有效降低开关电源EMI的电路设计
开关电源EMI整改方案
开关电源的EMI处理方法一、开关电源EMI整改中,关于不同频段干扰原因及抑制办法。
1MHZ以内,以差模干扰为主。
①增大X电容量;②添加差模电感;③小功率电源可采用 PI 型滤波器处理(建议靠近变压器的电解电容可选用较大些)。
1MHZ-5MHZ,差模共模混合,采用输入端并联一系列 X 电容来滤除差摸干扰并分析出是哪种干扰超标并以解决,①对于差模干扰超标可调整 X 电容量,添加差模电感器,调差模电感量;②对于共模干扰超标可添加共模电感,选用合理的电感量来抑制;③也可改变整流二极管特性来处理一对快速二极管如 FR107 一对普通整流二极管1N4007。
5M以上,以共摸干扰为主,采用抑制共摸的方法。
对于外壳接地的,在地线上用一个磁环串绕 2-3 圈会对 10MHZ 以上干扰有较大的衰减作用; 可选择紧贴变压器的铁芯粘铜箔, 铜箔闭环. 处理后端输出整流管的吸收电路和初级大电路并联电容的大小。
20-30MHZ,①对于一类产品可以采用调整对地Y2 电容量或改变Y2 电容位置;②调整一二次侧间的Y1 电容位置及参数值;③在变压器外面包铜箔;变压器最里层加屏蔽层;调整变压器的各绕组的排布。
④改变PCB LAYOUT;⑤输出线前面接一个双线并绕的小共模电感;⑥在输出整流管两端并联RC滤波器且调整合理的参数;⑦在变压器与MOSFET之间加BEAD CORE;⑧在变压器的输入电压脚加一个小电容。
⑨可以用增大MOS驱动电阻.30-50MHZ,普遍是MOS管高速开通关断引起。
①可以用增大MOS驱动电阻;②RCD缓冲电路采用1N4007 慢管;③VCC供电电压用1N4007 慢管来解决;④或者输出线前端串接一个双线并绕的小共模电感;⑤在MOSFET的D-S脚并联一个小吸收电路;⑥在变压器与MOSFET之间加BEAD CORE;⑦在变压器的输入电压脚加一个小电容;⑧PCB心LAYOUT 时大电解电容,变压器,MOS构成的电路环尽可能的小;⑨变压器,输出二极管,输出平波电解电容构成的电路环尽可能的小。
开关电源EMI滤波器的设计
开关电源EMI滤波器的设计要使EMI滤波器对EMI信号有最佳的衰减特性,设计与开关电源共模、差模噪声等效电路端接的EMI滤波器时,就要分别设计抗共模干扰滤波器和抗差模干扰滤波器才能收到满意的效果。
1.抗共模干扰的电感器的设计电感器是在同一磁环上由两个绕向与匝数都相同的绕组构成。
当信号电流在两个绕组流过对,产生的磁场恰好抵消,它可几乎无损耗地传输信号。
因此,共模电流可以认为是地线的等效干扰电压Ug所引起的干扰电流。
当它流经两个绕组时,产生的磁场同相叠加,电感器对干扰电流呈现出较大的感抗,由此起到了抑制地线干扰的作用。
电路如图1所示。
信号源至负载RL连接线的电阻为Rcl、Rc2,电感器自感为L1、L2,互感为M,设两绕组为紧耦合,则得到L1=L2=M。
由于Rc1和RL串联且Rc1<<RL,则可以不考虑Vg, Vg 被短路可以不考虑Vg的影响。
其中(Is是信号电流,Ig是经地线流回信号源的电流。
由基尔霍夫定律可写出:式(2)表明负载上的信号电压近似等于信号源电压,即共模电感传输有用信号时几乎不引入衰减。
由(1)式得知,共模千扰电流Ig随f:fc的比值增大而减小。
当f:fc的比值趋于无穷时,Ig=0,即干扰信号电流只在电感器的两个绕组中流过而不经过地线,这样就达到了抑制共模干扰的作用。
所以,可以根据需要抑制的干扰电压频率来设置电感器截止频率。
一般来说,当干扰电压频率f≥5fc时,即Vn:Vg≤0.197,就可认为达到有效抑制地线中心干扰的目的。
2.抗差模干扰的滤波器设计差模干扰的滤波器可以设计成Π型低通滤波器,电路如图2所示。
这种低通滤波器主要是设置电路截止频率人的值达到有效地抑制差模传导干扰的目的。
开关电源EMI滤波器原理与设计研究
被动式EMI滤波器主要通过电感和电容的组合来实现干扰的吸收和抑制。而主 动式EMI滤波器则通过在信号线上加入特殊的电子器件来消除干扰。
EMI耗
额定电压是EMI滤波器的重要参数之一,它 表示滤波器可以承受的最大电压值。
插入损耗是指EMI滤波器接入电路后,对信 号传输造成的影响。插入损耗越小,说明滤 波器的性能越好。
群时延
温度系数
群时延是指滤波器对信号传输时间的影响。 群时延越小,说明滤波器的传输速度越快。
温度系数是指EMI滤波器在温度变化时,其 性能变化的程度。温度系数越小,说明滤波 器的稳定性越好。
02
开关电源EMI滤波器设计基 础
EMI滤波器电路拓扑结构
1 2
共模滤波电路
用于减小电源线上共模噪声,包括电阻、电容 和电感等元件。
抑制共模噪声
通过采用共模扼流圈等元件,可以抑制共模噪声,提高滤波 器的性能。
抑制差模噪声
采用差模扼流圈等元件,可以抑制差模噪声,提高滤波器的 性能。
EMI滤波器与整流器的配合设计
整流器与滤波器的配合设计
整流器输出的波形对EMI滤波器的性能有很大影响,因此需要合理设计整流 器与滤波器之间的电路连接方式,以减小整流器对EMI滤波器性能的影响。
2023
《开关电源emi滤波器原理 与设计研究》
