2020年上海市虹口区九年级(上)月考数学试卷
上海市虹口区部分学校2024-2025学年九年级上学期数学第一次月考试题
上海市虹口区部分学校2024-2025学年九年级上学期数学第一次月考试题一、单选题1.如图所示,五线谱是由等距离、等长度的五条平行横线组成的,同一条直线上的点A、B、C都在横线上,如果线段AB的长为4,那么AC的长是()A.2 B.3 C.6 D.82.下列图形中,一定相似的是()A.两个圆B.两个矩形C.两个直角梯形D.两个等腰三角形3.如果两个相似三角形对应边之比是1:4,那么它们的对应中线之比是()A.1:2 B.1:4C.1:8 D.1:164.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学著作《九章算术》中的“井深几何”问题,它的题意可以由如图所示(单位:尺),已知井的截面图为矩形ABCD,设井深为x尺,下列所列方程中,正确的是()A.50.45x=B.550.4xx=+C.0.455xx=-D.50.455x=+5.如图所示,已知直线a b c∥∥,下列结论中,正确的是()A .AB BC EF CE = B .CD BC EF BE = C .CE AD DF BC = D .AF AD BE BC= 6.象棋是中国棋文化,也是中华民族的文化瑰宝,它源远流长,趣味浓厚,基本规则简明易懂.在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,“马”下一步应落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与“帅”、“相”、“兵”所在位置的格点构成的三角形相似( )A .①处B .②处C .③处D .④处二、填空题7.已知():7:2x y y +=,那么-x x y的值是. 8.已知线段 4.9a =厘米,10b =厘米,那么线段a 与b 的比例中项c 是厘米.9.如图所示,在洞孔成像问题中,已知玻璃棒AB 与它的物像A B ''平行,已知玻璃棒12AB =厘米,根据图中给定的尺寸,那么它的物像A B ''的长是厘米.10.已知ABC V 的三边之比是2:3:4,与它相似的DEF V 的最小边长是6,那么DEF V 的最大边长是.11.如图所示,在ABC V 中,DE BC ∥,AQ 平分BAC ∠,交DE 于点P ,如果6,8,12DE BC AQ ===,那么AP 的长是.12.如图所示,已知等边ABC V 的边长为4,点D 在BC 边上且1BD =,点E 在AC 边上,60ADE ∠=︒,那么CE 的长是.13.如图所示,在正方形ABCD 中,BD 为对角线,点F 在边AD 的延长线上,DF DB =,连接BF 交DC 于点E ,那么DE AB的值是.14.如图所示,在梯形ABCD 中,AD BC ∥,点E 、F 分别在AB 、DC 上,且EF AD ∥,如果2AD =,3EF =,23AE EB =,那么BC 的长为.15.我国古代数学家赵爽利用影子对物体进行测量的方法,至今仍有借鉴意义.如图所示,现将一高度为2米的木杆CG 放在灯杆AB 前,测得其影长CH 为1米,再将木杆CG 沿着射线BC 方向移动到点D 的位置, 3.6CD =米,此时测得影长DF 为3米,那么灯杆AB 的高度为米.16.如图所示,点G 是ABC V 的重心,点D 是边AC 的中点,过点G 作GE AC ∥交BC 于点E ,过点D 作DF BC ∥交EG 的延长线于点F ,如果四边形CDFE 的面积为12,那么ABC V 的面积为.17.定义:有且只有一组邻边相等,且对角互补的四边形叫做单邻等对补四边形.如图所示,在Rt ABC V 中,90C ∠=︒,3AC =,4BC =,分别在BC 、AB 上取点M 、N ,如果四边形ACMN 为单邻等对补四边形,那么MN 的长为.18.如图所示,在ABC V 中,已知5AB AC ==,8BC =,点D 为BC 边上一点,点E 在AC 边上,且3AE EC =,将ABD V 沿AD 翻折,使得BD 的对应边FD 经过点E ,当D E E F >时,点C 到点D 的距离是.三、解答题19.已知345a b c ==,32412a b c +-=,求a 、b 、c 的值. 20.如图所示,在ABC V 中,点D 在边AB 上,已知6AB =,2AD =,5AC =,如果在AC上找一点E ,使得ADE V 与ABC V 相似,求CE 的长.21.已知如图所示,在ABC V 中,点D 在边AB 上,点E 、F 在边AC 上,且DE BC ∥,使AE AF AC AE=.(1)求证:DF BE ∥;(2)把FDE V 与EBC V 的周长分别记作FDE C △、EBC C △,如果CF AE =,求FDE EBCC C V V 的值. 22.ABC ∆表示一块直角三角形空地,已知90ACB ∠=o ,边4AC =米,3BC =米.现在根据需要在空地内画出一个正方形区域建造水池,现有方案一、方案二分别如图1、图2所示,请你分别计算两种方案中水池的边长,并比较哪种方案的正方形水池面积更大.23.如图所示,在四边形ABCD 中,BD 为对角线,过点A 作AE BD ⊥,垂足为E ,已知AB AD BE AE=,点F 在BC 边上,且2AB BF BC =⋅.(1)求证:BE BD BF BC ⋅=⋅;(2)连接DF 、CE ,如果点D 在CF 的垂直平分线上,求证:BF BC EF CE=. 24.(1)如图所示,在梯形ABCD 中,BC P AD ,90C ∠=︒,点E 为CD 边上一点,连接BE 、AE ,已知,1,2,6AB BE CE BC CD ⊥===,求AD 的长;(2)①在一场数学设计活动中,老师提出了一个问题: 【问题】已知直线a 、b ,满足a b P ,点C 为直线a 、b 之间一点,试用直尺、圆规在如图所示中作出ACB △,使得90,ACB CA CB ∠=︒=,其中点A 在直线a 上,点B 在直线b 上.【设计】活动成员小明结合作业题中的解题思路,尝试利用尺规完成作图:第一步:利用直尺,过点C 作直线b 的垂线,分别交直线a 、b 于点E 、F ;第二步:在点E 、F 的右边分别取点A 、B ,由于 ∽ ,可以得到CF AE的值是 ; 第三步:利用圆规,分别在直线a 、b 上截出AE 、BF ,连接AB ,即可得到所求的三角形.【操作】请你根据上述思路,完成第二步填空,并在图中作出满足条件的ACB △. ②通过小明同学的思路与作法,请你尝试设计:当直线a 、b 不平行时,利用尺规在如图中作出ACB △,使得90,ACB CA CB ∠=︒=,其中点A 在直线a 上,点B 在直线b 上.(不写作图过程,保留作图痕迹)25.如图所示,已知在梯形ABCD 中,AD BC ∥,90BAD ∠=︒,点E 为AD 边上一点,且2AE =,1ED =,连接BE 、AC 交于点F ,已知12EF BF =,过点F 作CD 的平行线交BC 于点G ,连接DG 交AC 于点P .(1)求证:点G 是BC 的中点;(2)如果C FPG FG ∽△△,求DG 的长;(3)如图所示,如果EDP ∠与AFE ∠互补,求PGC V 的面积.。
九年级数学 相似三角形(压轴必刷30题专项训练)(解析版)
相似三角形(压轴必刷30题专项训练)一.填空题(共9小题)1(2020秋•虹口区校级月考)一张等腰三角形纸片,底边长为15cm ,底边上的高长22.5cm .现沿底边依次从下往上裁剪宽度均为3cm 的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是第6张.【分析】设第x 张为正方形,如图,△ADE ∽△ABC ,则DE BC =AM AN,从而计算出x 的值即可.【解答】解:如图,设第x 张为正方形,则DE =3(cm ),AM =(22.5-3x )(cm ),∵△ADE ∽△ABC ,∴DE BC =AM AN ,即315=22.5-3x 22.5,解得x =6.故答案为:6.【点评】本题考查了相似三角形的判定和性质,等腰三角形的性质以及正方形的性质,注:相似三角形的对应边之比等于对应边上的高之比.2(2019秋•浦东新区校级月考)如图,在平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果BE BC=23,那么BF FD =23.【分析】由平行四边形的性质可证△BEF ∽△DAF ,再根据相似三角形的性质得BE :DA =BF :DF 即可解.【解答】解:ABCD 是平行四边形,∴BC ∥AD ,BC =AD∴△BEF ∽△DAF∴BE :DA =BF :DF∵BC =AD∴BF :DF =BE :BC =2:3.【点评】本题考查了平行四边形的性质及相似三角形的判定定理和性质.3(2017秋•虹口区校级月考)如图,直角三角形ABC 中,∠ACB =90°,AB =10,BC =6,在线段AB上取一点D ,作DF ⊥AB 交AC 于点F ,现将△ADF 沿DF 折叠,使点A 落在线段DB 上,对应点记为A 1;AD 的中点E 的对应点记为E 1,若△E 1FA 1∽△E 1BF ,则AD =165.【分析】利用勾股定理列式求出AC ,设AD =2x ,得到AE =DE =DE 1=A 1E 1=x ,然后求出BE 1,再利用相似三角形对应边成比例列式求出DF ,然后利用勾股定理列式求出E 1F ,然后根据相似三角形对应边成比例列式求解得到x 的值,从而可得AD 的值.【解答】解:∵∠ACB =90°,AB =10,BC =6,∴AC =AB 2-BC 2=102-62=8,设AD =2x ,∵点E 为AD 的中点,将△ADF 沿DF 折叠,点A 对应点记为A 1,点E 的对应点为E 1,∴AE =DE =DE 1=A 1E 1=x ,∵DF ⊥AB ,∠ACB =90°,∠A =∠A ,∴△ABC ∽△AFD ,∴AD AC =DF BC ,即2x 8=DF 6,解得DF =32x ,在Rt △DE 1F 中,E 1F =DF 2+DE 12=3x 22+x 2=13x 2,又∵BE 1=AB -AE 1=10-3x ,△E 1FA 1∽△E 1BF ,∴E 1F A 1E 1=BE 1E 1F ,∴E 1F 2=A 1E 1•BE 1,即(13x 2)2=x (10-3x ),解得x =85,∴AD 的长为2×85=165.故答案为:165.【点评】本题考查了相似三角形的性质,主要利用了翻折变换的性质,勾股定理,相似三角形对应边成比例,综合题,熟记性质并准确识图是解题的关键.4(2021秋•普陀区校级月考)如图,在△ABC 中,4AB =5AC ,AD 为△ABC 的角平分线,点E 在BC 的延长线上,EF ⊥AD 于点F ,点G 在AF 上,FG =FD ,连接EG 交AC 于点H .若点H 是AC 的中点,则AG FD的值为43.【分析】解题关键是作出辅助线,如解答图所示:第1步:利用角平分线的性质,得到BD =54CD ;第2步:延长AC ,构造一对全等三角形△ABD ≌△AMD ;第3步:过点M 作MN ∥AD ,构造平行四边形DMNG .由MD =BD =KD =54CD ,得到等腰△DMK ;然后利用角之间关系证明DM ∥GN ,从而推出四边形DMNG 为平行四边形;第4步:由MN ∥AD ,列出比例式,求出AG FD的值.【解答】解:已知AD 为角平分线,则点D 到AB 、AC 的距离相等,设为h .∵BD CD =S △ABD S △ACD =12AB ⋅h 12AC ⋅h =AB AC =54,∴BD =54CD .如图,延长AC ,在AC 的延长线上截取AM =AB ,则有AC =4CM .连接DM .在△ABD 与△AMD 中,AB =AM ∠BAD =∠MAD AD =AD ∴△ABD ≌△AMD (SAS ),∴MD =BD =54CD .过点M 作MN ∥AD ,交EG 于点N ,交DE 于点K .∵MN ∥AD ,∴CK CD =CM AC =14,∴CK =14CD ,∴KD =54CD .∴MD =KD ,即△DMK 为等腰三角形,∴∠DMK =∠DKM .由题意,易知△EDG 为等腰三角形,且∠1=∠2;∵MN ∥AD ,∴∠3=∠4=∠1=∠2,又∵∠DKM =∠3(对顶角)∴∠DMK =∠1,∴DM ∥GN ,∴四边形DMNG 为平行四边形,∴MN =DG =2FD .∵点H 为AC 中点,AC =4CM ,∴AH MH=23.∵MN ∥AD ,∴AG MN =AH MH ,即AG 2FD =23,∴AG FD =43.故答案为:43.方法二:如图,有已知易证△DFE ≌△GFE ,故∠5=∠B +∠1=∠4=∠2+∠3,又∠1=∠2,所以∠3=∠B ,则可证△AGH ∽△ADB设AB =5a ,则AC =4a ,AH =2a ,所以AG /AD =AH /AB =2/5,而AD =AG +GD ,故GD /AD =3/5,所以AG :GD =2:3,F 是GD 的中点,所以AG :FD =4:3.【点评】本题是几何综合题,难度较大,正确作出辅助线是解题关键.在解题过程中,需要综合利用各种几何知识,例如相似、全等、平行四边形、等腰三角形、角平分线性质等,对考生能力要求较高.5(2022秋•普陀区校级月考)如图,点A 1,A 2,A 3,A 4在射线OA 上,点B 1,B 2,B 3在射线OB 上,且A 1B 1∥A 2B 2∥A 3B 3,A 2B 1∥A 3B 2∥A 4B 3.若△A 2B 1B 2,△A 3B 2B 3的面积分别为1,4,则图中三个阴影三角形面积之和为10.5.【分析】已知△A 2B 1B 2,△A 3B 2B 3的面积分别为1,4,且两三角形相似,因此可得出A 2B 2:A 3B 3=1:2,由于△A 2B 2A 3与△B 2A 3B 3是等高不等底的三角形,所以面积之比即为底边之比,因此这两个三角形的面积比为1:2,根据△A 3B 2B 3的面积为4,可求出△A 2B 2A 3的面积,同理可求出△A 3B 3A 4和△A 1B 1A 2的面积.即可求出阴影部分的面积.【解答】解:△A 2B 1B 2,△A 3B 2B 3的面积分别为1,4,又∵A 2B 2∥A 3B 3,A 2B 1∥A 3B 2,∴∠OB 2A 2=∠OB 3A 3,∠A 2B 1B 2=∠A 3B 2B 3,∴△B 1B 2A 2∽△B 2B 3A 3,∴B 1B 2B 2B 3=12=A 2B 2A 3B 3,∴A 2A 3A 3A 4=12.∵S △A 2B 2A 3S △B 2A 3B3=12,△A 3B 2B 3的面积是4,∴△A 2B 2A 3的面积为=12×S △A 2B 2B 3=12×4=2(等高的三角形的面积的比等于底边的比).同理可得:△A 3B 3A 4的面积=2×S △A 3B 2B 3=2×4=8;△A 1B 1A 2的面积=12S △A 2B 1B 2=12×1=0.5.∴三个阴影面积之和=0.5+2+8=10.5.故答案为:10.5.【点评】本题的关键是利用平行线证明三角形相似,再根据已给的面积,求出相似比,从而求阴影部分的面积.6(2017秋•徐汇区校级月考)设△ABC 的面积为1,如图①,将边BC 、AC 分别2等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;⋯,依此类推,则S n 可表示为 12n +1 .(用含n 的代数式表示,其中n 为正整数)【分析】连接D 1E 1,设AD 1、BE 1交于点M ,先求出S △ABE 1=1n +1,再根据AB D 1E 1=BM ME 1=n +1n 得出S △ABM :S △ABE 1=(n +1):(2n +1),最后根据S △ABM :1n +1=(n +1):(2n +1),即可求出S n .【解答】解:如图,连接D 1E 1,设AD 1、BE 1交于点M ,∵AE1:AC =1:(n +1),∴S △ABE 1:S △ABC =1:(n +1),∴S △ABE 1=1n +1,∵AB D 1E 1=BM ME 1=n +1n ,∴BM BE 1=n +12n +1,∴S △ABM :S △ABE 1=(n +1):(2n +1),∴S △ABM :1n +1=(n +1):(2n +1),∴S n =12n +1.故答案为:12n +1.【点评】此题考查了相似三角形的判定与性质,用到的知识点是相似三角形的判定与性质、平行线分线段成比例定理、三角形的面积,关键是根据题意作出辅助线,得出相似三角形.7(2018秋•南岗区校级月考)已知菱形ABCD 的边长是6,点E 在直线AD 上,DE =3,连接BE 与对角线AC 相交于点M ,则MC AM的值是 2或23 .【分析】由菱形的性质易证两三角形相似,但是由于点E 的位置未定,需分类讨论.【解答】解:分两种情况:(1)点E 在线段AD 上时,△AEM ∽△CBM ,∴MC AM =BC AE=2;(2)点E在线段AD的延长线上时,△AME∽△CMB,∴MCAM =BCAE=23.【点评】本题考查了相似三角形的性质以及分类讨论的数学思想;其中由相似三角形的性质得出比例式是解题关键.注意:求相似比不仅要认准对应边,还需注意两个三角形的先后次序.8(2020秋•虹口区校级月考)如图,在△ABC中,∠ACB的内、外角平分线分别交BA及其延长线于点D、E,BC=2.5AC,则ABAD+ABAE=5.【分析】根据CD平分∠ACB,可得ABDA=BCAC,根据CE平分∠ACB的外角,可得DEAE=BCAC,进而可得结果.【解答】解:∵CD平分∠ACB,∴AB DA =BC AC,∴BD+DADA =BC+ACAC,∴AB DA =BC+ACAC,①∵CE平分∠ACB的外角,∴DE AE =BC AC,∴BE-AEAE =BC-ACAC,∴AB AE =BC-ACAC,②①+②得,AB AD +ABAE=BC+ACAC+BC-ACAC=2BCAC=2×2.5=5.故答案为:5.【点评】主要考查了相似三角形的判定及其性质的应用问题;解题的关键是灵活运用相似三角形的性质来分析、判断、推理或解答.9(2022秋•黄浦区校级月考)如图,在等腰△ABC中,AB=AC,点P在BA的延长线上,PA=1 4AB,点D在BC边上,PD=PC,则CDBC的值是 34 .【分析】过点P 作PE ∥AC 交DC 延长线于点E ,根据等腰三角形判定与性质,平行线的性质可证PB =PE ,再证△PCE ≌△PDB ,可得BD =CE ,再利用平行线分线段成比例的PA AB=CE BC ,结合线段的等量关系以及比例的性质即可得出结论.【解答】解:如图,过点P 作PE ∥AC 交DC 延长线于点E ,∵AB =AC ,∴∠B =∠ACB ,∵AC ∥PE ,∴∠ACB =∠E ,∴∠B =∠E ,∴PB =PE ,∵PC =PD ,∴∠PDC =∠PCD ,∴∠BPD =∠EPC ,∴在△PCE 和△PDB 中,PC =PD ∠BPD =∠EPC PB =PE,∴△PCE ≌△PDB (SAS ),∴BD =CE ,∵AC ∥PE ,∴PA AB =CE BC ,∵PA =14AB ,∴CE BC =14,∴BD BC =14,∴CD BC =34.故答案为:34.【点评】本题考查了等腰三角形的判定与性质,平行线分线段成比例,以及全等三角形的判定,解决问题的关键是正确作出辅助线,列出比例式.二.解答题(共21小题)10(2017秋•虹口区校级月考)在△ABC 中,∠CAB =90°,AD ⊥BC 于点D ,点E 为AB 的中点,EC 与AD交于点G ,点F 在BC 上.(1)如图1,AC :AB =1:2,EF ⊥CB ,求证:EF =CD .(2)如图2,AC :AB =1:,EF ⊥CE ,求EF :EG 的值.【分析】(1)根据同角的余角相等得出∠CAD =∠B ,根据AC :AB =1:2及点E 为AB 的中点,得出AC =BE ,再利用AAS 证明△ACD ≌△BEF ,即可得出EF =CD ;(2)作EH ⊥AD 于H ,EQ ⊥BC 于Q ,先证明四边形EQDH 是矩形,得出∠QEH =90°,则∠FEQ =∠GEH ,再由两角对应相等的两三角形相似证明△EFQ ∽△EGH ,得出EF :EG =EQ :EH ,然后在△BEQ 中,根据正弦函数的定义得出EQ =12BE ,在△AEH 中,根据余弦函数的定义得出EH =32AE ,又BE =AE ,进而求出EF :EG 的值.【解答】(1)证明:如图1,在△ABC 中,∵∠CAB =90°,AD ⊥BC 于点D ,∴∠CAD =∠B =90°-∠ACB .∵AC :AB =1:2,∴AB =2AC ,∵点E 为AB 的中点,∴AB =2BE ,∴AC =BE .在△ACD 与△BEF 中,∠CAD =∠B ∠ADC =∠BFE =90°AC =BE,∴△ACD ≌△BEF ,∴CD =EF ,即EF =CD ;(2)解:如图2,作EH ⊥AD 于H ,EQ ⊥BC 于Q ,∵EH ⊥AD ,EQ ⊥BC ,AD ⊥BC ,∴四边形EQDH 是矩形,∴∠QEH =90°,∴∠FEQ =∠GEH =90°-∠QEG ,又∵∠EQF =∠EHG =90°,∴△EFQ ∽△EGH ,∴EF :EG =EQ :EH .∵AC :AB =1:3,∠CAB =90°,∴∠B =30°.在△BEQ 中,∵∠BQE =90°,∴sin B =EQ BE =12,∴EQ =12BE .在△AEH中,∵∠AHE=90°,∠AEH=∠B=30°,∴cos∠AEH=EHAE =32,∴EH=32AE.∵点E为AB的中点,∴BE=AE,∴EF:EG=EQ:EH=12BE:32AE=1:3=3:3=33.【点评】本题考查了相似三角形的判定和性质、全等三角形的判定和性质、矩形的判定和性质,解直角三角形,综合性较强,有一定难度.解题的关键是作辅助线,构造相似三角形,并且证明四边形EQDH是矩形.11(2021秋•杨浦区校级月考)如图,已知在菱形ABCD,点E是AB的中点,AF⊥BC于点F,连接EF、ED、DF,DE交AF于点G,且DE⊥EF.(1)求证:AE2=EG•ED;(2)求证:BC2=2DF•BF.【分析】(1)根据直角三角形的性质得到AE=FE,根据菱形的性质得到AD∥BC,求得∠DAG=∠AFB =90°,然后证明△AEG∽△DEA,即可得到结论;(2)由AE=EF,AE2=EG•ED,得到FE2=EG•ED,推出△FEG∽△DEF,根据相似三角形的性质得到∠EFG=∠EDF,根据相似三角形的判定和性质即可得到结论.【解答】证明:(1)∵AF⊥BC于点F,∴∠AFB=90°,∵点E是AB的中点,∴AE=FE,∴∠EAF=∠AFE,∵四边形ABCD是菱形,∴AD∥BC,∴∠DAG=∠AFB=90°,∵DE⊥EF,∴∠FEG=90°,∴∠DAG=∠FEG,∵∠AGD=∠FGE,∴∠EFG=∠ADG,∴∠EAG=∠ADG,∵∠AEG=∠DEA,∴△AEG∽△DEA,∴AE DE =EG AE,∴AE2=EG•ED;(2)∵AE=EF,AE2=EG•ED,∴FE2=EG•ED,∴EF DE =EGEF,∵∠FEG=∠DEF,∴△FEG∽△DEF,∴∠EFG=∠EDF,∴∠BAF=∠EDF,∵∠DEF=∠AFB=90°,∴△ABF∽△DFE,∴AB DF =BF EF,∵四边形ACBD是菱形,∴AB=BC,∵∠AFB=90°,∵点E是AB的中点,∴FE=12AB=12BC,∴BC DF =BF12BC,∴BC2=2DF•BF.【点评】本题考查了相似三角形的判定和性质,菱形的性质,直角三角形的性质,正确的识别图形是解题的关键.12(2021秋•杨浦区校级月考)如图,已知在平行四边形ABCD中,AE:ED=1:2,点F为DC的中点,连接BE、AF,BE与AF交于点H.(1)求EH:BH的值;(2)若△AEH的面积为1,求平行四边形ABCD的面积.【分析】(1)延长AF,BC交于点G,证明△ADF≌△GCF(AAS),可得AD=CG=BC,所以BG=2BC,根据AE:ED=1:2,可得AE:AD=1:3,AE:BG=1:6,,证明△AEH∽△GBH,即可解决问题;(2)在△AEH中,设AE=x,AE边上的高为h,△BGH中,BG边上的高为h′,可得平行四边形ABCD的高为h+h′,BC=3x,根据△AEH的面积为1,可得x•h=2,所以h′=6h,进而可以求平行四边形ABCD 的面积.【解答】解:(1)如图,延长AF,BC交于点G,∵四边形ABCD是平行四边形,∴AD ∥BC ,AD =BC ,∴∠D =∠DCG ,∠DAF =∠G ,∵点F 为DC 的中点,∴DF =CF ,在△ADF 和△GCF 中,∠D =∠FCG ∠DAF =∠G DF =CF,∴△ADF ≌△GCF (AAS ),∴AD =CG ,∴AD =CG =BC ,∴BG =2BC ,∵AE :ED =1:2,∴AE :AD =1:3,∴AE :BG =1:6,∵AD ∥BC ,∴△AEH ∽△GBH ,∴EH :BH =AE :BG =1:6;(2)在△AEH 中,设AE =x ,AE 边上的高为h ,△BGH 中,BG 边上的高为h ′,∴平行四边形ABCD 的高为h +h ′,BC =3x ,∵△AEH 的面积为1,∴12x •h =1,∴x •h =2∵△AEH ∽△GBH ,∴h :h ′=1:6,∴h ′=6h ,∴h +h ′=7h ,∴平行四边形ABCD 的面积=BC •(h +h ′)=3x •7h =21xh =42.【点评】本题考查了相似三角形的判定和性质,平行四边形的性质,平行线分线段成比例等知识,添加恰当辅助线构造相似三角形是解题的关键.13(2021春•徐汇区校级月考)如图,在菱形ABCD 中,点E 在对角线AC 上,点F 在BC 的延长线上,EF =EB ,EF 与CD 相交于点G ;(1)求证:EG •GF=CG •GD ;(2)联结DF ,如果EF ⊥CD ,那么∠FDC 与∠ADC 之间有怎样的数量关系?证明你的结论.【分析】(1)先证明△BCE ≌△DCE ,得∠EDC =∠EBC ;利用此条件再证明∠DGE ∽△FGC ,即可得到EG •GF =CG •GD.(2)利用第(1)题的结论,可证明△DGE ∽△FGC ,再利用三角形内角外角关系,即可得到∠ADC 与∠FDC 的关系.【解答】解:(1)证明:∵点E 在菱形ABCD 的对角线AC 上,∴∠ECB =∠ECD ,∵BC =CD ,CE =CE ,∴△BCE ≌△DCE ,∴∠EDC =∠EBC ,∵EB =EF ,∴∠EBC =∠EFC ;∴∠EDC =∠EFC ;∵∠DGE =∠FGC ,∴△DGE ∽△FGC ;∴EGCG =GD FG∴EG •GF =CG •GD ;(2)∠ADC =2∠FDC .证明:∵EG CG =GD FG ,∴EG DG =CG FG,又∵∠DGF =∠EGC ,∴△CGE ∽△FGD ,∵EF ⊥CD ,DA =DC ,∴∠DAC =∠DCA =∠DFG =90°-∠FDC ,∴∠ADC =180°-2∠DAC =180°-2(90°-∠FDC )=2∠FDC .【点评】本题主要考查了全等三角形的判定及性质、相似三角形的判定及性质、菱形的性质等知识点的综合应用,解题时注意:相似三角形的对应角相等,对应边成比例.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.14(2021秋•宝山区校级月考)如图,四边形DEFG 是△ABC 的内接正方形,AB =BC =6cm ,∠B =45°,则正方形DEFG 的面积为多少?【分析】过A 作AH ⊥BC 于H ,交GF 于M ,于是得到△ABH 是等腰直角三角形,求得AH =BH =2222AB =32cm ,由△AGF ∽△ABC ,得到GF BC =AM AH,求得GF =(62-6)cm ,即可得到结论.【解答】解:过A 作AH ⊥BC 于H ,交GF 于M ,∵∠B =45°,∴AH =BH =22AB =32cm ,∵GF ∥BC ,∴△AGF ∽△ABC ,∴GF BC =AM AH,即GF 6=32-GF 32,∴GF =(62-6)cm ,∴正方形DEFG 的面积=GF 2=(62-6)2=(108-722)cm .【点评】本题考查了相似三角形的判定与性质,正方形的四条边都相等的性质,利用相似的性质:对应边的比值相等求出正方形的边长是解答本题的关键.15(2021秋•松江区月考)如图,在平行四边形ABCD 中,点E 为边BC 上一点,联结AE 并延长AE 交DC 的延长线于点M ,交BD 于点G ,过点G 作GF ∥BC 交DC 于点F .求证:DF FC =DM CD.【分析】由GF ∥BC ,根据平行线分线段成比例定理,可得DF FC,又由四边形ABCD 是平行四边形,可得AB =CD ,AB ∥CD ,继而可证得DM AB =DG BG ,则可证得结论.【解答】证明:∵GF ∥BC ,∴DF FC =DG BG,∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴DM AB =DG BG ,∴DF FC =DM CD.【点评】此题考查了平行分线段成比例定理以及平行四边形的性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16(2021秋•松江区月考)如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,E 是AC 的中点,DE 的延长线与BC 的延长线交于点F .(1)求证:FD FC =BD DC ;(2)若BC FC =54,求BD DC的值.【分析】(1)根据直角三角形斜边上中线性质求出DE =EC ,推出∠EDC =∠ECD ,求出∠FDC =∠B ,根据∠F =∠F 证△FBD ∽△FDC ,即可;(2)根据已知和三角形面积公式得出S △BDC S △FDC =54,S △BDF S △FDC =94,根据相似三角形面积比等于相似比的平方得出S △BDFS △FDC =BD DC 2=94,即可求出BD DC.【解答】(1)证明:∵CD ⊥AB ,∴∠ADC =90°,∵E 是AC 的中点,∴DE =EC ,∴∠EDC =∠ECD ,∵∠ACB =90°,∠BDC =90°∴∠ECD +∠DCB =90°,∠DCB +∠B =90°,∴∠ECD =∠B ,∴∠FDC =∠B ,∵∠F =∠F ,∴△FBD ∽△FDC ,∴FD FC =BD DC(2)解:∵BC FC =54,∴S △BDCS △FDC =54,∴S △BDFS △FDC =94,∵△FBD ∽△FDC ,∴S △BDF S △FDC =BD DC2=94,∴BD DC=32.【点评】本题考查了相似三角形的性质和判定,三角形的面积,注意:相似数据线的面积比等于相似比的平方,题目比较好,有一定的难度.17(2021春•黄浦区校级月考)如图,四边形ABCD 是矩形,E 是对角线AC 上的一点,EB =ED 且∠ABE =∠ADE .(1)求证:四边形ABCD 是正方形;(2)延长DE 交BC 于点F ,交AB 的延长线于点G ,求证:EF •AG =BC •BE .【分析】(1)根据邻边相等的矩形是正方形即可证明;(2)由AD ∥BC ,推出EF DE =EC EA ,同理DC AG =EC EA,由DE =BE ,四边形ABCD 是正方形,推出BC =DC,可得EFBE =BCAG解决问题;【解答】(1)证明:连接BD.∵EB=ED,∴∠EBD=∠EDB,∵∠ABE=∠ADE,∴∠ABD=∠ADB,∴AB=AD,∵四边形ABCD是矩形,∴四边形ABCD是正方形.(2)证明:∵四边形ABCD是矩形∴AD∥BC,∴EF DE =EC EA,同理DCAG=ECEA,∵DE=BE,四边形ABCD是正方形,∴BC=DC,∴EF BE =BC AG,∴EF•AG=BC•BE.【点评】本题考查相似三角形的判定和性质、矩形的性质、正方形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18(2021秋•浦东新区校级月考)如图,在△ABC中,DE∥BC,EF∥CD,求证:AD2=AF•AB.【分析】由DE∥BC,EF∥CD,可得△ADE∽△ABC,△AFE∽△ADC,然后由相似三角形的对应边成比例,证得结论.【解答】证明:∵DE∥BC,EF∥CD,∴△ADE∽△ABC,△AFE∽△ADC,∴AD:AB=AE:AC,AF:AD=AE:AC,∴AD:AB=AF:AD,∴AD2=AF•AB.【点评】此题考查了相似三角形的判定与性质.注意掌握相似三角形的对应边成比例.19(2020秋•浦东新区月考)在△ABC中,D是BC的中点,且AD=AC,DE⊥BC,与AB相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若DE=3,BC=8,求△FCD的面积.【分析】(1)由DE⊥BC,D是BC的中点,根据线段垂直平分线的性质,可得BE=CE,又由AD=AC,易得∠B=∠DCF,∠FDC=∠ACB,即可证得△ABC∽△FCD;(2)首先过A作AG⊥CD,垂足为G,易得△BDE∽△BGA,可求得AG的长,继而求得△ABC的面积,然后由相似三角形面积比等于相似比的平方,求得△FCD的面积.【解答】(1)证明:∵D是BC的中点,DE⊥BC,∴BE=CE,∴∠B=∠DCF,∵AD=AC,∴∠FDC=∠ACB,∴△ABC∽△FCD;(2)解:过A作AG⊥CD,垂足为G.∵AD=AC,∴DG=CG,∴BD:BG=2:3,∵ED⊥BC,∴ED∥AG,∴△BDE∽△BGA,∴ED:AG=BD:BG=2:3,∵DE=3,∴AG=92,∵△ABC∽△FCD,BC=2CD,∴S△FCDS△ABC=(CDBC)2=14.∵S△ABC=12×BC×AG=12×8×92=18,∴S△FCD=14S△ABC=92.【点评】此题考查了相似三角形的判定与性质以及等腰三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.20(2021春•静安区校级月考)已知:如图,在菱形ABCD中,点E在边BC上,点F在BA的延长线上,BE=AF,CF∥AE,CF与边AD相交于点G.求证:(1)FD=CG;(2)CG2=FG•FC.【分析】(1)根据菱形的性质得到∠FAD =∠B ,根据全等三角形的性质得到FD =EA ,于是得到结论;(2)根据菱形的性质得到∠DCF =∠BFC ,根据平行线的性质得到∠BAE =∠BFC ,根据全等三角形的性质得到∠BAE =∠FDA ,等量代换得到∠DCF =∠FDA ,根据相似三角形的判定和性质即可得到结论.【解答】证明:(1)∵在菱形ABCD 中,AD ∥BC ,∴∠FAD =∠B ,在△ADF 与△BAE 中,AF =BE ∠FAD =∠B AD =BA,∴△ADF ≌△BAE ,∴FD =EA ,∵CF ∥AE ,AG ∥CE ,∴EA =CG ,∴FD =CG ;(2)∵在菱形ABCD 中,CD ∥AB ,∴∠DCF =∠BFC ,∵CF ∥AE ,∴∠BAE =∠BFC ,∴∠DCF =∠BAE ,∵△ADF ≌△BAE ,∴∠BAE =∠FDA ,∴∠DCF =∠FDA ,又∵∠DFG =∠CFD ,∴△FDG ∽△FCD ,∴FD FC=FG FD ,FD 2=FG •FC ,∵FD =CG ,∴CG 2=FG •FC .【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,菱形的性质,熟练掌握相似三角形的性质是解题的关键.21(2021秋•浦东新区校级月考)如图,梯形ABCD 中,AD ∥BC ,BC =2AD ,点E 为边DC 的中点,BE 交AC 于点F .求:(1)AF :FC 的值;(2)EF :BF 的值.【分析】(1)延长BE 交直线AD 于H ,如图,先由AD ∥BC 得到△DEH ∽△CEB ,则有DH BC =DE CE,易得DH =BC ,加上BC =2AD ,所以AH =3AD ,然后证明△AHF ∽△CFB ,再利用相似比可计算出AF :FC 的值;(2)由△DEH ∽△CEB 得到EH :BE =DE :CE =1:1,则BE =EH =12BH ,由△AHF ∽△CFB 得到FH :BF =AF :FC =3:2;于是可设BF =2a ,则FH =3a ,BH =BF +FH =5a ,EH =52a ,接着可计算出EF =FH -EH =12a ,然后计算EF :BF 的值.【解答】解:(1)延长BE 交直线AD 于H ,如图,∵AD ∥BC ,∴△DEH ∽△CEB ,∴DH BC =DE CE,∵点E 为边DC 的中点,∴DE =CE ,∴DH =BC ,而BC =2AD ,∴AH =3AD ,∵AH ∥BC ,∴△AHF ∽△CFB ,∴AF :FC =AH :BC =3:2;(2)∵△DEH ∽△CEB ,∴EH :BE =DE :CE =1:1,∴BE =EH =12BH ,∵△AHF ∽△CFB ,∴FH :BF =AF :FC =3:2;设BF =2a ,则FH =3a ,BH =BF +FH =5a ,∴EH =52a ,∴EF =FH -EH =3a -52a =12a ,∴EF :BF =12a :2a =1:4.