AZ821_05中文资料

合集下载

PQ05RD21中文资料

PQ05RD21中文资料
元器件交易网
PQ05RD21 series Low Power-Loss Voltage Regulator
2.0A Output Type, High Cost Performance Low Power-Loss Voltage Regulator
General Description Sharp's PQ05RD21 series is 2.0A output type low power-loss voltage regulator(TO-220). It contributes to energy and space saving of various electronic equipment such as AV, OA equipment.
1
Input
Specific IC 3 GND
2
Output
4 ON/OFF control terminal
Model Line-up 2.0A output
3.3V output 5.0V output 9.0V output 12.0V output
PQ3RD23 PQ05RD21 PQ09RD21 PQ12RD21
*6 Input voltage shall be the value when output voltage is 95% in comparison with the initial value. PQ3RD23:Vin=3.7V *7 In case of opening control teminal 4 , output voltage turns on.
(Internet)
• Data for Sharp's optoelectronic/power devices is provided for internet. ( Address http://www.sharp.co.jp/ecg/)

常用金属材料中外牌号对照

常用金属材料中外牌号对照

中 国英 国日 本法 国德 国原苏联GB (YB )AISI SAEB.S.JIS NFDIM(ГOCT)碳素结8EN2A/1S9CK 8构钢08FEN2A/1SPCH108КП10EN2A S10C XC10C10,CK101010FEN2ASPH210КП15EN2E S15C XC12C15,CK151515F EN2B 15КП20EN3A S20C XC18C20,C222020F EN2C SPH320КП30EN4S30CXC323045C10121010EN8S45C XC45C45,CK4545C10101010C10151015C10201020C10201020C10301030C10451045合金结15Mn C11151115En14A SB46XC1214Mn414Г构钢20MnC10221022En3C,4S21—XC18—20Г30MnC10331033En5D,En5K —XC32—30Г50MnC10521052En43A,En 43B,En43—XC48—50Г1006分类美 国1008常用金属材料中外牌号对照1.黑色金属材料牌号对照(表8—65)表8—65 黑色金属材料牌号对照20Mn2En41A,S92,S514——20Mn520Г23T35,3T4530Mn2S92,S514,3T35,3T45—32M530Mn530Г240Mn2~En15A—40M5—40Г250Mn2~55M5—50Г220MnV ———20MnV6—42MnV ———42MnV7—15Cr ~En206SCr2112C315Cr315X 20Cr En207SCr2218C320Cr420X 40Cr En18,S117SCr438C441Cr440X 50CrEn48———50X5115中 国英 国日 本法 国德 国原苏联GB (YB )AISI SAEB.S.JIS NF DIM (ГOCT)合金结15CrMn——16MC516MCr515X Г,18X Г构钢20CrMn ——20MC520MCr520X Г40CrMn ————40X Г25CrMnSi ————25X ГC 30CrMnSi————30X ГC13,201,321—13301340分类美 国—51205140—————(续)51,505,15235CrMnSiA————35XГCA 20CrV22CrV420Xф40CrV42CrV440XфA 45CrV En5018CrMnTi18XГT 30CrMnTi30XГT 40CrMnTi40XГT12CrMo1501-620CrB12CD413CrMo4412XM20CrMo CDS12,CDS110SCM2218CD420CrMo520ХM 30CrMo SCM230ХM 35CrMo En19B SCM3 35CD434CrMo435ХM22CrMnMo40CrMnMoEn19C18XГM24CrMoV24CrMoV5538XГM,40XГM35CrMoV35CrMoV535XMфA30Cr2MoV En40C,S10630CD1230CrMoV9~25X2Mф25Cr2Mo1VA ~25X2Mф30Cr2Ni2 WVA 30X2HBфA38CrMoAlAEn41B SACMI45CAD6-1234CrAlMo538XMЮA ~411938CrWVAlAEn40C38 XBфЮA 61206140—61454118 411938CrAlA 34CrAl 38X ЮAE4132E4135中 国英 国日 本法 国德 国原苏联GB (YB )AISI SAEB.S.JIS NF DIM (ГOCT)12CrNi2ASNC2116NC1114NiCr1012XH2A 12CrNi3A En36A,En36B SNC2214NC1214NiCr1412XH3A 12Cr2Ni4A En39A,En 39B12NC1512X2H4A30CrNi3A SNC230NC1128NiCr1030XH3A37CrNi3A 37XH3A18Cr2Ni4WA18XHBA 40CrNiW 40CrHBA 30Cr2Ni2WVA30X2H2B фA40CrNiMo A En110,S95,S118SNCM835NCD536CrNiMo 440XHMA40B45B40MnB45MnB20CrMnB 20X ГP40CrMnB 40X ГP65En43E SUP2,SW R7XC65CK676575SUP3,SW R9~XC70,XC80C75,MK757560Mn En43J 60Г60SiMnEn45ASUP660SiMn660C Г4130~411941406470E(AMS)分类美 国合金结构钢E3310,3310,3310H 2515,2515H 3435~TS14B35H ~TS14B50H 50B2050B40H4340~TS14B3550B46H C10651065(续)65Mn En43E65Г50Si2Mn ~45S751Si750C2106055Si2MnEn45,142955S655Si755C2C1065106550CrVAEn47SUP1050CV450CrV450X фAT7A XC65 fins C70W1у7A T8D1SKU3XC85coura ntsC85W2у8XC85 fins T8AXC85 fins C85W1у8A T10D1SK3XC95finsC100W2у10中 国英 国日 本法 国德 国原苏联GB (YB )AISI SAE B.S.JISNF DIM (ГOCT)碳素工T10A XC95extra -fins C100W1у10A 具钢T12D1SK2,SKU2XC120fins C115W2у12T12A XC120extr a-fins C110W1у12A T8MnA SK5C85WSу8ГA 合金工9Mn2V 80M890MnV8具钢6SiCr 64SiCr56XC 9SiCr 90CrSi59XC 4SiCrV 45SiCrV64XC Cr2100C6105Cr5X Cr06SKS8110Cr2X05Cr12Steel for clod SKD1Z200C12X210Cr12X12working AlCrMn80M8145Cr6X Г5CrMnMo SKT555NCD7-0340CrMnM o75X ГM 5CrNiMo SKT465NCDV06-0255NiCrMo V65XHMCrWS SKS1120WC45-02X130W5XB5Cr12WSKD 2~X210CrW 123Cr2W8V AlW-Cr SKD5Z30WC09-03X30WCrV 9-33X2B8CrWMnSteel for clod SKS3180M8105WCr6working CXB Г5CrW2Si SKS41~45WC20-405XB2CCr12MoV Type (A)2SKD11Z200C12X165CrMoV12X12MWSKU8100WC15-04~120W4B1弹簧钢1074926092556150碳素工具钢W1-0.8C W1-0.8C-Special W1-1.0CW1-1.2C- Special2分类美 国W1-1.0C-Special W1-1.2C L4V1G(AMS)L1D3L6D 6~H21F1(续)W2SKS7115W8B2W9Cr4V2(A)14%W SKH6Z70WD12ABCP9W18Cr4V (A)18%W SKH2Z80W18S18-0-1,B18P18,P ф1W12Cr4V 4MoZ125WV,15-W S112-1-4,EV4P9ф5,P14ф4W6Mo5Cr4V2SKH93343W2Mn9Cr 4VCo8中 国英 国日 本法 国德 国原苏联GB (YB )AISI SAE B.S.JIS NFDIM(ГOCT)1Cr17Mn6Ni5NSUS20112X17Г9AH41Cr18Mn8Ni4284S16SUS20212X17Г9AH42Cr13Mn9Ni420X13H4Г91Cr17Ni7301S21SUS301Z12CN17.071Cr17Ni8SUS301JI X12CrNi1771Cr18Ni9302S25SUS302Z10CN18.09X12CrNi18812X18H91Cr18Ni9S i3SUS302B 0Cr19Ni9304S15SUS304Z6CN18.0X5CrNi1808X18H1000Cr9Ni11304S12SUS304L Z2CN18.0X2CrNi1803X18H110Cr19Ni9SUS304N10Cr19Ni10NbNSUS304N200Cr18Ni10N SUS304LN Z2CN18.10NX2CrNiN18101Cr18Ni12305S19SUS305Z18CN18.12X5CrNi181112X18H12T0Cr23Ni13SUS309S 0Cr25Ni20SUS310S0Cr17Ni12Mo2316S16SUS316Z6CND17.12X5CrNiMo 181008X17H13M2T00Cr17Ni14Mo2316S12SUS316L Z2CND17.12X2CrNiMo 181003X17H13M20Cr17Ni12Mo2N SUS316N00Cr17Ni13Mo2N SUS316LN Z2CND17.12NX2CrNiMo N18120Cr18Ni12Mo2Ti 320S17Z6CNDT17-12X10CrNiM oTi181008X17H13M2T1Cr18Ni12Mo2Ti 10X17H13M2T 0Cr18Ni12Mo2Cu2SUS316JI 00Cr18Ni14Mo2Cu2SUS316JIL高速钢T7T1M2M42分类美 国 锈201,S2*******,S2*******,S3*******B,S3*******,S3*******L,S0*******N,S30451XM21,S30452305,S30500301,S3*******S,S3*******S,S3*******,S3*******L,S31603(续)316N,S316510Cr18Ni12Mo3Ti Z6CNDT17-1308X17H15M3T1Cr18Ni12Mo3Ti 10X17H13M3T0Cr19Ni13Mo3317S16SUS31708X17H15M3T00Cr19Ni13Mo3317S12SUS317LZ2CND19.15X2CrNiMo 181603X16H15M3中 国英 国日 本法 国德 国原苏联GB (YB )AISI SAEB.S.JIS NFDIM(ГOCT)0Cr18Ni16Mo5SUS317JI0Cr18Ni11Ti321S20SUS321Z6CNT18.10X10CrNiTi 18908X18H10T1Cr18Ni9T iX10CrNiTi 18912X18H10T0Cr18Ni11N6347S17SUS347Z6CNNb18.10X10CrNiN b18908X18H12T 0Cr18Ni13Si4SUSXM15JI00Cr18Ni5Mo3Si21Cr18Ni11Si4AlTi 15X18H12-C4T101Cr21Ni5T 1X21H5T0Cr21Ni5Mo2SUS329JI 0Cr13Al 405S17SUS405Z6CA13X7CrA11300Cr12SUS410L 1Cr15SUS4291Cr17430S15SUS430Z8C17X8Cr1712X1700Cr17434S19SUS430LX 1Cr17Mo SUS434Z8CD17.0X6CrMo1700Cr17Mo SUS436L 00Cr18Mo 2SUS44400Cr30Mo 2SUS447J100Cr27Mo SUSXM27Z01CD26.1Cr12403S17SUS4031Cr13410S21SUS410Z12C13X10Cr1312X130Cr13SUS410S Z6C13X7Cr1308X132Cr13420S37SUS420J1Z20C13X20Cr1320X133Cr13420S45SUS420J230X133Cr16SUS429J1分中 国美 国英 国日 本法 国德 国原苏联不 锈 钢分类美 国317,S3*******L,S31703405,S4*******,S4*******,S43000不 锈 钢321,S32100347,S34700XM15,S38100XM27,S4*******,S40300410434,S4340018Cr2Mo410S,S4*******,S42000(续)2.有色金属材料牌号对照(表8—66)表8—66 有色金属材料牌号对照类GB(YB)ASTM,(SAE) B.S.JIS NF DIMГOCT工1070A10801A A1080A00业106010,701,060A1070(A199.6)A0纯1050A EC10501B A105A5A199.5A1铝10351030AД1 120011001C A1100A4A99A2 8A061200A1200AД防5040Д12锈5A025052N4A-5052A-G2AlMg2AMГ铝5A035154N5A-5154A-G3AlMg3AMГ3 5A055056N6A-5056A-G5AlMg5AMГ55A06AMГ6N7AMГ75056N6A-5056A-G5AlMg5AMГ5П5356AMГ5B 3A213003N3A-3003A-M1AlMn AMЦ硬2A012117L86A2117A-U2G AlCuMg0.5Д18П铝2A02BД17Д3П2A04Д19П2A06Д19Д2 2B112017A2017A-U4G AlCuMg1Д1П2B122024H14A2024A-U4G1AlCuMg2Д16П2A10B652A112017DTD A2017A-U4G AlCuMg1Д12A122024A2024A-U4G1AlCuMg2Д162A13AM42A162219A-U6MTД202A172021Д21锻6063H9A6063A-GS AlMgSi0.5AЛД铝6A026061H20A6061AlMgSiCu AB 2A50AK62B50H11AK6-12618H16A2N01A-U2GN AK4-1 2A80A-U2N AK42A902018A2018A-U4N AK22A142014H15A2014A-U4SG AlCuSiMg AK8超7A03B94硬7A047075A7075A-Z5GU AlZnMg1.5B95铝7076B95-17049A-Z8GU B967A097075A7075A-Z5GU AlZnMgC u1.5变MB1AIMIA DTD737,142,118MA1形MB2AZ31C MAG111M1MgAl3Zn MA2镁MB3MA2-1合MB4AZ61A MAG121M2MgAl6Zn MA3金MB6MA4 MB7A280X88B AZ61A MgAl7Zn MA5MB8AZ80A AM537MA8MB15AK60A DTD5031,5041AK60A BM65-1工TA1Ti-35A IMI115KS50BT1-0业TA2Ti-50A IMI125KS60BT1-1纯TA3Ti-65A IMI135KS85BT1-2钛钛TA4Ti-2Al48-T2合TA548-OT3金TA6BT5 TA7Ti-5Al-2Sn IMIB6KS115AS BT5-1TA8BT10TB1BT15钛TB2合TC1IMI315OT4-1金TC2OT4 TC3BT6CTC4Ti-6A-4V IMI137T-A6V BT6TC5BT3TC6BT3-1TC7AT6TC8BT8TC9BT9TC10Ti-6A-6V-2SnT-A6V6Sn2T3M2 T4M3 TU1101EOFCuP MB1 TU2102C103OF-CuP MB2黄H90220DTD713,CZ101RBs2Ms90Л90铜H80240DTD711,CZ103RBs4Ms80Л80H70260CZ106BsP1Ms70Л70H62280CZ119Bs3Л62 HPb63-3353216Ms63PЛC63-3 HPb59-1CZ111PbBs13Ms58ЛC59-1 HSn70-1443CZ112BsTF1SoMs71ЛO70-1 HSn62-1462NbsBE1ЛO62-1HAl60-1-1ЛAЖ60-1-1HMn58-2ЛMЦ58-2HFe59-1-1ЛЖМЦ59-1-1青QSn4-3MSnBZ4БРОЦ4-3铜QSn4-4-4B139BZ BC6MSnBZ4PbБРОЦC4-4-4QSn6.5-0.1B139,B159407-3SnBZ6БРОФ6.5-0.15QSn6.5-0.4519PBB2БРОФ6.5-0.4QSn7-0.2БРОФ7-0.2铜QAl9-2БРAMЦ9-2QAl9-4AB1БРAЖ9-4QAl10-3-1.5БРAЖM Ц10-3-1.5QAl10-4-4AMS46402033AB5NiAlBZ БРAЖH10-4-4QBe2172BeCu2БРБ2QBe1.7170BeCuP1БРБHT1.7QBe1.9БРБHT1.9序号中日板材类别日本标准牌号备注SPCSPCC普通用途冷轧板或带SPCD拉深用深拉深用SPCEN深拉深用(无时效)SPHSPHC普通用途热轧钢板(带)SPHD拉深用SPHE深拉深用冷轧不锈钢板(带)SUS××CP(SUS××CS)××为具体钢种代号数热轧不锈钢板(带)SUS××HP(SUS××HS)字(下同)SPGSPG1一般用途SPG2弯曲加工用SPG3拉深用SPG4结构件用SPTSPTE电镀锡板SPTE-D差后电镀锡板1冷轧薄钢板2热轧薄钢板(带)表8—67 中日板(带)材表示方法对照34镀锌薄钢板5镀锡薄钢板3. 中日板(带)材表示方法对照(表8—67)SPTH 热电镀锡板冷轧电工钢板S ××热轧电工钢板S ××F 铝板A ××P 铝带A ××R-0材软质-硬H 材硬-硬H 材铝板-硬质铝带H 材冷轧后自然时效-H 材-R 材铜板(带)纯铜板(带)RBSP (RBSR )黄铜板(带)BSP (BSR )磷青铜板(带)PBP (PBR )锌白铜板(带)NSP (NSR )白铜板(带)CNP (CNR )9钛板TP 678板。

