802.11n_概述
802.11N知识_速率计算方法
802.11n 速率计算方法802.11n采用了MIMO多天线技术,当存在两根天线(即假如是2X2时),在每种带宽下它存在16种速率(记为MCS0-MCS15,MCS:Modulation and coding scheme)(当有3根或者4根天线都同时能够发射数据的时候,理论上应该是1根天线时的3倍或4倍)。
这16种速率分别是:HT20时:(MCS0-MCS7) 6.5M、13M、19.5M、26M、39M、52M、58.5M、65M (MCS8-MCS15) 13M、26M、39M、52M、78M、104M、117M、130MHT40时:(MCS0-MCS7) 13.5M、27M、40.5M、54M、81M、108M、121.5M、135M (MCS8-MCS15) 27M、54M、81M、108M、162M、216M、243M、270M。
从上面可以看出,MCS8-MCS15分别是对应的MCS0-MCS7的两倍。
这是因为在MCS8-MCS15时,采用了MIMO技术,一个数据流会分成两部分,分别由两个stream发出去,所以速度提高了一倍;而在MCS0-MCS7时,虽然两根天线也是同时发出信号,但这两路信号是一样的,所以速度只有MCS8-MCS15的一半。
802.11n采用多种调制技术,但是在上表中每一列速率对应的码率(即有效数据和发出的数据的比率)是不一样的,例如在MCS7和MCS15时,码率是5/6,而在MCS6和MCS14时,码率是3/4。
由于11n采用的是和11a/g一样的OFDM方式,而OFDM是将一个宽的带宽正交地分割成几个小的子载波,这些子载波并行地传输数据。
所以为了得到某个理论上的速率是如何计算出来的,可以从这方面着手。
下面示范HT20在MCS7时速率的计算方式。
首先,每次传输的时间是4us(这点对于11a/11g相同),由于MCS7采用的是64QAM的调制技术,即每个子载波每次可传输6bit数据,同时,在MCS7时,码率(coding rate)是5/6,在HT20时,OFDM将20M带宽分割成56个子载波,其中有效传输数据的子载波数目为52。
802.11n技术详解
9
802.11n的关键技术
Spatial multiplexing补充
MIMO技术运用了多径效应的正面
影响,使用多天线来实现多通道,传 输信息流经过空时编码形成多个信息 子流经过多个天线发射出去,多天线 接收机使用先进的空时编码处理能够 分开并解码这些数据子流,从而实现 最佳的处理。
SIFS的时间间隔是16usec
20
802.11n的关键技术
Block Acknowledgements
按照11n协议,对于MSDU聚合帧的确认,可以作为一个帧来确认。对于
MPDU聚合帧,需要对构成该聚合帧的每个帧进行分别确认。 为了提高MAC层效率,协议定义了block acknowledgement机制,可以通 过一个frame来实现对整个MPDU聚合帧的确认。 据了解:Block Acknowledgements+Frame Aggregation可以将文件传输 等流量的吞吐提高100%。 在AC上可以通过display wlan client verbose 查看已经建立的BLACK ACK
19
802.11n的关键技术
Reduced Interframe Spacing (RIFS)
按照11协议,在收到确认帧和发送下一帧之间需要一个时间间隔 (IFS)。较11协议,11n定义了更短的IFS并称之为RIFS,提高了发送 效率。但是该模式只能应用于greenfield模式,即纯n的设备。 RIFS将两个帧间的时间间隔缩短到2usec
层,随后几年IEEE相继提出了802.11b、802.11a和802.11g的物理层标 准。
(2)802.11b提供了最大11Mbit/s的传输速率,802.11a和802.11g提
802.11n简述
OFDM(正交频分复用)技术
MIMO-OFDM
Channel bonding(40MHz)
20MHz是单层道 40MHz是双层道
20/ 40MHz频宽选择方式
TXOP/Block ACK
TXOP(对称的传输机会)
当站点需要传输MSDU时,并不会在获得接入机会的同时接入信道,而
是等待一段时间后再进行发送。一个节点从其获取接入信道的机会到其 开始传输的时间叫做一个TXOP。通过轮询或者竞争的机制可以调整不 同站点TXOP的大小,使得信道可以得到更好的应用
802.11k
管理增进 无线资源管理:指定 无线电频率环境的测 量方法
易与802.11i混淆,预 留不使用 802.11家族规范进行 维护、修正、改进, 以及为其提供解释文 件
------
------
2008
802.11l 802.11m
-----------
-----------
-----------
802.11n
600Mbps >100Mbps
20MHz /& 40MHz
DataRate和吞吐量
DateRate
DataRate指物理层传输速率,是传输信号的速度,不管这是 数据帧还是其他的控制帧。11N提供最高达600M的物理层传 输速率
吞吐量
吞吐量指的是真正的数据载荷部分传输的速率。一般测试结果 大致为总传输速率的一半左右它是不计算诸如:TCP负载,MAC 头负载,和PHY负载,以及控制帧管理帧,和空闲时间,冲突 造成的负载等
传统:去相同地方的人各自开车 更新:组织去同一目标的人共乘
Frame Aggregation
传统情况
发送端先获取频道,发送一个数据帧后释放频道,再获取频道重新发送下一个帧。
802.11n中用来提高吞吐量的机制
802.11n是一种无线局域网(WLAN)技术标准,旨在提高无线网络的速度和稳定性。
