自动控制原理第4章控制系统的根轨迹解读
自动控制原理 第四章根轨迹
第四章根轨迹法4-1 根轨迹法的基本概念4-2 常规根轨迹的绘制法则4-3 广义根轨迹4-1 根轨迹法的基本概念一、根轨迹的概念根轨迹:系统中某个参数从零到无穷变化时,系统闭环特征根在s平面上移动的轨迹。
根指的是闭环特征根(闭环极点)。
根轨迹法是根据开环传递函数与闭环传递函数的关系,通过开环传递函数直接分析闭环特征根及系统性能的图解法。
K =0 s 1=0 s 2=-40 < K <1s 1 s 2为不等的负实根K =1s 1=-2 s 2=-21 < K < ∞s 1s2 实部均为-2由根轨迹可知:1)当K =0时,s 1=0,s 2=-1,这两点恰是开环传递函数的极点,同时也是闭环特征方程的极点.2)当0<K < 1 时,s 1,2都是负实根,随着k 的增长,s 1从s 平面的原点向左移,s 2从-1点向右移。
3) 当K = 1时, s 1,2= -2,两根重合在一起,此时系统恰好处在临界阻尼状态。
4) 1 <K <∞,s 1,2为共轭复根,它们的实部恒等于-2,虚部随着K 的增大而增大,系统此时为欠阻尼状态。
★在s平面上,用箭头标明K增大时,闭环特征根移动的方向,以数值表明某极点处的增益大小。
有了根轨迹图就可以分析系统的各种性能:(1)稳定性:根轨迹均在s的左半平面,则系统对所有K>0都是稳定的。
(2)稳态性能:如图有一个开环极点(也是闭环极点)s=0。
说明属于I型系统,阶跃作用下的稳态误差为0。
在速度信号V0t作用下,稳态误差为V0/K,在加速度信号作用下,稳态误差为∞。
(3)动态性能:过阻尼临界阻尼欠阻尼K越大,阻尼比ξ越小,超调量σ%越大。
由此可知:1、利用根轨迹可以直观的分析K的变化对系统性能的影响。
2、根据性能指标的要求可以很快确定出系统闭环特征根的位置;从而确定出可变参数的大小,便于对系统进行设计。
由以上分析知:根轨迹与系统性能之间有着密切的联系,但是,高阶方程很难求解,用直接解闭环特征根的办法来绘制根轨迹是很麻烦的。
自动控制原理-第4章 根轨迹
又 ∵ 根轨迹方程
n
n
(spi) sn( pi)sn 1L
n
m
Kim 1
i 1 m
snm( pi zj)snm 1L
(szj) sm( zj)sm 1L
i 1
j 1
j 1
j 1
n
m
∴ sn-m-1项系数对应相等
(nm)(a) pi zj
n
m
i1
j1
(2k 1) ,
nm
pi zi
闭环零、极点与开环零、极点的关系
闭环传递函数 (s) G(s)
1G(s)H(s)
开环传递函数 Gk(s)G(s)H(s)
f
l
(s zi)
(s z j)
G (s) KG
i 1 q
H
(s)
K
H
j 1 h
(s pi)
(s p j)
i 1
j 1
f
l
(szi)(szj)
Gk(s)G(s)H(s)K
如何应用根轨迹方程在[s]平面上找到闭环极点。
解: G ( s ) K 0 .5 K K * s(2 s 1) s(s 0.5) s(s 0.5)
K * 0.5 K 开 环 极 点 p1 0, p2 0.5 无开环零点 根据相角方程
s2
p2 4 5 o -0.5 s1
135o
p1 0
m
(s z j)
K j1 n
1
(s pi)
i1
m
n
(szj) (spi)(2k1)
j1
i1
k0,1,2,L
(1)相角条件是决定闭环根轨迹的充要条件; 在测量相角时,规定以逆
自动控制原理第四章 根轨迹
① ∵有三个极点,根轨迹 有三条分支 ② ∵n=3, m=2 ∴有3-2=1条根 轨迹→∞, 2条终止于开环零点。 ③在实轴上不同段上取试 验点
-4 -3 -2 -1
jω
×
o
×
o ×
σ
§4-2绘制根轨迹的基本规则
五.根轨迹的渐近线
1.根轨迹中(n-m)条趋向无穷远处的分支的 渐近线的倾角为
1 1
在根轨迹与虚轴的交点处,在系统中出现 虚根。因此可以根据这一特点确定根轨迹与虚 轴的交点。可以用 s j 代入特征方程求解, 或者利用劳斯判据确定。
§4-2绘制根轨迹的基本规则 续例4-2,将 s j 代入特征方程。
j ( j 1 )( j 2 ) K j ( j
§4-1根轨迹的基本概念 将开环传递函数写成下列标准的因子式
K1 G (S )H (S )
j 1 n
m
(s z
j
)
i 1
(s pi )
注意这个形式和求 稳态误差的式子不 同,需变换成这种 形式.
z j -开环零点.
p i -开环极点.