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在运用相似三角形的性质时,主要通过相似比得到线段之间的关系.22(2021秋•浦东新区校级月考)已知:如图,在△ABC 中,BD 是∠ABC 的平分线,过点D 作DE ∥CB ,交AB 于点E ,AD DC =13,DE =6.(1)求AB 的长;(2)求S △ADE S △BCD.【分析】(1)由∠ABD =∠CBD ,DE ∥BC 可推得∠EDB =∠CBD ,进而推出∠ABD =∠EDB ,由此可得BE =DE =6,由DE ∥BC 可得AE EB =AD DC=13,进而证得AE =2,于是可得结论;(2)△ADE 看成以DE 为底,高为h 1,△BCD 看成以BC 为底,高为h 2,由平行线分线段成比例定理和相似三角形的性质可得h 1h 2=AD DE =13,DE BC =14,进而证得结论.【解答】解:(1)BD 平∠ABC ,∴∠ABD =∠CBD ,∵DE ∥BC ,∴∠EDB =∠CBD ,∴∠ABD =∠EDB ,∴BE =DE =6,∵DE ∥BC ,∴AE EB =AD DC =13,∴AE 6=13,∴AE =2,∴AB =AE +BE =8;(2)△ADE 看成以DE 为底,高为h 1,△BCD 看成以BC 为底,高为h 2,∵DE ∥CB ,∴△AED ∽△ABC ,∴h 1h 2=AD DE =13,DE BC =14,∴S △ADE S △BCD =12DE ⋅h 112BC ⋅h 2=112.【点评】本题主要考查了等腰三角形的性质,平行线分线段成比例定理和相似三角形的性质,三角形的面积等知识,熟练应用平行线分线段成比例定理和相似三角形的性质是解决问题的关键.23(2022春•长宁区校级月考)已知:如图,在平行四边形ABCD 中,AC 、DB 交于点E ,点F 在BC 的延长线上,联结EF 、DF ,且∠DEF =∠ADC .(1)求证:EFBF =AB DB;(2)如果BD 2=2AD •DF ,求证:平行四边形ABCD 是矩形.【分析】(1)由已知条件和平行四边形的性质易证△ADB ∽△EBF ,再由相似三角形的性质:对应边的比值相等即可证明:EF BF =AB DB;(2)由(1)可得BD 2=2AD •BF ,又因为BD 2=2AD •DF ,所以可证明BF =DF ,再由等腰三角形的性质可得∠DEF =90°,所以∠ADC =∠DEF =90°,进而可证明平行四边形ABCD 是矩形.【解答】解:(1)证明:∵平行四边形ABCD ,∴AD ∥BC ,AB ∥DC∴∠BAD +∠ADC =180°,又∵∠BEF +∠DEF =180°,∴∠BAD +∠ADC =∠BEF +∠DEF ,∵∠DEF =∠ADC ,∴∠BAD =∠BEF ,∵AD ∥BC ,∴∠EBF =∠ADB ,∴△ADB ∽△EBF ,∴EF BF =AB DB;(2)∵△ADB ∽△EBF ,∴AD BD =BE BF,在平行四边形ABCD 中,BE =ED =12BD ,∴AD •BF =BD •BE =12BD 2,∴BD 2=2AD •BF ,又∵BD 2=2AD •DF ,∴BF =DF ,∴△DBF 是等腰三角形,∵BE =DE ,∴FE ⊥BD ,即∠DEF =90°,∴∠ADC =∠DEF =90°,∴平行四边形ABCD 是矩形.【点评】本题考查了平行四边形的性质、相似三角形的判断和性质以及矩形的判断,其中(2)小题证明△DBF 是等腰三角形是解题的关键.24(2021秋•宝山区校级月考)已知,如图,在梯形ABCD中,AD∥BC,BC=6,点P是射线AD上的点,BP交AC于点E,∠CBP的角平分线交AC于点F,且CF=13AC时.求AP+BP的值.【分析】延长BF交射线AP于M,根据AD∥BC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BP=PM,求出AP+BP=AM,再根据AC=13CF求出AE=2CF,然后根据△MAF和△BCF相似,利用相似三角形对应边成比例列式求解即可.【解答】解:如图,延长BF交射线AP于M,∵AD∥BC,∴∠M=∠CBM,∵BF是∠CBP的平分线,∴∠PBM=∠CBM,∴∠M=∠PBM,∴BP=PM,∴AP+BP=AP+PM=AM,∵CF=13AC,则AF=2CF,由AD∥BC得,△MAF∽△BCF,∴AMBC =AFCF=2,∴AM=2BC=2×6=12,即AP+BP=12.【点评】本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BF构造出相似三角形,求出AP+BP=AM并得到相似三角形是解题的关键,也是本题的难点.25(2020秋•虹口区校级月考)已知:如图,已知△ABC与△ADE均为等腰三角形,BA=BC,DA= DE.如果点D在BC边上,且∠EDC=∠BAD.点O为AC与DE的交点.(1)求证:△ABC∽△ADE;(2)求证:DA•OC=OD•CE.【分析】(1)根据三角形的外角的性质和角的和差得到∠B=∠ADE,由于BABC=DADE=1,根据得到结论;(2)根据相似三角形的性质得到∠BAC=∠DAE,于是得到∠BAD=∠CAE=∠CDE,证得△COD∽△EOA,根据相似三角形的性质得到OCOE =ODOA,由∠AOD=∠COE,推出△AOD∽△COE,根据相似三角形的性质即可得到结论.【解答】证明:(1)∵∠ADC =∠ABC +∠BAD =∠ADE +∠EDC ,∴∠B =∠ADE ,∵BA BC=DA DE =1,∴△ABC ∽△ADE ;(2)∵△ABC ∽△ADE ,∴∠BAC =∠DAE ,∴∠BAD =∠CAE =∠CDE ,∵∠COD =∠EOA ,∴△COD ∽△EOA ,∴OC OE =OD OA,∵∠AOD =∠COE ,∴△AOD ∽△EOC ,∴DA :CE =OD :OC ,即DA •OC =OD •CE .【点评】本题考查了相似三角形的判定和性质,三角形的外角的性质,熟练掌握相似三角形的判定定理是解题的关键.26(2021秋•金山区校级月考)已知:如图,在梯形ABCD 中,AD ∥BC ,点E 在边AD 上,CE 与BD 相交于点F ,AD =4,AB =5,BC =BD =6,DE =3.(1)求证:△DFE ∽△DAB ;(2)求线段CF 的长.【分析】(1)AD ∥BC ,DE =3,BC =6,DF FB =DE BC=36=12,DF DA =DE DB .又∠EDF =∠BDA ,即可证明△DFE ∽△DAB .(2)由△DFE ∽△DAB ,利用对应边成比例,将已知数值代入即可求得答案.【解答】证明:(1)∵AD ∥BC ,DE =3,BC =6,∴DF FB =DE BC =36=12,∴DF BD =12,∵BD =6,∴DF =2.∵DA =4,∴DF DA =24=12,DE DB =36=12.∴DF DA=DE DB .又∵∠EDF =∠BDA ,∴△DFE ∽△DAB .(2)∵△DFE ∽△DAB ,∴EF AB =DE DB .∵AB =5,∴EF 5=36,∴EF =52=2.5.∵DE ∥BC ,∴CFEF =BC DE .∴CF 2.5=63,∴CF =5.(或利用△CFB ≌△BAD ).【点评】此题考查学生对梯形和相似三角形的判定与性质的理解和掌握,第(2)问也可利用△CFB ≌△BAD 求得线段CF 的长,不管学生用了哪种方法,只要是正确的,就要积极地给予表扬,以此激发学生的学习兴趣.27(2020秋•宝山区月考)如图,正方形DEFG 的边EF 在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上,已知△ABC 的边BC =15,高AH =10,求正方形DEFG 的边长和面积.【分析】高AH 交DG 于M ,如图,设正方形DEFG 的边长为x ,则DE =MH =x ,所以AM =10-x ,再证明△ADG ∽△ABC ,则利用相似比得到x 15=10-x 10,然后根据比例的性质求出x ,再计算x 2的值即可.【解答】解:高AH 交DG 于M ,如图,设正方形DEFG 的边长为x ,则DE =MH =x ,∴AM =AH -MH =10-x ,∵DG ∥BC ,∴△ADG ∽△ABC ,∴DG BC =AM AH,即x 15=10-x 10,∴x =6,∴x 2=36.答:正方形DEFG 的边长和面积分别为6,36.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;也考查了正方形的性质.28(2021秋•闵行区校级月考)如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,M 是CD 上的点,DH ⊥BM 于H ,DH 的延长线交AC 的延长线于E .求证:(1)△AED ∽△CBM ;(2)AE •CM =AC •CD .【分析】(1)由于△ABC 是直角三角形,易得∠A +∠ABC =90°,而CD ⊥AB ,易得∠MCB +∠ABC =90°,利用同角的余角相等可得∠A =∠MCB ,同理可证∠1=∠2,而∠ADE =90°+∠1,∠CMB =90°+∠2,易证∠ADE =∠CMB ,从而易证△AED ∽△CBM ;(2)由(1)知△AED ∽△CBM ,那么AE :AD =CB :CM ,于是AE •CM =AD •CB ,再根据△ABC 是直角三角形,CD 是AB 上的高,易知△ACD ∽△CBD ,易得AC •CD =AD •CB ,等量代换可证AE •CM =AC •CD .【解答】证明:(1)∵△ABC 是直角三角形,∴∠A +∠ABC =90°,∵CD ⊥AB ,∴∠CDB =90°,即∠MCB +∠ABC =90°,∴∠A =∠MCB ,∵CD ⊥AB ,∴∠2+∠DMB =90°,∵DH ⊥BM ,∴∠1+∠DMB =90°,∴∠1=∠2,又∵∠ADE =90°+∠1,∠CMB =90°+∠2,∴∠ADE =∠CMB ,∴△AED ∽△CBM ;(2)∵△AED ∽△CBM ,∴AE BC =AD CM,∴AE •CM =AD •CB ,∵△ABC 是直角三角形,CD 是AB 上的高,∴△ACD ∽△CBD ,∴AC :AD =CB :CD ,∴AC •CD =AD •CB ,∴AE •CM =AC •CD .【点评】本题考查了相似三角形的判定和性质、直角三角形斜边上的高所分成的两个三角形与这个直角三角形相似.解题的关键是证明∠A =∠MCB 以及∠ADE =∠CMB .29(2022秋•徐汇区校级月考)如图,在直角坐标平面内有点A (6,0),B (0,8),C (-4,0),点M 、N 分别为线段AC 和射线AB 上的动点,点M 以2个单位长度/秒的速度自C 向A 方向做匀速运动,点N 以5个单位长度/秒的速度自A 向B 方向做匀速运动,MN 交OB 于点P .(1)求证:MN :NP 为定值;(2)若△BNP 与△MNA 相似,求CM 的长;(3)若△BNP 是等腰三角形,求CM 的长.【分析】(1)过点N 作NH ⊥x 轴于点H ,然后分两种情况进行讨论,综合两种情况,求得MN :NP 为定值53.(2)当△BNP 与△MNA 相似时,当点M 在CO 上时,只可能是∠MNB =∠MNA =90°,所以△BNP ∽△MNA ∽△BOA ,所以AM AN =AB AO ,所以10-2k 5k =106,k =3031,即CM =6031;当点M 在OA 上时,只可能是∠NBP =∠NMA ,所以∠PBA =∠PMO ,根据题意可以判定不成立,所以CM =6031.(3)由于等腰三角形的特殊性质,应分三种情况进行讨论,即BP =BN ,PB =PN ,NB =NP 三种情况进行讨论.【解答】证明:(1)过点N 作NH ⊥x 轴于点H ,设AN =5k ,得:AH =3k ,CM =2k ,①当点M 在CO 上时,点N 在线段AB 上时:∴OH =6-3k ,OM =4-2k ,∴MH =10-5k ,∵PO ∥NH ,∴MN NP =MH OH=10-5k 6-3k =53,②当点M 在OA 上时,点N 在线段AB 的延长线上时:∴OH =3k -6,OM =2k -4,∴MH =5k -10,∵PO ∥NH ,∴MN NP =MH OH=5k -103k -6=53;解:(2)当△BNP 与△MNA 相似时:①当点M 在CO 上时,只可能是∠MNB =∠MNA =90°,∴△BNP ∽△MNA ∽△BOA ,∴AMAN =AB AO,。
2020-2021学年上海上海九年级上数学月考试卷及答案
【考点】
直线与都连位置关系
【解析】
此题暂无解析
【解答】
此题暂无解答
二、填空题
【答案】
此题暂无答案
【考点】
比较熔段
【解析】
此题暂无解析
【解答】
此题暂无解答
【答案】
此题暂无答案
【考点】
平行体的省质
【解析】
此题暂无解析
【解答】
此题暂无解答
【答案】
此题暂无答案
【考点】
相似三来形的循质
【解析】
此题暂无解析
【答案】
此题暂无答案
【考点】
相切表圆弹性质
圆与圆验强置关系
【解析】
此题暂无解析
【解答】
此题暂无解答
【答案】
此题暂无答案
【考点】
相验极角家的锰质与判定
【解析】
此题暂无解析
【解答】
此题暂无解答
【答案】
此题暂无答案
【考点】
翻折变换(折叠问题)
勾体定展
锐角三较函数严定义
矩形的正键与性质
【解析】
此题暂无解析
【解答】
求这条抛物线的解析式;
用含 的代数式表示线段 的长;
当 时,求 的正弦值.
如图,在 中, , , ,点 是边 延长线的一点, ,垂足为点 , 的延长线交 的平行线 于点 ,连接 交 于点 .
当点 是 的中点时,求 的值;
的值是否随线段 长度的改变而变化?如果不变,求出 的值;如果变化,请说明理由;
当 和 相似时,求线段 的长.
2020-2021学年上海上海九年级上数学月考试卷
一、选择题
1.已知 ,那么下列等式中,不一定正确的是( )
2020年上海虹口区初三数学一模试卷与答案
虹口区2019 学年度第一学期期终学生学习能力诊断测试初三数学试卷(满分150 分,考试时间100 分钟)2020.1 考生注意:1.本试卷含三个大题,共25 题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共 6 题,每题 4 分,满分24 分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.]1.如果cos = 12,那么锐角的度数为A.30°;B.45°;C.60°;D.90°.2.在Rt△ABC 中,∠C=90°,如果BC=2,tanB=2,那么AC 长为A.1;B.4;C. 5 ;D.2 5 .3.抛物线 2y 3(x 1) +1的顶点所在象限是A.第一象限;B.第二象限;C.第三象限; D.第四象限.4.已知抛物线 2y x 经过A( 2, y1) 、B(1, y2 ) 两点,在下列关系式中,正确的是A.y1 0 y2 ;B.y2 0 y1;C.y1 y2 0 ;D.y2 y1 0 .5.已知a、b 和c都是非零向量,在下列选项中,不能..判定a∥b 的是A.a = b ;B.a ∥c,b ∥c ;C.a+b 0 ;D.a+b 2c ,a b 3c .6.如图1,点D 是△ABC 的边BC 上一点,∠BAD= ∠C,AC=2AD,如果△ACD 的面积为15,那么△ABD 的面积为AA.;B.;C.7.5;D.5.B D图1CA二、填空题(本大题共12 题,每题 4 分,满分48 分)[请将结果直接填入答题纸的相应位置]7.如果a: b2:3 ,且a+b 10 ,那么 a 的值为▲.r r r r r r r r 8.如果向量 a 满足关系式2b 3(a+ x) 0、b 、x ,那么用向量 ar、br表示向量x = ▲.29.如果抛物线y (1 a) x 1的开口向下,那么 a 的取值范围是▲.10.沿着x 轴正方向看,抛物线或“右”).2y (x 1) 在对称轴▲侧的部分是下降的(填“左”111.如果函数2m my(122,抛物线直线 x 1,点 P 、Q 是抛物线与 x 轴的两个交点,点 P 在点Q 的右侧,如果点 P 为(4,0),那么点Q 为 ▲ . y y A B A Q O P x C D图2 O 图3133,点的值为 ▲ . 14.已知△ ABC ∽△A 1B 1C 1,顶点 A 、B 、C 分别与 A 1、B 1、C 1 对应,AC =12,A 1C 1=8,△ABC的高 AD 为6,那么△ A 1B 1C 1 的高 A 1D 1长为 ▲ . 15.如图4,在梯形 AEFB 中,AB ∥EF ,AB=6,EF =10,点 C 、D 分别在边A E 、BF 上且 C D ∥AB ,如果 A C=3C E ,那么 为 ▲ . 16.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》的“图”5), 它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果小正方形面 积是49,12176,在 R t △A B C 中,∠C =90°,A C =1,B 的顶点 E 、F B C 结B G ,t a n ∠D G B 为 ▲ . 18.如图7,在等腰梯形 ABCD 中,AD ∥BC ,sinC = 45 ,A B = 9,A B C 结E F ,将△B E F 沿着 E角线B D 于点 P ,当 B ’F ⊥ A A D D G 图5C F E 图6 B B 图7 C三、19.(本题满分 10 分)4sin 30 计算:cot 30 tan 452tan 60 .220.(本题满分10 分,第(1)小题满分 6 分,第(2)小题满分 4 分)在平面直角坐标系xOy 中,将抛物线C1: 2 2y x x 向左平移 2 个单位,向下平移 3 个单位得到新抛物线C2.(1)求新抛物线C2 的表达式;(2)如图8,将△OAB 沿x 轴向左平移得到△O’A’B,’点A(0,5)的对应点A’落在平移后的新抛物线C2 上,求点 B 与其对应点B’的距离.yA’ A C2B’ BO xO’图821.(本题满分10 分,第(1)小题满分 6 分,第(2)小题满分 4 分)如图9,在Rt△ABC 中,∠ABC= 90°,点G 是Rt△ABC 的重心,联结BG 并延长交AC于点D,过点G 作GE⊥BC 交边BC 于点E.(1)如果AC a,AB b,用a、b 表示向量BG ;A (2)当AB= 12 时,求GE 的长.DGBC E图922.(本题满分10 分)某次台风来袭时,一棵笔直大树树干AB(假定树干AB 垂直于水平地面)被刮倾斜7°(即∠BAB’=7°)后折断倒在地上,树的顶部恰好接触到地面 D 处(如图10 所示),测得∠CDA 为37°,AD 为5 米,求这棵大树AB 的高度.(结果保留根号)sin37 0.6 ,cos37 0.8,t an37 0.75)(参考数据:B B’C37°A D 23.(本题满分12 分,第(1)小题满分 6 分,第(2)小题满分 6 分)图103如图11,在Rt△ABC 中,∠ACB=90°,点 D 是边BC 的中点,联结AD,过点 C 作CE⊥AD 于点E,联结BE.A2(1)求证:BD DE AD ;(2)如果∠ABC=∠DCE,求证:BD CE BE DE .EC BD图1124.(本题满分12 分,第(1)小题满分 4 分,第(2)小题满分8 分)2如图12,在平面直角坐标系xOy中,抛物线y x bx c 与x 轴交于A(- 1,0)、B两点,与y 轴交于点C(0,3),点P 在抛物线的对称轴上,且纵坐标为 2 3 .(1)求抛物线的表达式以及点P 的坐标;(2)当三角形中一个内角α是另一个内角β的两倍时,我们称α为此三角形的“特征角”.①点 D 在射线AP 上,如果∠DAB 为△ABD 的特征角,求点 D 的坐标;②点 E 为第一象限内抛物线上一点,点F 在x 轴上,CE⊥EF,如果∠CEF 为△ECF 的特征角,求点 E 的坐标.yCA O xB图1225.(本题满分14 分,第(1)小题满分 4 分,第(2)小题满分 6 分,第(3)小题满分 4 分)在Rt△ABC 中,∠ACB =90°,BC=4,sin∠ABC = 3,点D 为射线BC 上一点,联结AD,5过点 B 作BE⊥AD 分别交射线AD、AC 于点E、F,联结DF .过点 A 作AG∥BD,交直线BE于点G.(1)当点 D 在BC 的延长线上时(如图13),如果CD =2,求tan∠FBC;(2)当点 D 在BC 的延长线上时(如图13),设AG x,S ADF y,求y 关于x 的函数关系式(不写函数的定义域);(3)如果AG =8,求DE 的长.A AGEFB BD C C图13备用图4虹口区 2019 学年度第一学期期终学生学初三数学试卷评分议 2020.1 说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分 标准相应评分;2.第一、二大题若无特别说明,每题评分只有满分; 3.第三大题中各题右端所注分数,表示考生正确做对这一步应得分数; 4.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误对本题的评阅.如果考生的解答在某一步出现错误定后继部分的给分,但原则上不超过后继部分应得分数; 5.评分时,给分或以 1 分为基本单位. 一、选择题(本6 题,每题 4 分,满分 24 分) 1.C 2.B 3.B 4.C 5.A 6.D 二、填空题(本12 题,每题 4 分,满分 48 分)2 7. 4 8. a b3 9.a >1 10.右 11.2 12. (-2,0) 13.3 14.4 15.9 16. 169 17. 1 3 18. 24 7 三、解答题(本7 题,满分 78 分)4 1 2 2 19.解:原式 = 3 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ( 8 分)3 1 2 = 3 3 1 = 3 2 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ( 2 分) 2 20.解:(1) y x 2x2 = x 1 1⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (3 分) ∵抛物线向左平移 2 个单位,向下平移 3 个单位,2∴新的抛物线 C 2 的表达式为: y x 1 4 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ( 3 分)(2)∵将△ OAB 沿 x 轴向左平移得到△ O ’A ’B ’A ’(x ,5)⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ( 1 分) ∵点 A 的对应点 A ’落在 C 2 上 2∴ 5 x 1 4 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ( 1 分) 解得 x 1 2 , x 2 4 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ( 1 分) x=2 不合题意,舍去∴点 B 与其对应点 B ’的距离为 4 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ( 1 分)521.解:(1)∵点G 是Rt△ABC 的重心∴点D 为AC 的中点⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)∴ 1 1AD AC a ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)2 2∴ 1BD BA AD b a ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 2 分)2∵点G 是Rt△ABC 的重心∴ 2BG BD ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)3∵BG 与BD 同向∴ 2 2 1BG BD b a ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)3 3 3(2)在Rt△ABC 中,点 D 为AC 的中点∴CD=DB ∴∠C=∠DBC∵GE⊥BC ∠ABC= 90°∴∠ABC= ∠GEB=90°∴△GEB∽△ABC⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)∴GE BG⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)AB AC∵ 2 1 1BG BD B D A C ∴BG AC ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)3 2 3∴ 1GE12 3∴GE=4 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)22.解:过点 A 作AE⊥CD,垂足为点E⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)在Rt△ADE 中,DE AD cos CDA 5 0.8 4 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 2 分)AE AD sin CDA 5 0.6 3 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)在Rt△ADE 中,∠DAE +∠ADC =90°∴∠DAE =90°- 37°=53°∴∠CAE =90°- 7°- 53°=30°⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)在Rt△ACE 中,tan 3 3 3CE AE CAE ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 2 分)3A C 2 C E 2 3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)由题得AB AB' AC B 'C AC CD AC CE DE 3 3 4 ⋯⋯⋯⋯( 1 分)答:这棵大树AB 原来的高度是( 3 3 4)米.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)23.证明:(1)∵CE⊥AD,∠ACB=90°∴∠ACB=∠CED =90°∵∠EDC =∠CDA∴△EDC ∽△CDA ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 3 分)∴D E CD CD AD∴CD 2=DE·AD⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 2 分)∵点D 是边B C 的中点∴CD =BD∴BD2=DE·AD⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)(2)由(1)得DE BDBD AD 且∠EDB =∠BDA6∴△BDE ∽△ADB⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 2 分)∴∠ABC =∠BED ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)∵∠ABC =∠DCE ,∴∠BED =∠DCE∵∠EBD =∠CBE∴△EBD ∽△CBE⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 2 分)∴BD EDBE CE 即BD CE BE DE ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)2 过A(-1,0),C(0,3)24.解:(1)∵y x bx c∴0= 1 b c;3 c.解得:b=2;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 2 分)c 3.∴y x2 2x 3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)对称轴为直线x=1∵点P 在对称轴上,且纵坐标为 2 3 ,∴点P 的坐标为(1,2 3 )⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)(2)设直线x= 1 交x轴于点Q∵A(-1,0),P(1,2 3 )∴AQ =2 PQ= 2 3 ∴tan PAQ 3∴∠PAQ =60°即∠DAB= 60°⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)∵点D 在射线AP 上,且∠DAB 为△ABD 的特征角,∴∠ABD =30°或∠ADB =30°,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)∴点D 的坐标为(0, 3 )或(3,4 3 )⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 2 分)(3)过点 E 作EG⊥x 轴于点G,过点 C 作CH⊥GE 的延长线于点H.∵CE⊥EF 且∠CEF 为△ECF 的特征角,∴∠ECF =∠CFE =45°⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)∴CE= E F在Rt△CHE 中,∠HCE+ ∠CEH =90°∵∠CEH +∠FEG =90°∴∠HCE =∠FEG∵∠H=∠EGF =90°∴△CHE≌△EGF∴CH =EG⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)∵点E 为第一象限内抛物线上一点∴设E(a,a2 2a 3)∴ 2 2 3a a a ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)解得1 13a (舍负)2∴E 1+ 13 1+ 13)(,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)2 225. (1)在Rt△BED 中,∠EDB+ ∠EBD =90°同理∠ADC+ ∠DAC =90°∴∠DAC =∠EBD 即∠DAC =∠FBC,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)由sin∠ABC = 35 可得tan∠ABC =347在 Rt △ABC 中, AC= BC tan ABC 3⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ( 1 分) 又∵ CD =2在 Rt △ACD 中, tan DAC D C AC 23∴ 2 tan FBC tan DAC ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ( 2分)3( 2)∵ AG ∥BD ∴ A G AFCB FC∴ x AF 4 3 AF ∴ AF = 3x x 4⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ( 2 分)∴ FC = 12 x 4⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯( 1 分)∵ tan FBC tan DAC ∴ F C DCBC ACAC DC ∴ ∴ tan ABC tan DFCBC FC ∴ ABC DFC ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ( 1 分) 由 sin ∠ABC = 3 5 可得 tan ∠ABC= 34∴ ∴ 3 3 12 9 DC FC 4 4 x 4 x 41 3x 9y 2 x 4 x 4⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯( 1 分)即 y 27x 2 2x 16x 32⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯( 1 分)( 3)① 当点 D 在 BC 的延长线上时,∵AG ∥CB ,∴ A G AF CB FC, 8 3 4 FCFC∴FC =1, ∴ CD FC tan DFC 34∴ 3 19DB 4 ,4 4∴ 19 1 19DE BD sin EBD 17 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ( 2 分)4 17 68② 当点 D 在边B C 上时,∵AG ∥CB , ∴ B C FC AG FA ∴ 4 8 3 F C FC, ∴FC =3 ∴ 9 CD FC tan DFC ,4∴ 9 7 7 3 21DB 4 , DE BD sin EBD = ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ( 2 分)4 4 45 20 8综上,21DE 或20196817.9。
2020-2021学年上海市虹口区九年级(上)期末数学试卷(一模)