目录
• 开关电源EMI滤波器概述 • 开关电源EMI滤波器设计基础 • 开关电源EMI滤波器优化设计 • 开关电源EMI滤波器性能评估 • 开关电源EMI滤波器设计实例 • 结论与展望
01
开关电源EMI滤波器概述
EMI滤波器的定义和作用
EMI滤波器定义
整流器与滤波器的参数匹配
EMI滤波电路
滤波器电路全集
一、E MI滤波电路
EMI滤波器主要作用是滤除外界电网的高频脉冲对电源的干扰,同时也起到减少开关电源本身对外界的电磁干扰。
实际上它是利电感和电容的特性,使频率为50Hz左右的交流电可以顺利通过滤波器,但高于50Hz以上的高频干扰杂波被滤波器滤除,所以它又有另外一种名称,将EMI滤波器称为低通滤波器(彩电上的称法),其意义为,低频可以通过,而高频则被滤除。
下面是EMI滤波电路的线路图:
上图中的C1和L1组成第一级EMI滤波,C2、C3、C4与L2组成第二级滤波。
实物图如下图所示:
二级EMI滤波电路
在优质电源中,都有两道EMI滤波电路,其中一路在电源插座处,另外一路在电源的PCB板上(也有把两道EMI滤波电路都做在PCB板上的情况),这两道EMI电路,可以很好地滤除电网中的高频杂波和同相干扰电流,同时把电源中产生的电磁辐射削减到最低限度,使泄漏到电源外的电磁辐射量不至于对人体或其它设备造成不良影响。
劣质电源通常会省去第一级EMI 滤波电路,甚至连第二级EMI滤波电路也省掉。
开关电源的EMI设计
图1:脉冲信号开关电源的EMI 设计摘要:本文从电路原理上分析了开关电源EMI 信号的特点及频率范围,并针对其传导发射和辐射发射提出一些抑制措施。
术语:开关电源,电磁干扰(EMI ),脉冲宽度调制(PWM )一. 前言由于开关电源在重量、体积、用铜用铁及能耗等方面都比线性电源有显著减少,而且对整机多项指标有良好影响,因此得到了广泛的应用。
近年来许多领域,如邮电通信、军用设备、交通设施、仪器仪表、工业设备、家用电器等都越来越多应用开关电源,取得了显著效益。
现在开关电源一般都采用了脉冲宽度调制(PWM )技术,其特点是:频率高、效益高、功率密度高、可靠性高。
然而,由于开关电源工作在通断状态,会有很多快速瞬变过程,它本身就是一种EMI 源,它产生的EMI 信号有很宽的频率范围,又有一定的幅度。
若把这种电源直接用于数字设备,则设备产生的EMI 信号会变得更加强烈和复杂。
以下便从开关电源的工作原理出发,探讨其传导干扰抑制的EMI 滤波器的设计以及辐射发射的抑制。
本文主要参考的实例是微机的开关电源,其输出功率较小,对于大电流大功率的通讯设备电源,本文也有一定的参考价值,但具体实施时一定要考虑到通讯设备电源大电流大功率的特点,在元件的选择上要注意其额定电流及高频特性。
二. 开关电源产生EMI 信号的特点数字设备中的逻辑关系是用脉冲信号来表示。
为便于分析,把这种脉冲信号适当简化,可以图1所示的等腰梯形脉冲串表示。
根据傅里叶级数展开的方法,可以下式计算出脉冲串信号所有各谐波的电平:n=1、2、3…A n 脉冲中第n 次谐波的电平V 0 脉冲的电平T 脉冲串的周期T w 脉冲宽度T r 脉冲的上升时间和下降时间开关电源具有各式各样的电路形式,但它们的核心部分都是一个高电压、大电流的受控脉冲信号源,这一点是共同的,为便于分析,也可把该脉冲信号源的波形简化为图1中的等腰梯形脉冲串,并用上式来算出它的各次谐波电平。
假定某PWM 开关电源脉冲信号的主要参数为: V 0=500V ,T =2×10-5S ,T w =10-5S ,T r =0.4×10-T T n TT n Sin T T n T T n Sin T T V A ww r r w n ππππ∙∙=026S,则其谐波电平如下图:电平(dBuV)16012080400.05 0.5 5 50 500 频率(MHz)图2:开关电源的谐波电平从EMI的观点来分析,图2中开关电源内脉冲信号产生的谐波电平,对于其它电子设备来说即是EMI信号。
开关电源EMI滤波器原理和设计研究
开关电源EMI滤波器原理和设计研究开关电源EMI滤波器是用来减少开关电源产生的电磁干扰(EMI)的一种装置。
EMI是指开关电源工作时产生的高频干扰信号,可能会对其他电子设备、无线通信和无线电接收产生干扰,影响它们的正常工作。
EMI滤波器通过合理设计,能有效地抑制开关电源产生的EMI信号,从而减少对其他设备的干扰。
EMI滤波器的原理是基于电流和电压的相位关系来实现的。
开关电源在工作时会产生高频电流脉冲,而这些电流脉冲会通过开关电源输入端的电容等元件,从而形成高频电流回路。
EMI滤波器通过给开关电源输入端加上一个电感元件,阻断高频电流回路的形成,从而减小EMI信号的辐射。
设计EMI滤波器时需要考虑以下几个因素:1.工作频率范围:EMI滤波器需要在开关电源产生EMI信号的频率范围内有效工作。
根据具体的应用环境和要求,选择合适的滤波器工作频率范围。
2.滤波特性:滤波器需要具有良好的滤波特性,对于较高频率的EMI信号能够有较好的抑制效果。
常用的滤波器类型有低通滤波器、带通滤波器和带阻滤波器等。
3.过渡区域:滤波器在过渡区域需要平衡阻抗和频率之间的变化。
