高一数学公式大全之三角函数公式
高一数学三角函数公式大全
高一数学三角函数公式大全1500字高一数学三角函数公式大全(1500字)1. 正弦函数(sine function):- 基本关系:sin A = 对边 / 斜边- 余割函数(cosec function):csc A = 1 / sin A- 反正弦函数(arcsine function):sin^-1 x 或 asin x2. 余弦函数(cosine function):- 基本关系:cos A = 邻边 / 斜边- 余切函数(cot function):cot A = 1 / tan A- 反余弦函数(arccos function):cos^-1 x 或 acos x3. 正切函数(tangent function):- 基本关系:tan A = 对边 / 邻边- 反正切函数(arctan function):tan^-1 x 或 atan x4. 正割函数(secant function):- 基本关系:sec A = 1 / cos A5. 反余切函数(arccot function):cot^-1 x 或 acot x6. 双曲正弦函数(hyperbolic sine function):sinh x = (e^x - e^(-x)) / 27. 双曲余弦函数(hyperbolic cosine function):cosh x = (e^x + e^(-x)) / 28. 双曲正切函数(hyperbolic tangent function):tanh x = sinh x / cosh x9. 双曲余切函数(hyperbolic cotangent function):coth x = 1 / tanh x10. 双曲正割函数(hyperbolic secant function):sech x = 1 / cosh x11. 双曲余割函数(hyperbolic cosecant function):csch x = 1 / sinh x12. 三角和差化积:- sin(A + B) = sin A cos B + cos A sin B- sin(A - B) = sin A cos B - cos A sin B- cos(A + B) = cos A cos B - sin A sin B- cos(A - B) = cos A cos B + sin A sin B- tan(A + B) = (tan A + tan B) / (1 - tan A tan B)- tan(A - B) = (tan A - tan B) / (1 + tan A tan B)13. 二倍角公式:- sin(2A) = 2 sin A cos A- cos(2A) = cos^2 A - sin^2 A- tan(2A) = 2 tan A / (1 - tan^2 A)14. 半角公式:- sin(A/2) = ±√[(1 - cos A) / 2]- cos(A/2) = ±√[(1 + cos A) / 2]- tan(A/2) = ±√[(1 - cos A) / (1 + cos A)]15. 和差化积:- sin A + sin B = 2 sin((A + B) / 2) cos((A - B) / 2) - sin A - sin B = 2 cos((A + B) / 2) sin((A - B) / 2) - cos A + cos B = 2 cos((A + B) / 2) cos((A - B) / 2) - cos A - cos B = -2 sin((A + B) / 2) sin((A - B) / 2)16. 和差化积的扩展:- sin A + sin B = 2 sin((A + B) / 2) cos((A - B) / 2) - sin A - sin B = 2 cos((A + B) / 2) sin((A - B) / 2) - cos A + cos B = 2 cos((A + B) / 2) cos((A - B) / 2) - cos A - cos B = -2 sin((A + B) / 2) sin((A - B) / 2) - tan A + tan B = (sin(A + B) / cos A cos B)- tan A - tan B = (sin(A - B) / cos A cos B)17. 倍角公式(角度):- sin(2A) = 2 sin A cos A- cos(2A) = cos^2 A - sin^2 A- tan(2A) = (2 tan A) / (1 - tan^2 A)18. 倍角公式(弧度):- sin(2x) = 2 sin x cos x- cos(2x) = cos^2 x - sin^2 x- tan(2x) = (2 tan x) / (1 - tan^2 x)19. 三倍角公式:- sin(3A) = 3 sin A - 4 sin^3 A- cos(3A) = 4 cos^3 A - 3 cos A- tan(3A) = (3 tan A - tan^3 A) / (1 - 3 tan^2 A)20. 平方和差化积:- sin^2 A + sin^2 B = 2 sin^2((A + B) / 2) cos^2((A - B) / 2)- sin^2 A - sin^2 B = sin(A + B) sin(A - B)- cos^2 A + cos^2 B = 2 cos^2((A + B) / 2) cos^2((A - B) / 2)- cos^2 A - cos^2 B = -sin(A + B) sin(A - B)以上是高一数学中常用的三角函数公式大全,掌握并理解这些公式对于解决三角函数问题非常有帮助。