2020-2021学年上海市虹口区九年级(上)期末数学试卷(一模)一、选择题(本大题共6小题,共24.0分)1. 如图,已知在Rt △ABC 中,∠C =90°,BC =1,AC =2,则tan A 的值为( )A. 2B. 12C. √55D. 2√55 2. 将抛物线y =2x 2向左平移3个单位得到的抛物线的表达式是( )A. y =2x 2+3B. y =2x 2−3C. y =2(x +3)2D. y =2(x −3)23. 下列式子中,一定是二次函数的是( )A. y =ax 2+bx +cB. y =x (−x +1)C. y =(x −1)2−x 2D. y =1x 2 4. 如图,传送带和地面所成斜坡AB 的坡比为1:2,物体沿传送带上升到点B 时,距离地面的高度为3米,那么斜坡AB 的长度为( )A. 3√5米B. 5√3米C. 4√5米D. 6米 5. 如图,在Rt △ABC 中,∠C =90°,sin∠A =34,AB =8cm ,则△ABC 的面积是( )A. 6cm 2B. 24cm 2C. 2√7cm 2D. 6√7cm 26. 如图,向量OA ⃗⃗⃗⃗⃗ 与OB ⃗⃗⃗⃗⃗⃗ 均为单位向量,且OA ⊥OB ,令n ⃗ =OA ⃗⃗⃗⃗⃗ +OB⃗⃗⃗⃗⃗⃗ ,则|n ⃗ |=( )A. 1B. √2C. √3D. 2二、填空题(本大题共12小题,共48.0分)=_____.7.若2a=5b,则aa−b(a⃗−2b⃗ )−4b⃗ =______.8.计算:329.如果抛物线y=−x2+(m−1)x+3经过点(2,1),那么m的值为______.10.已知抛物线y=(m−1)x2+4的顶点是此抛物线的最高点,那么m的取值范围是______ .11.如果点A(2,−4)与点B(6,−4)在抛物线y=ax2+bx+c(a≠0)上,那么该抛物线的对称轴为直线______.12.抛物线y=−x2+2x−1在对称轴______(填“左侧”或“右侧”)的部分是下降的.13.已知点P在线段AB上,满足AP:BP=BP:AB,若BP=2,则AB的长为______.14.在△ABC中,AB=3,AC=5,BC=6,点D、E分别在边AB、AC上,且AD=1,如果△ABC∽△ADE,那么AE=______.=______.15.如图,DE//BC,DF=2,FC=4,那么ADDB16.如图,在直角梯形ABCD中,AD//BC,∠B=90°,∠C=45°,AD=1,BC=4,则CD=_______.17.在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为______.18.如图,在△ABC中,AB=AC=5,BC=2√5,D为边AC上一点(点D与点A、C不重合).将△ABD沿直线BD翻折,使点A落在点E处,连接CE.如果CE//AB,那么AD:CD=______.三、解答题(本大题共7小题,共78.0分)19. 计算:cot45°4sin 245∘−tan60∘−cos30°.20. 如图二次函数y =ax 2+bx +c 的图象经过A 、B 、C 三点.(1)求出抛物线解析式;(2)求此抛物线的顶点坐标和对称轴;(3)观察图象,当x 取何值时,y <0?21. 如图,已知▱ABCD 的对角线交于点O ,点E 为边AD的中点,CE 交BD 于点G .(1)求OGDG 的值;(2)如果设AB ⃗⃗⃗⃗⃗ =a ⃗ ,BC ⃗⃗⃗⃗⃗ =b ⃗ ,试用a ⃗ 、b ⃗ 表示GO ⃗⃗⃗⃗⃗.22.如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮筐D 的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮筐D到地面的距离(精确到0.01米)(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,√3≈1.732,√2≈1.414)23.已知:如图,在△ABC中,点D、G分别在边AB、BC上,∠ACD=∠B,AG与CD相交于点F.(1)求证:AC2=AD⋅AB;(2)若ADAC =DFCG,求证:CG2=DF⋅BG.24.已知抛物线y=ax2+bx+c经过点A(−1,0),且经过直线y=x−3与x轴的交点B及与y轴的交点C.(1)求抛物线所对应的函数关系式;(2)求抛物线的顶点坐标;(3)若点M在第四象限内的抛物线上,且OM⊥BC,垂足为D,求点M的坐标.25.如图1,Rt△ABC中,∠ACB=90°,点D在BC的延长线上,∠BDE=∠ABC,BE⊥DE于E,BE交AC于点G.(1)求证:∠A=∠DBE;(2)如图2,过E作EF⊥AC于F,连接BF,若BF平分∠ABE,求证:AB=EB;(3)在(2)的条件下,如图3,连接DG,若AF=2FG,S△BDG=8,求BG的长.答案和解析1.【答案】B【解析】【分析】本题考查的是锐角三角函数的定义有关知识,利用锐角三角函数的定义进行解答即可.【解答】解:∵∠C=90°,BC=1,AC=2,.故选B.2.【答案】C【解析】解:将抛物线y=2x2向左平移3个单位所得抛物线解析式为:y=2(x+3)2;故选:C.根据“左加右减”的原则进行解答即可.本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.3.【答案】B【解析】【分析】本题考查的是二次函数的定义有关知识,利用二次函数的定义对选项进行逐一判断.【解答】解:A.不能确定a是否为零,故不是二次函数;B.是二次函数;C.不是二次函数;D.不是二次函数.故选B.4.【答案】A【解析】【分析】本题考查的是解直角三角形的应用−坡度坡角问题,掌握坡度坡角的概念是解题的关键.作BC ⊥地面于点C ,根据坡度的概念、勾股定理列式计算即可.【解得】解:作BC ⊥地面于点C ,∵传送带和地面所成斜坡AB 的坡度为1:2,BC =3米,∴AC =2BC =6米,由勾股定理得,AC 2+BC 2=AB 2,即AB =√62+32=√45=3√5米.故选A .5.【答案】D【解析】解:在Rt △ACB 中,∵∠C =90°,AB =8cm ,∴sinA =BC AB =34,∴BC =6(cm),∴AC =√AB 2−BC 2=√82−62=2√7(cm),∴S △ABC =12⋅BC ⋅AC =12×6×2√7=6√7(cm 2). 故选:D .在Rt △ABC 中,求出BC ,AC 即可解决问题.本题考查解直角三角形的应用,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 6.【答案】B【解析】解:∵向量OA⃗⃗⃗⃗⃗ 与OB ⃗⃗⃗⃗⃗⃗ 均为单位向量, ∴|OA ⃗⃗⃗⃗⃗ |=1,|OB⃗⃗⃗⃗⃗⃗ |=1, ∵OA ⊥OB ,∴AB =√12+12=√2,∵n ⃗ =OA ⃗⃗⃗⃗⃗ +OB⃗⃗⃗⃗⃗⃗ , ∴|n ⃗ |=AB =√2,故选:B .根据平面向量的性质以及勾股定理即可解决问题.本题考查平面向量,熟练掌握平面向量的基本性质的解题的关键.7.【答案】53【解析】【分析】本题考查了比例的性质,能正确根据比例的性质进行变形是解此题的关键,根据比例的性质得出a b =52,设a =5k ,b =2k ,代入求出即可.【解答】解:∵2a =5b ,∴a b =52, 设a =5k ,b =2k ,则a a−b =5k 5k−2k =53,故答案为53.8.【答案】32a ⃗ −7b ⃗【解析】【分析】实数的运算法则同样适用于平面向量的计算.本题考查了平面向量的有关概念,是基础题.【解答】解::32(a⃗ −2b ⃗ )−4b ⃗ =32a ⃗ −32×2b ⃗ −4b ⃗ =32a ⃗ −7b ⃗ . 故答案是:32a ⃗ −7b ⃗ . 9.【答案】2【解析】解:∵抛物线y=−x2+(m−1)x+3经过点(2,1),∴−4+2m−2+3=1,解得m=2.故答案为2.把点(2,1)代入函数解析式,计算即可求出m的值.本题考查了二次函数图象上点的坐标特征,比较简单,理解函数图象上的点的坐标满足函数关系式是解题的关键.10.【答案】m<1【解析】【分析】此题主要考查了利用二次函数顶点坐标位置确定图象开口方向,此题型是中考重点,同学们应熟练掌握.根据二次函数y=(m+1)x2+2的顶点是此抛物线的最高点,得出抛物线开口向下,即m+1<0,即可得出答案.【解答】解:∵抛物线y=(m−1)x2+4的顶点是此抛物线的最高点,∴抛物线开口向下,∴m−1<0,∴m<1,故答案为m<1.11.【答案】x=4【解析】解:∵点A(2,−4)与点B(6,−4)的纵坐标相等,∴点A、B关于抛物线对称轴对称,=4.∴抛物线的对称轴为直线x=2+62故答案为:x=4.由点A、B的纵坐标相等可得出点A、B关于抛物线的对称轴对称,再由点A、B的横坐标即可求出抛物线的对称轴,此题得解.本题考查了二次函数的性质,牢记二次函数的性质是解题的关键.12.【答案】右侧【解析】解:∵a=−1<0,∴抛物线开口向下,顶点是抛物线的最高点,抛物线在对称轴右侧的部分是下降的,故答案为:右侧.根据二次函数的性质解题.本题考查了二次函数的性质,熟练掌握性质上解题的关键.13.【答案】√5+1【解析】【分析】根据黄金分割点的定义,知AP是较长线段,得出BP=√5−12AB,代入数据即可得出AB 的长.本题考查了比例线段、黄金分割的概念:如果一个点把一条线段分成两条线段,并且较长线段是较短线段和整个线段的比例中项,那么就说这个点把这条线段黄金分割,这个点叫这条线段的黄金分割点;较长线段是整个线段的√5−12倍.【解答】解:∵点P在线段AB上,满足AP:BP=BP:AB,∴P为线段AB的黄金分割点,且BP是较长线段,∴BP=√5−12AB,∴√5−12AB=2,解得AB=√5+1.故答案为:√5+1.14.【答案】53【解析】解:∵△ABC∽△ADE,∴ADAB =AEAC,即13=AE5,解得,AE=53,故答案为:53.根据相似三角形对应边的比相等列出比例式,计算即可.本题考查的是相似三角形的性质,掌握相似三角形对应边的比相等是解题的关键.15.【答案】1【解析】【分析】本题主要考查了相似三角形的判定及性质,能够运用相似三角形的性质得出对应线段成比例是解答此题的关键.先根据相似三角形的判定方法可判断△ADE∽△ABC,△DEF∽△CBF,再根据相似三角形的性质得DFFC =DEBC=12,DEBC=ADAB=12,设AD=k,则AB=2k,可得结果.【解答】解:∵DE//BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴△ADE∽△ABC,∴DFFC =DEBC=12,∵DE//BC,∴∠CDE=∠BCD,∠DEB=∠EBC,∴△DEF∽△CBF,∴DEBC =ADAB=12,设AD=k,则AB=2k,BD=2k−k=k,∴ADDB =kk=1.故答案为:1.16.【答案】3√2【解析】【分析】本题考查梯形,矩形,直角三角形的相关知识.解决此类题要懂得用梯形的常用辅助线,把梯形分割为矩形和直角三角形,从而由矩形和直角三角形的性质来求解.作辅助线DE⊥BC,由已知条件可知△CED为等腰直角三角形,再用勾股定理求出CD的长。
★试卷3套精选★上海市虹口区2020年中考数学模拟联考试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若0<m <2,则关于x 的一元二次方程﹣(x+m )(x+3m )=3mx+37根的情况是( ) A .无实数根B .有两个正根C .有两个根,且都大于﹣3mD .有两个根,其中一根大于﹣m【答案】A【解析】先整理为一般形式,用含m 的式子表示出根的判别式△,再结合已知条件判断△的取值范围即可.【详解】方程整理为22x 7mx 3m 370+++=,△()()22249m 43m 3737m 4=-+=-,∵0m 2<<,∴2m 40-<,∴△0<,∴方程没有实数根,故选A .【点睛】本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.2.如图1,将三角板的直角顶点放在直角尺的一边上,Ð1=30°,Ð2=50°,则Ð3的度数为A .80°B .50°C .30°D .20°【答案】D 【解析】试题分析:根据平行线的性质,得∠4=∠2=50°,再根据三角形的外角的性质∠3=∠4-∠1=50°-30°=20°.故答案选D .考点:平行线的性质;三角形的外角的性质.3.为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有()A.12 B.48 C.72 D.96【答案】C【解析】解:根据图形,身高在169.5cm~174.5cm之间的人数的百分比为:12100%=24% 6+10+16+12+6,∴该校男生的身高在169.5cm~174.5cm之间的人数有300×24%=72(人).故选C.4.如图,已知△ABC中,∠C=90°,AC=BC=2,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2-2B 3C3-1D.1【答案】C【解析】延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD-C′D计算即可得解.【详解】解:延长BC′交AB′于D,连接BB',如图,在Rt△AC′B′中,2AC′=2,∵BC′垂直平分AB′,∴C′D=12AB=1,∵BD为等边三角形△ABB′的高,∴33,∴BC′=BD-3-1.故本题选择C.【点睛】熟练掌握勾股定理以及由旋转60°得到△ABB′是等边三角形是解本题的关键.5.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A.2.18×106B.2.18×105C.21.8×106D.21.8×105【答案】A【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18×106,故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的()A.方差B.中位数C.众数D.平均数【答案】A【解析】试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定.故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可.故选A.考点:1、计算器-平均数,2、中位数,3、众数,4、方差7.如图,函数y =kx +b(k≠0)与y =m x (m≠0)的图象交于点A(2,3),B(-6,-1),则不等式kx +b >m x的解集为( )A .602x x <-<<或B .602x x -<或C .2x >D .6x <-【答案】B 【解析】根据函数的图象和交点坐标即可求得结果.【详解】解:不等式kx+b >m x的解集为:-6<x <0或x >2, 故选B .【点睛】此题考查反比例函数与一次函数的交点问题,解题关键是注意掌握数形结合思想的应用.8.一个几何体的三视图如图所示,则该几何体的表面积是( )A .24+2πB .16+4πC .16+8πD .16+12π【答案】D 【解析】根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.【详解】该几何体的表面积为2×12•π•22+4×4+12×2π•2×4=12π+16, 故选:D .【点睛】本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算. 9.如图,AD 是半圆O 的直径,AD =12,B ,C 是半圆O 上两点.若AB BC CD ==,则图中阴影部分的面积是( )A .6πB .12πC .18πD .24π【答案】A 【解析】根据圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°,根据扇形面积公式计算即可.【详解】∵AB BC CD ==,∴∠AOB=∠BOC=∠COD=60°.∴阴影部分面积=2606=6360⨯ππ. 故答案为:A.【点睛】本题考查的知识点是扇形面积的计算,解题关键是利用圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°. 10.如图,在平面直角坐标系xOy 中,正方形ABCD 的顶点D 在y 轴上,且(3,0)A -,(2,)B b ,则正方形ABCD 的面积是( )A .13B .20C .25D .34【答案】D 【解析】作BE ⊥OA 于点E.则AE=2-(-3)=5,△AOD ≌△BEA (AAS ), ∴OD=AE=5,22223534AD AO OD ∴=+=+= ,∴正方形ABCD 的面积是343434= ,故选D.二、填空题(本题包括8个小题)11.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD 相交于O,则tan∠BOD的值等于__________.【答案】3【解析】试题解析:平移CD到C′D′交AB于O′,如图所示,则∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,设每个小正方形的边长为a,则O′B=,O′D′=,BD′=3a,作BE⊥O′D′于点E,则BE=,∴O′E=,∴tanBO′E=,∴tan∠BOD=3.考点:解直角三角形.12.在矩形ABCD中,AB=4,BC=3,点P在AB上.若将△DAP沿DP折叠,使点A落在矩形对角线上的处,则AP的长为__________.【答案】32或94【解析】①点A落在矩形对角线BD上,如图1,∵AB=4,BC=3,根据折叠的性质,AD=A′D=3,AP=A′P ,∠A=∠PA′D=90°,∴BA′=2,设AP=x ,则BP=4﹣x ,∵BP 2=BA′2+PA′2,∴(4﹣x )2=x 2+22,解得:x=32,∴AP=32; ②点A 落在矩形对角线AC 上,如图2,根据折叠的性质可知DP ⊥AC ,∴△DAP ∽△ABC ,∴AD AB AP BC=, ∴AP=AD BC AB =334⨯=94. 故答案为32或94.13.若反比例函数y =﹣6x的图象经过点A(m ,3),则m 的值是_____. 【答案】﹣2 【解析】∵反比例函数6y x =-的图象过点A (m ,3), ∴63m=-,解得=2-. 14.抛物线y=(x+1)2 - 2的顶点坐标是 ______ .【答案】 (-1,-2)【解析】试题分析:因为y=(x+1)2﹣2是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(﹣1,﹣2),故答案为(﹣1,﹣2).考点:二次函数的性质.15.如图,点G 是ABC 的重心,AG 的延长线交BC 于点D ,过点G 作GE //BC 交AC 于点E ,如果BC 6=,那么线段GE 的长为______.【解析】分析:由点G是△ABC重心,BC=6,易得CD=3,AG:AD=2:3,又由GE∥BC,可证得△AEG∽△ACD,然后由相似三角形的对应边成比例,即可求得线段GE的长.详解:∵点G是△ABC重心,BC=6,∴CD=1BC=3,AG:AD=2:3,2∵GE∥BC,∴△AEG∽△ADC,∴GE:CD=AG:AD=2:3,∴GE=2.故答案为2.点睛:本题考查了三角形重心的定义和性质、相似三角形的判定和性质.利用三角形重心的性质得出AG:AD=2:3是解题的关键.16.如图,圆锥底面圆心为O,半径OA=1,顶点为P,将圆锥置于平面上,若保持顶点P位置不变,将圆锥顺时针滚动三周后点A恰好回到原处,则圆锥的高OP=_____.【答案】【解析】先利用圆的周长公式计算出PA的长,然后利用勾股定理计算PO的长.【详解】解:根据题意得2π×PA=3×2π×1,所以PA=3,所以圆锥的高OP=故答案为.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.17.如图,在边长为3的菱形ABCD中,点E在边CD上,点F为BE延长线与AD延长线的交点.若DE=1,则DF的长为________.【解析】求出EC ,根据菱形的性质得出AD ∥BC ,得出相似三角形,根据相似三角形的性质得出比例式,代入求出即可.【详解】∵DE=1,DC=3,∴EC=3-1=2,∵四边形ABCD 是菱形,∴AD ∥BC ,∴△DEF ∽△CEB , ∴DF DE BC CE=, ∴132DF =, ∴DF=1.1,故答案为1.1.【点睛】此题主要考查了相似三角形的判定与性质,解题关键是根据菱形的性质证明△DEF ∽△CEB ,然后根据相似三角形的性质可求解.18.与直线2y x =平行的直线可以是__________(写出一个即可).【答案】y=-2x+5(答案不唯一)【解析】根据两条直线平行的条件:k 相等,b 不相等解答即可.【详解】解:如y=2x+1(只要k=2,b≠0即可,答案不唯一).故答案为y=2x+1.(提示:满足y 2x b =+的形式,且b 0≠)【点睛】本题考查了两条直线相交或平行问题.直线y=kx+b ,(k≠0,且k ,b 为常数),当k 相同,且b 不相等,图象平行;当k 不同,且b 相等,图象相交;当k ,b 都相同时,两条直线重合.三、解答题(本题包括8个小题)19.一辆汽车在某次行驶过程中,油箱中的剩余油量y (升)与行驶路程x (千米)之间是一次函数关系,其部分图象如图所示.求y 关于x 的函数关系式;(不需要写定义域)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?【答案】(1)该一次函数解析式为y=﹣x+1.(2)在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【解析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案. 【详解】(1)设该一次函数解析式为y=kx+b,将(150,45)、(0,1)代入y=kx+b中,得,解得:,∴该一次函数解析式为y=﹣x+1;(2)当y=﹣x+1=8时,解得x=520,即行驶520千米时,油箱中的剩余油量为8升.530﹣520=10千米,油箱中的剩余油量为8升时,距离加油站10千米,∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【点睛】本题考查了一次函数的应用,熟练掌握待定系数法,弄清题意是解题的关键.20.如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B,求证:AC•CD=CP•BP;若AB=10,BC=12,当PD∥AB时,求BP的长.【答案】(1)证明见解析;(2)25 3.【解析】(2)易证∠APD=∠B=∠C,从而可证到△ABP∽△PCD,即可得到BP ABCD CP,即AB•CD=CP•BP,由AB=AC即可得到AC•CD=CP•BP;(2)由PD∥AB可得∠APD=∠BAP,即可得到∠BAP=∠C,从而可证到△BAP∽△BCA,然后运用相似三角形的性质即可求出BP的长.解:(1)∵AB=AC,∴∠B=∠C.∵∠APD=∠B,∴∠APD=∠B=∠C.∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP ∽△PCD , ∴BP AB CD CP =, ∴AB•CD=CP•BP .∵AB=AC ,∴AC•CD=CP•BP ;(2)∵PD ∥AB ,∴∠APD=∠BAP .∵∠APD=∠C ,∴∠BAP=∠C .∵∠B=∠B ,∴△BAP ∽△BCA ,∴BA BP BC BA=. ∵AB=10,BC=12,∴101210BP =, ∴BP=253. “点睛”本题主要考查了相似三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形外角的性质等知识,把证明AC•CD=CP•BP 转化为证明AB•CD=CP•BP 是解决第(1)小题的关键,证到∠BAP=∠C 进而得到△BAP ∽△BCA 是解决第(2)小题的关键.21.如图,已知二次函数y=ax 2+2x+c 的图象经过点C (0,3),与x 轴分别交于点A ,点B (3,0).点P 是直线BC 上方的抛物线上一动点.求二次函数y=ax 2+2x+c 的表达式;连接PO ,PC ,并把△POC 沿y 轴翻折,得到四边形POP′C .若四边形POP′C 为菱形,请求出此时点P 的坐标;当点P 运动到什么位置时,四边形ACPB 的面积最大?求出此时P 点的坐标和四边形ACPB 的最大面积.【答案】(1)y=﹣x 2+2x+3(2)(2+102,32)(3)当点P 的坐标为(32,154)时,四边形ACPB 的最大面积值为758 【解析】(1)根据待定系数法,可得函数解析式;(2)根据菱形的对角线互相垂直且平分,可得P 点的纵坐标,根据自变量与函数值的对应关系,可得P点坐标;(3)根据平行于y 轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PQ 的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.【详解】(1)将点B 和点C 的坐标代入函数解析式,得9603,a c c ++=⎧⎨=⎩ 解得13,ab =-⎧⎨=⎩二次函数的解析式为y=﹣x 2+2x+3;(2)若四边形POP′C 为菱形,则点P 在线段CO 的垂直平分线上,如图1,连接PP′,则PE ⊥CO ,垂足为E ,∵C (0,3), ∴30,2E ,⎛⎫ ⎪⎝⎭∴点P 的纵坐标32, 当32y =时,即23232x x -++=, 解得1221021022x x +-==(不合题意,舍), ∴点P 的坐标为21032;⎫+⎪⎪⎝⎭(3)如图2,P 在抛物线上,设P (m ,﹣m 2+2m+3),设直线BC 的解析式为y=kx+b ,将点B 和点C 的坐标代入函数解析式,得3303,k b +=⎧⎨=⎩解得13.k b =-⎧⎨=⎩直线BC 的解析为y=﹣x+3,设点Q 的坐标为(m ,﹣m+3),PQ=﹣m 2+2m+3﹣(﹣m+3)=﹣m 2+3m .当y=0时,﹣x 2+2x+3=0,解得x 1=﹣1,x 2=3,OA=1,()314AB =--=,S 四边形ABPC =S △ABC +S △PCQ +S △PBQ111,222AB OC PQ OF PQ FB =⋅+⋅+⋅ ()2114333,22m m =⨯⨯+-+⨯ 23375228m ⎛⎫=--+ ⎪⎝⎭, 当m=32时,四边形ABPC 的面积最大. 当m=32时,215234m m -++=,即P 点的坐标为315,24⎛⎫ ⎪⎝⎭. 当点P 的坐标为315,24⎛⎫ ⎪⎝⎭时,四边形ACPB 的最大面积值为758. 【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用菱形的性质得出P 点的纵坐标,又利用了自变量与函数值的对应关系;解(3)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质.22.已知2是关于x 的方程x 2﹣2mx+3m =0的一个根,且这个方程的两个根恰好是等腰△ABC 的两条边长,则△ABC 的周长为_____.【答案】11【解析】将x=2代入方程找出关于m 的一元一次方程,解一元一次方程即可得出m 的值,将m 的值代入原方程解方程找出方程的解,再根据等腰三角形的性质结合三角形的三边关系即可得出三角形的三条边,根据三角形的周长公式即可得出结论.【详解】将x=2代入方程,得:1﹣1m+3m=0,解得:m=1.当m=1时,原方程为x 2﹣8x+12=(x ﹣2)(x ﹣6)=0,解得:x 1=2,x 2=6,∵2+2=1<6,∴此等腰三角形的三边为6、6、2,∴此等腰三角形的周长C=6+6+2=11.【点睛】考点:根与系数的关系;一元二次方程的解;等腰三角形的性质23.如图,一次函数y =kx+b 的图象与反比例函数y =m x的图象交于A (﹣2,1),B (1,n )两点. 求反比例函数和一次函数的解析式;根据图象写出一次函数的值大于反比例函数的值的x 的取值范围.【答案】 (1)y=2x-,y=−x−1;(2)x<−2或0<x<1 【解析】(1)利用点A 的坐标可求出反比例函数解析式,再把B (1,n )代入反比例函数解析式,即可求得n 的值,于是得到一次函数的解析式;(2)根据图象和A,B 两点的坐标即可写出一次函数的值大于反比例函数的值的x 的取值范围.【详解】(1)∵A(−2,1)在反比例函数y=m x 的图象上, ∴1=2m -,解得m=−2.∴反比例函数解析式为y=2x-, ∵B(1,n)在反比例函数上,∴n=−2,∴B 的坐标(1,−2), 把A(−2,1),B(1,−2)代入y=kx+b 得122k b k b =-+⎧⎨-=+⎩解得:11k b =-⎧⎨=-⎩∴一次函数的解析式为y=−x−1;(2)由图像知:当x<−2或0<x<1时,一次函数的值大于反比例函数的值.【点睛】本题考查了反比例函数与一次函数的交点问题,属于简单题,熟悉函数图像的性质是解题关键.24.如图,△ABC 是⊙O 的内接三角形,AB 是⊙O 的直径,OF ⊥AB ,交AC 于点F ,点E 在AB 的延长线上,射线EM 经过点C ,且∠ACE+∠AFO=180°.求证:EM 是⊙O 的切线;若∠A=∠E,BC=3,求阴影部分的面积.(结果保留π和根号).【答案】(1)详见解析;(2)1332π 【解析】(1)连接OC ,根据垂直的定义得到∠AOF=90°,根据三角形的内角和得到∠ACE=90°+∠A ,根据等腰三角形的性质得到∠OCE=90°,得到OC ⊥CE ,于是得到结论;(2)根据圆周角定理得到∠ACB=90°,推出∠ACO=∠BCE ,得到△BOC 是等边三角形,根据扇形和三角形的面积公式即可得到结论.【详解】:(1)连接OC ,∵OF ⊥AB ,∴∠AOF=90°,∴∠A+∠AFO+90°=180°,∵∠ACE+∠AFO=180°,∴∠ACE=90°+∠A ,∵OA=OC ,∴∠A=∠ACO ,∴∠ACE=90°+∠ACO=∠ACO+∠OCE ,∴∠OCE=90°,∴OC ⊥CE ,∴EM 是⊙O 的切线;(2)∵AB 是⊙O 的直径,∴∠ACB=90°,∴∠ACO+∠BCO=∠BCE+∠BCO=90°,∴∠ACO=∠BCE ,∵∠A=∠E ,∴∠A=∠ACO=∠BCE=∠E ,∴∠ABC=∠BCO+∠E=2∠A ,∴∠A=30°,∴∠BOC=60°,∴△BOC 是等边三角形,∴,∴阴影部分的面积1122π= 【点睛】本题考查了切线的判定,等腰三角形的判定和性质,扇形的面积计算,连接OC 是解题的关键. 25.某种型号油电混合动力汽车,从A 地到B 地燃油行驶需纯燃油费用76元,从A 地到B 地用电行驶需纯用电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.求每行驶1千米纯用电的费用;若要使从A 地到B 地油电混合行驶所需的油、电费用合计不超过39元,则至少需用电行驶多少千米?【答案】(1)每行驶1千米纯用电的费用为0.26元.(2)至少需用电行驶74千米.【解析】(1)根据某种型号油电混合动力汽车,从A 地到B 地燃油行驶纯燃油费用76元,从A 地到B 地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元,可以列出相应的分式方程,然后解分式方程即可解答本题;(2)根据(1)中用电每千米的费用和本问中的信息可以列出相应的不等式,解不等式即可解答本题.【详解】(1)设每行驶1千米纯用电的费用为x 元,根据题意得:760.5x +=26x解得:x=0.26经检验,x=0.26是原分式方程的解,答:每行驶1千米纯用电的费用为0.26元;(2)从A地到B地油电混合行驶,用电行驶y千米,得:0.26y+(260.26﹣y)×(0.26+0.50)≤39解得:y≥74,即至少用电行驶74千米.26.为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.【答案】(1) 14;(2)112.【解析】(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.【详解】(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=14;(2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()A.4.5cm B.5.5cm C.6.5cm D.7cm【答案】A【解析】试题分析:利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的长RN+NQ=3+2.5=3.5(cm).故选A.考点:轴对称图形的性质2.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD 的周长为()A.13 B.15 C.17 D.19【答案】B【解析】∵DE垂直平分AC,∴AD=CD,AC=2EC=8,∵C△ABC=AC+BC+AB=23,∴AB+BC=23-8=15,∴C△ABD=AB+AD+BD=AB+DC+BD=AB+BC=15.故选B.3.下列分式是最简分式的是()A .223a a bB .23a a a -C .22a b a b ++D .222a ab a b -- 【答案】C【解析】解:A .22233a a b ab =,故本选项错误; B .2133a a a a =--,故本选项错误; C .22a b a b++,不能约分,故本选项正确; D .222()()()a ab a a b a a b a b a b a b--==-+-+,故本选项错误. 故选C .点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键.4.下列说法中,错误的是( )A .两个全等三角形一定是相似形B .两个等腰三角形一定相似C .两个等边三角形一定相似D .两个等腰直角三角形一定相似【答案】B【解析】根据相似图形的定义,结合选项中提到的图形,对选项一一分析,选出正确答案.【详解】解:A 、两个全等的三角形一定相似,正确;B 、两个等腰三角形一定相似,错误,等腰三角形的形状不一定相同;C 、两个等边三角形一定相似;正确,等边三角形形状相同,只是大小不同;D 、两个等腰直角三角形一定相似,正确,等腰直角三角形形状相同,只是大小不同.故选B .【点睛】本题考查的是相似形的定义,联系图形,即图形的形状相同,但大小不一定相同的变换是相似变换.特别注意,本题是选择错误的,一定要看清楚题.5.关于x 的一元二次方程x 2+2x+k+1=0的两个实根x 1,x 2,满足x 1+x 2﹣x 1x 2<﹣1,则k 的取值范围在数轴上表示为( )A .B .C .D . 【答案】D【解析】试题分析:根据根的判别式和根与系数的关系列出不等式,求出解集.解:∵关于x 的一元二次方程x 2+2x+k+1=0有两个实根,∴△≥0,∴4﹣4(k+1)≥0,解得k≤0,∵x 1+x 2=﹣2,x 1•x 2=k+1,∴﹣2﹣(k+1)<﹣1,解得k >﹣2,不等式组的解集为﹣2<k≤0,在数轴上表示为:,故选D .点评:本题考查了根的判别式、根与系数的关系,在数轴上找到公共部分是解题的关键.6.二次函数y=ax 2+bx+c(a≠0)的图象如图,则反比例函数y=a x与一次函数y=bx ﹣c 在同一坐标系内的图象大致是( )A .B .C .D .【答案】C【解析】根据二次函数的图象找出a 、b 、c 的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.【详解】解:观察二次函数图象可知:开口向上,a >1;对称轴大于1,2b a>1,b <1;二次函数图象与y 轴交点在y 轴的正半轴,c >1. ∵反比例函数中k =﹣a <1,∴反比例函数图象在第二、四象限内;∵一次函数y =bx ﹣c 中,b <1,﹣c <1,∴一次函数图象经过第二、三、四象限.故选C .【点睛】本题考查了二次函数的图象、反比例函数的图象以及一次函数的图象,解题的关键是根据二次函数的图象找出a、b、c的正负.本题属于基础题,难度不大,解决该题型题目时,根据二次函数图象找出a、b、c 的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.7.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.(a+b)2=(a﹣b)2+4ab【答案】B【解析】根据图形确定出图1与图2中阴影部分的面积,由此即可解答.【详解】∵图1中阴影部分的面积为:(a﹣b)2;图2中阴影部分的面积为:a2﹣2ab+b2;∴(a﹣b)2=a2﹣2ab+b2,故选B.【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.8.已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.9【答案】A【解析】解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故选A.9.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是180°D.抛一枚硬币,落地后正面朝上【答案】C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C 、三角形的内角和是180°,是必然事件,故本选项符合题意;D 、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C .点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10.在下面的四个几何体中,左视图与主视图不相同的几何体是( )A .B .C .D .【答案】B【解析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A 、正方体的左视图与主视图都是正方形,故A 选项不合题意;B 、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B 选项与题意相符;C 、球的左视图与主视图都是圆,故C 选项不合题意;D 、圆锥左视图与主视图都是等腰三角形,故D 选项不合题意;故选B .【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.二、填空题(本题包括8个小题)11.如图,以扇形OAB 的顶点O 为原点,半径OB 所在的直线为x 轴,建立平面直角坐标系,点B 的坐标为(2,0),若抛物线21y x k 2=+与扇形OAB 的边界总有两个公共点,则实数k 的取值范围是 .【答案】-2<k <12。