此时,幅值条件和相角条件可写成
K
1
j 1 n
s 2 .3
2 . 3 0 . 7 1 . 64 1 . 64 4 . 33
6.求根轨迹在
p3
的出射角
p 180 ( 135 90 26 . 6 ) 431 . 6
( 减去 360 ,为 71 . 6 )
§4-3反馈控制系统的根轨迹分析 7.求根轨迹与虚轴的交点.
K1=6
自动控制原理第第四章 线性系统的根轨迹法
2
自动控制原理
§4.1 根轨迹的基本概念
例:开环传递函数
Gs
k1
ss
a
开环系统两个极点为:P1 0, P2 a R(s)
闭环传递函数为:
GB s
s2
k1 as
k1
-
k1
C(s)
ss a
闭环特征方程: s2 as k1 0
闭环特征根:s1,2
a 2
a 2
2
k1
(闭环极点)
3
自动控制原理
在p5附近取一实验点sd, 则∠sd-p5可以认为是p5点的出射角 Sd Z Sd P1 Sd P2 Sd P3 Sd P4 Sd P5 1800
近似为 P5 Z P5 P1 P5 P2 P5 P3 P5 P4 p 1800
p Sd P5 1800
法则4 实轴上存在根轨迹的条件——
这些段右边开环零极点个数之和为奇
数。
m
n
证明:根据相角条件 S Z j S Pi 18002q 1
j 1
i 1
p4
j s平面
例:sd为实验点
p3
z2 sd
p2 z1 p1
p5
① 实验点sd右侧实 轴上零极点提供 1800相角
③ 共轭复零点,复极点提供的相角和为 3600。
2
s1=-1.172,s2=-6.828
33
自动控制原理
法则6 开环复数极点处根轨迹出射角为
p 1800
开环复数零点处根轨迹入射角为:
Z 1800
其中 z p(不包括本点)
34
自动控制原理
j p5
p5
p3 p3
p2
自动控制原理与应用 第4章
2) 稳态性能 由图4-2可见,开环系统在坐标原点有一个极点,所以系 统属1型系统,因而根轨迹上的K值就是静态误差系数。如果给 定了系统的稳态误差要求,则由根轨迹图可以确定闭环极点位 置的容许范围。在一般情况下,根轨迹图上标注出来的参数不 是开环增益,而是所谓根轨迹增益。 下面将要指出,开环增益和根轨迹增益之间仅相差一个比 例常数,很容易进行换算。对于其他参数变化的根轨迹图,情 况是类似的。
图4-2 二阶系统的根轨迹
2. 根轨迹与系统性能 画出根轨迹的目的是利用根轨迹来分析系统的各种性能, 以图4-2为例进行说明。 1) 稳定性 当开环增益由零变到无穷时,图4-2上的根轨迹不会越过 虚轴进入右半s平面,因此图4-1所示系统对所有的K值都是稳 定的。在分析高阶系统的根轨迹图时,根轨迹若越过虚轴进入 s右半平面,则根轨迹与虚轴交点处的K值即为临界开环增益。
为了说明根轨迹的概念,我们以图4-1所示的二阶系统为 例,介绍根轨迹的基本概念。
图4-1 二阶系统结构图
由图4-1可知,系统的开环传递函数为
G(s) K 2K
(4-1)
s(0.5s 1) s(s 2)
开环传递函数有p1=0, p2=-2两个极点,没有零点, 式中K 为开环增益。系统的闭环传递函数为
即
m
(s zi )
i 1 n
开环有限零点到 根轨迹上点 s的矢量长度之积 开环极点到根轨迹上点 s的矢量长度之积
1
K*
(s p j )
j 1
和
(4-9)
m
n
m
n
(s zi ) (s p j ) i j
当K=∞时,s1=-1+j∞, s2=-1-j∞,沿上述直线趋于无穷远。 如图4-2所示,当K由0→∞变化时,闭环特征根在s平面上 移动的轨迹就是系统的根轨迹,直观地表示了K变化时闭环特 征根的变化,给出了K变化时对闭环特征根在s平面上分布的影 响。因此,可通过根轨迹的变化趋势来判定系统的稳定性,确 定系统的品质。这种通过求解特征方程来绘制根轨迹的方法称 为解析法。
自动控制原理 第四章 根轨迹法
第4章 根 轨 迹 法根轨迹法是分析和设计线性控制系统的图解方法,使用简便,在控制工程上得到了广泛应用。
本章首先介绍根轨迹的基本概念,然后重点介绍根轨迹绘制的基本法则,在此基础上,进一步讨论广义根轨迹的问题,最后介绍控制系统的根轨迹分析方法。
4.1 根轨迹的基本概念4.1.1 根轨迹概念所谓根轨迹,就是系统开环传递函数的某一参数从零变化到无穷时,闭环特征根在s 平面上变化的轨迹。