SAEJ200-2005中文橡胶材料分类系统

SAEJ200-2005中文橡胶材料分类系统
差不多技术要求表6.GE,80硬度5MPa一行,伸长率限度在1978年之后被误改为100%。ASTM为150%,而且1978年版本J200为150%。为了与ASTM及J200往常的版本相一致而改回为150%。
2.引用标准
2.1可适用出版物——以下出版物在此处所指定的范畴内构成了本规程的一部分。
2.1.1 ASTM出版物——可从ASTM得到,地址:Barr Harbor大街100号,West Conshohocken, PA 1919428-2959。
表3——后缀字母的含意
后缀字母
要求的试验
A
耐加热老化性能
B
压缩永久变形
C
耐臭氧或耐天候性能
D
耐压缩—屈挠性能
EA
耐液体性能(水性的)
EF
耐液体性能(燃料)
EO
耐液体性能(油及润滑剂)
F
耐低温性能
G
耐撕裂性能
H
耐屈挠性能
J
耐磨性能
K
粘着
M
耐燃性能
N
耐冲击性能
P
耐着色性能
R
回弹性能
Z
任何应详细指定的专门技术要求
注3——当橡胶制品用于某些目的,而其中技术要求过于专门以至于无法由该分类系统完全地加以规定时,采购方有必要事先向供货方进行咨询,以确定适当的特性、试验方法以及试验限度技术规范。
1.1目的
1.1.1该文件的目的是为工程师在选择有用的、市场上可得到的橡胶材料时提供指导,同时进一步提供了一种方法,通过利用简单的命名标识对这些材料加以指定。
ASTM D 395——橡胶特性试验方法—压缩试验
ASTM D 412——橡胶拉伸特性试验方法
ASTM D 429——橡胶特性试验方法—刚性衬层粘着

S-8215A系列电池保护IC-ABLICInc

S-8215A系列电池保护IC-ABLICInc

Rev.2.5_01
输出逻辑 动态 动态 动态 动态 动态 动态 动态 动态 动态 动态 动态 动态 动态 动态 动态 动态 动态 动态 动态 动态 动态 "H" "L" "H" "H" "L" "H" "L" "H" "H" "L" "L" "L" "L" "H" "H" "H" "H" "L" "L" "H" "H"
S-8215A系列

© ABLIC Inc., 2010-2017 S-8215A系列内置高精度电压检测电路和延迟电路,是用于锂离子可充电电池的二次保护IC。 通过将各节电池间短路,可适用于3节 ~ 5节电池的串联连接。
3节 ~ 5节电池串联用电池保护IC (二次保护用)
过充电检测 / 解除 延迟电路3 基准电压3 控制电路
VC4
过充电检测 比较器4 基准电压4
VC5
过充电检测 比较器5 基准电压5
VSS
*1. 在 N 沟道开路漏极输出时, CO 端子只与 N 沟道晶体管连接。 在 P 沟道开路漏极输出时, CO 端子只与 P 沟道晶体管连接。 备注 图中所示的二极管为寄生二极管。 图1
3. 产品名目录
3. 1 TMSOP-8 表2 过充电检测 输出方式 延迟时间 [t CU ] CMOS输出 S-8215AAA-K8T2U 4.300 V 0.300 V 4.0 s N 沟道开路漏极输出 S-8215AAB-K8T2U 4.275 V 0.050 V 2.0 s CMOS输出 S-8215AAC-K8T2U 4.150 V 0.250 V 1.0 s CMOS输出 S-8215AAD-K8T2U 4.350 V 0.250 V 2.0 s N 沟道开路漏极输出 S-8215AAE-K8T2U 4.325 V 0.050 V 1.0 s CMOS输出 S-8215AAF-K8T2U 4.220 V 0.100 V 1.0 s N 沟道开路漏极输出 S-8215AAH-K8T2U 4.325 V 0.300 V 1.0 s CMOS输出 S-8215AAI-K8T2U 4.250 V 0.250 V 1.0 s CMOS输出 S-8215AAJ-K8T2U 4.400 V 0.100 V 2.0 s N 沟道开路漏极输出 S-8215AAK-K8T2U 4.150 V 0.050 V 2.0 s N 沟道开路漏极输出 S-8215AAL-K8T2U 4.150 V 0.500 V 2.0 s CMOS输出 S-8215AAM-K8T2U 4.150 V 0.050 V 2.0 s CMOS输出 S-8215AAN-K8T2U 4.150 V 0.500 V 2.0 s CMOS输出 S-8215AAO-K8T2U 4.350 V 0.250 V 4.0 s CMOS输出 S-8215AAP-K8T2U 4.275 V 0.500 V 1.0 s CMOS输出 S-8215AAQ-K8T2U 4.275 V 0.050 V 1.0 s CMOS输出 S-8215AAR-K8T2U 4.500 V 0.100 V 4.0 s CMOS输出 S-8215AAS-K8T2U 4.275 V 0.200 V 2.0 s CMOS输出 S-8215AAT-K8T2U 4.275 V 0.050 V 2.0 s CMOS输出 S-8215AAU-K8T2U 3.750 V 0.100 V 1.0 s CMOS输出 S-8215AAV-K8T2U 4.300 V 0.300 V 1.0 s 备注 除上述产品以外,其他产品的检测电压也是可以改变的。详情请向本公司营业部咨询。 产品名 过充电检测电压 过充电滞后电压 [V CU ] [V HC ]

