17.1.2.1数学教学设计

合集下载

人教版八年级数学下册 17.1勾股定理的应用——最短路径问题 教学设计

人教版八年级数学下册 17.1勾股定理的应用——最短路径问题 教学设计

《17.1勾股定理的应用——最短路径问题》教学设计教学目标:【知识与技能】1.掌握勾股定理的简单应用,探究最短路径问题;2.能够借助勾股定理解决有一定难度的实际问题.【过程与方法】经历运用勾股定理解决实际为题的过程,在数学活动中发展学生的探究意识和合作交流的习惯.【情感、态度与价值观】1.培养学生运用所学只是解决实际问题的意识,增强学生的数学应用能力.通过与同伴交流,培养协作与交流的意识;2.敢于面对数学学习中的困难,增加遇到困难时选择其它方法的经验,进一步体会数学的应用价值,发展运用数学的信心和能力,形成积极参与数学活动的意识. 教学重点:1.能熟练运用勾股定理解决实际问题,掌握最短路径问题;2.探索空间与平面图形之间的关系.教学难点:熟练运用勾股定理解决最短路径的实际问题,增强学生的数学应用能力。

课前准备:制作圆柱、正方体、长方体等教具教学方法:互动式教学、合作探究学习教学过程:一、抛砖引玉一块长方形草地,在靠近路口的一角被踏出了一条“斜路”,类似的现象在我们校门前也有发生.请问同学们:(1)人们为什么要走“斜路”呢?(2)经测量,这条“斜路”的一端距离直角顶点3米,另一端距离直角顶点4米,你能根据之前所学过的知识告诉我:斜“路”比正路近多少米?学生会想立一个牌子,提醒人们,请你帮助填空:少走___米,践踏何忍?如果我们每步可以跨0.5米,那么这样可以少走几步?这么几步近路,值得吗?[设计意图]:本题不仅是勾股定理的实际应用题,而且还对学生进行了社会公德教育,体现了数学教学的德育意义.二、初露锋芒有一只小昆虫——森迪,来到了高为12厘米,底面半径为3厘米的圆柱体的A5处,嗅到B 处的面包,可是它沿着圆柱体的表面怎样爬行才能很快地吃到面包?它爬行的最短路径长是多少呢? (π的值取3 )学生活动(一):(1)森迪可行的路线可能不止一条,你能找出几种出来?(2) 自己做一个圆柱,尝试从A 点到B 点沿圆柱表面画出几条路线,你觉得那 条路最短呢?(3) 将圆柱侧面展开成一个长方形,从A 点到B 点的最短路线长是什么?[设计意图]:“森迪觅捷径”问题,融知识性和趣味性于一体,有利于提高同学们的空间想象能力,培养同学们的探究意识和创新精神.三|、小试牛刀森迪爬呀爬,它来到了单位长度为1的正方体A 处,嗅到了放置在B 处的食物,这次它沿着怎样的路线爬行才能很快地吃到食物呢?爬行的最短路径长又是多少呢?同学们展开自己的空间想象能力,把正方体沿棱展开,把点A 及点B 所在的两个面放在同一个平面内,显然,从A 到B 的最短路线一定是从A 出发,经过正方体两个面到达B. 根据“两点之间,线段最短”,以便发现最短路线,因展法不同,路线有多种,但因为这是一个正方体,所以构造直角三角形,得到森迪爬行的最短路径都为[设计意图]:从不同情况的分析,学生可以感受到数学的学习需要全面的考虑问题,反过来,数学的学习又能帮助我们全面的考虑问题。

17.1.1数学教学设计

17.1.1数学教学设计

第十七章 勾股定理17.1.1 勾股定理(一)课时:2课时一、内容及其分析本节课学习的主要内容是了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

培养在实际生活中发现问题总结规律的意识和能力。

介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。

二、目标及其解析目标定位:勾股定理的内容及证明。

目标解析:通过对定理的证明,让学生确信定理的正确性。

这个古老的精彩的证法,出自我国古代无名数学家之手。

激发学生的民族自豪感,和爱国情怀。

三、问题诊断与分析例2通过拼图,发散学生的思维,锻炼学生的动手实践能力,使学生明确,图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。

进一步让学生确信勾股定理的正确性。

四、教学支持条件分析自造模型。

发散学生的思维,锻炼学生的动手实践能力。

进一步让学生确信勾股定理的正确性。

五、教学过程问题与例题:问题一 让学生画一个直角边为3cm 和4cm 的直角△ABC ,用刻度尺量出AB 的长。

以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。

”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。

问题二 再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长。

你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。

对于任意的直角三角形也有这个性质吗?问题三 已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。

求证:a 2+b 2=c 2。

问题四 例2已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c ba D C A Bc 。

求证:a 2+b 2=c 2。

人教版八年级数学下册17.1勾股定理(教案)

