Green chemistry CDC
GreenChemistry可持续发展的绿色化学
GreenChemistry可持续发展的绿色化学绿色化学是一种基于环境友好原则的化学设计和生产方法,旨在减少或消除对环境和人类健康的负面影响,并促进可持续发展。
随着环境问题的日益凸显和可持续发展的重要性日益增加,绿色化学成为了一种迫切需要的技术和方法。
在这篇文章中,我们将探索绿色化学对可持续发展的影响,并讨论其在减少污染、节能减排和资源利用方面的潜力。
绿色化学的目标是开发并应用能够降低污染物生成和排放的化学品和过程。
通过使用可再生材料、减少或消除有毒物质的使用以及探索替代性的可持续能源来源,绿色化学致力于减少化学反应中产生的有害废物的数量和毒性。
与传统的化学方法相比,绿色化学可显著减少对环境和人体健康的损害,并且有助于建立一个更加可持续的社会。
绿色化学的一个重要方面是减少能源的消耗和减少温室气体的排放。
传统化学生产方法通常需要大量的能源输入,并产生大量的温室气体,如二氧化碳。
通过优化化学反应条件、使用高效催化剂和设计能够节约能源的生产方法,绿色化学可以显著降低能源的消耗和温室气体的排放。
这不仅有助于减缓气候变化,还可以为社会经济发展提供可持续的能源来源。
绿色化学还强调资源的有效利用和循环利用。
传统化学方法通常依赖于大量的原材料和高浓度溶液,而这些原材料和溶剂经常以废物的形式被丢弃。
绿色化学通过设计高效的合成途径、优化物料流动和废物处理方法,致力于最大化资源利用并最小化废物排放。
这不仅有助于减少资源的消耗和废物的产生,还可以提高生产效率和经济效益。
除了在化学合成和生产过程中的应用,绿色化学还涵盖了产品生命周期的整个过程。
从原材料的选择和生产到产品使用和处理,绿色化学致力于在整个生命周期中减少对环境的影响。
例如,绿色化学可以帮助降低含有毒物质的产品的使用和排放,鼓励可再生材料的使用,以及促进产品的回收和再利用。
通过整个生命周期的综合考虑,绿色化学可以提供更加可持续和环保的产品和解决方案。
绿色化学的推广和应用离不开跨学科研究和合作。
绿色化学 第二章
末端治理时期 • 由于对化学品的环境危害有了较多的了解,各国 政府相继立法限制废物的排放浓度和排放量,于 是许多企业不得不将废水、废气和废渣进行处理 后才能排放,然而这并没有从根本上解决环境污 染问题。一方面有毒有害物质仍源源不断地被排 放到环境中,1993年美国仅以365种有毒物质估算, 其排放量就达到了 30 亿吨。另一方面,处理污染 物所需费用十分巨大。
1971 年,美国环保署成立, 1972 年正式立法宣布 禁止使用DDT 。
Rachel Carson 被誉为人类环保事业的“普罗米修 斯”。
2. 全球环境保护对策大事记
1972年6月16日 联合国人类环境会议通过《环境宣言》 1973年1月 联合国成立环境规划署。
1977年8月联合国通过“防止荒漠化行动计划”。
• 一、 (防止废物)不让废物产生优于当废物生 成后处理废物或清除废物 • 通常可以预料,制造和使用化学品均有其 正常成本。我们必须支付原料的费用和试剂的 费用。最近二十几年来,化学物质的储存和处 理费用也十分可观,物质越危险,处理的费用 就越高,不管是实验小规模研究活动还是大模 工业生产,情况都是一样的。
第二节 绿色化学定义
• 绿色化学(Green Chemistry)
• 环境无害化学 • (Environmentally Benign Chemistry) • 环境友好化学 • (Environmentally Friendly Chemistry) • 清洁化学(Clean Chemistry)
绿色化学定义
• 绿色化学就是用化学的技术和方法去减 少或消灭那些对人类健康、社区安全、 生态环境有害的原料、催化剂、溶剂和 试剂、产物、副产物等的使用和产生。 (联合国环保署)
• Green chemistry, also called sustainable chemistry, is a philosophy of chemical research and engineering that encourages the design of products and processes that minimize the use and generation of hazardous substances. • 美国环保署定义
第三章绿色化工GreenChemistry
3
化学工业的主要污染物 ── 废气
污染物
主要来源
硫氧化物 硫酸厂、硝酸厂、染料厂、石化 氮氧化物 厂、化纤厂
卤化物 氯碱厂、制冷剂厂、有机合成厂
有机类废气 石化厂、有机合成厂
固体悬浮物 发电厂、焦化厂
硫化氢 硫醇
石化厂、煤气厂、染料厂
4
化学工业的主要污染物──废液
污染物
主要来源
酸、碱类 硫酸厂、硝酸厂、磷肥厂、纯碱厂、石化厂
13
3.1 绿色化学及其特点
绿色化工有三层含义: 第一,是清洁化工,绿色化工致力于从源头制止污
染,而不是污染后的再治理。 第二,是经济化工,绿色化工的合成过程中不产生或
少产生副产物,绿色化学技术应是低能耗和低原材料 消耗的技术。
第三,是安全化工,在绿色化学过程中尽可能不使用 有毒或危险的化学品,其反应条件尽可能是温和的或 安全的,其发生意外事故的可能性是极低的。
11
环境保护经历的三个时期
(1)20世纪中期以前——稀释废物来防治污染时期 采用稀释废物来防治污染的办法导致了20世纪30年代 以来世界范围内的八大公害事件。
(2)20世纪中期至八十年代末——末端治理时期 处理污染物所需费用十分巨大。1992年,美国化学工业 用于环保的费用为1150亿美元,而美国政府清理已污染 地区的费用更高达7000亿美元。高昂的费用使环境治理 → 比利时马斯河 肺部、咳
谷
嗽… 1. 工厂多工
1948年10月 美国多诺拉
1952年12月 英国伦敦
SO2+烟尘→
业污染物积 聚
硫酸 →肺部、 咳嗽、胸闷、
2.
遇雾天
喉痛、呕吐
7
世界八大公害事件
Green Chemistry_四川大学中国大学mooc课后章节答案期末考试题库2023年
Green Chemistry_四川大学中国大学mooc课后章节答案期末考试题库2023年1.One of the obvious effect of catalysis to facilitate the reaction is to minimizethe activation energy (energy costs), and thus reduce the reactiontemperature.参考答案:正确2.Principles for designing safer dye chemicals to aquatic species include:参考答案:Sulfonic group (磺酸基) is better than carboxylic group (羧酸基)_Molecular weight should be larger than 1000 Daltons3.If we compare the molecule A (【图片】) with another molecule B (【图片】), the molecule A shows higher toxicity than the molecule B.参考答案:错误4.In some cases, the application of atomic economical reaction in chemicalsynthesis is not enough for eliminating the formation of wastes. These cases include:参考答案:Low product stereoselectivity_The presence of parallel reaction_Lowequilibrium conversion5.Muscarinic antagonistis (蝇覃碱拮抗剂)【图片】is a silane analog ofneopentyl carbamate (新戊基氨基甲酸酯)【图片】, the former is morebiodegradable than the latter.正确6.The use of catalysts is preferred in green chemistry because of the followingreasons:参考答案:Reduce environmental pollutions_Activate new startingmaterials_Increase the selectivity of a special product_Promote thechemical processes7.For delocalized cationic dyes containing N, the toxicity comparison should be:参考答案:The more substituents on N atom there are, the more acute the toxicity is_Primary N < Secondary N < Tertiary N8.Biodegradability of chemicals is usually enhanced by the following molecularfeatures:参考答案:Oxygen in the form of hydroxyl or carboxylic groups_Un-substitutedlinear alkyl and phenyl rings9.The eventual mineralization of organic compounds can be attributedpredominantly to the biodegradation by higher organisms.参考答案:错误10.Considering the food requirement, the following biomass resources could beused as the chemical feedstocks for producing fine chemicals and liquid fuels:Microalgae_Woody wastes11.These renewable feed-stocks are most often associated with biological andplant based starting materials, including:参考答案:Saw dust_Agricultural wastes12.Catalytic distillation is a kind of technique of process intensification, whichcombines the catalytic reaction and product separation in a single distillation column. Which equipment or techniques in the following are included inprocess intensification?参考答案:Microreactors_Static Mixers_Membrane reactor13.Oxidation reactions are frequently used in petrol-refinery (石油炼制). Tominimize the pollutions induced by inorganic oxidants, some green oxidants could be used in chemical synthesis. These green oxidants include:参考答案:O3_lattice oxygen_N2O14.Which typical environmental problems in the following are related tochemical industry?参考答案:Global warming_Acid rain_Depletion of ozone layer_Photochemicalsmog and haze15.Chemical reaction with 100% atom utilization has two characteristics. Thereactants could be fully utilized, and the resource could be most possiblyused economically. The waste could be minimized.参考答案:正确16.We can use the following substances to replace the traditional inorganicoxidants such as CrO3, KMnO4, and HNO3 in cleaner oxidation reactions:参考答案:H2O2_O2_N2O_Lattice oxygen17.We can control the reaction process even we cannot measure the parametersof chemical reaction.参考答案:错误18.The atomic economical reaction is not a requisite condition (必要条件) foreliminating the formation of wastes because the low equilibrium conversion and low product selectivity in a chemical reaction will also bring aboutpollutions.参考答案:错误19.The goal of green chemistry is to treat the environmental pollutions alreadygenerated in chemical reactions.参考答案:错误20.Renewable feedstocks are the substances that are easily regenerated withintime frames that are accessible to the human lifetime, including carbondioxide and methane.