LMV821_DataSheet 手册

LMV821_DataSheet 手册

FEATURESDESCRIPTION/ORDERING INFORMATIONV CC+CC−LMV824...D, DGV, OR PW PACKAGELMV822...D OR DGK PACKAGE(TOP VIEW)123487651OUT 1IN −1IN+GND/V CC−V CC+2OUT 2IN −2IN+LMV821...DBV OR DCK PACKAGE(TOP VIEW)12354IN +GND/V CC−IN−V CC+OUT• 2.5-V,2.7-V,and 5-V Performance •–40°C to 125°C Operation •No Crossover Distortion•Low Supply Current at V CC+=5V:–LMV821…0.3mA Typ –LMV822…0.5mA Typ –LMV824…1mA Typ •Rail-to-Rail Output Swing•Gain Bandwidth of 5.5MHz Typ at 5V •Slew Rate of 1.9V/µs Typ at 5VThe LMV821single,LMV822dual,and LMV824quad devices are low-voltage (2.5V to 5.5V),low-power commodity operational amplifiers.Electrical characteristics are very similar to the LMV3xx operational amplifiers (low supply current,rail-to-rail outputs,input common-mode range that includes ground).However,the LMV8xx devices offer a higher bandwidth (5.5MHz typical)and faster slew rate (1.9V/µs typical).The LMV8xx devices are cost-effective solutions for applications requiring low-voltage/low-power operation and space-saving considerations.The LMV821is available in the ultra-small DCK package,which is approximately half the size of SOT-23-5.The DCK package saves space on printed circuit boards and enables the design of small portable electronic devices (cordless and cellular phones,laptops,PDAs,PCMIA).It also allows the designer to place the device closer to the signal source to reduce noise pickup and increase signal integrity.The LMV8xx devices are characterized for operation from –40°C to 85°C.The LMV8xxI devices are characterized for operation from –40°C to 125°C.Please be aware that an important notice concerning availability,standard warranty,and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.PRODUCTION DATA information is current as of publication date.Copyright ©2004–2005,Texas Instruments IncorporatedProducts conform to specifications per the terms of the Texas Instruments standard warranty.Production processing does not necessarily include testing of all parameters.SLOS434G–FEBRUARY2004–REVISED AUGUST2005ORDERING INFORMATIONT A PACKAGE(1)ORDERABLE PART NUMBER TOP-SIDE MARKING(2)Reel of3000LMV821DCKRSC-70–DCK RY_Reel of250LMV821DCKTSingleReel of3000LMV821DBVRSOT-23–DBV RB8_Reel of250LMV821DBVTTube of75LMV822DSOIC–D MV822Reel of2500LMV822DRDual–40°C to85°C Tube of100LMV822DGKMSOP/VSSOP–DGK RA_Reel of2500LMV822DGKRTube of50LMV824DSOIC–D LMV824Reel of2500LMV824DRQuad Tube of90LMV824PWTSSOP–PW MV824Reel of2000LMV824PWRTVSOP–DGV Reel of2000LMV824DGVR MV824Reel of3000LMV821IDCKRSC-70–DCK RZ_Reel of250LMV821IDCKTSingleReel of3000LMV821IDBVRSOT-23–DBV RB1_Reel of250LMV821IDBVTTube of75LMV822IDSOIC–D MV822IReel of2500LMV822IDRDual–40°C to125°C Tube of100LMV822IDGKMSOP/VSSOP–DGK R8_Reel of2500LMV822IDGKRTube of50LMV824IDSOIC–D LMV824IReel of2500LMV824IDRQuad Tube of90LMV824IPWTSSOP–PW MV824IReel of2000LMV824IPWRTVSOP–DGV Reel of2000LMV824IDGVR MV824I(1)Package drawings,standard packing quantities,thermal data,symbolization,and PCB design guidelines are available at/sc/package.(2)DBV/DCK/DGK:The actual top-side marking has one additional character that designates the assembly/test site.2+−IN −IN +OUTIN+IN−OutputSYMBOL (EACH AMPLIFIER)LMV824SIMPLIFIED SCHEMATIC3Absolute Maximum Ratings (1)Recommended Operating ConditionsSLOS434G–FEBRUARY 2004–REVISED AUGUST 2005over operating free-air temperature range (unless otherwise noted)MINMAX UNIT V CC Supply voltage (2)5.5V V ID Differential input voltage (3)±V CC V V IInput voltage range (either input)V CC–V CC+VDuration of output short circuit (one amplifier)to ground (4)At or below T A =25°C,V CC ≤5.5V Unlimited8pin 97D package 14pin86DBV package206θJAPackage thermal impedance (5)(6)DCK package 252°C/W DGK package 172DGV package 127PW package113T J Operating virtual junction temperature 150°C T stg Storage temperature range–65150°C (1)Stresses beyond those listed under “absolute maximum ratings”may cause permanent damage to the device.These are stress ratings only,and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions”is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.(2)All voltage values (except differential voltages and V CC specified for the measurement of I OS )are with respect to the network GND.(3)Differential voltages are at IN+with respect to IN–.(4)Short circuits from outputs to V CC can cause excessive heating and eventual destruction.(5)Maximum power dissipation is a function of T J (max),θJA ,and T A .The maximum allowable power dissipation at any allowable ambient temperature is P D =(T J (max)–T A )/θJA .Operating at the absolute maximum T J of 150°C can affect reliability.(6)The package thermal impedance is calculated in accordance with JESD 51-7.MINMAXUNIT V CC Supply voltage (single-supply operation) 2.55V LMV8xxI –40125T AOperating free-air temperature°CLMV8xx–40854LMV8xx 2.5-V Electrical CharacteristicsLMV8xxI 2.5-V Electrical CharacteristicsV CC+=2.5V,V CC–=0V,V IC =1V,V O =1.25V,and R L >1M Ω(unless otherwise noted)LMV8xx PARAMETER TEST CONDITIONST A UNIT MINTYP MAX 25°C 13.5V IOInput offset voltagemV–40°C to 85°C425°C 2.3 2.37High level–40°C to 85°C2.2V CC+=2.5V,R L =600Ωto 1.25V25°C 0.130.2Low level–40°C to 85°C0.3V OOutput swingV25°C 2.4 2.46High level–40°C to 85°C2.3V CC+=2.5V,R L =2k Ωto 1.25V25°C 0.080.12Low level–40°C to 85°C0.2V CC+=2.5V,V CC–=0V,V IC =1V,V O =1.25V,and R L >1M Ω(unless otherwise noted)LMV8xxI PARAMETER TEST CONDITIONST A UNIT MINTYP MAX 25°C 13.5V IOInput offset voltagemV–40°C to 125°C5.525°C 2.28 2.37High level–40°C to 125°C2.18V CC+=2.5V,R L =600Ωto 1.25V25°C 0.130.22Low level–40°C to 125°C0.32V OOutput swingV25°C 2.38 2.46High level–40°C to 125°C2.28V CC+=2.5V,R L =2k Ωto 1.25V25°C 0.080.14Low level–40°C to 125°C0.225LMV8xx2.7-V Electrical Characteristics SLOS434G–FEBRUARY2004–REVISED AUGUST2005VCC+=2.7V,VCC–=0V,VIC=1V,VO=1.35V,and RL>1MΩ(unless otherwise noted)LMV8xx PARAMETER TEST CONDITIONS T A UNITMIN TYP MAX25°C1 3.5V IO Input offset voltage mV–40°C to85°C4Average temperature coefficientαVIO25°C1µV/°C of input offset voltage25°C3090I IB Input bias current nA–40°C to85°C14025°C0.530I IO Input offset current nA–40°C to85°C5025°C7085CMRR Common-mode rejection ratio V IC=0to1.7V dB–40°C to85°C6825°C7585 Positive supply-voltage V CC+=1.7V to4V,V CC–=–1V,+k SVR dB rejection ratio V O=0,V IC=0–40°C to85°C7025°C7385 Negative supply-voltage V CC+=1.7V,V CC–=–1V to–3.3V,–k SVR dB rejection ratio V O=0,V IC=0–40°C to85°C70Common-mode input–0.2–0.3V ICR CMRR≥50dB25°C V voltage range to1.9to225°C90100R L=600Ωto1.35V,SourcingV O=1.35V to2.2V–40°C to85°C8525°C8590R L=600Ωto1.35V,SinkingV O=1.35V to0.5V–40°C to85°C80Large-signal voltageA V dBamplification25°C95100R L=2kΩto1.35V,SourcingV O=1.35V to2.2V–40°C to85°C9025°C9095R L=2kΩto1.35V,SinkingV O=1.35V to0.5V–40°C to85°C8525°C 2.5 2.58High level–40°C to85°C 2.4V CC+=2.7V,R L=600Ωto1.35V25°C0.130.2Low level–40°C to85°C0.3V O Output swing V25°C 2.6 2.66High level–40°C to85°C 2.5V CC+=2.7V,R L=2kΩto1.35V25°C0.080.12Low level–40°C to85°C0.2V O=0V Sourcing25°C1216I O Output current mAV O=2.7V Sinking25°C122625°C0.220.3LMV821–40°C to85°C0.525°C0.450.6I CC Supply current LMV822(both amplifiers)mA–40°C to85°C0.825°C0.721LMV824(all four amplifiers)–40°C to85°C 1.26LMV8xx2.7-V Electrical Characteristics(continued)VCC+=2.7V,VCC–=0V,VIC=1V,VO=1.35V,and RL>1MΩ(unless otherwise noted)LMV8xx PARAMETER TEST CONDITIONS T A UNITMIN TYP MAXSR Slew rate(1)25°C 1.7V/µs GBW Gain bandwidth product(2)25°C5MHzΦm Phase margin(2)25°C60deg Gain margin(2)25°C8.6dB Amplifier-to-amplifier isolation V CC+=5V,R L=100kΩto2.5V(3)25°C135dBV n Equivalent input noise voltage f=1kHz,V IC=1V25°C45nV/√Hz I n Equivalent input noise current f=1kHz25°C0.18pA/√Hzf=1kHz,A V=–2,R L=10kΩ,THD Total harmonic distortion25°C0.01%V O=4.1V p-p(1)Connected as voltage follower with1-V step input.Value specified is the slower of the positive and negative slew rates.(2)40-dB closed-loop dc gain,C L=22pF(3)Each amplifier excited in turn with1kHz to produce V O=3V p-p7LMV8xxI2.7-V Electrical Characteristics SLOS434G–FEBRUARY2004–REVISED AUGUST2005VCC+=2.7V,VCC–=0V,VIC=1V,VO=1.35V,and RL>1MΩ(unless otherwise noted)LMV8xxI PARAMETER TEST CONDITIONS T A UNITMIN TYP MAX25°C1 3.5V IO Input offset voltage mV–40°C to125°C 5.5Average temperature coefficientαVIO25°C1µV/°C of input offset voltage25°C3090I IB Input bias current nA–40°C to125°C14025°C0.530I IO Input offset current nA–40°C to125°C5025°C7085CMRR Common-mode rejection ratio V IC=0to1.7V dB–40°C to125°C6825°C7585 Positive supply-voltage V CC+=1.7V to4V,V CC–=–1V,+k SVR dB rejection ratio V O=0,V IC=0–40°C to125°C7025°C7385 Negative supply-voltage V CC+=1.7V,V CC–=–1V to–3.3V,–k SVR dB rejection ratio V O=0,V IC=0–40°C to125°C70Common-mode input–0.2–0.3V ICR CMRR≥50dB25°C V voltage range to1.9to225°C90100R L=600Ωto1.35V,SourcingV O=1.35V to2.2V–40°C to125°C8525°C8590R L=600Ωto1.35V,SinkingV O=1.35V to0.5V–40°C to125°C80Large-signal voltageA V dBamplification25°C95100R L=2kΩto1.35V,SourcingV O=1.35V to2.2V–40°C to125°C9025°C9095R L=2kΩto1.35V,SinkingV O=1.35V to0.5V–40°C to125°C8525°C 2.5 2.58High level–40°C to125°C 2.4V CC+=2.7V,R L=600Ωto1.35V25°C0.130.2Low level–40°C to125°C0.3V O Output swing V25°C 2.6 2.66High level–40°C to125°C 2.5V CC+=2.7V,R L=2kΩto1.35V25°C0.080.12Low level–40°C to125°C0.2V O=0V Sourcing25°C1216I O Output current mAV O=2.7V Sinking25°C122625°C0.220.3LMV821–40°C to125°C0.525°C0.450.6I CC Supply current LMV822(both amplifiers)mA–40°C to125°C0.825°C0.721LMV824(all four amplifiers)–40°C to125°C 1.28LMV8xxI2.7-V Electrical Characteristics(continued)VCC+=2.7V,VCC–=0V,VIC=1V,VO=1.35V,and RL>1MΩ(unless otherwise noted)LMV8xxI PARAMETER TEST CONDITIONS T A UNITMIN TYP MAXSR Slew rate(1)25°C 1.7V/µs GBW Gain bandwidth product(2)25°C5MHzΦm Phase margin(2)25°C60deg Gain margin(2)25°C8.6dB Amplifier-to-amplifier isolation V CC+=5V,R L=100kΩto2.5V(3)25°C135dBV n Equivalent input noise voltage f=1kHz,V IC=1V25°C45nV/√Hz I n Equivalent input noise current f=1kHz25°C0.18pA/√Hzf=1kHz,A V=–2,R L=10kΩ,THD Total harmonic distortion25°C0.01%V O=4.1V p-p(1)Connected as voltage follower with1-V step input.Value specified is the slower of the positive and negative slew rates.(2)40-dB closed-loop dc gain,C L=22pF(3)Each amplifier excited in turn with1kHz to produce V O=3V p-p9LMV8xx5-V Electrical Characteristics SLOS434G–FEBRUARY2004–REVISED AUGUST2005VCC+=5V,VCC–=0V,VIC=2V,VO=2.5V,and RL>1MΩ(unless otherwise noted)LMV8xx PARAMETER TEST CONDITIONS T A UNITMIN TYP MAX25°C1 3.5V IO Input offset voltage mV–40°C to85°C4Average temperature coefficientαVIO25°C1µV/°C of input offset voltage25°C40100I IB Input bias current nA–40°C to85°C15025°C0.530I IO Input offset current nA–40°C to85°C5025°C7290CMRR Common-mode rejection ratio V IC=0to4V dB–40°C to85°C7025°C7585 Positive supply-voltage V CC+=1.7V to4V,V CC–=–1V,+k SVR dB rejection ratio V O=0,V IC=0–40°C to85°C7025°C7385 Negative supply-voltage V CC+=1.7V,V CC–=–1V to–3.3V,–k SVR dB rejection ratio V O=0,V IC=0–40°C to85°C70Common-mode input–0.2–0.3V ICR CMRR≥50dB25°C V voltage range to4.2to4.325°C95105R L=600Ωto2.5V,SourcingV O=2.5V to4.5V–40°C to85°C9025°C95105R L=600Ωto2.5V,SinkingV O=2.5V to0.5V–40°C to85°C90Large-signal voltageA V dBamplification25°C95105R L=2kΩto2.5V,SourcingV O=2.5V to4.5V–40°C to85°C9025°C95105R L=2kΩto2.5V,SinkingV O=2.5V to0.5V–40°C to85°C9025°C 4.75 4.84High level–40°C to85°C 4.7V CC+=5V,R L=600Ωto2.5V25°C0.170.25Low level–40°C to85°C0.3V O Output swing V25°C 4.85 4.9High level–40°C to85°C 4.8V CC+=5V,R L=2kΩto2.5V25°C0.10.15Low level–40°C to85°C0.225°C2045V O=0V Sourcing–40°C to85°C15I O Output current mA25°C2040V O=5V Sinking–40°C to85°C1525°C0.30.4LMV821–40°C to85°C0.625°C0.50.7I CC Supply current LMV822(both amplifiers)mA–40°C to85°C0.925°C10.3LMV824(all four amplifiers)–40°C to85°C 1.510LMV8xx5-V Electrical Characteristics(continued)VCC+=5V,VCC–=0V,VIC=2V,VO=2.5V,and RL>1MΩ(unless otherwise noted)LMV8xx PARAMETER TEST CONDITIONS T A UNITMIN TYP MAXSR Slew rate V CC+=5V(1)25°C 1.4 1.9V/µs GBW Gain bandwidth product(2)25°C 5.5MHz Φm Phase margin(2)25°C64.2deg Gain margin(2)25°C8.7dB Amplifier-to-amplifier isolation V CC+=5V,R L=100kΩto2.5V(3)25°C135dB V n Equivalent input noise voltage f=1kHz,V IC=1V25°C42nV/√Hz I n Equivalent input noise current f=1kHz25°C0.2pA/√Hzf=1kHz,A V=–2,R L=10kΩ,THD Total harmonic distortion25°C0.01%V O=4.1V p-p(1)Connected as voltage follower with3-V step input.Value specified is the slower of the positive and negative slew rates.(2)40-dB closed-loop dc gain,C L=22pF(3)Each amplifier excited in turn with1kHz to produce V O=3V p-pLMV8xxI5-V Electrical Characteristics SLOS434G–FEBRUARY2004–REVISED AUGUST2005VCC+=5V,VCC–=0V,VIC=2V,VO=2.5V,and RL>1MΩ(unless otherwise noted)LMV8xxI PARAMETER TEST CONDITIONS T A UNITMIN TYP MAX25°C1 3.5V IO Input offset voltage mV–40°C to125°C 5.5Average temperature coefficientαVIO25°C1µV/°C of input offset voltage25°C40100I IB Input bias current nA–40°C to125°C15025°C0.530I IO Input offset current nA–40°C to125°C5025°C7290CMRR Common-mode rejection ratio V IC=0to4V dB–40°C to125°C7025°C7585 Positive supply-voltage V CC+=1.7V to4V,V CC–=–1V,+k SVR dB rejection ratio V O=0,V IC=0–40°C to125°C7025°C7385 Negative supply-voltage V CC+=1.7V,V CC–=–1V to–3.3V,–k SVR dB rejection ratio V O=0,V IC=0–40°C to125°C70Common-mode input–0.2–0.3V ICR CMRR≥50dB25°C V voltage range to4.2to4.325°C95105R L=600Ωto2.5V,SourcingV O=2.5V to4.5V–40°C to125°C9025°C95105R L=600Ωto2.5V,SinkingV O=2.5V to0.5V–40°C to125°C90Large-signal voltageA V dBamplification25°C95105R L=2kΩto2.5V,SourcingV O=2.5V to4.5V–40°C to125°C9025°C95105R L=2kΩto2.5V,SinkingV O=2.5V to0.5V–40°C to125°C9025°C 4.75 4.84High level–40°C to125°C 4.6V CC+=5V,R L=600Ωto2.5V25°C0.170.25Low level–40°C to125°C0.3V O Output swing V25°C 4.85 4.9High level–40°C to125°C 4.8V CC+=5V,R L=2kΩto2.5V25°C0.10.15Low level–40°C to125°C0.225°C2045V O=0V Sourcing–40°C to125°C15I O Output current mA25°C2040V O=5V Sinking–40°C to125°C1525°C0.30.4LMV821–40°C to125°C0.625°C0.50.7I CC Supply current LMV822(both amplifiers)mA–40°C to125°C0.925°C1 1.3LMV824(all four amplifiers)–40°C to125°C 1.5LMV8xxI5-V Electrical Characteristics(continued)VCC+=5V,VCC–=0V,VIC=2V,VO=2.5V,and RL>1MΩ(unless otherwise noted)LMV8xxI PARAMETER TEST CONDITIONS T A UNITMIN TYP MAXSR Slew rate V CC+=5V(1)25°C 1.4 1.9V/µs GBW Gain bandwidth product(2)25°C 5.5MHz Φm Phase margin(2)25°C64.2deg Gain margin(2)25°C8.7dB Amplifier-to-amplifier isolation V CC+=5V,R L=100kΩto2.5V(3)25°C135dB V n Equivalent input noise voltage f=1kHz,V IC=1V25°C42nV/√Hz I n Equivalent input noise current f=1kHz25°C0.2pA/√Hzf=1kHz,A V=–2,R L=10kΩ,THD Total harmonic distortion25°C0.01%V O=4.1V p-p(1)Connected as voltage follower with3-V step input.Value specified is the slower of the positive and negative slew rates.(2)40-dB closed-loop dc gain,C L=22pF(3)Each amplifier excited in turn with1kHz to produce V O=3V p-pTYPICAL CHARACTERISTICSI I − I n p u t C u r r e n t − n AT A − Temperature − °CI C C − S u p p l y C u r r e n t − µAV CC+ − Supply Voltage − V0.11101000.0010.010.1110Output Voltage Referenced to V+ − (V)I O − S o u r c e C u r r e n t − m A0.010.0010.010.1110Output Voltage Referenced to V+ − (V)I O − S o u r c e C u r r e n t − m ASLOS434G–FEBRUARY 2004–REVISED AUGUST 2005T A =25°C,V CC+=5-V Single Supply (Unless Otherwise Noted)SUPPLY CURRENTINPUT CURRENTvsvsSUPPLY VOLTAGETEMPERATUREFigure 1.Figure 2.SOURCING CURRENTSOURCING CURRENTvsvsOUTPUT VOLTAGEOUTPUT VOLTAGEFigure 3.Figure 4.Output Voltage Referenced to GND − VI O − S i n k C u r r e n t − mA0.010.1110100110Output Voltage Referenced to GND − VI O − S i n k C u r r e n t − m AO u t p u t V o l t a g e F r o m S u p p l y V o l t a g e − m VV CC+ − Supply Voltage − VO u t p u t V o l t a g e F r o m S u p p l y V o l t a g e − m VV CC+ − Supply Voltage − VTYPICAL CHARACTERISTICS (continued)T A =25°C,V CC+=5-V Single Supply (Unless Otherwise Noted)SINKING CURRENTSINKING CURRENTvsvsOUTPUT VOLTAGEOUTPUT VOLTAGEFigure 5.Figure 6.OUTPUT VOLTAGE SWINGOUTPUT VOLTAGE SWINGvsvsSUPPLY VOLTAGESUPPLY VOLTAGEFigure 7.Figure 8.O u t p u t V o l t a g e F r o m S u p p l y V o l t a g e − m VResistive Load −ΩO u t p u t V o l t a g e F r o m S u p p l y V o l t a g e − m VV CC+ − Supply Voltage − VFrequency − HzP S R R − d BFrequency − HzC r o s s t a l k R e j e c t i o n − d BSLOS434G–FEBRUARY 2004–REVISED AUGUST 2005TYPICAL CHARACTERISTICS (continued)T A =25°C,V CC+=5-V Single Supply (Unless Otherwise Noted)OUTPUT VOLTAGE SWINGOUTPUT VOLTAGE SWINGvsvsSUPPLY VOLTAGELOAD RESISTANCEFigure 9.Figure 10.CROSSTALK REJECTION+PSRR vsvsFREQUENCYFREQUENCYFigure 11.Figure 12.Frequency − HzP S R R − d BG a i n − d BFrequency − HzP h a s e M a r g i n − D e gTYPICAL CHARACTERISTICS (continued)T A =25°C,V CC+=5-V Single Supply (Unless Otherwise Noted)–PSRR vsFREQUENCYFigure 13.GAIN AND PHASE MARGINvsFREQUENCYFigure 14.G a i n − d B−20020406080Frequency − HzP h a s e M a r g i n − D e g −1010305070G a i n − d B1k10k100k1M10MFrequency − Hz−100−80−60−40−20020406080100P h a s e M a r g i n − D e g SLOS434G–FEBRUARY 2004–REVISED AUGUST 2005TYPICAL CHARACTERISTICS (continued)T A =25°C,V CC+=5-V Single Supply (Unless Otherwise Noted)GAIN AND PHASE MARGINvsFREQUENCY(V =5V,R =600Ω,2k Ω,100k Ω)Figure 15.GAIN AND PHASE MARGINvsFREQUENCY(V =2.7V,R =10k Ω,C =22pF,100pF,200pF)Figure 16.−100−80−60−40−20020406080100G a i n − d B−20020406080Frequency − HzP h a s e M a r g i n − D e g −1010305070G a i n − d B−20020406080Frequency − Hz−60−40−20020406080100120140P h a s e M a r g i n − D e g −1010305070TYPICAL CHARACTERISTICS (continued)T A =25°C,V CC+=5-V Single Supply (Unless Otherwise Noted)GAIN AND PHASE MARGINvsFREQUENCY(V =5V,R =10k Ω,C =22pF,100pF,200pF)Figure 17.GAIN AND PHASE MARGINvsFREQUENCY(V =2.7V,R =600Ω,C =22pF,100pF,200pF)Figure 18.G a i n − d B−20020406080Frequency − Hz−60−40−20020406080100120140P h a s e M a r g i n − D e g −1010305070SLOS434G–FEBRUARY 2004–REVISED AUGUST 2005TYPICAL CHARACTERISTICS (continued)T A =25°C,V CC+=5-V Single Supply (Unless Otherwise Noted)GAIN AND PHASE MARGINvsFREQUENCY(V =5V,R =600Ω,C =22pF,100pF,200pF)Figure 19.PACKAGING INFORMATIONOrderable Device Status(1)PackageType PackageDrawingPins PackageQtyEco Plan(2)Lead/Ball Finish MSL Peak Temp(3)LMV821DBVR ACTIVE SOT-23DBV53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV821DBVRE4ACTIVE SOT-23DBV53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV821DBVT ACTIVE SOT-23DBV5250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV821DBVTE4ACTIVE SOT-23DBV5250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV821DCKR ACTIVE SC70DCK53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV821DCKRE4ACTIVE SC70DCK53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV821DCKT ACTIVE SC70DCK5250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV821DCKTE4ACTIVE SC70DCK5250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV821IDBVR ACTIVE SOT-23DBV53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV821IDBVRE4ACTIVE SOT-23DBV53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV821IDBVT ACTIVE SOT-23DBV5250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV821IDBVTE4ACTIVE SOT-23DBV5250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV821IDCKR ACTIVE SC70DCK53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV821IDCKRE4ACTIVE SC70DCK53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV821IDCKT ACTIVE SC70DCK5250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV821IDCKTE4ACTIVE SC70DCK5250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV822D ACTIVE SOIC D875Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV822DE4ACTIVE SOIC D875Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV822DGKR ACTIVE MSOP DGK82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV822DR ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV822DRE4ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV822ID ACTIVE SOIC D875Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV822IDE4ACTIVE SOIC D875Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV822IDGKR ACTIVE MSOP DGK82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV822IDR ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMOrderable Device Status(1)PackageType PackageDrawingPins PackageQtyEco Plan(2)Lead/Ball Finish MSL Peak Temp(3)LMV822IDRE4ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV824D ACTIVE SOIC D1450Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV824DE4ACTIVE SOIC D1450Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV824DGVR ACTIVE TVSOP DGV142000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV824DGVRE4ACTIVE TVSOP DGV142000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV824DR ACTIVE SOIC D142500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV824DRE4ACTIVE SOIC D142500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV824ID ACTIVE SOIC D1450Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV824IDE4ACTIVE SOIC D1450Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV824IDGVR ACTIVE TVSOP DGV142000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV824IDGVRE4ACTIVE TVSOP DGV142000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV824IDR ACTIVE SOIC D142500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV824IDRE4ACTIVE SOIC D142500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV824IPW ACTIVE TSSOP PW1490Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV824IPWE4ACTIVE TSSOP PW1490Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV824IPWR ACTIVE TSSOP PW142000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV824IPWRE4ACTIVE TSSOP PW142000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV824PW ACTIVE TSSOP PW1490Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV824PWE4ACTIVE TSSOP PW1490Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV824PWR ACTIVE TSSOP PW142000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV824PWRE4ACTIVE TSSOP PW142000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIM(1)The marketing status values are defined as follows:ACTIVE:Product device recommended for new designs.LIFEBUY:TI has announced that the device will be discontinued,and a lifetime-buy period is in effect.NRND:Not recommended for new designs.Device is in production to support existing customers,but TI does not recommend using this part in a new design.PREVIEW:Device has been announced but is not in production.Samples may or may not be available.OBSOLETE:TI has discontinued the production of the device.(2)Eco Plan-The planned eco-friendly classification:Pb-Free(RoHS)or Green(RoHS&no Sb/Br)-please check /productcontent for the latest availability information and additional product content details.。

