解:(1)长方形ABCD的周长=2+2(+m),答:长方形ABCD的周长是m);(2)购买地砖需要花费=50××1)1)]=50×(144﹣12)=50×132=6600(元);答:购买地砖需要花费6600元.4.(2021秋•长安区期末)某居民小区有块形状为长方形ABCD的绿地,长方形绿地的长BC宽AB,长方形花坛的长为+11)米.(1)长方形ABCD的周长是(2)除去修建花坛的地方,其它地方全修建成通道,通道上要铺上造价为6元/m2的地砖,要铺完整个通道,则购买地砖需要花费多少元?(结果均化为最简二次根式)【分析】(1)根据长方形ABCD的周长列出算式,再利用二次根式的混合运算顺序和运算法则计算可得;(2)先计算出空白部分面积,再计算即可,【解答】解:(1)长方形ABCD的周长=2×2(+,答:长方形ABCD的周长是(2)通道的面积=+1)1)=100(平方米),购买地砖需要花费=6×(100)=600(元).答:购买地砖需要花费600元;5.(2021秋•叙州区期末)已知△ABC2,记△ABC的周长为C△ABC.(1)当x=2时,△ABC的最长边的长度是(请直接写出答案);(2)请求出C△ABC(用含x的代数式表示,结果要求化简);(3)我国南宋时期数学家秦九韶曾提出利用三角形的三边长求面积的秦九韶公式:S=a、b、c,三角形的面积为S.若x为整数,当C△ABC取得最大值时,请用秦九韶公式求出△ABC的面积.【分析】(1)把x=2代入三角形的三边中,分别计算,比较后即可求解;(2)把三角形的三边求和,利用二次根式的性质化简即可求解;(3)先根据x的取值范围,确定三角形周长的最大值及三角形各边的长,代入公式求出三角形的面积.【解答】解:(1)当x=23,2=4−2=2,∴△ABC的最长边的长度是3;(2)由题知:x+1≥04−x≥0,解得﹣1≤x≤4.=5−x,2=x,=2=5−x+x+5;∴C△ABC=5,﹣1≤x≤4,且x为整数,(3)∵C△ABC越大,∴x越大C△ABC1,4,∴当x=4时,C△ABC+1<4,∴不合题意舍去.当x=3时,三边为2,2,3,∴S==6.(2022秋•南山区校级期中)著名数学教育家G•波利亚,有句名言:“发现问题比解决问题更重要”,这句话启发我们:要想学会数学,就需要观察,发现问题,探索问题的规律性东西,要有一双敏锐的眼睛.请先阅读下列材料,再解决问题:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去里面的一层根号.==1+解决问题:(1=③③ 3+①: 5 ,②(2【分析】(1)模仿样例进行解答便可;(2)把28看成522,7看成222,借助完全平方公式将每个根号内化成完全平方数的形式,便可开方计算得结果.【解答】解:(13则①=5,②=③=3+故答案为:①5;③3(2===5+2+=7.7.(2022秋•临汾期中)阅读与思考阅读下列材料,并完成相应的任务:法国数学家爱德华•卢卡斯以研究斐波那契数列而著名,他曾给出了求斐波那契数列第n项的表达式,创造出了检验素数的方法,还发明了汉诺塔问题.“卢卡斯数列”是以卢卡斯命名的一个整数数列,在股市中有广泛的应用.卢卡斯数列中的第n个数F(n)可以表示为n−1n−1,其中n≥1.(说明:按照一定顺序排列着的一列数称为数列)任务:(1)卢卡斯数列中的第1个数F(1)= 2 ,第2个数F(2)= 1 ;(2)卢卡斯数列有一个重要特征:当n≥3时,满足F(n)=F(n﹣﹣1)+F(n﹣2).请根据这一规律写出卢卡斯数列中的第6个数F(6).【分析】(1)根据F(n)=n−1n−1,将n=1,2分别代入计算即可求解;(2)根据当n≥3时,满足F(n)=F(n﹣1)+F(n﹣2),先求出F(4),F(5),再进一步求出F(6).