参考答案:正确21.The goal of green chemistry is to eliminate the potential of pollution before itoccurs.参考答案:正确22.Volatile organic compounds (VOCs) are frequently used as solvents inchemical reactions, which will lead to potential harmfulness to handlers and environments. From the viewpoints of green chemistry, which in thefollowing could be used as new solvents instead of VOCs for chemicalsynthesis?参考答案:Supercritical CO2_Deep eutectics (低共熔溶剂)_Water23.The following molecular features of chemicals generally do increase theresistance to aerobic(需氧) biodegradation, except:参考答案:Potential sites of enzymatic hydrolysis_Un-substituted linear alkylchains24.The possible effects of the solubility of chemicals on biodegradability are asfollows:参考答案:Microbial bioavailability_Rate of solubilization25.Which group of metals in the following should we avoid using when we aredesigning metalized acid dyes (金属化酸性染料).参考答案:Al, Cr, or Zn_Al, Cr, or Co_Cr, Co, or Zn26.If O has been inserted into the structure during molecular design, thebiodegradability of a chemical will be enhanced.参考答案:正确27.DDD【图片】is a silane analog of DDT 【图片】(organochlorine pesticide 有机氯杀虫剂), the former is more biodegradable than the latter.参考答案:正确28.The reaction types involved in biomass conversion to fine chemicals andliquid fuels include:参考答案:Hydrolysis_Deoxygenation_Hydrogenation29.One of the research area in Green Chemistry is to use renewable feedstocksfor chemical production. Which could be used as feedstocks for chemicalproduction in the following resources?参考答案:Microalgae_Agricultural wastes_Kitchen garbage_Waste cooking oil30.Traditional pollution treatment can provide a permanent cure.参考答案:错误31.Classification of surfactants includes:参考答案:Anionic surfactants_Cationic surfactants_Amphotericsurfactants_Neutral surfactants32.The majority of chemicals that are toxic to aquatic species are toxic byspecific toxicity.参考答案:错误33.For very insoluble chemicals, the replacement of a given functional groupthat increases solubility may reduce the biodegradability.参考答案:错误34.The introduction of O is particularly important for biodegradation, becausethe 1st step of biodegradation is some kind of oxidation reaction which is almost always the rate limiting step.参考答案:正确35.Several unconventional processing techniques that rely on alternative formsand sources of energy are of importance for process intensification. These alternative forms and sources of energy include:参考答案:Solar energy_Photo and other radiation_Sonic_Microwaves36.The energy is widely used in chemistry and chemical industry in thefollowing aspects:参考答案:Separation energy requirement_Accelerates the reaction rate withheat_The need to control reactivity through cooling_Pre-heating of the reaction mixture。
green chemistry引用缩写
green chemistry引用缩写
绿色化学(Green Chemistry),即可持续发展的化学,是一种旨
在减少或消除对环境和人类健康有害的化学物质的设计、生产和应用方法。
它通过最大限度地减少或消除废物的生成、减少能源消耗和使用环境友好的原材料来提高化学产业的可持续性。
绿色化学的核心原则包括避免产生有毒物质、优化化学反应条件以提高效率、设计可降解的化学物质、最大限度地利用可再生资源、使用催化剂降低活化能和减少废物的生成、设计更安全的化学产品和过程、开发可重复利用的化学方法和设备等。
通过遵守这些原则,绿色化学的目标是在遵循人类健康和环境保护的前提下推动可持续发展。
绿色化学的应用领域广泛,涵盖了从药物研发到化妆品、农业、食品、能源等各个领域。
在药物研发中,绿色化学可以辅助设计更安全、更高效的药物,减少有害副作用和废物产生。
在化妆品和个人护理产品领域,绿色化学可以帮助开发更环保、更安全的成分,同时满足消费者对产品效果的需求。
在农业领域,绿色化学可以改进农药和肥料的设计,减少对环境的污染,提高农作物的产量和质量。
在能源领域,绿色化学可以推动可再生能源的开发和利用,减少对化石燃料的依赖。
总之,绿色化学是一种以可持续发展为导向的化学方法和原则,通过减少对环境和人类健康的潜在危害,推动化学产业的可持续发展。
它
的应用潜力广泛,可以在各个领域中带来更环保、更高效、更安全的化学产品和过程。
绿色化学Green chemistry
绿色化学【摘要】绿色化学是化学科学的一种实践。
介绍了绿色化学的一般概念及绿色化学与环境化学的关系以及绿色化学的一些原则。
从化学反应条件的绿色化、化学反应过程的绿色化及产品绿色化等方面,就绿色化学不应该对环境造成危害进行了表述,展望了绿色化学在环境保护方面的发展前景。
【关键词】化学合成环境保护环境化学绿色化学所有能够被证明的“绿色科技”绿色化学都得到了很好的发展。
绿色化学是化学科学的一种实践,同时它以可行的,安全的以及无污染的方式制造了一种工业生态学的框架,这种方式在消耗最少的材料和最少能源的同时能避免浪费。
图1阐明了这个定义。
有一些关于绿色化学的基本规则。
一些人了解“化学的十二项原则”这个篇文章主要是来说明这些规则。
图一绿色化学的定义的说明或许那些曾经把垃圾桶打翻导致垃圾全部都倾泻在外面的的人都能很好的知道制造垃圾比清理垃圾要容易的多。
由于使用了绿色化学,基本的规则就是意味着预防制造垃圾比清理垃圾要好的多。
如果没有遵循这个简单的规则会导致一些麻烦的和危险的是由时间流逝引起一些问题的垃圾堆放点。
一种非常有效阻止产生垃圾的方法是确保在尽可能的范围内所有的跟一个物品有关的材料应该最后都包含在一个最终的物品。
因此,如果条件允许的情况下,绿色化学的实践就是最大限度的将未加工的材料运用到一个产品中。
我们一般好像不喜欢一个食谱是由很多不能吃的东西而组成的。
同样的道理运用到化学实践中。
在某些方面,原子理论的概念表现了反应物在最终产物中所占的百分比,这是绿色化学的构成的关键。
那些造成或是形成对人类和环境有害的物质应该被制止。
像一些含有有毒化学物的物质是会对工人的健康造成危害。
那些含有的有毒物质可能变成空气污染物或水污染物并且会破坏环境和生物体的健康。
这就是绿色化学和环境化学之间最大的联系。
化学产品应该尽可能有效的用于它指定的用途,但是要确保它是最小的形成有害性。
绿色化学的实践是使大量的设计的化学项目和运用新的化学处理方式,比如保留和加强效能以及减少有毒物质的产生。
做化学实验必须要知道的网站
1. ScienceDirect (SD)网址:/(1) Catalysis Communications (催化通讯)(2) Journal of Molecular Catalysis A: Chemical (分子催化A:化学)(3) Tetrahedron (T) (四面体)(4) Tetrahedron: Asymmetry (TA) (四面体:不对称)(5) Tetrahedron Letters (TL) (四面体快报)(6) Applied Catalysis A: General (应用催化A)2. EBSCOhost数据库网址:/(1) Synthetic Communcations (合成通讯)(2) Letters in Organic Chemistry (LOC)(3) Current Organic Synthesis(4) Current Organic Chemistry3. Springer数据库网址:http:// /(1) Molecules (分子)(2) Monatshefte für Chemie / Chemical Monthly (化学月报)(3) Science in China Series B: Chemistry (中国科学B)(4) Catalysis Letts (催化快报)4. ACS Publications (美国化学会)网址:/(1) Journal of the American Chemical Society (JACS) (美国化学会志)(2) Organic Letters (OL) (有机快报)(3) The Journal of Organic Chemistry (JOC) (美国有机化学)(4) Journal of Medicinal Chemistry (JMC) (美国药物化学)(5) Chemical Reiew (化学评论)5. Royal Society of Chemistry (RSC) (英国皇家化学会)网址:/Publishing/Journals/Index.asp(1) Green Chemistry (绿色化学)(2) Chemical Communications (CC) (化学通讯)(3) Chemical Society Reviews (化学会评论)(4) Journal of the Chemical Society (化学会志)Journal of the Chemical Society, Perkin Transactions 1 (1972-2002) Journal of the Chemical Society, Perkin Transactions 2 (1972-2002) Journal of the Chemical Society B: Physical Organic (1966-1971)Journal of the Chemical Society C: Organic (1966-1971)(5) Organic & Biomolecular Chemistry (OBC) (有机生物化学)/publishing/jo ... p?type=CurrentIssue6. Wiley网址:/(1) Advanced Synthesis & Catalysis (ASC) (先进合成催化)(2) Angewandte Chemie International Edition (德国应用化学)(3) Chemistry - A European Journal (欧洲化学)(4) Chinese Journal of Chemistry (中国化学)(5) European Journal of Organic Chemistry (欧洲有机化学)(6) Helvetica Chimica Acta (瑞士化学)(7) Heteroatom Chemistry (杂原子化学)7. Ingent网址:/(1) Journal of Chemical Research (JCR) (化学研究杂志)(2) Canadian Journal of Chemistry (加拿大化学)(3) Current Organic Chemistry(4) Mini-Reviews in Organic Chemistry(5) Phosphorus, Sulfur, and Silicon and the Related Elements (磷、硫、硅和相关元素)(6) Letters in Organic Chemistry8. Taylor & Francis数据库网址:http://www.journalsonline.tandf. ... sp?referrer=default(1) Synthetic Communications(2) Journal of Sulfur Chemistry(硫化学杂志)(3) Phosphorus, Sulfur, and Silicon and the Related Elements9. Thieme数据库网址:/(1) Synlett (合成快报)(2) Synthesis (合成)10. 