AZ5中文资料

AZ5中文资料

GENERAL DATALife ExpectancyMinimum operations Mechanical 10 million operationsElectricalStandard Duty:5 x 105at 1 A, 30 VDC Res.4 x 105at 0.5 A, 120 VAC Res.Heavy Duty:2 x 105at 2 A, 30 VDC Res.2 x 105at 1 A, 120 VAC Res.Operate Time (typical)Standard: 3 ms at nominal coil voltage Sensitive: 5 ms at nominal coil voltage Release Time (typical) 1 ms at nominal coil voltage (with no coil suppression)Capacitance Coil to contact: 3.0 pF Contact to contact: 3.0 pF Bounce (typical)At 10 mA contact current 2 ms at operate 8 ms at releaseDielectric Strength 1250 Vrms coil to contact(at sea level for 1 min.)500 Vrms between open contactsMeets FCC Part 68.3021500V lightning surge Meets FCC Part 68.304 1000 V dielectric Insulation 100 megohms min. at 20°C, 500 VDC,Resistance 50% RHDropoutGreater than 10% of nominal coil voltage Ambient TemperatureAt nominal coil voltageOperatingStandard: -25°C (-13°F) to 60°C (140°F)Sensitive: -25°C (-13°F) to 75°C (167°F)StorageBoth: -25°C (-13°F) to 105°C (221°F)Vibration 0.062" DA at 10–55 Hz Shock Standard: 10 g Sensitive: 6 g Enclosure P.B.T. polyester TerminalsTinned copper alloy Max. Solder Temp.270°C (518°F)Max. Solder Time 5 seconds Max. Immersion Time 30 seconds Weight3.5 gramsSUBMINIATURE PC BOARD RELAYFEATURES •Subminiature size for high density packaging •Coil sensitivity to 100 mW •Extremely low cost •Coils to 24 VDC•Epoxy sealed for automatic wave soldering •1 Amp and 2 Amp contacts•Life expectancy to 10 million operations•Meets FCC Part 68.302 1500 V lightning surge •Meets FCC Part 68.304 1000 V dielectric •UL file E43203; CSA file 74120CONTACTSArrangement SPDT (1 Form C)Welded crossbar constructionRatingsResistive load:Light DutyMax. switched power: 30 W or 60 VA Max. switched current: 1 AMax. switched voltage:150 VDC or 300 VAC UL Rating:1 A at 30 VDC0.5 A at 120 VAC Heavy DutyMax. switched power: 60 W or 120 VA Max. switched current: 2 AMax. switched voltage:150 VDC or 300 VAC UL Rating: 2 A at 30 VDC1 A at 120 VAC MaterialLight Duty Silver palladium, gold clad Heavy Duty Silver nickelResistance< 50 milliohms initiallyCOILPowerAt Pickup Voltage Standard coil: 220 mW (typical)Sensitive coil: 100 mW Max. Continuous 1.1 W at 20°C (68°F) ambient Dissipation .8 W at 40°C (104°F) ambientTemperature RiseStandard: 40°C (72°F) at nominal coil voltageSensitive: 22°C (40°F) at nominal voltage TemperatureMax. 105°C (221°F)NOTES1.All values at 20°C (68°F).2.Relay may pull in with less than “Must Operate” value.3.Other coil resistances and sensitivities available upon request.4.Specifications subject to change without notice.Dimensions in inches with metric equivalents in parentheses. Tolerance: ± .010"Coil Temperature RiseMaximum Switching CapacitySTANDARD RELAYS: Light Duty TypeCOIL SPECIFICATIONSORDER NUMBERNominal Max.CoilMust Coil Continuous Resistance Operate AZ5X Footprint AZ5Y Footprint VDC VDC ±10%VDC 5 6.8563.5AZ5X –1C –5DEAZ5Y –1C –5DE 68.180 4.2AZ5X –1C –6DE AZ5Y –1C –6DE 912.2180 6.3AZ5X –1C –9DE AZ5Y –1C –9DE 1216.23208.4AZ5X –1C –12DE AZ5Y –1C –12DE 2432.41,28016.8AZ5X –1C –24DEAZ5Y –1C –24DESENSITIVE RELAYS: Light Duty TypeCOIL SPECIFICATIONSORDER NUMBERNominal Max.CoilMust Coil Continuous Resistance Operate AZ5X Footprint AZ5Y Footprint VDC VDC ±10%VDC 510.01203.5AZ5X –1C –5DSEAZ5Y –1C –5DSE612.0180 4.2AZ5X –1C –6DSE AZ5Y –1C –6DSE 918.0405 6.3AZ5X –1C –9DSEAZ5Y –1C –9DSE1224.07008.4AZ5X –1C –12DSE AZ5Y –1C –12DSE 2448.02,80016.8AZ5X –1C –24DSE AZ5Y –1C –24DSESTANDARD RELAYS: Heavy Duty TypeCOIL SPECIFICATIONSORDER NUMBERNominal Max.CoilMust Coil Continuous Resistance Operate AZ5X Footprint AZ5Y Footprint VDC VDC ±10%VDC 5 6.8563.5AZ5X –1CH –5DEAZ5Y –1CH –5DE 68.180 4.2AZ5X –1CH –6DE AZ5Y –1CH –6DE 912.2180 6.3AZ5X –1CH –9DEAZ5Y –1CH –9DE1216.23208.4AZ5X –1CH –12DE AZ5Y –1CH –12DE 2432.41,28016.8AZ5X –1CH –24DE AZ5Y –1CH –24DE。

ZD5232A中文资料(Cystech Electonics)中文数据手册「EasyDatasheet - 矽搜」

ZD5232A中文资料(Cystech Electonics)中文数据手册「EasyDatasheet - 矽搜」

3.0
6.0
3.0
6.5
3.0
6.5
3.0
7.0
3.0
8.0
2.0
8.4
1.0
9.1
0.5
9.9
0.1
11
0.1
12
0.1
14
0.1
15
0.1
17
0.1
18
0.1
21
0.1
21
0.1
23
0.1
25
0.1
27
0.1
30
0.1
33
芯片中文手册,看全文,戳
规格.编号:C326SH 发布日期:2009.10.07
ZD5252A K2 24 23.52 24.48 33 5.2 600
ZD5254A K4 27 26.46 27.54 41 5.0 600
ZD5255A K5 28 27.44 28.56 44 4.5 600
ZD5256A M1 30 29.40 30.60 49 4.2 600
ZD5257A M2 33 32.34 33.66 58 3.8 700
°C
最大正向电压@ I
F=10mA ………………………………………………………........0.9V
最大功率耗散
总功率耗散@T 热阻,结到环境空气ř
L=75 °C Ptot (注1) ................................................... 500毫瓦
ZD5223A C3 2.7 2.65 2.75
30 20 1300
ZD5225A C5 3.0 2.94 3.06
30 20 1600

UL1082-中文版

UL1082-中文版

5.2 壳体材料应能适合于特定的应用要求,能将使用时可能引发火灾,电击或伤害人体的所有电气零件(电 源线除外)封闭起来。
5.3 判断壳体是否适用于特定的应用要求,其考虑因素有: (1) 机械强度; (2) 抗冲击性能; (3) 吸湿性能; (4) 燃烧性; (5) 耐腐蚀性能; (6) 在正常使用或非正常使用温度下壳体的抗变形性能。 对非金属材料壳体,见 UL 746C Standard for Polymeric Materials — Use in Electrical Equipment Evaluation 的壳体要求。金属材料壳体,按 34 章试验来检查其冲击性能。
流电压为 42.4V)。如果输入电路用串联阻抗来分压限流,再连接到线电压电路上,则该输入电路不 是低压电路,也不是隔离限压次级电路。见 11A.5。
版权所有人:TOMS.XU
未经许可,严禁拷贝 !
投诉电话:0755-86027268
HOUSEHOLD ELECTRIC COFFEE MAKERS AND BREWING-TYPE APPLIANCES – UL 1082(家用电咖啡壶及酿造类器具)
5.8 壳体结构应使得熔融金属,绝缘材料的燃烧,火花等不会落下到支撑表面上。
5.9 为满足 5.8 节的要求,对于底部开孔的壳体,如为下列情况,必须在孔位上方或下方加挡板: A. 位于马达下方,但以下情况除外:
1. 马达或器具的结构零件已有等同功能的挡板。
2. 马达带保护装置,使得当马达在下列故障情况下通电时,没有绝缘材料燃烧颗粒或熔融金 属落到器具支撑表面上:
2
31. 高压测试
29
32. 断开发热丝测试
29
33. 电源线拉力测试
30

8205a中文资料

8205a中文资料

8205a中文资料锂电池保护板根据使用的不同IC和电压具有不同的电路和参数。

常用的保护IC是8261,DW01 +,CS213,GEM5018等。

其中,精工的8261系列具有更好的精度,当然价格也更昂贵。

后者全部在台湾制造。

国内二级市场主要使用DW01 +和CS213。

以下是带有MOS管8205A(8pin)的DW01 +的说明:锂电池保护板的正常工作流程为:当电池电压在2.5V至4.3V之间时,DW01的第一引脚和第三引脚均输出高电平(等于电源电压),第二引脚电压为0V。