过渡区域越宽,滤波器的性能越好。
过渡区域的宽度需要根据具体要求进行设计。
4.安全和可靠性:EMI滤波器需要满足安全和可靠性的要求。
在设计过程中,需要考虑电源参数范围、电流和电压的安全范围等因素,以确保滤波器的稳定性和可靠性。
设计EMI滤波器的方法有多种,可以根据需求选择不同的设计方法。
常见的方法包括线性滤波器设计、Pi型滤波器设计和C型滤波器设计等。
其中,Pi型滤波器是应用最广泛的一种,它由两个电感和一个电容组成,能够对高频信号进行抑制。
总之,开关电源EMI滤波器的原理和设计研究是为了降低开关电源产生的电磁干扰,保证其他设备的正常工作。
通过合理的滤波器设计和选择合适的滤波器类型,可以有效地减少EMI信号对其他设备的干扰,提高系统的抗干扰性能。
开关电源EMI源头降噪设计-RC吸收电路
开关电源EMI源头降噪设计-RC吸收电路1.背景说明原理图EMC设计时,开关电源常见拓扑结构(BUCK,BOOST,FLYBACK,PUSH-PULL,HALF-BRIDGE,FULL-BRIDGE)开关管和二极管一般都要求设计RC 或C吸收电路。
通常要求R尽量小,C尽量大,RC的取值主要依据EMC工程师或电源工程师的设计经验,如典型取值:R=10Ω,C=1nF;具体参数多大,设计者需要兼顾EMC、效率、热、可靠性等,最终综合确定。
RC的添加位置、参数影响、以及对EMC影响的机理以及对EMI的改善频率段并不是每个设计者都有清晰了解,这也就导致了在实际的问题解决过程中更多的是依赖经验或者是不断的尝试。
电源拓扑吸收电路示意图BUCKBOOSTFLYBACK PUSH-PULL HALF-BRIDGEFULL-BRIDGE2.RC吸收电路介绍我们以BUCK电源变换器电路为例,在BUCK变换器集成电路中,开关节点(开关动点)处会产生许多高频噪声,吸收电路提供一种消除这种高频噪声的方法。
图1显示BUCK开关变换器的电路。
在实际电路中,存在大量寄生电感L和寄P生电容C,如图2所示。
当高压侧开关接通或断开时,寄生电感器中积累的能量会P在输入回路中引起LC谐振(通常为阻尼振荡式的振铃波)。
寄生元件的极小值使共振频率可达到百MHz级别,导致EMI电磁干扰特性恶化,如图3所示。
RC吸收电路可以有效减小或降低这种高频振荡噪声,通过在开关节点上增加一个简单的RC电路来实现,如图4所示。
图5为吸收电路的工作过程原理。
当高压侧开关接通时,在寄生电感器中积累的能量作为静电能存储在缓冲电容器SNB C 中。
由于开关节点的电位增加到输入电压IN V ,当充电到IN V 时,2**21IN SNB V C 的能量存储在电容器中。
然后产生的电阻损耗2**21IN SNB V C 等于在缓冲电阻器SNB R 中充电的能量。
当开关节点的电位降低到地电位时,随着低压侧开关的接通,存储在缓冲电容器SNB C 中的能量通过缓冲(阻尼)电阻器放电。
单片机技术应用 开关电源EMI滤波器典型电路
开关电源EMI滤波器典型电路EMI滤波器:标准的EMI滤波器通常由串联电抗器和并联电容器组成的低通滤波电路,其作用是允许设备正常工作时的频率信号进入设备,而对高频的干扰信号有较大的阻碍作用。
低通滤波器:EMI滤波器是一种由电感和电容组成的低通滤波器,它能让低频的有用信号顺利通过,而对高频干扰有抑制作用。
EMI滤波器的典型结构图EMI滤波器的典型结构如图所示。
作用:EMI滤波器的作用,主要体现在以下两个方面:2.1、抑制高频干扰抑制交流电网中的高频干扰对设备的影响;2.2、抑制设备干扰抑制设备(尤其是高频开关电源)对交流电网的干扰。
开关电源EMI滤波器典型电路:开关电源典型电路开关电源为减小体积、降低成本,单片开关电源一般采用简易式单级EMI滤波器,典型电路图1所示。
图(a)与图(b)中的电容器C能滤除串模干扰,区别仅是图(a)将C接在输入端,图(b)则接到输出端。
图(c)、(d)所示电路较复杂,抑制干扰的效果更佳。
图(c)中的L、C1和C2用来滤除共模干扰,C3和C4滤除串模干扰。
R为泄放电阻,可将C3上积累的电荷泄放掉,避免因电荷积累而影响滤波特性;断电后还能使电源的进线端L、N不带电,保证使用的安全性。
图(d)则是把共模干扰滤波电容C3和C4接在输出端。
EMI滤波器能有效抑制单片开关电源的电磁干扰。
图中曲线a为加EMI滤波器时开关电源上0.15MHz~30MHz传导噪声的波形(即电磁干扰峰值包络线)。
曲线b是插入如图1(d)所示EMI滤波器后的波形,能将电磁干扰衰减50dBμV~70dBμV。
显然,这种EMI滤波器的效果更佳。
干扰抑制曲线图电磁干扰滤波器电路:电磁干扰滤波器的基本电路如图1所示。
该五端器件有两个输入端、两个输出端和一个接地端,使用时外壳应接通大地。
电路中包括共模扼流圈(亦称共模电感)L、滤波电容C1~C4。
L对串模干扰不起作用,但当出现共模干扰时,由于两个线圈的磁通方向相同,经过耦合后总电感量迅速增大,因此对共模信号呈现很大的感抗,使之不易通过,故称作共模扼流圈。
开关电源设计中如何减小EMI
开关电源设计中如何减小EMI
是什么呢?