人教版八年级数学下册17.1勾股定理(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“勾股定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
人教版八年级数学下册17.1勾股定理(教案)
一、教学内容
人教版八年级数学下册第十七章第一节:勾股定理。本节课主要内容包括:
1.勾股定理的概念:了解直角三角形的特性,理解勾股定理的含义,即直角三角形两个直角边的平方和等于斜边的平方。
2.勾股定理的证明:通过数形结合的方法,引导学生掌握勾股定理的证明过程。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的概念和证明这两个重点。对于难点部分,我会通过具体的图形和计算步骤来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量并计算学校楼梯的斜边长度。
-难点1:为了帮助学生理解勾股定理的普遍性,可以通过展示不同大小的直角三角形,并证明它们都满足定理。
-难点2:在证明过程中,教师需要详细解释每一步的逻辑,如为什么两个相同大小的正方形拼接在一起时,其中一个正方形的面积等于两个直角三角形直角边的平方和,另一个正方形的面积等于斜边的平方。
-难点3:针对灵活运用,教师可以设计一些变式题,如隐藏直角三角形的直角,让学生通过计算判断是否满足勾股定理,或者给出斜边和一条直角边,让学生求另一条直角边的长度。
五、教学反思

人教版八年级数学下册《17.1勾股定理》教学设计

人教版八年级数学下册《17.1勾股定理》教学设计

人教版八年级数学下册《17.1 勾股定理》教课方案课题17.1 勾股定理工作单位营山县化育中学邮编162650讲课教师颜毅课型新讲课1.掌握勾股定理以及勾股定理的一般证明方法。

知识与技术2.会运用勾股定理解决简单的计算题和生活中的实质问题。

1.经历研究、发现、猜想、考证等数学过程,获取解决数学识题的一般方法。

2.学会与别人合作沟通,从沟通中获取过程与方法使用勾股定理解决问题的能力。

教课目的3.认识运用数形联合解决数学识题的重要性,进一步提升剖析问题和解决问题的能力。

1.经历勾股定理的研究,体验成功的乐趣,加强信心。

感情、态度2.发展“学数学—用数学—爱数学”的与价值观思想,体验数学与生活的密切联系,建立科学的价值观。

本节课是九年制义务教育人教版八年级下册第十教材剖析七章第 1 节《勾股定理》第一课时的内容,它揭露的是直角三角形中三边的数目关系。

勾股定理是在学生已经人教版八年级数学下册《17.1 勾股定理》教课方案掌握了直角三角形有关性质的基础长进行学习的,在教材中起着承前启后的作用,为下边学习勾股定理的逆定理做了铺垫,为此后学习“四边形”和“解直角三角形”确立基础。

八年级学生对几何图形的察看、剖析能力已初步形成,大多数同学解题能力比较高,并可以较正确的对所学情剖析学的知识进行归纳与小结,经过小组议论与沟通,可以形成解决问题的基本思路。

教课要点勾股定理及其应用教课难点用拼图的方法考证勾股定理本课主要采纳“指引研究法” ,由浅到深、由特别到一般地提出问题,指引学生自主研究,合作沟通,针教课方法对本节课的特色,采纳以“田字格、网格—勾股定理—应用勾股定理” 为知识主线,以“创建情境—察看实验—总结归纳—知识运用”为教课主线的方法。

在教师的指引下运用自主研究、合作沟通的商讨式学习方法学习方式,经过“着手”、“动脑”以及“动口”掌握本节内容。

教课准备多媒体课件、三角板学生准备两个正方形 ( 一大一小 ) 纸片教课过程人教版八年级数学下册《17.1 勾股定理》教课方案教课活动一. 创建情境,激趣引新1.同学们,你们知道什么是三角形吗?你能用语言来描绘三角形的定义吗?2.同学们,什么是直角三角形?3.多媒体展现有关知识,并展现毕达哥拉斯的故事。

17.1.1《勾股定理》教学设计2022-2023学年八年级数学人教版下册

17.1.1《勾股定理》教学设计2022-2023学年八年级数学人教版下册

17.1.1《勾股定理》教学设计2022-2023学年八年级数学人教版下册一、教学目标1.知识目标:了解勾股定理的概念,掌握利用勾股定理求三角形的边长、角度的方法,培养学生解决实际问题的能力。