2024高中三角函数公式大全
2024高中三角函数公式大全
1、三角函数的定义
三角函数是建立在三角形中的特殊关系上,用于表示角度和边长之间的函数。
三角函数的基本定义如下:
(1)正弦函数sinθ:表示角θ的对边和斜边的比值,即sinθ = y/r。
(2)余弦函数cosθ:表示角θ的邻边和斜边的比值,即cosθ = x/r。
(3)正切函数tanθ:表示角θ的对边和邻边的比值,即tanθ = y/x。
(4)反正弦函数arcsinα:表示α对应的角度θ,即arcsinα = θ。
(5)反余弦函数arccosα:表示α对应的角度θ,即arccosα = θ。
(6)反正切函数arctanα:表示α对应的角度θ,即arctanα = θ。
2、三角函数的基本公式
(1)正弦定理:(a,b,C)为θ对应的三边,则
a/sinθ=b/sinθ=c/sinθ。
(2)余弦定理:(a,b,C)为θ对应的三边,则a^2=b^2+c^2-
2bc*cosθ。
(3)正切定理:(a,b,C)为θ对应的三边,则tanθ=b/a=c/b。
(4)反正弦定理:arcsinα=θ,其中θ的范围在(-π/2,π/2)
之间。
(5)反余弦定理:arccosα=θ,其中θ的范围在(0,π)之间。
(6)反正切定理:arctanα=θ,其中θ的范围在(-π/2,π/2)
之间。
3、三角函数的关系和性质
(1)正弦定理:sin2θ+cos2θ=1
(2)正弦定理的奇偶周期性:sin(-θ)= -sinθ;cos(-θ)= cosθ。
(完整版)三角函数三角函数公式表
(完整版)三角函数公式表1. 正弦函数 (sin):定义:正弦函数是直角三角形中对边与斜边的比值。
公式:sin(θ) = 对边 / 斜边范围:1 ≤ sin(θ) ≤ 1特殊值:sin(0°) = 0, sin(30°) = 1/2, sin(45°) = √2/2, sin(60°) = √3/2, sin(90°) = 12. 余弦函数 (cos):定义:余弦函数是直角三角形中邻边与斜边的比值。
公式:cos(θ) = 邻边 / 斜边范围:1 ≤ cos(θ) ≤ 1特殊值:cos(0°) = 1, cos(30°) = √3/2, cos(45°) = √2/2, cos(60°) = 1/2, cos(90°) = 03. 正切函数 (tan):定义:正切函数是直角三角形中对边与邻边的比值。
公式:tan(θ) = 对边 / 邻边范围:tan(θ) 可以取任意实数值特殊值:tan(0°) = 0, tan(30°) = 1/√3, tan(45°) = 1, tan(60°)= √3, tan(90°) 不存在(无穷大)4. 余切函数 (cot):定义:余切函数是直角三角形中邻边与对边的比值。
公式:cot(θ) = 邻边 / 对边范围:cot(θ) 可以取任意实数值特殊值:cot(0°) 不存在(无穷大), cot(30°) = √3, cot(45°) = 1, cot(60°) = 1/√3, cot(90°) = 05. 正割函数 (sec):定义:正割函数是直角三角形中斜边与邻边的比值。
公式:sec(θ)= 1 / cos(θ)范围:sec(θ) 可以取任意实数值特殊值:sec(0°) = 1, sec(30°) = 2, sec(45°) = √2, sec(60°) = 2/√3, sec(90°) 不存在(无穷大)6. 余割函数 (csc):定义:余割函数是直角三角形中斜边与对边的比值。
高一数学三角函数公式的详尽归纳
高一数学三角函数公式的详尽归纳正弦函数公式1. 正弦函数的定义:对于任意实数x,正弦函数sin(x)的值等于直角三角形中对边与斜边的比值,即sin(x) = 对边/斜边。
2. 余弦函数与正弦函数的关系:cos(x) = sin(x + π/2)。
3. 正弦函数的周期性:sin(x + 2π) = sin(x)。
4. 正弦函数的奇偶性:sin(-x) = -sin(x),即正弦函数关于原点对称。
5. 正弦函数的和差化积公式:- sin(x + y) = sin(x)cos(y) + cos(x)sin(y)。
- sin(x - y) = sin(x)cos(y) - cos(x)sin(y)。
余弦函数公式1. 余弦函数的定义:对于任意实数x,余弦函数cos(x)的值等于直角三角形中邻边与斜边的比值,即cos(x) = 邻边/斜边。
2. 余弦函数与正弦函数的关系:cos(x) = sin(x + π/2)。
3. 余弦函数的周期性:cos(x + 2π) = cos(x)。
4. 余弦函数的奇偶性:cos(-x) = cos(x),即余弦函数为偶函数。
5. 余弦函数的和差化积公式:- cos(x + y) = cos(x)cos(y) - sin(x)sin(y)。
- cos(x - y) = cos(x)cos(y) + sin(x)sin(y)。
正切函数公式1. 正切函数的定义:对于任意实数x,正切函数tan(x)的值等于正弦函数与余弦函数的比值,即tan(x) = sin(x)/cos(x)。
2. 正切函数的周期性:tan(x + π) = tan(x)。
3. 正切函数的奇偶性:tan(-x) = -tan(x),即正切函数为奇函数。
4. 正切函数的和差化积公式:- tan(x + y) = (tan(x) + tan(y)) / (1 - tan(x)tan(y))。