【解答】解:(1)F(1)=1+1=2,第2个数F(2)=221.故答案为:2;1;(2)∵F(n)=F(n﹣1)+F(n﹣2),∴F(3)=F(2)+F(1)=1+2=3;F (4)=F(3)+F(2)=3+1=4,F (5)=F(4)+F(3)=4+3=7,∴F(6)=F(5)+F(4)=7+4=11.8.(2022秋•商水县校级月考)高空抛物严重威胁着人们的“头顶安全”,即便是常见小物件,一旦高空落下,也威力惊人,而且用时很短,常常避让不及.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=g≈10m/s2).(1)求从60m高空抛物到落地的时间.(结果保留根号)(2)已知高空坠物动能(单位:J)=10×物体质量(单位:kg)×高度(单位:m),某质量为0.2kg 的玩具被抛出后经过3s后落在地上,这个玩具产生的动能会伤害到楼下的行人吗?请说明理由.(注:伤害无防护人体只需要65J的动能)【分析】(1)把60m代入公式t(2)先根据公式t=h,再代入动能计算公式求出这个玩具产生的动能,即可判断.【解答】解:(1)由题意知h=60m,∴t==s),故从60m高空抛物到落地的时间为;(2)这个玩具产生的动能会伤害到楼下的行人,理由:当t=3s时,3=∴h=45,经检验,h=45是原方程的根,∴这个玩具产生的动能=10×0.2×45=90(J)>65J,∴这个玩具产生的动能会伤害到楼下的行人.9.(2022秋•新蔡县校级月考)如图,有一张面积为50cm2的正方形纸板,现将该纸板的四个角剪掉,制作.(1)求长方体盒子的容积;(2)求这个长方体盒子的侧面积.【分析】(1)结合题意可知该长方体盒子的长、宽都为,而长方体的容积为长×宽×高,即可得答案;(2)该长方体盒子的侧面为长方形,长为,共4个面,即可得答案.【解答】解:(1)由题意可知:长方体盒子的容积为:2=cm3),答:长方体盒子的容积为3;(2)长方体盒子的侧面积为:×4=24(cm 2),答:这个长方体盒子的侧面积为24cm 2.10.(2022秋•中原区校级月考)小明同学在学习的过程中,看到北师大版八年级上册数学课本43页有这样小明想了想做出如下解答过程:“如图,大正方形的面积为82,2=2”=的图形并借助图形帮助小明解答这个问题.【分析】根据正方形的面积公式得到2个正方形的边长,利用图形得出边长的关系,进而得出答案.【解答】解:如图,大正方形的面积为2小正方形的面积为12,则小正方形的边长为观察图形可以得到大正方形边长是小正方形边长的2倍,11.(2022秋•洛宁县月考)如图,有一张长为,宽为的长方形纸板,现将该纸板的四个角剪掉,制作一个有底无盖的长方体盒子,剪掉的四个角是面积相等的小正方形.(1,则制作成的无盖长方体盒子的体积是多少?(2)求这个长方体盒子的侧面积.【分析】(1)利用长方体的体积公式计算即可;(2)大长方形的面积减去4个小正方形的面积,再减去底面面积就是盒子的侧面积.(两个小长方形面积和两个大长方形面积和)【解答】解:(1)无盖长方体盒子的体积为:(×(×=××=cm3);答:制作成的无盖长方体盒子的体积是3.(2)方法一,长方体盒子的侧面积为:×4××((=256﹣8﹣168=80(cm2);答:这个长方体盒子的侧面积为80cm2.方法二,长方体盒子的侧面积为:(×2+(×2=×××2=24+56=80cm2.答:这个长方体盒子的侧面积为80cm2.12.(2021秋•钱塘区期末)(1)已知一个长方形的长是宽的2倍,面积是10,求这个长方形的周长.