2.能力目标:培养学生分析、判断和解决实际问题的能力,提高学生的数学思维能力,培养其数学兴趣。

3.情感目标:在学习勾股定理的基础上,加强对数学知识的兴趣和理解,增强学生自信心,培养学生团队协作精神和学习的好习惯。

二、教学重点和难点1.教学重点:掌握勾股定理的概念和应用方法。

2.教学难点:初步掌握勾股定理的应用方法,灵活运用勾股定理解决问题。

三、教学方法和手段本节课的教学方法主要采用“讲授+演示+练习”的方式,并配合教具以帮助学生理解和掌握勾股定理的应用方法。

四、教学步骤第一步:导入通过一些有趣的例子,自然引入勾股定理的问题。

比如可以介绍海伦公主,以及如何利用勾股定理测量三角形的边长和角度等。

第二步:概念介绍讲解勾股定理的概念,即:在一个直角三角形中,直角边的平方等于另外两个边的平方和。

第三步:应用演示将讲解勾股定理的应用方法,并结合课本上的例题进行演示,让学生熟悉勾股定理的计算步骤和方法。

第四步:巩固练习让学生通过练习巩固所学的知识。

可以在课堂上进行一些单项选择题、填空题、计算题等,对学生当前的学习情况进行监测和检测。

并在学生需要帮助的情况下,耐心指导学生解题。

第五步:拓展应用在学生已经掌握基本应用方法的情况下,让学生尝试解决些较复杂的问题、或进行一些小组合作探讨。

让学生切身感受到数学知识在实际生活中的应用和价值。

第六步:作业布置布置相应的课后作业,让学生将所学知识进行复习和巩固。

以及通过实际情况中运用所学知识进行探究。

如:通过测量实际中的房间斜角长度等进行实际应用。

五、教学技巧1.进行分类讲解:将大量的知识点和问题材料拆开进行分类讲解,对于学生更容易掌握。

2.小组探讨:尝试将学生小组化进行探究,激发起学生思考和跨学科学习的兴趣。

冀教版数学八年级上册17.1《等腰三角形》教学设计1

冀教版数学八年级上册17.1《等腰三角形》教学设计1

冀教版数学八年级上册17.1《等腰三角形》教学设计1一. 教材分析冀教版数学八年级上册17.1《等腰三角形》是初中数学的重要内容,主要让学生了解等腰三角形的性质和判定方法。

本节内容是在学生已经掌握了三角形的基本概念和性质的基础上进行学习的,为后续学习其他特殊三角形打下基础。

教材通过丰富的图片和实例,引导学生探索等腰三角形的性质,培养学生的观察能力、思考能力和动手能力。

二. 学情分析学生在学习本节内容前,已经掌握了三角形的基本概念和性质,具备一定的观察和思考能力。

但部分学生对概念的理解不够深入,对图形的观察不够细致,对证明过程的掌握不够熟练。

因此,在教学过程中,要关注学生的个体差异,引导他们积极参与课堂活动,提高他们的数学素养。

三. 教学目标1.知识与技能:让学生掌握等腰三角形的性质和判定方法,能运用所学知识解决实际问题。

2.过程与方法:通过观察、操作、证明等方法,培养学生的观察能力、思考能力和动手能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、严谨求实的数学精神。

四. 教学重难点1.重点:等腰三角形的性质和判定方法。

2.难点:等腰三角形性质的证明和应用。

五. 教学方法1.情境教学法:通过丰富的图片和实例,激发学生的学习兴趣,引导学生主动参与课堂。

2.问题驱动法:提出问题,引导学生思考,培养学生解决问题的能力。

3.合作学习法:学生进行小组讨论,培养学生的团队协作能力。

4.实践操作法:让学生动手操作,提高他们的动手能力和实践能力。

六. 教学准备1.准备相关图片和实例,用于引导学生观察和思考。

2.准备等腰三角形的模型或纸片,让学生动手操作。

3.准备投影仪或白板,用于展示解题过程。

4.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用图片或实例,引导学生观察等腰三角形的特征,激发学生的学习兴趣。

提问:你们知道什么是等腰三角形吗?它们有什么特点?2.呈现(10分钟)讲解等腰三角形的性质和判定方法,引导学生思考并理解所学知识。

17.1勾股定理(第2课时)教学设计 2022—2023学年人教版数学八年级下册

17.1勾股定理(第2课时)教学设计 2022—2023学年人教版数学八年级下册

17.1勾股定理(第2课时)教学设计一、教学目标1.理解勾股定理的定义和含义;2.掌握应用勾股定理解决直角三角形的边长问题;3.培养学生的逻辑思维能力和解决问题的能力。