在802.11n标准中,有几种机制被用来提高吞吐量,从而改善无线网络的性能。
本文将介绍802.11n中用来提高吞吐量的机制,并对其原理和实际应用进行详细阐述。
一、MIMO技术MIMO是Multiple-Input Multiple-Output的缩写,即多输入多输出技术。
802.11n标准采用了MIMO技术,通过同时使用多个天线进行数据传输和接收,从而提高了无线网络的吞吐量。
MIMO技术能够在不增加频谱带宽的情况下,通过空间复用的方式提高数据传输速率,增强了信号的抗干扰性和覆盖范围。
利用MIMO技术,802.11n标准支持了1x1、2x2、3x3甚至4x4等不同数量的天线配置,能够实现更多数据的并行传输,提高了网络的整体性能。
MIMO技术还能够通过空间复用和波束成形等手段来提高信号的覆盖范围和可靠性,从而进一步提高了网络的吞吐量和稳定性。
二、帧聚合技术802.11n标准引入了帧聚合技术,通过将多个数据帧合并成一个更大的帧进行传输,从而提高了数据传输的效率和吞吐量。
在传统的802.11a/g标准中,每个数据帧都需要经过一定的信道竞争和保护间隔,从而导致了较为低效的信道利用率和较低的吞吐量。
而在802.11n标准中,通过帧聚合技术,可以将多个数据帧合并成一个更大的帧进行传输,减少了信道竞争的次数,提高了信道的利用效率,进而提高了网络的吞吐量。
帧聚合技术的引入显著改善了无线网络的性能,使得802.11n能够更好地满足多媒体数据传输等高吞吐量的应用需求。
三、频谱聚合技术802.11n标准还引入了频谱聚合技术,通过同时使用多个频段来传输数据,从而提高了无线网络的吞吐量。
在传统的802.11a/g标准中,无线网络只能使用2.4GHz或5GHz的某一个频段进行数据传输,因此受到了频谱资源的限制,无法充分利用现有的频谱资源来提高网络的吞吐量。
IEEE802.11n介绍
IEEE802.11n标准发展历程
2002年9月11日 2003年9月11日 2003年9月15日 2004年5月17日 2004年9月13日 2005年3月 2005年7月 2006年3月 2006年5月2日 2006年11月 2007年1月19日 2007年6月25日 2007年11月 高性能传输研究小组(HTSG)第一次会议结束 IEEE标准委员会批准成立旨在定义基于IEEE802.11 PHY层和MAC层的最大速率超过100Mbps的项 目组 802.11新工作组(TGn)首次会议 通知提交议案 首轮32个议案提交 议案被合并,缩减为1个,但未获75%共识.该分歧造成后续3次会议均未对任何一个提案达成共识 竞争对手TGn Sync,WWiSE,MITMOT发表联合声明,宣布合并彼此标准,并预期于2009年第二 季完成最终版本 IEEE802.11工作组发布第一个802.11草案,超过500个802.11选民检查了该文档并给出了修改和提 升建议 IEEE802.11工作组对draft1.0进行投票,仅达到46.6%通过率,该草案未获通过 TGn投票通过draft1.06, IEEE工作组一致通过(100票赞成,0票反对,5票弃权) 802.11n工作组的draft2.0标准 WI-FI联盟宣布其设备认证基于Draft2.0 工作组批准Draft3.0
IEEE802.11n主要技术
1. 2. 3. MIMO-多入多出 Frame aggregation-数据聚合 SpatiEE802.11n主要性能介绍
传输速率(Mbps) MCS index 空间码流数 调制方式 20MHz带宽 800ns帧间距 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 BPSK QPSK QPSK 16-QAM 16-QAM 64-QAM 64-QAM 64-QAM BPSK QPSK QPSK 16-QAM 16-QAM 64-QAM 64-QAM 64-QAM 6.5 13 19.5 26 39 52 58.5 65 13 26 39 52 78 104 117 130 400ns帧间距 7.2 14.4 21.7 28.9 43.3 57.8 65 72.2 14.4 28.9 43.3 57.8 86.7 115.6 130 144.4 800ns帧间距 13.5 27 40.5 54 81 108 121.5 135 27 54 81 108 162 216 243 270 40MHz带宽 400ns帧间距 15 30 45 60 90 120 135 150 30 60 90 120 180 240 270 300
无线WiFi-802.11N技术
802.11n技术802.11n是在802.11g和802.11a之上发展起来的一项技术,最大的特点是速率提升,理论速率最高可达600Mbps(目前业界主流为300Mbps)。
802.11n可工作在2.4GHz和5GHz两个频段,分别向下兼容802.11g 和802.11a。
2009年9月11日这天,802.11n正式成为标准,整个WLAN产业链也为之一振,随后各种支持802.11n 的终端变得越来越普遍,802.11n在未来的物联网背景下显得举足轻重。
关键技术一:MIMOMIMO(音maimou),即多输入多输出,主要原理是通过多根天线发射和接收多条空间流。
传统方式只能发射和接收一条空间流,所以从理论上通过MIMO可以成倍的增加无线传输的速率,而不需要增加实际的频谱资源开销。
802.11n协议规定最大为4条空间流,理论速率为600Mbps。
而目前由于产业链也在发展当中,最为普及的是300Mbps的速率,即采用2条空间流的方式进行。
介于2条和4条之间,当然还有一种3条流的方式,最大速率为450Mbps。