日本化学会网址:(1) Chem. Lett. (CL) (化学快报)http://www.jstage.jst.go.jp/browse/cl/_vols(2) Bull. Chem. Soc. Jpn. http://www.csj.jp/journals/bcsj/index.html11. 澳大利亚化学会(Australian Journal of Chemistry)http://www.publish.csiro.au/nid/52.htm12.巴西化学会.br/13.Molecules/molecules/14.韩国化学会http://journal.kcsnet.or.kr/15.印度化学会http://www.niscair.res.in/Scienc ... hin.htm&d=test816.国际有机制备和程序(Organic Preparations and Procedures International,OPPI)/17.有机化学/index.htm有机合成:Organic Syntheses(有机合成手册), John Wiley & Sons (免费)/Named Organic Reactions Collection from the University ofOxford (有机合成中的命名反应库) (免费)/thirdyearcomputing/NamedOrganicReac...有机化学资源导航Organic Chemistry Resources Worldwide/有机合成文献综述数据库Synthesis Reviews (免费)/srev/srev.htmCAMEO (预测有机化学反应产物的软件)/products/cameo/index.shtmlCarbohydrate Letters (免费,摘要)/Carbohydrate_Letters/Carbohydrate Research (免费,摘要)/locate/carresCurrent Organic Chemistry (免费,摘要)/coc/index.htmlElectronic Encyclopedia of Reagents for Organic Synthesis (有机合成试剂百科全书e-EROS)/eros/European Journal of Organic Chemistry (免费,摘要)/jpages/1434-193X/Methods in Organic Synthesis (MOS,有机合成方法)/is/database/mosabou.htmOrganic Letters (免费,目录)/journals/orlef7/index.htmlOrganometallics (免费,目录)/journals/orgnd7/index.htmlRussian Journal of Bioorganic Chemistry (Bioorganicheskaya Khimiya) (免费,摘要) http://www.wkap.nl/journalhome.htm/1068-1620Russian Journal of Organic Chemistry (Zhurnal Organicheskoi Khimii) (免费,摘要) http://www.maik.rssi.ru/journals/orgchem.htmScience of Synthesis: Houben-Weyl Methods of Molecular Transformation/Solid-Phase Synthesis database (固相有机合成)/chem_db/sps.htmlSynthetic Communications (免费,摘要)/servlet/product/productid/SCCSyntheticPages (合成化学数据库) (免费)/The Complex Carbohydrate Research Center (复杂碳水化合物研究中心)/合成材料老化与应用(免费,目录)/default.html金属卡宾络合物催化的烯烃复分解反应(免费)/html/books/O61BG/b1/2002/2.6%20.htm上海化学试剂研究所/英国化学数据服务中心CDS (Chemical Database Service)/cds/cds.html英国皇家化学会碳水化合物研究组织(Carbohydrate Group of the Royal Society of Chemistry)/lap/rsccom/dab/perk002.htm有机反应催化学会(ORCS, Organic Reaction Catalysis Society)/有机合成练习(免费)/中国科学院成都有机化学研究所:催化与环境工程研究发展中心/MainIndex.htm金属有机及元素有机化学:CASREACT - Chemical Reactions Database(CAS的化学反应数据库)/CASFILES/casreact.html日本丰桥大学Jinno实验室的研究数据库(液相色谱、多环芳烃/药物/杀虫剂的紫外谱、物性) (免费)http://chrom.tutms.tut.ac.jp/JINNO/ENGLISH/RESEARCH/research...A New Framework for Porous Chemistry (金属有机骨架) (免费)/alchem/articles/1056983432324.htmlActa Crystallographica Section B (免费,摘要)/b/journalhomepage.htmlActa Crystallographica Section E (免费,摘要)/e/journalhomepage.htmlBibliographic Notebooks for Organometallic Chemistryhttp://www.ensc-lille.fr/recherche/cbco/bnoc.htmlBiological Trace Element Research (生物痕量元素研究杂志) (免费,摘要)/JournalDetail.pasp?issn=0163-4984...Journal of Organometallic Chemistry (免费,摘要)/locate/jnlabr/jomOrganic Letters (免费,目录)/journals/orlef7/index.htmlOrganometallics (免费,目录)/journals/orgnd7/index.htmlSyntheticPages (合成化学数据库) (免费)/金属卡宾络合物催化的烯烃复分解反应(免费)/html/books/O61BG/b1/2002/2.6%20.htm金属有机参考读物:The Organometallic HyperTextBook by Rob Toreki/organomet/index.html金属有机化学国家重点实验室,中国科学院上海有机所/元素有机化学国家重点实验室(南开大学)/在线网络课程:有机金属反应和均相催化机理(Dermot O'Hare 主讲)/icl/dermot/organomet/药物化学:Fisher Scientific/PubMed: MEDLINE和PREMEDLINE (免费)/PubMed/生物医药:BioMedNet: The World Wide Club for the Biological and Medical Community /AIDSDRUGS (艾滋病药物) (免费)/pubs/factsheets/aidsinfs.htmlautodock (分子对接软件) (免费)/pub/olson-web/doc/autodock/DIRLINE (卫生与生物医药信息源库) (免费)/HISTLINE (医药史库) (免费)/TOXNET (化合物毒性相关数据库系列) (免费)/日本药典,第14版(免费)http://jpdb.nihs.go.jp/jp14e/index.html小分子生物活性数据库ChemBank (免费)/Ashley Abstracts Database (药物研发、市场文献摘要) (免费)/databases/ashley/search.aspBIOSIS/BIOSIS/ONLINE/DBSS/biosisss.html从检索药物交易信息库PharmaDeals (部分免费)/从ChemWeb检索有机药物用途及别名库Negwer: organic-chemical drugs and their synonyms (部分免费)/negwer/negwersearch.html美国常用药品索引库RxList (免费)/美国国家医学图书馆NLM的免费在线数据库(免费)/hotartcl/chemtech/99/tour/internet.html制药公司目录(Pharmaceutical Companies on Virtual Library: Pharmacy Page) /company.html37℃医学网/AAPS PharmSci (免费,全文)/Abcam Ltd.有关抗体、试剂的销售,抗体的搜索)/Acta Pharmaceutica (免费,摘要)http://public.srce.hr/acphee/Advanced Drug Delivery Reviews (免费,摘要)http://www.elsevier.nl/locate/drugdelivAmerican Journal of Drug and Alcohol Abuse (免费,摘要)/servlet/product/productid/ADAAmerican Journal of Pharmaceutical Education (AJPE) (免费,全文)/Amgen Inc. (医药)/Anita's web picks (药学与药物化学信息导航)http://wwwcmc.pharm.uu.nl/oyen/webpicks.htmlAnnals of Clinical Microbiology and Antimicrobials (免费,全文)/Annual Review of Pharmacology and Toxicology (免费,摘要)/Anti-Cancer Drug Design (免费,摘要)/antcan/生物有机化学:ScienceDirect: 在线访问Elsevier的1100种期刊全文(免费目录) (免费)/生命、环境科学综合性资源TheScientificWorld (sciBASE)/生物医药:BioMedNet: The World Wide Club for the Biological and Medical Community /BIOETHICSLINE (BIOETHICS onLINE) (免费)/BIOME (生命科学资源导航)/browse/Directory of P450-containing Systems(P450酶系目录)http://p450.abc.hu/DIRLINE (卫生与生物医药信息源库) (免费)/百名最佳生物技术网站列表(Top 100 Biotechnology WWW Sites)/top100.asp从ChemWeb检索《化学工程与生物技术文摘》库CEABA (部分免费)/课程材料:MIT生物学超文本教材:8001/esgbio/7001main.html生物材料网(Biomaterials Network)/生物信息学资源导航,上海生物化学所/bio/index.htm小分子生物活性数据库ChemBank (免费)/英国剑桥医学研究委员会:分子生物学实验室LMB/biology site of the network./生物有机化学:ScienceDirect: 在线访问Elsevier的1100种期刊全文(免费目录) (免费)/生命、环境科学综合性资源TheScientificWorld (sciBASE)/生物医药:BioMedNet: The World Wide Club for the Biological and Medical Community /BIOETHICSLINE (BIOETHICS onLINE) (免费)/BIOME (生命科学资源导航)/browse/Directory of P450-containing Systems(P450酶系目录)http://p450.abc.hu/DIRLINE (卫生与生物医药信息源库) (免费)/百名最佳生物技术网站列表(Top 100 Biotechnology WWW Sites) /top100.asp从ChemWeb检索《化学工程与生物技术文摘》库CEABA (部分免费) /课程材料:MIT生物学超文本教材:8001/esgbio/7001main.html生物材料网(Biomaterials Network)/生物信息学资源导航,上海生物化学所/bio/index.htm小分子生物活性数据库ChemBank (免费)/英国剑桥医学研究委员会:分子生物学实验室LMB/biology site of the network./[ Last edited by 木头83 on 2008-7-28 at 20:46 ]/bbs/viewthread.php?tid=907727。
Green Chemistry 绿色化学
Atom Economy
Environmen t-friendly Product
The safety of the production process
Atom Economy
• The atom economy proposed by the American chemist Barry M. Trost in 1991, refers to atoms in the reactants should be transformed as much as possible into the product atoms in the chemical reaction; namely improving the conversion rate of chemical reaction while minimizing by-products.