此时,DW01的引脚1和3的电压将分别施加到8205A的引脚5和4。

由于8205A中的两个电子开关的G 极连接到DW01的电压,因此它们处于导通状态。

两个电子开关均处于打开状态。

此时,电池单体的负极直接连接至保护板的P-端子,并且保护板具有电压输出。

2.保护板过放电保护控制原理:当电池通过外部负载放电时,电池电压将缓慢降低,与此同时,DW01将通过R1电阻实时监控电池电压。

当电池电压降至约2.3V时,DW01将认为电池电压处于过放电电压状态,引脚1的输出电压立即断开,从而引脚1的电压变为0V,并且开关由于引脚5上没有电压,因此8205A中的电子管关闭。

此时,电池单元的B-和保护板的P-处于断开状态。

即,电池单元的放电电路被切断,并且电池单元将停止放电。

保护板处于过放电状态,并且已经维护。

保护板的P 和P-具有间接充电电压后,DW01通过B-检测到充电电压后,将立即停止过放电状态,并再次在引脚1上输出高电压以开启过放电控制8205A中的电子管。

也就是说,电池单元的B-和保护板的P-被重新连接,并且电池由充电器直接充电。

3.保护板过充保护控制原理:当电池由充电器正常充电时,随着充电时间的增加,电池的电压将越来越高。

当电池电压升至4.4V时,DW01将认为电池电压处于过充电电压状态。

然后立即断开引脚3的输出电压,以使引脚3的电压变为0V,并且由于引脚4上没有电压,因此8205A中的开关管被闭合。

USCAR-2(中文第5版)-2009[1].03.17

USCAR-2(中文第5版)-2009[1].03.17

研究数据、分析、结论、观点和本文的其他内容仅仅是作者的产品。

无论是汽车工程师协会(SAE)还是美国汽车研究委员会(USCAR)都不会出具任何证明某些产品符合基本要求的证书,也不会对本文内容的准确性和适用性作任何介绍.确定本文内容是否适用于自己的目的,完全是本文用户责任。

版权 2004, USCAR 美国印刷版权所有有关本文件的问题:(724) 772—8545 传真 (724)776—0243要订购文件: (724) 776—4970 传真(724) 776—0790图5.1。

5:A-方法1 毫伏导线附件也许可能发生这样的情况:被连接的电气部件或设备本身不能承受与它们所连接的连接器能够承受的试验。

在这种情况下,必须获取设备的连接器插座(容器)部分的样品。

然后执行试验需要的连接并进行密封。

为了测试对插端的完整性,设备中的漏洞需要密封。

这样的对设备的修改是适当的,但必须形成文件体现在测试报告中。

在任何情况下如果发生偏离正常试验性能规格的情况,应当向授权人咨询并且必须得到他的认可。

5。

1.6 端子样品准备用来试验的端子是指用推荐的制造工具机械压接好导线的端子。

根据各自的端子类型和线径规格,压接尺寸物理特性和机械拉脱力必须在规定的容许公差范围内。

在单独的试验程序中,如果没有其他特殊说明,导线的导体部分和绝缘体部分都要压接。

如果适用,使用适当的电线密封件。

按照制造商推荐的装配标准装配绝缘替代类型的端子.当试验具有对插端的端板类型的连接器时,只需准备插座连接器样品(参考5。

1.5部分)。

记录具有代表性的每一批端子样品的压接高度和压接宽度(不包括绝缘替代类型的端子),并且为了跟踪和后期验证的需要对样品进行编号.根据SAE/USCAR-21:电线到端子的电气压接性能标准,端子的压接状况应该被试验和验证。

表5.1.9。

3 电路监控的通用方式说明:如果有实际经验,建议用“X"方式(所示孔位)图表5。

1.9。

ZD5231B中文资料(Cystech Electonics)中文数据手册「EasyDatasheet - 矽搜」

ZD5231B中文资料(Cystech Electonics)中文数据手册「EasyDatasheet - 矽搜」
符号
概要
SOD-323
绝对最大额定值
(TA = 25℃,除非另有规定)
最高气温
贮藏温度Tstg ............................................... .................................................. .. -55〜+ 150
芯片中文手册,看全文,戳
电气特性
设备
ZD5221B ZD5222B ZD5223B ZD5225B ZD5226B ZD5227B ZD5228B ZD5229B ZD5230B ZD5231B ZD5232B ZD5233B ZD5234B ZD5235B ZD5236B ZD5237B ZD5238B ZD5239B ZD5240B ZD5241B ZD5242B ZD5243B ZD5244B ZD5245B ZD5246B ZD5247B ZD5248B ZD5249B ZD5250B ZD5251B ZD5252B ZD5253B ZD5254B ZD5255B ZD5256B ZD5257B
3000
4000
5000
6000
7000
Reverse Voltage (mV)
ZD52XXBSG系列
CYStek产品规格
Forward Voltage (mV)
ZD5222B Forward Current vsForward Voltage 300
250
200
Forw1a5rd0 Current (mA) 100
50
0
0
200
400
600
800
1000
Forward Voltage (mV)

SM8212资料

SM8212资料

NIPPON PRECISION CIRCUITS INC.SM8212BPOCSAG Decoder For Multiframe PagersSM8212BSM8212BSM8212BSM8212BSM8212BSM8212BSM8212BSM8212BSM8212BIn the SM8212B, the Break, Back-up, Write, BS-test,Start and End auxiliary modes are controlled control sig-nals from the CPU. These modes are set by data written on SDI in sync with the SCK clock (see “Data/Flags” section).When sending data from the decoder to the microcon-troller, the SCK clock frequency should not be less than 1200 Hz. If this occurs, the SCK counter is reinitialized.This function, however, does make restoring operation easy even if this or another clock is accidentally input.Note that read mode function is described in the “Decoder Internal Status Transfer” section.6. Decoder Set Command Transfer (CPU to SM8212B)(1) Break(2) Back-up (Power save control)(3) WriteThis is the interrupt command to stop reception and data transfer. When the Break command is detected, the received code word ends and reception stops, then the device waits for self frame address detection or sync code detection timing. Reception may continue for up to 32-bit unit time after the Break command is received (or 34-bit time after the Break command is sent).Even though message reception may continue for a short time when the Break command is sent, sync code detection does not take place and accordingly the received data may be deemed to have many errors.Also, when CPU BREAK input interrupt end-of-message method only is selected, message reception continues even if an address code or an idle code is present, as long as the Break command is not issued.The time required from when the Break command is issued until received data is output can be approximately 2to 3 code words at internal sync speed. During this inter-val, 32 clock cycles are sent to the decoder while ATTN is LOW, and processing should be performed just as for nor-mal operation. If no processing is performed, subsequent operation may become unstable.This is the decoder OFF mode command. This com-mand stops all internal operation except the oscillator, and thus is used to control current consumption. CLKO out-put is stopped. Note that in back-up mode, the input/out-put pins do not become high impedance.Back-up mode is released and operation restarts when the decoder set start command is issued. All parameter and address information is retained during back-up, so opera-tion starts directly from preamble mode.Note that only the decoder set start command is accepted during back-up mode.Note that issuing the BACK-UP command is prohibited in the WRITE mode.This is the parameter and address write command. This operation mode can also be used to modify parameters and addresses. Write mode can be activated from BS-test mode,and also approximately 50 ms after reset, but for safety,wait minimum 900ms when Power-ON reset.Parameters and addresses can be changed by first issuing a decoder set command to enter write mode and then writ-ing new parameters and addresses.Note that in write mode, all internal operation takes place with the same timing as for 1200 bps speed mode. BS1,BS2 andBS3 are keep LOW.Each of the addresses can be turned ON/OFF, according to flag settings in the data written. Using this feature for a specific address in a pager allows the service provider, byprior agreement, to prohibit improper use of the pager delivery service (excluding delivery testing, stopping sub-sidiary services and similar functions).In the SM8212B, data writes from the microcontroller have priority, even if a received information transmit ready signal (ATTN = LOW) is present (forced write).When reception from the decoder RF stage has priority,operation switches to write mode after the end-of-message is confirmed by monitoring the internal operation using the read command. Then the parameter set commands and address set commands are written.After writing, write mode is released using the decoder set start command, and operation starts from preamble mode.8. Miscellaneous Interface Pins(1) SIGNAL(2) XT, XTN(3) CLKO(4) RSTN(5) AREACrystal oscillator element connection pins.The SM8212B operates at 76.8 kHz system clock speed,and this clock can be provided simply by connecting a crys-tal element between XT and XTN. The oscillator amplifi-er, feedback resistance and oscillator capacitance are allbuilt-in.In this case, XTN should not be used as a clock to drive an external device. Also, a 1000 pF to 0.1 µF capacitor should be connected between XVSS and VDD.Clock output pin. The clock output can be used as a CPU sleep clock or melody IC (SM1124 series) clock.The output clock frequency, 76.8 or 38.4 kHz, is selected using the decoder parameter set command.Decoder IC internal initialization reset pin. It also func-tions as an oscillator start-up booster (current source)immediately after power is applied to speed up oscillator stabilization.This pin goes HIGH for ≥1 second when a sync code is detected with 2 or less random bit errors in preamble, lock or idle mode sync code detection timing.During intermittent-duty CPU operation, monitoring this pin is useful for out-of-range signal strength.However, even if a sync code is detected, this pin is not held HIGH for ≥1 second if 2 consecutive sync codes could not be detected, or under the following situations in 1200 and 2400 bps modes.When the second of 2 consecutive sync codes could not be detected but a 6-bit preamble is detected and preamble continues.When operation transfers from lock mode to idle mode and then to preamble mode. Note that if opera-tion stays in idle mode after transfer from lock mode,this pin goes HIGH for ≥1 second.NRZ-format signal input pin, with built-in noise can-celler filter.Current pager systems operate at 3 baud rates (512, 1200and 2400 bps). In conventional systems, the RF stage LPF time constants are changed in response to the baud rate in order to get the best possible reception. However, thisrequires changing the external components which results in increased product operating costs.The SM8212B, however, performs digital processing onthe input signal which allows the 3 baud rates to be cov-ered without the need to substitute RF stage LPF compo-nents. The side effect of this digital filter processing is a small probability of rate errors occurring.Digital processing can be turned ON/OFF using flags.When turned ON, there are 4 filter constant settings that can be selected to obtain the best possible reception condi-tions in a flexible manner (see “Parameter Flags” section).Data/Flags1. Parameter set flags (1)When the “BS2 option” flag is 0, pre-receive adjustment mode is selected, and BS2 goes HIGH for a period of 1.953xN ms(0.833xN ms) [0.417xN ms] immediately before receive timing during intermittent-duty operation in idle mode. BS2 is heldLOW in preamble and lock mode. Note that values without paren-theses are for 512 bps, in () are for 1200 bps, and in [] are for 2400 bps. “N” represents the value set by RF5 (MSB) to RF0(LSB).When the “BS2 option” flag is 1, mid-receive adjustment mode is selected, with different timing depending on the mode.In idle mode, BS2 is held HIGH only during intermittent-duty operation receive timing which is a period of 62.5 ms (26.7 ms)[13.4 ms].In preamble mode, BS2 is held LOW.In lock mode, BS2 is held HIGH during sync code receive timing.The sync code is a POCSAG-format conforming signal comprising 32 bits of 16 “0” and 16 “1” bits to maintain energy balance so that, even for long message reception and fast-changing reception conditions, it can still be detected.Bit 9End-of-message method select flag.When 0, end of message occurs when either an idle code word or another address is received during message reception, or when a break command is issued from the CPU.When 1, end of message occurs only when a break command is issued from the CPU. So even if another address is received, the data is sent continuously to the CPU with message data handling.Therefore, the signal is considered to be valid even if the service provider sends a message and not enough information is received due to signal noise.Bit 10CLKO output clock frequency select flag.When 0, 76.8 kHz is selected.When 1, 38.4 kHz is selected.Bit 11CLKO clock output enable flag.When 0, output is enabled.When 1, output is disabled.If CLKO clock output is not used, it can be useful in preventing unwanted noise generation.Parameter setting flag102130405060708BS2 OPTION (BS2 option)9END OF MESSAGE DETECTION 10SELECT CLKO FREQUENCY11KILL CLKO 12BIT RATE SET 1 (BRS1)13BIT RATE SET 0 (BRS0)14SIGNAL POLARITY15PL516PL417PL318PL219PL120PL021RF522RF423RF324RF225RF126RF027FILTER ENABLE/ DISABLE28FILTER 129FILTER 030ERROR 2 (ER 2)31ERROR 1 (ER 1)32ERROR 0 (ER 0)Table 5. Parameter set flagsBits 1 to 7These bits form the parameter set command.Bit 8This bit selects the output format of the RF DC-level adjustment signal output on BS2.2. Parameter set flags (2)Bit 14NRZ input signal polarity select flag.When 0, normal logic is selected.When 1, inverse logic is selected.Bits 15 to 20BS3 (PLL setup signal) setup time set flags.“M” represents the value of PL5 (MSB) to PL0 (LSB) and is used to control the receive timing setup time before BS3 rising edge. The setup time is 1.953xM ms (0.833xM ms) [0.417xM ms]. The valid values are from 2 to 62 (61 steps). Note that 3F HEX is an invalid set-ting.Bits 21 to 26BS1 (RF control main output signal) setup time set flags.“N” represents the value of RF5 (MSB) to RF0 (LSB) and is used to control the receive timing setup time before BS3 rising edge. Thesetup time is 1.953xN ms (0.833xN ms) [0.417xN ms]. The valid val-ues are from 2 to 62 (61 steps). Note that 3E and 3F HEX are invalid settings.Note also that the setup times should be set such that (BS3 rising-edge setup time) > (BS1 rising-edge setup time).Bit 27NRZ signal input noise canceller filter ON/OFF flag.When 0, filter is OFF.When 1, filter is ON.Bits 28 to 29These bits set the noise canceller filter on-state (strength) when the fil-ter is turned ON using bit 27.Filter ON-state strength:1 <2 <3 < 4Bits 30 to 32Preamble mode rate error detection condition set flags.In preamble mode, under worst-case reception conditions, a single standard is used when distinguishing between noise and preamble to detect rate errors. These flags determine the rate error detection stan-dard. The error counter value (number of permissible rate errors) can be selected from the range 1 to 8.Parameter setting flag102130405060708BS2 OPTION (BS2 option)9END OF MESSAGE DETECTION 10SELECT CLKO FREQUENCY11KILL CLKO 12BIT RATE SET 1 (BRS1)13BIT RATE SET 0 (BRS0)14SIGNAL POLARITY15PL516PL417PL318PL219PL120PL021RF522RF423RF324RF225RF126RF027FILTER ENABLE/ DISABLE28FILTER 129FILTER 030ERROR 2 (ER 2)31ERROR 1 (ER 1)32ERROR 0 (ER 0)Table 5. Parameter set flagsBits 12 to 13Receive bit rate set flags.BRS1BRS0Reception bit rate00512 bps 011200 bps 102400 bps 11Can't acceptFILTER 1FILTER 0Filter strength 00Filter strength 101Filter strength 210Filter strength 311Filter strength 4ER 2ER 1ER 0 Threshold ER 2ER 1ER 0 Threshold 000Count = 1100Count = 5001Count = 2101Count = 6010Count = 3110Count = 7011Count = 4111Count = 83. Address set flagsAddress setting flag102131405060708ADDRESS ENABLE 9ADDRESS 2 (ADDR 2)10ADDRESS 1 (ADDR 1)11ADDRESS 0 (ADDR 0)12FRAME 2 (FR 2)13FRAME 1 (FR 1)14FRAME 0 (FR 0)15A116A217A318A419A520A621A722A823A924A925A1126A1227A1328A1429A1530A1631A1732A18Table 6. Address set flagsBits 1 to 7These bits form the address set command.Bit 8These bits are the address (bits 9 to 32) enable flags.When 1, the address set by bits 9 to 32 are valid.When 0, the address set by bits 9 to 32 are invalid.Bits 9 to 11These bits are the address (bits 15 to 32) call sign set flags.Using 8-address control, the call signs are A, B, C, D, E, F, G and H.When an address code word is received, it is compared with the self addresses.Bits 12 to 14These bits are the address (bits 15 to 32) frame assign flags.Any frame can be assigned individually to any of the 8 controllable addresses. Up to 8 frames can be assigned.Bits 15 to 32Address bits.The 18-bit address should be written with MSB first.In the SM8212B, each of the 8 independent addresses can be assigned a frame.Address settings are made in 8 batches in write mode immediately after power is applied and immediately after reset (9 batches total, including the parameter batch). All batches should be set. If not all batches are set, subsequentoperation may become unstable.Also, an address setting can be modified during normal operation, 1 address at a time, with no adverse effects.Note : Please refrain from turning "ON" the same num-ber of address for two or more at the same time when set-ting addresses.ADDR 2ADDR 1ADDR 0Name ADDR 2ADDR 1ADDR 0Name000A 100E 001B 101F 010C 110G 011D111HFR 2FR 1FR 0Frame FR 2FR 1FR 0 Frame 000Frame 0100Frame 4001Frame 1101Frame 5010Frame 2110Frame 6011Frame 3111Frame 7Reception data112MESSAGE/ ADDRESS 3SELF ADDRESS 4ADDRESS 2 (ADDR 2)5ADDRESS 1 (ADDR 1)6ADDRESS 0 (ADDR 0)7FUNCTION 1 (FUNC 1)8FUNCTION 0 (FUNC 0)9SYN - VAL 10ERROR 1 (ERR 1)11ERROR 0 (ERR 0)12PARITY ERROR 13MESSAGE 1/ADDRESS 114MESSAGE 2/ADDRESS 215MESSAGE 3/ADDRESS 316MESSAGE 4/ADDRESS 417MESSAGE 5/ADDRESS 518MESSAGE 6/ADDRESS 619MESSAGE 7/ADDRESS 720MESSAGE 8/ADDRESS 821MESSAGE 9/ADDRESS 922MESSAGE 10/ADDRESS 1023MESSAGE 11/ADDRESS 1124MESSAGE 12/ADDRESS 1225MESSAGE 13/ADDRESS 1326MESSAGE 14/ADDRESS 1427MESSAGE 15/ADDRESS 1528MESSAGE 16/ADDRESS 1629MESSAGE 17/ADDRESS 1730MESSAGE 18/ADDRESS 1831MESSAGE 19/FUNCTION 132MESSAGE 20/FUNCTION 0Table 7. Receive data formatBit 1The receive data leading bit is always 1.Bit 2Message/address indicator flag.When 0, the data is an address.When 1, the data is a message.Bit 3Self address indicator flag.When 1, the data is treated as a self address (device address).When 0, the data is a message.When this bit is set to 1, the self address corresponds to one of the addresses indicated by bits 4 to 6.Bits 4 to 6Address call sign flags.When bit 3 of data is 1, indicating a self address, these bits indicate the call sign.When the data is a message, all 3 bits are set to 0.Bits 7 to 8Function bit flags.When bit 3 of data is 1, indicating a self address, these bits set the call function for the address indicated by bits 4 to 6.When the data is a message, both bits are set to 0.ADDR 2ADDR 1ADDR 0Name ADDR 2ADDR 1ADDR 0Name000A 100E 001B 101F 010C 110G 011D111HFUNC 1FUNC 0Function 00 A Call 01 B Call 10 C Call 11D CallReception data112MESSAGE/ ADDRESS 3SELF ADDRESS 4ADDRESS 2 (ADDR 2)5ADDRESS 1 (ADDR 1)6ADDRESS 0 (ADDR 0)7FUNCTION 1 (FUNC 1)8FUNCTION 0 (FUNC 0)9SYN - VAL 10ERROR 1 (ERR 1)11ERROR 0 (ERR 0)12PARITY ERROR 13MESSAGE 1/ADDRESS 114MESSAGE 2/ADDRESS 215MESSAGE 3/ADDRESS 316MESSAGE 4/ADDRESS 417MESSAGE 5/ADDRESS 518MESSAGE 6/ADDRESS 619MESSAGE 7/ADDRESS 720MESSAGE 8/ADDRESS 821MESSAGE 9/ADDRESS 922MESSAGE 10/ADDRESS 1023MESSAGE 11/ADDRESS 1124MESSAGE 12/ADDRESS 1225MESSAGE 13/ADDRESS 1326MESSAGE 14/ADDRESS 1427MESSAGE 15/ADDRESS 1528MESSAGE 16/ADDRESS 1629MESSAGE 17/ADDRESS 1730MESSAGE 18/ADDRESS 1831MESSAGE 19/FUNCTION 132MESSAGE 20/FUNCTION 0Table 7. Receive data formatBit 9Sync code preceding data reception receive status flag.When 1, indicates that there are 2 or less random bit errors.This flag is useful in determining data reliability.Bits 10 to 11Received message (or address) error correction indicator flags.Note that 2-bit random errors and 3-bit (or more) errors are not cor-rected.When data is an address, [ERR 1, 0] = (1, 1) is 2-bit random errors.Bit 12Parity error indicator flag.When 1, indicates a parity error.When 0, indicates no parity error.Bits 13 to 32Message (or address) bits.These bits represent the message (or address) content, output with MSB first.End-of-message dataThese bits represent data at the end of a message (including when using the break command).The end-of-message data is as follows:Bits 1 to 3All 3 bits are set to 1.Bits 4 to 8All 5 bits are set to 0.Bit 9Sync code preceding data reception receive status flag.When 1, indicates that there are 2 or less random bit errors.This flag is useful in determining data reliability.Bits 10 to 12These bits are unknown data to be ignored.Bits 13 to 32All bits are set to 0.ERR 1ERR 0Condition 00No errors 011-bit error102-bit continuous (burst) error 112-bit random or 3-bit (or more) errorReception data11213040506070809SYN - VAL 10ERROR 1 (ERR 1)11ERROR 0 (ERR 0)12PARITY ERROR 13MESSAGE 114MESSAGE 215MESSAGE 316MESSAGE 417MESSAGE 518MESSAGE 619MESSAGE 720MESSAGE 821MESSAGE 922MESSAGE 1023MESSAGE 1124MESSAGE 1225MESSAGE 1326MESSAGE 1427MESSAGE 1528MESSAGE 1629MESSAGE 1730MESSAGE 1831MESSAGE 1932MESSAGE 20Reception data1120314ADDRESS 2 (ADDR 2)5ADDRESS 1 (ADDR 1)6ADDRESS 0 (ADDR 0)7FUNCTION 1 (FUNC 1)8FUNCTION 0 (FUNC 0)9SYN - VAL 10ERROR 1 (ERR1)11ERROR 0 (ERR))12PARITY ERROR 13ADDRESS 114ADDRESS 215ADDRESS 316ADDRESS 417ADDRESS 518ADDRESS 619ADDRESS 720ADDRESS 821ADDRESS 922ADDRESS 1023ADDRESS 1124ADDRESS 1225ADDRESS 1326ADDRESS 1427ADDRESS 1528ADDRESS 1629ADDRESS 1730ADDRESS 1831FUNCTION 132FUNCTION 0Reception data11213140506070809SYN - VAL 10UNKNOWN 11UNKNOWN 12UNKNOWN13014015016017018019020021022023024025026027028029030031032Table 7-1 Address data formatTable 7-2 Message data formatTable 7-3 End-of-message data formatThe following table show the address, message and end-of-message data formats, respectively.6. Decoder set flagsDecoder setting flag11203BREAK 4BACK - UP 5WRITE 6BS - TEST 7START 8Table 8. Decoder set flagsBits 1 to 2 and bit 8These bits form the decoder set command.Only one of bits 3 to 7 can be logic 1 at any given time to select the corresponding auxiliary operating mode.If more than one bit is 1 at any time, operation may become unstable.Bit 3Break mode (command) flag.When 1, break mode operation is invoked.Bit 4Back-up mode (command) flag.When 1, back-up mode operation is invoked.Bit 5Write mode (command) flag.When 1, write mode operation is invoked.Bit 6BS-test mode (command) flag.When 1, BS-test mode operation is invoked.Bit 7Start mode (command) flag.When 1, start mode operation is invoked.These flags set the auxiliary operating modes. See “Decoder Set Command Transfer” for a description of each auxiliary operating mode.Note that the start command is accepted when in back-up, write, or BS-test mode. The start command is not accepted in modes other than these three.Also note that the write command is invalid in write mode.。