(2)如图,已知长方形内两个相邻正方形的面积分别为9和3,求图中阴影部分的面积.【分析】(1)根据长方形面积公式为长×宽,代入计算即可;(23【解答】解:(1)设长方形的宽为x,则长方形的长为2x,则x•2x=10,解得x=,∴长方形的长为×2=(2)由题意可知,大正方形的边长为3∴阴影部分的面积为(3×.13.(2022春•海沧区校级期末)有一块矩形木板,木工采用如图沿虚线在木板上截出两个面积分别为12dm2和27dm2的正方形木板.(1)求原矩形木板的面积;(2)如果木工想从剩余的木块(阴影部分)中裁出长为1.5dm,宽为1dm的长方形木条,估计最多能裁出多少块这样的木条,请你计算说明理由.【分析】(1)根据二次根式的性质分别求出两个正方形的边长,结合图形计算得到答案;(2)求出【解答】解:(1)∵两个正方形的面积分别为12dm2和27dm2,∴这两个正方形的边长分别为和,∴原矩形木板的面积为45(dm2);(2)最多能裁出3块这样的木条.理由如下:∵≈3.464≈1.732,3.46÷1≈3(块),1.73÷1.5≈1(块),3×1=3(块).∴从剩余的木块(阴影部分)中裁出长为1.5dm,宽为1dm的长方形木条,最多能裁出3块这样的木条.14.(2022春•合阳县期末)海啸是一种破坏力极强的海浪,由海底地震、火山爆发等引起,在广阔的海面上,海啸的行进速度可按公式v=v表示海啸的速度(m/s),d表示海水的深度,g表示重力加速度9.8m/s2.若在海洋深度20m处发生海啸,求其行进的速度.【分析】把g与d的值代入公式计算即可求出v.【解答】解:∵d=20m,g=9.8m/s2,v∴v==14(m/s),则海啸行进的速度是14m/s.15.(2022春•周至县期末)在一个长为求剩余部分的面积.【分析】根据矩形的面积﹣正方形的面积即可得到剩余部分的面积.【解答】解:×(2=60﹣(60﹣5)=60﹣5=(5)平方米,答:剩余部分的面积为(5)平方米.16.(2022春•济源期末)【再读教材】:我们八年级下册数学课本第16页介绍了“海伦﹣秦九韶公式”:如果一个三角形的三边长分别为a,b,c,记p=a b c2,那么三角形的面积为S=【解决问题】:已知在△ABC中,AC=4,BC=7.5,AB=8.5.(1)请你用“海伦﹣秦九韶公式”求△ABC的面积.(2)除了利用“海伦﹣秦九韶公式”求△ABC的面积外,你还有其它的解法吗?请写出你的解法.【分析】(1)直接代入海伦﹣秦九韶公式求解;(2)先利用勾股定理的逆定理证明△ABC为直角三角形,再用两直角边的积除以2求出面积即可.【解答】解:(l)∵AC=4,BC=7.5,AB=8.5,∴p=47.58.52=10,∴S△ABC==15.即△ABC的面积为15;(2)∵AC=4,BC=7.5,AB=8.5,∴A C2=42=16=644,B C2=(152)2=2254,A B2=(172)2=2894,∴A C2+B C2=644+2254=2894=A B2,∴∠C=90°,∴S△ABC=12AC⋅BC=12×4×7.5=15.17.(2022春•石泉县期末)“欲穷千里目,更上一层楼”,说的是登得高看得远,如图,若观测点的高度为h(单位:km),观测者能看到的最远距离为d(单位:km),则d≈R是地球半径,通常取6400km.小红站在海边的一块岩石上,眼睛离海平面的高度h为5m,她观测到远处一艘船刚露出海平面,求此时观测者能看到的最远距离d约是多少千米?【分析】根据d≈R=6400km,h=0.005km代入计算即可.【解答】解:由R=6400km,h=5m=0.005km,得d≈=8(km),答:此时观测者能看到的最远距离d约是8km.18.