• 绿色化学是一门新兴的化学分支,以“原子经济 性”为原则,研究如何在产生目的产物的过程中 充分利用原料,减少有害物质的释放。
Main Contents of Green Chemistry
Non-toxic and Harmless Material
Improve the utilization of raw materials
Green Chemistry
Definition
• Green Chemistry is an emerging branch of the chemistry, the principle of "atom economy", studying how to make full use of raw materials, reduce the release of hazardous substances in the process to produce the target ion in a chemical process
绿色化学greenchemistry-精品文档
绿色化学的特点
绿色化学所研究的中心问 题是使化学反应具有以下 的特点:
(1)采用无毒、无害的原料; (2)在无毒无害的反应条件 下进行; (3)具有“原子经济性”, 即反应具有高选择性,极少 副产品,甚至实现零排放; (4)产品应是环境友好的。 (5)满足“物美价廉”的传 统标准
C H 2 O
H C N
H S O 98% M e O H 2 4
O
Pd C H O H C H C C C O + C H CC H+ O M e 3 3 3 6MPa 60且避免使用强腐蚀性H2SO4的使用。
又如无铅汽油添加剂甲基叔丁基醚(MTBE)的工业生产 过程用磺酸树脂取代浓H2SO4作醚化催化剂。可见,无 毒、无害的催化剂保证了绿色化学其从根本上消除污染 的重要意义。
绿色化学专题报告
报告人:邵嘉亮 组员 :阙丹妮, 陈晓云,黄颖瑜, 周燕坤
绿色化学(Green Chemistry)
1. 绿色化学的基本介绍 2. 绿色化学与有机合成 3. 绿色化学与催化 4. 绿色化学与环境保护
绿色化学的介绍
绿 色 化 学 又 称 环 境 无 害 化 学 ( Environmentally Benign Chemistry)、 环 境 友 好 化 学 ( Environmentally Friendly Chemistry)、 清 洁 化 学 ( Clean Chemistry) 。绿色化学是新世纪人们 追求健康,环保,生态平衡的趋势。 是用化学的技术和方法去减少或停止 那些对人类健康、社区安全、生态环 境有害的原料、催化剂、溶剂和试剂、 产物、副产物等的使用和产生。其理 想是使污染消除在生产的源头,使整 个合成过程和生产过程对环境友好, 从根本上消除污染。
绿色化学引论:第一章
Welcome to Green Chemistryv v v v v绿色化学 Green Chemistryv秦松, 四川大学副教授,硕士生导师 秦松, 承担国家自然科学基金2项 承担国家自然科学基金2 Email: qinsong@ Tel: 85415608(Lab.) 办公室地址: 第一理科楼 南 201 办公室地址: 化学学院绿色化学导论公选化学学院化学学院教材及参考书主要教材参考书1. 胡常伟,李贤均,《绿色化学原理及应用》 胡常伟,李贤均, 绿色化学原理及应用》 中国石化出版社,2002. 中国石化出版社,2002. 2. Anastas P.T., Williamson T.C. Green Chemistry, Theory and Practice, Practice, London: Oxford University Press,1998 3. Anastas P.T., Heine L. G., Williamson T.C., Green Chemical Synhesis and Processes, ACS Processes, Symposium Series 767, 2000 4. Tundo P., Anastas P. Green Chemistry Challenging Perspectives, Oxford, Perspectives, 1999 5. Clark J., Macquarrie D.Handbook of Green Chemistry and Technology, Technology, Blackwell Science, 2002化学学院化学学院参考书6. Anastas P.T., Williamson T.C. Green Chemistry, Frontiers in Benign Chemical Synthesis and Processes London: Oxford University Press,1998 7. Anastas P.T., Williamson T.C. Green Chemistry—Designing Chemistry for the Environment Washington: American Chemical Society,1996 8. 仲崇立,《绿色化学导论》 仲崇立, 绿色化学导论》 北京:化学工业出版社,2000. 北京: 化学工业出版社,2000. 9. 闵恩泽,吴巍,《绿色化学与化工》 闵恩泽,吴巍, 绿色化学与化工》 北京:化学工业出版社,2000. 北京: 化学工业出版社,2000. 10. 朱宪,《绿色化学工艺》 朱宪, 绿色化学工艺》 北京:化学工业出版社,2001 北京: 化学工业出版社,2001第一章 绪论化学是一门中心的,实用的和创造性的学科。
绿色化学讲座GreenChemistry
染,保护环境。
03
可降解塑料的发展前景
随着环保意识的提高和技术的不断进步,可降解塑料的应用前景越来越
广阔,未来有望替代传统塑料。
无毒溶剂的开发与应用
无毒溶剂的特性
01
无毒溶剂是指在使用过程中对人体和环境无害的溶剂,具有低
毒或无毒、低刺激或无刺激等特点。
无毒溶剂的应用领域
02
无毒溶剂广泛应用于涂料、油墨、胶粘剂、清洗剂等领域,能
建立健全相关法规和标准,规范绿色 化学技术的使用和推广。
加强绿色化学技术的宣传和推广,提 高社会认可度。
加强国际合作,共同应对全球环境问 题,提高国际影响力。
前景与展望
绿色化学将成为未来化学工业的发展方向,具有广阔的 市场前景。
政府、企业和学术界的共同努力将推动绿色化学技术的 快速发展。
随着技术的不断进步和应用领域的拓展,绿色化学将为 人类带来更多的福祉。
高效催化剂在石化、化工、制药等领域得到广泛应用,如丙烯酰胺 催化剂、乙烯氧化催化剂等。
高效催化剂的发展趋势
随着环保法规的日益严格和技术的不断进步,高效催化剂的需求量 不断增加,未来市场前景广阔。
绿色燃料的生产与使用
绿色燃料的特性
绿色燃料是指在使用过程中对环境和人体健康的危害较小的燃料, 如生物柴油、氢能等。
低碳技术
开发和推广低碳技术,如 可再生能源和碳捕获和储 存技术,以降低碳排放。
能源转型
推动能源结构的转型,从 化石能源向可再生能源转 变,以实现能源的可持续 利用。
高效利用资源
资源优化
通过优化工艺和产品设计,减少 原材料的使用量,提高资源利用
效率。
循环经济
推行循环经济理念,实现资源的循 环利用,减少资源浪费和环境负荷。
美国的绿色化学计划和总统绿色化学奖
美国的绿色化学计划和总统绿色化学奖
马永正
【期刊名称】《中国科技奖励》
【年(卷),期】2000(008)004
【摘要】@@ 绿色化学就是用化学的方法预防污染.具体地讲,绿色化学是指化学产品和生产过程的设计对环境和人类健康更加有利,它包括化学生产的各个方面和所有类型.通过减少特定化学合成和生产过程中有害物质的应用和产生,化学家可以极大地减轻化学工业对人类健康和环境的威胁.通过产品的设计和加工来达到预防污染的目的是美国环保署绿色化学计划(Green Chemistry Program)的核心,也是环保署为环境而设计计划(Design for the Environment Program)的有效尝试.【总页数】3页(P35-37)
【作者】马永正
【作者单位】驻美使馆科技处
【正文语种】中文
【中图分类】X327.120.1
【相关文献】
1.美国总统绿色化学奖 [J], 文思
2.美国的绿色化学计划和总统绿色化学奖 [J], 陆文华
3.1998年美国总统绿色化学挑战奖得主--总统绿色化学挑战奖认可的五项与环境友好的技术 [J], 白路娜
4.1999年美国绿色化学奖 [J], 毛卓寰
5.2010年美国绿色化学奖推动可持续发展 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
绿色化学-第二章
➢ We could compare and select the most favorable substance and method under specified conditions.
Page 10
进一步认识绿色化学 Deeper viewpoints on Green Chemistry
Scientific viewpoints: Green Chemistry concerns new research area of
chemistry. It rejuvenates(更新) the contents of chemistry. Economical viewpoint: Green Chemistry provides fundamental principles and techniques to utilize effectively the starting materials(resources) and energy, meanwhile the cost of the production is reduced, thus satisfying the requirements of sustainable development.
Page 4
绿色化学的目标 ☺ No pollution should be accompanied in chemical
processes, this is to say, eliminate the potential(潜 力) of pollution before it occurs. ☺ The realization of this goal means no environmental control is needed, because there will be no pollution.