二、教学准备1.教师准备:黑板、白板笔、投影仪;2.学生准备:教科书、练习册。

三、教学过程1. 导入(5分钟)教师通过提问和引入相关问题,调动学生的思维,激发学生的学习兴趣。

例如:教师:大家知道什么是勾股定理吗?在什么情况下可以使用勾股定理来求解问题呢?学生:勾股定理是直角三角形中比较重要的一条定理,可以求解直角三角形的边长问题。

教师:非常好!那我们今天就来学习一下关于勾股定理的内容。

2. 概念讲解(10分钟)教师通过投影仪展示相关的图像和公式,结合具体例子,向学生讲解勾股定理的定义和含义。

教师:勾股定理是指在直角三角形中,直角边的平方等于两腰边的平方之和。

表达式为:a² + b² = c²,其中c为斜边,a和b为直角边。

教师在黑板上写出勾股定理的表达式,并提出问题。

教师:如果一个直角三角形的一条直角边的长度为6,另一条直角边的长度为8,那么斜边的长度是多少?学生:斜边的长度应该是10。

教师:非常好!你是如何求解的呢?学生:根据勾股定理,6² + 8² = c²,解方程可得c = 10。

3. 计算练习(15分钟)教师提供一些计算练习,并让学生根据所学内容解答。

教师可以帮助学生解答疑惑,并对解答正确的学生进行表扬和奖励。

示例练习1:已知一个直角三角形的直角边长度分别为3和4,求斜边的长度。

示例练习2:已知一个直角三角形的斜边长度为5,直角边长度为4,求另一条直角边的长度。

4. 综合应用(15分钟)教师提供一些综合应用题,帮助学生将勾股定理应用于实际问题的解决过程中。

教师引导学生分析问题、提炼关键信息,并通过分组讨论的形式进行解答。

示例题1:甲、乙两人站立在直线上,甲人离地面的高度为3米,乙人离地面的高度为4米。

人教版八年级下数学《17.1.1 勾股定理》教学设计(全国获奖)

人教版八年级下数学《17.1.1 勾股定理》教学设计(全国获奖)

勾股定理翻转课堂教学设计
课前学习任务单
一、了解学习目标:
知识目标:
1.知道勾股定理的由来,理解割补拼接的面积证法.
2.理解勾股定理的证明过程,会进行简单的几何计算.
能力目标:
1.体会数形结合的思想.
2.学会与人合作并能与他人交流思维的过程和探究结果 .
情感目标:
1.
通过对勾股定理历史的了解,激发学习兴趣;
2.培养合作交流意识.
二、预习教材第22-24页内容;
三、通过课本、网络、老师提供的微课视频等资源解决以下问题:
1.什么是勾股定理?
2.收集有关勾股定理的历史故事;
3.勾股定理的证明方法.
四、自我检测:
1.如图1,在Rt △ABC 中,∠C = 90°
(1)若a = 1,b =2,则c =_______ (2) 若a c = 3, 则 b =_______
2.如图2,,宽4米的大门,需在相对角的顶点间加一个加固木条,则木条的长为( )
A.3 米
B.4 米
C.5米
D.6米 变式:在Rt △ABC 中,a ,b ,c 是它的三条边,若a =3,b =4,则c =___________
五、学习过程中的疑惑:
图2。

人教版数学八年级下册17.1《勾股定理》教学设计2

人教版数学八年级下册17.1《勾股定理》教学设计2

人教版数学八年级下册17.1《勾股定理》教学设计2一. 教材分析《勾股定理》是八年级下册数学的重要内容,也是学生学习几何学的基石。

本节课的内容主要包括勾股定理的发现、证明和应用。

通过学习勾股定理,学生可以培养逻辑思维能力、空间想象能力和解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的性质、勾股定理的初步知识等。

但部分学生对勾股定理的理解和应用还不够深入,需要通过本节课的教学来进一步巩固和提高。

三. 教学目标1.知识与技能:使学生掌握勾股定理的内容、证明方法和应用。

2.过程与方法:培养学生的逻辑思维能力、空间想象能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和创新精神。