开关电源中,由于开关器件在周期性的开合,所以,电路中的电流和电压也是周期性的在变化。
那么那些变化的电流和电压,就是噪音的真正源头。
那么有人可能会问,我的开关频率是100KHz 的,但是为什么测试出来的噪音,从几百K 到几百M 都有呢?
我们把同等有效值,同等频率的各种波形做快速傅立叶分析:
蓝色:正弦波
绿色:三角波
红色:方波
可以看到,正弦波只有基波分量,但是三角波和方波含有高次谐波,谐波最大的是方波。
也就是说如果电流或者电压波形,是非正弦波的信号,都能分解出高次谐波。
那么如果同样的方波,但是上升下降时间不同,会怎样呢。
同样是100KHz 的方波
红色:上升下降时间都为100ns。
开关电源EMI滤波器的设计
圈2滤 波器接入前等效 电路 圈
接 收噪 声 源 以 后与 负载 接 收 到 的 噪声 源 功 率之 间的 比 值 。 接 人 滤
波器 的 前后 过 程的 电路 图如 图1 ,图2 所 示 。一 般所 用到 的EM I 滤 波
器 结构 具 体包 括 了许 多, 滤波 器 结 构 电路如 图3 所示。 I L =D B ( P I / P 2 ) = l O l g ( P l / P 2 ) . P 1 = V 2 1 / R L
AC
噪声源, ⑦高频 变压 器。 关断 最初 导通 的开 关管 , 高 频 变压器 就会 形 成 关断 电压 尖峰 的情 况 , 进而 出现传导 干扰 的现 象 ; ③电感 器、 电容
以 及导 线 。开关 电源 因为 工作 频 率很 高 , 从 而低 频 元 器 件 的特 点会 因此发 生改 变 , 从 而形 成了噪 声。
的, 从 而造 成了EMI 情 况 恶劣。防止 电磁 干扰 的方 法可 以分为三种 ,
的形式 存 在 , 然而 A C 端 口有两 个, 开 关 电源的 主要 形成 部分 包 括 了 中线 ( N) 、 地线 ( E ) 以及相 线 ( L ) 等。 因此 在具 体 的分 析过 程 中把 噪 声 源分 为差模 以及 共模 和 噪 声源 。 共模 电流 I C M特点 是采 用同样 的幅 度 , 在 通 过所 有 的A C 线 的 时候 , 选 择 的是 同样 的相 位 。 差模 电 流I DM特 点是 是在 中线和 相 线之 间来 回。 E MI 滤波 器衡 量 干扰 噪 声
开关电源emi滤波器原理与设计
1. 传导发射测试:测量开关电源EMI滤波器在电源线上 的传导发射电平。
3. 插入损耗测试:测量滤波器插入前后信号的衰减量, 反映滤波器的抑制能力。
测试结果分析与改进建议
结果分析
根据测试数据,分析开关电源EMI滤波器的性能,包括传导发射、辐射发射和 插入损耗等指标。
改进建议
根据分析结果,提出针对性的改进措施和建议,如优化滤波器电路设计、改进 元件参数等,以提高滤波器的性能。
05
开关电源EMI滤波器应用案例 分析
应用场景与案例选择
应用场景
开关电源广泛应用于各种电子设备中,如计算机、通信设备、家电等。在这些设 备中,EMI(电磁干扰)问题常常成为影响设备性能和稳定性的重要因素。
案例选择
为了更好地说明开关电源EMI滤波器的应用,本文选择了两个具有代表性的案例 进行分析,分别是计算机电源供应系统(PSU)和电动汽车充电桩。
03
开关电源EMI滤波器元件选择 与布局
元件选择的原则与技巧
元件选择的原则 选择低ESR(等效串联电阻)电容 选择低DCR(直流电阻)电感
元件选择的原则与技巧
选择低电阻、低电感的PCB(印刷电路板) 元件选择的技巧
根据EMI滤波器的性能要求,选择适当的元件值和类型
元件选择的原则与技巧
考虑元件的可靠性、耐温性能和寿命
考虑元件的成本和可获得性
元件布局的要点与注意事项
元件布局的要点 合理安排输入和输出线,避免平行布线
尽量减小电感器和电容器的距离
元件布局的要点与注意事项
输入和输出线应远离 PCB边缘
避免在PCB上形成大 的环路
元件布局的注意事项
元件布局的要点与注意事项
避免使用过长的元件引脚
开关电源各频率段EMC整改对策
设计开关电源时防止EMI的措施:1.把噪音电路节点的PCB铜箔面积最大限度地减小;如开关管的漏极、集电极,初次级绕组的节点,等。
2.使输入和输出端远离噪音元件,如变压器线包,变压器磁芯,开关管的散热片,等等。
3. 使噪音元件(如未遮蔽的变压器线包,未遮蔽的变压器磁芯,和开关管,等等)远离外壳边缘,因为在正常操作下外壳边缘很可能靠近外面的接地线。
4. 如果变压器没有使用电场屏蔽,要保持屏蔽体和散热片远离变压器。
5. 尽量减小以下电流环的面积:次级(输出)整流器,初级开关功率器件,栅极(基极)驱动线路,辅助整流器。
6.不要将门极(基极)的驱动返馈环路和初级开关电路或辅助整流电路混在一起。
7.调整优化阻尼电阻值,使它在开关的死区时间里不产生振铃响声。
8. 防止EMI滤波电感饱和。
9.使拐弯节点和次级电路的元件远离初级电路的屏蔽体或者开关管的散热片。
10.保持初级电路的摆动的节点和元件本体远离屏蔽或者散热片。
11.使高频输入的EMI滤波器靠近输入电缆或者连接器端。
12.保持高频输出的EMI滤波器靠近输出电线端子。
13. 使EMI滤波器对面的PCB板的铜箔和元件本体之间保持一定距离。
14.在辅助线圈的整流器的线路上放一些电阻。
15.在磁棒线圈上并联阻尼电阻。
16.在输出RF滤波器两端并联阻尼电阻。
17.在PCB设计时允许放1nF/ 500 V陶瓷电容器或者还可以是一串电阻,跨接在变压器的初级的静端和辅助绕组之间。
18.保持EMI滤波器远离功率变压器;尤其是避免定位在绕包的端部。
19.在PCB面积足够的情况下, 可在PCB上留下放屏蔽绕组用的脚位和放RC阻尼器的位置,RC阻尼器可跨接在屏蔽绕组两端。
