2010年数三考研大纲
2024年考研数学三大纲
2024年考研数学三大纲2024年考研数学三大纲主要包括以下三个部分:
一、高等数学
1. 实数与数列
2. 函数与极限
3. 导数与微分
4. 不定积分与定积分
5. 常微分方程
二、线性代数
1. 向量与矩阵
2. 行列式与矩阵的逆
3. 向量空间与线性变换
4. 特征值与特征向量
5. 内积空间
三、概率论与数理统计
1. 随机事件与概率
2. 随机变量与概率分布
3. 多维随机变量及其分布
4. 统计量与样本分布
5. 大数定律和中心极限定理
6. 参数估计和假设检验
7. 方差分析和回归分析
8. 随机变量的数字特征和特征函数
9. 样本数据的描述和分析方法
10. 数理统计的基本概念和方法
具体来说,数学三考试中,高等数学占56%,线性代数占22%,概率论与
数理统计占22%。
考试题型包括选择题、填空题和简答题,其中选择题10个,每个5分,共50分;填空题6个,每个5分,共30分;简答题6个,每个10分,共60分。
2024数学三考研大纲
2024数学三考研大纲第一部分:基本概念和基本规则1.数论基本概念(1)整数、自然数、有理数和无理数的概念和性质;(2)素数、合数、互质数的定义和性质;(3)数论中的基本定理:费马小定理、中国剩余定理等。
2.代数基本概念(1)集合、集合的运算和集合的性质;(2)函数的概念、函数的性质和函数的运算;(3)多项式的概念、多项式的系数与次数、多项式的运算和多项式的因式分解;(4)方程和不等式的基本性质;(5)向量的概念、向量的线性运算和向量的数量积与向量积。
3.几何基本概念(1)点、线、面的性质;(2)平面几何和立体几何的基本概念和性质;(3)圆的基本性质和相关定理;(4)三角形、四边形、多边形的基本性质和相关定理;(5)坐标系和坐标变换的基本概念。
4.微积分基本概念(1)极限的概念和性质;(2)导数的定义、性质和运算法则;(3)不定积分的概念、性质和运算法则;(4)定积分的概念、性质和运算法则;(5)微分方程的基本概念和解法。
第二部分:数理方法和数学应用1.数论方法和应用(1)递推关系与生成函数;(2)整数的分解和数论函数的应用;(3)同余方程和同余定理的应用;(4)素数分布和素数定理。
2.代数方法和应用(1)行列式的性质和应用;(2)矩阵的基本性质和运算法则;(3)线性方程组的解法和相关定理;(4)群、环、域的概念和基本性质;(5)多项式方程的根与系数的关系。
3.几何方法和应用(1)几何图形的对称性和相似性;(2)几何证明的方法和技巧;(3)三角函数和相关三角恒等式的证明和应用;(4)几何体的体积和表面积的计算方法。
4.微积分方法和应用(1)函数的极值和最值的求解;(2)曲线的长度、曲率和弧长的计算方法;(3)定积分在几何、物理、经济等领域的应用。
第三部分:数学理论和数学研究1.数论的理论和研究(1)数论中的经典问题和研究方向;(2)数论在密码学和信息安全中的应用;(3)数论在算法设计和计算复杂性理论中的应用。
2010考研数学2大纲
2010年全国硕士研究生入学统一考试数学考试大纲--数学二考试科目:高等数学、线性代数考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学78%线性代数22%四、试卷题型结构试卷题型结构为:单项选择题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数平均值.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数的偏导数和全微分多元复合函数、隐函数的求导法二阶偏导数多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).五、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程:和.4.理解二阶线性微分方程解的性质及解的结构定理.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合和线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解非齐次线性方程组的通解考试要求1.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组基础解系和通解的求法.4.理解非齐次线性方程组的解的结构及通解的概念.5.会用初等行变换求解线性方程组.五、矩阵的特征值及特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.。
高数第一部分5_一元微积分证明题
( ) f '( x) = 4 + 4 ln3 x − 4 = 4 ln3 x − 1 + x x xx
⎧< 0,
f
'(
x
)
⎪ ⎨
=
0,
⎪⎩> 0,
0< x<1 x =1 1< x
由于 lim f ( x)= lim f ( x)=+∞,因此f ( x)无最大值
x→0
x → +∞
f ( x)的最小值为f (1) = 4 − k
定理:若函数f ( x)在[a, b]上连续,在
(a, b)内可导,则存在ξ ∈ (a, b),使得
f (b) − f (a) = f '(ξ )(b − a);
(II)证明:若函数f ( x)在x = 0处连续,
在(0,δ )(δ > 0)内可导,且 lim f '( x) = A, x → 0+
f ( x)的图形为U型,故其在(0, +∞)零点有三种情形: (1) f ( x)的最小值大于零,即k < 4 ⇒ 无零点 (2) f ( x)的最小值小于零,即k > 4 ⇒ 2零点 (3) f ( x)的最小值等于零,即k = 4 ⇒ 1零点
⎧(1) k < 4时无交点 ⇒ ⎨⎪(2) k > 4时两个交点
2
π
−
0 > k > m ⇒ 2零点
k = m ⇒ 1零点
π2
4
⎞ − 1 ⎟⎟⎠ 或k
>
0
⇒
无零点
(03年数二,12分) 讨论曲线y = 4 ln x + k 与y = 4 x + ln4 x的交点个数.