例如某控制系统的结构图如图4.1所示。
图4.1 控制系统其开环传递函数为()K (0.51)KG s s s =+其闭环传递函数为22()22Ks s s KΦ=++式中:K 为系统开环增益。
于是闭环特征方程可写为2220s s k ++=对上式求解得闭环特征根为1,21s =−令开环增益K 从零变化到无穷,利用上式求出闭环特征根的全部数值,将这些值标注在s 平面上,并连成光滑的粗实线,如图4.2所示,该粗实线就称为系统的根轨迹。
箭头表示随K 值增加根轨迹的变化趋势。
这种通过求解特征方程来绘制根轨迹的方法,称之为解析法。
画出根轨迹的目的是利用根轨迹分析系统的各种性能。
通过第3章的学习知道,系统第4章 根轨迹法·101··101·特征根的分布与系统的稳定性、暂态性能密切相关,而根轨迹正是直观反应了特征根在复平面的位置以及变化情况,所以利用根轨迹很容易了解系统的稳定性和暂态性能。
又因为根轨迹上的任何一点都有与之对应的开环增益值,而开环增益与稳态误差成反比,因而通过根轨迹也可以确定出系统的稳态精度。
可以看出,根轨迹与系统性能之间有着比较密切的联系。
图4.2 控制系统根轨迹4.1.2 根轨迹方程对于高阶系统,求解特征方程是很困难的,因此采用解析法绘制根轨迹只适用于较简单的低阶系统。
而高阶系统根轨迹的绘制是根据已知的开环零、极点位置,采用图解的方法来实现的。
下面给出图解法绘制根轨迹的根轨迹方程。
自动控制原理第四章-根轨迹分析法
×
p4 z 2
×
p3
×
×
p 2 z1 p1
σ
规则4:根轨迹的分会点(分离点和会合点)d。 (1)定义:分会点是指根轨迹离开实轴进入复平面的点(分 离点)或由复平面进入实轴的点(汇合点),位于相邻两极点 或两零点之间。
(2)位置:大部分的分会点在实轴上,若出现在复平面内时,则 成对出现。
(3)特点:分会点对应于闭环特征方程有重根的点;根轨迹离开
(4)与虚轴的交点:
方法1:闭环特征方程为s3 + 6s2 + 8s + K*= 0 令s = jω得:-jω3 -6ω2 + j8ω + K* = 0
-6ω2 + K* = 0 即
-ω3 + 8ω= 0
K* = 48 ω= 2.8 s-1
方法2:闭环特征方程为 s3 + 6s2 + 8s + K*= 0 列劳斯表如下:
规则1:根轨迹的起点和终点。 根轨迹起始于开环极点,终止开环零点或无穷远。
m
i 1
s
zi
n
s
l 1
pl
1 K
K
K
0 s pl
s s
zi , m条 (, n
m)条
规则2: 根轨迹的条数和对称性。 n阶系统有n条根轨迹。根轨迹关于实轴对称。
规则3: 实轴上的根轨迹分布。
由实数开环零、极点将实轴分为若干段,如某段右边 开环零、极点(包括该段的端点)数之和为奇数,则该段就 是根轨迹,否则不是。如下图所示。
又因为开环传函的零极点表达式为:
m
GK (s)
G(s)H(s)
K
n
(s
自动控制原理第四章根轨迹法
i 1
j 1
开环极点到此被测零点 (终点)的矢量相角
8. 根轨迹的平衡性(根之和) ( n-m 2)
特征方程 Qs KPs 0
sn an1sn1 a1s a0 K sm bm1sm1 b1s b0 0
n
Qs KPs s p j sn cn1sn1 c1s c0 0 j 1
i 1
j1
k 0,1,2,
s zoi i 开环有限零点到s的矢量的相角
s poj j 开环极点到s的矢量的相角
矢量的相角以逆时针方向为正。
幅值条件:
s
m
m
s zoi
li
A s
i 1 n
i 1 n
s poj
Lj
j 1
j1
li αi
-zoi
Lj βj
×
-poj
开 环 有 限 零 点 到s的 矢 量 长 度 之 积 开环极点到s的矢量长度之积
, 2 2
c 2k 11800 2
由此可推理得到出射角:
其余开环极点到被测极 点(起点)的矢量相角
n1
m
c 2k 1180o j i
j 1
i 1
有限零点到被测极点
(起点)的矢量相角
同理入射角:
其余开环有限零点到被测 零点(终点)的矢量相角
m1
n
r 2k 1180o i j
1 GsHs 0
m
GsHs
KPs Qs
K
i 1
n
s
s
zoi
poj
j 1
P s sm bm1sm1 b1s b0
Q s sn an1sn1 a1s a0
于是,特征方程
自动控制原理 第四章.