20.空间允许的话在开关功率场效应管的漏极和门极之间放一个小径向引线电容器(米勒电容, 10皮法/ 1千伏电容)。
21.空间允许的话放一个小的RC阻尼器在直流输出端。
22. 不要把AC插座与初级开关管的散热片靠在一起。
开关电源如何解决EMI问题
开关电源以其轻、薄、小和高效率等特点广泛的应用于各类电气设备上,然而也带来了噪声干扰等危害。
在开关电源向更小体积、更高频率、更大功率密度方向发展的同时,其dv/dt,di/dt所带来的EMI噪声也将会更大。
在开关电源向高功率密度发展的同时,解决EMI问题的难度也在不断加大,做好电源内部的EMI设计尤其显得非常重要。
开关电源的主要干扰源集中在功率开关管、整流二极管、高频变压器、储能滤波电感等,其引发主要有五个典型路径,如下所示:1. 高di/dt回路产生差模辐射干扰。
2. 高dv/dt节点至地的电容耦合形成共模干扰。
3. 差模电流的传导耦合干扰。
4. 高频变压器及其寄生电容对共模噪声的耦合干扰。
5. 整流管反向浪涌电流引起的共模干扰。
1、高di/dt回路产生差模辐射干扰骚扰的路径为mos,变压器原边绕组到电解的环形回路。
在处理无金属外壳电源的辐射问题时,此骚扰路径显得尤为重要。
依据差模环天线的预测公式,在考虑地面反射的情况下;E = 2.6 I A* f *f /D(m V/m),I为骚扰电流,A为环天线的面积,f为骚扰电流频率。
由上式可见,减小环天线辐射的办法是:降低电路的工作频率;控制骚扰电流;减小电路的环路面积。
在实际常用措施中,对开关管加吸收是较有效的方法,当然,能在设计时尽量减小该路径下的回路面积才是最可取的。
2、高dv/dt节点至地的电容耦合形成共模干扰。
高dv/dt节点至地的电容耦合形成共模干扰是电源最主要的干扰源。
该节点通过寄生电容对地不断充放电,寄生电容就充当了这个共模通路中的驱动电流源的角色。
开关管正常工作需要散热,一般有两种散热方式:通过绝缘垫片贴散热器散热,或者通过绝缘垫片直接贴保护地散热。
从平时的经验来看,第二种散热方式的共模噪声明显强于第一种,所需的EMI滤波电路的衰减能力也更强。
如果开关管通过散热器散热,可以对散热器进行接地处理以减小对保护地的共模电流。
开关管通过绝缘垫贴于散热器上,与散热器之间形成寄生电容C1。
开关电源EMI噪声分析及抑制
开关电源EMI噪声分析及抑制开关电源是一种高效率的电源转换器,能将电能转换为不同电压、电流和频率的输出。
然而,由于其高频开关行为引起的电磁干扰(EMI)噪声,可能对其他电子设备和通信系统产生不良影响。
因此,EMI噪声的分析和抑制对于开关电源设计和应用至关重要。
EMI噪声源主要包括开关器件、开关电容和开关电感。
开关器件的开关动作会产生脉冲干扰,频率可达数MHz至数GHz。
开关电容和开关电感则会导致谐振效应,形成谐振峰,并产生共模和差分噪声。
为了对EMI噪声进行分析,通常需要进行频谱分析。
可以使用频谱分析仪来测量开关电源的频谱,并确定EMI噪声的频率范围和幅度。
根据测量结果,可以采取相应的措施来抑制EMI噪声。
首先,选择合适的滤波器。
在开关电源的输入端和输出端都可以加入滤波器,以滤除高频噪声。
常用的滤波器包括电源型滤波器、陷波滤波器和共模滤波器等。
电源型滤波器通常采用电容和电感组成,并将高频噪声短路至地。
陷波滤波器则能够抑制特定频率的噪声,而共模滤波器则能滤除共模噪声。
其次,可以采取屏蔽措施。
通过将敏感部件(例如传感器和高速信号线)包裹在屏蔽层中,可以阻挡电磁辐射对其的干扰。
屏蔽可以采用金属盒、铜箔和铁氧体等材料实现。
此外,还可以采用良好的地线布局和绝缘层来提高屏蔽效果。
此外,优化PCB设计也是抑制EMI噪声的重要手段。
首先,在布局设计时,应尽量减小回路面积和环路面积,以降低信号线的长度和电流回路的大小。
其次,应使用短而宽的连线,以减小线路的电感和电阻。
而在布线设计时,则需要注意信号线和电源线的分离,避免共模干扰。
此外,由于高频信号对连线的特殊要求,可以采用扇形隔离和差分传输等技术来提高电路的抗干扰能力。
最后,还可以通过使用低EMI噪声的开关元件、降低开关频率和斩波频率来抑制EMI噪声。
开关元件的选择应具备低开关电流和低开关损耗的特性,以减小开关动作带来的噪声。
而降低开关频率和斩波频率则是通过改变控制电路来实现的,可以减小时域和频域上的噪声。
开关电源EMI抑制的9大措施你知道吗
(5)有源功率因数校正,以及其他谐波校正技术
(6)采用合理设计的电源线滤波器
(7)合理的接地处理
(8)有效的屏蔽措施
(9)合理的PCB设计
以上介绍的就是开关电源EMI抑制的9大措施等技术抑制电源的EMI以及提高电源的EMS。
分开来讲,9大措施分别是:
(1)减小dv/dt和di/dt(降 低其峰值、减缓其斜率)
(2)压敏电阻的合理应用,以降低浪涌电压
(3)阻尼网络抑制过冲
(4)采用软恢复特 性的二极管,以降低高频段EMI
开关电源EMI抑制的9大措施你知道吗
开关电源EMI抑制的9大措施是什么?在开关电源中,电压和电流的突变,即高dv/dt和di/dt,是其EMI产生的主要原因。实现开关电源的EMC设计技术措施主要基于以下两点:
(1)尽量减小电源本身所产生的干扰源,利用抑制干扰的方法或产生干扰较小的元器件和电路,并进行合理布局;
开关电源的共模干扰抑制技术,开关电源共模电磁干扰(EMI)对策详解
开关电源的共模干扰抑制技术|开关电源共模电磁干扰(EMI)对策详解0 引言由于MOSFET及IGBT和软开关技术在电力电子电路中的广泛应用,使得功率变换器的开关频率越来越高,结构更加紧凑,但亦带来许多问题,如寄生元件产生的影响加剧,电磁辐射加剧等,所以EMI问题是目前电力电子界关注的主要问题之一。
传导是电力电子装置中干扰传播的重要途径。
差模干扰和共模干扰是主要的传导干扰形态。