跨考专业课-武汉理工大学2010年考研大纲解析之参考书
跨考教育倾力奉献,祝您2011考研成功武汉理工大学2010年考研大纲解析之参考书参考书方面:214 俄语 《俄语》(1-2册)第2次修订版 黑龙江大学俄语系 编 外语教学与研究出版社 2002年改为2008年版215 日语 《标准日本语》(初级上下册、中级上册) 光村图书,叶立群等 人民教育出版社,2002年改为2008年版333 设计艺术学专业史论《中国工艺美术简史》 田自秉 中国美术学院出版社,2005年《艺术设计史》 杨先艺 华中科技大学出版社,2006年612 伦理学原理《伦理学》 周中之 人民出版社,2004年6月改为:《伦理学》 罗国杰 人民出版社,1989年1月版,2007年第24次印刷614 经济法学删:《经济法学》 李昌麟 中国政法大学出版社《经济法基础理论》 漆多俊 武汉大学出版社,最新版增:《经济法学》 漆多俊 高等教育出版社615 马克思主义基本原理及其发展增:《马克思主义经典文献解读》 杨金洲、朱喆 武汉理工大学出版社,2009年620 设计艺术学专业史论删:《设计学概论》 尹定邦 湖南科技出版社增:《中国工艺美术简史》 田自秉 中国美术学院出版社,2005年621 美术学专业史论 《中国美术简史》(增订本) 中央美术学院美术史系、中国美术史教研室编 中国青年出版社(增订版),2002年版改为2004年版622 增:《西方艺术简史》 杨先艺 北京大学出版社,2008年632 药学综合《分析化学》第四版改为(第五版)华东理工大学、四川大学、高教出版社(2004)增:《药物分析》(第7版) 刘文英 人民卫生出版社2007501《艺术学概论》 彭吉象 北京大学出版社,2004年《事理学论纲》 《产品设计》《设计文化论》 柳冠中陈汗青郑建启中南大学出版社,2005年华中科技大学出版社,2006年清华大学出版社,2007年武星宽俞孔坚武汉理工大学出版社,2006年中国建筑工业出版社,2003年《环境艺术设计学》 《景观设计学基础》《环境艺术设计作品集》 清华大学、同济大学、东南大学(版本不限)501 艺术设计学专业综合(6小时)《图形与意义》 尹定邦 湖南科技出版社《数字化设计艺术》 《新媒体艺术论》 方 兴徐 鹏武汉理工大学出版社,2004年高等教育出版社,2006年《动画概论》《动画制作技法》《室内外设计思维与表达》(工程动画) 朱明健等朱明健等朱明健等湖北美术出版社,2006年湖北美术出版社,2006年湖北美术出版社,2006年改为:设计艺术史论方向《艺术学概论》彭吉象 北京大学出版社,2004年工业设计及其理论(含展示设计方向) 《事理学论纲》《产品设计》《艺术设计文化论》柳冠中陈汗青郑建启中南大学出版社,2005年华中科技大学出版社,2006年清华大学出版社,2009年环境艺术设计及其理论(含公共艺术方向) 《环境艺术设计学》武星宽 武汉理工大学出版社,2006年视觉传达设计及其理论 《图形与意义》尹定邦 湖南科技出版社,2003年501 设计艺术专业设计(6小时)数字化艺术设计及其理论《数字化设计艺术》《互动传播的思维》方 兴赵 莉 等武汉理工大学出版社,2004年中国轻工业出版社,2007年502 由《民艺学论纲》(民间美术及其理论) 潘鲁生 山东文艺出版社502 美术学专业综合(6小时)《荣宝斋画谱》 (宋)无名氏 荣宝斋出版社改为:本专业方向的相关优秀作品集、创作技法等书籍,版本不限503:由《设计的营销与管理》 陈汗青等 湖南科技出版社,2002年《中国美学史大纲》 《西方美学史》 叶朗朱光潜上海人民出版社,2005年人民文学出版社,2004年503 艺术学专业综合(6小时)《音乐美学基础》 张前、王次炤 人民音乐出版社,2002年 改为:艺术史论研究 《西方艺术简史》《中国艺术简史》杨先艺杨先艺北京大学出版社,2008年北京大学出版社,2009年503 艺术学专业综合(6小时)艺术美学及其历史 《中国美学史大纲》《西方美学史》叶朗朱光潜上海人民出版社,2005年人民文学出版社,2004年音乐艺术研究 《音乐美学基础》张前、王次炤 人民音乐出版社,2004年艺术教育 《回归生态的艺术教育》腾守尧 南京出版社,2008年艺术管理 《设计的营销与管理》陈汗青等 湖南科技出版社,2002年801西方经济学删:《西方经济学》第三版(微观、宏观部分) 高鸿业 中国人民大学出版社删:803 国际金融学《国际金融学》 王仁祥、胡国晖武汉理工大学出版社,2005年804产业经济学《产业经济学》 赵玉林武汉理工大学出版社,2004年808民商法学综合 增:《民法学》面向二十一世纪法学专业核心课程教材,北大高教出版社 删:809 经济法学综合 《法理学》《宪法》《民法学》《知识产权》 北大高教出版社面向二十一世纪法学专业核心课程教材,最新版812 广告学综合 删:《广告学原理》 陈培爱 复旦大学出版社,2003《广告策划与管理》 严学军 高等教育出版增:《现代广告通论》 丁俊杰、康瑾 中国传媒大学出版社第二版815 英语语言学删:《新编简明英语语言学教程》 戴炜栋,何兆熊 外语教学与研究出版社,2002年《剑桥语言百科全书》(当代外国语言学与应用语言学文库) 系列名:当代国外语言学与应用语言学文库外语教学与研究出版社,2002年819 普通物理增:《大学物理学》(第一版) 汪晓元等 武汉理工大学出版社,2008年《大学基础物理学》(第二版) 张三慧等 清华大学出版社,2007年820—822 删除827 由827 岩石力学与工程《岩石力学与工程》 蔡美峰 科学出版社,2002改为:827 采矿学 《固体矿物资源开发工程》 张世雄 武汉理工大学出版社,2005830 胶体化学《胶体与表面化学》(第三版) 沈钟、赵振国、王果庭 化学工业出版社,2004年改为:《胶体化学》 冯绪胜等 化学工业出版社,2005年836 材料成型原理 由《材料成型原理》 陈昌平等 机械工业出版社,2003年改为:《材料成型原理》 刘全坤 机械工业出版社,2006年840 控制工程基础《控制工程基础》 王积伟 高等教育出版社,2001改为:《控制工程基础》 杨振中,张和平 北京大学出版社,2007年8月841 机械原理 删:《机械原理》(第四版) 孙恒 人民教育出版社,845 汽车营销与策划 《汽车营销》 张国方 人民交通出版社,2003年改为2008年版852 电力电子技术 《电力电子技术》(第四版) 王兆安 机械工业出版社改为:852 数据结构(C语言版) 《数据结构》(C语言版) 严蔚敏 清华大学出版社,2007年858 结构力学(含动力学) 《结构力学》 龙驭球 高等教育出版社,2001改为:《结构力学教程Ⅰ、Ⅱ》 龙驭球 高等教育出版社,2006年860 867 873 878 891 895删除862 工程热力学 《工程热力学》(第三版) 沈维道 高等教育出版社,2002年改为:暖通空调 《暖通空调》(第二版) 陆亚俊 中国建筑工业出版社,2007年11月863 工程项目管理 《工程项目管理》 陆惠民 东南大学出版社,2002年改为:《工程项目管理》 乐云 武汉理工大学出版社,2008年(上)《工程项目管理》 邓铁军 武汉理工大学出版社,2008年(下)865 土工原理与计算 《土质学与土力学》 洪毓康 人民交通大学出版社改为:结构力学与电算 《结构力学》 李廉锟 高等教育出版社866 运输经济学 删:《现代咨询方法与务实》 王文松 中国计划出版社,2003年增:《公路运输技术经济学》 隽志才 人民交通出版社,2002年879 动力机械制造与维修 删:《船舶机械制造工艺学》 刘正林 人民交通出版社884 会计学原理 《会计学》 胡华夏 湖北人民出版社,2005.8改为:《会计学》 刘永泽 东北财经大学出版社,2007年2月第1版889 西方政治思想史 《西方政治学说史》 浦兴祖、洪涛 复旦大学出版社改为:《当代西方政治思潮:20世纪70年代以来》 徐大同 天津人民出版社2001年版893 起重运输技术 删:《连续运输机》 蒋琼珠 人民交通出版社894 物流信息技术 《物流信息技术》 欧阳文霞 人民交通出版社 改为:《物流信息系统》 林自葵 清华大学出版社2005。
数学三考研大纲
数学三考研大纲2015数学三考研大纲2010年全国硕士研究生入学统一考试数学考试大纲--数学三考试科目:微积分.线性代数.概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构微积分 56%线性代数 22%概率论与数理统计 22%四、试卷题型结构试卷题型结构为:单项选择题选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性.单调性.周期性和奇偶性复合函数.反函数.分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数.反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性.拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨(Newton- Leibniz)公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的`概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值.最大值和最小值二重积分的概念.基本性质和计算无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径.收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求【2015数学三考研大纲】。