s1.2 1 1 K1 1 1 2 K
第 4章
根轨迹
根轨迹的基本概念(续)
s1 0 ① K 0 s 2 2
j
2
② K 0.5 s1 s2 1 ③ K 1 s1 , 2 1 j ④ K 2.5 s1 , 2 1 j 2 p2
由于实际控制系统闭环特征方程的系数或为已知
实数,或为根轨迹增益Kg 的函数,所以当Kg 由0→∞
连续变化时,闭环特征根的变化必然也是连续的,所
以根轨迹具有连续性。 系统闭环特征方程的系数仅与系统的参数有关。
对于实际控制系统而言,这些参数都是实数。具有实
系数的闭环特征方程的根为共轭复数的形式,必然对
称于实轴。因而,根轨迹也必然பைடு நூலகம்于实轴对称。
s pi s zj
j 1
n
而 ( s z j ) ( s pi ) ( 2 K 1) ——相角方程
j 1 i 1
m
n
第 4章
根轨迹
根轨迹的基本概念(续)
若s平面上的点是闭环极点,则它与zj 、pi所组成
的相量必定满足上述两方程,而且模值方程与Kg有
第四章 根轨迹法
§4-1 根轨迹的基本概念 §4-2 绘制根轨迹的基本法则 §4-3 广义根轨迹
主要内容
1.根轨迹基本概念和根轨迹方程
2.绘制常规根轨迹的九大法则
3.参量根轨迹与零度根轨迹
第 4章
根轨迹
重点与难点
重 点
1、绘制常规根轨迹的九大法则 2、参量根轨迹与零度根轨迹 3、控制系统根轨迹法分析
§4—2 绘制根轨迹的基本法则
绘制根轨迹的基本法则(续)
自动控制原理第四章根轨迹法
第四章 根轨迹法
第一节 根轨迹与根轨迹方程 根轨迹 系统的某个参数(如开环增益K)由0到∞变化时, 闭环特征根在S平面上运动的轨迹。
例: GK(S)= K/[S(0.5S+1)] = 2K/[S(S+2)] GB(S)= 2K/(S2+2S+2K) 特征方程:S2+2S+2K = 0
-P1)(S-P2)…(S-Pn)
单击此处可添加副标题
当n>m时,只有m条根轨迹趋向于开环零点,还有(n-m)条? m,S→∞,有: (S-Z1)(S-Z2)…(S-Zm) -1 -1 ———————-— = —— = —— P1)(S-P2)…(S-Pn) K* AK 可写成:左边 = 1/Sn-m = 0 当K=∞时,右边 = 0 K=∞(终点)对应于S→∞(趋向无穷远). 即:有(n-m)条根轨迹终止于无穷远。
分解为:
03
例:GK(S)= K/[S(0.05S+1)(0.05S2+0.2S+1)] 试绘制根轨迹。 解: 化成标准形式: GK(S)= 400K/[S(S+20)(S2+4S+20)] = K*/[S(S+20)(S+2+j4)(S+2-j4)] K*=400K——根迹增益 P1=0,P2=-20,P3=-2+j4,P4=-2-j4 n=4,m=0
一点σa。
σa= Zi= Pi
ΣPi-ΣZi = (n-m)σa
σa= (ΣPi-ΣZi)/(n-m)
绘制根轨迹的基本法则
K*(S-Z1)(S-Z2)…(S-Zm)
—————————— = -1 (S-P1)(S-P2)…(S-Pn)
自动控制原理第4章根轨迹法精
m
( zj )
K K*
J 1 n
( pi )
i 1
zj
1
j
(j
1,2,, m);
pi
1 Ti
(i
1,2,, n)
可写出幅值方程与相角方程,即
G(s)H (s) 1
G(s)H(s) 1
开环零点: z1 1.5; z2,3 2 j
(1)实轴(0~1.5)和( 2.5 ~ )有根轨迹。
(2)渐近线n=4 m=3,故只有一条根轨迹趋向无穷远。由实根
轨迹可知 180 。
(3)根轨迹出射角与入射角。
出射角
3
4
p2 ( 2K 1) ( p2 zi ) ( p2 pi )
d= -3.7
s2 4s 1 0
解法2 用公式有
1 1 1
d 1 j 2 d 1 j 2 d 2
解此方程 d1 3.7, d2 0.3
d1在根轨迹上,即为所求的分离点,d2不在根轨迹上舍去。 因为
z1 2, p1,2 1 j 2 n=2,m=1
系统有两条根轨迹,一条消失于零点,另一条趋于负无穷远 在实轴(-2,-∞)区段有根轨迹。 出射角
4.1根轨迹与根轨迹方程
什么是时域分析? 指控制系统在一定的输入下,根据输出量的时
域表达式,分析系统的稳定性、瞬态和稳态性能。
4.1.1 根轨迹 4.1.2 根轨迹方程
4.1.1 根轨迹
[根轨迹定义]:系统开环传递函数增益K(或某一参数)由零到 无穷大变化时,闭环系统特征根在S平面上移动的轨迹。
例:如图所示二阶系统,
自动控制原理第四章--根轨迹法
2.相角条件:
G(s)H(s) (2k 1)