(2022春•云南期末)某居民小区有块形状为矩形ABCD的绿地,长BC AB在要矩形绿地中修建两个形状大小相同的长方形花坛(即图中阴影部分),每个长方形花坛的长为+1)米,宽为米.(1)求矩形ABCD的周长.(结果化为最简二次根式)(2)除去修建花坛的地方,其它地方全修建成通道,通道上要铺上造价为6元/平方米的地砖,要铺完整个通道,则购买地砖需要花费多少元?【分析】(1)根据矩形的周长=(长+宽)×2计算即可;(2)先求出通道的面积,再算钱数即可.【解答】解:(1)+×2=(+×2=×2=,答:矩形ABCD的周长为(22×+1)×1)=×2×(13﹣1)=80﹣24=56(平方米),6×56=336(元),答:购买地砖需要花费336元.19.(2022春•赣州期末)有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为18dm2和32dm2的正方形木板.(1)截出的两块正方形木料的边长分别为(2)求剩余木料的面积;(3)如果木工想从剩余的木料中截出长为1.5dm,宽为1dm的长方形木条,最多能截出 2 块这样的木条.【分析】(1,再对二次根式进行化简即可;(2)矩形的长为,宽为,再求面积即可;(3)剩余木条的长为,再由题意进行截取即可.【解答】解:(1=,故答案为:,;(2)矩形的长为=dm),宽为,∴剩余木料的面积=(×18﹣32=56﹣18﹣32=6(dm2);(3)剩余木条的长为,宽为=dm),∵3×1.51,∴能截出2×1=2个木条,故答案为:2.20.(2022春•宁乡市期末)如图所示,将一个长宽分别为a,b的长方形纸片的四个角都剪去一个边长为x 的正方形.(1)用含a,b,x的代数式表示纸片剩余部分的面积;(2)当a=12+b=x=【分析】(1)用长方形的面积减去四周四个小正方形的面积列式即可;(2)把相应的值代入(1)进行运算即可.【解答】解:(1)剩余部分的面积为:ab﹣4x2;(2)当a=12+a=xab﹣4x2=((12﹣4×2=144﹣12﹣8=124.21.(2022春•梁平区期末)电流通过导线时会产生热量,电流I(单位:A)、导线电阻R(单位:Ω)、通电时间t(单位:s)与产生的热量Q(单位:J)满足Q=I2Rt,已知导线的电阻为6Ω,1s时间导线产生30J的热量,求电流I的值.(结果用根式表示)【分析】将已知量代入物理公式Q=I2Rt,即可求得电流I的值.【解答】解:通电时间t(单位:s)与产生的热量Q(单位:J)满足Q=I2Rt,所以电流I=故电流I.22.(2022春•雁塔区校级期末)请阅读下面材料,并解决问题:海伦——秦九韶公式海伦(约公元50年),古希腊几何学家,在数学史上以解决几何测量问题闻名,在他的著作《度量》一书中证明了一个利用三角形的三条边长直接求三角形面积的公式:假设在平面内,有一个三角形的三条边长分别为a,b,c,记p=a b c2,那么三角形的面积S=秦九韶(约1202﹣1261年),我国南宋时期的数学家,曾提出利用三角形的三边长求面积的秦九韶公式S=高的数学水平.通过公式变形,可以发现海伦公式和秦九韶公式实质是同一个公式,所以海伦公式也称海伦﹣秦九韶公式.问题:如图,在△ABC中,AB=6,AC=7,BC=8,请用海伦一秦九韶公式求△ABC的面积.【分析】代入公式,进行二次根式的化简.【解答】解:∵AB=6,AC=7,BC=8,∴a=8,b=7,c=6,∴S=23.(2021秋•龙岗区校级期中)平面几何图形的许多问题,如长度、周长、面积、角度等问题,最后都转化到三角形中解决.古人对任意形状的三角形,探究出若已知三边,便可以求出其面积.