2010年考研数学真题点评(李永乐、李正元、王式安)
主持人:各位网友大家好,欢迎大家关注腾讯网教育频道联合万学共同制作的2010考研真题解析系列访谈节目。
今天我们非常容幸的邀请到了万学海文的顶级辅导名师,李正元、王式安、李永乐三位老师作客我们的访谈街,为大家第一时间解读2010年的数学考研真题。
李正元老师是北大的教授,李永乐老师是清华的教授。
王式安老师是北京理工大学的教授。
今天三位老师来到我们这里,一定能够给大家带来很大的收获。
希望大家能够受益匪浅。
现在就开始进入正题。
今年的考研题目,考试大纲和09年年的考试大纲是一致的,三位老师认为10年和09年考研的命题思路有什么变化?考试的难度有什么区别?李正元:我觉得从高数来说,大部分题目跟原来的命题思路是一致的,它还是一个基本的题目,难以程度也是适中。
比如说,大的解答题里,15题。
通解,这是一个基本题。
第16题是求一个变限积分。
求一次倒数就可以。
马上就可以回答它的结论。
第三道17道题,两道小题,第一个是比较两个积分题的大小。
积分曲线是一样的。
只要比较里面的函数,这里实际上就归结到L,大于区间上。
有了这个,这个题就非常容易得到了,第二个求极限利用第一道题。
第18道题,这个题目我们说只要利用一下求奇数无奇数合的基本方法就可以得到的,所以这个难以程度,当然最后一道题稍微难一点。
是一个全面积分比较复杂。
在一些少量的题目,我觉得它并不是非常基本,跟以前的题型大家不多见。
主要体现在选择题里,有四道选择题,一道是两个和号的取极限。
要是选择下面四道累计几分,是哪一个,这个题目应该说不那么基本。
大家基本的可能多数同学应该没有做过这个问题。
另外一个,就是关于狭积分的,它不是通过非常简单的计算就可以判断的,所以这两道稍微难一点。
四道选择题里占了两道题比较难的。
恩在基本题的方面在这一点上是和去年不同的地方。
总体上来说大部分题目还是适中的,有少量题目是难的。
高数是这样的情况。
主持人:李老师王老师呢?李永乐:今年的命题和以往的命题思路思想方法都是连贯的。
最新考研数学三不考的部分(最全)
高等数学不用看的部分:第5页映射;第17页到第20页双曲正弦双曲余弦双曲正切及相应的反函数可以不记;第107页由参数方程所确定的函数的导数;第119页微分在近似方程中的应用记住几个公式4,5,6还有120页的近似公式即可,不用看例题;第140页泰勒公式的证明可以不看,例题中的几个公式一定要记住,比如正弦公式等;第169页第七节;第178页第八节;第213页第四节;第218页第五节;第280页平行截面面积为已知的立体体积;第282页平面曲线的弧长;第287页第三节;第316页第五节;在第七章微分方程中建议大家只要会解方程即可,凡是书上涉及到物理之类的例题不看跳过例如第301页的例2例3例4;第八章;第90页第六节;第101页第七节;第157页第三节;165页第四节;第十一章;第261页定理6;第278页第四节;第285页第五节;第302页第七节;第316第八节线性代数不用看的部分:第102页第五节概率论与数理统计要考的部分:第一二三四五章;第六章第135页抽样分布;第7章第一节点估计和第二节最大似然估计注意:数学课本和习题中标注星号的为不考内容,在上面的内容中我并没有标出。
上述内容是根据文都发放的教材编的。
《高等数学》目录与2010数三大纲对照的重点计划用时(天)标记及内容要求:★─大纲中要求“掌握”和“会”的内容以及对学习高数特别重要的内容,应当重点加强,对其概念、性质、结论及使用方法熟知,对重要定理、公式会推导。
要大量做题。
☆─大纲中要求“理解”和“了解”的内容以及对学习高数比较重要的内容,要看懂定理、公式的推导,知道其概念、性质和方法,能使用其结论做题●─大纲中没有明确要求,但对做题和以后的学习有帮助。
要能看懂,了解其思路和结论。
▲─超出大纲要求。
第一章函数与极限第一节映射与函数(☆集合、影射,★其余)第二节数列的极限(☆)第三节函数的极限(☆)第四节无穷小与无穷大(★)第五节极限运算法则(★)第六节极限存在准则(★)第七节无穷小的比较(★)第八节函数的连续性与间断点(★)第九节连续函数的运算与初等函数的连续性(★)第十节闭区间上连续函数的性质(★)总习题第二章导数与微分第一节导数概念(★)第二节函数的求导法则(★)第三节高阶导数(★)第四节隐函数及由参数方程所确定的函数的导数相关变化率(★)第五节函数的微分(★)总习题二第三章微分中值定理与导数的应用第一节微分中值定理(★罗尔,★拉格朗日,☆柯西)第二节洛必达法则(★)第三节泰勒公式(☆)第四节函数的单调性与曲线的凹凸性(★)第五节函数的极值与最大值最小值(★)第六节函数图形的描绘(★)第七节曲率(●)第八节方程的近似解(●)总习题三(★注意渐近线)第四章不定积分第一节不定积分的概念与性质(★)第二节换元积分法(★)第三节分部积分法(★)第四节有理函数的积分(★)第五节积分表的使用(★)总习题四第五章定积分第一节定积分的概念与性质(☆)第二节微积分基本公式(★)第三节定积分的换元法和分部积分法(★)第四节反常积分(☆概念,★计算)第五节反常积分的审敛法г函数(●)总习题五第六章定积分的应用第一节定积分的元素法(★)第二节定积分在几何学上的应用(★平面面积,★旋转体,★简单经济应用)第三节定积分在物理学上的应用(★求函数平均值)总习题六、第七章微分方程第一节微分方程的基本概念(☆)第二节可分离变量的微分方程(☆)(★掌握求解方法)第三节齐次方程(☆)(★掌握求解方法)第四节一阶线性微分方程(☆)(★掌握求解方法)第五节可降阶的高阶微分方程(☆)第六节高阶线性微分方程(☆)第七节常系数齐次线性微分方程(★二阶的)第八节常系数非齐次线性微分方程(★二阶的)第九节欧拉方程(●)第十节常系数线性微分方程组解法举例(●)总习题七附录I 二阶和三阶行列式简介附录II 几种常用的曲线附录、积分表第八章空间解析几何与向量代数(▲)第一节向量及其线性运算第二节数量积向量积混合积第三节曲面及其方程第四节空间曲线及其方程第五节平面及其方程第六节空间直线及其方程总习题八第九章多元函数微分法及其应用第一节多元函数的基本概念(☆)第二节偏导数(☆概念。
2016年考研数学三考试大纲原文
2016年考研数学三考试大纲原文2016年考研数学三考试大纲原文考试科目:微积分、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟二、答题方式答题方式为闭卷、笔试三、试卷内容结构微积分约56%线性代数约22%概率论与数理统计约22%四、试卷题型结构单项选择题选题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1、理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系2、了解函数的有界性、单调性、周期性和奇偶性3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念4、掌握基本初等函数的性质及其图形,了解初等函数的概念5、了解数列极限和函数极限(包括左极限与右极限)的概念6、了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法7、理解无穷小量的概念和基本性质,掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系8、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型9、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数、反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1、理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程2、掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数3、了解高阶导数的概念,会求简单函数的高阶导数4、了解微分的概念、导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分5、理解罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理,了解泰勒(Taylor)定理、柯西(Cauchy)中值定理,掌握这四个定理的简单应用6、会用洛必达法则求极限7、掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用8、会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线9、会描述简单函数的图形三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用考试要求1、理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法与分部积分法2、了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿-莱布尼茨公式以及定积分的换元积分法和分部积分法3、会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