k 0,1, 2
为了把幅值条件和相角条件写成更具体的形 式,把开环传递函数写成如下形式:
m
(s zi )
G(s)H(s) Kg
i 1 n
(s pj)
j 1
式中:K
g 称为根轨迹增益;
zi ,
p
为开环零极
j
点。
∴ 幅值条件:
m
n
pl (2k 1) ( pl z j ) ( pl pi )
j 1
i 1
m
il
( pl z j ) ——所有开环零点指向极点-pl 矢量的相角之和。
j 1
n
( pl pi )——除-pl 之外的其余开环极点指向极点-pl 矢量
i 1
il
的相角之和。
在复数零点-zl 处的入射角为:
而s2、s3点不是根轨迹上的点。
[例]设系统的开环传递函数为 试求实轴上的根轨迹。
Gk (s)
s2(s
K g (s 2) 1)(s 5)(s
10)
[解]:零极点分布如下:
10
5
2 1 0
红线所示为实轴上根轨迹,为:[-10,-5]和[-2,-1] 。
四、根轨迹的渐近线:
渐近线包括两个内容:渐近线的倾角(渐近线与实轴的夹角) 和渐近线与实轴的交点。
n
m
zl (2k 1) (zl pi ) (zl z j )
i 1
j 1
jl
n
(zl pi )
i 1
——所有开环极点指向零点-zl 矢量的相角之和。
m
(zl z j )
j 1 jl
(完整版)第四章根轨迹法
j
8K * (1 K * )2 j
2
2
(1 K * ) K * 2 1
2
2 8K * (1 K * )2 8(2 1) 4 2 2 4 2
4
4
2 4 4 2 2
( 2)2 2
第四章 根轨迹法
自动控制原理课程的任务与体系结构
时域:微分方程 复域:传递函数 频域:频率特性
描述
控制系统
校正
时域法 复域法 频域法
评价系统的性能指标 稳定性 快速性(动态性能) 准确性(稳态性能)
分析
自动控制原理
§4 根轨迹法
§4.1 根轨迹法的基本概念 §4.2 绘制根轨迹的基本法则 §4.3 广义根轨迹 §4.4 利用根轨迹分析系统性能
• s平面上满足相角条件的点(必定满足模值条件) 一定在根轨迹上。 满足相角条件是s点位于根轨迹上的充分必要条件。
• 根轨迹上某点对应的 K* 值,应由模值条件来确定。
§4.2
m
绘制根轨迹的基本法则(1) G(s)H(s) =
K* s - z1 L s - zm s - p1 s - p2 L s - pn
K*
(s zi )
i 1 n
1
(s pj)
— 模值条件
j 1
m
n
G(s)H (s) (s zi ) (s p j ) (2k 1)
i 1
j1
— 相(s)H(s) =
K* s - z1 L s - zm s - p1 s - p2 L s - pn
§4 根 轨 迹 法
根轨迹法: 三大分析校正方法之一
特点: (1)图解方法,直观、形象。 (2)适合于研究当系统中某一参数变化时,系统性能的变化
自动控制原理第四章根轨迹法
根轨迹法可用于仿真和实验研究,通过模拟和实验 验证系统的性能和稳定性,为实际系统的设计和优 化提供依据。
根轨迹法的历史与发展
历史
根轨迹法最早由美国科学家威纳于1940年提出,经过多年的 发展与完善,已经成为自动控制领域中一种重要的分析和设 计方法。
发展
随着计算机技术和数值分析方法的不断发展,根轨迹法的应 用范围和精度得到了进一步拓展和提高。未来,根轨迹法有 望与其他控制理论和方法相结合,形成更加完善和高效的控 制系统分析和设计体系。
根轨迹的性能分析
根轨迹的增益敏感性和鲁棒性
通过分析根轨迹在不同增益下的变化情况,可以评估系统的性能和鲁棒性。
根轨迹与性能指标的关系
通过比较根轨迹与某些性能指标(如超调量、调节时间等),可以评估系统的 性能。
04
根轨迹法与其他控制方法的比较
根轨迹法与PID制根轨迹图,直观地分析系统的稳定性、响应速度和超调量等性
特点
根轨迹法具有直观、简便、易于掌握等优点,特别适合用于分析 开环系统的稳定性和性能。
根轨迹法的应用场景
控制系统设计
根轨迹法可用于控制系统设计,通过调整系统参数 ,优化系统的性能指标,如稳定性、快速性和准确 性等。
故障诊断与排除
根轨迹法可用于故障诊断与排除,通过观察系统根 轨迹的变化,判断系统是否出现故障,以及故障的 类型和程度。
在绘制根轨迹时,需要遵循一定 的规则,如根轨迹与虚轴的交点 、根轨迹的分离点和汇合点等。
03
根轨迹分析方法
根轨迹的形状分析
根轨迹的起点和终点
根轨迹的起点是开环极点的位置,而 终点是闭环极点的位置。通过分析起 点和终点的位置,可以判断根轨迹的 形状。
根轨迹的分支数
自动控制原理 第四章 常规根轨迹
精品课件!