MIL-A-8625 中文版

MIL-A-8625 中文版
1.2.1 分类 Ⅰ类- 铬酸阳极氧化,在铬酸槽生成的常规氧化膜(见 3.4.1) ⅠB 类- 铬酸阳极氧化,低电压工艺,22±2V(见 3.4.1) ⅠC 类- 非铬酸阳极氧化,应用非铬酸的配方生成的Ⅰ和ⅠB 类氧化膜(见 3.4.1 和 6.1.2) Ⅱ类- 硫酸阳极氧化,在硫酸槽生成的常规氧化膜(见 3.4.2) ⅡB 类- 硫酸阳极氧化薄膜,应用非铬酸的配方生成的Ⅰ和ⅠB 类氧化膜(见 3.4.1 和 6.1.2) Ⅲ类- 硬质阳极氧化膜(见 3.4.3)
3.3.3 反射面 当合同和订购单中指明(见 6.2),加工零件具有高发射表面时,则在阳极氧化前进行化 学物或电化学抛光(见 6.9)。
3.3.4 修整(机加损伤和挂具点) 除非有特殊要求,对零件上造成阳极氧化膜损伤,但不损坏零件本身 的机械损伤区域应使用 QPL-81706I 所认可的 I 类阳极氧化膜级的化学转换材料和适用的方法进行修整。修 整只能对机加工损伤,像刮痕之类的。至于 III 类阳极氧化膜,只允许队不磨损的区域进行修整(见 6.6.1)。
由机加工引起的损伤区域最多不能超过总阳极氧化面积的 5%,否则不允许进行修整。在合同或者订购单(见 6.2)注明有特殊要求的,挂具点应按机械损伤相同的方法进行修整。
3.4 氧化膜 根据合同、订货单或图纸要求的普通阳极氧化膜可以是采用任何工艺来生成铝和铝合金上的 阳极氧化膜 3.4.1I,IB,和 IC 类氧化膜 I 和 IB 类氧化膜应该是由铬酸电解液中对铝和铝合金里表面生成的均匀的 阳极氧化膜。IC 类氧化膜应该是在无机酸或无机/有机酸(非铬酸)的电解液中对铝和铝合金表面生成一 层均匀的阳极氧化膜。除非在合同,订购单或适用图纸有特殊要求,I 类氧化膜将不能应用在超过含铜 5.0% 的铝合金或含硅超过 7.0%铝合金,或则允许的合金成分总含量超过 7.5%铝合金的表面生成。对要求 I,IB 或 IC 类的可以热处理的铝合金,应在阳极氧化前热处理退火。例如-T4,-T6,或者 T73。 3.4.1.1IC 类氧化膜 IC 类氧化膜是 TYPE I 和 IB 非铬酸替代物。除非特许, IC 类氧化膜代替所规定的 I 或 IB 类氧化膜是不允许的。

mill-a-8625中文版

mill-a-8625中文版

Type1—铬酸阳极Type2硫酸阳极Type3—低温硬质氧化軍用規格說明鋁和鋁合金的陽極氧化塗層这些说明以经过所有防卫部门和代理处的批准。

范围1.1 范围。

这些说明包话六种类型和两种电流形成的铝胶片阳极电镀和非建筑物的铝合金的一些具体要求1.2 分类:阳极氧化涂层的形式和分类的一些具体事项也在此说明(见6.2和6.21)1.2.1 类型TYPE I---含三价铬酸阳极电镀,常规胶片是从铬酸盐中提炼出来。

TYPE IB-含三价铬酸阳极电镀,低电压工序22±2V(见3.4.1)TYPE IC--- 非三价铬阳极电镀,用作一种转换TYPE I和IB涂层的非铬酸盐(见3.4.1和6.1.2)TYPEII---- 硫磺酸阳极电镀。

常规的涂层是从硫磺酸提炼出来的TYPEIII----薄硫磺酸阳极电镀,用作一种非铬酸盐来转换TYPE I和IB涂层的。

TYPEIII--- 坚硬的阳极氧化涂层处理。

1.2.2 分类.类别1 非染色(见3.5)类别2 染色(见3.6)2.可应用文件2.1官方文件2.1.1 详细说明和标准.以下具体要求和标准形成文件一部份。

除非有特别要求。

这些文件的问题争端已在防卫部门争端问题上列举出来。

具体说明军方MIL-P-23377 初次涂层,环氧聚酰胺和化学溶剂低抗。

MIL-C-81706 铝胶片和铝合金的材质化学转换MIL-P-85582 初次涂层,环氧化和水上处理。

联邦QQ-A –250/4 铝合金2024标准联邦FED-STD-141- 印刷、清漆、以及一些相关材质的取样和测试方法FED-STD-151- 金属检测方法军方MIL-STD-105—通过分配来对取样工序和表格来检测2.2 非官方发行物,在某中程度上要求已特别注名在内,除非有特别要求,DOD采纳的文件争端问题已在DODISS争端上列举出来。

美国检测材质方法ATMS B 117----盐喷射检测方法ANSI/ASTM B 137----测量铝在阳极电镀重量ASTM B 244 铝胶片在阳极电镀上的浓度和另一种非导体胶片在无磁性金属基础上旋转仪器上量。