∥3套精选试卷∥2020年上海市虹口区九年级上学期期末检测数学试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.下列运算中,正确的是( ). A .2x - x = 2 B .x 2 y ÷ y = x 2 C .x ⋅ x 4 = 2x D .(-2x )3 = -6x 3【答案】B【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解. 【详解】A. 2x - x = x,故本选项错误, B. x 2 y ÷ y = x 2 ,故本选项正确, C. 45x x x ⋅=,故本选项错误, D.()3328x x -=- ,故本选项错误. 故选B. 【点睛】此题考查幂的乘方与积的乘方、合并同类项、同底数幂的除法,解题关键在于掌握运算法则.2n 的值是( ) A .﹣1 B .4或﹣1C .1或﹣4D .4【答案】B【分析】根据同类二次根式的概念可得关于n 的方程,解方程可求得n 的值,再根据二次根式有意义的条件进行验证即可得.【详解】由题意:n 2-2n=n+4, 解得:n 1=4,n 2=-1,当n=4时,n 2-2n=8,n+4=8,符合题意, 当n=-1时,n 2-2n=3,n+4=3,符合题意, 故选B . 【点睛】本题考查了同类二次根式,二次根式有意义的条件,解一元二次方程等知识,熟练掌握和灵活运用相关知识是解题的关键.3.如图,ABC ∆是等边三角形,被一矩形所截,AB 被截成三等分,EH ∥BC ,则四边形EFGH 的面积是ABC ∆的面积的:( )A .19B .13C .49D .94【答案】B【分析】根据题意,易证△AEH ∽△AFG ∽△ABC ,利用相似比,可求出S △AEH 、S △AFG 与S △ABC 的面积比,从而表示出S △AEH 、S △AFG ,再求出四边形EFGH 的面积即可. 【详解】∵在矩形中FG ∥EH ,且EH ∥BC , ∴FG ∥EH ∥BC ,∴△AEH ∽△AFG ∽△ABC , ∵AB 被截成三等分, ∴13AE AB =,23AF AB =, ∴S △AEH :S △ABC =1:9,S △AFG :S △ABC =4:9,∴S △AEH =19S △ABC ,S △AFG =49S △ABC , ∴S 四边形EFGH = S △AFG -S △AEH =49S △ABC -19S △ABC =13S △ABC .故选:B . 【点睛】本题考查相似三角形的判定与性质,明确面积比等于相似比的平方是解题的关键. 4.抛物线2y ax bx c =++(0)a ≠上部分点的横坐标x 、纵坐标y 的对应值如下表:x… -3 -2 -1 0 1 … y…-6466…容易看出,()2,0-是它与x 轴的一个交点,那么它与x 轴的另一个交点的坐标为( ) A .(6,0)- B .(4,0)- C .(3,0) D .(0,6)【答案】C【分析】根据(0,6)、(1,6)两点求得对称轴,再利用对称性解答即可. 【详解】∵抛物线2y ax bx c =++经过(0,6)、(1,6)两点, ∴对称轴x =012+=12; 点(−2,0)关于对称轴对称点为(3,0), 因此它与x 轴的另一个交点的坐标为(3,0).故选C.【点睛】本题考查了二次函数的对称性,解题的关键是求出其对称轴.5.抛物线y=(x﹣1)2+3的顶点坐标是()A.(1,3)B.(﹣1,3)C.(1,﹣3)D.(3,﹣1)【答案】A【分析】根据顶点式解析式写出顶点坐标即可.【详解】解:抛物线y=(x﹣1)2+3的顶点坐标是(1,3).故选:A.【点晴】本题考查了二次函数的性质,主要是利用顶点式解析式写顶点的方法,需熟记.6.抛物线y=ax2+bx+c(a≠0)形状如图,下列结论:①b>0;②a﹣b+c=0;③当x<﹣1或x>3时,y >0;④一元二次方程ax2+bx+c+1=0(a≠0)有两个不相等的实数根.正确的有()A.4个B.3个C.2个D.1个【答案】B【分析】根据抛物线的开口方向、对称轴、顶点坐标和增减性,以及二次函数与一元二次方程的关系逐个进行判断即可.【详解】解:由抛物线开口向上,可知a>1,对称轴偏在y轴的右侧,a、b异号,b<1,因此①不符合题意;由对称轴为x=1,抛物线与x轴的一个交点为(3,1),可知与x轴另一个交点为(﹣1,1),代入得a﹣b+c=1,因此②符合题意;由图象可知,当x<﹣1或x>3时,图象位于x轴的上方,即y>1.因此③符合题意;抛物线与y=﹣1一定有两个交点,即一元二次方程ax2+bx+c+1=1(a≠1)有两个不相等的实数根,因此④符合题意;综上,正确的有3个,故选:B.【点睛】本题考查了二次函数的性质和二次函数同一元二次方程的关系,解决本题的关键是正确理解题意,熟练掌握二次函数的性质.7.若关于x 的方程kx 2﹣2x ﹣1=0有实数根,则实数k 的取值范围是( ) A .k >﹣1 B .k <1且k≠0C .k≥﹣1且k≠0D .k≥﹣1【答案】C【分析】根据根的判别式(240b ac =-≥△ )即可求出答案. 【详解】由题意可知:440k +≥△= ∴1k ≥- ∵0k ≠∴1k ≥- 且0k ≠ , 故选:C . 【点睛】本题考查了根的判别式的应用,因为存在实数根,所以根的判别式成立,以此求出实数k 的取值范围. 8.如图,周长为定值的平行四边形ABCD 中,60B ∠=,设AB 的长为x ,周长为16,平行四边形ABCD 的面积为y ,y 与x 的函数关系的图象大致如图所示,当63y =时,x 的值为( )A .1或7B .2或6C .3或5D .4【答案】B【分析】过点A 作AE ⊥BC 于点E ,构建直角△ABE ,通过解该直角三角形求得AE 的长度,然后利用平行四边形的面积公式列出函数关系式,即可求解. 【详解】如图,过点A 作AE ⊥BC 于点E ,∵∠B =60°,边AB 的长为x ,∴AE=AB•sin60°=2x∵平行四边形ABCD的周长为16,∴BC=12(16−2x)=8−x,∴y=BC•AE=(8−x)×2x(0≤x≤8).当y=(8−x x=解得x1=2,x2=6故选B.【点睛】考查了动点问题的函数图象.掌握平行四边形的周长公式和解直角三角形求得AD、BE的长度是解题的关键.9.若圆锥的底面半径为2,母线长为5,则圆锥的侧面积为()A.5πB.10πC.20πD.40π【答案】B【分析】利用圆锥面积=Rr计算.【详解】Rr=2510,故选:B.【点睛】此题考查圆锥的侧面积公式,共有三个公式计算圆锥的面积,做题时依据所给的条件恰当选择即可解答. 10.已知一个三角形的两个内角分别是40°,60°,另一个三角形的两个内角分别是40°,80°,则这两个三角形()A.一定不相似B.不一定相似C.一定相似D.不能确定【答案】C【解析】试题解析:∵一个三角形的两个内角分别是40,60,∴第三个内角为80,又∵另一个三角形的两个内角分别是40,80,∴这两个三角形有两个内角相等,∴这两个三角形相似.故选C.点睛:两组角对应相等,两三角形相似.11.已知M(1,2),则M 关于原点的对称点N 落在( ) A .2y x =的图象上 B .2y x 的图象上 C .22y x =的图象上 D .2y x =+的图象上【答案】A【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数得出N 的坐标,再根据各函数关系式进行判断即可.【详解】点M (1,2)关于原点对称的点N 的坐标是(-1,-2), ∴当x=-1时,对于选项A ,y=2×(-1)=-2,满足条件,故选项A 正确; 对于选项B ,y=(-1)2=1≠-2故选项B 错误; 对于选项C ,y=2×(-1)2=2≠-2故选项C 错误; 对于选项 D ,y=-1+2=1≠-2故选项D 错误. 故选A . 【点睛】本题考查了关于原点对称的点的坐标,以及函数图象上点的坐标特征,熟记关于原点对称的点的横坐标与纵坐标都互为相反数是解题的关键.12.如图,四边形ABCD 内接于⊙O ,若四边形ABCO 是平行四边形,则∠ADC 的大小为( )A .45︒B .50︒C .60︒D .75︒【答案】C【分析】根据平行四边形的性质和圆周角定理可得出答案. 【详解】根据平行四边形的性质可知∠B=∠AOC , 根据圆内接四边形的对角互补可知∠B+∠D=180°, 根据圆周角定理可知∠D=12∠AOC , 因此∠B+∠D=∠AOC+12∠AOC=180°, 解得∠AOC=120°, 因此∠ADC=60°. 故选C 【点睛】该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用. 二、填空题(本题包括8个小题)13.如图,直角三角形的直角顶点在坐标原点,30OAB ∠=︒,若点A 在反比例函数()60yx x=>的图象上,则经过点B 的反比例函数解析式为___;【答案】2y x=-【解析】构造K 字型相似模型,直接利用相似三角形的判定与性质得出2BOC AOD =3S S △△(),而由反比例性质可知S △AOD =12k =3,即可得出答案. 【详解】解:过点B 作BC ⊥x 轴于点C ,过点A 作AD ⊥x 轴于点D , ∵∠BOA=90°, ∴∠BOC+∠AOD=90°, ∵∠AOD+∠OAD=90°, ∴∠BOC=∠OAD , 又∵∠BCO=∠ADO=90°,∴△BCO ∽△ODA , ∴3tan 30BO AO =︒=, ∴2BOC AOD 31=3S S =△△(), ∴S △BCO =13S △AOD ∵S △AOD =12k =162⨯=3,∴S △BCO =13×3=1∵经过点B 的反比例函数图象在第二象限, 故反比例函数解析式为:y=2x-.故答案为2y x=-. 【点睛】此题主要考查了相似三角形的判定与性质以及反比例函数数的性质,正确得出S △BOC =1是解题关键. 14.在一个不透明的袋中装有黑色和红色两种颜色的球共15个,每个球触颜色外都相同,每次摇匀后随即摸出一个球,记下颜色后再放回袋中,通过大量重复摸球实验后,发现摸到黑球的频率稳定于0.6,则可估计这个袋中红球的个数约为__________. 【答案】6【分析】根据频率的定义先求出黑球的个数,即可知红球个数. 【详解】解:黑球个数为:150.69⨯=,红球个数:1596-=. 故答案为6 【点睛】本题考查了频数和频率,频率是频数与总数之比,掌握频数频率的定义是解题的关键. 15.双曲线2y x=-经过点()11,A y -,()22,B y ,则1y ______2y (填“>”,“<”或“=”). 【答案】>【分析】将点A 、B 的坐标分别代入双曲线的解析式,求得1y 、2y ,再比较1y 、2y 的大小即可. 【详解】双曲线2y x=-经过点()11,A y -,()22,B y , 当1x =-时,1221y =-=-, 当2x =时,1212y =-=-,∴12y y >. 故答案为:>. 【点睛】本题主要考查反比例函数图象上点的坐标特征,直接将横坐标代入解析式求得纵坐标,再作比较更为简单. 16.如图,BE 为正五边形ABCDE 的一条对角线,则∠ABE =_____________.【答案】36°【解析】360°÷5=72°,180°-72°=108°,所以,正五边形每个内角的度数为108°, 即可知∠A=108°,又知△ABE 是等腰三角形,则∠ABE=(180°-108°)=36°.17.已知在平面直角坐标系中,点P 在第二象限,且到x 轴的距离为3,到y 轴的距离为4,则点P 的坐标为______. 【答案】(-4,3)【分析】根据第二象限点的横坐标是负数,纵坐标是正数,点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值解答. 【详解】解:点P 在第二象限,且到x 轴的距离为3,到y 轴的距离为4,∴点P 的横坐标为4-,纵坐标为3, ∴点P 的坐标为(4,3)-.故答案为(4,3)-. 【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键. 18.如图,AB 是O 的直径,PB 是O 的切线,PA 交O 于点C ,4cm PA =,3cm PB =,则BC =______.【答案】374【分析】因PB 是O 的切线,利用勾股定理即可得到AB 的值,AB 是O 的直径,则△ABC 是直角三角形,可证得△ABC ∽△APB ,利用相似的性质即可得出BC 的结果. 【详解】解:∵PB 是O 的切线∴∠ABP=90°∵4cm PA =,3cm PB = ∴AB 2+BP 2=AP 2 ∴7 ∵AB 是O 的直径∴∠ACB=90° 在△ABC 和△APB 中BAP BAPACB ABP ∠=∠⎧⎨∠=∠⎩∴△ABC ∽△APB∴BC ABBP AP =∴34BC =∴4BC =【点睛】本题主要考查的是圆的性质以及相似三角形的性质和判定,掌握以上几点是解此题的关键. 三、解答题(本题包括8个小题)19.据某省商务厅最新消息,2018年第一季度该省企业对“一带一路”沿线国家的投资额为10亿美元,第三季度的投资额增加到了14.4亿美元.求该省第二、三季度投资额的平均增长率. 【答案】第二、三季度的平均增长率为20%.【解析】设增长率为x ,则第二季度的投资额为10(1+x )万元,第三季度的投资额为10(1+x )2万元,由第三季度投资额为10(1+x )2=14.4万元建立方程求出其解即可. 【详解】设该省第二、三季度投资额的平均增长率为x ,由题意,得: 10(1+x )2=14.4,解得:x 1=0.2=20%,x 2=﹣2.2(舍去). 答:第二、三季度的平均增长率为20%. 【点睛】本题考查了增长率问题的数量关系的运用,一元二次方程的解法的运用,解答时根据第三季度投资额为10(1+x )2=14.4建立方程是关键.20.已知一个二次函数图象上部分点的横坐标x 与纵坐标y 的对应值如下表所示:(1)求这个二次函数的表达式;(2)在给定的平面直角坐标系中画出这个二次函数的图象;(3)结合图像,直接写出当23x -<<时,y 的取值范围.【答案】(1)2(1)4y x =--+或2y x 2x 3=-++;(2)画图见解析;(3)54y -<≤.【分析】(1)利用表中数据和抛物线的对称性可得到二次函数的顶点坐标为(1,4),则可设顶点式y=a (x-1)2+4,然后把点(0,3)代入求出a 即可;(2)利用描点法画二次函数图象;(3)根据x=2-、3时的函数值即可写出y 的取值范围.【详解】解:根据题意可知, 二次函数的顶点坐标为(1,4),∴设二次函数的解析式为:2(1)4y a x =-+,把(0,3)代入得:1a =-;∴2(1)4y x =--+;∴解析式为:2(1)4y x =--+或2y x 2x 3=-++. (2)如图所示:(3)当2x =-时,2(21)45y =---+=-;当3x =时,2(31)40y =--+=;∵抛物线的对称轴为:1x =,此时y 有最大值4;∴当23x -<<时,y 的取值范围为:54y -<≤.【点睛】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.也考查了二次函数的图象与性质. 21.计算:4+(-2)2×2-(-36)÷4【答案】21【解析】试题分析:先乘方,再乘除,最后再计算加减.试题解析: 4+(-2)2×2-(-36)÷4,=4+4×2-(-36)÷4,=4+8-(-9),=12+9,=21.22.如图,函数y =2x 和y =﹣23x +4的图象相交于点A , (1)求点A 的坐标;(2)根据图象,直接写出不等式2x ≥﹣32x +4的解集.【答案】 (1) A 的坐标为(32,3);(2) x≥32. 【解析】试题分析:(1)联立两直线解析式,解方程组即可得到点A 的坐标;(2)根据图形,找出点A 右边的部分的x 的取值范围即可.试题解析:(1)由2243y x y x ==⎧⎪⎨-+⎪⎩,解得:323x y ⎧⎪⎨⎪⎩==, ∴A 的坐标为(32,3); (2)由图象,得不等式2x≥-23x+4的解集为:x≥32. 23.某产品每件成本10元,试销阶段每件产品的销售单价x (元/件)与每天销售量y (件)之间的关系如下表. x (元/件)15 18 20 22 … y (件) 250 220 200 180 …(1)直接写出:y与x之间的函数关系;(2)按照这样的销售规律,设每天销售利润为w(元)即(销售单价﹣成本价)x每天销售量;求出w (元)与销售单价x(元/件)之间的函数关系;(3)销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?【答案】(1)y=﹣10x+1;(2)w=﹣10x2+500x﹣10;(3)销售单价定为25 元时,每天销售利润最大,最大销售利润2250 元.【分析】(1)根据题意得出日销售量y是销售价x的一次函数,再利用待定系数法求出即可;(2)根据销量×每件利润=总利润,即可得出所获利润W为二次函数;(3)将(2)中的二次函数化为顶点式,确定最值即可.【详解】(1)由图表中数据得出y与x是一次函数关系,设解析式为:y=kx+b,则15250 18220k bk b+=⎧⎨+=⎩,解得:10400kb=-⎧⎨=⎩.故y与x之间的函数关系式为:y=﹣10x+1.故答案为:y=﹣10x+1.(2)w 与x 的函数关系式为:w=(x﹣10)y=(x﹣10)(﹣10x+1)=﹣10x2+500x﹣10;(3)w=﹣10x2+500x﹣10=﹣10(x﹣25)2+2250,因为﹣10<0,所以当x=25 时,w 有最大值.w 最大值为2250,答:销售单价定为25 元时,每天销售利润最大,最大销售利润2250 元.【点睛】本题考查了二次函数的应用及二次函数最大值求法,难度适中,解答本题的关键是根据题意,逐步求解,由易到难,搞清楚这两个函数之间的联系.24.如图,点C在以AB为直径的O上,ACB∠的平分线交O于点D,过点D作AB的平行线交CA 的延长线于点E.(1)求证:DE 是O 的切线;(2)若6AC =,8BC =,求DE 的长度.【答案】(1)见解析;(2)354【分析】(1)连接OD ,由AB 为O 的直径得到∠ACB=90︒,根据CD 平分∠ACB 及圆周角定理得到∠AOD=90︒,再根据DE ∥AB 推出OD ⊥DE ,即可得到DE 是O 的切线; (2)过点C 作CH ⊥AB 于H ,CD 交AB 于M ,利用勾股定理求出AB ,再利用面积法求出CH ,求出OH ,根据△CHM ∽△DOM 求出HM 得到AM ,再利用平行线证明△CAM ∽△CED ,即可求出DE.【详解】(1)如图,连接OD , ∵AB 为O 的直径,∴∠ACB=90︒,∵CD 平分∠ACB ,∴∠ACD=45︒,∴∠AOD=90︒,即OD ⊥AB ,∵DE ∥AB ,∴OD ⊥DE ,∴DE 是O 的切线;(2)过点C 作CH ⊥AB 于H ,CD 交AB 于M ,∵∠ACB=90︒,6AC =,8BC =,∴22226810AC BC +=+=,∵S △ABC =1122AC BC AB CH ⋅⋅=⋅⋅, ∴CH=68 4.810⨯=,∴AH=22226 4.8 3.6AC CH -=-=, ∴OH=OA-AH=5-3.6=1.4,∵∠CHM=∠DOM=90︒,∠HMC=∠DMO,∴△CHM ∽△DOM,∴CH HM CM DO OM DM== ∴CM DM = 4.824525HM OM ==,2449CM CD =, ∴HM=2435, ∴AM=AH+HM=307, ∵AB ∥DE, ∴△CAM ∽△CED,∴2449AM CM ED CD ==, ∴DE=354.【点睛】此题考查圆的性质,圆周角定理,切线的判定定理,三角形相似,勾股定理,(2)是本题的难点,利用平行线构建相似三角形求出DE 的长度,根据此思路相应的添加辅助线进行证明.25.天门山索道是世界最长的高山客运索道,位于张家界天门山景区.在一次检修维护中,检修人员从索道A 处开始,沿A ﹣B ﹣C 路线对索道进行检修维护.如图:已知500AB =米,800BC =米,AB 与水平线1AA 的夹角是30︒,BC 与水平线1BB 的夹角是60︒.求:本次检修中,检修人员上升的垂直高度1CA 是多少米?(结果精确到1米,参考数据:3 1.732≈)【答案】检修人员上升的垂直高度1CA 为943米.【解析】如图,过点B 作1BH AA ⊥于点H ,在Rt ΔABH 中先求出BH 的长,继而求出A 1B 1的长,一次方程的应用等知识,弄清是法运算,最后选择使原式有意义有在1Rt ΔBB C 中,根据三角函数求出B 1C 的长,即可求得结论.【详解】如图,过点B 作1BH AA ⊥于点H .在Rt ΔABH 中,AB 500=,BAH 30∠︒=, 11BH AB 50025022∴==⨯=(米), 11A B BH 250∴==(米),在1Rt ΔBB C 中,BC 800=,1CBB 60∠︒=,11B C 3sin CBB sin60BC ∠︒∴===, 133B C BC 8004003∴==⨯=, ∴检修人员上升的垂直高度1111CA CB A B 4003250943=+=+≈(米)答:检修人员上升的垂直高度1CA 为943米.【点睛】本题考查了解直角三角形的应用,添加辅助线,构建直角三角形是解题的关键.26.用适当的方法解下列方程:(1)(x ﹣2)2﹣16=1(2)5x 2+2x ﹣1=1.【答案】(1)x 1=-2,x 2=6;(2)x 1-16+,x 2=-1-65【分析】(1)先移项,两边再开方,即可得出两个一元一次方程,求出方程的解即可;(2)求出b 2-4ac 的值,代入公式求出即可.【详解】(1)(x-2)2-16=1,(x-2)2=16,两边开方得:x-2=±4,解得:x 1=-2,x 2=6;(2)5x 2+2x-1=1,b 2-4ac=22+4×5×1=24,,∴x 1,x 2【点睛】本题考查了解一元二次方程的应用,主要考查了学生的计算能力,题目是一道比较好的题目,难度适中. 27.计算:2cos60°+4sin60°•tan30°﹣cos45°【答案】3﹣2. 【分析】直接利用特殊角的三角函数值代入求出答案.【详解】2cos60°+4sin60°•tan30°﹣cos45°=2×12=1+2﹣2=3﹣2. 【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若一元二次方程kx 2﹣3x ﹣94=0有实数根,则实数k 的取值范围是( ) A .k =﹣1B .k ≥﹣1且k ≠0C .k >﹣1且k ≠0D .k ≤﹣1且k ≠0 【答案】B【分析】根据一元二次方程根的判别式△=9+9k ≥0即可求出答案.【详解】解:由题意可知:△=9+9k ≥0,∴k ≥﹣1,∵k ≠0,∴k ≥﹣1且k ≠0,故选:B .【点睛】本题考查了根据一元二次方程根的情况求方程中的参数,解题的关键是熟知一元二次方程根的判别式的应用.2.方程x (x ﹣5)=x 的解是( )A .x=0B .x=0或x=5C .x=6D .x=0或x=6 【答案】D【分析】先移项,然后利用因式分解法解方程.【详解】解:x (x ﹣5)﹣x=0,x (x ﹣5﹣1)=0,x=0或x ﹣5﹣1=0,∴x 1=0或x 2=1.故选:D .【点睛】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想). 3.如图直角三角板∠ABO =30°,直角项点O 位于坐标原点,斜边AB 垂直于x 轴,顶点A 在函数的y 1=1(0)k x x >图象上,顶点B 在函数y 2=2k (x 0)x>的图象上,则12k k =( )A .33B .3C .13D .13- 【答案】D【分析】设AC =a ,则OA =2a ,OC 3,根据直角三角形30°角的性质和勾股定理分别计算点A 和B的坐标,写出A 和B 两点的坐标,代入解析式求出k 1和k 2的值,即可求12k k 的值. 【详解】设AB 与x 轴交点为点C ,Rt △AOB 中,∠B =30°,∠AOB =90°,∴∠OAC =60°,∵AB ⊥OC ,∴∠ACO =90°,∴∠AOC =30°,设AC =a ,则OA =2a ,OC 3,∴A 3a ,a ),∵A 在函数y 1=1(0)k x x>的图象上, ∴k 13×a 32,Rt △BOC 中,OB =2OC =3a ,∴BC 22OB OC -3a ,∴B 3,﹣3a ),∵B 在函数y 2=2k (x 0)x>的图象上, ∴k 2=﹣3a 3=﹣32, ∴12k k =2231333a a =--, 故选:D .【点睛】此题考查反比例函数的性质,勾股定理,直角三角形的性质,设AC =a 是解题的关键,由此表示出其他的线段求出k 1与k 2的值,才能求出结果.4.如图,ADC 是由等腰直角EOG △经过位似变换得到的,位似中心在x 轴的正半轴,已知1EO =,D 点坐标为()2,0D ,位似比为1:2,则两个三角形的位似中心P 点的坐标是( )A .2,03⎛⎫⎪⎝⎭B .()1,0C .()0,0D .1,03⎛⎫ ⎪⎝⎭【答案】A【分析】先确定G 点的坐标,再结合D 点坐标和位似比为1:2,求出A 点的坐标;然后再求出直线AG 的解析式,直线AG 与x 的交点坐标,即为这两个三角形的位似中心的坐标.. 【详解】解:∵△ADC 与△EOG 都是等腰直角三角形 ∴OE=OG=1∴G 点的坐标分别为(0,-1)∵D 点坐标为D (2,0),位似比为1:2, ∴A 点的坐标为(2,2) ∴直线AG 的解析式为y=32x-1 ∴直线AG 与x 的交点坐标为(23,0) ∴位似中心P 点的坐标是2,03⎛⎫ ⎪⎝⎭. 故答案为A . 【点睛】本题考查了位似中心的相关知识,掌握位似中心是由位似图形的对应项点的连线的交点是解答本题的关键.5.若数据1x ,2x ,…,n x 的众数为a ,方差为b ,则数据12x +,22x +,…,2n x +的众数、方差分别是( ) A .a ,b B .a ,2b +C .2a +,bD .2a +,2b +【答案】C【分析】根据众数定义和方差的公式来判断即可,数据12x +,22x +,…,2n x +原来数据相比都增加2,,则众数相应的加2,平均数都加2,则方差不变.【详解】解:∵数据1x ,2x ,…,n x 的众数为a ,方差为b ,∴数据12x +,22x +,…,2n x +的众数是a+2,这组数据的方差是b . 故选:C 【点睛】本题考查了众数和方差,当一组数据都增加时,众数也增加,而方差不变.6.如图,是一个可以自由转动的转盘,它被分成三个面积相等的扇形,任意转动转盘两次,当转盘停止后,指针所指颜色相同的概率为( )A .13B .23C .19D .16【答案】A 【解析】列表得: 红 黄 蓝 红 (红,红) (黄,红) (蓝,红) 黄 (红,黄) (黄,黄) (蓝,黄) 蓝(红,蓝)(黄,蓝)(蓝,蓝)由表格可知,所有等可能的情况数有9种,其中颜色相同的情况有3种,则任意转动转盘两次,当转盘停止后,指针所指颜色相同的概率为3193= .故选A. 7.如图,在矩形ABCD 中,AB =12,P 是AB 上一点,将△PBC 沿直线PC 折叠,顶点B 的对应点是G ,过点B 作BE ⊥CG ,垂足为E ,且在AD 上,BE 交PC 于点F ,则下列结论,其中正确的结论有( ) ①BP =BF ;②若点E 是AD 的中点,那么△AEB ≌△DEC ;③当AD =25,且AE <DE 时,则DE =16;④在③的条件下,可得sin ∠PCB 310BP =9时,BE•EF =1.A .2个B .3个C .4个D .5个【答案】C【分析】①根据折叠的性质∠PGC =∠PBC =90°,∠BPC =∠GPC ,从而证明BE ⊥CG 可得BE ∥PG,推出∠BPF =∠BFP ,即可得到BP=BF;②利用矩形ABCD 的性质得出AE=DE,即可利用条件证明△ABE ≌△DCE;③先根据题意证明△ABE ∽△DEC,再利用对应边成比例求出DE 即可;④根据勾股定理和折叠的性质得出△ECF ∽△GCP,再利用对应边成比例求出BP,即可算出sin 值;⑤连接FG,先证明▱BPGF 是菱形,再根据菱形的性质得出△GEF ∽△EAB,再利用对应边成比例求出BE ·EF . 【详解】①在矩形ABCD ,∠ABC =90°, ∵△BPC 沿PC 折叠得到△GPC ,∴∠PGC =∠PBC =90°,∠BPC =∠GPC , ∵BE ⊥CG , ∴BE ∥PG , ∴∠GPF =∠PFB , ∴∠BPF =∠BFP , ∴BP =BF ; 故①正确;②在矩形ABCD 中,∠A =∠D =90°,AB =DC , ∵E 是AD 中点, ∴AE =DE , 在△ABE 和△DCE 中,=90AB DCA D AE DE =⎧⎪∠=∠︒⎨⎪=⎩, ∴△ABE ≌△DCE (SAS ); 故②正确; ③当AD =25时, ∵∠BEC =90°, ∴∠AEB+∠CED =90°, ∵∠AEB+∠ABE =90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴AB DE AE CD=,设AE=x,∴DE=25﹣x,∴122512xx-=,∴x=9或x=16,∵AE<DE,∴AE=9,DE=16;故③正确;④由③知:CE20==,BE15==,由折叠得,BP=PG,∴BP=BF=PG,∵BE∥PG,∴△ECF∽△GCP,∴EF EC PG CG=,设BP=BF=PG=y,∴152025yy-=,∴y=253,∴BP=253,在Rt△PBC中,PC===,∴sin∠PCB=2532510 PBPC==;故④不正确;⑤如图,连接FG,由①知BF∥PG,∵BF=PG=PB,∴▱BPGF是菱形,∴BP∥GF,FG=PB=9,∴∠GFE=∠ABE,∴△GEF∽△EAB,∴EF GF AB BE=,∴BE•EF=AB•GF=12×9=1;故⑤正确,所以本题正确的有①②③⑤,4个,故选:C.【点睛】本题考查矩形与相似的结合、折叠的性质,关键在于通过基础知识证明出所需结论,重点在于相似对应边成比例.8.如图,A 、B是曲线5yx=上的点,经过A、B两点向x 轴、y轴作垂线段,若S阴影=1 则S1+S2 =( )A.4 B.5 C.6 D.8 【答案】D【分析】B是曲线5yx=上的点,经过A、B两点向x轴、y轴作垂线段围成的矩形面积都是5,从而求出S1和S2的值即可【详解】∵A、B是曲线5yx=上的点,经过A、B两点向x轴、y轴作垂线段围成的矩形面积都是5,,∵S阴影=1,∴S1=S2=4,即S1+S2=8,故选D【点睛】本题主要考查反比例函数上的点向坐标轴作垂线围成的矩形面积问题,难度不大9.已知点(x1,y1)、(x2,y2)、(x3,y3)在反比例函数y=-5x的图象上,当x1<x2<0<x3时,y1,y2,y3的大小关系是()A.y1<y3<y2B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1【答案】C【分析】根据反比例函数为y=-5x,可得函数图象在第二、四象限,在每个象限内,y随着x的增大而增大,进而得到y1,y2,y3的大小关系.【详解】解:∵反比例函数为y=-5x,∴函数图象在第二、四象限,在每个象限内,y随着x的增大而增大,又∵x1<x2<0<x3,∴y1>0,y2>0,y3<0,且y1<y2,∴y3<y1<y2,故选:C.【点睛】本题主要考查反比例函数图象上的点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.10.下列说法正确的是()A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.某种彩票的中奖率为11000,说明每买1000张彩票,一定有一张中奖C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为1 3D.“概率为1的事件”是必然事件【答案】D【解析】试题解析:A、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B. 某种彩票的中奖概率为11000,说明每买1000张,有可能中奖,也有可能不中奖,故B错误;C. 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为12.故C错误;D. “概率为1的事件”是必然事件,正确.故选D.11.下列事件中,属于必然事件的是()A.明天我市下雨B .抛一枚硬币,正面朝上C .走出校门,看到的第一辆汽车的牌照的末位数字是偶数D .一个口袋中装有2个红球和一个白球,从中摸出2个球,其中有红球 【答案】D【分析】根据确定事件和随机事件的概念对各个事件进行判断即可.【详解】解:明天我市下雨、抛一枚硬币,正面朝上、走出校门,看到的第一辆汽车的牌照的末位数字是偶数都是随机事件,一个口袋中装有2个红球和一个白球,从中摸出2个球,其中有红球是必然事件, 故选:D . 【点睛】本题考查的是确定事件和随机事件,事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的;在一定条件下,可能发生也可能不发生的事件,称为随机事件.12.已知一元二次方程22530x x -+=,则该方程根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .两个根都是自然数 D .无实数根【答案】A【详解】解:∵a=2,b=-5,c=3, ∴△=b 2-4ac=(-5)2-4×2×3=1>0, ∴方程有两个不相等的实数根. 故选A . 【点睛】本题考查根的判别式,熟记公式正确计算是解题关键,难度不大. 二、填空题(本题包括8个小题)13.一元二次方程240x x -=的解是_________. 【答案】x 1=0,x 2=4【分析】用因式分解法求解即可. 【详解】∵240x x -=, ∴x(x-4)=0, ∴x 1=0,x 2=4. 故答案为x 1=0,x 2=4. 【点睛】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.14.抛物线y=x 2﹣4x+3的顶点坐标为_____. 【答案】(2,﹣1).【解析】先把函数解析式配成顶点式得到y=(x-2)2-1,然后根据顶点式即可得到顶点坐标. 解:y=(x-2)2-1,所以抛物线的顶点坐标为(2,-1). 故答案为(2,-1).“点睛”本题考查了二次函数的性质.二次函数的三种形式:一般式:y=ax 2+bx+c ,顶点式:y=(x-h )2+k ;两根式:y=a (x-x 1)(x-x 2).15.如图,直线x=2与反比例函数2y x=和1y x =-的图象分别交于A 、B 两点,若点P 是y 轴上任意一点,则△PAB 的面积是_____.【答案】32. 【详解】解:∵把x=1分别代入2y x =、1y x =-,得y=1、y=12-,∴A (1,1),B (1,1x -).∴13AB 122⎛⎫=--= ⎪⎝⎭. ∵P 为y 轴上的任意一点,∴点P 到直线BC 的距离为1. ∴△PAB 的面积1133AB 222222=⨯=⨯⨯=. 故答案为:32. 16.如图,已知A(1,y 1),B(2,y 2)为反比例函数y =2x图象上的两点,一个动点P(x ,0)在x 轴正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是_________.【答案】(3,0)【分析】根据图意,连接AB 并延长交x 轴于点P',此时线段AP 与线段BP 之差的最大值为''AP BP AB -=,。
[试卷合集5套]上海市虹口区2020年九年级上学期期末联考数学试题
【答案】C
【分析】先解一元二次方程求出m,n即可得出答案.
【详解】解方程
得 或 ,
则 ,
解方程 ,
得 或 ,
则 ,
,
故选:C.
【点睛】
本题考查了解一元二次方程,掌握方程解法是解题关键.
4.下列命题中,正确的个数是()
①直径是弦,弦是直径;②弦是圆上的两点间的部分;③半圆是弧,但弧不一定是半圆;④直径相等的两个圆是等圆;⑤等于半径两倍的线段是直径.
三、解答题(本题包括8个小题)
19.已知反比例函数 ,(k为常数, ).
(1)若点 在这个函数的图象上,求k的值;
(2)若在这个函数图象的每一分支上,y随x的增大而增大,求k的取值范围.
【答案】(1)k=9;(2)k<3
【分析】(1)根据反比例函数图象上点的坐标特征得到k-3=2×3,然后解方程即可;
【详解】解:A、日行千里是随机事件,故本选项错误;
B、守株待兔是随机事件,故本选项错误;
C、水涨船高是必然事件,故本选项错误;
D、水中捞月是不可能事件,故本选项正确.
故选:D.
【点睛】
此题考查是不可能事件的判断,掌握不可能事件的定义是解决此题的关键.
3.设m是方程 的一个较大的根,n是方程 的一个较小的根,则 的值是()
【点睛】
本题考查的知识点是几何体的三视图以及圆锥的表面积公式,熟记圆锥的面积公式是解此题的关键.