题4、了解反常积分的概念,会计算反常积分四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算无界区域上简单的反常二重积分考试要求1、了解多元函数的概念,了解二元函数的几何意义2、了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质3、了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数4、了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题5、了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标),了解无界区域上较简单的反常二重积分并会计算五、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1、了解级数的收敛与发散、收敛级数的和的概念2、了解级数的基本性质及级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法3、了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法4、会求幂级数的收敛半径、收敛区间及收敛域5、了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数6、了解,,,及的麦克劳林(Maclaurin)展开式六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1、了解微分方程及其阶、解、通解、初始条件和特解等概念2、掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法3、会解二阶常系数齐次线性微分方程4、了解线性微分方程解的性质及解的结构定理,会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程5、了解差分与差分方程及其通解与特解等概念6、了解一阶常系数线性差分方程的求解方法7、会用微分方程求解简单的经济应用问题线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1、了解行列式的概念,掌握行列式的性质2、会应用行列式的性质和行列式按行(列)展开定理计算行列式二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质2、掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质3、理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵4、了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法5、了解分块矩阵的概念,掌握分块矩阵的运算法则三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1、了解向量的概念,掌握向量的加法和数乘运算法则2、理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法3、理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩4、理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系5、了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法四、线性方程组考试内容线性方程组的克拉默(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1、会用克拉默法则解线性方程组2、掌握非齐次线性方程组有解和无解的判定方法3、理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法4、理解非齐次线性方程组解的结构及通解的概念5、掌握用初等行变换求解线性方程组的方法五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1、理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法2、理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法3、六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1、了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念2、了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形3、理解正定二次型、正定矩阵的概念,并掌握其判别法概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1、了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算2、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等3、理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1、理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率2、理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用3、掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布4、理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用5、会求随机变量函数的分布三、多维随机变量的分布考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求1、理解多维随机变量的分布函数的概念和基本性质2、理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度,掌握二维随机变量的边缘分布和条件分布3、理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系4、掌握二维均匀分布和二维正态分布,理解其中参数的概率意义5、会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其简单函数的分布四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1、理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征2、会求随机变量函数的数学期望3、了解切比雪夫不等式五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(DeMoivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理考试要求1、了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律)2、了解棣莫弗-拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维-林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1、了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念2、了解产生变量、变量和变量的典型模式;了解标准正态分布、分布、分布和分布的上侧分位数,会查相应的数值表3、掌握正态总体的样本均值、样本方差、样本矩的抽样分布4、了解经验分布函数的概念和性质七、参数估计考试内容点估计的概念估计量和估计值矩估计法最大似然估计法考试要求1、了解参数的点估计、估计量与估计值的概念2、掌握矩估计法(一阶矩、二阶矩)和最大似然估计法2016考研大纲原文及解析下载汇总(全)最新2016政治考研大纲原文及解析汇总2016英语考研大纲原文及解析汇总最全2016数学考研大纲原文及解析汇总2016考研统考专业课大纲原文及解析汇总推荐2016年考研大纲解析专题2016考研择校、择专业指导。
考研数学三不考的部分(最全)
高等数学不用看的部分:第5页映射;第17页到第20页双曲正弦双曲余弦双曲正切及相应的反函数可以不记;第107页由参数方程所确定的函数的导数;第119页微分在近似方程中的应用记住几个公式4,5,6还有120页的近似公式即可,不用看例题;第140页泰勒公式的证明可以不看,例题中的几个公式一定要记住,比如正弦公式等;第169页第七节;第178页第八节;第213页第四节;第218页第五节;第280页平行截面面积为已知的立体体积;第282页平面曲线的弧长;第287页第三节;第316页第五节;在第七章微分方程中建议大家只要会解方程即可,凡是书上涉及到物理之类的例题不看跳过例如第301页的例2例3例4;第八章;第90页第六节;第101页第七节;第157页第三节;165页第四节;第十一章;第261页定理6;第278页第四节;第285页第五节;第302页第七节;第316第八节线性代数不用看的部分:第102页第五节概率论与数理统计要考的部分:第一二三四五章;第六章第135页抽样分布;第7章第一节点估计和第二节最大似然估计注意:数学课本和习题中标注星号的为不考内容,在上面的内容中我并没有标出。