- tan(x - y) = (tan(x) - tan(y)) / (1 + tan(x)tan(y))。
高一数学必修一所有公式归纳
高一数学必修一所有公式归纳高一数学必修一所有公式归纳是如下:1、锐角三角函数公式:sinα=∠α的对边/斜边。
2、三倍角公式:sin3α=4sinα·sin(π/3+α)sin(π/3-α)。
3、辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t)。
4、降幂公式:sin^2(α)=(1-cos(2α))/2=versin(2α)/2。
5、推导公式:tanα+cotα=2/sin2α。
数学必修一数学公式如下:1、2sinAcosB=sin(A+B)+sin(A-B)。
2、tan(A+B)=(tanA+tanB)/(1-tanAtanB)。
3、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。
4、tan(A-B)=(tanA-tanB)/(1+tanAtanB)。
5、-ctgA+ctgBsin(A+B)/sinAsinB。
数学必修一公式归纳:一、指数与指数幂的运算1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
注意:当是奇数时,当是偶数时。
2、分数指数幂。
正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.3、实数指数幂的运算性质。
高一三角函数知识点归纳总结公式
高一三角函数知识点归纳总结公式以下是高一三角函数的一些知识点和公式:1. 三角函数的基本性质:周期性:sin(x) 和 cos(x) 的周期都是2π。
奇偶性:sin(x) 是奇函数,cos(x) 是偶函数。
有界性:sin(x) 和 cos(x) 的取值范围都是 [-1, 1]。
2. 三角函数的定义域和值域:定义域:对于所有实数 x,sin(x) 和 cos(x) 的定义域都是 R。
值域:sin(x) 和 cos(x) 的值域都是 [-1, 1]。
3. 三角函数的周期性和对称性:周期性:sin(x) 和 cos(x) 的周期都是2π。
对称性:sin(x) 在(0, π) 上是增函数,在(π, 2π) 上是减函数;cos(x) 在(0, π/2) 和(π, 3π/2) 上是减函数,在(π/2, π) 和(3π/2, 2π) 上是增函数。
4. 三角函数的和差公式:sin(x+y) = sinxcosy + cosxsinycos(x+y) = cosxcosy - sinxsiny5. 三角函数的倍角公式:sin2x = 2sinxcosxcos2x = cos²x - sin²xtan2x = 2tanx / (1 - tan²x)6. 三角函数的半角公式:sin(x/2) = ±√[(1 - cosx) / 2]cos(x/2) = ±√[(1 + cosx) / 2]tan(x/2) = ±√[(1 - cosx) / (1 + cosx)]7. 三角函数的和差化积公式:sin(x+y)-siny=2sin((x-y)/2)cos((x+3y)/2)cos(x+y)-coxy=-2sin((x-y)/2)cos((x+3y)/2)8. 其他常用公式:sin²θ + cos²θ = 1(勾股定理)tanθ = sinθ / cosθ(正切的定义)arcsin(x)、arccos(x)、arctan(x) 等反三角函数。
高中数学-三角函数公式大全
高中数学-三角函数公式大全新课程高中数学三角公式汇总一、任意角的三角函数在角α的终边上任取一点P(x,y),记r=x²+y²。
正弦:sinα=y/r余弦:cosα=x/r正切:tanα=y/x余切:cotα=x/y正割:secα=r/x余割:cscα=r/y注:我们还可以用单位圆中的有向线段表示任意角的三角函数。
如图,与单位圆有关的有向线段MP、OM、AT分别叫做角α的正弦线、余弦线、正切线。
二、同角三角函数的基本关系式倒数关系:sinα·cscα=1,cosα·secα=1,tanα·cotα=1.商数关系:tanα=sinα/cosα,cotα=cosα/sinα。
平方关系:sin²α+cos²α=1,1+tan²α=sec²α,1+cot²α=csc²α。
三、诱导公式⑴α+2kπ(k∈Z)、-α、π+α、π-α、2π-α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号。
(口诀:函数名不变,符号看象限)⑵π/3+α、-π/3+α、π-α、-π+α的三角函数值,等于α的异名函数值,前面加上一个把α看成锐角时原函数值的符号。
(口诀:函数名改变,符号看象限)四、和角公式和差角公式sin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβcos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)五、二倍角公式sin2α=2sinα·cosαcos2α=cos²α-sin²α=2cos²α-1=1-2sin²α…(※)tan2α=2tanα/(1-tan²α)二倍角的余弦公式(※)有以下常用变形:(规律:降幂扩角,升幂缩角)1+cos2α=2cos²α1-cos2α=2sin²α1+sin2α=(sinα+cosα)²1-sin2α=(sinα-cosα)²cos2α=(1+cos2α)/(1-cos2α)sin2α=(1-cos2α)/2tanα=sin2α/(1+cos2α)万能公式告诉我们,任何单角的三角函数都可以用半角的正切来表示。