15.如图,在△ABC中,∠C=90°,BC=6,AC=9,将△ABC平移使其顶点C位于△ABC的重心G处,则平移后所得三角形与原△ABC的重叠部分面积是_____.
【答案】3
【详解】由三角形的重心是三角形三边中线的交点,根据中心的性质可得,G是将AB边上的中线分成2:1两个部分,所以重合部分的三角形与原三角形的相似比是1:3,所以重合部分的三角形面积与原三角形的面积比是1:9,因为原三角形的面积是所以27,所以重合部分三角形面积是3,
上海市虹口区2019-2020学年中考数学学业质量监测试题
【解析】
【分析】
过点P作PE⊥OA于点E,根据角平分线上的点到角的两边的距离相等可得PE=PM,再根据两直线平行,内错角相等可得∠POM=∠OPN,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠PNE=∠AOB,再根据直角三角形解答.
【详解】
如图,过点P作PE⊥OA于点E,
∵OP是∠AOB的平分线,
解得n=8.
故选D.
【点睛】
本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.
9.D
【解析】
【分析】
先解方程组求出 ,再将 代入式中,可得解.
【详解】
解:
,
得 ,
所以 ,
因为
所以 .
故选D.
【点睛】
本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b的值,本题属于基础题型.
2.D
【解析】
【分析】
根据方差反映数据的波动情况即可解答.
【详解】
由于方差反映数据的波动情况,所以比较两人成绩稳定程度的数据是方差.
故选D.
【点睛】
本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
17.抛物线y=(x﹣2)2﹣3的顶点坐标是____.
18.如图,在平面直角坐标系中,Rt△ABO的顶点O与原点重合,顶点B在x轴上,∠ABO=90°,OA与反比例函数y= 的图象交于点D,且OD=2AD,过点D作x轴的垂线交x轴于点C.若S四边形ABCD=10,则k的值为.
三、解答题(本题包括8个小题)
上海市虹口区2020中考数学学业质量监测试题
B.因为B选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是B ;
C .因为C选项中的几何体能够看见的三个面上都没有阴影图家,而展开图中有四个面上有阴影图室,所以不可能是C.
参考答案
一、选择题(本题包括10个小题,每小题只有一个选项符合题意)
1.B
【解析】
【分析】
根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.
【详解】
∵四边形ABCD为菱形,
∴AB∥CD,AB=BC,
∴∠MAO=∠NCO,∠AMO=∠CNO,
21.(6分)如图,在 中, ,以 边为直径作⊙ 交 边于点 ,过点 作 于点 , 、 的延长线交于点 .
求证: 是⊙ 的切线;若 ,且 ,求⊙ 的半径与线段 的长.
22.(8分)某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.
根据图示可得:长方形的长可以表示为x+2y,长又是75厘米,故x+2y=75,长方形的宽可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程即可.
【详解】
解:根据题意得:
x1+x2=﹣m=2+4,
解ቤተ መጻሕፍቲ ባይዱ:m=﹣6,
x1•x2=n=2×4,
解得:n=8,
m+n=﹣6+8=2,
故选D.
2019-2020年上海市虹口区继光学校九年级(上)第一次数学月考试卷(Word版无答案)
2019学年虹口区继光学校九年级(上)第一次月考试卷班级;___________ 姓名;___________ 分数;___________一.选择题.(每题4分,满分24分)1.对一个图形进行放缩时,下列说法中正确的是()A.图形中线段的长度与角的大小都保持不变B.图形中线段的长度可以改变,角的大小保持不变C.图形中线段的长度保持不变,角的大小可以改变D.图形中线段的长度与角的大小都不会改变2.如图,在△ABC中,DE∥BC,AD=4,AE=3,CE=6,那么AB的长是()A.4B.6C.8D.123.如果互不相等的四条线段,a,b,c,d满足=,那么下列各式中一定成立的是()A.++=++B.+=+ C.= D.+=+4.点D,E分别是△ABC边AB,AC上的点,下列比例式中,能判定DE∥BC的是()A.=B.=C.=D.=5.如图,下列条件中,不能判定△ACD∽△ABC的是()A.∠ADC=∠ACBB.∠B=∠ACDC.∠ACD=∠BCDD.=第2 题图第5 题图6.在Rt△ABC中,∠ACB=90°,CD是AB边上的高,则下列结论不正确的是()A.AC²=AD·ABB.CD²=AD·BDC.BC²=AD·ABD.CD·AD=AC·BC第9 题图二,填空题(每题4分,满分48分)=________7.若=,则+8.已知点P是线段AB上的黄金分割点,AP>PB,AB=10cm,则线段AP的长为_________cm9.如图,四边形ABCD与是边长EFGH是相似图形,并且点A与点E,点B与点F,点C与点G,点D与点H,分别是对应点,若∠A=∠D=100°,则∠ F=_______ 10.若△ABD∽△DEF,且相似比是2∶3.,它们的周长之和是40,则△ABC的周长是_______11.如图,在平行四边形ABCD中,E在AB上,AE∶EB=2∶3,ED与AC相交于F,则AF∶FC=_______12.如图,已知AD为△ABC的角平分线,DE∥AB,如果=,那么=_______13.如图,△ABC是等腰三角形,BC是斜边。
{3套试卷汇总}2020年上海市虹口区九年级上学期期末联考数学试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在Rt△ABC中,∠C = 90°,AC = 9,BC = 12,则其外接圆的半径为( )A.15 B.7.5 C.6 D.3【答案】B【详解】解:∵∠C=90°,∴AB2=AC2+BC2,而AC=9,BC=12,∴22912+.又∵AB是Rt△ABC的外接圆的直径,∴其外接圆的半径为7.2.故选B.2.某楼盘准备以每平方米16000元的均价对外销售,由于受有关房地产的新政策影响,购房者持币观望.开发商为促进销售,对价格进行了连续两次下调,结果以每平方米14440元的均价开盘销售,则平均每次下调的百分率为()A.5% B.8% C.10% D.11%【答案】A【分析】设平均每次下调的百分率为x,根据该楼盘的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,即可得出结果.【详解】设平均每次下调的百分率为x,依题意,得:16000(1﹣x)2=14440,解得:x1=0.05=5%,x2=1.95(不合题意,舍去),答:平均每次下调的百分率为5%.故选:A.【点睛】本题主要考查一元二次方程的实际应用,找出等量关系,列出关于x的方程,是解题的关键.3.已知反比例函数kyx=的图象经过点(2,-2),则k的值为A.4 B.12-C.-4 D.-2【答案】C【解析】∵反比例函数kyx=的图象经过点(2,-2),∴k xy 224==⨯-=-().故选C . 4.点P(6,-8)关于原点的对称点的坐标为( )A .(-6,8)B .(–6,-8)C .(8,-6)D .(–8,-6) 【答案】A【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点是P ′(-x ,-y ),可以直接选出答案.【详解】解:根据关于原点对称的点的坐标的特点可得:点P (6,-8)关于原点过对称的点的坐标是(-6,8).故选:A.【点睛】本题主要考查了关于原点对称的点的坐标的特点,关键是熟记关于原点对称的点的坐标的特点:它们的坐标符号相反.5.如图,O 的半径为2,弦2AB =,点P 为优弧AB 上一动点,60PAC ∠=︒,交直线PB 于点C ,则ABC 的最大面积是 ( )A .12B .1C .2D .2 【答案】B【分析】连接OA 、OB ,如图1,由2OA OB AB ===可判断OAB 为等边三角形,则60AOB ∠=︒,根据圆周角定理得1302APB AOB ∠=∠=︒,由于60PAC ∠=︒,所以90C ∠=︒,因为2AB =,则要使ABC 的最大面积,点C 到AB 的距离要最大;由90ACB ∠=︒,可根据圆周角定理判断点C 在D 上,如图2,于是当点C 在半圆的中点时,点C 到AB 的距离最大,此时ABC 为等腰直角三角形,从而得到ABC 的最大面积.【详解】解:连接OA 、OB ,如图1,2OA OB ==,2AB =,OAB ∴为等边三角形,60AOB ∴∠=︒, 1302APB AOB ∴∠=∠=︒, 60PAC ∠=︒90ACP ∴∠=︒2AB =,要使ABC 的最大面积,则点C 到AB 的距离最大,作ABC 的外接圆D ,如图2,连接CD ,90ACB ∠=︒,点C 在D 上,AB 是D 的直径,当点C 半圆的中点时,点C 到AB 的距离最大,此时ABC 等腰直角三角形,CD AB ∴⊥,1CD =,12ABC S ∴=⋅AB ⋅CD 12112=⨯⨯=, ABC ∴的最大面积为1.故选B .【点睛】本题考查了圆的综合题:熟练掌握圆周角定理和等腰直角三角形的判断与性质;记住等腰直角三角形的面积公式.6.用配方法解方程2680x x --=时,配方结果正确的是( )A .2(3)17x -=B .2(3)14x -=C .2(6)44x -=D .2(3)1x -=【答案】A【分析】利用配方法把方程2680x x --=变形即可.【详解】用配方法解方程x 2﹣6x ﹣8=0时,配方结果为(x ﹣3)2=17,故选A .【点睛】本题考查了解一元二次方程﹣配方法,熟练掌握配方法解一元二次方程的基本步骤是解本题的关键. 7. “射击运动员射击一次,命中靶心”这个事件是( )A .确定事件B .必然事件C .不可能事件D .不确定事件【答案】D【解析】试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选D.考点:随机事件.8.如图,点G是△ABC的重心,下列结论中正确的个数有()①12DGGB=;②AE EDAB BC=;③△EDG∽△CBG;④14EGDBGCSS=.A.1个B.2个C.3个D.4个【答案】D【分析】根据三角形的重心的概念和性质得到AE,CD是△ABC的中线,根据三角形中位线定理得到DE∥BC,DE=12BC,根据相似三角形的性质定理判断即可.【详解】解:∵点G是△ABC的重心,∴AE,CD是△ABC的中线,∴DE∥BC,DE=12BC,∴△DGE∽△BGC,∴DGGB=12,①正确;AE EDAB BC=,②正确;△EDG∽△CBG,③正确;DE12BC4EGDBGCSS⎛⎫==⎪⎝⎭,④正确,故选D.【点睛】本题考查三角形的重心的概念和性质,相似三角形的判定和性质,三角形中位线定理,掌握三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍是解题关键.9.如图,在正方形网格上有两个相似三角形△ABC和△DEF,则∠BAC的度数为()A.105°B.115°C.125°D.135°【答案】D【分析】根据相似三角形的对应角相等即可得出.【详解】∵△ABC∽△EDF,∴∠BAC=∠DEF,又∵∠DEF=90°+45°=135°,∴∠BAC=135°,故选:D.【点睛】本题考查相似三角形的性质,解题的关键是找到对应角10.下列方程中,关于x的一元二次方程是()A.2x﹣3=x B.2x+3y=5 C.2x﹣x2=1 D.17 xx+=【答案】C【分析】利用一元二次方程的定义判断即可.【详解】A、方程2x﹣3=x为一元一次方程,不符合题意;B、方程2x+3y=5是二元一次方程,不符合题意;C、方程2x﹣x2=1是一元二次方程,符合题意;D、方程x+1x=7是分式方程,不符合题意,故选:C.【点睛】本题考查了一元一次方程的问题,掌握一元一次方程的定义是解题的关键.11.一元二次方程240x-=的解是()A.x1=2,x2=-2 B.x=-2 C.x=2 D.x1=2,x2=0 【答案】A【分析】首先将原方程移项可得24x=,据此进一步利用直接开平方法求解即可. 【详解】原方程移项可得:24x=,解得:12x=,22x-=,故选:A.【点睛】本题主要考查了直接开平方法解一元二次方程,熟练掌握相关方法是解题关键. 12.下列对于二次函数y=﹣x2+x图象的描述中,正确的是()A.开口向上B.对称轴是y轴C.有最低点D.在对称轴右侧的部分从左往右是下降的【答案】D【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:∵二次函数y =﹣x 2+x =﹣(x 12-)2+14, ∴a =﹣1,该函数的图象开口向下,故选项A 错误;对称轴是直线x =12,故选项B 错误; 当x =12时取得最大值14,该函数有最高点,故选项C 错误; 在对称轴右侧的部分从左往右是下降的,故选项D 正确;故选:D .【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.二、填空题(本题包括8个小题)13.若m 是方程5x 2﹣3x ﹣1=0的一个根,则15m ﹣3m +2010的值为_____. 【答案】1【分析】根据m 是方程5x 2﹣3x ﹣1=0的一个根代入得到5m 2﹣3m ﹣1=0,进一步得到5m 2﹣1=3m ,两边同时除以m 得:5m ﹣1m=3,然后整体代入即可求得答案. 【详解】解:∵m 是方程5x 2﹣3x ﹣1=0的一个根,∴5m 2﹣3m ﹣1=0,∴5m 2﹣1=3m ,两边同时除以m 得:5m ﹣1m=3, ∴15m ﹣3m +2010=3(5m ﹣1m )+2010=9+2010=1, 故答案为:1.【点睛】本题考查了一元二次方程的根,灵活的进行代数式的变形是解题的关键.14.二次函数245y x x =-+的顶点坐标是__________.【答案】(2,1)【分析】将解析式化为顶点式即可顶点答案.【详解】∵2245(2)1y x x x =-+=-+,∴二次函数245y x x =-+的顶点坐标是(2,1),故答案为:(2,1).【点睛】此题考查二次函数的一般式化为顶点式的方法,顶点式解析式中各字母的意义,正确转化解析式的形式是解题的关键.15.如图,若抛物线2y ax h =+与直线y kx b =+交于()3,A m ,()2,B n -两点,则不等式2ax b kx h-<-的解集是______.【答案】23x -<<【分析】观察图象当23x -<<时,直线在抛物线上方,此时二次函数值小于一次函数值,当2x <-或3x >时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x 的取值范围,即为不等式的解集.【详解】解:设21y ax h =+,2y kx b =+,∵2ax b kx h -<-∴2ax h kx b +<+,∴12y y <即二次函数值小于一次函数值,∵抛物线与直线交点为()3,A m ,()2,B n -,∴由图象可得,x 的取值范围是23x -<<.【点睛】本题考查不等式与函数的关系及函数图象交点问题,理解图象的点坐标特征和数形结合思想是解答此题的关键.16.如图,抛物线y =ax 2+bx +c 与x 轴相交于点A ,B(m +2,0),与y 轴相交于点C ,点D 在该抛物线上,坐标为(m ,c),则点A 的坐标是________.【答案】 (-2,0)【解析】由C(0,c),D(m,c),得函数图象的对称轴是2m x = , 设A 点坐标为(x,0),由A . B 关于对称轴2m x =对称得222x m m ++= , 解得x =−2,即A 点坐标为(−2,0),故答案为(−2,0). 17.张老师在讲解复习《圆》的内容时,用投影仪屏幕展示出如下内容:如图,ABC ∆内接于O ,直径AB 的长为2,过点C 的切线交AB 的延长线于点D .张老师让同学们添加条件后,编制一道题目,并按要求完成下列填空.(1)在屏幕内容中添加条件30D ∠=︒,则AD 的长为______.(2)以下是小明、小聪的对话:小明:我加的条件是1BD =,就可以求出AD 的长小聪:你这样太简单了,我加的是30A ∠=︒,连结OC ,就可以证明ABC ∆与DCO ∆全等.参考上面对话,在屏幕内容中添加条件,编制一道题目(此题目不解答,可以添线、添字母).______.【答案】3 30DCB ∠=︒,求AC 的长【分析】(1)连接OC ,如图,利用切线的性质得∠OCD=90°,再根据含30°的直角三角形三边的关系得到OD=2,然后计算OA+OD 即可;(2)添加∠DCB=30°,求ACAC 的长,利用圆周角定理得到∠ACB=90°,再证明∠A=∠DCB=30°,然后根据含30°的直角三角形三边的关系求AC 的长.【详解】解:(1)连接OC ,如图,∵CD 为切线,∴OC ⊥CD ,∴∠OCD=90°,∵∠D=30°,∴OD=2OC=2,∴AD=AO+OD=1+2=3;(2)添加∠DCB=30°,求AC 的长,解:∵AB 为直径,∴∠ACB=90°,∵∠ACO+∠OCB=90°,∠OCB+∠DCB=90°,∴∠ACO=∠DCB ,∵∠ACO=∠A ,∴∠A=∠DCB=30°,在Rt △ACB 中,BC= 12AB=1, ∴AC= 22AB BC -= 22213-=. 故答案为3;30DCB ∠=︒,求AC 的长.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,得出垂直关系.18.已知2334b a b =-,则a b =________ 【答案】119【解析】∵2334b a b =-,∴8b=3(3a-b),即9a=11b ,∴119a b =, 故答案为119. 三、解答题(本题包括8个小题)19.八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有多少名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.【答案】(1)参与问卷调查的学生人数为100人;(2)补全图形见解析;(3)估计该校学生一个月阅读2本课外书的人数约为570人.【分析】(1)由读书1本的人数及其所占百分比可得总人数;(2)总人数乘以读4本的百分比求得其人数,减去男生人数即可得出女生人数,用读2本的人数除以总人数可得对应百分比;(3)总人数乘以样本中读2本人数所占比例.【详解】(1)参与问卷调查的学生人数为(8+2)÷10%=100人,(2)读4本的女生人数为100×15%﹣10=5人,读2本人数所占百分比为×100%=38%,补全图形如下:(3)估计该校学生一个月阅读2本课外书的人数约为1500×38%=570人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.如图,在△ABC中,∠CAB=90°,D是边BC上一点,2,E为线段AD的中点,连结CEAB BD BC并延长交AB于点F.(1)求证:AD⊥BC.(2)若AF:BF=1:3,求证:CD:DB=1:2.【答案】(1)见解析;(2)见解析.【分析】(1)由等积式转化为比例式,再由相似三角形的判定定理,证明△ABD∽CBA,从而得出∠ADB=∠CAB=90°;(2)过点D 作DG ∥AB 交CF 于点G,由E 为AD 的中点,可得△DGE ≌△AFE ,得出AF=DG ,再由平行线分线段成比例可得出结果.【详解】证明:(1)∵AB 2=BD ·BC , ∴,AB BC BD AB又∠B=∠B,∴△ABD ∽CBA ,∴∠ADB=∠CAB=90°,∴AD ⊥BC.(2)过点D 作DG ∥AB 交CF 于点G,∵E 为AD 的中点,∴易得△DGE ≌△AFE ,∴AF=DG ,又AF:BF =1:3,∴DG:BF =1:3.∵DG ∥BF ,∴DG :BF=CD:BC=1:3,∴CD:DB =1:2.【点睛】本题考查相似三角形的判定与性质,遇到比例式或等积式就要考虑转化为三角形相似来解决问题. 21.某班级组织了“我和我的祖国”演讲比赛,甲、乙两队各有10人参加本次比赛,成绩如下(10分制) 甲10 8 7 9 8 10 10 9 10 9 乙 7 8 9 7 10 10 9 10 10 10 (1)甲队成绩的众数是 分,乙队成绩的中位数是 分.(2)计算乙队成绩的平均数和方差.(3)已知甲队成绩的方差是1分2,则成绩较为整齐的是 队.【答案】(1)10,9.5;(2)平均数=9,方差=1.4;(3)甲.【分析】(1)根据众数、中位数的意义求出结果即可;(2)根据平均数、方差的计算方法进行计算即可;(3)根据甲队、乙队的方差比较得出结论.【详解】(1)甲队成绩中出现次数最多的是10分,因此众数是10,乙队成绩从小到大排列后处在第5、6两个数的平均数为9+102=9.5,因此中位数为9.5,故答案为:10,9.5;(2)乙队的平均数为:72892105910⨯++⨯+⨯=,2 S 乙=110[(7﹣9)2×2+(8﹣9)2+(10﹣9)2×5]=1.4,∵1<1.4,∴甲队比较整齐,故答案为:甲.【点睛】本题考查了统计的问题,掌握众数、中位数的意义、平均数、方差的计算方法是解题的关键.22.如图,C是直径AB延长线上的一点,CD为⊙O的切线,若∠C=20°,求∠A的度数.【答案】35°【分析】连接OD,根据切线的性质得∠ODC=90°,根据圆周角定理即可求得答案.【详解】连接OD,∵CD为⊙O的切线,∴∠ODC=90°,∴∠DOC=90°﹣∠C=70°,由圆周角定理得,∠A=12∠DOC=35°.【点睛】本题考查了切线的性质和圆周角定理,有圆的切线时,常作过切点的半径.23.如图,为测量小岛A到公路BD的距离,先在点B处测得∠ABD=37°,再沿BD方向前进150m到达点C,测得∠ACD=45°,求小岛A到公路BD的距离.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】1米.【分析】过A 作AE ⊥CD 垂足为E ,设AE =x 米,再利用锐角三角函数关系得出BE =43x ,CE =x ,根据BC =BE ﹣CE ,得到关于x 的方程,即可得出答案.【详解】解:过A 作AE ⊥CD 垂足为E ,设AE =x 米,在Rt △ABE 中,tan ∠B =AE BE , ∴BE =tan AE B ∠=43x , 在Rt △ABE 中,tan ∠ACD =AE CE , ∴CE =tan 45AE ︒=x , ∵BC =BE ﹣CE ,∴43x ﹣x =150, 解得:x =1. 答:小岛A 到公路BD 的距离为1米.【点睛】本题考查了三角函数和一元一次方程的问题,掌握特殊三角函数值和解一元一次方程的方法是解题的关键.243x ,小数部分为y ;(1)直接写出x =_________,y =__________;(2)计算)231y y +的值.【答案】(1)1x =,31y =;(2)623-. 【分析】先根据算术平方根的定义得到132,则x=1,3-1,然后把x 、y 的值代入()231y y +,再进行二次根式的混合运算即可.【详解】解: 解:∵1<3<4,∴1<3<2, ∴x=1,y=3-1, (2)当31y =-时,原式()()()2313131=+-+- ()()222313231=-+-+623=-【点睛】本题考查估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.也考查二次根式的混合运算.25.三根垂直地面的木杆甲、乙、丙,在路灯下乙、丙的影子如图所示.试确定路灯灯泡的位置,再作出甲的影子.(不写作法,保留作图痕迹)【答案】见解析【解析】分别作过乙,丙的头的顶端和相应的影子的顶端的直线得到的交点就是点光源所在处,连接点光源和甲的头的顶端并延长交平面于一点,这点到甲的脚端的距离是就是甲的影长.解:.26.经市场调查,某种商品在第x 天的售价与销量的相关信息如下表;已知该商品的进价为每件30元,设销售该商品每天的利润为y 元.时间x (天)1≤x <50 50≤x≤90 售价(元/件) x+40 90每天销量(件)200-2x(1)求出y 与x 的函数关系式 (2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?(3)该商品销售过程中,共有多少天日销售利润不低于4800元?直接写出答案.【答案】(1)当1≤x<50时,y=﹣2x 2+180x+2000,当50≤x≤90时,y=﹣120x+12000;(2)第45天时,当天销售利润最大,最大利润是6050元;(3)该商品在销售过程中,共41天每天销售利润不低于4800元.【解析】试题分析:(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.试题解析:(1)当1≤x<50时,y=(x+40﹣30)(200-2x)=﹣2x 2+180x+2000,当50≤x≤90时,y=(90﹣30)(200-2x )=﹣120x+12000;(2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,当x=45时,y 最大=﹣2×452+180×45+2000=6050,当50≤x≤90时,y 随x 的增大而减小,当x=50时,y 最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)当1≤x<50时,y=﹣2x 2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.27.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(020)x <<之间满足一次函数关系,其图象如图所示:(1)求y 与x 之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?【答案】(1)10100y x =+;(2)商贸公司要想获利2090元,则这种干果每千克应降价9元.【分析】(1)根据图象可得:当2x =,120y =,当4x =,140y =;再用待定系数法求解即可; (2)根据这种干果每千克的利润×销售量=2090列出方程,解方程即可.【详解】解:(1)设一次函数解析式为:y kx b =+,根据图象可知:当2x =,120y =;当4x =,140y =;∴21204140k b k b +=⎧⎨+=⎩,解得:10100k b =⎧⎨=⎩, ∴y 与x 之间的函数关系式为10100y x =+;(2)由题意得:(6040)(10100)2090x x --+=,整理得:21090x x -+=,解得:11x =.29x =,∵让顾客得到更大的实惠,∴9x =.答:商贸公司要想获利2090元,这种干果每千克应降价9元.【点睛】本题考查了一元二次方程的应用和一次函数的应用,读懂图象信息、熟练掌握待定系数法、正确列出一元二次方程是解题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.一次函数y=ax+b与反比例函数a byx-=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B.C.D.【答案】C【分析】根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.【详解】A. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项不正确;B. 由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,∴a−b<0,∴反比例函数y=a bx-的图象过二、四象限,所以此选项不正确;C. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项正确;D. 由一次函数图象过二、四象限,得a<0,交y轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a、b的大小2.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,AE EF⊥,则下列结论正确的有( )①30BAE∠=②2CE AB CF=③13CF CD=④ABE∆∽AEF∆A.1个B.2个C.3个D.4个【答案】B【分析】由题中条件可得△CEF∽△BAE,进而得出对应线段成比例,进而又可得出△ABE∽△AEF,即可得出题中结论.【详解】∵四边形ABCD是正方形,∴∠B=∠C=90°,AB=BC=CD,∵AE⊥EF,∴∠AEF=∠B=90°,∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,∴∠BAE=∠CEF,∴△BAE∽△CEF,∴CE CF AB BE∵E是BC的中点,∴BE=CE∴CE2=AB•CF,∴②正确;∵BE=CE=12 BC,∴CF=12BE=14CD,故③错误;∵1 tan2BEBAEAB∠==∴∠BAE≠30°,故①错误;设CF=a,则BE=CE=2a,AB=CD=AD=4a,DF=3a,∴AE=25a,EF=5a,AF=5a,∴252525,5555AE a BEAF a EF a====∴AE BE AF EF=∴△ABE∽△AEF,故④正确.∴②与④正确.∴正确结论的个数有2个.故选:B.【点睛】此题考查了相似三角形的判定与性质,以及正方形的性质.题目综合性较强,注意数形结合思想的应用.3.如图,PA、PB、DE分别切O于A、B、C点,若圆O的半径为6,10OP=,则PDE∆的周长为()A.10 B.12 C.16 D.20【答案】C【分析】根据切线的性质,得到直角三角形OAP,根据勾股定理求得PA的长;根据切线长定理,得AD=CD,CE=BE,PA=PB,从而求解.【详解】∵PA、PB、DE分别切⊙O于A、B、C点,∴AD=CD,CE=BE,PA=PB,OA⊥AP.在直角三角形OAP中,根据勾股定理,得22106-=8,∴△PDE的周长为2AP=1.故选C.【点睛】此题综合运用了切线长定理和勾股定理.4.如图,已知,M,N分别为锐角∠AOB的边OA,OB上的点,ON=6,把△OMN沿MN折叠,点O落在点C处,MC与OB交于点P,若MN=MP=5,则PN=()A.2 B.3 C.83D.103【答案】D【分析】根据等边对等角,得出∠MNP=∠MPN,由外角的性质和折叠的性质,进一步证明△CPN∽△CNM,通过三角形相似对应边成比例计算出CP,再次利用相似比即可计算出结果.【详解】解:∵MN=MP,∴∠MNP=∠MPN,∴∠CPN=∠ONM,由折叠可得,∠ONM=∠CNM,CN=ON=6,∴∠CPN=∠CNM,又∵∠C=∠C,∴△CPN∽△CNM,CP CNCN CM=,即CN2=CP×CM,∴62=CP×(CP+5),解得:CP=4,又∵PN CP NM CN=,∴4 56 PN=,∴PN=103,故选:D.【点睛】本题考查了等腰三角形的性质,相似三角形的判定和性质,掌握相似三角形的判定和性质是解题的关键.5.如图,在下列四个几何体中,从正面、左面、上面看不完全相同的是()A.①②B.②③C.①④D.②④【答案】B【解析】根据常见几何体的三视图解答即可得.【详解】球的三视图均为圆,故不符合题意;正方体的三视图均为正方形,故不符合题意;圆柱体的主视图与左视图为长方形,俯视图为圆,故符合题意;圆锥的主视图与左视图为等腰三角形,俯视图为圆,故符合题意,故选B.【点睛】本题考查了简单几何体的三视图,解题的关键是熟练掌握三视图的定义和常见几何体的三视图.6.如图,BC是⊙O的弦,OA⊥BC,∠AOB=55°,则∠ADC的度数是()A.25°B.55°C.45°D.27.5°【答案】D【分析】欲求∠ADC,又已知一圆心角,可利用圆周角与圆心角的关系求解.【详解】∵A、B、C、D是⊙O上的四点,OA⊥BC,∴弧AC=弧AB (垂径定理),∴∠ADC=12∠AOB(等弧所对的圆周角是圆心角的一半);又∠AOB=55°,∴∠ADC=27.5°.故选:D.【点睛】本题考查垂径定理、圆周角定理.关键是将证明弧相等的问题转化为证明所对的圆心角相等.7.下列图形中既是轴对称图形,又是中心对称图形的是()A .B .C .D .【答案】D 【分析】根据轴对称图形与中心对称图形的概念分别分析得出答案.【详解】解:A 、是轴对称图形,不是中心对称图形,故此选项错误;B 、是轴对称图形,不是中心对称图形,故此选项错误;C 、不是轴对称图形,是中心对称图形,故此选项错误;D 、是轴对称图形,也是中心对称图形,故此选项正确.故选:D .【点睛】本题考查轴对称图形与中心对称图形的概念,理解掌握两个定义是解答关键.8.样本中共有5个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为( )A .65B .65C .2D .2 【答案】C【分析】由样本平均值的计算公式列出关于a 的方程,解出a ,再利用样本方差的计算公式求解即可.【详解】由题意知(a+0+1+2+3)÷5=1,解得a=-1,∴样本方差为2222221(11)(01)(11)(21)(31)25s ⎡⎤=--+-+-+-+-=⎣⎦ 故选:C .【点睛】本题考查样本的平均数、方差求法,属基础题,熟记样本的平均数、方差公式是解答本题的关键 9.数学课外兴趣小组的同学们要测量被池塘相隔的两棵树A ,B 的距离,他们设计了如图的测量方案:从树A 沿着垂直于AB 的方向走到E ,再从E 沿着垂直于AE 的方向走到F ,C 为AE 上一点,其中4位同学分别测得四组数据:①AC ,∠ACB ;②EF ,DE ,AD ;③CD ,∠ACB ,∠ADB ;④∠F ,∠ADB ,FB .其中能根据所测数据求得A ,B 两树距离的有( )A .1组B .2组C .3组D .4组【答案】C 【分析】根据三角函数的定义及相似三角形的判定定理及性质对各选项逐一判断即可得答案.【详解】∵已知∠ACB 的度数和AC 的长,∴利用∠ACB 的正切可求出AB 的长,故①能求得A ,B 两树距离,∵AB//EF ,∴△ADB ∽△EDF , ∴AB AD EF DE=,故②能求得A ,B 两树距离, 设AC =x , ∴AD =CD+x ,AB =tan x ACB ∠,AB =tan x CD ADB +∠; ∵已知CD ,∠ACB ,∠ADB ,∴可求出x ,然后可得出AB ,故③能求得A ,B 两树距离,已知∠F ,∠ADB ,FB 不能求得A ,B 两树距离,故④求得A ,B 两树距离,综上所述:求得A ,B 两树距离的有①②③,共3个,故选:C .【点睛】本题考查相似三角形的判定与性质及解直角三角形的应用,解答道题的关键是将实际问题转化为数学问题,本题只要把实际问题抽象到相似三角形,解直角三角形即可求出.10.若一元二次方程x 2+2x+a=0有实数解,则a 的取值范围是( )A .a<1B .a≤4C .a≤1D .a≥1 【答案】C【分析】根据一元二次方程的根的判别式列不等式求解.【详解】解:∵方程有实数根∴△=4-4a≥0,解得a≤1故选C .【点睛】本题考查一元二次方根的判别式,熟记公式正确计算是本题的解题关键.11.下列方程中,属于一元二次方程的是( )A .231x y +=B .211x x +=C .()2251x x +=+ D .()35x x += 【答案】D【分析】根据一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0,对各选项分析判断后利用排除法求解.【详解】解:A. 231x y +=不是一元二次方程;B. 211x x+=不是一元二次方程; C. ()2251x x +=+整理后可知不是一元二次方程;D. ()35x x +=整理后是一元二次方程;故选:D.【点睛】 本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx+c=0(且a≠0).12.为执行“均衡教育”政策,某区2018年投入教育经费7000万元,预计到2020年投入2.317亿元,若每年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( )A .7000(1+x 2)=23170B .7000+7000(1+x )+7000(1+x )2=23170C .7000(1+x )2=23170D .7000+7000(1+x )+7000(1+x )2=2317【答案】C【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设每年投入教育经费的年平均增长百分率为x ,再根据“2018年投入7000万元”可得出方程.【详解】设每年投入教育经费的年平均增长百分率为x ,则2020年的投入为7000(1+x )2=23170 由题意,得7000(1+x )2=23170.故选:C .【点睛】此题考查了由实际问题抽象出一元二次方程的知识,平均增长率问题,一般形式为a (1+x )2=b ,a 为起始时间的有关数量,b 为终止时间的有关数量.二、填空题(本题包括8个小题)13.如图,Rt △ABC 中,∠C =90°,且AC =1,BC =2,则sin ∠A =_____.25【解析】根据勾股定理先得出AB ,再根据正弦的定义得出答案即可.【详解】解:∵∠C=90°,∴AC 2+BC 2=AB 2,∵AC=1,BC=2,∴5∴sinA=2555BC AB ==, 故答案为:25. 【点睛】本题考查了锐角三角函数的定义,掌握正弦、余弦、正切的定义是解题的关键.14.定义符号max{a ,b}的含义为:当a≥b 时,max{a ,b}=a ;当a <b 时,max{a ,b}=b ,如:max{3,1}=3,max{﹣3,2}=2,则方程max{x ,﹣x}=x 2﹣6的解是_____.【答案】1或﹣1【分析】分两种情况:x≥﹣x ,即x≥0时;x <﹣x ,即x <0时;进行讨论即可求解.【详解】当x≥﹣x ,即x≥0时,∴x =x 2﹣6,即x 2﹣x ﹣6=0,(x ﹣1)(x+2)=0,解得:x 1=1,x 2=﹣2(舍去);当x <﹣x ,即x <0时,∴﹣x =x 2﹣6,即x 2+x ﹣6=0,(x+1)(x ﹣2)=0,解得:x 1=﹣1,x 4=2(舍去).故方程max{x ,﹣x}=x 2﹣6的解是x =1或﹣1.故答案为:1或﹣1.【点睛】考查了解了一元二次方程-因式分解法,关键是熟练掌握定义符号max{a ,b}的含义,注意分类思想的应用.15.如图,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F .过点D 作DG ∥BE ,交BC 于点G ,连接FG 交BD 于点O .若AB =6,AD =8,则DG 的长为_____.【答案】254。