上述内容是根据文都发放的教材编的。
《高等数学》目录与2010数三大纲对照的重点计划用时(天)标记及内容要求:★─大纲中要求“掌握”和“会”的内容以及对学习高数特别重要的内容,应当重点加强,对其概念、性质、结论及使用方法熟知,对重要定理、公式会推导。
要大量做题。
☆─大纲中要求“理解”和“了解”的内容以及对学习高数比较重要的内容,要看懂定理、公式的推导,知道其概念、性质和方法,能使用其结论做题●─大纲中没有明确要求,但对做题和以后的学习有帮助。
要能看懂,了解其思路和结论。
▲─超出大纲要求。
第一章函数与极限第一节映射与函数(☆集合、影射,★其余)第二节数列的极限(☆)第三节函数的极限(☆)第四节无穷小与无穷大(★)第五节极限运算法则(★)第六节极限存在准则(★)第七节无穷小的比较(★)第八节函数的连续性与间断点(★)第九节连续函数的运算与初等函数的连续性(★)第十节闭区间上连续函数的性质(★)总习题第二章导数与微分第一节导数概念(★)第二节函数的求导法则(★)第三节高阶导数(★)第四节隐函数及由参数方程所确定的函数的导数相关变化率(★)第五节函数的微分(★)总习题二第三章微分中值定理与导数的应用第一节微分中值定理(★罗尔,★拉格朗日,☆柯西)第二节洛必达法则(★)第三节泰勒公式(☆)第四节函数的单调性与曲线的凹凸性(★)第五节函数的极值与最大值最小值(★)第六节函数图形的描绘(★)第七节曲率(●)第八节方程的近似解(●)总习题三(★注意渐近线)第四章不定积分第一节不定积分的概念与性质(★)第二节换元积分法(★)第三节分部积分法(★)第四节有理函数的积分(★)第五节积分表的使用(★)总习题四第五章定积分第一节定积分的概念与性质(☆)第二节微积分基本公式(★)第三节定积分的换元法和分部积分法(★)第四节反常积分(☆概念,★计算)第五节反常积分的审敛法г函数(●)总习题五第六章定积分的应用第一节定积分的元素法(★)第二节定积分在几何学上的应用(★平面面积,★旋转体,★简单经济应用)第三节定积分在物理学上的应用(★求函数平均值)总习题六、第七章微分方程第一节微分方程的基本概念(☆)第二节可分离变量的微分方程(☆)(★掌握求解方法)第三节齐次方程(☆)(★掌握求解方法)第四节一阶线性微分方程(☆)(★掌握求解方法)第五节可降阶的高阶微分方程(☆)第六节高阶线性微分方程(☆)第七节常系数齐次线性微分方程(★二阶的)第八节常系数非齐次线性微分方程(★二阶的)第九节欧拉方程(●)第十节常系数线性微分方程组解法举例(●)总习题七附录I 二阶和三阶行列式简介附录II 几种常用的曲线附录、积分表第八章空间解析几何与向量代数(▲)第一节向量及其线性运算第二节数量积向量积混合积第三节曲面及其方程第四节空间曲线及其方程第五节平面及其方程第六节空间直线及其方程总习题八第九章多元函数微分法及其应用第一节多元函数的基本概念(☆)第二节偏导数(☆概念。
软件工程考研信息
以下按专业排名(前21):1、清华大学软件工程硕士必备报考信息清华大学软件工程硕士2010年研究生入学基本情况↓招生人数:无报考人数:无最低录取分数:无录取比例:无清华大学软件工程硕士2010年研究生入学专业目录↓初试科目:①101思想政治理论②201英语一③301数学一④408计算机学科专业基础综合复试备注:复试时专业综合考试内容:软件工程、数据库原理信息艺术设计必备报考信息信息艺术设计必备报考信息清华大学信息艺术设计2010年研究生入学基本情况↓招生人数:无报考人数:无最低录取分数:无录取比例:无清华大学信息艺术设计2010年研究生入学专业目录↓研究方向:01动漫编创、交互设计、交互艺术、数字游戏设计初试科目:①101思想政治理论②201英语一或 202俄语或 203日语或 241德语或 242法语③626信息技术基础或 627动画编创与游戏策划或 628艺术设计基础I (手绘表现)或 629艺术设计基础II(上机设计)④877案例分析2、西安交通大学软件工程硕士必备报考信息西安交通大学软件工程硕士2009年研究生入学基本情况↓招生人数: 70 报考人数:无最低录取分数:无录取比例:无西安交通大学软件工程硕士2009年研究生入学专业目录↓研究方向:01软件工程初试科目:①101统考政治②201统考英语③301数学一④408计算机学科专业基础综合复试备注:该专业复试科目:操作系统原理、数据库原理、微机原理与接口技术、数字逻辑与系统设计四门任选两门。
西安交通大学软件工程硕士2009年研究生入学参考书目↓复试科目:《操作系统原理》西安电子科技大学汤子瀛《数据库系统原理》电子工业出版社王能斌《微机原理与接口技术》清华大学出版社李宝红《数字逻辑与系统设计》高等教育出版社毛文林3、武汉大学计算机软件与理论必备报考信息武汉大学计算机软件与理论2010年研究生入学基本情况↓招生人数:无报考人数:无最低录取分数:无录取比例:无武汉大学计算机软件与理论2010年研究生入学专业目录↓研究方向:01 互联网上的软件工程02 基于组件的软件工程03 软件中间件04 软件互操作性的开发与测评05 软件体系结构06 软件质量控制与可靠性工程07 数据库理论与技术08 安全数据库09 网上信息服务10 并行计算与演化计算11 演化优化12 演化建模与参数反演13 演化硬件14 智能信息处理初试科目:①101思想政治理论②201英语一或203日语③301数学一④408计算机学科专业基础综合复试备注:复试笔试科目:①编译原理②操作系统同等学力加试科目:①数据库原理②计算机网络4、上海交通大学软件工程必备报考信息上海交通大学软件工程2010年研究生入学基本情况↓招生人数:无报考人数:无最低录取分数:无录取比例:无上海交通大学软件工程2010年研究生入学专业目录↓研究方向:软件系统开发技术;计算机应用技术;普适计算技术;可视数字技术初试科目:①101政治②201英语一③301数学一④408计算机学科专业基础综合5、南京大学软件工程必备报考信息南京大学软件工程2010年研究生入学基本情况↓招生人数: 100 报考人数:无最低录取分数:无录取比例:无南京大学软件工程2010年研究生入学专业目录↓研究方向:01软件设计与高级开发技术02软件工程技术03计算机网络技术04嵌入式软件技术05信息系统技术初试科目:①101政治②204英语二③302数学二④408计算机学科专业基础综合(数据结构、计算机组成原理、操作系统和计算机网络) 复试:笔试:软件工程,数据库;面试:专业综合复试备注:专业学位,学制2年,不接受单独考试。
考研数三(线性代数)大纲
全国硕士研究生入学统一考试数学考试大纲--数学三考试科目:微积分.线性代数.概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构微积分56%线性代数22%概率论与数理统计22%四、试卷题型结构试卷题型结构为:单项选择题选题8小题,每题4分,共32分填空题6小题,每题4分,共24分解答题(包括证明题)9小题,共94分线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型.正定矩阵的概念,并掌握其判别法.。
考研数三大纲重点范围
1 高等数学(微积分)。
这部分我用的同济大学的高等数学,一共两册,是很不错的教材。
一章函数与极限。
这一章前面要熟悉几个常见初等函数的图形。
反双曲正弦等我没看,个人觉得看不看无所谓。
用定义证明极限大纲是不要求的,但是这部分例题应该看看,对理解极限的定义有好处,而极限的定义是选择题爱考的知识点。
一致连续性这节大纲不要求。
二章导数与微分这章相对简单。
由参数方程所确定的函数导数,相关变化率不考,微分近似计算不考。
三章中值定理与导数应用这一章比较难,但也是考试重点,主要是证明题。
几个中值定理理解起来并不困难,但是运用起来会有困难,所以得多做题目练练,这几个定理要学会证明。
泰勒公式可能开始看起来比较抓狂,其实这个证明考试应该不会考,太复杂。
但是这个公式十分重要,要学会应用,而且应用起来并不困难,所以一定要掌握。
后面的曲率,方程近似解都不考。
(另外书中凡是有关工程应用的例题和习题都不用看)四章不定积分这部分书上给的习题并不难,要好好做,全书上的一些题目到很让人抓狂。
有理函数的积分好像大纲已经不要求了,10年全书上还留着,可以看看,对计算一些积分有好处。
积分表大纲是不要求的。
五章定积分这章很重要,变限积分经常考。
要搞清楚变限积分,不定积分,定积分的区别。
什么样的条件下有原函数,什么条件下可积,可积和原函数存在是没有关系的。
可能刚开始看的时候会有些混,仔细看书不要慌,后面的复习也会复习到的。
第五节反常积分的审敛法Γ函数大纲是不要求的。
但是我要说说Γ函数,当时我没有认真看真有点悔,这个函数在概率统计里很有用。
六章定积分的应用数三考的内容只有:平面图形面积计算旋转体体积计算平行截面面积为已知立体体积计算(这部分经济数学教材给的例子比较好)七章向量代数与空间解析几何(数三不要求)八章多元函数微分学这一章我开始时看的十分抓狂,特别是复合和隐函数的情形。
但是弄懂后这章出的题目并不难,所以要多做几个题目找点感觉,才能知道自己的理解错在哪里。
200份考研真题及专业课资料(绝对精品!!)