具体如下:设一个三角形的三边长分别为a、b、c,P=12(a+b+c),则有下列面积公式:S=;S=.(1)一个三角形边长依次为5、6、7,利用两个公式,可以求出这个三角形的面积是(2)学完勾股定理以后,已知任意形状的三角形的三边长也可以求出其面积.如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路,完成解答过程.①作AD⊥BC于D,设BD=x,用含x的代数式表示CD,则CD= 14﹣x ;②请根据勾股定理,利用AD作为“桥梁”建立方程,并求出x的值;③利用勾股定理求出AD的长,再计算三角形的面积.【分析】(1)利用两个公式分别代入即可;(2)①根据CD=BC﹣BD可得答案;②在两个直角三角形中分别应用勾股定理可得方程,解方程可得x的值;③根据三角形面积公式计算即可.【解答】解:(1)P=12(a+b+c)=12×(5+6+7)=9,由海伦公式可得S==由秦九昭公式可得S=故答案为:(2)①∵BC=14,BD=x,∴DC=14﹣x,故答案为:14﹣x;②∵AD⊥BC,∴AD2=AC2﹣CD2,AD2=AB2﹣BD2,∴132﹣(14﹣x)2=152﹣x2,解得x=9;③由(2)得:AD=12,∴S△ABC =12⋅BC•AD=12×14×12=84.24.(2022春•章贡区期末)小明家装修,电视背景墙长BC,宽AB,中间要镶一个长为m的大理石图案(图中阴影部分).除去大理石图案部分,其他部分贴壁布,求壁布的面积.(结果化为最简二次根式)【分析】直接利用二次根式的乘法运算法则以及二次根式的加减运算法则计算得出答案.【解答】解:由题意可得:××=×==m2),答:壁布的面积为2.25.(2021秋•长安区校级期末)某居民小区有块形状为长方形ABCD的绿地,长方形绿地的长BC为米,宽AB,长方形花坛的长为+11米.(1)长方形ABCD的周长是多少?(结果化为最简二次根式)(2)除去修建花坛的地方.其它地方全修建成通道,通道上要铺上造价为6元/m2的地砖,要铺完整个通道,则购买地砖需要花费多少元?(结果化为最简二次根式)【分析】(1)根据长方形ABCD的周长列出算式,再利用二次根式的混合运算顺序和运算法则计算可得;(2)先计算出空白部分面积,再计算即可,【解答】解:(1)长方形ABCD的周长=2×(+2(++,答:长方形ABCD的周长是+,(2)通道的面积==(13﹣1)=(平方米),购买地砖需要花费=6×()=72(元).答:购买地砖需要花费72元;26.(2020春•玄武区期中)数学阅读:古希腊数学家海伦曾提出一个利用三角形三边之长求面积的公式:若一个三角形的三边长分别为a 、b 、c ,则这个三角形的面积为S p =12(a +b +c ),这个公式称为“海伦公式”.数学应用:如图,在△ABC 中,已知AB =9,AC =8,BC =7.(1)请运用海伦公式求△ABC 的面积;(2)设AC 边上的高为h 1,BC 边上的高h 2,求h 1+h 2的值.【分析】(1)根据海伦公式,代入解答即可;(2)根据三角形面积公式解答即可.【解答】解:(1)AB =c =9,AC =b =8,BC =a =7,p =12(a +b +c)=12,∴S =(2)∵S △ABC =12AC ⋅ℎ1=12BC ⋅ℎ2=∴ℎ1==ℎ2=∴ℎ1+ℎ2=27.(2022春•磁县期中)如图,正方形ABCD 的面积为8,正方形ECFG 的面积为32.(1)求正方形ABCD 和正方形ECFG 的边长;(2)求阴影部分的面积.【分析】(1)根据正方形的面积公式求得边长;(2)先求出直角三角形BFG 、ABD 的面积,然后用两个正方形的面积减去两个直角三角形的面积,这就是阴影部分的面积.