★试卷3套精选★上海市虹口区2020届九年级上学期期末教学质量检测数学试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知△ABC ∽△A′B′C′,且相似比为1:1.则△ABC 与△A′B′C′的周长比为( )A .1:1B .1:6C .1:9D .1:3【答案】A【解析】根据相似三角形的周长比等于相似比即可得出答案.【详解】∵△ABC ∽△A′B′C′,且相似比为1:1,∴△ABC 与△A′B′C′的周长比为1:1,故选:A .【点睛】本题考查相似三角形的性质,解题的关键是熟练掌握基本知识,属于基础题型.2.已知:在△ABC 中,∠A =78°,AB =4,AC =6,下列阴影部分的三角形与原△ABC 不相似的是( )A .B .C .D .【答案】C【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【详解】解:A 、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误; B 、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C 、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D 、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选:C .【点睛】本题主要考查了相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.3.设点()11A ,x y 和()22B ,x y 是反比例函数k y x=图象上的两个点,当1x <2x <时,1y <2y ,则一次函数2y x k =-+的图象不经过的象限是A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【解析】∵点()11A ,x y 和()22B ,x y 是反比例函数k y x =图象上的两个点,当1x <2x <1时,1y <2y ,即y 随x 增大而增大,∴根据反比例函数k y x=图象与系数的关系:当0k >时函数图象的每一支上,y 随x 的增大而减小;当0k <时,函数图象的每一支上,y 随x 的增大而增大.故k <1.∴根据一次函数图象与系数的关系:一次函数1y=k x+b 的图象有四种情况:①当1k 0>,b 0>时,函数1y=k x+b 的图象经过第一、二、三象限;②当1k 0>,b 0<时,函数1y=k x+b 的图象经过第一、三、四象限;③当1k 0<,b 0>时,函数1y=k x+b 的图象经过第一、二、四象限;④当1k 0<,b 0<时,函数1y=k x+b 的图象经过第二、三、四象限.因此,一次函数2y x k =-+的1k 20=-<,b=k 0<,故它的图象经过第二、三、四象限,不经过第一象限.故选A .4.如图是一根空心方管,它的俯视图是( )A .B .C .D .【答案】B【分析】俯视图是从物体的上面看,所得到的图形:注意看到的用实线表示,看不到的用虚线表示.【详解】如图所示:俯视图应该是故选:B .【点睛】本题考查了作图−三视图,解题的关键是掌握看到的用实线表示,看不到的用虚线表示.5.O 的直径为15cm ,O 点与P 点的距离为8cm ,点P 的位置( )A .在⊙O 外B .在⊙O 上C .在⊙O 内D .不能确定 【答案】A【分析】由⊙O 的直径为15cm ,O 点与P 点的距离为8cm ,根据点与圆心的距离与半径的大小关系,即可求得答案.【详解】∵⊙O 的直径为15cm ,∴⊙O 的半径为7.5cm ,∵O 点与P 点的距离为8cm ,∴点P 在⊙O 外.故选A .【点睛】此题考查了点与圆的位置关系.注意点到圆心的距离为d ,则有:当d >r 时,点在圆外;当d=r 时,点在圆上,当d <r 时,点在圆内.6.如图,已知A 、B 是反比例函数()k y k>0x>0x=,上的两点,BC ∥x 轴,交y 轴于C ,动点P 从坐标原点O 出发,沿O→A→B→C 匀速运动,终点为C ,过运动路线上任意一点P 作PM ⊥x 轴于M ,PN ⊥y 轴于N ,设四边形OMPN 的面积为S ,P 点运动的时间为t ,则S 关于t 的函数图象大致是( )A .B .C .D .【答案】A 【详解】解:①点P 在AB 上运动时,此时四边形OMPN 的面积S=K ,保持不变,故排除B 、D ; ②点P 在BC 上运动时,设路线O→A→B→C 的总路程为l ,点P 的速度为a ,则S=OC×CP=OC×(l ﹣at ),因为l ,OC ,a 均是常数,所以S 与t 成一次函数关系,故排除C .故选A .考点:动点问题的函数图象.7.如图,在Rt △ABC 中,∠ACB=90°,若5AC =BC=2,则sin ∠A 的值为( )A .5B .53C .23D .25 【答案】C【分析】先利用勾股定理求出AB 的长,然后再求sin ∠A 的大小.【详解】解:∵在Rt △ABC 中,5AC =,BC=2 ∴AB=223AC BC +=∴sin ∠A=23BC AB = 故选:C .【点睛】本题考查锐角三角形的三角函数和勾股定理,需要注意求三角函数时,一定要是在直角三角形当中. 8.若关于x 的一元二次方程kx 2+2x+1=0有实数根,则k 的取值范围是( )A .k <1且k ≠0B .k ≤1且k ≠0C .k ≥﹣1且k ≠0D .k >﹣1且k ≠0【答案】B【分析】根据一元二次方程的根的判别式即可求出答案.【详解】解:由题意可知:△=4﹣4k≥0,∴k≤1,∵k≠0,∴k≤1且k≠0,故选:B .【点睛】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.9.如图,在Rt △ABC 中,∠C =90°,AC =2,BC =3,则tanA =( )A .23B .32C .1313D 313【答案】B【分析】根据正切的定义tan a A b =计算,得到答案. 【详解】在Rt △ABC 中,∠C =90°,3tan 2BC A AC ==,故选:B . 【点睛】 本题考查正切的计算,熟知直角三角形中正切的表示是解题的关键.10.二次函数y =x 2﹣6x+m 的图象与x 轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为( )A .(﹣1,0)B .(4,0)C .(5,0)D .(﹣6,0)【答案】C【解析】根据二次函数解析式求得对称轴是x=3,由抛物线的对称性得到答案.【详解】解:由二次函数26y x x m =-+得到对称轴是直线3x =,则抛物线与x 轴的两个交点坐标关于直线3x =对称,∵其中一个交点的坐标为()1,0,则另一个交点的坐标为()5,0,故选C .【点睛】考查抛物线与x 轴的交点坐标,解题关键是掌握抛物线的对称性质.11.数学课外兴趣小组的同学们要测量被池塘相隔的两棵树A ,B 的距离,他们设计了如图的测量方案:从树A 沿着垂直于AB 的方向走到E ,再从E 沿着垂直于AE 的方向走到F ,C 为AE 上一点,其中4位同学分别测得四组数据:①AC ,∠ACB ;②EF ,DE ,AD ;③CD ,∠ACB ,∠ADB ;④∠F ,∠ADB ,FB .其中能根据所测数据求得A ,B 两树距离的有( )A .1组B .2组C .3组D .4组【答案】C 【分析】根据三角函数的定义及相似三角形的判定定理及性质对各选项逐一判断即可得答案.【详解】∵已知∠ACB 的度数和AC 的长,∴利用∠ACB 的正切可求出AB 的长,故①能求得A ,B 两树距离,∵AB//EF ,∴△ADB ∽△EDF ,∴AB AD EF DE=,故②能求得A ,B 两树距离,设AC =x ,∴AD =CD+x ,AB =tan x ACB ∠,AB =tan x CD ADB +∠; ∵已知CD ,∠ACB ,∠ADB ,∴可求出x ,然后可得出AB ,故③能求得A ,B 两树距离,已知∠F ,∠ADB ,FB 不能求得A ,B 两树距离,故④求得A ,B 两树距离,综上所述:求得A ,B 两树距离的有①②③,共3个,故选:C .【点睛】本题考查相似三角形的判定与性质及解直角三角形的应用,解答道题的关键是将实际问题转化为数学问题,本题只要把实际问题抽象到相似三角形,解直角三角形即可求出. 12.如图⊙O 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=︒,4OC =,CD 的长为( )A .B .4C .D .8【答案】C【详解】∵直径AB 垂直于弦CD ,∴CE=DE=12CD , ∵∠A=22.5°,∴∠BOC=45°,∴OE=CE ,设OE=CE=x ,∵OC=4,∴x 2+x 2=16,解得:2,即:2,∴2故选C .二、填空题(本题包括8个小题)13.一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是___.【答案】180°【详解】解:设底面圆的半径为r ,侧面展开扇形的半径为R ,扇形的圆心角为n 度.由题意得S 底面面积=πr 2,l 底面周长=2πr ,S 扇形=2S 底面面积=2πr 2,l 扇形弧长=l 底面周长=2πr .由S 扇形=12l 扇形弧长×R 得2πr 2=12×2πr×R , 故R=2r . 由l 扇形弧长=180n r π得: 2πr=2180n r π⨯ 解得n=180°.故答案为:180°【点睛】本题考查扇形面积和弧长公式以及圆锥侧面积的计算,掌握相关公式正确计算是解题关键.14.如图,将正方形ABCD 绕点A 逆时针旋转30至正方形'''AB C D ,边''B C 交CD 于点E ,若正方形ABCD 的边长为3,则DE 的长为________.3【分析】连接AE ,由旋转性质知AD =AB′=3、∠BAB′=30°、∠B′AD =60°,证Rt △ADE ≌Rt △AB′E 得∠DAE =12∠B′AD =30°,由DE =ADtan ∠DAE 可得答案. 【详解】解:如图,连接AE ,∵将边长为3的正方形ABCD 绕点A 逆时针旋转30°得到正方形AB'C′D′,∴AD =AB′=3,∠BAB′=30°,∠DAB =90°∴∠B′AD =60°,在Rt △ADE 和Rt △AB′E 中,AD AB AE AE'⎧=⎨=⎩, ∴Rt △ADE ≌Rt △AB′E (HL ),∴∠DAE =∠B′AE =12∠B′AD =30°, ∴DE =ADtan ∠DAE =3×33=3, 故答案为3.【点睛】此题主要考查全等、旋转、三角函数的应用,解题的关键是熟知旋转的性质及全等三角形的判定定理. 15.在一个不透明的袋子中装有6个白球和若干个红球,这些球除颜色外无其他差别.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有_____个.【答案】1【分析】设袋子中的红球有x 个,利用红球在总数中所占比例得出与试验比例应该相等求出即可.【详解】解:设袋子中的红球有x 个,根据题意,得:6x x +=0.7, 解得:x =1,经检验:x =1是分式方程的解,∴袋子中红球约有1个,故答案为:1.【点睛】此题主要考查概率公式的应用,解题的关键是根据题意列式求解.16.如果反比例函数的图象经过点(4,5)--,则该反比例函数的解析式为____________【答案】20y x= 【分析】根据题意把点(4,5)--代入,反比例函数的解析式即可求出k 值进而得出答案.【详解】解:设反比例函数的解析式为:(0)k y k x =≠, 把点(4,5)--代入得20k =,所以该反比例函数的解析式为:20y x=.故答案为:20 yx =.【点睛】本题考查反比例函数的解析式,根据题意将点代入并求出k值是解题的关键.17.如图,⊙O的半径为6cm,直线AB是⊙O的切线,切点为点B,弦BC∥AO,若∠A=30°,则劣弧BC 的长为cm.【答案】2π.【解析】根据切线的性质可得出OB⊥AB,从而求出∠BOA的度数,利用弦BC∥AO,及OB=OC可得出∠BOC 的度数,代入弧长公式即可得出答案:∵直线AB是⊙O的切线,∴OB⊥AB(切线的性质).又∵∠A=30°,∴∠BOA=60°(直角三角形两锐角互余).∵弦BC∥AO,∴∠CBO=∠BOA=60°(两直线平行,内错角相等).又∵OB=OC,∴△OBC是等边三角形(等边三角形的判定).∴∠BOC=60°(等边三角形的每个内角等于60°).又∵⊙O的半径为6cm,∴劣弧BC的长=606=2180ππ⋅⋅(cm).18.如图,在▱ABCD中,AB为⊙O的直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则EF的长为.【答案】π.【详解】解:如图连接OE、OF.∵CD是⊙O的切线,∴OE⊥CD,∴∠OED=90°,∵四边形ABCD是平行四边形,∠C=60°,∴∠A=∠C=60°,∠D=120°,∵OA=OF,∴∠A=∠OFA=60°,∴∠DFO=120°,∴∠EOF=360°﹣∠D﹣∠DFO﹣∠DEO=30°,EF的长=306180ππ⨯=.故答案为π.考点:切线的性质;平行四边形的性质;弧长的计算.三、解答题(本题包括8个小题)19.2019年全国青少年禁毒知识竞赛开始以来,某市青少年学生踊跃参加,掀起了学习禁毒知识的热潮,禁毒知识竞赛的成绩分为四个等级:优秀,良好,及格,不及格.为了了解该市广大学生参加禁毒知识竞赛的成绩,抽取了部分学生的成绩,根据抽查结果,绘制了如下两幅不完整的统计图:(1)本次抽查的人数是;扇形统计图中不及格学生所占的圆心角的度数为;(2)补全条形统计图;(3)若某校有2000名学生,请你根据调查结果估计该校学生知识竞赛成绩为“优秀”和“良好”两个等级共有多少人?【答案】(1)120,18°;(2)详见解析;(3)1000【分析】(1)由优秀的人数及其所占百分比可得总人数;用360°乘以不及格人数所占比例即可得出不及格学生所占的圆心角的度数;(2)用总人数减去各等级人数之和求出良好的人数,据此可补全条形图;(3)用总人数乘以样本中“优秀”和“良好”人数和占被调查人数的比例即可得出答案.【详解】解:(1)本次抽查的人数为:24÷20%=120(人),扇形统计图中不及格学生所占的圆心角的度数为360°×6120=18°,故答案为:120,18°;(2)良好的人数为:120﹣(24+54+6)=36(人),补全图形如下:(3)估计该校学生知识竞赛成绩为“优秀”和“良好”两个等级共有:2000×2436120=1000(人).【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.如图,四边形ABCD内接于⊙O,AB是直径,C为BD的中点,延长AD,BC交于点P,连结AC.(1)求证:AB=AP;(2)若AB=10,DP=2,①求线段CP的长;②过点D作DE⊥AB于点E,交AC于点F,求△ADF的面积.【答案】(1)见解析;(2)①PC10;②S△ADF=128 15.【分析】(1)利用等角对等边证明即可;(2)①利用勾股定理分别求出BD,PB,再利用等腰三角形的性质即可解决问题;②作FH⊥AD于H,首先利用相似三角形的性质求出AE,DE,再证明AE=AH,设FH=EF=x,利用勾股定理构建方程解决问题即可.【详解】(1)证明:∵BC=CD,∴∠BAC=∠CAP,∵AB是直径,∴∠ACB=∠ACP=90°,∵∠ABC+∠BAC=90°,∠P+∠CAP=90°,∴∠ABC=∠P,∴AB=AP.(2)①解:连接BD .∵AB 是直径,∴∠ADB =∠BDP =90°,∵AB =AP =10,DP =2,∴AD =10﹣2=8,∴BD 22-AB AD 22108-6,∴PB 22BD PD +2262+=10∵AB =AP ,AC ⊥BP ,∴BC =PC =12PB 10, ∴PC 10.②解:作FH ⊥AD 于H .∵DE ⊥AB ,∴∠AED =∠ADB =90°,∵∠DAE =∠BAD ,∴△ADE ∽△ABD , ∴AE AD =AD AB =DE BD, ∴8AE =810=6DE , ∴AE =325,DE =245, ∵∠FEA =∠FEH ,FE ⊥AE ,FH ⊥AH ,∴FH =FE ,∠AEF =∠AHF =90°,∵AF =AF ,∴Rt △AFE ≌Rt △AFH (HL ),∴AH =AE =325,DH =AD ﹣AH =85,设FH =EF =x ,在Rt△FHD中,则有(245﹣x)2=x2+(85)2,解得x=32 15,∴S△ADF=12•AD•FH=12×8×3215=12815.故答案为①PC=10;②S△ADF=128 15.【点睛】本题考查了圆周角定理,等腰三角形的判定与性质,解直角三角形,相似三角形的判定与性质等知识. 属于圆的综合题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.21.为弘扬中华民族传统文化,某市举办了中小学生“国学经典大赛”,比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式为“双人组”.小明和小红组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次.则恰好小明抽中“唐诗”且小红抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.【答案】1 12【分析】画出树状图,然后根据概率公式列式计算,即可得到答案. 【详解】解:画树状图为:共有12种等可能的结果数;其中恰好小明抽中“唐诗”且小红抽中“宋词”的结果数为1,∴恰好小明抽中“唐诗”且小红抽中“宋词”的概率=1 12;【点睛】本题考查了列表法和树状图法,以及概率的公式,解题的关键是熟练掌握列表法和树状图法求概率. 22.如图,以△ABC的BC边上一点O为圆心的圆,经过A、B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,若AC=FC.(1)求证:AC是⊙O的切线:(2)若BF=8,40O的半径;(3)若∠ADB=60°,BD=1,求阴影部分的面积.(结果保留根号)【答案】(1)证明见解析;(2)6;(3)3312π-.【解析】(1)连接OA、OD,如图,利用垂径定理的推论得到OD⊥BE,再利用CA=CF得到∠CAF= ∠CFA,然后利用角度的代换可证明∠OAD+∠CAF=o90,则OA⊥AC,从而根据切线的判定定理得到结论;(2)设⊙0的半径为r,则OF=8-r,在Rt△ODF中利用勾股定理得到2228-r+r=(40)(),然后解方程即可;(3)先证明△BOD为等腰直角三角形得到OB=22,则OA=22,再利用圆周角定理得到∠AOB=2∠ADB=120o,则∠AOE=60o,接着在Rt△OAC中计算出AC,然后用一个直角三角形的面积减去一个扇形的面积去计算阴影部分的面积.【详解】(1)证明:连接OA、OD,如图,∵D为BE的下半圆弧的中点,∴OD⊥BE,∴∠ODF+∠OFD=90°,∵CA=CF,∴∠CAF=∠CFA,而∠CFA=∠OFD,∴∠ODF+∠CAF=90°,∵OA=OD,∴∠ODA=∠OAD,∴∠OAD+∠CAF=90°,即∠OAC=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)解:设⊙O的半径为r,则OF=8﹣r,在Rt△ODF中,(8﹣r)2+r2=()2,解得r1=6,r2=2(舍去),即⊙O的半径为6;(3)解:∵∠BOD=90°,OB=OD,∴△BOD 为等腰直角三角形,∴OB=BD=,∴OA=, ∵∠AOB=2∠ADB=120°,∴∠AOE=60°,在Rt △OAC 中,AC=OA=,∴阴影部分的面积=••﹣=.【点睛】本题主要考查圆、圆的切线及与圆相关的不规则阴影的面积,需综合运用各知识求解.23.如图,已知直线PA 交O 于A ,B 两点;AE 是O 的直径,点C 为O 上一点,且AC 平分PAE ∠,过C 作CD PA ⊥,垂足为D .(1)求证:CD 为O 的切线;(2)若6DC DA +=,O 的直径为10,求AB 的长.【答案】(1)连结OC ,证明见详解,(2)AB=1.【分析】(1)连接OC ,根据题意可证得∠CAD+∠DCA=30°,再根据角平分线的性质,得∠DCO=30°,则CD 为⊙O 的切线;(2)过O 作OF ⊥AB ,则∠OCD=∠CDA=∠OFD=30°,得四边形OCDF 为矩形,设AD=x ,在Rt △AOF 中,由勾股定理得(5-x )2+(1-x )2=25,从而求得x 的值,由勾股定理得出AB 的长.【详解】(1)连接OC ,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠PAE,∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴PB∥OC,∵CD⊥PA,∴CD⊥OC,CO为⊙O半径,∴CD为⊙O的切线;(2)过O作OF⊥AB,垂足为F,∴∠OCD=∠CDA=∠OFD=30°,∴四边形DCOF为矩形,∴OC=FD,OF=CD.∵DC+DA=1,设AD=x,则OF=CD=1-x,∵⊙O的直径为10,∴DF=OC=5,∴AF=5-x,在Rt△AOF中,由勾股定理得AF2+OF2=OA2.即(5-x)2+(1-x)2=25,化简得x2-11x+18=0,解得x1=2,x2=3.∵CD=1-x大于0,故x=3舍去,∴x=2,从而AD=2,AF=5-2=3,∵OF⊥AB,由垂径定理知,F为AB的中点,∴AB=2AF=1.【点睛】本题考查切线的证法与弦长问题,涉及切线的判定和性质;.勾股定理;矩形的判定和性质以及垂径定理的知识,关键掌握好这些知识并灵活运用解决问题.24.如图,30PBC ∠=,点O 是线段PB 的一个三等分点,以点O 为圆心,OB 为半径的圆交PB 于点A ,交BC 于点E ,连接.PE(1)求证:PE 是O 的切线; (2)点D 为O 上的一动点,连接OD .①当AOD ∠= 时,四边形BEPD 是菱形;②当AOD ∠= 时,四边形ADBE 是矩形.【答案】 (1)见解析;(2)①60°,②120°.【分析】(1)连接,OE AE ,由30PBE ∠=︒,得到AOE ∆为等边三角形,得到PA OA OB AE ===,即可得到90OEP ∠=︒,则结论成立;(2)①连接BD ,由圆周角定理,得到∠ABD=30°,则∠DBE=60°,又有∠BEP=120°,根据同旁内角互补得到PE//DB ,然后证明PE EB BD ==,即可得到答案;②由圆周角定理,得∠ABD=60°,得到∠EBD=90°,然后由直径所对的圆周角为90°,得到90AEB ADB ∠=∠=︒,即可得到答案.【详解】证明:连接,OE AE ,,30OB OE PBE =∠=︒,260POE PBE ∴∠=∠=︒.OA OE =,AOE ∴为等边三角形,AE OA ∴=.点O 是BP 的三等分点,PA OA OB AE ===,1302OPE AEP OAE ∴∠=∠=∠=︒, 603090OEP OEA AEP ∴∠=∠+∠=︒+︒=︒,即OE PE ⊥,PE ∴是O 的切线.(2)①当60AOD ∠=︒时,四边形BEPD 是菱形;如图,连接BD ,∵60AOD ∠=︒,∴30ABD ∠=︒,∴303060EBD ∠=︒+︒=︒,∵AB 为直径,则∠AEB=90°,由(1)知30AEP ∠=︒,∴3090120BEP ∠=︒+︒=︒,∴60120180EBD BEP ∠+∠=︒+︒=︒,∴PE//DB , ∵30APE PBE ∠=∠=︒,18060120BOE BOD ∠=∠=︒-︒=︒,∴PE EB BD ==,∴四边形BEPD 是菱形;故答案为:60°.②当120AOD ∠=︒时,四边形ADBE 是矩形.如图,连接AE 、AD 、DB ,∵120AOD ∠=︒,∴1120602ABD ∠=⨯︒=︒, ∴306090EBD ∠=︒+︒=︒,∵AB 是直径,∴90AEB ADB ∠=∠=︒,∴四边形ADBE 是矩形.故答案为:120︒.【点睛】本题考查了圆的切线的判定和性质,圆周角定理,菱形的判定和矩形的判定,解题的关键是正确作出辅助线,利用圆的性质进行解题.25.某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:平均数 方差 中位数 甲7 ① . 7 乙 ② . 5.4③ . (1)请将右上表补充完整:(参考公式:方差222212[()()()]n S x x x x x x n =-+-++-)(2)请从下列三个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看,__________的成绩好些;②从平均数和中位数相结合看,___________的成绩好些;(3)若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.【答案】(1)①1.2;②7;③7.5;(2)①甲;②乙;(3)乙,理由见解析【分析】(1)根据方差公式直接计算即可得出甲的方差,然后根据折线图信息进一步分析即可求出乙的平均数以及中位数;(2)①甲乙平均数相同,而甲的方差要小,所以甲的成绩更加稳定,从而得出甲的成绩好一些;②甲乙平均数相同,而乙的中位数较大,即乙的成绩的中间量较大,所以得出乙的成绩好一些;(3)根据甲乙二人成绩的相关数据结合实际进一步分析比较即可.【详解】(1)①甲的方差为:2222221[(97)(57)4(77)2(87)2(67)] 1.210S =-+-+⨯-+⨯-+⨯-=, ②乙的平均数为:()24687789910107+++++++++÷=,③乙的中位数为:()7827.5+÷=,故答案为:①1.2;②7;③7.5;(2)①甲乙平均数相同,而甲的方差要小,所以甲的成绩更加稳定,从而得出甲的成绩好一些;②甲乙平均数相同,而乙的中位数较大,即乙的成绩的中间量较大,所以得出乙的成绩好一些;故答案为:①甲;②乙;(3)选乙,理由如下:综合看,甲发挥更稳定,但射击精准度差;乙发挥虽然不稳定,但击中高靶环次数更多,成绩逐步上升,提高潜力大,更具有培养价值,所以应选乙.【点睛】本题考查了折线统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,折线统计图能清楚地看出数据的变化情况.26.已知在平面直角坐标系xOy 中,抛物线21y x bx =++(b 为常数)的对称轴是直线x=1. (1)求该抛物线的表达式;(2)点A (8,m )在该抛物线上,它关于该抛物线对称轴对称的点为A',求点A'的坐标;(3)选取适当的数据填入下表,并在如图5所示的平面直角坐标系内描点,画出该抛物线.【答案】(1)221y x x =-+;(2)(-6,49);(3)答案见解析. 【分析】(1)由对称轴为1x =,即可求出b 的值,然后代入即可;(2)把8x =代入解析式,求出m ,利用抛物线的对称轴性质,即可得到点'A 坐标;(3)选取对称轴左右两边的几个整数,计算出函数值,然后画出抛物线即可.【详解】解:(1)∵对称轴为2b x =-, ∴12b -=. ∴2b =-;∴抛物线的表达式为221y x x =-+.(2)∵点A(8,m)在该抛物线的图像上,∴当x=8时,22221(1)8149y x x x=-+=-=-=().∴点A(8,49).∴点A(8,49)关于对称轴对称的点A'的坐标为(-6,49).(3)列表,如下:抛物线图像如下图:【点睛】本题考查了二次函数的性质和图像,解题的关键是熟练掌握二次函数的性质和图像的画法.27.如图,已知抛物线y=-x2+mx+3与x轴交于点A、B两点,与y轴交于C点,点B的坐标为(3,0),抛物线与直线y=-32x+3交于C、D两点.连接BD、AD.(1)求m的值.(2)抛物线上有一点P,满足S△ABP=4S△ABD,求点P的坐标.【答案】(1)m=2 ;(2)P(139)或P(1139)【解析】(1)利用待定系数法即可解决问题;(2)利用方程组首先求出点D坐标.由面积关系,推出点P的纵坐标,再利用待定系数法求出点P的坐标即可.【详解】解:(1)∵抛物线y=-x2+mx+3过(3,0),∴0=-9+3m+3,∴m=2(2)由223332y x xy x⎧-++⎪⎨-+⎪⎩==,得113xy⎧⎨⎩==,227294xy⎧⎪⎪⎨⎪-⎪⎩==,∴D(72,-94),∵S△ABP=4S△ABD,∴12AB×|y P|=4×12AB×94,∴|y P|=9,y P=±9,当y=9时,-x2+2x+3=9,无实数解,当y=-9时,-x2+2x+3=-9,解得:x1x2∴P(-9)或P(-9).九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.等腰三角形底边长为10cm ,周长为36cm ,则底角的余弦值等于( )A .513B .213C .1013D .512【答案】A【分析】由题意得出等腰三角形的腰长为13cm ,作底边上的高,根据等腰三角形的性质得出底边一半的长度,最后由三角函数的定义即可得出答案.【详解】解:如图,BC=10cm ,AB=AC ,可得AC=(36-10)÷2=26÷2=13(cm ).又AD 是底边BC 上的高,∴CD=BD=5cm ,∴cosC=135CD AC =, 即底角的余弦值为513, 故选:A .【点睛】本题主要考查等腰三角形的性质和三角函数的定义,熟练掌握等腰三角形的“三线合一”是解题的关键. 2.如图,矩形ABCD 中,连接AC ,延长BC 至点E ,使BE AC =,连接DE ,若40BAC ∠=︒,则∠E 的度数是( )A .65°B .60°C .50°D .40°【答案】A 【分析】连接BD ,与AC 相交于点O ,则BD=AC=BE ,得△BDE 是等腰三角形,由OB=OC ,得∠OBC=50°,即可求出∠E 的度数.【详解】解:如图,连接BD ,与AC 相交于点O ,∴BD=AC=BE ,OB=OC ,∴△BDE 是等腰三角形,∠OBC=∠OCB ,∵40BAC ∠=︒,∠ABC=90°,∴∠OBC=904050︒-︒=︒, ∴11(18050)1306522E ∠=⨯︒-︒=⨯︒=︒; 故选择:A.【点睛】本题考查了矩形的性质,等腰三角形的判定和性质,三角形内角和定理,以及直角三角形两个锐角互余,解题的关键是正确作出辅助线,构造等腰三角形进行解题.3.下列关于抛物线()=-+2y 2x 31有关性质的说法,正确的是( )A .其图象的开口向下B .其图象的对称轴为3x =-C .其最大值为1D .当3x <时,y 随x 的增大而减小 【答案】D【分析】根据抛物线的表达式中系数a 的正负判断开口方向和函数的最值问题,根据开口方向和对称轴判断函数增减性.【详解】解:∵a=2>0,∴抛物线开口向上,故A 选项错误;抛物线的对称轴为直线x=3,故B 选项错误;抛物线开口向上,图象有最低点,函数有最小值,没有最大值,故C 选项错误;因为抛物线开口向上,所以在对称轴左侧,即x<3时,y 随x 的增大而减小,故D 选项正确.故选:D.【点睛】本题考查二次函数图象和性质,掌握图象特征与系数之间的关系即数形结合思想是解答此题的关键. 4.把同一副扑克牌中的红桃2、红桃3、红桃4三张牌背面朝上放在桌子上,从中随机抽取两张,牌面的数字之和为奇数的概率为( )A .49B .13C .12D .23【答案】D【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与从中随机抽取两张,牌面的数字之和为奇数的情况,再利用概率公式求解即可求得答案.【详解】解:根据题意画树状图如下:∵共有6种等可能的结果,从中随机抽取两张,牌面的数字之和为奇数的有4种情况,∴从中随机抽取两张,牌面的数字之和为奇数的概率为:4263=;故选:D.【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.5.已知点A、B、C、D、E、F是半径为r的⊙O的六等分点,分别以A、D为圆心,AE和DF长为半径画圆弧交于点P.以下说法正确的是( )①∠PAD=∠PDA=60º;②△PAO≌△ADE;③PO=2r;④AO∶OP∶PA=1∶2∶3.A.①④B.②③C.③④D.①③④【答案】C【解析】解:∵A、B、C、D、E、F是半径为r的⊙O的六等分点,∴AE DF=,∴AE=DF<AD,根据题意得:AP=AE,DP=DF,∴AP=DP<AD,∴△PAD是等腰三角形,∠PAD=∠PDA≠60°,①错误;连接OP、AE、DE,如图所示,∵AD 是⊙O 的直径,∴AD >AE=AP ,②△PAO ≌△ADE 错误,∠AED=90°,∠DAE=30°,∴DE=r ,AE=3DE=3r ,∴AP=AE=3r ,∵OA=OD ,AP=DP ,∴PO ⊥AD ,∴PO=222AP OA -=r ,③正确;∵AO :OP :PA=r :2r :3r=1:2:3.∴④正确;说法正确的是③④,故选C .6.已知关于x 的一元二次方程280x mx +-=的一个根为1,则m 的值为( )A .1B .-8C .-7D .7【答案】D【解析】直接利用一元二次方程的解的意义将x=1代入求出答案即可.【详解】∵关于x 的一元二次方程x 2+mx −8=0的一个根是1,∴1+m −8=0,解得:m=7.故答案选:D.【点睛】本题考查的知识点是一元二次方程的解,解题的关键是熟练的掌握一元二次方程的解.7.如图是某体育馆内的颁奖台,其左视图是( )A .B .C .D .【答案】D【分析】找到从左面看所得到的图形即可.【详解】解:从左边看去是上下两个矩形,下面的比较高.故选D.【点睛】本题考查了简单组合体的三视图,解题的关键是掌握三视图的观察方法.8.方程(1)(2)0x x --=的解是( )A .1x =B .2x =C .1x =或2x =D .1x =-或2x =- 【答案】C【解析】方程左边已经是两个一次因式之积,故可化为两个一次方程,解这两个一元一次方程即得答案.【详解】解:∵(1)(2)0x x --=,∴x -1=0或x -2=0,解得:1x =或2x =.故选:C.【点睛】本题考查了一元二次方程的解法,属于基本题型,熟练掌握分解因式解方程的方法是关键.9.在Rt △ABC 中,∠C =90°,A ∠、B 、C ∠所对的边分别为a 、b 、c ,如果a=3b ,那么∠A 的余切值为( )A .13B .3C .2D .10 【答案】A【分析】根据锐角三角函数的定义,直接得出cotA=b a ,即可得出答案. 【详解】解:在Rt △ABC 中,∠C =90°,a=3b ,∴1cot 3b a A ==; 故选择:A.【点睛】此题主要考查了锐角三角函数的定义,熟练地应用锐角三角函数的定义是解决问题的关键.10.如图,四边形ABCD 内接于⊙O ,已知∠A =80°,则∠C 的度数是( )。
〖精选3套试卷〗2020学年上海市虹口区中考数学学业质量监测试题
若男生楼共30层,层高均为3m,请通过计算说明多少层以下会受到挡光的影响? 参考数据: , , , , ,
26.(12分)如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF.