考研必备之220份-超值考研资料-免费下载-1.(2011考研必备)1986~2010英语真题及答案下载~2.(2011考研必备)1986~2010英语真题及答案下载23.(2011考研必备)1986~2010英语真题及答案下载34.(2011考研必备)1986~2010英语真题及答案下载45.(2011考研必备)1986~2010英语真题及答案下载56.(考研必备)1991~2010数三数四真题及答案下载~7.1991~2010数三数四真题及答案下载28.1991~2010数三数四真题及答案下载39.1991~2010数三数四真题及答案下载410.(2011考研必备)1991~2010数三数四真题及答案下载511.(2011考研必备)1991~2010数三数四真题及答案下载612.(2011考研必备)1991~2010数三数四真题及答案下载713.(2011考研必备)1991~2010数三数四真题及答案下载814.(2011考研必备)1991~2010政治真题及答案下载~15.(2011考研必备)1991~2010政治真题及答案下载216.(2011考研必备)1991~2010政治真题及答案下载317.(2011考研必备)1991~2010政治真题及答案下载418.(2011考研必备)1991~2010政治真题及答案下载519.(2011考研必备)1991~2010政治真题及答案下载620.2011年考研数学分阶段复习建议21.2010全国硕士生入学统一考试心理学专业基础综合试题22.2010 考研历史试题23.2010 考研历史试题24.清华大学2007年信号与系统考研试题25.2003年北大硕士研究生入学试题26.北京大学04年金融学硕士研究生入学试题27.北京大学金融学05年硕士研究生入学试题28.北京大学金融学06年硕士研究生入学试题29.北京大学金融学06年硕士研究生入学试题30.北京大学07年硕士研究生入学考试试题31.北京大学经济学2000年硕士研究生试题32.北京大学经济学01年硕士研究生入学试题33.北京大学经济学02年硕士研究生入学试题34.北京大学经济学03年硕士研究生入学试题35.北京大学经济学04年硕士研究生入学试题36.北京大学经济学05年硕士研究生入学试题37.北京大学经济学硕士研究生06年入学试题38.中央财经大学03年硕士研究生入学考试试题39.2008年全国研究生入学统一考试模拟题(政治一)40.2008年全国研究生入学统一考试模拟题(政治二)41.2008年全国研究生入学统一考试模拟题(英语二)42.2008年全国研究生入学统一考试模拟题(英语一)43.英语知识点答疑之作文句型44.北京大学经济学07年硕士研究生入学试题45.08年考研农学化学综合题一46.08年考研农学化学综合题二47.08年农学统考植物生理学与生物化学测试一48.08年农学统考植物生理学与生物化学测试二49.08年农学统考植物生理学与生物化学测试三50.08年考研冲刺模拟试题――数学51.(2011考研必备)华中科技大学各专业历年真题152.(2011考研必备)华中科技大学各专业历年真题253.2009考研计算机强化班操作系统讲义-孙卫真54.2009考研计算机强化班计算机网络讲义-洪老55.2009考研计算机强化班数据结构讲义-崔微56.(2011考研必备)华中科技大学各专业历年真题357.数据结构讲义(严蔚敏版)58.(2011考研必备)华中科技大学各专业历年真题459.2008年政治万能答题模板60.2008年考研政治精华笔记61.考研政治毛概总结:超清晰,一天背完62.考研思想政治理论考试大纲解析配套1600题勘误63.2010风中劲草考研政治分析题20题64.2010风中劲草考研政治预测题65.2000年西安电子科技大学微机原理考研试题66.2000年西安电子科技大学自动控制原理考研试题67.2000年西安电子科技大学机械设计考研试题68.2010年硕士研究生入学统一考试数学考试大纲--数学一69.2010年全国硕士研究生入学统一考试数学考试大纲--数学二70.2010年全国硕士研究生入学统一考试数学考试大纲--数学三71.(2011考研必备)华中科技大学各专业历年真题572.考研暑期张俊芳马克思主义哲学73.(2011考研必备)2009年华中科技大学信号与系统课件74.2009年武汉科技大学854法理学考研试题75.2009年武汉科技大学855社会主义市场经济学考研试题.pdf76.2009年武汉科技大学856思想政治教育学原理考研试题.pdf77.2009年武汉科技大学857政治学理论与实务考研试题.pdf78.2009年武汉科技大学858经济学综合考研试题.pdf79.考研数学常用微积分公式背诵表80.2004年考研数学(三)真题81.2005年考研数学(三)真题82.2009年武汉科技大学859机械原理考研试题.pdf83.2006年考研数学(三)真题84.2007年考研数学(三)真题85.2008年考研数学(三)真题86.2010年考研英语完形填空三套模拟试题汇总87.新东方李玉技老师的734条高频词组笔记88.2009年武汉科技大学849汽车理论考研试题.pdf89.2009年武汉科技大学848写作与翻译考研试题.pdf90.2005年MBA联考写作真题及解析91.考研英语辅导--这样的句子你能翻译么?92.2009年武汉科技大学847资源环境经济学考研试题.pdf93.16天记住7000考研单词94.2009年武汉科技大学846生物化学考研试题.pdf95.新编简明英语语言学教程96.管理学案例全套资料下载97.计算机网络第三版习题答案中文版98.2009年武汉科技大学843社会保障学考研试题.pdf99.2009年武汉科技大学842安全系统工程考研试题.pdf100.2009年武汉科技大学841土力学考研试题答案.pdf101.考研英语语法总结(完美版)》102.近10年考研英语大作文材料选择与题材打包下载103.2009年武汉科技大学840工程力学考研试题.pdf104.2011考研政治基础复习:史纲重点知识点归纳105.计算机组成原理王爱英_清华课件106.名师指导2011年MBA之数学基础阶段复习规划107.2009年武汉科技大学838房屋建筑学考研试题.pdf108.2009年武汉科技大学837微观经济学考研试题.pdf109.计算机操作系统常见题型解析及模拟题110.数据结构考研指导111.操作系统考研指导112.计算机网络 pdf113.2009年武汉科技大学836管理学原理Ⅱ考研试题.pdf114.2009年武汉科技大学835有机化学考研试题.pdf115.2009年武汉科技大学834化工原理考研试题.pdf116.计算机组成原理考研指导117.2009考研复试面试资料大全rr.pdf118.计算机操作系统常见题型解析及模拟题119.2009年全国硕士研究生入学统一考试计算机试题120.2009年北京理工大学控制理论与控制工程考研试题(回忆版)121.2010考研热点话题英语作文范文122.超强法理结构图123.2011文登【夏徛荣】英语词汇基础班124.MBA 逻辑备考125.2008 彩色法硕指南126.北大光华,金融学研究生入学考试试题和参考答桉,2003年127.阮齐林刑法笔记总则精简版128.对外经贸商务英语考研经验全集129.考研英语复试130.高等数学知识点131.老妖精法硕指南2010之精编版132.国际金融考研备考笔记133.2010年法律硕士联考案例分析大全134.法硕联考民法必须掌握的概念(背诵版)135.华南理工大学管理学历年真题及答案1136.