四. 教学重难点1.重点:勾股定理的发现、证明和应用。

2.难点:勾股定理的证明和灵活运用。

五. 教学方法1.启发式教学:通过问题引导,激发学生的思考和探究欲望。

2.案例教学:通过具体案例,让学生更好地理解和掌握勾股定理。

3.小组讨论:培养学生的团队合作意识,提高解决问题的能力。

六. 教学准备1.准备相关案例和图片,用于教学演示。

2.准备练习题,用于巩固和拓展学生的知识。

七. 教学过程1.导入(5分钟)通过一个有趣的数学故事引入本节课的主题,激发学生的兴趣。

2.呈现(10分钟)介绍勾股定理的发现和证明,让学生了解勾股定理的背景和意义。

3.操练(15分钟)让学生分组讨论,运用勾股定理解决实际问题,培养学生的应用能力和团队合作意识。

4.巩固(10分钟)讲解练习题,巩固学生对勾股定理的理解和应用。

5.拓展(10分钟)引导学生思考勾股定理在其他领域的应用,培养学生的创新精神。

6.小结(5分钟)对本节课的内容进行总结,强调勾股定理的重要性和应用价值。

7.家庭作业(5分钟)布置相关练习题,让学生课后巩固和提高。

8.板书(5分钟)整理本节课的主要内容和关键点,方便学生复习。

教学设计中,每个环节的时间分配如上所示。

八年级数学下册17.1勾股定理教学设计

八年级数学下册17.1勾股定理教学设计
(2)思考并解答以下问题:直角三角形中,如果斜边的长度是整数,那么它的两条直角边长度是否一定是整数?请给出理由。
3.拓展作业:
(1)查阅资料,了解勾股定理在古今中外的应用,如建筑、天文学等领域。
(2)探讨勾股定理在解决其他数学问题中的应用,如解三角形、计算面积等。
4.实践作业:
(1)运用勾股定理,设计并制作一个直角三角形的模型,标注三边的长度。
五、作业布置
为了巩固学生对勾股定理的理解和应用,确保学习效果,特布置以下作业:
1.基础作业:
(1)完成课本第17.1节后的练习题1、2、3。
(2)运用勾股定理,解决以下实际问题:某直角三角形的两条直角边分别为3米和4米,求斜边的长度。
2.提高作业:
(1)证明勾股定理的另一种方法,如拼图法、归纳法等。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握勾股定理的表达式及其应用。
2.掌握勾股定理的证明过程,理解其背后的数学原理。
3.能够运用勾股定理解决实际问题,尤其是涉及直角三角形斜边长度计算的问题。
4.培养学生的几何直观能力和逻辑推理能力。
(二)教学设想
1.引入阶段:通过实际问题引入勾股定理,激发学生兴趣。例如,可以提出一个关于直角三角形斜边长度的问题,引导学生运用已有知识尝试解决,进而引出勾股定理。
4.通过勾股定理的证明过程,引导学生掌握数学推理的基本方法,提高逻辑思维能力。
5.设计丰富的例题和练习题,帮助学生巩固所学知识,提高解题技巧。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,使其体会到数学在生活中的实际应用。
2.培养学生勇于探索、敢于创新的精神,使其在数学学习过程中充满自信。
3.培养学生严谨、细致的学习态度,使其在解决问题的过程中注重逻辑性和条理性。

人教版八年级数学下册17.1勾股定理教学设计

人教版八年级数学下册17.1勾股定理教学设计

《17.1 勾股定理》教学设计——八年级数学新人教版教学目标1、了解勾股定理的发现过程,掌握勾股定理的内容,并能运用勾股定理解决简单的实际问题。

2、会用面积法证明勾股定理,知道从特殊到一般的探索方法,及借助于图形的面积来验证数学结论的数形结合思想。

3、了解我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,培养在实际生活中发现问题总结规律的意识和能力。

学情分析八年级学生已具备一些平面几何的知识,能够进行一般的推理和论证,但如何通过面积法(拼图法)证明勾股定理,学生对这种解决问题的途径还比较陌生,存在一定的难度,因此,我采用拼图等手段进行直观教学,让学生动手、动口、动脑,化难为易,深入浅出,让学生感受学习知识的乐趣。

重点 勾股定理的演绎过程及证明。

难点问题:,花草!4米3米D B C设计意图:激发学生学习兴趣,引起学生思考“如何知道直角三角形的两条直角边求斜边”,进一步思考“直角三角形的三边有什么关系”,从而起到设置悬念、引人课题的作用。

二、合作探究,体验发现探究一 等腰直角三角形三边的关系4米3D C(1)拼图活动 请同学们用准备的几个全等的等腰直角三角形拼正方形,可以拼出几种不同的正方形?把你拼的正方形画在纸上。

(2)若每个等腰直角三角形的腰为a 斜边为c ,则你所拼的正方形的面积分别可以怎样表示? (3)正方形的面积之间有什么关系?由此可以得到什么结论?(结论:对于等腰直角三角形有这样的性质:两直边的平方和等于斜边的平)设计意图:从等腰直角三角形入手,体现从特殊到一般的数学思想。

本环节通过拼图活动,调动学生思维的积极性,为学生提供从事数学活动的机会,培养学生动手、动脑、观察能力,让学生体验学习数学的乐趣。

2、思考对于等腰直角三角形有这样的性质:两直边的平方和等于斜边的平方。

那么对于一般的直角三角形是否也有这样的性质呢?探究二 直角三角形三边的关系(1)拼图 用你准备的几个全等的直角三角形拼正方形,可以拼出几种不同的正方形?把你拼的正方形画在纸上。

人教版数学八年级下册17.1《勾股定理》教学设计3

人教版数学八年级下册17.1《勾股定理》教学设计3

人教版数学八年级下册17.1《勾股定理》教学设计3一. 教材分析人教版数学八年级下册17.1《勾股定理》是初中数学的重要内容,它揭示了直角三角形三边之间的数量关系,为学生提供了解决实际问题的工具。

本节课的内容是在学生已经掌握了三角形性质、勾股定理的逆定理等知识的基础上进行学习的。

教材通过丰富的例题和练习,帮助学生深入理解和掌握勾股定理,并能够运用它解决实际问题。

二. 学情分析学生在学习本节课之前,已经掌握了三角形性质、勾股定理的逆定理等知识,具备了一定的逻辑思维能力和空间想象能力。

但是,对于勾股定理的证明和应用,部分学生可能还存在一定的困难。

因此,在教学过程中,教师需要关注学生的学习情况,针对性地进行辅导和指导。

三. 教学目标1.知识与技能目标:使学生理解和掌握勾股定理,能够运用勾股定理解决实际问题。

2.过程与方法目标:通过观察、操作、猜想、验证等过程,培养学生的探究能力和合作意识。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心和克服困难的勇气。