也就是说,目前业界的11n产品也在不断发展当中,一个基本的趋势就是“300Mbps->450Mbps->600Mbps”。
MIMO的实现依赖于多天线技术。
如果把一个802.11n的AP比作一辆家用汽车,那么300Mbps相当于是1.6L 排量,450Mbps和600Mbps相当于是2.0L和2.0T的排量。
在300Mbps这档中有三种不同的MIMO实现方式,分别是2×2、2×3和3×3(前者表示发射天线的个数,后者表示接收天线的个数)。
2×2可以认为是手动低配版(天线的个数绝对不可能小于空间流的个数),而2×3和3×3则是分别属于“中等配置”和“高级配置”。
虽然这三种MIMO方式显示的理论速率均为300Mbps,但是在实际使用的感受上,802.11n的传输性能与MIMO天线的多少息息相关,天线越多,实际获得的吞吐量越高,使用当中抗干扰的能力也会更强。
ieee802.11n 标准
IEEE 802.11n标准是一种无线局域网(WLAN)通信标准,旨在提供更快的数据传输速度和更大的覆盖范围。
该标准在2009年正式发布,并取代了之前的IEEE 802.11a和802.11g标准,成为当时最先进的无线网络技术之一。
IEEE 802.11n标准的出现极大地推动了无线通信技术的发展,为用户提供了更稳定、更快速的网络连接体验。
本文将从以下几个方面对IEEE 802.11n标准进行详细介绍,使读者对该标准有一个全面的了解。
一、IEEE 802.11n标准的发展历程IEEE 802.11n标准最初的研发工作可追溯至2004年,当时IEEE无线局域网工作组启动了一个名为“高速组网”(High Throughput)的项目,旨在提高无线网络的传输速度。
随着技术的发展,该项目逐渐演化成IEEE 802.11n标准,并在几年后正式发布。
IEEE 802.11n标准的发布标志着无线通信技术迈入了一个新的阶段,为用户提供了更便利的无线网络连接方式。
二、IEEE 802.11n标准的技术特点1. MIMO技术IEEE 802.11n标准采用了多输入多输出(MIMO)技术,通过在发送和接收端分别使用多个天线并利用多径效应,从而提高了信号的传输效率和可靠性。
MIMO技术使得无线网络可以同时传输多条数据流,极大地提升了网络的数据传输速度和覆盖范围。
2. 40MHz信道和聚合技术与之前的802.11a和802.11g标准相比,IEEE 802.11n标准引入了40MHz信道和帧聚合技术,使得数据的传输速率得到了极大的提升。
40MHz信道可以提供更大的带宽,进而加快了数据的传输速度;而聚合技术可以将多个数据帧合并在一起发送,有效地提高了信道利用率。
3. 空间频率块调制(Spatial Frequency Block Coding,SFBC)IEEE 802.11n标准还引入了SFBC技术,通过在不同的天线上发送相位不同的信号,从而避免了多径信道的干扰,提高了数据的可靠性和稳定性。
802.11n
2002.初步制定 MIMO OFDM 2007.认证 2009.9通过
• • •
•
•
• • •
其他802.11标准 ●802.11c,它是关于802.11网络和普通以太网之间的互通协议,现已包含在 大多数产品中。 ●802.11d,该协议最初致力于开发工作在其他频率的802.11b版本,使其在 许多没有2.4-GHz波段的国家和地区也可以使用。由于ITUT的推荐和许多厂 商的压力,大多数国家都已经开通了这个波段。然而,802.11d仍然可以用在 其他授权波段上。 ●802.11e,该协议将QoS(Quality of Service,服务质量)功能加入到 802.11网络上,它用TDMA方式取代类似Ethernet的MAC层,为重要的数据 增加额外的纠错功能。 ●802.11f,该协议是为了改善802.11中的切换机制而制定的,以使用户能够 在两个不同的交换分区(无线信道)之间,或在加到2个不同的网络上的接入点 之间漫游的同时保持连接功能。 ●802.11h,该协议的主要目的是对802.11a的传输功率和无线信道选择增加 更好的控制功能,它与802.11e相结合,适用于欧洲地区。 ●802.11i,该协议负责处理802.11网络最明显的一个问题:安全性。它不是 WEP的加强版本,而是建立在AES(美国的官方加密系统)上的一个全新标准。 ●802.11j,该协议是一个新的标准,目前只是一个草案,目的是解决 802.11a和HiperLan2的互通问题,因此它不是一个统一的标准,而是ETSI和 IEEE的联合标准。
• MIMO:发送机制一般分2类,数据速率最大化或者分级增 益最大化 • 数据速率最大化:致力于提高平均信道容量
• MIMO 分级增益最大化:通过对各个数据流进行联合编码来 抑制信道衰落、噪声和干扰等对传输的影响。实现多天线 联合编码的发送机制统称为空时编码(STC)。
11-802.11n原理与基站型AP介绍
14.4
26
28.9
39
43.3
52
57.8
78
86.7
104
115.6
117
130
130
144.4
195
216.7ຫໍສະໝຸດ 260288.9带宽(40MHz)
GI=800ns GI=400ns
13.5
15
27
30
40.5
45
54
60
81
90
108
120
121.5
135
135
150
27
30
54
60
81
90
108
120
162
180
216
240
243
270
270
300
405
450
540
600
•802.11n速率=(有效载波数×编码率×子载波传输数位×空间流数×GI)/OFDM符号的时长
802.11n产品图片
此处添加小插图
WLAN 802.11n组网方案
提纲
11n增强技术及外场测试结果
11n主要增强技术 外场测试结果