绿色化学
名称解释按照美国《绿色化学》(GreenChemistry)杂志的定义,绿色化学是指:在制造和应用化学产品时应有效利用(最好可再生)原料,消除废物和避免使用有毒的和危险的试剂和溶剂。
而今天的绿色化学是指能够保护环境的化学技术.它可通过使用自然能源,避免给环境造成负担、避免排放有害物质.利用太阳能为目的的光触媒和氢能源的制造和储藏技术的开发,并考虑节能、节省资源、减少废弃物排放量。
绿色化学又称“环境无害化学”、“环境友好化学”、“清洁化学”,绿色化学是近十年才产生和发展起来的,是一个“新化学婴儿”。
它涉及有机合成、催化、生物化学、分析化学等学科,内容广泛。
绿色化学的最大特点是在始端就采用预防污染的科学手段,因而过程和终端均为零排放或零污染。
世界上很多国家已把“化学的绿色化”作为新世纪化学进展的主要方向之一。
提出背景化学在为人类创造财富的同时,给人类也带来了危难。
而每一门科学的发展史上都充满着探索与进步,由于科学中的不确定性,化学家在研究过程中不可避免地会合成出未知性质的化合物,只有通过经过长期应用和研究才能熟知其性质,这时新物质可能已经对环境或人类生活造成了影响。
传统的化学工业给环境带来的污染已十分严重,目前全世界每年产生的有害废物达3亿吨~4亿吨,给环境造成危害,并威胁着人类的生存。
严峻的现实使得各国必须寻找一条不破坏环境,不危害人类生存的可持续发展的道路。
化学工业能否生产出对环境无害的化学品?甚至开发出不产生废物的工艺?绿色化学的口号最早产生于化学工业非常发达的美国。
1990年,美国通过了一个“防止污染行动”的法令。
1991年后在,“绿色化学”由美国化学会(ACS)提出并成为美国环保署(EPA)的中心口号,并立即得到了全世界的积极响应。
重要性传统的化学工业给环境带来的污染已十分严重,目前全世界每年产生的有害废物达3亿吨~4亿吨,给环境造成危害,并威胁着人类的生存。
化学工业能否生产出对环境无害的化学品?甚至开发出不产生废物的工艺?有识之士提出了绿色化学的号召,并立即得到了全世界的积极响应。
初中全英化学课程 green chemistry
3. Less Hazardous Chemical Synthesis
Heating Cooling Stirring Distillation Compression Pumping Separation
GLOBAL WARMING
Energy Requirement (electricity)
Burn fossil fuel
CO2 to atmosphere
“A raw material of feedstock should be renewable rather than depleting wherever technically and economically practical”
Ac 2 O A l Cl 3
C O C H3
Cl C H 2 C O 2 Et Na O Et
H 2 O / H+
Et O 2 C
O
OHCBiblioteka N H2 O HH 2 O / H+
N H O2 C
OHN
N H3
Hoechst Route To Ibuprofen
AcOH
HF Ac2O
H2 / Ni
CO, Pd
Non-renewable Renewable
Resource Depletion • Renewable resources can be made increasingly viable technologically and economically through green chemistry.
Green Chemistry Sustainable Chemistry
Green Chemistry Sustainable Chemistry Green chemistry, also known as sustainable chemistry, is a field that focuses on designing chemical products and processes that reduce or eliminate the use and generation of hazardous substances. It aims to minimize the negative impact of chemical processes on human health and the environment, while also promoting the efficient use of resources. This approach to chemistry has gained significant attention in recent years as the need for sustainable practices becomes increasingly urgent in the face of climate change and environmental degradation.From an environmental perspective, green chemistry offers a promising solution to the widespread pollution caused by traditional chemical processes. By developing alternative methods that prioritize the use of renewable resources and the reduction of waste, green chemistry has the potential to significantly decrease the environmental footprint of the chemical industry. This is particularly important given the significant role that the chemical industry plays in global pollution and greenhouse gas emissions. Embracing green chemistry principles can lead to a more sustainable and ecologically responsible approach to chemical production, ultimately benefiting the health and well-being of our planet.Furthermore, green chemistry also presents economic opportunities for businesses and industries. By adopting sustainable practices, companies can reduce their reliance on non-renewable resources and minimize the costs associated with waste management and environmental remediation. Additionally, the growing consumer demand for eco-friendly products has created a market for sustainable alternatives, providing a competitive edge for businesses that prioritize green chemistry. As a result, embracing green chemistry principles can lead to long-term cost savings and improved market positioning for companies across various sectors.On a societal level, the implementation of green chemistry practices can have far-reaching benefits for human health and well-being. By reducing the use of toxic substances in chemical processes, green chemistry helps to minimize the potential risks of exposure to harmful chemicals for workers in the industry and the general population. This is particularly important in communities located near chemical plants or waste disposal sites, where thenegative health impacts of traditional chemical processes are often disproportionately felt. By prioritizing the development of safer and more sustainable chemical products and processes, green chemistry has the potential to improve public health outcomes and create safer working environments for individuals employed in the chemical industry.However, despite the numerous benefits of green chemistry, there are also challenges and barriers to its widespread adoption. One of the main obstacles is the resistance to change within the chemical industry, which has long been entrenched in traditional methods and may be hesitant to invest in the research and development necessary to transition to greener practices. Additionally, there may be concerns about the initial costs of implementing green chemistry initiatives, as well as the need for retraining and retooling existing infrastructure. Overcoming these challenges will require a concerted effort from both the public and private sectors to invest in research, education, and policy measures that support the transition to green chemistry.In conclusion, green chemistry holds great promise as a sustainable and environmentally responsible approach to chemical production. By prioritizing the use of renewable resources, the reduction of waste, and the development of safer chemical processes, green chemistry offers a pathway towards a more sustainable future for the chemical industry and the planet as a whole. While there are challenges to its widespread adoption, the potential benefits for the environment, the economy, and public health make it a crucial area of focus for the future of chemistry. Embracing green chemistry principles is not only a moral imperative but also a practical and economically viable strategy for creating a more sustainable and prosperous world for future generations.。
绿色化学与技术的新进展
欢迎下载 可修改
5
★ 中国
制订了“科教兴国”和可持续发展策略,并 于1993年世界环境和发展大会之后,编制了 《中国21世纪议程》郑重声明走可持续发展道 路的决心。
◆ 1995年中国科学院化学部组织了《绿色化学与技
术——推进化工生产可持续发展的途径》院士咨询活 动
◆ 1997年国家自然科学基金委“九五”重大项目:环 境友好石油化工催化化学与反应工程
丙烯与苯烷基化 AlCl3
、MCM-22 液相法
长链烯烃与苯
HF
烷基化
固体酸-固定床
➢传统AlCl3、HF催化剂的缺点:腐蚀设备,危害 人身健康和社区安全,废水、废渣污染环境
欢迎下载 可修改
25
开发新一代芳烃烷基化 固体酸催化剂
➢ 分子筛固体酸催化剂
环境友好,但是:酸强度低,分布不均,酸 中心少;因而,反应温度和压力高,产品杂质 增多
开发新一代苯与烯烃烷基化无毒无 害固体酸催化剂
欢迎下载 可修改
16
烃类氧化的“原子经济” 反应正在改进
➢ 20世纪80年代发明钛硅分子筛作 为催化剂
➢ 采用H2O2为氧化剂
➢ 实现下列“原子经济”反应
丙烯环氧化制环氧丙烷
环己酮氨氧化制环己酮肟
苯酚氧化制对苯欢迎二下载酚可修改
17
丙烯环氧化制环氧丙烷
欢迎下载 可修改
28
超临界二氧化碳溶剂的优点
➢ 二氧化碳在常温下是气体,无色、无味、 不燃烧、化学性质稳定
➢ 不会形成光化学烟雾,也不会破坏臭氧层 ➢ 来源丰富,价格低廉 ➢ 超临界二氧化碳可很好地溶解一般有机化
合物
欢迎下载 可修改
29
用超临界二氧化碳代替 挥发性有机溶剂的应用
交叉脱氢偶联反应_郭兴伟
叉脱氢偶联产物 。 反应可能的机理和前文提出的机 理类 似, 胺 在 Cu 催 化 剂 作 用 下 通 过 氧 化 产 生 亲 电 进而接受芳香化合物的亲核进攻 性的亚胺中间体, 实现 C — C 键的脱氢偶联 。
。 使用 CuBr 作 为 催 化 剂 和 定 量 的 过
不 同 结 构 的 N -对 甲 氧叔丁醇( TBHP ) 作 为 氧 化 剂, 氧基苯基甘氨酸酰 胺 与 苯 乙 炔 反 应, 可以一步得到 较好收率 的 甘 氨 酸 酰 胺 衍 生 物 。 产 物 经 过 还 原 氢 化、 脱对甲氧基苯基 等 简 单 操 作 就 可 以 很 有 效 地 合 成苯丙氨酸的衍生物( 图式 6 ) 。 该类化合物是一种 非常 重 要 的 血 管 紧 张 素 转 换 酶 抑 制 剂 的 合 成 前 体
当使 用 四 氢 异 喹 啉 骨 架 作 为 反 应 底 物 时, 反应 选择性发生在苄位 C — H 键( 图式 5 ) 。
图式 1
交叉脱氢偶联的概念
[ 5]
Scheme 1
Conceptual approach of CDC[5 ]
2
2. 1
Cu 催化的 CDC 反应
sp 3 C — H-sp C — H 偶联 2004 年, 李 朝 军 课 题 组 首 次 报 道 了 CuBr 催 化
McGill University ,Montreal H3A 2K6 ,Canada ) 摘 要 发现高效高选择性的有机合成反应是有机合成化学研究中一个重要的发展方向 。 传统的有机
合成化学是建立在官能团相互转化基 础 上 的 , 又 称 官 能 团 化 学。 非 活 泼 化 学 键 ( 如 C—H 键 ) 的 直 接 官 能 团 化省去了一步甚至多步制备官能团化的反应底物 , 因此 , 非活泼化学键活化是提高有机合成反应效率的一个 CDC ) 反应就是直接利用不同反应底物中的 C — H 重要发展方向 。 交叉脱氢偶联 ( cross-dehydrogenative-coupling , 键, 在氧化条件下 , 进行脱氢偶联反应形成 C — C 键 。 交叉脱氢偶联反应实现了更短的合成路线和更高的原子利 为直接利用简单的原料进行高效的复杂的有机合成任务提供了一条新的思路和手段 。 用效率 , 关键词 C—H键 交叉偶联反应 氧化反应 非活泼化学键 氧化活化 中图分类号 : O621. 3 文献标识码 : A 281X ( 2010 ) 07143408 文章编号 : 1005-