四. 教学重难点1.教学重点:勾股定理的证明和应用。

2.教学难点:勾股定理的证明过程和运用。

五. 教学方法1.情境教学法:通过创设丰富的教学情境,激发学生的学习兴趣和积极性。

2.探究教学法:引导学生通过观察、操作、猜想、验证等过程,主动探究勾股定理的证明和应用。

3.合作学习法:学生进行小组合作,培养学生的团队协作能力和沟通能力。

六. 教学准备1.教师准备:熟悉教材内容,了解学生的学习情况,设计好教学方案和教学活动。

2.学生准备:预习教材,了解勾股定理的基本概念。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾三角形性质、勾股定理的逆定理等知识,为新课的学习做好铺垫。

2.呈现(10分钟)教师展示勾股定理的定义和表述,引导学生理解直角三角形三边之间的数量关系。

3.操练(10分钟)教师提出一些运用勾股定理的问题,学生独立解答,培养学生的运用能力和解决问题的能力。

人教版八年级下学期数学17.1勾股定理教学设计

人教版八年级下学期数学17.1勾股定理教学设计
2.实践应用题:设计一道与现实生活相关的勾股定理题目,要求学生结合实际情况,运用勾股定理解决问题。例如,测量学校旗杆的高度或计算操场跑道的长度等。
3.提高拓展题:选取课本第17.1节后的练习题4、5、6,旨在培养学生运用勾股定理解决复杂问题的能力,尤其是涉及斜边和直角边长度计算的问题。
4.创新思维题:鼓励学生运用勾股定理,自己设计一道有趣的数学问题,并与同学分享。此举旨在激发学生的创新思维和解决问题的能力。
5.课后反思:要求学生撰写一篇关于勾股定理学习心得的短文,内容包括对勾股定理的认识、学习过程中的困惑与解决方法、勾股定理在实际生活中的应用等。
6.预习任务:布置下一节课的相关预习内容,让学生提前了解勾股定理的拓展知识,为后续学习做好准备。
注意事项:
1.作业难度要适中,既要保证学生对基础知识的巩固,又要激发他们的挑战欲望。
(二)过程与方法
1.通过观察、分析、归纳等教学活动,引导学生自主发现勾股定理,培养观察能力和归纳总结能力。
2.通过小组合作、讨论交流等方式,让学生在探究勾股定理的过程中,发展团队协作能力和解决问题的能力。
3.通过勾股定理的证明过程,引导学生运用已知数学知识,培养创新思维和解决问题的方法。
4.设计丰富的例题和练习题,让学生在实际操作中掌握勾股定理的应用,提高解决问题的能力。
4.培养学生将勾股定理应用于解决实际问题的能力,鼓励他们从生活中发现数学问题,提高数学素养。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握勾股定理的概念及其在直角三角形中的应用。
2.能够运用勾股定理解决实际问题,特别是涉及直角三角形边长计算的题目。
3.理解并掌握勾股定理的证明过程,培养逻辑推理能力和数学思维能力。

人教版数学八年级下册17.1勾股定理的应用+最短路径问题+教学设计

人教版数学八年级下册17.1勾股定理的应用+最短路径问题+教学设计
(1)针对学生的个体差异,实施分层教学,让每个学生都能在课堂上得到提高。
(2)注重启发式教学,引导学生主动发现问题、解决问题。
(3)鼓励学生相互讨论、交流,培养学生的团队协作能力。
(4)关注学生的情感态度,营造轻松、愉快的学习氛围,让学生在愉悦中学习。
四、教学内容与过程
(一)导入新课
在这一环节,我将通过一个贴近生活的实际问题来导入新课。我会向学生展示一张地图,上面标注了两地之间的直线距离无法直接测量。然后提问:“同学们,你们知道如何计算地图上两点之间的直线距离吗?”这个问题将激发学生的思考,他们可能会联想到之前学过的勾股定理。接着,我会简要回顾一下勾股定理的定义和公式,为新课的学习做好铺垫。
2.在坐标系中,给出两个点的坐标,计算它们之间的距离。请同学们尝试使用两种不同的方法进行计算,并比较结果。
3.设计一道关于最短路径问题的题目,要求包含直角三角形和坐标系元素。请同学们自行解答,并在下节课与同学们分享解题思路和答案。
4.请同学们撰写一篇关于勾股定理应用的小论文,可以从历史、生活、科技等角度展开论述,不少于500字。
(1)导入:通过一个实际问题,如计算两地之间的直线距离,引出勾股定理。
(2)新课:讲解勾股定理的证明和应用,结合实际问题,让学生感受勾股定理的价值。
(3)探究:引导学生运用勾股定理解决最短路径问题,培养学生的空间想象能力和逻辑推理能力。
(4)巩固:设计不同类型的练习题,让学生巩固所学知识,提高解题能力。
5.完成课后练习册中与勾股定理和最短路径问题相关的内容,巩固所学知识。
作业要求:
1.书写规范,保持卷面整洁。
2.解题过程要求步骤清晰,逻辑性强。
3.小论文要有自己的观点,论述充分,可以适当引用资料。