帧聚合技术包含针对MSDU(MAC 服务数据单元)的聚合(A-MSDU)和针对 MPDU的聚合(A-MPDU):
802.11n关键技术 —帧聚合(Frame Aggregation)
A-MPDU:与A-MSDU不同的是,A-MPDU聚合的是经过802.11报文 封装后的MPDU,这里的MPDU是指经过802.11封装过的数据帧。通 过一次性发送若干个MPDU,减少了发送每个802.11报文所需的 PLCP Preamble,PLCP Header,从而提高系统吞吐量。
WLAN--802.11N协议基础及网络部署
TD-SCDMA 2.8M TD-LTE 173M
802.11g
54Mbps (实际25Mbps)
带宽的大幅度提升使得每个接入点可以接入更多的客户端。
全面向下兼容a/b/g
2.4 GHz 5.8 GHz
Not support
b only
g only, b/g mix, b only
n only, b/g/n mix, g/n mix,b/g mix, g only, b only n only, a/n mix, a only
802.11n 关键技术 802.11n 的技术优势 影响802.11n速率的关键因素 802.11n设备部署
影响802.11n速率的关键因素——CSMA/CA机制
WLAN 采用CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance) 机制来解决冲突问题。 终端在发送数据前首先监听信道,如果信道空闲,则随机退避一 个时间,如果这个时间内没有其他终端抢占信道,终端等待完后 可以立即占用信道并传输数据。 CSMA/CA决定了:终端越多,则冲突规避开销越大,信道可用 带宽越低。
MIMO:具有多个独立的接收和传输路径的无 线电射频系统,是11n的核心技术。 MIMO-OFDM:将高速码流拆分成多个低速码 流,每个低速码流在相同的频点上分别由不同 的天线同时发送。码流在接收端进行整合。
802.11n关键技术——信道捆绑技术
1Mbps 20MHz Channel 1Mbps 20MHz Channel 40MHz Channel 2Mbps
直接信号
反射信号
反射信号
802.11n关键技术-帧聚合技术
帧聚合技术原理:
802.11n技术介绍
学习目标
通过本课程的学习, 通过本课程的学习,希望能了解802.11n 技术的特点与应用以及它的发展前景
什么是802.11n 什么是
802.11n就是 就是Wi-Fi协议的下一代无线协议 就是 协议的下一代无线协议 作为世界主流的无线网络标准协议, 作为世界主流的无线网络标准协议,802.11一系列标准从 一系列标准从 无到有,经过十多年,逐渐成长起来。 无到有,经过十多年,逐渐成长起来。从802.11b过渡到 过渡到 802.11g,只不过是一次升级行为,而从 ,只不过是一次升级行为,而从802.11g发展到 发展到 802.11n,则是一个换代问题。 ,则是一个换代问题。 802.11n是新一代的 是新一代的WLAN规范,相对于以前的规范,在 规范, 是新一代的 规范 相对于以前的规范, 传输数度,距离,抗干扰性等方面都有很大的提升, 传输数度,距离,抗干扰性等方面都有很大的提升,毫无 悬念的它将成为WLAN的主流规范 悬念的它将成为 的主流规范
20和 40MHz 信道 和
40/20MHz信道带宽 40/20MHz信道带宽 信道 802.11n建议规范支持20/40MHz信道带宽 建议规范支持20/40MHz信道带宽, 802.11n建议规范支持20/40MHz信道带宽,从而 可在全球范围內实现500Mbps的高数据率,並增 可在全球范围內实现500Mbps的高数据率, 范围 500Mbps的高数据率 数据传输容量 40MHz信道由两个20MHz 容量。 信道由两个20MHz的 大数据传输容量。40MHz信道由两个20MHz的相 信道组成 利用两个信道之间 组成, 两个信道之间未被利用的象 邻信道组成,利用两个信道之间未被利用的象 频段,可使每次传输的容量比目前WLAN 传输的容量比目前 限频段,可使每次传输的容量比目前WLAN 54Mbps的数据率提升一倍多 54Mbps的数据率提升一倍多。
ieee802.11n标准的主要技术
IEEE 802.11n标准的主要技术在今天的无线通信领域,IEEE 802.11n标准是一项重要的技术,它为无线局域网提供了更快的速度和更稳定的连接。
IEEE 802.11n标准采用了一系列新的技术来提高无线网络的性能,包括MIMO(多输入多输出)、OFDM(正交频分复用)、空间复用和通道绑定等。
这些技术带来的革新为无线通信带来了新的发展机遇,也加速了无线网络的普及和发展。
1. MIMO技术MIMO技术是IEEE 802.11n标准的核心技术之一。
MIMO利用多个天线来传输和接收数据,可以在同一时间和频率上传输多个数据流,从而大大提高了无线网络的传输速度和稳定性。
通过MIMO技术,无线网络可以实现更远距离的覆盖和更高的数据传输速率,为用户提供了更好的网络体验。
2. OFDM技术OFDM技术也是IEEE 802.11n标准的重要技术之一。
OFDM采用了一种特殊的频率分配方式,将数据流分成多个低速的子流,并采用正交载波的方式同时传输这些子流,从而提高了信号的抗干扰能力和频谱利用率。
通过OFDM技术,无线网络可以更有效地利用频谱资源,同时也能够更好地抵抗多径衰落和干扰,提高了网络的稳定性和可靠性。
3. 空间复用技术IEEE 802.11n标准还引入了空间复用技术,通过同时在不同的天线上发送不同的数据流,实现了空间的复用,从而提高了无线网络的容量和覆盖范围。
空间复用技术让无线网络可以在相同的频率和时间上传输多个数据流,大大提高了网络的效率和性能。