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Pure Appl.Chem., Vol.78, No.5, pp.935–945, 2006.doi:10.1351/pac200678050935©2006 IUPACGreen chemistry:The development ofcross-dehydrogenative coupling (CDC) forchemical synthesis*Chao-Jun Li‡and Zhiping LiDepartment of Chemistry, McGill University, 801 Sherbrooke St.West, Montreal,Quebec, H3A 2K6, CanadaAbstract: Social, economic, and environmental concerns about chemical production havebeen increasing. These concerns all originate from the inefficiency of conventional chemicalsyntheses. On the basis of the “E-factor”, a concept of the “extended E-factor” is proposedin the article and is used to correlate various industrial sectors and the average number of syn-thetic steps involved in those sectors. Based on this analysis, the most fundamental way toeliminate waste formation is to develop new chemical reactivity that can greatly shorten thesteps involved in a chemical synthesis. In classical organic transformations, a “functionalgroup” is required. In efforts to develop new chemical reactivities that do not need extra stepsfor generating functional groups, we have recently developed various cross-dehydrogenativecoupling (CDC) methodologies to construct functional molecules by directly using C–Hbonds. This article describes the progress of our group’s research endeavor.Keywords: green chemistry; E-factor; extended E-factor; C–C bond reaction; transition-metal-catalyzed; cross-coupling reactions; functional group chemistry.INTRODUCTIONOver the past two centuries, the fundamental theories and reactivities in chemistry have been soundly established. Such theories and reactivities provided the foundation for the chemical enterprise that meets critical living needs such as food for the world populations, achieves various medical wonders that save millions of lives and improve people’s health, and produces essential material needs for mod-ern life and the future needs of mankind. Just less than two centuries ago, organic compounds were be-lieved to be accessible only through biological processes under the influence of “vital forces” [1], cur-rently, molecules with great complexities can be synthesized readily. The total syntheses of natural products such as vitamin B12[2] and palytoxin [3] in the laboratory represent achievements compara-ble to the construction of the Great Pyramids.Unfortunately, the great scientific and economic achievements of the modern era came with a price. The depletion of ozone in the stratospheric layer; the extinction of bio-species; the deterioration of water, air, and soil quality; the alarming global climate changes, combined with the fast-growing pop-ulation and the rapid depletion of natural resources result in an unsustainable future for the planet Earth. Traditionally, environmental science has played the pivotal role in detecting environmental problems and finding ways to remediate them. Environmental policies have been surrounded by enforcing regu-935C.-J.LI AND Z.LI©2006 IUPAC, Pure and Applied Chemistry 78, 935–945936CDC REACTIONS BETWEEN SP 3C–H AND SP C–H [15e]As a start toward our objective, we first chose propargylic amines as our synthetic target. Propargylic amines are of great pharmaceutical interest and are synthetic intermediates for various nitrogen com-pounds [17]. Two main methods have been used to construct propargylic amines (Scheme 2): Path A is the stoichiometric nucleophilic reactions [18], and path B is the transition-metal-catalyzed reactions of alkynes and imines generated from aldehydes and amines. There are many excellent examples of these two methods. For examples, we [19] and others [20] have described the direct addition of a terminal alkyne to aldehyde and imines to afford propargyl alcohols and propargyl amines. With Cu(I)-pybox as a chiral catalyst, we developed a highly enantioselective imine addition in either water or toluene [21].We also developed the coupling of alkynes with N -acylimines and N -acyliminium ions by a CuBr cat-alyst, and the gold- or silver-catalyzed coupling reaction of alkyne, aldehyde, and amine in water [22].Although they are effective, these methods need a leaving group or imines formed from aldehyde and amine. With the development of more efficient methods in mind, our research objective was centered on directly constructing propargylic amines by the catalytic coupling of sp 3C–H adjacent to nitrogen with a terminal alkyne (path C) [15e].To achieve this challenge, we used N ,N -dimethylaniline and phenylacetylene as standard starting materials to find the optimal reaction conditions. Because a hydrogen acceptor is an essential reagent in this oxidative cross-coupling reaction, we chose O 2, H 2O 2, and some peroxides as the oxidant. To achieve this cross-coupling reaction, transition-metal catalysts are also important. There are two main reasons for this: (a) transition-metal catalysts usually efficiently promote cross-coupling reactions; and (b) they are required as an oxidant activator. We found that the desired product was obtained in good ©2006 IUPAC, Pure and Applied Chemistry 78, 935–945Developing green chemistry for chemical synthesis 937Scheme 1Various cross-coupling methods for the formation of C–C bonds.Scheme 2Various methods for forming propargylamines.yield with the combination of a copper catalyst and tert -butyl hydroperoxide (TBHP). Thus, various copper salts were examined as catalysts for the alkynylation of N ,N -dimethylaniline. CuBr, CuBr 2,CuCl, and CuCl 2proved to be most effective catalysts. No reaction was observed in the absence of a copper catalyst. To improve the yields, various ratios of N ,N -dimethylaniline and alkynes as well as TBHP were examined. The best yield was obtained when the N ,N -dimethylaniline:alkynes:TBHP ratio is 2:1:1. Based on the NMR spectrum of the crude reaction mixture, nearly 1 equiv of N ,N -dimethyl-aniline remained after the reaction was completed. When the amount of N ,N -dimethylaniline was re-duced, however, the yields decreased. The yields were markedly decreased when the amount of TBHP was reduced to 0.5 and 0.25 equiv. The reaction did not proceed without TBHP either.With the optimized reaction conditions in hand, various alkynes were reacted with amines (Scheme 3). Representative examples are shown in Scheme 3. The reaction of N ,N -dimethylaniline (2equiv) with phenylacetylene in the presence of a CuBr catalyst (5 mol %) and TBHP (1.0 equiv) at 100 °C for 3 h gave N -methyl-N -(3-phenylprop-2-ynyl)benzenamine in 74% isolated yield. For aro-matic alkynes, the reaction often provided good yields of the desired products. For aliphatic alkynes,the corresponding products were formed in lower yields. The reactions were found to tolerate functional groups such as alcohol and ester.When benzyldimethylamine was reacted with phenylacetylene under the standard conditions,alkynylation of the methyl group was the main product (Scheme 4). The minor product could not be isolated. Cyclic amines such as tetrahydroisoquinoline can be selectively converted into the correspon-ding C1-alkynylation compound in 74% isolated yield (Scheme 5). 1-Phenyl-piperidine reacted with phenylacetylene in the presence of a catalytic amount of CuBr and 1 equiv of TBHP to give the desired direct alkynylation product in 12% yield together with a tert -butyloxide alkynylation compound (12%)(Scheme 6).C.