【解答】解:(1)正方形ABCD 的边长为:BC =正方形ECFG 的边长为:CF ==(2)∵BF =BC +CF ,BC =CF =∴BF =∴S △BFG =12GF •BF =24;又S △ABD =12AB •AD =4,∴S 阴影=S 正方形ABCD +S 正方形ECFG ﹣S △BFG ﹣S △ABD=8+32﹣24﹣4,=12.28.(2022春•丰台区期中)在数学课上,老师说统计学中常用的平均数不是只有算术平均数一种,好学的小聪通过网络搜索,又得到了两种平均数的定义,他把三种平均数的定义整理如下:对于两个数a ,b ,M =a b 2称为a ,b 这两个数的算术平均数,N =a ,b 这两个数的几何平均数,P =a ,b 这两个数的平方平均数.小聪根据上述定义,探究了一些问题,下面是他的探究过程,请你补充完整:(1)若a =﹣1,b =﹣2,则M = −32 ,N P = ;(2)小聪发现当a ,b 两数异号时,在实数范围内N 没有意义,所以决定只研究当a ,b 都是正数时这三种平均数的大小关系.结合乘法公式和勾股定理的学习经验,他选择构造几何图形,用面积法解决问题:如图,画出边长为a +b 的正方形和它的两条对角线,则图1中阴影部分的面积可以表示N 2.①请分别在图2,图3中用阴影标出一个面积为M 2,P 2的图形;②借助图形可知当a ,b 都是正数时,M ,N ,P 的大小关系是 N ≤M ≤P .(把M ,N ,P 从小到大排列,并用“<”或“≤”号连接).【分析】(1)将a =﹣1,b =﹣2分别代入M ,N ,P 求值即可得;(2)①分别求出M 2,P 2,再根据正方形的性质、矩形和直角三角形的面积公式即可得;②根据(2)①中的所画的图形可得N 2≤M 2≤P 2,由此即可得出结论.【解答】解:(1)当a =﹣1,b =﹣2时,M =a b 2=−1−22=−32,N ==P ===故答案为:−32,(2)①M 2=(a b 2)2=(a b)24=(a−b)24ab 4=(a−b)24+ab ,则用阴影标出一个面积为M 2的图形如下所示:P 2=(a−b)22+ab ,则用阴影标出一个面积为P 2的图形如下所示:②由(2)①可知,N2≤M2≤P2,当且仅当a﹣b=0,即a=b时,等号成立,∵a,b都是正数,∴M,N,P都是正数,∴N≤M≤P,故答案为:N≤M≤P.29.(2022春•南部县校级月考)在《九章算术》中有求三角形面积公式“底乘高的一半”,但是在实际丈量土地面积时,量出高并非易事,所以古人想到了能否利用三角形的三条边长来求面积.我国南宋著名的数学家秦九韶(1208年﹣1261年)提出了“三斜求积术”,阐述了利用三角形三边长求三角形面积方法,简称秦九韶公式.在海伦(公元62年左右,生平不详)的著作《测地术》中也记录了利用三角形三边长求三角形面积的方法,相传这个公式最早是由古希腊数学家阿基米德(公元前287年﹣公元前212年)得出的,故我国称这个公式为海伦﹣秦九韶公式.它的表述为:三角形三边长分别为a、b、c,则三角形的面积S=(公式里的p为半周长即周长的一半)请利用海伦﹣秦九韶公式解决以下问题:(1)三边长分别为3、6、7的三角形面积为 4(2)四边形ABCD中,AB=3,BC=4,CD=7,AD=6,∠B=90°,四边形ABCD的面积为 6+6(3)五边形ABCDE中,AB=BC=CD=6,DE=8,AE=12,∠B=120°,∠D=90°,求出五边形ABCDE的面积.【分析】(1)根据题意应用二次根式的计算解答即可;(2)根据二次根式的计算解答即可;(3)根据二次根式的混合计算解答即可.