4. 通道绑定技术通道绑定技术是IEEE 802.11n标准的又一项重要技术。
通道绑定技术允许无线网络同时使用多个频道,从而增加了网络的容量和吞吐量。
通过通道绑定技术,无线网络可以更好地适应复杂的无线环境,减少了干扰和冲突,提高了网络的性能和稳定性。
总结回顾通过对IEEE 802.11n标准的主要技术进行全面的分析和评估,我们可以看到,这些技术为无线网络带来了重大的革新和改进。
802.11n无线网络标准
802.11n无线网络技术特点802.11n术语解释:Wi-Fi联盟在802.11a/b/g后面的一个无线传输标准协议在当今各种无线局域网技术交织的战国时代,WLAN、蓝牙、HomeRF、UWB等竞相绽放,但IEEE802.11系列的WLAN是应用最广泛的。
自从1997年IEEE802.11标准实施以来,先后有802.11b、802.11a、802.11g、802.11e、802.11f、802.11h、802.11i、802.11j等标准制定或者酝酿,但是WLAN依然面临带宽不足、漫游不方便、网管不强大、系统不安全和没有杀手级的应用等。
就像当今VoIP应用中一个全新的领域VoWLAN那样,虽被业内人士看作是WLAN最有希望的杀手级应用,却因为这四个“不”,很难进一步发展。
为了实现高带宽、高质量的WLAN服务,使无线局域网达到以太网的性能水平,802.11n应运而生。
600Mbps的美妙前景在传输速率方面,802.11n可以将WLAN的传输速率由目前802.11a及802.11g 提供的54Mbps,提供到300Mbps甚至高达600Mbps。
得益于将MIMO(多入多出)与OFDM(正交频分复用)技术相结合而应用的MIMO OFDM技术,提高了无线传输质量,也使传输速率得到极大提升。
在覆盖范围方面,802.11n采用智能天线技术,通过多组独立天线组成的天线阵列,可以动态调整波束,保证让WLAN用户接收到稳定的信号,并可以减少其它信号的干扰。
因此其覆盖范围可以扩大到好几平方公里,使WLAN移动性极大提高。
在兼容性方面,802.11n采用了一种软件无线电技术,它是一个完全可编程的硬件平台,使得不同系统的基站和终端都可以通过这一平台的不同软件实现互通和兼容,这使得WLAN的兼容性得到极大改善。
这意味着WLAN将不但能实现802.11n 向前后兼容,而且可以实现WLAN与无线广域网络的结合,比如3G。
两个阵营在争标准让人遗憾的是,802.11n现在处于一种“标准滞后、产品早产”的尴尬境地。
IEEE 802.11n详述
Ad-hoc网络是一种特殊的无线移动网络,网络中所有节点的地位平等,无需设置任何的中心控制节点,并且要求网中任意两个站点均可直接通信。网络中的节点不仅具有普通移动终端所需的功能,而且具有报文转发能力。与普通的移动网络和固定网络相比,它具有以下特点:
(1)无中心
节点可随时加入或离开网络,任何节点的故障不会影响整个网络的运行,具有很强的抗毁性。
第二章 当前主流
本章将对当前主流的无线局域网的物理层关键技术分别作出介绍,其中包括IEEE 802.11,802.11b,802.11a,以及802.11g,并对这几种模式作出对比和总结。
2.1IEEE802.11的调制技术
IEEE 802.11标准提供1Mbps和2Mbps两种传输速率,分别采用BPSK和QPSK的调制方法,下面就对这两种调制方法作出介绍。
♦.用于远距离信息的传输:如在林区进行火灾、病虫害等信息的传输;公安交通管理部门进行交通管理等。
♦.专门工程或高峰时间所需的暂时局域网:学校、商业展览、建设地点等人员流动较强的地方;利用无线局域网进行信息的交流;零售商、空运和航运公司高峰时间所需的额外工作站等。
♦.流动工作者可得到信息的区域:需要在医院、零售商店或办公室区域流动时得到信息的医生、护士、零售商、白领工作者。
2.1.1 BPSK的调制方法
BPSK是一种非常简单的调制方式,即二进制的数字信号0和1分别用载波的相位0和π来表示,其表达式为:
BPSK的调制实现非常简单,只需要将载波与输入信号进行电平交换后的输出相乘即可,实现时,一般采用查表法进行BPSK调制。它的波形如下图所示:
图2.1 BPSK调制波形
2.1.2QPSK的调制方法
◆IrDA技术
802.11n帧聚合
802.11n 无线帧聚合介绍目录1、引言 (2)2、802.11n MAC帧格式 (2)3、802.11n帧聚合概述 (2)4、A-MSDU聚合简介 (4)5、A-MPDU聚合简介 (5)6、Block Ack 块确认 (8)7、802.11n帧聚合的意义 (9)1、引言1997年6月,美国电气电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)制定了全球第一个无线局域网标准IEEE 802.11。
其后IEEE又相继推出了IEEE 802.11b、IEEE 802.11a、IEEE 802.11g等标准。
随着Internet 业务的高速增长,实时业务和多媒体应用的不断增加,对网络的带宽、QoS 可扩展性也提出了更高要求。
为了解决上述问题,下一代无线局域网IEEE 802.11n 应运而生。
2003年,IEEE启动802.11n 标准的制订工作,此后很多厂家都参与到其中, 逐渐形成了全球信道效率联盟(WWiSE)和TGn Synch两大阵营,它们各自向IEEE 提出了自己的标准。
在2005 年10 月,两大阵营基于共同的利益达成和解,并于2007 年2 月发布了802.11n的2.0草案。
IEEE 802.11n 使无线通信的可靠性、速度与范围都得到了显著改进。
802.11n任务组的速率指标是大于或等于100Mb/s,目前已经达到的速率是150Mb/s,甚至可以高达300 Mb/s和600 Mb/s。