精品课件!
0.4, n 10
1
2
σ% =
e
0.43.14 1 ( 0.4 ) 2
=
e
= 25 %
ts
3.5
n
0.88S
* 1+K
∏ ( s - zj )
j=1
m
也是常数! 根轨迹增益K* ,不是定数,从 0 ~ ∞变化
∏ ( s -pi) i=1 开环极点“×”, pi
n
=0
这种形式的特征方程就是根轨迹方程
相角条件:
m
根轨迹的模值条件与相角条件 n
∑ ∠ (s-z ) - ∑ ∠ (s-p ) = (2k+1) π j j j=1 i=1
常用规律二
若开环零、极点个数均为偶数,且左右对称分布于一条平 行于虚轴的直线,则根轨迹一定关于该直线左右对称。
j j4
• 例:
复数分离点 K* G (s ) H ( s ) s(s 4)(s 2 4s 20)
135 45
j 10
j2.45
K s(s 4)(s 2 j4)(s 2 j4)
4.1 根轨迹方程
1 根轨迹概念
R(s)
(-)
根轨迹:是指开环系统某个参数 由0变化到∞,闭环特征根在s平面 上移动的轨迹。根轨迹与系统性能密切相关。
K K ( s ) 2 s( s 1) K s s K
K s (s 1 )
C(s)
j
K=1/2
p1
j0.5
闭环特征方程为 s2+s+K=0, 解得闭环 特征根表达式
*பைடு நூலகம்
自动控制原理第四章 根 轨 迹 法
K=2.5
-2
>0.5时,特征根为共轭复根,欠阻尼系 统,响应为衰减振荡;可根据性能要求
K
设置闭环极点。
当特征方程>2阶时无法求解,如何绘制根轨迹图?
4-2. 绘制根轨迹的基本依据和条件
特征方程为: 1+G(s)H(s)=0
即: G(s)H(s)= -1
R(s)
Y(s)
G(s)
-
H(s)
G( s )H( s ) 1
4-1. 根轨迹基本概念
根轨迹的定义:
开环传递函数的某一参数从0变到∞时,闭环系 统特征方程式的根在s平面上的变化轨迹。
R(s)
-
E(s) G1(s)
D1(s) G 2(s)
H(s)
Y(s) D2(s)
如
G1( s )G2 ( s )H ( s )
Kg s( s 1 )( s 2 )
常规根轨迹
求解:设 Gk ( s ) KgG1( s ),则对于1 KgG1( s ) 0,有
dK g ds
d [G11( s )] ds
0 (Kg在根轨迹的分离点上取极值)
或 dG1( s ) 0 (特征式满足 d( s ) 0)
ds
ds
注:只须用其中之一,且只是必要条件
续前例:求分离点上的坐标。
幅值条件
G( s )H( s ) 180( 2k 1 ), k 0,1,2,
相角条件
零极点表达形式下的幅值条件和相角条件:
m
n
K g (s zi )
(s pi )
G(s)H(s)
i1 n
1 ,或
Kg
i1 m
,
(s pi )
(s zi )
自动控制原理 第4章
我们知道,一个闭环系统开环传递函数的分子加分母就是该 系统闭环传递函数的特征方程,这样,由已知闭环系统的开 环传递函数确定其闭环极点分布,实际上就是解决系统特征 方程的求根问题。 1948 年,伊文思( W.R.Evans )根据反馈 系统中开、闭环传递函数间的内在联系,提出了求解闭环特 征方程根的比较简易的图解方法,称之为根轨迹法。因为根 轨迹法直观形象,使用简单,所以在控制工程中获得了广泛 应用。
当 K =0.5 时,两个闭环极点均为 -1 ,闭环特征根为二 重实根,系统为临界阻尼,单位阶跃响应仍为单调上升的非 周期过程,但比上述情况稍快;
当 K >0.5 时,闭环极点为共轭复数,系统为欠阻尼振 荡,阶跃响应为衰减振荡过程,且超调量正比于 K 值。
分析表明,根轨迹与系统性能之间有着密切的联系,利 用根轨迹可以分析当系统参数增大时系统动态性能的变化趋 势。然而,对于高阶系统,用解析方法绘制系统根轨迹图显 然是不适用的,我们希望能有简便的图解方法。因为开环传 递函数相对容易得到,因此要求能够根据已知的开环传递函 数迅速绘出闭环系统的根轨迹。为此,需要研究开环零、极 点与闭环系统的根轨迹之间的关系。
第四章 控制系统的根轨迹法
4.1 根轨迹的基本概念 4.2 常规根轨迹的绘制法则 4.3 广义根轨迹 4.4 根轨迹系统性能分析 习题四
本章主要讲述根轨迹的概念、 绘制常规根轨迹的基本 法则、 广义根轨迹以及根轨迹系统性能分析等。
4. 1 根轨迹的基本概念
从第三章分析可知,一个系统可以通过找出其闭环极点 来分析系统的稳定性情况,而系统的稳态性能和动态性能又 与闭环零、极点在 s 平面上的位置密切相关。但对于高阶系 统,采用解析法求取系统的闭环特征方程根(闭环极点)通常 很困难,特别是在系统参数(如开环增益)发生变化时求根, 每变化一次都需要重新计算一次,因此解析法就显得很不 方便。