【解答】解:(1)三边长分别为3、6、7故答案为:(2)∵四边形ABCD中,AB=3,BC=4,∠B=90°,∴AC =5,∴△ABC 的面积=12×3×4=6,∴△ACD 的面积=∴四边形ABCD 的面积为:6+故答案为:6+(3)∵五边形ABCDE 中,AB =BC =CD =6,DE =8,AE =12,∠B =120°,∠D =90°,∴AC =6,∴△ABC 的面积=12×6=∴CE =10,∴△CDE 的面积为:12×6×8=24,∴AC =6,AE =12,CE =10,∴△ACE 的面积==∴五边形ABCDE 的面积为24+30.(2022春•岳麓区校级期中)已知a ,b 均为正整数.我们把满足x =2a +3b y =3a +2b 的点P (x ,y )称为幸福点.(1)下列四个点中为幸福点的是 P 1(5,5) ;P 1(5,5);P 2(6,6);P 3(7,7);P 4(8,8)(2)若点P (20,t )是一个幸福点,求t 的值;(3)已知点P 11)是一个幸福点,则存在正整数a ,b 1=2a +3b =3a +2b,试问是否存在实数k 的值使得点P 和点Q (12a +k ,12b ﹣k )到x 轴的距离相等,且到y 轴的距离也相等?若存在,求出k 的值;若不存在,请说明理由.【分析】(1)根据a ,b 均为正整数,对a ,b 分类讨论,分别求出幸福点即可;(2)将P 点坐标分别代入x =2a +3b y =3a +2b 求出t 的值即可;(3)先表示出点P (2a +3b ,3a +2b ),再根据点P 和点Q 到x 轴的距离相等,到y 轴的距离也相等列出关系式求解即可.【解答】解:(1)∵a ,b 均为正整数,满足x =2a +3b y =3a +2b 的点P (x ,y )称为幸福点,∴当a=1,b=1时,x=5,y=5,故P1(5,5)是幸福点,当a=1,b=2时,x=8,y=7,故(8,7)是幸福点,当a=2,b=1时,x=7,y=8,故(7,8)是幸福点,...∴P1(5,5),P2(6,6),P3(7,7),P4(8,8)中只有P1(5,5)是幸福点,故答案为:P1(5,5);(2)∵点P(20,t)是一个幸福点,∴2a+3b=20,3a+2b=t,∵a,b均为正整数,∴a=1,b=6或a=b=4或a=7,b=2,当a=1,b=6时,t=15,当a=b=4时,t=20,当a=7,b=2时,t=25,∴t的值为15或20或25;(3)∵点P+11)是一个幸福点,则存在正整数a,b 1=2a+3b =3a+2b,∴消去m得,b=a+2,∵P(2a+3b,3a+2b),Q(12a+k,12b﹣k),∴P(5a+6,5a+4),Q(12a+k,12a+1﹣k),∵点P和点Q到x轴的距离相等,∴有4种情况,①5a+6=12a+k5a+4=12a+1−k,解得,a=﹣1(舍),k=3 2;②5a+6=12a+k5a+4=−12a−1+k,解得,a=1,k=10.5,∴b=3,符合题意;③5a+6=−12a−k5a+4=12a+1−k,解得,a=﹣3(舍),k=21 2;④5a+6=−12a−k5a+4=−12a−1+k,解得,a=﹣1(舍),k=−1 2;∴当a=1,b=3,k=10.5时,点P和点Q到x轴的距离相等,且到y轴的距离也相等.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学二次根式提
高培优
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
二次根式典型习题训练
一、概念
(一)二次根式
下列式子,哪些是二次根式,哪些不是二次根式
、1x x>01x y +x ≥0,y•≥0).