为了提高WLAN的吞吐能力,IEEE 802.11n 标准在物理层和MAC层都采用了多种措施。
MAC层采用的帧聚合技术就是提高吞吐量的有效方法。
2、802.11n MAC帧格式为了提升整个网络的吞吐量,IEEE 802.11系列标准使用了复杂的MAC协议,也使用了相当复杂的MAC帧。
802.11n标准是对802.11标准的改进,其MAC帧通用格式如图所示:如图2.1所示,在802.11n 的协议当中,MAC Header包含如下字段:Frame Control(帧控制字段)、Duration/ID(持续时间字段)、Address1-Address4(地址字段)以及可选的SequenceControl(序列控制字段)、QoS Control(Qos控制字段)和HT control(高吞吐量控制字段)。
一文看懂802.11ac和802.11n的区别
一文看懂802.11ac和802.11n的区别802.11n简介802.11n是在802.11g和802.11a之上发展起来的一项技术,最大的特点是速率提升,理论速率最高可达600Mbps(目前业界主流为300Mbps)。
802.11n可工作在2.4GHz和5GHz两个频段。
Wi-Fi联盟在802.11a/b/g后面的一个无线传输标准协议,为了实现高带宽、高质量的WLAN服务,使无线局域网达到以太网的性能水平,802.11任务组N(TGn)应运而生。
802.11n标准至2009年才得到IEEE的正式批准,但采用MIMO OFDM技术的厂商已经很多,包括华为、腾达、TP-Link、D-Link、Airgo、Ubiquiti、Bermai、Broadcom以及杰尔系统、Atheros、思科、Intel等等,产品包括无线网卡、无线路由器等。
802.11ac简介IEEE 802.11ac,是一个802.11无线局域网(WLAN)通信标准,它通过5GHz频带(也是其得名原因)进行通信。
理论上,它能够提供最多1Gbps带宽进行多站式无线局域网通信,或是最少500Mbps 的单一连接传输带宽。
802.11ac是802.11n的继承者。
它采用并扩展了源自802.11n的空中接口(air interface)概念,包括:更宽的RF带宽(提升至160MHz),更多的MIMO空间流(spatial streams)(增加到 8),多用户的MIMO,以及更高阶的调制(modulation)(达到256QAM)。
802.11ac和802.11n的主要差异802.11ac与802.11n相比主要有四大技术演进:更宽的频宽绑定、更多的空间流、更先进的调制技术以及更灵活的MIMO机制。
一、信道绑定增加无线电传输速度的一个简单而高效的方法就是给它更多的频率或者带宽,802.11a/b/g时代信道只有20MHz,为了获得更多的带宽,802.11n引入了信道绑定的技术,将两个20MHz的信道捆绑在一起,如今802.11ac能够支持80MHz的信道,即绑定4个信道,并且最高可以支持绑定8个信道,从而整个信道能够到达160MHz。
802.11n技术简介1
802.11n技术简介IEEE-802.11n 整合了早期802.11 协议的所有修订和增补内容,其中包括实现QoS 的802.11e 增强MAC技术以及省电技术。
IEEE-802.11n 设计目标就是为了实现高吞吐量。
目前宣称的最高速率可达300Mbps(两个独立数据流/40MHz 信道宽度)。
如果以IEEE-802.11a/g的最高速率54Mbps 作为比较,802.11n 通过使用下文所述的技术,可以实现高达300Mbps 的数据吞吐量。
技术优势相对传统802.11技术,802.11n具备以下技术优势:更高的有效数据吞吐能力802.11n采用了一系列新机制以增加可用带宽。
基于802.11a/g的无线局域网在物理层可提供最高54Mbps数据率(毛速率,非净速率),但网络层的实际速率只有22-26Mbps。
而802.11n 吞吐量目前已经达到300Mbps的毛速率,实际速率可达120-130Mbps。
理论上说,由802.11n 标准定义的速率在四个空分数据流模式下高达600Mbps。
这是首次无线速率超过有线快速以太网络速率。
更可靠的无线覆盖新的802.11n技术不仅提高了数据吞吐量,而且,还缩减了无意义的接收区域,这将为有效使用无线网络带来更好的信号覆盖和更高的稳定性,特别是对那些专业环境中特殊用户。
更远的距离一般来说,数据吞吐量随收/发信机的距离增加而减少。
但802.11n的整体性能提高确保了AP发出的信号经过给定距离到达接收端后,明显比802.11a/b/g强。
兼容性802.11n是一个向后兼容IEEE-802.11a/b/g的新标准,但是,新标准的优势只有支持802.11n 的AP或客户端才能享受。
为了允许基于802.11a/b/g标准的无线局域网客户端(也称为传统客户端)能够在802.11n网络中共存,802.11n的无线接入点(AP)必须提供特殊的模式用于混合操作,在这种情况下,系统性能并不会有实质性提升。
802.11n技术简介
A B F
A B F
A B F
A B F
E
A B F
A B F
B
450Mbps
300Mbps
300Mbps
11n信道的选择,20MHz or 40MHz?
内容提要
802.11n技术分析
1
2
3
802.11协议比较
802.11n采用的关键技术
高带宽
广覆盖
密接入
易穿透
高稳定
易兼容
11n技术一览
OFDM
MIMO
40MHz
Short GI
帧聚合
块应答
11n的核心技术,MIMO
MIMO技术利用空间的分集,使得每个码片在时域上更加高效。
2×2、2×3和3×3有何性能差异?