自动控制原理第4章
z2 ) p2 )
m
sm z j n1
i 1
(s zm )
(s pn )
m
(zj)
j 1
n
( pi )
i 1
自动控制原理
第四章 复域分析法-根轨迹法
如果开环零、极点的数目满足n-m 2,则 闭环特征方程为
snnp isn 1 n( p i)K *m( zj) 0
证明:系统的闭环特征方程
n
m
D(s) (spi)K* (szj)0
i1
j1
根轨迹有分离点,说明闭环特征方程有重
根。因此,
n
m
(s pi ) K* (s zj ) 0
i1
j1
d
ds
n i1
(s
pi )
K*
m j1
(s zj )
0
自动控制原理
第四章 复域分析法-根轨迹法
将上面两式相除,整理得
自动控制原理
第四章 复域分析法-根轨迹法
4.1 根轨迹的基本概念
一、根轨迹的定义
根轨迹:是指系统开环传递函数中某个参数 (如开环增益K)从零变到无穷时,闭环特征 根在s平面上移动所画出的轨迹。
常规根轨迹:当变化的参数为开环增益时 所对应的根轨迹。
广义根轨迹:当变化的参数为开环传递函 数中其它参数时所对应的根轨迹。
自动控制原理
第四章 复域分析法-根轨迹法
证明: 由根轨迹方程,得
m
(s
j 1
n
(s
zj) pi )
1 K*
i1
令K* =0,得
m
j 1 n
(s (s
zj) pi )
1 K*
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动控制理论
第4章 控制系统的根轨迹
例题及习题
北京信息科技大学
内容概要
自动控制理论
常规根轨迹的绘制规则
控 根轨迹的
制
绘制
系
统
的
根
轨
迹
根轨迹的
应用
零度根轨迹的绘制规则
广义根 轨迹
参数根轨迹和根轨迹族 滞后系统根轨迹
利用根轨迹进行性能分析,包括 稳定性分析,及动态性能的分 析
北京信息科技大学
1
0
-1
-2
-3
-4
-5
-8
-7
-6
-5
-4
-3
-2
-1
0
1
➢分离点:-1.42
Real Axis
第4章 例题及习题讲解
7
北京信息科技大学
➢B4-11_2
自动控制理论
Imaginary Axis
Root Locus 8
6
4
2
0
-2
-4
-6
-8
-3
-2.5
-2
-1.5
-1
-0.5
0
Real Axis
定实轴上的根轨迹。
Im
Im
Im
Im
Imaginary Axis
(a)
Root Locus
(b)
0.2
(c)
(d)
Root Locus
1.5
0.15 1
0.1 0.5
0.05
0
0
Imaginary Axis
-0.05 -0.5
-0.1 -1
-0.15
-0.2
Root Locus
1.5-3.5
-3
-2.5
➢ 6 分离点的概念,分离角的问题
➢ 7 如果渐近线与虚轴相交,则必有根轨迹分支与虚轴相 交,因此必须要解与虚轴的交点
第4章 例题及习题讲解
3
北京信息科技大学
➢ 注意问题:
自动控制理论
➢ 8 如果存在复平面上的开环零极点,一定要求出射角 (极点)或入射角(零点)
➢ 9 关于分离点的判断:
➢ 一般存在于实轴,但如果复平面上可能存在根轨迹相遇 的情况,也不能排除。分离点在求取的时候涉及解高阶 代数方程,注意试探的原则,从实轴上存在根轨迹的部 分,且一般是分别从两个实极点出发的分支相遇的部分 试探。
0.05
Real Axis
-0.4
-0.2
0
0.2
➢与虚轴交点增益6.67
0
s 0.8165 j
-1
-2
-3
-0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
Real Axis
Imaginary Axis
第4章 例题及习题讲解
15
北京信息科技大学
➢4-14
自动控制理论
➢等效开环传函
G(s)H(s)
自动控制理论
Imaginary Axis
Root Locus 4
3
2
1
0
-1
-2
-3
-4
-5
-4
-3
-2
-1
0
1
Real Axis
➢与虚轴交点增益s 4 5 8.94,坐标 s j1.7989
第4章 例题及习题讲解
10
北京信息科技大学
➢B4-13_1
自动控制理论
m
n
pi (2k 1) ( z j pi p j pi ) k 0,1, 2,
➢ 如:某系统存在4个极点,分别为0,-1,-3,-4,两个 开环零点,分别为-2,-6,试判断可能存在几个分离点?