(二)最简二次根式
1(y>0)化为最简二次根式结果是( ).
A .
(y>0) B y>0) C (y>0) D .以上都不对
2.(x ≥0)
3.化简二次根式号后的结果是_________.
4. 已知〉xy 0,化简二次根式_________.
(三)同类二次根式
1式的是( ).
A .①和②
B .②和③
C .①和④
D .③和④
2、是同类二次根式的有______
(四) “分母有理化”与“有理化因式”
的有理化因式是________;_________.
的有理化因式是_______.
2.把下列各式的分母有理化
(1
(2;(3;(4.二、二次根式有意义的条件:
1.(1)当x在实数范围内有意义?
(2)当x是多少时,
1
1
x+
在实数范围内有意义?
(3)当x+x2在实数范围内有意义?(4)
(4)当__________
2.有意义的未知数x有()个.
3.
A.0 B.1 C.2 D.无数
3.已知,求x
y
的值.
4.
5.
1
1
m+
有意义,则m的取值范围是。

6.要是下列式子有意义求字母的取值范围
(1
(2) (3) (4)
(5)
三、二次根式的非负数性
1
=0,求a 2004+b 2004的值.
2,求x y 的
3.2440y y -+=,求xy 的值。

四、⎪⎩
⎪⎨⎧-==a a a a 2 的应用
1. a ≥0是( ).
A . C .2.先化简再求值:当a=9时,求
a ≥0 a <0
甲的解答为:原式(1-a )=1;
乙的解答为:原式=a+(a-1)=2a-1=17.
两种解答中,_______的解答是错误的,错误的原因是__________.
3.若│1995-a │=a ,求a-19952的值.
4. 若-3≤x ≤2时,试化简│x-2│
5.化简 ) A B ..
6.把(a-1)中根号外的(a-1)移入根号内得( ).
A ....
五、求值问题:
1. 当求x 2-xy+y 2的值
2..已知求a 3+2a 2-a 的值
3.计算
(1).3231+821-5051
(2).32()625(-÷-
(3).)321(++(321--)
4.化简(1).2
2)1()4(-+-x x (1<x <4) (2).(x+y)xy y x xy y x 222222++-+ (x <y <0)
5.已知:x=
211- ,求代数式3-442+-x x 的值
6.已知a =231+,求414122-⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛-a a a a 的值。

7.、已知:a ,b 为实数,且22222+-+-=
a a a
b 。

求()222a b a b ---+-的值。

8.. 已知2310x x -+=
六、大小的比较 1. 比较与的大小。

2.
的大小。

七、其他
111x -= )
A .x ≥1
B .x ≥-1
C .-1≤x ≤1
D .x ≥1或x ≤-1
2.
=,且x 为偶数,求(1+x
3
)的值是( ) A .2 B .3 C .4
D .1
4.如果
, 则x 的取值范围是 。

5.如果
, 则x 的取值范围是 。

6.若
a 的取值范围是
7.若n 243是一个整数,则整数n 的最小值是-----。

8.已知111-的整数部分为a ,小数部分为b ,试求()()111++b a 的值
八、计算
观察下列等式: ①12)12)(12(121
21
-=-+-=+;②
23)23)(23(23231-=-+-=+; ③34)
34)(34(34341
-=-+-=+;…… (1)利用你观察到的规律,化简:
11321
+
(2)计算:
1031......231321211++++++++
2x =-1=-2=
九、 解答题
1.已知:的值。

求代数式2,211881+++-+-=x
y y x x x y
2. 当1<x <5
3.2440y y -+=,求xy 的值。

5.已知a 、b 、c 满足0235)8(2=-+-+-c b a
求:(1)a 、b 、c 的值;
(2)试问以a 、b 、c 为边能否构成三角形?若能构成三角形,求出三角形的周长;
若不能构成三角形,请说明理由.。

相关文档
最新文档