MIMO类型
天线个数
发射天线
接收天线
性能
2×2、3×3(2、3条流)示意图
02.11n速率表
内容提要
1
802.11n产品技术要求
3
2
802.11n技术要求——EVM 要求
802.11n技术要求——MASK要求(20MHz)
802.11n技术要求——MASK要求(40MHz)
802.11n关键技术——MIMO
802.11n关键技术——MIMO
802.11n关键技术——OFDM(正交频分复用)技术
802.11n关键技术——MIMO-OFDM
802.11n关键技术——FEC(Forward Error Correction)
FEC (Forward Error Correction)按照无线通信的基本原理,为了使信息适合在无线信道这样不可靠的媒介中传递,发射端将把信息进行编码并携带冗余信息,以提高系统的纠错能力,使接收端能够恢复原始信息。802.11n所采用的QAM-64的编码机制可以将编码率(有效信息和整个编码的比率)从3/4 提高到5/6。所以,对于一条空间流,在MIMO-OFDM基础之上,物理速率从58.5提高到了65Mbps(即58.5乘5/6除以 3/4)。
一文看懂802.11ac和802.11n的区别
一文看懂802.11ac和802.11n的区别802.11n 是在802.11g 和802.11a 之上发展起来的一项技术,最大的特点是速率提升,理论速率最高可达600Mbps(目前业界主流为300Mbps)。
802.11n 可工作在2.4GHz 和5GHz 两个频段。
Wi-Fi 联盟在802.11a/b/g 后面的一个无线传输标准协议,为了实现高带宽、高质量的WLAN 服务,使无线局域网达到以太网的性能水平,802.11 任务组N(TGn)应运而生。
802.11n 标准至2009 年才得到IEEE 的正式批准,但采用MIMO OFDM 技术的厂商已经很多,包括华为、腾达、TP- Link、D-Link、Airgo、UbiquiTI、Bermai、Broadcom 以及杰尔系统、Atheros、思科、Intel 等等,产品包括无线网卡、无线路由器等。
802.11ac 简介IEEE 802.11ac,是一个802.11 无线局域网(WLAN)通信标准,它通过5GHz 频带(也是其得名原因)进行通信。
理论上,它能够提供最多1Gbps 带宽进行多站式无线局域网通信,或是最少500Mbps 的单一连接传输带宽。
802.11ac 是802.11n 的继承者。
它采用并扩展了源自802.11n 的空中接口(air interface)概念,包括:更宽的RF 带宽(提升至160MHz),更多的MIMO 空间流(spaTIal streams)(增加到8),多用户的MIMO,以及更高阶的调制(modulaTIon)(达到256QAM)。
802.11ac 和802.11n 的主要差异802.11ac 与802.11n 相比主要有四大技术演进:更宽的频宽绑定、更多的空间流、更先进的调制技术以及更灵活的MIMO 机制。
一、信道绑定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
802.11n 概述1.11n简介【简介】IEEE 802.11n使用2.4GHz频段和5GHz频段,IEEE 802.11n标准的核心是MIMO(multiple-input multiple-output,多入多出)和OFDM技术,传输速度300Mbps,最高可达600Mbps,可向下兼容802.11b、802.11g。
北京时间2009年9月14日消息,据国外媒体报道,行业标准组织IEEE(电气与电子工程师学会)在9月11日批准了802.11n高速无线局域网标准。
在该标准支持下的产品理论速率为300Mbps,较之前的802.11a/g产品的54Mbps有极大提升。
IEEE当天并未公开宣布这一消息,但802.11n工作组的主席Bruce Kraemer向工作组的成员发送了通知邮件。
802.11n工作组成员包括一系列的Wi-Fi芯片制造商、软件开发人员和设备制造商。
2.11n - 术语解释Wi-Fi联盟在802.11a/b/g后面的一个无线传输标准协议在当今各种无线局域网技术交织的战国时代,WLAN、蓝牙、HomeRF、UWB等竞相绽放,但IEEE802.11系列的WLAN是应用最广泛的。
自从1997年IEEE802.11标准实施以来,先后有802.11b、802.11a、802.11g、802.11e、802.11f、 802.11h、802.11i、802.11j等标准制定或者酝酿,但是WLAN依然面临带宽不足、漫游不方便、网管不强大、系统不安全和没有杀手级的应用等。
就像当今VoIP应用中一个全新的领域VoWLAN那样,虽被业内人士看作是WLAN最有希望的杀手级应用,却因为这四个“不”,很难进一步发展。
3.11n的关键技术802.11(WLAN)技术作为成熟而广泛应用的无线接入技术,已经广泛地应用于家庭、企业等。
据统计,仅2008年一年,全球销售了3亿8千多万颗WLAN芯片。
尽管802.11a/g技术已经将物理层吞吐提高到了54Mbps,但是随着YouTube、无线家庭媒体网关、企业VoIP Over WLAN等应用对WLAN技术提出了越来越高的带宽要求,传统技术802.11a/g已经无法支撑。
用户需求呼唤着全新一代WLAN接入技术。
文 / 史扬标准发展历程IEEE 802.11工作组意识到支持高吞吐将是WLAN技术发展历程的关键点,基于IEEE HTSG (High Throughput Study Group)前期的技术工作,于2003年成立了Task Group n (TGn)。
n表示Next Generation,核心内容就是通过物理层和MAC层的优化来充分提高WLAN技术的吞吐。
由于802.11n涉及了大量的复杂技术,标准过程中又涉及了大量的设备厂家,所以整个标准制定过程历时漫长,预计2010年末才可能会成为标准。
相关设备厂家早已无法耐心等待这么漫长的标准化周期,纷纷提前发布了各自的11n产品(pre-11n)。
为了确保这些产品的互通性,WiFi联盟基于IEEE 2007年发布的802.11n草案的2.0版本制定了11n产品认证规范,以帮助11n技术能够快速产业化。
根据WIFI联盟2009年初公布的数据,802.11n产品的认证增长率从2007年成倍增长,截至目前全球已经有超过500款的11n设备完成认证,2009年的认证数量必将超出802.11a/b/g。
技术概述802.11n主要是结合物理层和MAC层的优化来充分提高WLAN技术的吞吐。
主要的物理层技术涉及了MIMO、MIMO-OFDM、40MHz、Short GI等技术,从而将物理层吞吐提高到600Mbps。