➢ 若有5个极点,分别为0,-1,-3,-4,-5,两个开环零 点,分别为-2,-6,试判断可能存在几个分离点?
第4章 例题及习题讲解
4
北京信息科技大学
自动控制理论
B 4-9 已知系统开环传递函数的零极点分布如图所示,试决
5
-6
-5
-4
-3
-2
-1
0
1
Real Axis
Imaginary Axis
北京信息科技大学
➢B4-10
a
(2k 1)
nm
k 0,1, 2,
自动控制理论
n
m
pi z j
a
i 1
j 1
nm
第4章 例题及习题讲解
6
北京信息科技大学
➢B4-11_1
自动控制理论
Root Locus 5
4
3
2
Imaginary Axis
➢分离点:s=-2.4656
第4章 例题及习题讲解
8
北京信息科技大学
➢B4-12_1
自动控制理论
Root Locus 6
4
2
Imaginary Axis
0
-2
-4
-6
-10
-8
-6
-4
-2
0
2
Real Axis
➢与虚轴交点增益30,坐标 s j 6
第4章 例题及习题讲解
9
北京信息科技大学
➢B4-12_2
-j
z1 (2k 1) (0 45 63.4 90 ) 90 71.6
z1 180 [0 arctg1 arctg2 90] [90] 71.6
第4章 例题及习题讲解
14
北京信息科技大学
5
4
3
2
1
Imaginary Axis
0
-1
-2
-3
-4
3
Root Locus
-5
-1.6
自动控制理论
➢ 注意问题:
➢ 1 注意开环传递函数要整理成零极点形式
➢ 2 重点掌握常规根轨迹的绘制规则,注意步骤不能省略。
➢ 3 开环零极点一定要区别标出, 开环零点用o表示,开 环极点用x表示;关于根轨迹分支数:等于闭环极点的 个数,等于闭环特征方程的阶次
➢ 4 关于渐近线的数量
➢ 5 关于实轴上的根轨迹
-4
-3
-2
-1
0
1
2
Real Axis
第4章 例题及习题讲解
12
北京信息科技大学
➢极点(-1,j)的出射角
自动控制理论
Im j
Re -1 0
-j
第4章 例题及习题讲解
13
北京信息科技大学
m
n
zi (2k 1) ( zj zi ) pjzi
j 1
j 1
自动控制理论
Im j
Re -1 0
s(s 1)(s 2)
第4章 例题及习题讲解
16
北京信息科技大学
4
Root Locus
-2
-1.5
-1
-0.5
0
0.5
Real Axis
1
-1.5
-2.5
-2
-1.5
-1
-0.5
0
0.5
Real Axis Root Locus 1.5
1 0.5
0.5 0
Imaginary Axis
0 -0.5
-0.5 -1
-1
-1.5
-3.5
-3
-2.5
-2
-1.5
-1
-0.5
Real Axis
0
0.5 第4章 例题及习题讲解-1.5
j 1
j 1
Im
j2
Re
-4 -2 0 -j2
p3 180 (90 arctg(1) arctg1) 90
Im j2
Re -4 -2 0
-j2
p4 90
第4章 例题及习题讲解
11
北京信息科技大学
4
Root Locus
自动控制理论
3
2
1
Imaginary Axis
0
-1
-2
-3
-4
-6
-5
-1.4
-1.2
-1
2
1
Root Locus
-0.8
-0.6
Real Axis
自动控制理论 Root Locus
1.4 1.3 1.2 1.1
1 0.9 0.8 0.7 0.6 0.5
Imaginary Axis
-0.05 -0.04 -0.03 -0.02 -0.01
0
0.01
0.02
0.03
0.04