-J.LI AND Z.LI©2006 IUPAC, Pure and Applied Chemistry 78, 935–945938Scheme 3Copper-catalyzed alkynylation of amines.Scheme 4Reaction of N ,N -dimethylbenzylamine.Scheme 5Reaction of cyclic benzylamine.CDC REACTIONS BETWEEN SP 3C–H AND SP 2C–H [15b]Indoles and tetrahydroquinolines are common substructural units in natural products [23]. There are two main methods to synthesize indolyl tetrahydroisoquinolines: (1) the reactions of indoles with cotar-nine [24]; and (2) the reactions of N -imidolylcycloimmonium salts with indoles followed by a catalytic hydrogenation [25]. However, these methods require multistep synthesis to generate the starting mate-rials. To address this challenge as well as to extend the scope of CDC methodology, we decided to ex-amine the synthesis of such alkaloids by directly using free (NH)-indoles and tetrahydroisoquinolines[26]. The desired product was successfully obtained when tetrahydroisoquinoline reacted with indole under our CuBr/TBHP system. The reaction was not sensitive to moisture and air. Even when the reac-tion was carried out in water under an atmosphere of air, the desired product was obtained in reason-able yield. The yield was improved when the temperature was raised to 50 °C. Using slightly excess amounts of 2a and TBHP provided the best results.Under the optimized reaction conditions, various indoles were reacted with tetrahydroisoquino-lines. The desired products were formed in good to excellent yields (Scheme 7). The reactions selec-tively occurred at C3 position of indoles, if both C2 and C3 positions of indoles are unoccupied. When the C3 position of indoles is substituted, the C2-substituted products were obtained. Indoles with elec-tron-withdrawing or -donating groups also worked well under present reaction conditions.CDC REACTIONS BETWEEN SP 3C–H AND SP 3C–H [15a,c]With the success of the CDC reactions between sp 3C–H and sp C–H, as well as between sp 3C–H and sp 2C–H, the next challenge for us is the CDC reactions of sp 3C–H and sp 3C–H. Vicinal diamines are also important compounds in biologically active natural products in medicinal chemistry, and more re-cently (as a core unit) are used as chiral auxiliaries and chiral ligands in asymmetric catalyses [27]. An efficient approach toward such compounds is via the nitro-Mannich (aza-Henry) reaction.Our early efforts on this coupling were focused on the reaction of 1,2,3,4-tetrahydroisoquinoline with nitromethane, in which nitromethane was used as solvent. Various copper catalysts, such as CuCl,©2006 IUPAC, Pure and Applied Chemistry 78, 935–945Developing green chemistry for chemical synthesis 939Scheme 6Reaction of simple cyclic amine.Scheme 7CDC reactions of various indoles with tetrahydroisoquinolines.CuBr, CuI, Cu(OTf), CuCl 2, CuBr 2, Cu(OTf)2, and Cu(OAc)2·H 2O, were examined under an ambient temperature, and the desired product was obtained in all cases. Again, CuBr was found to be the most effective catalyst. The desired product was obtained in over 90% yield even when the amount of CuBr was reduced to 2 mol %. Under the optimized conditions, various β-nitroamine derivatives were gen-erated by this new methodology (Scheme 8). 1,2,3,4-Tetrahydroisoquinoline derivatives and 4-substi-tuted N ,N -dimethylaniline gave excellent yields of the desired products based on NMR analysis of the reaction mixture. Moreover, when 1 equiv of nitromethane was used, the desired products were also ob-tained with good isolated yields (over 63%). The use of nitroethane instead of nitromethane also gave the desired compounds with good isolated yields (the ratios of two diastereoisomers are 1.5-2:1). In the case of N ,N -dimethylaniline, a low yield was obtained which was attributed to the formation of the demethylated compound and other unidentified by-products.Other cyclic amines such as 1-phenyl-pyrrolidine also generated the desired product in good yield (Scheme 9). In this case, bis-CDC product is also formed in 4 % isolated yield along with the mono-CDC product.Accordingly, various β-diester amine derivatives were obtained when stoichiometric tetrahydro-isoquinolines and dialkyl malonates were used with 5 mol % CuBr together with 1 equiv TBHP under room temperature (Scheme 10) [15a]. To further improve the high efficiency of this new methodology,1 mmol scale of the reaction was carried out with 0.5 mol % CuBr as the catalyst. The desired product was obtained in 72% isolated yield.C.-J.LI AND Z.LI©2006 IUPAC, Pure and Applied Chemistry 78, 935–945940Scheme 8CDC reactions of tertiary amines with nitroalkanes.Scheme 9Reaction of 1-phenyl-pyrrolidine with nitromethane.Next, we investigated the synthesis of β-dicyano tetrahydroisoquinolines by using malononitrile as the pronucleophile under the standard reaction conditions (Scheme 11). The desired product, β-di-cyano tetrahydroisoquinoline, was obtained in 29% isolated yield. Surprisingly, α-cyano product was also obtained as one of the unexpected by-products. The yield of β-cyano product was increased to 46%along with 6% of α-dicyano tetrahydroisoquinoline when 6 equiv of malononitrile were used. To form α-cyano product, –CN anion must be produced during the reaction. When excess TBHP (2 equiv of TBHP) was used, α-cyano product was obtained as the main product and β-dicyano tetrahydro-isoquinoline was not observed by NMR.ASYMMETRIC CDC REACTIONS BETWEEN SP 3C–H AND SP C–H [15d]Enantioselective catalytic C–C bond formation has attracted much attention in both academic and in-dustrial research. From the asymmetric synthetic concept point of view, a prochiral sp 2carbon center is generally necessary as a precursor for constructing a chiral carbon center (Scheme 12, route a). This is because most asymmetric syntheses are based on the reaction of double bonds (prochiral faces), being converted into chiral carbon centers. Important progress has been made in the asymmetric C–C bond formations based on the addition of various C–H bonds to prochiral double bonds recently [28]. On the other hand, an even bigger challenge is to achieve enantioselective C–C bond formations based on ac-tivation of sp 3C–H bonds of prochiral CH 2groups (Scheme 13, route b) [29]. With our first Cu-cat-alyzed alkynylation of sp 3C–H bonds adjacent to a nitrogen atom (Scheme 3) in hand [15e], it opens an opportunity to achieve catalytic asymmetric C–C bond formations based on reaction of sp 3C–H bonds of prochiral CH 2groups.©2006 IUPAC, Pure and Applied Chemistry 78, 935–945Developing green chemistry for chemical synthesis 941Scheme 10CDC reaction of tetrahydroisoquinolines with malonates.Scheme 11CDC reaction of tetrahydroisoquinoline with malononitriles.Tetrahydroisoquinoline alkaloids with a stereocenter at C1 carbons exist widely in nature and are compounds of extensive interest owing to their biological and pharmacological properties. Various methodologies have been developed to construct this stereogenic center [30]. The main synthetic strate-gies are diastereoselective and enantioselective nucleophilic addition and Friedel–Crafts reaction (Scheme 13, route a) and asymmetric hydrogenation (Scheme 13, route b) of acyclic or cyclic imines or iminium intermediates, including Pictet–Spengler, Bischler–Napieralski, and Pomeranz–Frisch reac-tions. Although these methods have provided optically active C1-substituted tetrahydroisoquinoline de-rivatives, a more direct and simpler synthetic method (Scheme 13, route c) is still highly attractive.Chiral bisoxazolines 1–4 [31]and QUINAP 5and BINAP 6 were proved as good ligands in cop-per-catalyzed reactions in the literature. Therefore, various copper salts and chiral compounds 1–6as ligands were examined under different conditions, such as different solvents and temperature. Ligand 1was proved the best ligand in the reaction. Both Cu(I) and Cu(II) were found to be effective as the cat-alysts, however, slightly higher enantioselectivities were observed with Cu(I) catalysts. The use of Cu(OTf) provided better enantioselectivities than CuBr. The lowering of the reaction temperature (50°C) is beneficial to the enantioselectivities. Various solvents can be used and the best enantio-selectivity was obtained by using THF as solvent. The catalytic asymmetric alkynylation also proceeds in water or without a solvent, both the yields and the enantioselectivities were decreased.C.