多数情况下,功率变换器的传导干扰以共模干扰为主。
本文介绍了一种基于补偿原理的无源共模干扰抑制技术,并成功地应用于多种功率变换器拓扑中。
理论和实验结果都证明了,它能有效地减小电路中的高频传导共模干扰。
这一方案的优越性在于,它无需额外的控制电路和辅助电源,不依赖于电源变换器其他部分的运行情况,结构简单、紧凑。
1 补偿原理共模噪声与差模噪声产生的内部机制有所不同:差模噪声主要由开关变换器的脉动电流引起;共模噪声则主要由较高的d/d与杂散参数间相互作用而产生的高频振荡引起。
如图1所示。
共模电流包含连线到接地面的位移电流,同时,由于开关器件端子上的d/d是最大的,所以开关器件与散热片之间的杂散电容也将产生共模电流。
图2给出了这种新型共模噪声抑制电路所依据的本质概念。
开关器件的d/d通过外壳和散热片之间的寄生电容对地形成噪声电流。
抑制电路通过检测器件的d/d,并把它反相,然后加到一个补偿电容上面,从而形成补偿电流对噪声电流的抵消。
即补偿电流与噪声电流等幅但相位相差180°,并且也流入接地层。
根据基尔霍夫电流定律,这两股电流在接地点汇流为零,于是50Ω的阻抗平衡网络(LISN)电阻(接测量接收机的BNC端口)上的共模噪声电压被大大减弱了。
图1 CM及DM噪声电流的耦合路径示意图图2 提出的共模噪声消除方法2 基于补偿原理的共模干扰抑制技术在开关电源中的应用本文以单端反激电路为例,介绍基于补偿原理的共模干扰抑制技术在功率变换器中的应用。
开关电源PCB板的EMI抑制与抗干扰设计
存在于通讯设备或者计算机操作设备中 , 有部
一
0
一
第1 6 卷
第6 期
奄涤艘 石闵
P 0 W ER S UP P L Y T E CHNOL OGl E S AND AP P L l C ATl ONS
Vo 1 . 1 6 No . 6 J u n e . 2 0 1 3
p r o b l e ms t h a t s h o u l d b e p a i d a t t e n t i o n t o w h e n d e s i g n i n g P C B b o a r d g r o u n d a r e a r a l y z e d
( 1 ) 辐 射 干扰
接 的提 供者 。而 所有 开关 电源 设计 的最 后一 步就 是 P C B线路 设 计 , 如果这部分设计不 当, 也会 导致 电 源 工作不 稳定 , 产 生过 量 的 E MI ( 电磁 干扰 ) 。
收 稿 日期 : 2 0 1 3 — 0 3 — 2 8
De s i g n o f S wi t c h i n g P o we r S u p p l y
F ANG L i — t i n g , XU Xi a o — q i a n g
Ab s t r a c t : T h e e l e c t r o m a g n e t i c i n t e r f e r e n c e( E MI )a n d t h e c a u s e s o f t h e c l a s s i f i c a t i o n o f e l e c t r o n i c
开关电源EMI滤波器原理与设计
contents •开关电源EMI滤波器概述•EMI滤波器的工作原理•EMI滤波器的设计方法•EMI滤波器的制造工艺•EMI滤波器的测试与验证•EMI滤波器的应用与案例分析目录在开关电源中,EMI滤波器对于保护电源免受外部电磁干扰以及防止内部干扰影响其他电路具有重要意义,保证了电源的稳定性和可靠性。
EMI滤波器的定义与重要性EMI滤波器的重要性EMI滤波器定义EMI滤波器的分类EMI滤波器的特点EMI滤波器的分类与特点发展趋势技术挑战EMI滤波器的发展趋势EMI滤波器通常由电感、电容和电阻等元件组成,根据需要还可以加入铁氧体磁珠、二极管等其他元件。
其中,电感和电容的作用是阻止特定频率的电磁波通过,而电阻则可以吸收电磁波的能量。
EMI滤波器的电路设计需要根据开关电源的工作频率、电磁干扰的频率和幅度、以及所需的滤波效果等因素来确定元件的参数和电路结构。
插入损耗共模抑制比频带宽度耐压等级确定滤波器的性能指标包括滤波器的插入损耗、反射损耗、阻抗匹配等指标,根据应用场景和电磁兼容标准来确定。
包括电容器、电感器、电阻器等,根据设计需求来选择适当的元件类型和规格。
根据设计需求和元件参数,设计出满足性能指标的滤波器电路。
利用仿真软件对所设计的滤波器电路进行仿真验证,确保其性能指标符合要求。
将所设计的滤波器电路制作成样品,并进行测试,确保其实际性能符合设计要求。
选择适当的滤波器元件仿真验证制作与测试设计滤波器电路设计流程与步骤确定反射损耗反射损耗是指滤波器对信号的反射量,也是衡量滤波器性能的重要指标之一。
反射损耗的计算方法包括反射系数法和导纳变换法等。
确定插入损耗插入损耗是指滤波器插入前后信号电平的差值,是衡量滤波器性能的重要指标之一。
插入损耗的计算方法包括频域法和时域法等。
阻抗匹配为了使信号能够顺利传输,滤波器需要与信号源和负载阻抗进行匹配。
阻抗匹配的计算方法包括欧姆定律法和奇偶模分析法等。
参数选择与计算例如,设计一个针对某开关电源的EMI滤波器,需要考虑到该开关电源的工作频率、输出电压、输出电流等因素,以及所连接的负载特性和电磁兼容标准等。
低EMI、高效的零电压开关反激式开关电源设计
低EMI、高效的零电压开关反激式开关电源设计
反激式开关电源以电路简单电磁干扰相对小得到广泛应用,而采用自激型反激式开关电源减小EMI将导致电源效率下降,发热量大,可靠性下降。
因而需要一种低EMI,高效的反激式开关电源。
本文的“零电压”开关方式,复位过程无损耗,因此效率高。
同时电感电流也为零,开通时刻因寄生振荡所产生的输出电压尖峰和EMI大幅度降低。