人教版数学八年级下册17.1《勾股定理》教学设计1

人教版数学八年级下册17.1《勾股定理》教学设计1

人教版数学八年级下册17.1《勾股定理》教学设计1一. 教材分析人教版数学八年级下册17.1《勾股定理》是初中的重要知识点,也是中学数学中的一个难点。

本节课主要介绍勾股定理的证明及其应用。

通过学习,学生能够理解勾股定理的含义,掌握勾股定理的证明方法,并能够运用勾股定理解决实际问题。

二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的性质,会使用勾股定理求解直角三角形的问题。

但是,对于证明勾股定理,学生可能存在一定的困难。

因此,在教学过程中,需要引导学生通过探究、合作的方式,理解并证明勾股定理。

三. 教学目标1.理解勾股定理的含义,掌握勾股定理的证明方法。

2.能够运用勾股定理解决实际问题。

3.培养学生的探究能力和合作精神。

四. 教学重难点1.教学重点:勾股定理的证明及其应用。

2.教学难点:理解并证明勾股定理。

五. 教学方法1.探究法:引导学生通过自主探究、合作交流的方式,证明勾股定理。

2.案例分析法:通过具体案例,让学生理解勾股定理在实际问题中的应用。

3.讲解法:教师对勾股定理的相关知识进行讲解,为学生提供学习指导。

六. 教学准备1.课件:制作勾股定理的相关课件,包括勾股定理的证明过程及应用案例。

2.素材:准备一些关于勾股定理的应用问题,用于课堂练习和拓展。

3.板书:设计好板书,包括勾股定理的表述和证明过程。

七. 教学过程1.导入(5分钟)利用课件展示勾股定理的背景知识,引导学生回顾相似三角形的性质,为新课的学习做好铺垫。

2.呈现(10分钟)教师简要介绍勾股定理的定义,然后通过课件展示勾股定理的证明过程,让学生初步了解勾股定理的证明方法。

3.操练(10分钟)学生分组讨论,每组选取一个证明方法,尝试证明勾股定理。

教师巡回指导,为学生提供帮助。

4.巩固(10分钟)教师选取几组勾股定理的应用问题,让学生独立解答。

解答完毕后,教师进行点评,巩固学生对勾股定理的理解。

5.拓展(10分钟)教师提出一些关于勾股定理的拓展问题,引导学生进行思考。

17.2.1数学教学设计

17.2.1数学教学设计

第十七章勾股定理17.2.1勾股定理的逆定理(一)课时:2课时一、内容及其分析本节课学习的主要内容是体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。

探究勾股定理的逆定理的证明方法。

理解原命题、逆命题、逆定理的概念及关系。

二、目标及其解析目标定位:掌握勾股定理的逆定理及证明。

目标解析:使学生明确运用勾股定理的逆定理判定一个三角形是否是直角三角形。

三、问题诊断与分析例1(补充)说出下列命题的逆命题,这些命题的逆命题成立吗?⑴同旁内角互补,两条直线平行。

⑵如果两个实数的平方相等,那么两个实数平方相等。

⑶线段垂直平分线上的点到线段两端点的距离相等。

⑷直角三角形中30°角所对的直角边等于斜边的一半。

分析:⑴每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用。

四、教学支持条件分析通过让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,锻炼学生的动手操作能力,再通过探究理论证明方法,使实践上升到理论,提高学生的理性思维。

五、教学过程问题与例题:问题一怎样判断一个三角形是等腰三角形?类比下如何判断一个三角形是直角三角形?【设计意图】⑴怎样判定一个三角形是等腰三角形?⑵怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜想。

问题二说出下列命题的逆命题,这些命题的逆命题成立吗?⑴同旁内角互补,两条直线平行。

⑵如果两个实数的平方相等,那么两个实数平方相等。

⑶线段垂直平分线上的点到线段两端点的距离相等。

⑷直角三角形中30°角所对的直角边等于斜边的一半。

设计意图:⑴每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用。

⑵理顺他们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假。

解略。

问题三 什么是勾股定理的逆命题?证明:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形是直角三角形。

17.1.2数学教学设计

17.1.2数学教学设计

第十七章 勾股定理17.1.2勾股定理(二)课时:2课时一、内容及其分析本节课学习的这样内容应用勾股定理及逆定理解决实际问题,进一步加深性质定理与判定定理之间关系的认识。