如果仅仅提高物理层的速率,而没有对空口访问等MAC 协议层的优化,802.11n的物理层优化将无从发挥。
就好比即使建了很宽的马路,但是车流的调度管理如果跟不上,仍然会出现拥堵和低效。
所以802.11n对MAC 采用了Block确认、帧聚合等技术,大大提高MAC层的效率。
802.11n对用户应用的另一个重要收益是无线覆盖的改善。
由于采用了多天线技术,无线信号(对应同一条空间流)将通过多条路径从发射端到接收端,从而提供了分集效应。
在接收端采用一定方法对多个天线收到信号进行处理,就可以明显改善接收端的SNR,即使在接受端较远时,也能获得较好的信号质量,从而间接提高了信号的覆盖范围。
其典型的技术包括了MRC等。
除了吞吐和覆盖的改善,11n技术还有一个重要的功能就是要兼容传统的802.11 a/b/g,以保护用户已有的投资。
接下来对这些相关的关键技术进行逐一介绍。
物理层关键技术1. MIMOMIMO是802.11n物理层的核心,指的是一个系统采用多个天线进行无线信号的收发。
它是当今无线最热门的技术,无论是3G、IEEE 802.16e WIMAX,还是802.11n,都把MIMO列入射频的关键技术。
图1 MIMO架构MIMO主要有如下的典型应用,包括:1)提高吞吐通过多条通道,并发传递多条空间流,可以成倍提高系统吞吐。
2) 提高无线链路的健壮性和改善SNR通过多条通道,无线信号通过多条路径从发射端到达接收端多个接收天线。
由于经过多条路径传播,每条路径一般不会同时衰减严重,采用某种算法把这些多个信号进行综合计算,可以改善接收端的SNR。
需要注意的是,这里是同一条流在多个路径上传递了多份,并不能够提高吞吐。
在MRC部分将有更多说明。
2. SDM当基于MIMO同时传递多条独立空间流(spatial streams),如下图中的空间流X1,X2,时,将成倍地提高系统的吞吐。
图2 通过MIMO传递多条空间流MIMO系统支持空间流的数量取决于发送天线和接收天线的最小值。
如发送天线数量为3,而接收天线数量为2,则支持的空间流为2。
MIMO/SDM系统一般用“发射天线数量×接收天线数量”表示。
如上图为2*2 MIMO/SDM系统。
显然,增加天线可以提高MIMO支持的空间流数。
但是综合成本、实效等多方面因素,目前业界的WLAN AP都普遍采用3×3的模式。
MIMO/SDM是在发射端和接收端之间,通过存在的多条路径(通道)来同时传播多条流。
有意思的事情出现了:一直以来,无线技术(如OFMD)总是企图克服多径效应的影响,而MIMO恰恰是在利用多径来传输数据。
图3 MIMO利用多径传输数据3. MIMO-OFDM在室内等典型应用环境下,由于多径效应的影响,信号在接收侧很容易发生(ISI),从而导致高误码率。
OFDM调制技术是将一个物理信道划分为多个子载体(sub-carrier),将高速率的数据流调制成多个较低速率的子数据流,通过这些子载体进行通讯,从而减少ISI机会,提高物理层吞吐。
OFDM在802.11a/g时代已经成熟使用,到了802.11n时代,它将MIMO支持的子载体从52个提高到56个。
需要注意的是,无论802.11a/g,还是802.11n,它们都使用了4个子载体作为pilot子载体,而这些子载体并不用于数据的传递。
所以802.11n MIMO将物理速率从传统的54Mbps提高到了58.5 Mbps(即54*52/48)。
4. FEC (Forward Error Correction)按照无线通信的基本原理,为了使信息适合在无线信道这样不可靠的媒介中传递,发射端将把信息进行编码并携带冗余信息,以提高系统的纠错能力,使接收端能够恢复原始信息。
802.11n所采用的QAM-64的编码机制可以将编码率(有效信息和整个编码的比率)从3/4 提高到5/6。
所以,对于一条空间流,在MIMO-OFDM基础之上,物理速率从58.5提高到了65Mbps(即58.5乘5/6除以3/4)。
5. Short Guard Interval (GI)由于多径效应的影响,信息符号(Information Symbol)将通过多条路径传递,可能会发生彼此碰撞,导致ISI干扰。
为此,802.11a/g标准要求在发送信息符号时,必须保证在信息符号之间存在800 ns的时间间隔,这个间隔被称为Guard Interval (GI)。
802.11n仍然使用缺省使用800 ns GI。
当多径效应不是很严重时,用户可以将该间隔配置为400,对于一条空间流,可以将吞吐提高近10%,即从65Mbps提高到72.2 Mbps。
对于多径效应较明显的环境,不建议使用Short Guard Interval (GI)。
6. 40MHz绑定技术这个技术最为直观:对于无线技术,提高所用频谱的宽度,可以最为直接地提高吞吐。
就好比是马路变宽了,车辆的通行能力自然提高。
传统802.11a/g使用的频宽是20MHz,而802.11n支持将相邻两个频宽绑定为40MHz来使用,所以可以最直接地提高吞吐。
需要注意的是:对于一条空间流,并不是仅仅将吞吐从72.2 Mbps提高到144.4(即72.2×2 )Mbps。
对于20MHz频宽,为了减少相邻信道的干扰,在其两侧预留了一小部分的带宽边界。
而通过40MHz绑定技术,这些预留的带宽也可以用来通讯,可以将子载体从104(52×2)提高到108。
按照72.2*2*108/104进行计算,所得到的吞吐能力达到了150Mbps。
7. MCS (Modulation Coding Scheme)在802.11a/b/g时代,配置AP工作的速率非常简单,只要指定特定radio 类型(802.11a/b/g)所使用的速率集,速率范围从1Mbps到54Mbps,一共有12种可能的物理速率。
到了802.11n时代,由于物理速率依赖于调制方法、编码率、空间流数量、是否40MHz绑定等多个因素。
这些影响吞吐的因素组合在一起,将产生非常多的物理速率供选择使用。
比如基于Short GI,40MHz绑定等技术,在4条空间流的条件下,物理速率可以达到600Mbps(即4*150)。
为此,802.11n提出了MCS的概念。
MCS可以理解为这些影响速率因素的完整组合,每种组合用整数来唯一标示。
对于AP,MCS普遍支持的范围为0-15。
8. MRC (Maximal-Ratio Combining)MRC和吞吐提高没有任何关系,它的目的是改善接收端的信号质量。
基本原理是:对于来自发射端的同一个信号,由于在接收端使用多天线接收,那么这个信号将经过多条路径(多个天线)被接收端所接收。
多个路径质量同时差的几率非常小,一般地,总有一条路径的信号较好。
那么在接收端可以使用某种算法,对这些各接收路径上的信号进行加权汇总(显然,信号最好的路径分配最高的权重),实现接收端的信号改善。
当多条路径上信号都不太好时,仍然通过MRC技术获得较好的接收信号。