反激式开关电源以电路简单电磁干扰相对小而得到广泛应用,对开关电源的输出电压尖峰和EMI也提出了更高的要求,通常减小EMI的方法主要是采用自激型反激式开关电源,用开关速度相对慢的双极晶体管作为主开关;加大缓冲电路电容量来降低关断过程的dz/dt,di/dt产生的EMI用减缓导通过程减小开通EMI,付出的代价是电源效率下降,发热量大,可靠性下降。
因而需要一种低EMI,高效的反激式开关电源,软开关反激式开关电源,便是比较理想的解决方案。
零电压开关
变压器通过次级绕组、输出整流二极管向输出端释放储能。
变压器次级电流为:
变压器次级电流降到零,变压器储能全部释放,输出整流二极管自然关断,电路进人缓冲电路复位阶段。
缓冲电路复位阶段对应t3-t4期间为使缓冲电容器在下一个开关周期能起到缓冲作用,保证开关管“零电压”关断和“零电压”开通,需将缓冲电容器放电,将
电荷全部泄放,即复位。
与有损耗缓冲电路不同,无损耗缓冲电路采用LC谐振方式将缓冲电容器复位,本文电路的复位电感为变压器初级电感。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 频率调制的基本原理
当周期信号满足狄里赫利 ( D i richlet) 条件时 ,
收稿日期 : 20082 022 29 ) ,男 ,博士生 ,E2mail :holibible @126 . com ;刘佑宝 ( 1940 — ) ,男 ,研究员 ,博士生导师 ,E2mail :wangsh 771 @126 . com. 作者简介 : 李海松 ( 1983 —
= 0 ( 低电平) ,且 cl k 由 1 跳变到 0 . 此时晶体管 M 1
图 5 实现频率调制的电路结构示意图 Fi g. 5 S chematic of t he f requency mod ul ation
此处 , 以 8 个控制信号 ( a 1 ~a 8 ) 和 3 个电流信 号 ( Ia , 2 Ia , 4 Ia ) 为例 . 由图 4 可知 , 8 个控制信号是 时钟信号的分频信号 , 通过信号 a 1 ~a 8 对电流信号 Ia , 2 Ia 和 4 Ia 的编码来控制电流 I 2 的大小 , 使电流 I 2 进行周期性变化 . 又因为电阻 R 为固定值 , 所以易知晶体管 M 2 的栅压 V G 也是线性的周期变化 . 下面将证明晶体
Abstract : Elect ro magnetic interference ( EM I) of t he harmo nic f requency can be effectively reduced by f requency modulatio n , which is sp reading single harmo nic energy into a certain f requency band by modulating t he co nstant clock f requency. After st udying and balancing t hree modulatio n p rofiles of f requency modulatio n technique , a circuit based o n t riangular p rofile in time is p ropo sed. Test result s showed t hat t he peak amplit ude of t he co nducted EM I of AC/ DC switch2 mode power supply ( SM PS) decreased by abo ut 31 5 ~ 51 7 dB wit h t he new circuit . It help s to ease t he p ressure of diminishing t he EM I o n t he system level of SM PS. Key words : f requency modulatio n ; elect ro magnetic interference ( EM I ) ; switch2mode power supply ( SM PS)
由于开关电源在体积 、 质量 、 功率密度 、 效率等 方面的诸多优点 , 所以它已经被广泛地应用于工业 、 国防 、 家用电器等各个领域 . 但开关电源中的电磁 干扰 ( elect rom a g netic i nter f erence , EM I ) 严重地污 染了电网 , 影响了邻近电子设备的正常工作 [ 1 ] . 因 此 , 尽量降低开关电源的 EM I , 以进一步扩大其使 用范围 , 是开关电源设计人员必须考虑的问题 . 开关电源产生 EM I 的根本原因是开关元件受 频率恒定的时钟信号控制 , 在其工作过程中的电流 变化率和电压变化率非常大 . 这种控制方式使得开 关电源的 EM I 频谱主要分布在基波频率和谐波频 率上[ 2 ] . 为了抑制开关电源产生的 EM I , 可以通过调制
(8) (9)
根据傅里叶变换的相关知识 , 可以得到下面的 公式 , 即
an =
2
T
∫ f ( t) co s ( nωt ) d t = nπsin
- T/ 2
T/ 2
2
π τ n ,
2
(3)
根据卡尔逊定律 , 频谱对应的 98 %的能量分布 在其卡尔逊带宽 B 内 . B 的表达式为 ( 10) B = 2 f m ( mf + 1) . 当调制方式确定后 , 边带谐波中的谱峰值将取 决于调制指数 m f 的大小 , 且 m f 越大 , 谱峰值越小 ;
k v ∫
0
t
ω m
( t) d t.