综合使用手册(JY822,821,810,832,842)

综合使用手册(JY822,821,810,832,842)
输 出 ⑤ 切 忌用数 字表直 接测量本仪器的 m A 输出,因会引入 很大的 测量 部 误 差!请 将10 0Ω±0 . 003 %标 准电 阻 器串 入 m A 回路把 mA 转 化成 分 电 压,然 后用输 入阻 抗 不小 于1GΩ 的数字 表来 检 测其 电压, 再计
算 出mA值 。 ●〖 注〗 劲仪1 0 0Ω±0 . 01 %标 准电 阻器, 典型准 确度 为 ±0. 0 02 %。 ● 特点是 在20℃ ±1 5℃ 环境 温 度内 ,典型 温度 系 数为 ±0.0 0 0 3%/℃ 。
创 高 精 尖 科 技 · 扬 我 中 华 豪 气
中国·浙江余姚市劲仪仪表厂
总 机 :0574-22686868 咨 询 :0574-66221111 网 址 :www. jinye 邮 箱 :ji nyee @
所购产品型号 JY822 JY821 JY810 JY842 JY832 精 度等 级 0.01级 0.02级
全中文·双通道·多功能
特稳携式校验仪
使用手册
浙制 02810216
3 计量要点
① 本 仪器需 在 20 ℃ 环 境中放 置 12 小时以上。
② 通 电预热 时间不 少于2小 时。
③ 用 七位半 以上的 数字 多 用表 ,误差 ≤±0 . 0 03 %,并用 六位数 记录 。
④ 为 避免热 电势引 入可观的测量误差,请勿用手捏碰任何一个夹子 的 金属部 分,同 时,不管是数字表的校零、测量,还是本仪器的 校 零、输 出和测 量,在每次夹好夹子或插头重插后,均需静待六 分 钟后再 进行校 零、 输 出和 测量, 这在 输 出1 0 0mV 和 测量1 00m V 时 显得尤 为重要 !
JY 800 系列是符合国际品质的全中文特 稳 携式 校验 仪 。集 高 精度 、 高可 靠 性于 一 体, 两 个完 全隔 离 的输 出 与测 量 通道 可 同步 进 行、 互 不干 扰。 量 程宽 、 分辨 力 高、 负 载能 力 强, 整 个操 作流 程 直观 、 方便 、 智能 化 程度 高 ,是 工 业自 动化 仪 表校 准 过程 中,出 色 的“ 诊 断专 家 ”与“维 修 高 手” , 也是 您 值得 信 赖的 朋 友。

spec_8215-8205-6T51

spec_8215-8205-6T51

日历驱动轮
日历盘 星期盘
时轮转动、经过日历过轮传动、通过1天只转一圈的 日历驱动轮,传给日历驱动轮一端的日历驱动钩推动日 历盘,同时传给日历修正簧上的驱动钩,推动星期盘的 运动。














日 历 驱
正 簧 钩


驱日轮
日历过轮







图-2

传动过程

http://www.citizen.co.jp/miyota_mvt/ (英文) / (中文)
第2页
3. 构造 (1) 6T51柄轴周围的构造 ① 日历快速修正装置 (见图-1)
拉档
日历修正钩 图-1
拉档钩 日历修正簧
・柄头的位置分别在 A:上发条、 B:对星期・时间 C:(B⇔C)对日历
把柄头从B位置拉到C位置时,拉挡钩的动作带动日历 修正杆运动,日历修正杆按一定角度转动。日历修正簧 的动作又带动日历修正钩的一端按动日历板齿轮调整日 历板一格,也就是一天。
针数 摆轮震动次数 发条的转动方向
宝石数
机心规格资料
CAL. :6T51 82XX
自动机械机心 日本制造
[日本西铁城时计株式会社制造]
6T51
8-3/4''' Φ19.8 5.98
28800次/小时
8205
8215
11-1/2''' Φ26 5.67
3针 21600次/小时
单方向/左旋转 21个
(2) 时间性能 机械表的精度(日差)和石英电子表不同,发条在其缓解的过程中最大会有几十秒的误 差。另外,完全上紧发条和半上紧发条两种情况之间的精度也是不同的。