刑法总则"应当与可以"速记口诀 (经典)137.2009年武汉科技大学836管理学原理Ⅱ考研试题.pdf 138.2009年武汉科技大学835有机化学考研试题.pdf139.2009年武汉科技大学835有机化学考研试题.pdf140.华南理工大学管理学历年真题及答案2141.2009年武汉科技大学830界面分选原理考研试题.pdf 142.2009年武汉科技大学829生物化学考研试题.pdf143.2009年武汉科技大学828控制原理考研试题.pdf144.2009年武汉科技大学827流体力学考研试题.pdf145.2009年武汉科技大学824自然辩证法考研试题.pdf146.2009年武汉科技大学823概率论与数理统计考研试题.pdf 147.国际金融串讲笔记148.2009年武汉科技大学822管理学原理Ⅰ考研试题.pdf 149.2009年武汉科技大学820高等代数考研试题.pdf150.2009年武汉科技大学819信号与系统考研试题.pdf151.2009年武汉科技大学818电子技术考研试题.pdf152.研究生历年国家线153.2009 政治应试精华附赠2000题及其答案详解(毛概)154.2011年考研英语全程规划:五阶段复习指155.2009任汝芬最后押题讲义156.(考研必备)2000~2010法学真题及答案下载~157.2010政治大纲解析即“红宝书”(WORD版)158.(考研必备)2000~2010法学真题及答案下载~2159.北大历年中文系试卷分类160.(考研必备)2000~2010法学真题及答案下载~3161.2009宪法核心考点彩色笔记162.2011启航考研高分规划导学宝典-黄涛163.(考研必备)2000~2010法学真题及答案下载~4164.2010年法律硕士必背大题165.(考研必备)2000~2010法学真题及答案下载~5166.10政治大纲及样题完全版167.20天20题精讲笔记_第一讲168.(考研必备)1990~2009西医综合真题及答案下载~169.20天20题精讲笔记_第二讲170.邓小平理论笔记(任汝芬)171.(考研必备)1990~2009西医综合真题及答案下载~2172.20天20题精讲笔记_第三讲173.(考研必备)1990~2009西医综合真题及答案下载~3 174.(考研必备)1990~2009西医综合真题及答案下载~4 175.★老妖精法硕指南2009历年真题00-01★176.考研英语10年真题——翻译难句解析汇总(很经典)177.(考研必备)1990~2009中医综合真题及答案下载~178.中科院历年录取比例数据179.★老妖精法硕指南2009历年真题★02-03180.(考研必备)1990~2009中医综合真题及答案下载~2 181.考研阅读40分满分研究182.★老妖精法硕指南2009历年真题★04-05183.(考研必备)1990~2009中医综合真题及答案下载~3 184.★老妖精法硕指南2009历年真题★06-07185.考研复试决胜+专家称三类人易被淘汰186.2009老妖精法硕指南之历年真题08187.(考研必备)1990~2009中医综合真题及答案下载~4 188.2010【海天】考研政治冲刺28个重要知识点189.考研高频词汇190.2009年全国硕士研究生入学统一考试计算机试题.pdf 191.2010考研政治大纲马哲必背20条原理192.考研政治终极笔记[马哲+政经+毛概+邓193.2010考研政治思想道德修养与法律基础讲义194.《教育心理学》吴庆麟版笔记!195.2008陈文登考研数学轻巧手册(经济类196.2010鲁伟_考研政治考前必背68题197.(2011考研必备)MBA历年真题答案下载198.2011考研文都英语长难句精讲班讲义(何凯文)199.北京师大、首都师大、西南师大历年教育学真题200.(2011考研必备)MBA历年真题答案下载2201.2009考研英语核心词汇(肖克版)202.(2011考研必备)MBA历年真题答案下载3203.冯伯麟-心理测量方法(PPT+79页)204.(2011考研必备)教育学历年真题答案下载3205.新东方考研英语206.(2011考研必备)历史历年真题答案下载207.(2011考研必备)农学历年真题答案下载208.(2011考研必备)农学历年真题答案下载2209.(2011考研必备)心理学历年真题答案下载210.(2011考研必备)金融学历年真题答案下载211.(2011考研必备)金融学历年真题答案下载2212.2005年中国地质大学(武汉)运筹学考研试题.pdf213.2005年中国地质大学(武汉)中级财务会计考研试题.pdf 214.2005年中国地质大学(武汉)自然地理学考研试题.pdf215.2005年中国地质大学(武汉)综合知识(含行政法、民法总论、经济法基础理论)考研试题.pdf216.2005年中国地质大学(武汉)综合知识矿床学考研试题.pdf217.2005年中国地质大学(武汉)钻井工艺原理考研试题.pdf218.2009年中国地质大学公共管理学考研试题.pdf219.2009年中国地质大学政治学基础考研试题.pdf220.2010年中国地质大学(武汉)844工程地质学考研试题(回忆版).pdf。
考研数学一、二、三大纲详解(教材分析)
高等数学考研指定教材:同济大学数学系主编《高等数学》〔上下册〕〔第六版〕第一章函数与极限(7天)〔考小题〕学习内容复习知识点与对应习题大纲要求第一节:映射与函数(一般章节)函数的概念,常见的函数〔有界函数、奇函数与偶函数、单调函数、周期函数〕、复合函数、反函数、初等函数具体概念和形式.〔集合、映射不用看;双曲正弦,双曲余弦,双曲正切不用看〕习题1-1:4,5,6,7,8,9,13,15,16〔重点〕1.理解函数的概念,掌握函数的表示法,并会建立应用问题中的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等第二节:数列的极限(一般章节)数列定义,数列极限的性质(唯一性、有界性、保号性 )〔本节用极限定义证明极限的题目考纲不作要求,可不看,如P26例1,例2,例3,定理1,2,3的证明都不作要求,但要理解;定理4不用看〕习题1-2:1第三节:函数的极限(一般章节)函数极限的基本性质〔不等式性质、极限的保号性、极限的唯一性、函数极限的函数局部有界性,函数极限与数列极限的关系等〕 P33(例4,例5)〔例7不用做,定理2,3的证明不用看,定理4不用看〕习题1-3:1,2,3,4第四节:无穷大与无穷小〔重要〕无穷小与无穷大的定义,它们之间的关系,以及与极限的关系〔无穷小重要,无穷大了解〕〔例2不用看,定理2不用证明〕习题1-4:1,6第五节:极限的运算法则〔掌握〕极限的运算法则(6个定理以及一些推论)〔注意运算法则的前提条件是否各自极限存在〕〔定理1,2的证明理解,推论1,2,3,定理6的证明不用看〕P46(例3,例4),P47(例6)习题1-5:1,2,3,4,5〔重点〕第六节:极限存在准则〔理解〕两个重要极限〔重要〕两个重要极限〔要牢记在心,要注意极限成立的条件,不要混淆,应熟悉等价表达式,要会证明两个重要极限〕,函数极限的存在问题〔夹逼定理、单调有界数列必有极限〕,利用函数极限求数列极限,利用夹逼法则求极限,求递归数列的极限〔准则1的证明理解,第一个重要极限的证明一定要会,另一个重要极限的证明不用看,柯西存在准则不用看〕P51(例1)习题1-6:1,2,4价无穷小量求极限.9.理解函数连续性的概念〔含左连续与右连续〕,会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质〔有界性、最大值和最小值定理、介值定理〕,并会应用这些性质.第七节:无穷小的比较〔重要〕无穷小阶的概念〔同阶无穷小、等价无穷小、高阶无穷小、k阶无穷小〕,重要的等价无穷小〔尤其重要,一定要烂熟于心〕以及它们的重要性质和确定方法〔定理1,2的证明理解〕P57(例1)P58(例5)习题1-7:全做第八节:函数的连续性与间断点〔重要,基本必考小题〕函数的连续性,间断点的定义与分类〔第一类间断点与第二类间断点〕,判断函数的连续性〔连续性的四则运算法则,复合函数的连续性,反函数的连续性〕和间断点的类型。