判断AF与⊙O的位置关系并说明理由;若⊙O的半径为4,AF=3,求AC的长.
9.下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是()
A. B. C. D.
10.实数a、b、c在数轴上的位置如图所示,则代数式|c﹣a|﹣|a+b|的值等于( )
A.c+bB.b﹣cC.c﹣2a+bD.c﹣2a﹣b
二、填空题(本题包括8个小题)
11.如图,点A为函数y= (x>0)图象上一点,连接OA,交函数y= (x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为______.
20.(6分)解方程(2x+1)2=3(2x+1)
21.(6分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).求此抛物线的表达式;如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.
22.(8分)为给邓小平诞辰 周年献礼,广安市政府对城市建设进行了整改,如图所示,已知斜坡 长60 米,坡角(即 )为 , ,现计划在斜坡中点 处挖去部分斜坡,修建一个平行于水平线 的休闲平台 和一条新的斜坡 (下面两个小题结果都保留根号).
2019-2020学年中考数学模拟试卷
一、选择题(本题包括10个小题,每小题只有一个选项符合题意)
1.已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为( )
{3套试卷汇总}2020-2021上海市虹口区中考数学检测试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是( )A .B .C .D .【答案】B【解析】观察图形,利用中心对称图形的性质解答即可.【详解】选项A ,新图形不是中心对称图形,故此选项错误;选项B ,新图形是中心对称图形,故此选项正确;选项C ,新图形不是中心对称图形,故此选项错误;选项D ,新图形不是中心对称图形,故此选项错误;故选B .【点睛】本题考查了中心对称图形的概念,熟知中心对称图形的概念是解决问题的关键.2.抛物线223y x =(﹣)的顶点坐标是( )A .(2,3)B .(-2,3)C .(2,-3)D .(-2,-3)【答案】A【解析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标.【详解】解:y=(x-2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选A .【点睛】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a (x-h )2+k ,顶点坐标是(h ,k ),对称轴是x=h .3.将一副三角板按如图方式摆放,∠1与∠2不一定互补的是( )A.B. C. D.【答案】D【解析】A选项:∠1+∠2=360°-90°×2=180°;B选项:∵∠2+∠3=90°,∠3+∠4=90°,∴∠2=∠4,∵∠1+∠4=180°,∴∠1+∠2=180°;C选项:∵∠ABC=∠DEC=90°,∴AB∥DE,∴∠2=∠EFC,∵∠1+∠EFC=180°,∴∠1+∠2=180°;D选项:∠1和∠2不一定互补.故选D.点睛:本题主要掌握平行线的性质与判定定理,关键在于通过角度之间的转化得出∠1和∠2的互补关系. 4.下列二次根式,最简二次根式是( )A8B 12C5D27【答案】C【解析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A、被开方数含开的尽的因数,故A不符合题意;B、被开方数含分母,故B不符合题意;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意.故选C.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.5.以坐标原点为圆心,以2个单位为半径画⊙O,下面的点中,在⊙O上的是()A.(1,1) B.(2,2) C.(1,3) D.(1,2)【答案】B【解析】根据点到圆心的距离和半径的数量关系即可判定点与圆的位置关系.【详解】A选项,(1,1)到坐标原点的距离为2<2,因此点在圆内,B选项(2,2) 到坐标原点的距离为2=2,因此点在圆上,C选项(1,3) 到坐标原点的距离为10>2,因此点在圆外D选项(1,2) 到坐标原点的距离为3<2,因此点在圆内,故选B.【点睛】本题主要考查点与圆的位置关系,解决本题的关键是要熟练掌握点与圆的位置关系.6.如图,在△ABC中,cosB=2,sinC=35,AC=5,则△ABC的面积是()A.212B.12 C.14 D.21【答案】A【解析】根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积.【详解】解:过点A作AD⊥BC,∵△ABC 中,cosB=22,sinC=35,AC=5, ∴cosB=22=BD AB, ∴∠B=45°,∵sinC=35=AD AC =5AD , ∴AD=3,∴CD=2253-=4,∴BD=3,则△ABC 的面积是:12×AD×BC=12×3×(3+4)=212. 故选:A .【点睛】此题主要考查了解直角三角形的知识,作出AD ⊥BC ,进而得出相关线段的长度是解决问题的关键. 7.设点()11A ,x y 和()22B ,x y 是反比例函数k y x =图象上的两个点,当1x <2x <时,1y <2y ,则一次函数2y x k =-+的图象不经过的象限是A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【解析】∵点()11A ,x y 和()22B ,x y 是反比例函数k y x =图象上的两个点,当1x <2x <1时,1y <2y ,即y 随x 增大而增大,∴根据反比例函数k y x=图象与系数的关系:当0k >时函数图象的每一支上,y 随x 的增大而减小;当0k <时,函数图象的每一支上,y 随x 的增大而增大.故k <1.∴根据一次函数图象与系数的关系:一次函数1y=k x+b 的图象有四种情况:①当1k 0>,b 0>时,函数1y=k x+b 的图象经过第一、二、三象限;②当1k 0>,b 0<时,函数1y=k x+b 的图象经过第一、三、四象限;③当1k 0<,b 0>时,函数1y=k x+b 的图象经过第一、二、四象限;④当1k 0<,b 0<时,函数1y=k x+b 的图象经过第二、三、四象限.因此,一次函数2y x k =-+的1k 20=-<,b=k 0<,故它的图象经过第二、三、四象限,不经过第一象限.故选A .8.如图,在矩形ABCD 中,AD=2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED=∠CED ;②OE=OD ;③BH=HF ;④BC ﹣CF=2HE ;⑤AB=HF ,其中正确的有( )A .2个B .3个C .4个D .5个 【答案】C【解析】试题分析:∵在矩形ABCD 中,AE 平分∠BAD ,∴∠BAE=∠DAE=45°,∴△ABE 是等腰直角三角形,∴2AB ,∵2AB ,∴AE=AD ,又∠ABE=∠AHD=90°∴△ABE ≌△AHD (AAS ),∴BE=DH ,∴AB=BE=AH=HD ,∴∠ADE=∠AED=12(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED ,故①正确;∵∠AHB=12(180°﹣45°)=67.5°,∠OHE=∠AHB (对顶角相等),∴∠OHE=∠AED ,∴OE=OH ,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质9.“山西八分钟,惊艳全世界”.2019年2月25日下午,在外交部蓝厅隆重举行山西全球推介活动.山西经济结构从“一煤独大”向多元支撑转变,三年累计退出煤炭过剩产能8800余万吨,煤层气产量突破56亿立方米.数据56亿用科学记数法可表示为()A.56×108B.5.6×108C.5.6×109D.0.56×1010【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于56亿有10位,所以可以确定n=10﹣1=1.【详解】56亿=56×108=5.6×101,故选C.【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.10.关于反比例函数4y x =-,下列说法正确的是( ) A .函数图像经过点(2,2);B .函数图像位于第一、三象限;C .当0x >时,函数值y 随着x 的增大而增大;D .当1x >时,4y <-.【答案】C【解析】直接利用反比例函数的性质分别分析得出答案.【详解】A 、关于反比例函数y=-4x ,函数图象经过点(2,-2),故此选项错误; B 、关于反比例函数y=-4x,函数图象位于第二、四象限,故此选项错误; C 、关于反比例函数y=-4x,当x >0时,函数值y 随着x 的增大而增大,故此选项正确; D 、关于反比例函数y=-4x,当x >1时,y >-4,故此选项错误; 故选C .【点睛】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键.二、填空题(本题包括8个小题)11.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是 .【答案】10%.【解析】设平均每次降价的百分率为x ,那么第一次降价后的售价是原来的()1x -,那么第二次降价后的售价是原来的()21x -,根据题意列方程解答即可.【详解】设平均每次降价的百分率为x ,根据题意列方程得, ()2100181x ⨯-=,解得10.110%x ==,2 1.9x =(不符合题意,舍去),答:这个百分率是10%.故答案为10%.【点睛】本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为()21a x b ±=.12.如图,在Rt △ABC 中,∠A=90°,∠ABC 的平分线B D 交AC 于点D ,DE 是BC 的垂直平分线,点E 是垂足.若DC=2,AD=1,则BE 的长为______.【答案】3【解析】∵DE是BC的垂直平分线,∴DB=DC=2,∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,∴DE=AD=1,∴BE=223-=,BD DE故答案为3.点睛:本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.13.如图,六边形ABCDEF的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________.【答案】2【解析】凸六边形ABCDEF,并不是一规则的六边形,但六个角都是110°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.【详解】解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是110°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△AHF、△BGC、△DPE、△GHP都是等边三角形.∴GC=BC=3,DP=DE=1.∴GH=GP=GC+CD+DP=3+3+1=8,FA=HA=GH-AB-BG=8-1-3=4,EF=PH-HF-EP=8-4-1=1.∴六边形的周长为1+3+3+1+4+1=2.故答案为2.【点睛】本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.14.如图,在△ABC中,∠C=∠ABC,BE⊥AC,垂足为点E,△BDE是等边三角形,若AD=4,则线段BE的长为______.【答案】1【解析】本题首先由等边三角形的性质及垂直定义得到∠DBE=60°,∠BEC=90°,再根据等腰三角形的性质可以得出∠EBC=∠ABC-60°=∠C-60°,最后根据三角形内角和定理得出关系式∠C-60°+∠C=90°解出∠C,推出AD=DE,于是得到结论.【详解】∵△BDE是正三角形,∴∠DBE=60°;∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC,则∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°;∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,解得∠C=75°,∴∠ABC=75°,∴∠A=30°,∵∠AED=90°-∠DEB=30°,∴∠A=∠AED,∴DE=AD=1,∴BE=DE=1,故答案为:1.【点睛】本题主要考查等腰三角形的性质及等边三角形的性质及垂直定义,解题的关键是根据三角形内角和定理列出符合题意的简易方程,从而求出结果.15.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,则DF的长为__.【答案】1【解析】试题分析:如图,延长CF交AB于点G,∵在△AFG和△AFC中,∠GAF=∠CAF,AF=AF,∠AFG=∠AFC,∴△AFG≌△AFC(ASA).∴AC=AG,GF=CF.又∵点D是BC中点,∴DF是△CBG的中位线.∴DF=12BG=12(AB﹣AG)=12(AB﹣AC)=1.16.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_____.【答案】2 3【解析】试题解析:∵共6个数,小于5的有4个,∴P(小于5)=46=23.故答案为23.17.观察下列图形,若第1个图形中阴影部分的面积为1,第2个图形中阴影部分的面积为34,第3个图形中阴影部分的面积为916,第4个图形中阴影部分的面积为2764,…则第n个图形中阴影部分的面积为_____.(用字母n表示)【答案】3()4n﹣1(n为整数)【解析】试题分析:观察图形可得,第1个图形中阴影部分的面积=(34)0=1;第2个图形中阴影部分的面积=(34)1=34;第3个图形中阴影部分的面积=(34)2=916;第4个图形中阴影部分的面积=(34)3=2764;…根据此规律可得第n 个图形中阴影部分的面积=(34)n-1(n 为整数)• 考点:图形规律探究题.18.如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限,若反比例函数k y x=的图象经过点B ,则k 的值是_____.【答案】3.【解析】已知△ABO 是等边三角形,通过作高BC ,利用等边三角形的性质可以求出OB 和OC 的长度;由于Rt △OBC 中一条直角边和一条斜边的长度已知,根据勾股定理还可求出BC 的长度,进而确定点B 的坐标;将点B 的坐标代入反比例函数的解析式k y x =中,即可求出k 的值. 【详解】过点B 作BC 垂直OA 于C ,∵点A 的坐标是(2,0),∴AO=2,∵△ABO 是等边三角形,∴OC=1,BC=3,∴点B 的坐标是()1,3,把()1,3代入k y x=,得3k =. 故答案为3.【点睛】考查待定系数法确定反比例函数的解析式,只需求出反比例函数图象上一点的坐标;三、解答题(本题包括8个小题)19.某数学兴趣小组为测量如图(①所示的一段古城墙的高度,设计用平面镜测量的示意图如图②所示,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处.已知AB⊥BD、CD⊥BD,且测得AB=1.2m,BP=1.8m.PD=12m,求该城墙的高度(平面镜的原度忽略不计):请你设计一个测量这段古城墙高度的方案.要求:①面出示意图(不要求写画法);②写出方案,给出简要的计算过程:③给出的方案不能用到图②的方法.【答案】(1)8m;(2)答案不唯一【解析】(1)根据入射角等于反射角可得∠APB=∠CPD ,由AB⊥BD、CD⊥BD 可得到∠ABP=∠CDP=90°,从而可证得三角形相似,根据相似三角形的性质列出比例式,即可求出CD的长.(2)设计成视角问题求古城墙的高度.【详解】(1)解:由题意,得∠APB=∠CPD,∠ABP=∠CDP=90°,∴Rt△ABP∽Rt△CDP,∴AB CDBP BP=,∴CD=1.212 1.8⨯=8.答:该古城墙的高度为8m(2)解:答案不唯一,如:如图,在距这段古城墙底部am的E处,用高h(m)的测角仪DE测得这段古城墙顶端A的仰角为α.即可测量这段古城墙AB的高度,过点D作DC⊥AB于点C.在Rt△ACD中,∠ACD=90°,tanα=AC CD,∴AC=α tanα,∴AB=AC+BC=αtanα+h【点睛】本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.20.如图,点A,C,B,D在同一条直线上,BE∥DF,∠A=∠F,AB=FD,求证:AE=FC.【答案】证明见解析.【解析】由已知条件BE∥DF,可得出∠ABE=∠D,再利用ASA证明△ABE≌△FDC即可.证明:∵BE∥DF,∴∠ABE=∠D,在△ABE和△FDC中,∠ABE=∠D,AB=FD,∠A=∠F∴△ABE≌△FDC(ASA),∴AE=FC.“点睛”此题主要考查全等三角形的判定与性质和平行线的性质等知识点的理解和掌握,此题的关键是利用平行线的性质求证△ABC和△FDC全等.21.已知关于x的一元二次方程x2﹣mx﹣2=0…①若x=﹣1是方程①的一个根,求m的值和方程①的另一根;对于任意实数m,判断方程①的根的情况,并说明理由.【答案】(1)方程的另一根为x=2;(2)方程总有两个不等的实数根,理由见解析.【解析】试题分析:(1)直接把x=-1代入方程即可求得m的值,然后解方程即可求得方程的另一个根;(2)利用一元二次方程根的情况可以转化为判别式△与1的关系进行判断.(1)把x=-1代入得1+m-2=1,解得m=1∴2--2=1.∴∴另一根是2;(2)∵,∴方程①有两个不相等的实数根.考点:本题考查的是根的判别式,一元二次方程的解的定义,解一元二次方程点评:解答本题的关键是熟练掌握一元二次方程根的情况与判别式△的关系:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根22.解分式方程:21133xx x-+=--.【答案】2x =.【解析】试题分析:方程最简公分母为(3)x -,方程两边同乘(3)x -将分式方程转化为整式方程求解,要注意检验.试题解析:方程两边同乘(3)x -,得:213x x --=-,整理解得:2x =,经检验:2x =是原方程的解.考点:解分式方程.23.海中有一个小岛P ,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P 在北偏东60°方向上,航行12海里到达B 点,这时测得小岛P 在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.【答案】有触礁危险,理由见解析.【解析】试题分析:过点P 作PD ⊥AC 于D ,在Rt △PBD 和Rt △PAD 中,根据三角函数AD ,BD 就可以用PD 表示出来,根据AB=12海里,就得到一个关于PD 的方程,求得PD .从而可以判断如果渔船不改变航线继续向东航行,有没有触礁危险.试题解析:有触礁危险.理由:过点P 作PD ⊥AC 于D .设PD 为x ,在Rt △PBD 中,∠PBD=90°-45°=45°.∴BD=PD=x .在Rt △PAD 中,∵∠PAD=90°-60°=30°∴AD=330x x tan =︒∵AD=AB+BD∴3x=12+x()∴x==63+131∵6(3+1)<18∴渔船不改变航线继续向东航行,有触礁危险.【点睛】本题主要考查解直角三角形在实际问题中的应用,构造直角三角形是解题的前提和关键.24.如图,一次函数y=kx+b与反比例函数y=的图象相较于A(2,3),B(﹣3,n)两点.求一次函数与反比例函数的解析式;根据所给条件,请直接写出不等式kx+b>的解集;过点B作BC⊥x轴,垂足为C,求S△ABC.【答案】(1)反比例函数的解析式为:y=,一次函数的解析式为:y=x+1;(2)﹣3<x<0或x>2;(3)1.【解析】(1)根据点A位于反比例函数的图象上,利用待定系数法求出反比例函数解析式,将点B坐标代入反比例函数解析式,求出n的值,进而求出一次函数解析式(2)根据点A和点B的坐标及图象特点,即可求出反比例函数值大于一次函数值时x的取值范围(3)由点A和点B的坐标求得三角形以BC 为底的高是10,从而求得三角形ABC 的面积【详解】解:(1)∵点A(2,3)在y=的图象上,∴m=6,∴反比例函数的解析式为:y=,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,∴,解得:,∴一次函数的解析式为:y=x+1;(2)由图象可知﹣3<x<0或x>2;(3)以BC为底,则BC边上的高为3+2=1,∴S △ABC=×2×1=1.25.赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,则学校旗杆的高度为________米.【答案】10【解析】试题分析:根据相似的性质可得:1:1.2=x:9.6,则x=8,则旗杆的高度为8+2=10米.考点:相似的应用26.有A、B两组卡片共1张,A组的三张分别写有数字2,4,6,B组的两张分别写有3,1.它们除了数字外没有任何区别,随机从A组抽取一张,求抽到数字为2的概率;随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?【答案】(1)P(抽到数字为2)=13;(2)不公平,理由见解析.【解析】试题分析:(1)根据概率的定义列式即可;(2)画出树状图,然后根据概率的意义分别求出甲、乙获胜的概率,从而得解.试题解析: (1)P=13;(2)由题意画出树状图如下:一共有6种情况,甲获胜的情况有4种,P=42 63 =,乙获胜的情况有2种,P=21 63 =,所以,这样的游戏规则对甲乙双方不公平.考点:游戏公平性;列表法与树状图法.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O ,AC 8=,BD 6=,DH AB ⊥于点H ,且DH 与AC 交于G ,则OG 长度为( )A .92B .94C .352 D .354【答案】B【解析】试题解析:在菱形ABCD 中,6AC =,8BD =,所以4OA =,3OD =,在Rt AOD △中,5AD =, 因为11641222ABD S BD OA =⋅⋅=⨯⨯=,所以1122ABD S AB DH =⋅⋅=,则245DH =,在Rt BHD 中,由勾股定理得,22222418655BH BD DH ⎛⎫=-=-= ⎪⎝⎭,由DOG DHB ∽可得,OG OD BH DH =,即3182455OG =,所以94OG =.故选B.2.如图,在Rt △ABC 中,∠C=90°, BE 平分∠ABC ,ED 垂直平分AB 于D ,若AC=9,则AE 的值是 ( )A.63B.63C.6 D.4【答案】C【解析】由角平分线的定义得到∠CBE=∠ABE,再根据线段的垂直平分线的性质得到EA=EB,则∠A=∠ABE,可得∠CBE=30°,根据含30度的直角三角形三边的关系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC.【详解】解:∵BE平分∠ABC,∴∠CBE=∠ABE,∵ED垂直平分AB于D,∴EA=EB,∴∠A=∠ABE,∴∠CBE=30°,∴BE=2EC,即AE=2EC,而AE+EC=AC=9,∴AE=1.故选C.3.如图,⊙O 是等边△ABC 的外接圆,其半径为3,图中阴影部分的面积是()A.πB.32C.2πD.3π【答案】D【解析】根据等边三角形的性质得到∠A=60°,再利用圆周角定理得到∠BOC=120°,然后根据扇形的面积公式计算图中阴影部分的面积即可.【详解】∵△ABC 为等边三角形,∴∠A=60°,∴∠BOC=2∠A=120°,∴图中阴影部分的面积= 21203360π⨯=3π. 故选D .【点睛】本题考查了三角形的外接圆与外心、圆周角定理及扇形的面积公式,求得∠BOC=120°是解决问题的关键.4.如图,△ABC 中,∠B =70°,则∠BAC =30°,将△ABC 绕点C 顺时针旋转得△EDC .当点B 的对应点D 恰好落在AC 上时,∠CAE 的度数是( )A .30°B .40°C .50°D .60°【答案】C 【解析】由三角形内角和定理可得∠ACB=80°,由旋转的性质可得AC=CE ,∠ACE=∠ACB=80°,由等腰的性质可得∠CAE=∠AEC=50°.【详解】∵∠B =70°,∠BAC =30°∴∠ACB =80°∵将△ABC 绕点C 顺时针旋转得△EDC .∴AC =CE ,∠ACE =∠ACB =80°∴∠CAE =∠AEC =50°故选C .【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.5.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.A .140B .120C .160D .100【答案】B【解析】设商品进价为x 元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.【详解】解:设商品的进价为x元,售价为每件0.8×200元,由题意得0.8×200=x+40解得:x=120答:商品进价为120元.故选:B.【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.6.一、单选题点P(2,﹣1)关于原点对称的点P′的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(1,﹣2)【答案】A【解析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”解答.【详解】解:点P(2,-1)关于原点对称的点的坐标是(-2,1).故选A.【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.7.如图1,将三角板的直角顶点放在直角尺的一边上,Ð1=30°,Ð2=50°,则Ð3的度数为A.80°B.50°C.30°D.20°【答案】D【解析】试题分析:根据平行线的性质,得∠4=∠2=50°,再根据三角形的外角的性质∠3=∠4-∠1=50°-30°=20°.故答案选D.考点:平行线的性质;三角形的外角的性质.8.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为()A.4.5m B.4.8m C.5.5m D.6 m【答案】D【解析】根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.【详解】解:由题意可得:AE=2m,CE=0.5m,DC=1.5m,∵△ABC∽△EDC,∴,即,解得:AB=6,故选:D.【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.9.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则∠NOF的度数为()A.50°B.60°C.70°D.80°【答案】C【解析】解:∵OM=60海里,ON=80海里,MN=100海里,∴OM2+ON2=MN2,∴∠MON=90°,∵∠EOM=20°,∴∠NOF=180°﹣20°﹣90°=70°.故选C.【点睛】本题考查直角三角形的判定,掌握方位角的定义及勾股定理逆定理是本题的解题关键.10.如图,数轴上有M、N、P、Q四个点,其中点P所表示的数为a,则数-3a所对应的点可能是( )A.M B.N C.P D.Q【答案】A【解析】解:∵点P所表示的数为a,点P在数轴的右边,∴-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍,∴数-3a所对应的点可能是M,故选A.点睛:本题考查了数轴,解决本题的关键是判断-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍.二、填空题(本题包括8个小题)11.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.【答案】20【解析】利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.【详解】设原来红球个数为x个,则有1010x+=1030,解得,x=20,经检验x=20是原方程的根.故答案为20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.12.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若()P1,1-,()Q2,3,则P,Q的“实际距离”为5,即PS SQ5+=或PT TQ 5.+=环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B两个小区的坐标分别为()A3,1,()B5,3-,若点()M6,m表示单车停放点,且满足M到A,B的“实际距离”相等,则m=______.【答案】1.【解析】根据两点间的距离公式可求m 的值.【详解】依题意有2222(63)(m 1)(65)(m 3)-+-=-++,解得m 0=,故答案为:1.【点睛】考查了坐标确定位置,正确理解实际距离的定义是解题关键.13.如图,点A 是双曲线y =﹣9x在第二象限分支上的一个动点,连接AO 并延长交另一分支于点B ,以AB 为底作等腰△ABC ,且∠ACB =120°,点C 在第一象限,随着点A 的运动,点C 的位置也不断变化,但点C 始终在双曲线y =k x上运动,则k 的值为_____.【答案】1【解析】根据题意得出△AOD ∽△OCE ,进而得出AD OD OA EO CE OC==,即可得出k=EC×EO=1. 【详解】解:连接CO ,过点A 作AD ⊥x 轴于点D ,过点C 作CE ⊥x 轴于点E ,∵连接AO 并延长交另一分支于点B ,以AB 为底作等腰△ABC ,且∠ACB=120°,∴CO ⊥AB ,∠CAB=10°, 则∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE ,又∵∠ADO=∠CEO=90°,∴△AOD ∽△OCE ,∴AD OD OA EO CE OC== =tan60°3,∴AODEOCSS∆∆=()23=1,∵点A是双曲线y=-9x在第二象限分支上的一个动点,∴S△AOD=12×|xy|=92,∴S△EOC=32,即12×OE×CE=32,∴k=OE×CE=1,故答案为1.【点睛】本题主要考查了反比例函数与一次函数的交点以及相似三角形的判定与性质,正确添加辅助线,得出△AOD∽△OCE是解题关键.14.如图,直线y=k1x+b与双曲线2ky=x交于A、B两点,其横坐标分别为1和5,则不等式k1x<2kx+b的解集是▲.【答案】-2<x<-1或x>1.【解析】不等式的图象解法,平移的性质,反比例函数与一次函数的交点问题,对称的性质.不等式k1x<2kx+b的解集即k1x-b<2kx的解集,根据不等式与直线和双曲线解析式的关系,可以理解为直线y=k1x-b在双曲线2ky=x下方的自变量x的取值范围即可.而直线y =k 1x -b 的图象可以由y =k 1x +b 向下平移2b 个单位得到,如图所示.根据函数2k y=x 图象的对称性可得:直线y =k 1x -b 和y =k 1x +b 与双曲线2k y=x的交点坐标关于原点对称. 由关于原点对称的坐标点性质,直线y =k 1x -b 图象与双曲线2k y=x图象交点A′、B′的横坐标为A 、B 两点横坐标的相反数,即为-1,-2.∴由图知,当-2<x <-1或x >1时,直线y =k 1x -b 图象在双曲线2k y=x 图象下方. ∴不等式k 1x <2k x+b 的解集是-2<x <-1或x >1. 15.如图,直线y =x +2与反比例函数y =k x的图象在第一象限交于点P.若OP =10,则k 的值为________.【答案】1【解析】设点P (m ,m+2),∵OP=10,∴()222m m ++ =10, 解得m 1=1,m 2=﹣1(不合题意舍去),∴点P (1,1),∴1=1k , 解得k=1.点睛:本题考查了反比例函数与一次函数的交点坐标,仔细审题,能够求得点P 的坐标是解题的关键. 16.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n 个图案中阴影小三角形的个数是 .【答案】4n ﹣1.【解析】由图可知:第一个图案有阴影小三角形1个,第二图案有阴影小三角形1+4=6个,第三个图案有阴影小三角形1+8=11个,···那么第n 个就有阴影小三角形1+4(n ﹣1)=4n ﹣1个.17.如图,直径为1000mm 的圆柱形水管有积水(阴影部分),水面的宽度AB 为800mm ,则水的最大深度CD 是______mm .。
《试卷3份集锦》上海市虹口区2020中考数学学业质量监测试题