(7)
式中 : kω 是控制最大频偏的因子 , 称为最大频偏因 子 ; v m ( t ) 是用于频率调制的函数表达式 . 函数 v m ( t ) 的表达式有多种 , 既可以是随机的 , 也可以是预先设定好的 . 最具代表性的 3 种基本频 率调制方式为 : 正弦波调制 , 三角波调制和指数调 制 , 3 种调制方式的调制图形如图 2 所示 . 用于表征调制信号的参数主要有调制指数 m f
第 2期
李海松等 : 有效降低开关电源 EMI 的电路设计
143
可以分解成一系列正弦信号之和 , 即
∞ ∞
f ( t) = a0 / 2 +
n=1
∑
ωt ) + an co s ( n
n=1
∑b sin ( nωt ) ,
n
(1)
ω= 2 π/ T. (2) 式中 :a 0 / 2 为直流分量 ; a n , bn 为傅里叶变换的系 数 ; n 表示第 n 次谐波 ;ω 为角频率 . T 为信号的周 期 . 开关电源中的时钟信号和 PW M 信号是一个周 期性的方波信号 , 且满足狄里赫利条件 , 设开关电源 的时钟信号为 f ( t ) , 如图 1 所示 .
144
北 京 理 工 大 学 学 图对比 Fi g. 3 S pect rum envelop of a non2mod ul ate d si nus carrier and s pect rum envelop of a si nus carrier mod ul ate d w it h t he t hree mod ul ation p rof iles i n ti me
第 29 卷 第 2期 2009 年 2 月
北 京 理 工 大 学 学 报 Transactio ns of Beijing Instit ute of Technology
Vol. 29 No . 2 Feb. 2009
有效降低开关电源 EMI 的电路设计
李海松 , 刘佑宝
( 西安微电子技术研究所 , 陕西 , 西安 710054)
图 4 振荡器的电路结构示意 Fi g. 4 Oscill atorπ s schematic
假设开 始 状 态 时 钟 信 号 cl k 为 1 ( 高 电 平 ) ,
V - = V H ,V C < V H , 则 V 0 = 1 , 此时 p m os 晶体管 M 1 截止 ,电流 I 0 对电容 C 充电 ; 当 V C > V H 时 ,V 0
T
∞
+
n=1
sin ∑n π
2
π τ n
2
ωt ) . co s ( n
(5)
所示 ( 其 中 f c = 64 k H z , f m = 250 H z , m f = 40 , δ = 151 6 %) . 由图 3 可知 , 这 3 种调制方式的共同特点是它 们都展宽了正弦波的频谱 , 并且降低了谱峰值 . 但 又有各自的特点 : ①正弦波调制后的正弦波频谱图 : 在带宽 B 范围内 , 频 谱 包 络 呈 凹 形 , 幅 度 峰 值 出 现 在 带 宽 两边 . ②三角波调制后的正弦波频谱图 : 在带宽 B 范 围内 ,频谱包络比较平坦 . ③指数调制后的正弦波频谱图 : 在带宽 B 范围 内 , 频谱包络呈凸形 , 幅度峰值出现在载波频率 附近 . 由以上分析可知 , 通过频率调制的方式可以展 宽正弦波的频谱和降低正弦波的谱峰值 . 同理 , 频 率调制的方式亦可以展宽方波的频谱和降低方波的 谱峰值 , 从而改善系统的 EM I 性能 . 由文献 [ 2 ] 可 知 , 在其他条件相同的情况下 , 对系统 EM I 频谱抑 制效果最佳的是三角波频率调制 [ 2 ] . 为了使系统通 过相关的 EM I 规范 , 最大限度地降低系统 EM I , 作 者基于三角波图形的频率调制方式设计了一种有效 降低开关电源 EM I 的电路 .
Circuit Design f or EMI Reduction in Switch2Mode Power Supply
L I Hai2so ng , L IU Yo u2bao
( Xiπ an Microelect ronics Technology Instit ute , Xiπ an , Shaanxi 710054 , China)
图 2 3 种基本的频率调制波形 Fi g. 2 T hree f undament al mod ul ation p rof iles i n ti me
图 1 开关电源中的时钟信号示意图 Fi g. 1 Clock w ave f orm of t he S M PS
和调制率δ, 它们的表达式分别为 mf = Δ f c / f m , δ = Δf c / f c . 式中 :Δ f c 为最大频偏 ;f m 为调制信号的频率 .
摘 要 : 论证了频率调制技术的基本原理 , 通过调制恒定不变的时钟频率 , 将单个谐波的能量分散到一定的频带 上 , 从而降低谐波频率电磁干扰 ( EM I) 峰值 . 通过对 3 种调制方式进行研究和对比后 , 采用基于三角波图形调制 方式设计了一种降低开关电源 EM I 的电路 . 测试结果表明 , 该电路可以使 A C/ D C 开关电源的传导 EM I 降低 31 5 ~ 51 7 dB , 有助于在开关电源系统板级设计时抑制 EM I. 关键词 : 频率调制 ; 电磁干扰 ; 开关电源 中图分类号 : T N 492 文献标识码 : A 文章编号 : 100120645 ( 2009) 0220142205