-J.LI AND Z.LI©2006 IUPAC, Pure and Applied Chemistry 78, 935–945942Scheme 12Methods for constructing chiral carbon centers.Scheme 13Asymmetric strategies to C1-substituted tetrahydroisoquinolines.Subsequently, a variety of substrates were examined by using the combination of Cu(I)OTf/1as the chiral catalyst (Scheme 14). For aromatic substituted alkynes, reactions usually provided both good yields and enantiomeric excesses. Electron-withdrawing groups or electron-donating group R 2on aryl ring did not substantially influence the isolated yields and enantioselectivities of the desirable products.For aliphatic substituted alkynes, fair or low enantiomeric excess were obtained. Studies showed that the 4-substituted methoxy group on aryl ring R 1did not influence the enantioselectivity of the reaction.Interestingly, the presence of an ortho methoxy substituent group on aryl ring (R 1) did improve the enantiomeric excess up to 74%. The enhanced enantioselectivity is most likely due to the coordination of the oxygen in the ortho methoxy substituent to copper or the steric effect of the ortho substituent on the aryl ring.CONCLUSION AND OUTLOOKSAs an effort to develop green chemistry for chemical synthesis, a new concept of cross-coupling reac-tion, CDC reaction, was established. Various nitrogen-containing compounds were obtained efficiently via CDC reactions under mild reaction conditions. The scope of such CDC reactions can be extended to other non-nitrogen systems [32]. Such reactions present the most direct and efficient synthetic meth-©2006 IUPAC, Pure and Applied Chemistry 78, 935–945Developing green chemistry for chemical synthesis 943Fig. 1Various chiral ligands.Scheme 14Enantioselectivity of coupling of tetrahydroisoquinolines with terminal alkynes.C.-J.LI AND Z.LI944ods of C–C bond formations and provide the pillar for the next generation of chemical synthesis with an eye on green chemistry.ACKNOWLEDGMENTSWe are grateful to the Canada Research Chair (Tier I) foundation (to CJL), the CFI, NSERC, FQRNT, Merck Frosst, CIC(AstraZeneca/Boehringer Ingelheim/Merck Frosst) and McGill University for sup-port of our research.REFERENCES AND NOTES1.P. Y. Bruce. Organic Chemistry, 4th ed., Pearson Education, Upper Saddle River, NJ (2004).2.K. C. Nicolaou, E. J. Sorensen. Classics in Total Synthesis, VCH, Weinheim (1996).3.R. W. Armstrong, J.-M. Beau, S. H. Cheon, W. J. Christ, H. Fujioka, W.-H. Ham, L. Hawkins,D.H. Jin, S. H. Kang, Y. Kishi, M. J. Martinelli, W. W. McWhorter Jr., M. Mizuno, M. Nakata,A. E. Stutz, F. X. Talamas, M. Taniguchi, J. A. Tino, K. Ueda, J. Uenishi, J.B. White, M. Yonaga.J. Am. Chem. Soc. 111, 7530 (1989).4.P. T. Anastas, J. C. Warner. Green Chemistry Theory and Practice, Oxford University Press, NewYork (1998).5.(a) B. M. Trost. Science254, 1471 (1991); (b) B. M. Trost. Angew. Chem., Int. Ed.34, 259 (1995).6.(a) P. A. Wender, S. T. Handy, D. L. Wright. Chem. Ind.765 (1997); (b) P. A. Wender, B. L.Miller. In Organic Synthesis: Theory and Applications, T. Hudlicky (Ed.), p. 27, JAI Press, Greenwich, CT (1993).7.R. A. Sheldon. ChemTech38 (1994).8.(a) C. J. Li. Chem. Rev.93, 2023 (1993); (b) C. J. Li, T. H. Chan. Organic Reactions in AqueousMedia, John Wiley, New York (1997); (c) P. A. Grieco (Ed.). Synthesis in Water, Thomson Science, Glasgow (1998); (d) C. J. Li. Chem. Rev.105, 3095 (2005).9.P. G. Jessop, W. Leitner (Eds.). Chemical Synthesis Using Supercritical Fluids, Wiley-VCH,Weinheim (1999).10.(a) P. Wasserscheid, T. Welton (Eds.). Ionic Liquids in Synthesis, Wiley-VCH, Weinheim (2002);(b) R. D. Rogers, K. R. Seddon (Eds.). Ionic Liquids: Industrial Applications for GreenChemistry, Oxford University Press, New York (2002); (c) P. Wasserscheid, W. Keim. Angew.Chem., Int. Ed.39, 3772 (2000).11.The number of steps is based on an experience/impression of the authors regarding various in-dustrial sectors.12.First introduced in the C. J. Li’s keynote speech at the Green Chemistry Symposium of the ACSNorthern New Jersey Section, 13 June 2003.13. F. Diederich, P. J. Stang (Eds.). Metal-Catalyzed Cross-Coupling Reactions, Wiley-VCH, NewYork (1998).14.For representative reviews, see: (a) R. H. Crabtree. J. Organomet. Chem.689, 4083 (2004); (b) V.Ritleng, C. Sirlin, M. Pfeffer. Chem. Rev.102, 1731 (2002); (c) C. Jia, T. Kitamura, Y. Fujiwara.Acc. Chem. Res.34, 633 (2001); (d) G. Dyker. Angew. Chem., Int. Ed.38, 1698 (1999); (e) A. E.Shilov, G. B. Shul’pin. Chem. Rev.97, 2879 (1997); (f) B. A. Arndtsen, R. G. Bergman, T. A.Mobley, T. H. Peterson. Acc. Chem. Res.28, 154 (1995).15.(a) Z. Li, C.-J. Li. Eur. J. Org. Chem.3173 (2005); (b) Z. Li, C.-J. Li. J. Am. Chem. Soc.127,6968 (2005); (c) Z. Li, C.-J. Li. J. Am. Chem. Soc.127, 3672 (2005); (d) Z. Li, C.-J. Li. Org. Lett.6, 4997 (2004); (e) Z. Li, C.-J. Li. J. Am. Chem. Soc.126, 11810 (2004).©2006 IUPAC, Pure and Applied Chemistry78, 935–945Developing green chemistry for chemical synthesis945 16.For representative references, see: (a) sp3C–H and sp C–H: S.-I. Murahashi, N. Komiya, H. Terai,T. Nakae. J. Am. Chem. Soc.125, 15312 (2003); (b) sp2C–H and sp2C–H: Y. Hatamoto, S.Sakaguchi, Y. Ishii. Org. Lett.6, 4623 (2004); (c) T. Yokota, M. Tani, S. Sakaguchi, Y. Ishii. J.Am. Chem. Soc.125, 1476 (2003); (d) Z. Li, C.-J. Li. J. Am. Chem. Soc.127, 3672 (2005); (e) J.Tsuji, H. Nagashima. Tetrahedron40, 2699 (1984); (f) sp2C–H and sp3C–H: B. DeBoef, S. J.Pastine, D. Sames. J. Am. Chem. Soc.126, 6556 (2004); (g) sp C–H and sp C–H: K. C. Nicolaou, R. E. Zipkin, N. A. Petasis. J. Am. Chem. Soc.104, 5558 (1982).17.H. Nakamura, T. Kamakura, M. Ishikura, J.-F. Biellmann. J. Am. Chem. Soc.126, 5958 (2004).18.(a) T. Murai, Y. Mutoh, Y. Ohta, M. Murakami. J. Am. Chem. Soc.126, 5968 (2004); (b) J. H.Ahn, M. J. Joung, N. M. Yoon, D. C. Oniciu, A. R. Katritzky. J. Org. Chem.64, 488 (1999) and refs. therein.19.(a) C. M. Wei, C.-J. Li. Green Chem.4, 39 (2002); (b) C. J. Li, C. M. Wei. Chem. Commun.268(2002); (c) Z. Li, C. Wei, L. Chen, R. S. Varma, C.-J. Li. Tetrahedron Lett. 45, 2443 (2004); (d) X. Yao, C.-J. Li. Org. Lett.7, 4395 (2005); (e) C. Wei, C.-J. Li. Lett. Org. Chem. 2, 410 (2005).20.(a) R. Fassler, D. E. Frantz, J. Oetiker, E. M. Carreira. Angew. Chem., Int. Ed.41, 3054 (2002);(b) C. Fischer, E. M. Carreira. Org. Lett.3, 4319 (2001); (c) D. E. Frantz, R. Fassler, E. M.Carreira. J. Am. Chem. Soc.121, 11245 (1999); (d) M. Miura, M. Enna, K. Okuro, M. Nomura.J. Org. Chem.60, 4999 (1995).21.(a) C. M. Wei, C.-J. Li. J. Am. Chem. Soc.124, 5638 (2002); (b) C. M. Wei, J. T. Mague, C.-J.Li. Proc. Natl. Acad. Sci. (USA)101, 5749 (2004); (c) C. Koradin, K. Polborn, P. Knochel. Angew.Chem., Int. Ed.41, 2535 (2002).22.(a) CuBr: J. H. Zhang, C. M. Wei, C.-J. Li. Tetrahedon Lett.43, 5731 (2002); (b) Au: C. M. Wei,C.-J. Li. J. Am. Chem. Soc.125, 9584 (2003); (c) Ag: C. M. Wei, Z. Li, C.-J. Li. Org. Lett.5, 4473(2003); (d) Y. Ju, C.-J. Li, R. S. Varma. QSAR Comb. Sci. 23, 891 (2004); (e) Y. Luo, Z. Li, C.-J.Li. Org. Lett.7, 2675 (2005).23.For a recent review, see: M. Somei, F. Yamada. Nat. Prod. Rep.22, 73 (2005).24.K. A. Krasnov, V. G. Kartsev. Russ. J. Org. Chem.38, 430 (2002).25.For a representative ref., see: R. P. Ryan, R. A. Hamby, Y.-H. Wu. J. Org. Chem.40, 724 (1975).26.For representative refs., see: (a) R. D. Rieth, N. P. Mankad, E. Calimano, J. P. Sadighi. Org. Lett.6, 3981 (2004); (b) B. Sezen, D. Sames. J. Am. Chem. Soc.125, 5274 (2003); (c) B. Sezen, D.Sames. Org. Lett.5, 3607 (2003).27. D. Lucet, T. Le Gall, C. Mioskowski. Angew. Chem., Int. Ed.37, 2580 (1998).28.For asymmetric addition of aryl C–H bond, see: (a) R. K. Thalji, J. A. Ellman, R. G. Bergman. J.Am. Chem. Soc.126, 7193 (2004) and refs. therein; for asymmetric addition of alkynyl C–H bonds, see: (b) C. Wei, Z. Li, C.-J. Li. Synlett1472 (2004); for asymmetric aldol-type addition, see: (c) C. Palomo, M. Oiarbide, J. M. Garcia. Chem. Soc. Rev.33, 65 (2004); (d) B. M. Trost, A.Fettes, B. T. Shireman. J. Am. Chem. Soc.126, 2660 (2004); (e) T. Ooi, M. Kameda, M.Taniguchi, K. Maruoka. J. Am. Chem. Soc.126, 9685 (2004) and refs. therein.29.(a) H. M. L. Davies, C. Venkataramani. Angew. Chem., Int. Ed.41, 2197 (2002); (b) H. M. L.Davies, T. Hansen, M. R. Churchill. J. Am. Chem. Soc.122, 3063 (2000); (c) H. M. L. Davies, T.Hansen, D. W. Hopper, S. A. Panaro. J. Am. Chem. Soc.121, 6509 (1999).30.(a) M. Chrzanowska, M. D. Rozwadowska. Chem. Rev.104, 3341 (2004); (b) K. W. Bentley. Nat.Prod. Rep.21, 395 (2004).31.H. A. McManus, P. J. Guiry. Chem. Rev.104, 4151 (2004).32.(a) Z. Li, C.-J. Li. J. Am. Chem. Soc.128, 56 (2006); (b) Y. H. Zhang, C.-J. Li. Angew. Chem.,Int. Ed.45, 1949 (2006).©2006 IUPAC, Pure and Applied Chemistry78, 935–945。