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图是一个正方体的表面展开图,如果对面上所标的两个数互为相反数,那么图中x 的值是( ).A .3-B .3C .2D .82.如图,将Rt ABC △绕直角顶点C 顺时针旋转90,得到A B C '',连接'A A ,若120︒∠=,则B 的度数是( )A .70︒B .65︒C .60︒D .55︒3.如图,扇形AOB 中,OA=2,C 为弧AB 上的一点,连接AC ,BC ,如果四边形AOBC 为菱形,则图中阴影部分的面积为( )A .233π- B .2233π- C .433π- D .4233π- 4.若x =-2 是关于x 的一元二次方程x 2-52ax +a 2=0的一个根,则a 的值为( ) A .1或4 B .-1或-4 C .-1或4D .1或-45.一次函数满足,且随的增大而减小,则此函数的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限6.一个正比例函数的图象过点(2,﹣3),它的表达式为( ) A .3y -2x = B .2y 3x =C .3y 2x =D .2y -3x = 7.实数a 、b 、c 在数轴上的位置如图所示,则代数式|c ﹣a|﹣|a+b|的值等于( )A .c+bB .b ﹣cC .c ﹣2a+bD .c ﹣2a ﹣b8.已知关于x 的一元二次方程mx 2+2x -1=0有两个不相等的实数根,则m 的取值范围是( ).A .m>-1且m≠0 B .m <1且m≠0 C .m <-1 D .m >19.滴滴快车是一种便捷的出行工具,计价规则如下表: 计费项目 里程费时长费远途费单价1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( ) A .10分钟B .13分钟C .15分钟D .19分钟10.下列调查中,调查方式选择合理的是( ) A .为了解襄阳市初中每天锻炼所用时间,选择全面调查B .为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C .为了解神舟飞船设备零件的质量情况,选择抽样调查D .为了解一批节能灯的使用寿命,选择抽样调查 二、填空题(本题包括8个小题)11.若关于x 的一元二次方程x 2+mx+2n =0有一个根是2,则m+n =_____. 12.计算:()()5353+-=_________ .13.设△ABC 的面积为1,如图①,将边BC 、AC 分别2等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;…,依此类推,则S n 可表示为________.(用含n 的代数式表示,其中n 为正整数)14.若m 2﹣2m ﹣1=0,则代数式2m 2﹣4m+3的值为 . 15.分解因式:2x 2﹣8=_____________ 16.12019的相反数是_____.17.如图,在矩形ABCD中,AB=4,BC=5,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE.延长AF交边BC于点G,则CG为_____.18.关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则实数k的取值范围是_______.三、解答题(本题包括8个小题)19.(6分)某同学报名参加学校秋季运动会,有以下5 个项目可供选择:径赛项目:100m、200m、1000m (分别用A1、A2、A3 表示);田赛项目:跳远,跳高(分别用T1、T2 表示).该同学从5 个项目中任选一个,恰好是田赛项目的概率P 为;该同学从 5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率P1,利用列表法或树状图加以说明;该同学从 5 个项目中任选两个,则两个项目都是径赛项目的概率P2 为.20.(6分)如图,∠A=∠D,∠B=∠E,AF=DC.求证:BC=EF.21.(6分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;在图中画出以线段AB为一腰,底边长为22的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.22.(8分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y(升)关于加满油后已行驶的路程x(千米)的函数图象.根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.23.(8分)如图,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中点,ED的延长线与CB的延长线相交于点F.求证:DF是BF和CF的比例中项;在AB上取一点G,如果AE•AC=AG•AD,求证:EG•CF=ED•DF.24.(10分)水龙头关闭不紧会造成滴水,小明用可以显示水量的容器做图①所示的试验,并根据试验数据绘制出图②所示的容器内盛水量W(L)与滴水时间t(h)的函数关系图象,请结合图象解答下列问题:容器内原有水多少?求W与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?图① 图②25.(10分)瑞安市曹村镇“八百年灯会”成为温州“申遗”的宝贵项目.某公司生产了一种纪念花灯,每件纪念花灯制造成本为18元.设销售单价x(元),每日销售量y(件)每日的利润w(元).在试销过程中,每日销售量y(件)、每日的利润w(元)与销售单价x(元)之间存在一定的关系,其几组对应量如下表所示:(元)19 20 21 30(件)62 60 58 40(1)根据表中数据的规律,分别写出毎日销售量y(件),每日的利润w(元)关于销售单价x(元)之间的函数表达式.(利润=(销售单价﹣成本单价)×销售件数).当销售单价为多少元时,公司每日能够获得最大利润?最大利润是多少?根据物价局规定,这种纪念品的销售单价不得高于32元,如果公司要获得每日不低于350元的利润,那么制造这种纪念花灯每日的最低制造成本需要多少元?26.(12分)读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】【分析】根据正方体平面展开图的特征得出每个相对面,再由相对面上的两个数互为相反数可得出x的值.【详解】解:“3”与“-3”相对,“y”与“-2”相对,“x”与“-8”相对, 故x=8,故选D.【点睛】本题主要考查了正方体相对面上的文字,解决本题的关键是要熟练掌握正方体展开图的特征.2.B【解析】【分析】根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,最后根据旋转的性质可得∠B=∠A′B′C.【详解】解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,∴∠B=∠A′B′C=65°.故选B.【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.3.D【解析】连接OC,过点A作AD⊥CD于点D,四边形AOBC是菱形可知OA=AC=2,再由OA=OC可知△AOC是等边三角形,可得∠AOC=∠BOC=60°,故△ACO与△BOC为边长相等的两个等边三角形,再根据锐角三角函数的定义得出AD=OA•sin60°=2×3=3,因此可求得S阴影=S扇形AOB﹣2S△AOC=21202360π⨯﹣2×12×2×3=43π﹣23.故选D.点睛:本题考查的是扇形面积的计算,熟记扇形的面积公式及菱形的性质是解答此题的关键.4.B【解析】【详解】试题分析:把x=﹣2代入关于x的一元二次方程x2﹣52ax+a2=0即:4+5a+a2=0解得:a=-1或-4,故答案选B.考点:一元二次方程的解;一元二次方程的解法.5.A【解析】试题分析:根据y随x的增大而减小得:k<0,又kb>0,则b<0,故此函数的图象经过第二、三、四象限,即不经过第一象限.故选A.考点:一次函数图象与系数的关系.6.A【解析】【分析】利用待定系数法即可求解.【详解】设函数的解析式是y=kx,根据题意得:2k=﹣3,解得:k=32 -.∴ 函数的解析式是:32y x =-. 故选A . 7.A 【解析】 【分析】根据数轴得到b <a <0<c ,根据有理数的加法法则,减法法则得到c-a >0,a+b <0,根据绝对值的性质化简计算. 【详解】由数轴可知,b <a <0<c , ∴c-a >0,a+b <0, 则|c-a|-|a+b|=c-a+a+b=c+b , 故选A . 【点睛】本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键. 8.A 【解析】 【详解】∵一元二次方程mx 2+2x -1=0有两个不相等的实数根, ∴m≠0,且22-4×m×(﹣1)>0, 解得:m >﹣1且m≠0. 故选A. 【点睛】本题考查一元二次方程ax 2+bx+c=0(a≠0)根的判别式: (1)当△=b 2﹣4ac >0时,方程有两个不相等的实数根; (2)当△=b 2﹣4ac=0时,方程有有两个相等的实数根; (3)当△=b 2﹣4ac <0时,方程没有实数根. 9.D 【解析】 【分析】设小王的行车时间为x 分钟,小张的行车时间为y 分钟,根据计价规则计算出小王的车费和小张的车费,建立方程求解. 【详解】设小王的行车时间为x分钟,小张的行车时间为y分钟,依题可得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5-7),10.8+0.3x=16.5+0.3y,0.3(x-y)=5.7,x-y=19,故答案为D.【点睛】本题考查列方程解应用题,读懂表格中的计价规则是解题的关键.10.D【解析】【详解】A.为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A不符合题意;B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B不符合题意;C.为了解神舟飞船设备零件的质量情况,选普查,故C不符合题意;D.为了解一批节能灯的使用寿命,选择抽样调查,故D符合题意;故选D.二、填空题(本题包括8个小题)11.﹣1【解析】【分析】根据一元二次方程的解的定义把x=1代入x1+mx+1n=0得到4+1m+1n=0得n+m=−1,然后利用整体代入的方法进行计算.【详解】∵1(n≠0)是关于x的一元二次方程x1+mx+1n=0的一个根,∴4+1m+1n=0,∴n+m=−1,故答案为−1.【点睛】本题考查了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.12.2【解析】【分析】利用平方差公式求解,即可求得答案.【详解】()()5353+-=(5)2-(3)2=5-3=2.故答案为2.【点睛】此题考查了二次根式的乘除运算.此题难度不大,注意掌握平方差公式的应用.13.12n1+【解析】试题解析:如图,连接D1E1,设AD1、BE1交于点M,∵AE1:AC=1:(n+1),∴S△ABE1:S△ABC=1:(n+1),∴S△ABE1=11n+,∵1111AB BM nD E ME n+==,∴1121BM nBE n+=+,∴S△ABM:S△ABE1=(n+1):(2n+1),∴S△ABM:11n+=(n+1):(2n+1),∴S n=121n+.故答案为121n+.14.1【解析】试题分析:先求出m2﹣2m的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解.解:由m2﹣2m﹣1=0得m2﹣2m=1,所以,2m2﹣4m+3=2(m2﹣2m)+3=2×1+3=1.故答案为1.考点:代数式求值.15.2(x+2)(x﹣2)【解析】【分析】先提公因式,再运用平方差公式.【详解】2x2﹣8,=2(x2﹣4),=2(x+2)(x﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.16.1 2019【解析】【分析】根据只有符号不同的两个数互为相反数,可得答案.【详解】1 2019的相反数是−12019.故答案为−1 2019.【点睛】本题考查的知识点是相反数,解题的关键是熟练的掌握相反数.17.4 5【解析】【分析】如图,作辅助线,首先证明△EFG≌△ECG,得到FG=CG(设为x ),∠FEG=∠CEG;同理可证AF=AD =5,∠FEA=∠DEA,进而证明△AEG为直角三角形,运用相似三角形的性质即可解决问题.【详解】连接EG;∵四边形ABCD为矩形,∴∠D=∠C=90°,DC=AB=4;由题意得:EF =DE =EC =2,∠EFG =∠D =90°;在Rt △EFG 与Rt △ECG 中,EF EC EG EG =⎧⎨=⎩, ∴Rt △EFG ≌Rt △ECG (HL ),∴FG =CG (设为x ),∠FEG =∠CEG ;同理可证:AF =AD =5,∠FEA =∠DEA ,∴∠AEG =12×180°=90°, 而EF ⊥AG ,可得△EFG ∽△AFE,∴2EF AF FG =∴22=5•x ,∴x =45, ∴CG =45, 故答案为:45. 【点睛】此题考查矩形的性质,翻折变换的性质,以考查全等三角形的性质及其应用、射影定理等几何知识点为核心构造而成;对综合的分析问题解决问题的能力提出了一定的要求.18.k <2且k≠1【解析】试题解析:∵关于x 的一元二次方程(k-1)x 2-2x+1=0有两个不相等的实数根,∴k-1≠0且△=(-2)2-4(k-1)>0,解得:k <2且k≠1.考点:1.根的判别式;2.一元二次方程的定义.三、解答题(本题包括8个小题)19.(1)25;(1)35 ;(3)310; 【解析】【分析】(1)直接根据概率公式求解;(1)先画树状图展示所有10种等可能的结果数,再找出一个径赛项目和一个田赛项目的结果数,然后根据概率公式计算一个径赛项目和一个田赛项目的概率P 1;(3)找出两个项目都是径赛项目的结果数,然后根据概率公式计算两个项目都是径赛项目的概率P 1.【详解】解:(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P=;(1)画树状图为:共有10种等可能的结果数,其中一个径赛项目和一个田赛项目的结果数为11,所以一个径赛项目和一个田赛项目的概率P 1==;(3)两个项目都是径赛项目的结果数为6,所以两个项目都是径赛项目的概率P 1==. 故答案为. 考点:列表法与树状图法.20.证明见解析.【解析】【分析】想证明BC=EF ,可利用AAS 证明△ABC ≌△DEF 即可.【详解】解:∵AF =DC ,∴AF+FC =FC+CD ,∴AC =FD ,在△ABC 和△DEF 中,A DB E AC DF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF (AAS )∴BC =EF .【点睛】本题考查全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 21.作图见解析;CE=4.【解析】分析:利用数形结合的思想解决问题即可.详解:如图所示,矩形ABCD 和△ABE 即为所求;CE=4.点睛:本题考查作图-应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题.22.(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升;(2)已行驶的路程为650千米.【解析】【分析】(1)观察图象,即可得到油箱内的剩余油量,根据耗油量计算出加满油时油箱的油量;()2用待定系数法求出一次函数解析式,再代入进行运算即可.【详解】(1)汽车行驶400千米,剩余油量30升,304000.170.+⨯=即加满油时,油量为70升.(2)设()0y kx b k =+≠,把点()0,70,()400,30坐标分别代入得70b =,0.1k =-,∴0.170y x =-+,当5y =时,650x =,即已行驶的路程为650千米.【点睛】本题主要考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征等,关键是掌握待定系数法求函数解析式.23.证明见解析【解析】试题分析:(1)根据已知求得∠BDF=∠BCD ,再根据∠BFD=∠DFC ,证明△BFD ∽△DFC ,从而得BF :DF=DF :FC ,进行变形即得;(2)由已知证明△AEG ∽△ADC ,得到∠AEG=∠ADC=90°,从而得EG ∥BC ,继而得EG BF ED DF = , 由(1)可得BF DF DF CF = ,从而得EG DF ED CF= ,问题得证. 试题解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵CD 是Rt △ABC 的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD ,∵E 是AC 的中点,∴DE=AE=CE ,∴∠A=∠EDA ,∠ACD=∠EDC ,∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD ,又∵∠BFD=∠DFC ,∴△BFD ∽△DFC ,∴BF :DF=DF :FC ,∴DF 2=BF·CF ;(2)∵AE·AC=ED·DF , ∴AE AG AD AC= , 又∵∠A=∠A ,∴△AEG ∽△ADC ,∴∠AEG=∠ADC=90°,∴EG ∥BC , ∴EG BF ED DF= , 由(1)知△DFD ∽△DFC , ∴BF DF DF CF= , ∴EG DF ED CF = , ∴EG·CF=ED·DF.24.(1)0.3 L ;(2)在这种滴水状态下一天的滴水量为9.6 L.【解析】【分析】(1)根据点()0,0.3的实际意义可得;(2)设W 与t 之间的函数关系式为W kt b =+,待定系数法求解可得,计算出24t =时W 的值,再减去容器内原有的水量即可.【详解】(1)由图象可知,容器内原有水0.3 L.(2)由图象可知W 与t 之间的函数图象经过点(0,0.3),故设函数关系式为W =kt +0.3.又因为函数图象经过点(1.5,0.9),代入函数关系式,得1.5k +0.3=0.9,解得k =0.4.故W 与t 之间的函数关系式为W =0.4t +0.3.当t =24时,W =0.4×24+0.3=9.9(L ),9.9-0.3=9.6(L ),即在这种滴水状态下一天的滴水量为9.6 L.【点睛】本题考查了一次函数的应用,关键是利用待定系数法正确求出一次函数的解析式.25.(1)y=﹣2x+100,w=﹣2x2+136x﹣1800;(2)当销售单价为34元时,每日能获得最大利润,最大利润是1元;(3)制造这种纪念花灯每日的最低制造成本需要648元.【解析】【分析】(1)观察表中数据,发现y与x之间存在一次函数关系,设y=kx+b.列方程组得到y关于x的函数表达式y=﹣2x+100,根据题意得到w=﹣2x2+136x﹣1800;(2)把w=﹣2x2+136x﹣1800配方得到w=﹣2(x﹣34)2+1.根据二次函数的性质即可得到结论;(3)根据题意列方程即可得到即可.【详解】解:(1)观察表中数据,发现y与x之间存在一次函数关系,设y=kx+b.则62196020k bk b=+⎧⎨=+⎩,解得k2b100=-⎧⎨=⎩,∴y=﹣2x+100,∴y关于x的函数表达式y=﹣2x+100,∴w=(x﹣18)•y=(x﹣18)(﹣2x+100)∴w=﹣2x2+136x﹣1800;(2)∵w=﹣2x2+136x﹣1800=﹣2(x﹣34)2+1.∴当销售单价为34元时,∴每日能获得最大利润1元;(3)当w=350时,350=﹣2x2+136x﹣1800,解得x=25或43,由题意可得25≤x≤32,则当x=32时,18(﹣2x+100)=648,∴制造这种纪念花灯每日的最低制造成本需要648元.【点睛】此题主要考查了二次函数的应用,根据已知得出函数关系式.26.周瑜去世的年龄为16岁.【解析】【分析】设周瑜逝世时的年龄的个位数字为x,则十位数字为x﹣1.根据题意建立方程求出其值就可以求出其结论.【详解】设周瑜逝世时的年龄的个位数字为x,则十位数字为x﹣1.由题意得;10(x﹣1)+x=x2,解得:x1=5,x2=6当x=5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x=6时,周瑜年龄为16岁,完全符合题意.答:周瑜去世的年龄为16岁.【点睛】本题是一道数字问题的运用题,考查了列一元二次方程解实际问题的运用,在解答中理解而立之年是一个人10岁的年龄是关键.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.关于x的不等式2(1)4xa x><-⎧⎨-⎩的解集为x>3,那么a的取值范围为()A.a>3 B.a<3 C.a≥3D.a≤32.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°3.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为40km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法不正确的是( )A.甲的速度是10km/h B.乙的速度是20km/hC.乙出发13h后与甲相遇D.甲比乙晚到B地2h4.如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为()A.12 B.16 C.18 D.245.如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=13CD,过点B作BF∥DE,与AE的延长线交于点F,若AB=6,则BF的长为()A .6B .7C .8D .106.如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(3,﹣4),顶点C 在x 轴的正半轴上,函数y=k x(k <0)的图象经过点B ,则k 的值为( )A .﹣12B .﹣32C .32D .﹣367.已知一个多边形的内角和是外角和的2倍,则此多边形的边数为 ( )A .6B .7C .8D .98.如果解关于x 的分式方程2122m x x x -=--时出现增根,那么m 的值为 A .-2 B .2 C .4 D .-49.下列二次根式中,最简二次根式的是( )A .15B .0.5C .5D .5010.若55+55+55+55+55=25n ,则n 的值为( )A .10B .6C .5D .3二、填空题(本题包括8个小题)11.如图,在Rt △ABC 中,∠ACB=90°,D 是AB 的中点,过D 点作AB 的垂线交AC 于点E ,BC=6,sinA=35,则DE=_____.12.化简()()201720182121-+的结果为_____.13.如图,矩形OABC 的边OA ,OC 分别在轴、轴上,点B 在第一象限,点D 在边BC 上,且∠AOD=30°,四边形OA′B′D 与四边形OABD 关于直线OD 对称(点A′和A ,B′和B 分别对应),若AB=1,反比例函数(0)k y k x=≠的图象恰好经过点A′,B ,则的值为_________.14.已知⊙O 半径为1,A 、B 在⊙O 上,且2AB =,则AB 所对的圆周角为__o .15.A .如果一个正多边形的一个外角是45°,那么这个正多边形对角线的条数一共有_____条. B .用计算器计算:7•tan63°27′≈_____(精确到0.01).16.不等式组2113242x x x +>-⎧⎨+≥+⎩的整数解是_____. 17.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
月考数学试卷题号一二三总分得分一、选择题(本大题共6小题,共18.0分)1.已知=,那么的值为()A. 7B. -7C.D. -2.如图,已知BD与CE相交于点A,ED∥BC,AB=8,AC=12,AD=6,那么AE的长等于()A. 4B. 9C. 12D. 163.在Rt△ABC中,∠C=90°,若AB=2AC,则sin A的值是()A. B. C. D.4.如图△ABC中,AC=4,AB=5,D是AC上一点,E是AB上一点,且∠AED=∠C,设AD=x,AE=y,则y与x之间的函数关系式是()A. y=x(0≤x≤4)B. y=x(0<x≤4)C. y=x(0≤x≤4)D. y=x(0<x≤4)5.已知在△ABC中,AB=AC,AD是BC边上的高,设=,那么可以用表示为()A. --B. -+C. -D. +6.如图,已知D是△ABC中的边BC上的一点,∠BAD=∠C,∠ABC的平分线交边AC于E,交AD于F,那么下列结论中错误的是()A. △BAC∽△BDAB. △BFA∽△BECC. △BDF∽△BECD. △BDF∽△BAE二、填空题(本大题共12小题,共36.0分)7.如果线段a=4cm,b=9cm,那么它们的比例中项是______cm.8.在Rt△ABC中,∠C=90°,AC=5,BC=4,则tan A=______.9.计算:=______.10.已知点P是线段AB的黄金分割点,AP>PB.若AB=10.则AP=______(结果保留根号).11.若向量与单位向量方向相反,且||=3||,则可以用表示为______.12.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,已知AB=25,BC=15,则BD=______.13.等腰三角形腰与底边之比是10:12,那么底角的正弦值为______.14.如图,一个小球由地面沿着坡度i=1:3的坡面向上前进了10m,此时小球距离地面的高度为______m.15.如图,将一个大三角形剪成一个小三角形及一个梯形,若梯形上、下底的长分别为6,14两腰的长为12,16,则剪出的小三角形的周长是______.16.如图,Rt△ABC中,∠BAC=90°,AB=6,AC=4,G是△ABC的重心,则S△AGC=______.17.如图,若△ABC内一点P满足∠PAC=∠PCB=∠PBA,则称点P为△ABC的“等角点”,已知△ABC中,CA=CB,∠ACB=120°,P为△ABC的等角点,若PA=,则PC=______.18.在△ABC中,AC=BC,将△ABC绕点A旋转60°,得到△AB′C′,若AB=2,∠ACB=30°,则线段CB′的长度为______.三、解答题(本大题共7小题,共56.0分)19.已知==≠0,且2x+3y-z=18,求4x+y-3z的值.20.2cos30°+tan30°•cos60°- .21.如图,已知AB∥BE∥CF它们依次交直线l1、l1于点A、B、C和点D、E、F,,AC=14.(1)求AB的长.(2)如果AD=5,CF=12,求BE的长.22.小明同学国庆期间计划前往北京旅游,需网购一个拉杆箱,如图,是某型号拉杆箱的实物图与示意图,并有如下信息:滑杆DE,箱长BC,拉杆AB的长度都相等,B,F在AC上,C在DE上,支杆DF=30cm,CE:CD=1:3,∠DCF=45°,∠CDF=30°,请根据以上信息,解决下列问题.(1)求AC的长度(≈1.414,≈1.732,结果精确到0.1cm).(2)求拉杆端点A到水平滑杆ED的距离(结果保留根号).23.如图,在四边形ABCD中,AB⊥AD,=,对角线AC与BD交于点O,AC=10,∠ABD=∠ACB,点E在CB延长线上,且AE=AC.(1)求证:△AEB∽△BCO;(2)当AE∥BD时,求AO的长.24.如图,直线与x轴交于A点,与y轴交于B点,动点P从A点出发,沿AO方向向点O匀速运动,同时动点Q从B点出发,沿BA方向向点A匀速运动,P,Q两点的运动速度都是每秒1个单位,当一个点停止运动,另一个点也随之停止运动,连接PQ,设运动时间为t(s).(1)求A,B两点的坐标;(2)当t为何值时△AQP的面积为;(3)当t为何值时,以点A,P,Q为顶点的三角形与△ABO相似,并直接写出此时点Q的坐标.25.著名数学家波利亚在《怎样解题》中有关三角形内接正方形的作图问题有如下操作:如图1,在△ABC中,先在AB上任取一点P′,作正方形P′Q′M′N′,使点Q′、M′在BC边上,点N′在△ABC内,然后联结BN′,并延长交AC于点N,作MN⊥BC 于点M,NP⊥MN交AB于点P,PQ⊥BC于点Q,得到四边形PQMN.(1)求证:四边形PQMN是正方形;(2)如图2,过点A作AH⊥BC于点H,若BC=a,AH=h,求正方形PQMN的边长(用a、h表示)(3)如图3,在(2)的条件下,在线段BN上截取NE=NM,联结EQ、NM,当∠QEM=90°时,求BN的长(用a、h表示).答案和解析1.【答案】D【解析】解:∵=,∴x=,∴原式==-,故选:D.根据=得到x=,然后代入分式求解即可.考查了比例的性质,解题的关键是用一个未知数表示另一个未知数,难度不大.2.【答案】B【解析】【分析】本题考查了平行线分线段成比例定理的运用,注意:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.根据平行线分线段成比例定理即可得到结论.【解答】解:∵ED∥BC,∴=,即=,∴AE=9,故选B.3.【答案】C【解析】解:∵∠C=90°,AB=2AC,∴∠B=30°,∠A=60°,故可得sin A=.故选:C.在RT△ABC中,根据AB=2AC,可得出∠B=30°,∠A=60°,从而可得出sin A的值.此题考查了特殊角的三角函数值及直角三角形中,30°角所对直角边等于斜边一半,属于基础题,这是需要我们熟练记忆的内容.4.【答案】D【解析】解:∵∠AED=∠C,∠A=∠A,∴△ADE∽△ABC,∴=,∵AC=4,AB=5,AD=x,AE=y,∴=,∴y=x,∵0<CD≤4,∴y=x(0<x≤4).故选:D.根据两角对应相等,两个三角形相似,易证出△ADE∽△ABC,根据相似三角形的性质即可得到结论.本题考查了相似三角形的判定和性质,是基础知识比较简单.5.【答案】D【解析】解:如图,∵在△ABC中,AB=AC,AD是BC边上的高,=,∴DC=BC=.∴=+=+.故选:D.由等腰三角形的性质得到DC=BC,然后利用三角形法则解答.考查了平面向量和等腰三角形的性质,根据等腰三角形的性质求得DC=BC=是解题的关键.6.【答案】C【解析】解:∵∠BAD=∠C,∠B=∠B,∴△BAC∽△BDA.故A正确.∵BE平分∠ABC,∴∠ABE=∠CBE,∴△BFA∽△BEC.故B正确.∴∠BFA=∠BEC,∴∠BFD=∠BEA,∴△BDF∽△BAE.故D正确.而不能证明△BDF∽△BEC,故C错误.故选C.根据相似三角形的判定,采用排除法,逐项分析判断.本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边和对应角.7.【答案】6【解析】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.所以c2=4×9,x=±6,(线段是正数,负值舍去),故答案为:6.根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负.此题考查了比例线段;理解比例中项的概念,这里注意线段不能是负数.8.【答案】【解析】解:在Rt△ABC中,∵∠C=90°,AC=5,BC=4,∴tan A==.根据三角函数的定义求解.本题考查了锐角三角函数的定义.9.【答案】-+【解析】解:原式=---+=-+.故答案是:-+.根据平面向量的计算法则解答,实数的计算法则同样应用于平面向量的计算.考查了平面向量的知识,乘法分配律同样适用于平面向量的计算.10.【答案】5-5【解析】解:由于P为线段AB=10的黄金分割点,且AP是较长线段;则AP=AB=,故答案为:5-5.根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入数据即可得出AP的长.本题考查黄金分割点的概念.应该识记黄金分割的公式:较短的线段=原线段的,较长的线段=原线段的.11.【答案】=-3【解析】解:∵向量与单位向量方向相反,且||=3||,∴=-3,故答案是:=-3.根据平面向量的定义即可解决问题.本题考查平面向量的性质,解题的关键是灵活运用所学知识解决问题,属于中考基础题.12.【答案】9【解析】解:由射影定理得,BC2=BD•AB,∴BD==9,故答案为:9.根据射影定理计算,得到答案.本题考查的是射影定理,射影定理:每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.13.【答案】【解析】解:如图:等腰△ABC中,AB=AC,AB:BC=10:12,设AB=10x,则BC=12x.过A作AD⊥BC于D,则BD=BC=6x.在Rt△ABD中,AD===8x,故sin B===.故答案为.根据题意画出图形,再根据等腰三角形的性质构造出直角三角形,根据勾股定理求出底边的高,由锐角三角函数的定义解答即可.此题比较简单,考查的是解直角三角形及等腰三角形的性质,解答此题的关键是构造出直角三角形利用锐角三角函数的定义解答.14.【答案】【解析】解:小球沿着坡面向上前进了10m假设到C处,过C作CB⊥AB,∵i=1:3,∴tan A==,设BC=xcm,AB=3xcm,x2+(3x)2=102,解得:x=或x=-(不合题意,舍去),故答案为:.根据i可以求得AB、BC的长度的比值,已知AC=10米,根据勾股定理即可求AB的值,即可解题.本题主要考查了勾股定理在直角三角形中的运用,i的定义,本题中根据勾股定理求BC 的值是解题的关键.15.【答案】27【解析】解:∵四边形DEBC是梯形,∴DE∥BC,∴△ADE∽△ACB,∴==,∴==,解得:AE=9,AD=12,∴剪出的小三角形的周长是6+9+12=27,故答案为:27.根据相似三角形的判定得出△ADE∽△ACB,根据相似三角形的性质得出比例式,求出AE和AD的值,再求出三角形的周长即可.本题考查了梯形的性质和相似三角形的性质和判定,能求出△ADE∽△ACB是解此题的关键.16.【答案】4【解析】解:延长AG交BC于E.∵∠BAC=90°,AB=6,AC=4,∴S△ABC=•AB•AC=12,∵G是△ABC的重心,∴AG=2GE,BE=EC,∴S△AEC=×12=6,∴S△AGC=×S△AEC=4,故答案为4.延长AG交BC于E.易知S△AGC=×S△AEC,由此计算即可解决问题.本题考查三角形的面积,三角形的重心等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.【答案】【解析】解:作CH⊥AB于H.∵CA=CB,CH⊥AB,∠ACB=120°,∴AH=BH,∠ACH=∠BCH=60°,∠CAB=∠CBA=30°,∴AB=2BH=2•BC•cos30°=BC,∵∠PAC=∠PCB=∠PBA,∴∠PAB=∠PBC,∴△PAB∽△PBC,∴,∵PA=,∴PB=1,PC=.故答案为:.作CH⊥AB于H.首先证明AB=BC,再证明△PAB∽△PBC,可得,即可求出答案.本题考查等腰三角形的性质、相似三角形的判定和性质、等腰三角形的性质、锐角三角函数等知识,解题的关键是准确寻找相似三角形解决问题.18.【答案】2【解析】解:连接CE,如图,∵△ABC绕点A逆时针旋转60°,得到△AB′C′,∴AB′=AB=2,AC′=AC,∠CAE=60°,∠AC′B′=∠ACB=30°,∴△ACC′为等边三角形,∴∠AC′C=60°,∴C′B′平分∠AC′C,∴C′B′垂直平分AC,∴B′C=B′A=2.故答案为2.连接CE,如图,利用旋转的性质得到AB′=AB=2,AC′=AC,∠CAE=60°,∠AC′B′=∠ACB=30°,则可判断△ACC′为等边三角形,从而得到C′B′平分∠AC′C,根据等腰三角形的性质得到C′B′垂直平分AC,于是根据线段垂直平分线的性质得B′C=B′A=2.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判定与性质.19.【答案】解:设===k,可得:x=2k,y=3k,z=4k,把x=2k,y=3k,z=4k代入2x+3y-z=18中,可得:4k+9k-4k=18,解得:k=2,所以x=4,y=6,z=8,把x=4,y=6,z=8代入4x+y-3z=16+6-24=-2.【解析】设===k,进而解答即可.此题考查比例的性质,关键是设===k得出k的值.20.【答案】解:原式=2×+×-+1=1+.【解析】把特殊角的三角函数值代入原式,根据二次根式的加减运算法则计算.本题考查的是特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.21.【答案】解:(1)∵AB∥BE∥CF,∴=,∵,AC=14,∴=,∴AB=6;(2)过点A作AG∥DF交BE于点H,交CF于点G,如图所示:又∵AD∥BE∥CF,AD=5,∴AD=HE=GF=5,∵CF=12,∴CG=12-5=7,∵BE∥CF,∴=,∴BH=3,∴BE=3+5=8.【解析】(1)由平行线分线段成比例定理和比例的性质得出=,即可求出AB的长;(2)过点A作AG∥DF交BE于点H,交CF于点G,得出AD=HE=GF=5,由平行线分线段成比例定理得出比例式求出BH,即可得出结果.本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例;熟练掌握平行线分线段成比例,通过作辅助线运用平行线分线段成比例求出BH是解决问题的关键.22.【答案】解:(1)过F作FH⊥DE于H,∴∠FHC=∠FHD=90°,∵∠FDC=30°,DF=30,∴FH=DF=15,DH=DF=15,∵∠FCH=45°,∴CH=FH=15,CD=15+15∵CE:CD=1:3,∴DE=CD=20+20,∵AB=BC=DE,∴AC=(40+40)≈109.3cm;(2)过A作AG⊥ED交ED的延长线于G,∵∠ACG=45°,∴AG=AC=20+20,答:拉杆端点A到水平滑杆ED的距离为(20+20)cm.【解析】(1)过F作FH⊥DE于H,解直角三角形即可得到结论;(2)过A作AG⊥ED交ED的延长线于G,根据等腰直角三角形的性质即可得到结论.此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键是用数学知识解决实际问题.23.【答案】解:(1)∵AE=AC,∴∠E=∠ACE,∵∠ABD=∠ACB,∴∠E=∠ABD,∴∠EAB=180°-∠E-∠ABE,∠OBC=180°-∠ABE-∠ABD,∴∠EAB=∠OBC,∴△AEB∽△BCO;(2)过A作AF⊥BC于F,过O作OG⊥BC于G,∵AE∥BD,∴∠E=∠DBC,∠EAB=∠ABD,∵∠ABD=∠ACB,∴∠EAB=∠ACE,∵∠OBC=∠EAB,∴∠OBC=∠OCB,∴OB=OC,∵tan∠ABD=tan∠ACB===,∵AC=10,∴AF=6,CF=8,∵AE=AC,∴EC=2CF=16,∵∠EAB=∠ACE,∠E=∠E,∴△AEB∽△CEA,∴=,∴=,∴BE=,∴BC=EC-BE=16-=,∵AF⊥BC,OG⊥BC,∴OG∥AF,∴=,∴=,∴AO=.【解析】(1)根据等腰三角形的性质得到∠E=∠ACE,等量代换得到∠E=∠ABD,根据三角形的内角和和平角的性质得到∠EAB=∠OBC,于是得到结论;(2)过A作AF⊥BC与F,过O作OE⊥BC与E,根据平行线的性质得到∠E=∠DBC,∠EAB=∠ABD,推出OB=OC,求得AF=6,CF=8,得到EC=2CF=16,根据相似三角形的性质得到BE=,于是得到BC=EC-BE=16-=,根据平行线分线段成比例定理即可得到结论.本题考查了相似三角形的判定和性质,平行线分线段成比例定理,等腰三角形的性质,正确的作出辅助线是解题的关键.24.【答案】解:(1)令y=0,则-x+6=0,解得:x=8,令x=0时,y=6,∴点A(8,0),点B(0,6);(2)由(1)得:OA=8,OB=6,在Rt△AOB中,AB===10,∵当一个点停止运动,另一个点也随之停止运动,∴0<t≤8,∵点P的速度是每秒1个单位,点Q的速度是每秒1个单位,∴AP=t,AQ=AB-BQ=10-t,∴点Q到AP的距离为AQ•sin∠OAB=(10-t)×=(10-t),∴△AQP的面积S=×t×(10-t)=,解得t=5+(不合题意舍去)或t=5-,∴当t为(5-)秒时△AQP的面积为;(3)若∠APQ=90°,则△APQ∽△AOB,此时=,即:=,解得:t=,若∠AQP=90°,则△APQ∽△ABO,此时=,解得t=,∵0<t≤8,∴t的值为或,①当t=时,OP=8-=,PQ=AP•tan∠OAB=×=,∴点Q的坐标为:(,);②当t=时,AQ=,过点Q作QM⊥x轴于M,如图所示:∴AM=AQ•cos∠OAB=×=,则OM=8-=,QM=AQ•sin∠OAB=×=,∴点Q的坐标为:(,);综上所述,当t为秒或秒时,以点A,P,Q为顶点的三角形与△ABO相似,此时点Q的坐标分别为(,)、(,).【解析】(1)分别令y=0,x=0求解即可得到点A、B的坐标;(2)利用勾股定理列式求出AB,然后表示出AP、AQ,再利用∠OAB的正弦求出点Q 到AP的距离,然后利用三角形的面积列式即可得解;(3)根据相似三角形对应角相等,分∠APQ=90°和∠AQP=90°两种情况,利用∠OAB的函数值列式计算即可得解.本题是一次函数综合题,主要考查了一次函数与坐标轴的交点的求法、三角形的面积公式、相似三角形的性质、锐角三角函数、勾股定理、分类讨论等知识;熟练掌握相似三角形的性质与锐角三角函数是解题的关键.25.【答案】(1)证明:如图1中,由画图可知:∠QMN=∠PQM=∠NPQ=∠BM′N′=90°,∴四边形PNMQ是矩形,MN∥M′N′,∴△BN′M′∽△BNM,∴=,同理可得:=,∴=,∵M′N′=P′N′,∴MN=PN,∴四边形PQMN是正方形;(2)解:如图1中,∵PN∥BC,∴△APN∽△ABC,∴=,即=,解得PN=;(3)解:如图,过点N作ND⊥ME于点D,∵MN=EN,ND⊥ME,∴∠NEM=∠MNE,ED=DM,∵∠BMN=∠QEM=90°,∴∠EQM+∠EMQ=90°,∠EMQ+∠EMN=90°,∴∠EMN=∠EQM,且MN=QN,∠QEM=∠NDM=90°,∴△QEM≌△MDN(AAS),∴EQ=DM=EM,∵∠BMN=∠QEM=90°,∴∠BEQ+∠NEM=90°,∠BME+∠NME=90°∴∠BEQ=∠BME,且∠MBE=∠MBE∴△BEQ∽△BME∴===,∴BM=2BE,BE=2BQ,∴BM=4BQ,∴QM=3BQ=MN,BN=5BQ,∴==,∴BN=MN=().【解析】(1)首先证明四边形PQMN是矩形,再证明MN=PN即可;(2)理由相似三角形的性质构建方程即可解决问题;(3)过点N作ND⊥ME于点D,由等腰三角形的性质可得∠NEM=∠MNE,ED=DM,由“AAS”可证△QEM≌△MDN,可得EQ=DM=EM,通过证明△BEQ∽△BME,可得BM=2BE,BE=2BQ,即可求BN的长.本题属于四边形综合题,考查了正方形的性质和判定,相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.。