线路板有关标准一览表

线路板有关标准一览表

线路板有关标准一览表目录题目IPC-SC-60A 锡焊后溶剂清洗手册IPC-SA-61 锡焊后半水溶剂清洗手册IPC-AC-62A 锡焊后水溶液清洗手册IPC-CH-65A 印制板及组装件清洗导则IPC-FC-234 单面和双面印制电路压敏胶粘剂组装导则IPC-D-279 高可靠表面安装印制板组装件技术设计导则IPC-A-311 照相版制作和使用的过程控制IPC-D-316 高频设计导则IPC-D-317A 采用高速技术电子封装设计导则IPC-C-406 表面安装连接器设计及应用导则IPC-CI-408 使用无焊接表面安装连接器设计及应用导则IPC-TR-579 印制板中小直径镀覆孔可靠性评价联合试验IPC-A-600F 中文版印制板验收条件IPC-QE-605A 印制板质量评价IPC-A-610C 中文版印制板组装件验收条件IPC-ET-652 未组装印制板电测试要求和指南IPC-PE-740A 印制板制造和组装的故障排除IPC-CM-770D 印制板元件安装导则IPC-SM-780 以表面安装为主的元件封装及互连导则IPC-SM-782A 表面安装设计及连接盘图形标准(包括修订1和2)IPC-SM-784 芯片直装技术实施导则IPC-SM-785 表面安装焊接件加速可靠性试验导则IPC-SM-786A 湿度/再流焊敏感集成电路的特性分级与处置程序IPC-CA-821 导热胶粘剂通用要求IPC-SM-839 施加阻焊前及施加后清洗导则IPC-1131 印制板印制造商用信息技术导则IPC/JPCA-2315 高密度互连与微导通孔设计导则IPC-4121 多层印制板用芯板结构选择导则(代替IPC-CC-110A)IPC/JPCA-6801 积层/高密度互连的术语和定义、试验方法与设计例IPC-7095 球栅阵列的设计与组装过程的实施IPC-7525 网版设计导则IPC-7711 电子组装件的返工IPC-7721 印制板和电子组装的修复与修正IPC-7912 印制板和电子组装件的DPMO(每百万件缺陷数)和制造指数的计算IPC-9191 实施统计过程控制(SPC)的通用导则IPC-9201 表面绝缘电阻手册IPC-9501 电子元件的印制板组装过程模拟评价(集成电路预处理)IPC-9502 电子元件的印制板组装焊接过程导则IPC-9503 非集成电路元件的湿度敏感度分级IPC-9504 非集成电路元件的组装过程模拟评价(非集成电路元件预处理)J-STD-012 倒装芯片及芯片级封装技术的应用J-STD-013 球栅阵列及其它高密度封装技术的应用IPC/EIA J-STD-026 倒装芯片用半导体设计标准IPC/EIA J-STD-028 倒装芯版面及芯片凸块结构的性能标准IPC/JEDEC J-STD-035 非气密封装电子元件用声波显微镜IPC-HDBK-001 已焊接电子组装件的要求手册与导则IPC-T-50F 电子电路互连与封装术语和定义IPC-L-125A 高速高频互连用覆箔或未覆箔塑料基材规范IPC-DD-135 多芯片组件内层有机绝缘材料的鉴定试验IPC-EG-140 印制板用经处理E玻璃纤维编织物规范(包括修改1及修改2)IPC-SG-141 印制板用经处理S玻璃纤维织物规范IPC-A-142 印制板用经处理聚芳酰胺纤维编织物规范IPC-QF-143 印制板用经处理石英(熔融纯氧化硅)纤维编织物规范IPC-CF-148A 印制板用涂树脂金属箔IPC-CF-152B 印制线路板复合金属材料规范IPC-FC-231C 挠性印制线路用挠性绝缘基底材料(包括规格单修改)IPC-FC-232C 挠性印制线路和挠性粘结片用涂粘接剂绝缘薄膜(包括规格单修改)IPC-FC-241C 制造挠性印制线路板用挠性覆箔绝缘材料(包括规格单修改)IPC-D-322 使用标准在制板尺寸的印制板尺寸选择指南IPC-MC-324 金属芯印制板性能规范IPC-D-325A 印制板、印制板组装件及其附图的文件要求IPC-D-326 制造印制板组装件的资料要求IPC-NC-349 钻床和铣床用计算机数字控制格式IPC-D-356A 裸基板电检测的数据格式IPC-DW-424 封入式分立布线互连板通用规范IPC-DW-425A 印制板分立线路的设计及成品要求(包括修改1)IPC-DW-426 分立线路组装规范IPC-OI-645 目视光学检查工具标准IPC-QL-653A 印制板、元器件及材料检验试验设备的认证IPC-CA-821 导热粘接剂通用要求IPC-CC-830A 印制板组装件用电绝缘复合材料的鉴定与性能(包括修改1)IPC-SM-840C 永久性阻焊剂的鉴定及性能(包括修改1)IPC-D-859 厚膜多层混合电路设计标准IPC-HM-860 多层混合电路规范IPC-TF-870 聚合物厚膜印制板的鉴定与性能IPC-ML-960 多层印制板用预制内层在制板的鉴定与性能规范IPC-1902/IEC 60097 印制电路网格体系IPC-2221 印制板设计通用标准(代替IPC-D-275)(包括修改1)IPC-2222 刚性有机印制板设计分标准(代替IPC-D-275)IPC-2223 挠性印制板设计分标准(代替IPC-D-249)IPC-2224 PC卡用印制电路板分设计分标准IPC-2225 有机多芯片模块(MCM-L)及其组装件设计分标准IPC-2511A 产品制造数据及其传输方法学的通用要求IPC-2524 印制板制造数据质量定级体系IPC-2615 印制板尺寸和公差IPC-3406 表面贴装导电胶使用指南IPC-3408 各向异性导电胶膜的一般要求IPC-4101 刚性及多层印制板用基材规范IPC/JPCA-4104 高密度互连(HDI)及微导通孔材料规范IPC-4110 印制板用纤维纸规范及性能确定方法IPC-4130E 玻璃非织布规范及性能确定方法IPC-4411 聚芳基酰胺非织布规范及性能确定方法IPC-DR-570A,印制线路用金属箔(代替IPC-MF-150F)IPC-4562,IPC6016IPC-6011 中文版印制板通用性能规范(代替IPC-RB-276)IPC-6012A中文版刚性印制板的鉴定与性能规范(包括修改1)IPC-6013 挠性印制板的鉴定与性能规范(包括修改1)IPC-6015 有机多芯片模块(MCM-L)安装及互连结构的鉴定与性能规范IPC-6016 高密度互连(HDI)层或印制板的鉴定与性能规范IPC-6018 微波成品印制板的检验和测试(代替IPC-HF-318A)IPC/JPCA-6202 单双面挠性印制板性能手册J-STD-001C 电气与电子组装件锡焊要求IPC/EIA J-STD-002A 元件引线、端子、焊片、接线柱及导线可焊性试验J-STD-003 印制板可焊性试验(代替IPC-S-804A)J-STD-004 锡焊焊剂要求(包括修改1)J-STD-005 焊膏技术要求(包括修改1)J-STD-006 电子设备用电子级锡焊合金、带焊剂及不带焊剂整体焊料技术要求(包括修改1)IPC/JEDEC J-STD-020A 非密封固态表面贴装器件湿度/再流焊敏感度分类IPC/JEDEC J-STD-033 对湿度、再流焊敏感表贴装器件的处置、包装、发运和使用IPC PCB标准概览IPC DOC#题目公布日期Roadmap 国际电子互联技术roadmap 95.6SMC-TR-001 SMT介绍自动载带焊和细间隙技术 89.1J-STD-001 电气电子组件焊接技术要求 96.10(最新)IPC-HDBK-001 焊接电气电子组件要求技术手册与指南 98. 3J-STD-002 元件引线、焊端、接线头、接线柱和导线的可焊性测试 92.4J-STD-003 印制电路板可焊性测试 92.4J-STD-004 助焊剂技术要求 96.4J-STD-005 焊膏技术要求 95.1J-STD-006 用于电子焊料合金以及电子焊接应用中的涂有焊剂和不涂焊剂固体焊料的技术要求 96.6J-STD-012 倒芯片和芯片规模技术的实施程序 96.1J-STD-013 球栅阵列和其他高密度技术的实施程序 96.7IPC-DRM-18 元件鉴定参考手册 98.7J-STD-020 塑料表面贴装器件的湿度/再流灵敏度分类 99.3IPC-DRM-40 通孔焊点评估参考手册IPC-TRM-SMT 表面组装焊点评估参考手册 98.8IPC-T-50 电子电路互连及封装名词术语和定义 96.6(F)IPC-SC-60 焊后溶剂清洗手册 87.7IPC-SA-61 焊后半水清洗手册 95.7IPC-AC-62 焊后水清洗手册 86.12IPC-CH-65 印制电路板及组件清洗准则 90.12IPC-CS-70 印制电路板制造中化合物操作安全准则 88.8IPC-CM-78 表面组装及互连芯片载体准则 83.11IPC-MP-83 IPC公制化方法 85.8IPC-PC-90 实施统计工艺控制的总技术规范 90.10IPC-Q-95 实施ISO 9000质量系统的总技术规范 93.4 IPC-L-108 用于多层印制板薄层金属包履基体材料技术规范 90.6 IPC-L-109 用于多层印制板的浸渍纤维环氧树脂技术规范 92.7 IPC-L-110 用于多层印制板的预浸渍、B级环氧玻璃布已作废IPC-CC-110 为多层印制线路板选择芯线结构指南 97.12 IPC-L-112 印制板的包履复合金属基体材料技术规范 92.6 IPC-L-115 印制板用刚性金属包层基体材料技术规范 90.4 IPC-L-120 履铜环氧玻璃的化学处理检验步骤已作废IPC-L-125 用于高速/高频互连的包履或非包履塑料基板技术规范 92.7 IPC-L-130 主要用于通用多层印制板的薄层压板、包履金属技术规范 IPC108取代IPC-EG-140 用于印制电路板、由”E”玻璃制成的纤维纺织品技术规范 97.6 IPC-SG-141 用于印制电路板、由“S”玻璃制成的纤维纺织品技术规范 92.2 IPC-A-142 用于印制电路板、由Aramid玻璃制成的纤维纺织品技术规范90.6 IPC DOC#题目公布日期IPC-QF-143 用于印制电路板、由石英制成的纤维纺织品通用技术规范 92.2 IPC-CF-148 用于印制板的涂敷环氧树脂的金属 98.9 IPC-MF-150 用于印制线路的金属箔 92.8 IPC-CF-152 用于印制线路板的复合金属材料技术规范 98.3 IPC-FC-203 扁平电缆、圆导体、接地面技术规范 85.7 IPC-FC-210 扁平连接器地下电缆性能技术规范 85.9 IPC-FC-213 扁平地下电话电缆技术规范 84.9 IPC-FC-217IPC-FC-218B接插件、电气扁平电缆类型通用技术规范 91.5 IPC-FC-219 航空用密封环境下扁平电缆接插件 84.5 IPC-FC-220 非屏蔽扁平电缆、扁平接插件技术规范 85.7 IPC-FC-221 用于扁平电缆的扁平铜导体技术规范 84.5 IPC-FC-222 非屏蔽扁平电缆圆导体技术规范 91.5 IPC-FC-225 扁平电缆设计指南 85.10 IPC-FC-231 用于柔性印制线路的柔性基体绝缘材料 95.10 IPC-FC-232 用于柔性印制线路和柔性连接膜覆盖板涂镀粘接剂 95.10 IPC-FC-233 参考 232 IPC-FC-241 用于制造柔性印制线路的柔性包履金属绝缘材料 95.10 IPC-RF-245 刚柔印制电路板性能技术规范 87.4 IPC-D-249 单、双面柔性印制电路板设计标准 87.1 IPC-FC-250A 单、双面柔性印制线路技术规范 86.9 IPC-FA-251 单面和双面柔性电路指南 92.2 IPC-D-275 刚性印制电路板和刚性印制电路板组件设计标准 96.4 IPC-RB-276 刚性印制电路板规格和性能技术规范 92.3 IPC-D-279 可靠的表面组装技术印制电路板组件设计指南 96.7 IPC-D-300 印制电路板尺寸和公差 84.1 IPC-D-310 照相工具生成和测量技术指南 91.6 IPC-A-311 照相工具生成及使用工艺控制指南 96.3 IPC-D-316 采用软基板的微波电路板设计指南 95.5 IPC-D-317 采用高速技术的电子封装设计指南 95.1 IPC-HF-318 微波终端产品电路板的检验和测试 91.12 IPC-D-319 刚性单面和双面印制电路板设计标准 87.1 IPC-D-320A 印制电路板、刚性、单面和双面、终端产品标准 81.3 IPC-SD-320B 刚性单面和双面印制电路板性能技术规范 86.11IPC-D-322 参照标准板尺寸选择印制线路板尺寸指南 91.9 IPC-MC-324 金属芯电路板性能技术规范 88.10 IPC-D-325 印制电路板、组件和支持图文件技术要求 95.5 IPC-D-326 制造印制电路板组件资料技术要求 91.4 IPC-D-330 设计指南手册IPC-PD-335 电子封装手册 89.12IPC DOC#题目公布日期IPC-NC-349 布线器计算机数字控制格式化 85.8 IPC-D-350 用数字形式描述印制电路板 92.7 IPC-D-351 用数字形式描述印制电路板图 85.8 IPC-D-352 用数字对式印制电路板的电子设计数据描述 85.8 IPC-D-354 数字形式印制电路板图库格式描述 87.2 IPC-D-355 用数字形式描述印制电路板组装 95.1IPC-D-356 用数字形式测试的裸板电气性能资料 98.1IPC-AM-361 用于加工艺印制电路板的刚性基板技术规范 82.1(作废)IPC-MB-380 模制互连器件指南 90.10IPC-D-390 自动设计指南 88.2IPC-C-406 表面组装接插件设计和应用指南 90.1IPC-CI-408 非焊接表面贴装接插件设计和应用指南 94.1IPC-BP-421 压装的刚性印制电路板底板通用技术规范 90.4IPC-D-422 压装刚性印制电路板底板设计指南 82.9IPC-DW-424 密封分立线互连电路板通用技术规范 95.1IPC-DW-425 分立线路板设计与终端产品技术要求 90.5IPC-DW-426 分立线路组装技术规范 87.12IPC-TR-460 印制线路板波峰焊接故障检测表 84.2IPC-TR-461 厚薄涂层的可焊性评价 79.3IPC-TR-462 为长期保存而涂履保护涂层的印制线路板的可焊性评价 87.10IPC-TR-464 用于可焊性评价的加速老化 87.12IPC-TR-465-1 关于蒸气老化温度控制稳定性的循环测试 93IPC-TR-465-2 蒸气老化时间和温度对可焊性测试结果的影响 93IPC-TR-465-3 关于替代涂饰蒸汽老化评价 96.7IPC-TR-466 润湿平衡标准重量比较测试 95.4IPC-TR-467 ANSI/J-STD-001附件D的支持数据和数字举例 96.10IPC-TR-468 影响印制电路板绝缘电阻性能的因素 79.3IPC-TR-470 多层互连线路板的热特性 74.1IPC-TR-474 分立线路技术综观 79.3IPC-TR-476 如何避免电子硬件中金属膨胀问题 74.1IPC-TR-480 多层 IV 循环测试程序阶段I的结果 75.9IPC-TR-481 多层 V 循环测试程序的结果 81.4IPC-TR-483 薄层压板的尺寸稳定性测试椀?/FONT>1 阶段报告国际循环测试程序 86.4IPC-TR-484 IPC铜箔延展性循环研究的结果 86.4IPC-TR-485 IPC铜箔脆性强度测试循环研究结果 85.3IPC-TR-549 印制线路板上的斑点 73.11IPC-TR-551 印制板电子元件组装和互连的质量评价 93.7IPC-DR-570 直径为1/8英寸的硬质合金钻头印制板总技术规范 84.4IPC-DR-572 印制电路板钻孔指南 88.4IPC-TR-576 加工艺评价 77.9IPC DOC#题目公布日期IPC-TR-578 引线边缘制造技术报告 84.9IPC-TR-579 印制线路板小直径镀履通孔的循环可靠性评估 88.9IPC-TR-580 清洗和清洁度测试程序第1阶段测试结果 89.10IPC-TR-581 IPC第3 阶段控制气氛焊接研究 94.8IPC-TR-582 IPC第3 阶段免洗助焊剂研究 94.11IPC-A-600 印制电路板的可接受性(检验标准) 95.8IPC-QE-605A 印制电路板质量评价手册 99.2IPC-SS-605 印制电路板质量评价IPC-A-610 电子组件的检验标准 95.8IPC-QE-615 组装质量评估手册 93.3IPC-SS-615 组装质量评估 93.3IPC-AI-640 未贴装元件的厚膜混装基板的自动检测用户指南 87.1IPC-AI-641 焊点自动检测用户指南 87.1IPC-AI-642 原理图、内层、未贴装元件的PWB自动检测用户指南 88.10 IPC-OI-645 光学检测仪器标准 93.10IPC-TM-650 测试方法手册IPC-ET-652 未贴装元件的印制电路板的电气测试规则和技术要求 90.10 IPC-QL-653 检验/测试印制电路板、元件、材料的设备鉴定 97.11IPC-MI-660 原材料来料检测手册 84.2IPC-R-700C 印制电路板和组件的改型、返工、返修指南 88.1IPC-TA-720 层压板技术评估手册IPC-TA-721 多层电路板技术评估手册IPC-TA-722 焊接技术评估IPC-TA-723 表面组装技术评估手册IPC-TA-724 净化间技术评估IPC-PE-740 印制电路板制造和组装故障检测指南 97.12IPC-CM-770 印制电路板元件贴装 96.1IPC-SM-780 表面组装元件的封装和互连 88.3IPC-SM-782 表面组装设计和焊盘图形标准 96.10IPC-EM-782 表面组装设计和焊盘分布图形 95.12IPC-SM-784 COB技术应用指南 90.11IPC-SM-785 表面贴装焊点连接的快速可靠性测试指南 92.11IPC-SM-786 潮湿气氛/再流感应ICs的特性化和处理步骤 95.1IPC-MC-790 多芯片模块技术应用指南 92.8IPC-S-804 印制线路板的可焊性测试方法 87.1IPC-S-805 元件引线和端点的可焊性测试 85.1IPC-MS-810 高容量显微薄片指南 93.10IPC-S-815 焊接电子互连件的通用技术要求 87.12IPC-S-816 SMT工艺指南和清单 93.7IPC-SM-817 绝缘表面贴装胶的通用技术要求 89.11IPC-SF-818 用于电子组件焊接的助焊剂通用技术要求 91.12IPC DOC#题目公布日期IPC-SP-819 用于电子工业的焊膏通用技术要求和测试方法 88.10IPC-AJ-820 组装和连接手册 96.8IPC-CA-821 导热粘接剂通用技术要求 95.1IPC-CC-830 用于印制电路板组件的电子绝缘化合物的鉴定和性能 98.10 IPC-SM-839 施用焊料掩膜前后的清洗指南 90.4IPC-SM-840 用于印制电路板的永久性聚合物涂层的鉴定与性能 96.1IPC-H-855 混合微电路设计指南 82.10IPC-D-859 厚膜多层混合电路设计标准 89.12IPC-HM-860 多层混合电路技术规范 87.1IPC-TF-870 聚合物厚膜印制电路板的鉴定和性能 89.11IPC-ML-910 被275替代IPC-D-949 刚性多层印制电路板设计标准 87.1IPC-ML:-950 刚性多层印制电路板性能技术规范 86.11IPC-ML-960 用于多层印制电路板的批量层压面板的鉴定与性能技术规范 94.7 IPC-ML-975 用于多层印制线路板的终端产品技术规范 69.9IPC-ML-990 柔性多层线路性能技术规范 72.9IPC-1402 混合微电路设计指南 82.10IPC-1710 印制电路板制造者的鉴定曲线(MQP)的OEM标准 97.12IPC-1720 组装鉴定曲线(AQP) 96.7IPC-1730 胶合机鉴定曲线(LQP) 98.1IPC-2141 可控阻抗电路板与高速逻辑设计 90.4IPC-2221 印制电路板通用标准 98.2IPC-2222 刚性有机印制电路板部分设计标准 98.2IPC-2223 柔性印制电路板分段设计标准 98.11IPC-3406 表面组装用导电胶规则 96.7IPC-3408 各向异性导电粘接剂膜通用技术要求 96.11IPC-4101 刚性及多层印制板的基体材料技术规范 97.12IPC-4110 用于印制电路板非纺织物纤维素纸技术规范与特征化方法 98.8IPC-4130 非纺织物”E”玻璃纤维板技术规范与特征化方法 98.9IPC-6011 印制电路板通用性能技术规范 96.7IPC-6012 刚性印制电路板的鉴定与性能技术规范 96.7IPC-6013 柔性印制电路板的鉴定与性能技术规范 98.11IPC-6015 有机多芯片模块(MCM-L)组装及互连结构的鉴定与性能技术规范 98.2 IPC-6018 微波终端产品电路板检验与测试 98.1IPC/JPCA-6202 单双面柔性印制线路板性能指导手册 99.2IPC-7711 电子组件返修 98.4IPC-7721 印制电路板和电子组件的返修与改型 98.4IPC-9201 表面绝缘电阻手册 96.7IPC-9501 评价电子元件的PWB仿真组装工艺 95.7IPC DOC#题目公布日期IPC-9504 评价非IC元件的仿真组装工艺 98.6度量图 98.4片式元件图 98.8鸥翼形元件图 98.8J形引线元件图 98.8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SUBMINIATURE DIP RELAY
FEATURES •Low profile for compact board spacing •DC coils to 48 VDC
•Single button crossbar contacts •High sensitivity, 100 mW pickup
•Life expectancy to 15 million operations •High switching capacity, 60 W, 120 VA •Fits standard 16 pin IC socket
•Epoxy sealed for automatic wave soldering and cleaning •Meets FCC Part 68.302 1500 V lightning surge •Meets FCC Part 68.304 1000 V dielectric •
UL, CUR file E43203
CONTACTS
Arrangement DPDT (2 Form C)Ratings
Resistive load:
Max. switched power:60 W or 120 VA Max. switched current:2 A
Max. switched voltage:150 VDC or 240 VAC
Rated Load UL 1.25 A, 100 VDC, 30 W 0.5 A, 125 VAC
CSA 1.25 A, 150 VAC, 150 VDC, 30W, 50 VA Material Gold/silver alloy, gold plated Resistance
< 50 milliohms initially
200 milliohms at end of life
GENERAL DATA
Life Expectancy
Minimum operations Mechanical 15 x 106
Electrical 1 x 105at 2 A 30 VDC Res.Operate Time (typical) 3 ms at nominal coil voltage Release Time (typical)
2 ms at nominal coil voltage (with no coil suppression)
Dielectric Strength 1500 Vrms coil to contact (at sea level for 1 min.)1000 Vrms contact to contact Insulation Resistance 1000 megohms min. at 20°C, 500 VDC,50% RH
Dropout Greater than 10% of nominal coil voltage Capacitance
Contact to contact: 2.0 pF
Contact set to contact set: 1.5 pF Contact to coil: 5.0 pF
Ambient Temperature
At nominal coil voltage
Operating
AZ821: -40°C (-40°F) to 75°C (167°F)AZ831: -40°C (-40°F) to 95°C (203°F)Storage
-40°C (-40°F) to 115°C (239°F)Vibration 1.5 mm DA at 10–55 Hz Shock 40 g 11 ms 1/2sine Enclosure P.B.T. polyester 94 V-0Terminals
Tinned copper alloy Max. Solder Temp.
270°C (518°F)Max. Solder Time 5 seconds Max. Solvent Temp.80°C (176°F)Max. Immersion Time 30 seconds Weight
6 grams
COIL
Power
At Pickup Voltage AZ821: 250 mW (typical)
AZ831: 100 mW Max. Continuous 1.7 W at 20°C (68°F)Dissipation 1.3 W at 40°C (104°F)
Temperature Rise AZ821: 37°C (67°F) at nominal coil voltage AZ831: 18°C (32°F) at nominal coil voltage Temperature
Max. 115°C (239°F)
NOTES
1.All values at 20°C (68°F).
2.Relay may pull in with less than “Must Operate” value.
3.Other coil resistances and sensitivities available upon request.
4.Specifications subject to change without notice.
RELAY ORDERING DATA
STANDARD COIL SPECIFICATIONS
Nominal Coil Max. Continuous Coil Resistance Must Operate ORDER NUMBER VDC VDC± 10%VDC
57.836 3.75AZ821–2C–5DE
610.970 4.5AZ821–2C–6DE
915.4140 6.8AZ821–2C–9DE
1221.82809.0AZ821–2C–12DE
2442.2105018.0AZ821–2C–24DE
4882.5400036.0AZ821–2C–48DE
SENSITIVE COIL SPECIFICATIONS
Nominal Coil Max. Continuous Coil Resistance Must Operate ORDER NUMBER VDC VDC± 10%VDC
514.6125 3.75AZ831–2C–5DSE
617.5180 4.5AZ831–2C–6DSE
926.2405 6.8AZ831–2C–9DSE
1235.07209.0AZ831–2C–12DSE
2470.02,88018.0AZ831–2C–24DSE
48140.011,52036.0AZ831–2C–48DSE
MECHANICAL DATA。

相关文档
最新文档