2010年考研北京航空航天大学计算机学科专业基础综合(408)重难点解析
2010年考研北京航空航天大学计算机学科专业基础综合(408)重难点解析跨考专业课特别奉献,为广大考研学子加油助力!1、操作系统今天我们来解析一下计算统考大纲操作系统部分的知识点。
操作系统的研发能力很能够体现计算机软件发展的水平,因此操作系统是计算机课程体系里很重要的一门专业核心基础原理课程。
在考研大纲里,操作系统占了35分,次于数据结构和组成原理,但高于计算机网络。
总的来说,操作系统实际上是四门考察课程里最简单的。
除了PV操作这一大难点,基本没有其它特别难的原理或复杂的算法。
重要的是区分清楚各个不同的算法,不要混淆。
复习参考书推荐国内操作系统最经典的教材,西电汤子瀛版的《操作系统》。
很多高校都在使用这本书做操作系统课程的教材或者课内参考书,计算机考研统考大纲也和这本书的目录比较一致,建议大家复习时采用。
操作系统在大纲中的考查目标是了解操作系统在计算机系统中的作用、地位、发展和特点;理解操作系统的基本概念、原理,掌握操作系统设计方法与实现技术; 能够运用所学的操作系统原理、方法与技术分析问题和解决问题。
这些和09年大纲相比都没有发生变化。
事实上,大纲操作系统部分列出要考查的知识点的变化也 很小,只是做了一些微小的调整。
操作系统概述这一章出现大题的可能性微乎其微。
选择 题中常出现的点主要是这些:操作系统的定义,引入单道批处理系统、多道批处理、分时系统、实时系统的原因,这些不同阶段的操作系统共的特征如何,相互之间 的差别在什么地方;操作系统的基本特征和功能;操作系统的运行环境。
进程管理是重点和难点之所在。
考点既可以出现在选择题中,又可以 出在综合应用题中。
按照大纲考点的顺序,诸如进程的概念、基本特征、组成结构,进程与程序的区别与联系,进程的状态及其相互转换的条件及过程,进程间的通 信方式,线程的定义以及和进程的区别与联系,调度的基本概念、时机、切换过程和各种调度算法,进程同步相关的概念,实现同步与互斥的机制,信号量和PV操 作,管程的基本组成结构和运行过程,死锁的基本概念,死锁产生的四个必要条件,预防、避免、检测和解除死锁的原理与方法,这些点都可以出现在选择题中进行 考查。
考研数字电路和信号与系统
成都信息工程学院2010年硕士研究生入学考试自命题科目考试大纲考试科目:数字电路和信号与系统科目代码:805一、考试的总体要求数字电路部分要求学生掌握逻辑代数,掌握组合逻辑电路和时序逻辑电路的分析和设计方法,掌握常用的中规模(MSI)、小规模(SSI)数字集成电路的逻辑功能及应用。
信号系统部分要求学生掌握时域和各种变换域基本信号的特点,相互关系;信号的分解方法;线性、时不变系统的性质;系统对信号进行传输、处理的基本观点和分析方法、表现形式等内容;掌握系统的频率特性分析、稳定性分析等工程应用。
二、考试的内容及比例数字电路占总分的30%、信号与系统占总分的70%。
数字电路:(45分)(一)数制与编码:7%1、数的各种进制,各种进制之间的相互转换,二进制信号;2、数子系统中常用的编码。
(二)逻辑函数:20%1、逻辑函数的最小项、最大项、相邻项、任意项、约束项、无关项的概念,最大项与最小项关系,逻辑函数的标准式、非标准式;2、逻辑代数的基本逻辑运算、基本定律、基本公式;3、逻辑函数的公式法和卡诺图法化简。
(三)组合逻辑电路:30%1、TTL、CMOS集成逻辑门的基本参数、结构特点;2、常用的中规模数字集成电路(加法器、数值比较器、编码器、译码器、数据选择器)的逻辑功能及应用;3、组合逻辑电路的分析方法;4、用中规模数字集成电路设计组合逻辑电路的方法(比较法、扩展法、降维图法);5、用基本逻辑门设计组合逻辑电路的方法。
(四)时序逻辑电路:36%1、JK、D、T触发器的逻辑功能、特性表、特性方程、状态图及时序波形;2、JK、D、T触发器的结构特点及相互转换;3、常用的中规模数字集成电路(寄存器、计数器)的工作原理及应用;4、同步、异步时序逻辑电路的分析方法;5、同步、异步时序逻辑电路的设计方法;6、用中规模集成器件实现任意模值计数(分频)器;7、组合逻辑电路和时序逻辑电路的综合分析和设计。
(五)半导体存储器与可编程逻辑器件:7%1、存储器的基本结构、工作原理及用ROM实现组合逻辑函数的方法;2、存储容量的扩展方法;3、可编程逻辑器件的类型及基本结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年考研大纲微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性.单调性.周期性和奇偶性复合函数.反函数.分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数.反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性.拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨(Newton- Leibniz)公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值.最大值和最小值二重积分的概念.基本性质和计算无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径.收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1.了解级数的收敛与发散.收敛级数的和的概念.2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.了解...及的麦克劳林(Maclaurin)展开式.六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.5.了解差分与差分方程及其通解与特解等概念.6.了解一阶常系数线性差分方程的求解方法.7.会用微分方程求解简单的经济应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型.正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量的函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗—拉普拉斯(De Moivre-Laplace)定理列维—林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2.了解产生变量、变量和变量的典型模式;了解标准正态分布、分布、分布和分布得上侧分位数,会查相应的数值表.3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.。