二、目标及其解析目标定位:勾股定理的简单计算。

目标解析:使学生熟悉定理的使用,刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。

让学生明确在直角三角形中,已知任意两边都可以求出第三边。

并学会利用不同的条件转化为已知两边求第三边。

三、问题诊断与分析勾股定理的使用范围是在直角三角形中,因此注意要创造直角三角形,作高是常用的创造直角三角形的辅助线做法。

让学生把前面学过的知识和新知识综合运用,提高综合能力。

让学生注意所给条件的不确定性,知道考虑问题要全面,体会分类讨论思想。

四、教学支持条件分析自造模型。

发散学生的思维,锻炼学生的动手实践能力。

进一步让学生确信勾股定理的正确性。

五、教学过程问题与例题:问题一 例1(补充)在Rt △ABC ,∠C=90°⑴已知a=b=5,求c 。

⑵已知a=1,c=2, 求b 。

⑶已知c=17,b=8, 求a 。

⑷已知a :b=1:2,c=5, 求a 。

⑸已知b=15,∠A=30°,求a ,c 。

问题二 例2(补充)已知直角三角形的两边长分别为5和12,求第三边。

问题三 例3(补充)已知:如图,等边△ABC 的边长是6cm 。

⑴求等边△ABC 的高。

⑵求S △ABC 。

设计意图:学会见比设参的数学方法,体会由角转化为边的关系的转化思想。

让学生知道考虑问题要全面,体会分类讨论思想。

勾股定理的使用范围是在直角 D C B A三角形中,因此注意要创造直角三角形,作高是常用的创造直角三角形的辅助线做法。

六、课堂小结1.会用勾股定理进行简单的计算。

2.树立数形结合的思想、分类讨论思想。

七、目标检测填空题⑴在Rt △ABC ,∠C=90°,a=8,b=15,则c= 。

⑵在Rt △ABC ,∠B=90°,a=3,b=4,则c= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十七章 反比例函数
17.1.2.1 反比例函数的图象和性质(一)
主备教师:毕汉将
成员:杨加明 王稳新
课时:2课时
一、内容及其分析
本节课学习的主要内容是用描点法画反比例函数的图象,结合图象分析并掌握反比例函数的性质,体会函数的三种表示方法,领会数形结合的思想方法。

二、目标及其解析
目标定位:理解并掌握反比例函数的图象和性质,正确画出图象,通过观察、分析,归纳出反比例函数的性质。

目标解析:要让学生理解并掌握反比例函数解析式x k
y =(k ≠0)中k 的几何意
义。

通过对反比例函数性质的简单应用,使学生进一步理解反比例函数的图象特征及性质。

三、问题诊断与分析
教材第41页的例2是让学生经历用描点法画反比例函数图象的过程,学生
可能有点难度,但此题一方面能进一步熟悉作函数图象的方法,提高基本技能;另一方面可以加深学生对反比例函数图象的认识,了解函数的变化规律,从而为探究函数的性质作准备。

四、教学支持条件分析
板书教学。

五、教学过程
问题与例题:
问题一 一次函数y =kx +b (k 、b 是常数,k ≠0)的图象是什么?其性质有哪些?正比例函数y =kx (k ≠0)呢?
问题二 画函数图象的方法是什么?其一般步骤有哪些?应注意什么?
问题三 反比例函数的图象是什么样呢?
问题四 已知反比例函数32)1(--=m
x m y 的图象在第二、四象限,求m 值,并指
出在每个象限内y 随x 的变化情况?
设计意图:一是复习巩固反比例函数的定义,二是通过对反比例函数性质的简单应用,使学生进一步理解反比例函数的图象特征及性质。

六、课堂小结
用描点法画图,注意强调:
(1)列表取值时,x ≠0,因为x =0函数无意义,为了使描出的点具有代表性,可以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y 值。

(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确。

(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线。

(4)由于x ≠0,k ≠0,所以y ≠0,函数图象永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴。

七、目标检测
1.已知反比例函数x k
y -=3,分别根据下列条件求出字母k 的取值范围
(1)函数图象位于第一、三象限
(2)在第二象限内,y 随x 的增大而增大
2.函数y =-ax +a 与x a y -=
(a ≠0)在同一坐标系中的图象可能是( )
3.在平面直角坐标系内,过反比例函数x k
y =(k >0)的图象上的一点分别作x
轴、y 轴的垂线段,与x 轴、y 轴所围成的矩形面积是6,则函数解析式为
八、配餐作业
A 组:
1.若函数x m y )12(-=与x m y -=
3的图象交于第一、三象限,则m 的取值范围是
2.反比例函数x y 2
-=,当x =-2时,y = ;当x <-2时;y 的取值范
围是 ;当x >-2时;y 的取值范围是
B 组:已知反比例函数y a x
a =--()226,当x >0时,y 随x 的增大而增大, 求函数关系式
C 组:如图,过反比例函数
x y 1
=(x >0)的图象上任
意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,
连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、
S 2,比较它们的大小,可得( )
(A )S 1>S 2 (B )S 1=S 2
(C )S 1<S 2 (D )大小关系不能确定
九、课后反思。

相关文档
最新文档