高一三角函数知识点归纳总结公式
高一三角函数知识点归纳总结公式三角函数是数学中非常重要的一个概念,它在几何学、物理学、工程学等领域都有广泛的应用。
在高一阶段,我们学习了三角函数的基本定义、性质和常用公式。
下面我将对这些知识点进行归纳总结,以便大家更好地掌握和应用。
1. 三角函数的基本定义:在一个直角三角形中,对于一个锐角A,我们定义正弦函数sin(A)、余弦函数cos(A)和正切函数tan(A)如下:sin(A) = 对边/斜边cos(A) = 临边/斜边tan(A) = 对边/临边2. 三角函数的周期性:正弦函数、余弦函数和正切函数都是周期函数,其中正弦函数和余弦函数的周期是2π,正切函数的周期是π。
3. 三角函数的性质:(1) 正弦函数和余弦函数的值域都是[-1, 1],即 -1 ≤ sin(A) ≤ 1,-1 ≤ cos(A) ≤ 1。
(2) 正弦函数和余弦函数的图像关于y轴对称。
(3) 正弦函数和余弦函数的图像都是连续的曲线。
(4) 正弦函数和余弦函数的图像都是周期性的。
(5) 正弦函数和余弦函数的图像都是振荡曲线。
4. 三角函数的基本关系:(1) sin(A) = cos(90° - A)(2) cos(A) = sin(90° - A)(3) sin^2(A) + cos^2(A) = 15. 三角函数的和差公式:(1) sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)(2) cos(A ± B) = cos(A)cos(B) ∓ sin(A)sin(B)(3) tan(A ± B) = (tan(A) ± tan(B))/(1 ∓ tan(A)tan(B))6. 三角函数的倍角公式:(1) sin(2A) = 2sin(A)cos(A)(2) cos(2A) = cos^2(A) - sin^2(A) = 2cos^2(A) - 1 = 1 - 2sin^2(A)(3) tan(2A) = (2tan(A))/(1 - tan^2(A))7. 三角函数的半角公式:(1) sin(A/2) = ±√[(1 - cos(A))/2](2) cos(A/2) = ±√[(1 + cos(A))/2](3) tan(A/2) = ±√[(1 - cos(A))/(1 + cos(A))]8. 三角函数的积化和差公式:(1) sin(A)sin(B) = (cos(A - B) - cos(A + B))/2(2) cos(A)cos(B) = (cos(A - B) + cos(A + B))/2(3) sin(A)cos(B) = (sin(A + B) + sin(A - B))/2通过对三角函数的定义、性质和常用公式的学习,我们可以解决很多与角度相关的问题。
完整三角函数公式表
三角函数公式表同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secαsin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
”)诱导公式(口诀:奇变偶不变,符号看象限。
)sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=c otαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβ2tan(α/2) sinα=——————1+tan2(α/2)1-tan2(α/2) cosα=——————tan(α+β)=——————1-tanα ·tanβtanα-tanβtan(α-β)=——————1+tanα ·tanβ1+tan2(α/2)2tan(α/2) tanα=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+βα-βsinα+sinβ=2sin———·cos———2 2α+βα-βsinα-sinβ=2cos———·sin———2 2α+βα-βcosα+cosβ=2cos———·cos———2 2α+βα-βcosα-cosβ=-2sin———·sin———2 2 1sinα ·cosβ=-[sin(α+β)+sin(α-β)]21cosα ·sinβ=-[sin(α+β)-sin(α-β)]21cosα ·cosβ=-[cos(α+β)+cos(α-β)]21sinα ·sinβ=—-[cos(α+β)-cos(α-β)]2化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)arc sin x + arc sin y = arc sin x – arc sin y = arc cos x + arc cos y = arc cos x – arc cos y = arc tan x + arc tan y = arc tan x – arc tan y =2 arc sin x = 2 arc cos x =2 arc tanx = cos (n arc cos x) =三角形中三角函数基本定理Tag:三角函数点击: 1522 【正弦定理】式中R为ABC的外接圆半径(图1.3).【余弦定理】【勾股定理】在直角三角形(C为直角)中,勾方加股方等于弦方(图1.4),即勾股定理也称商高定理,外国书刊中称毕达哥拉斯定理.【正切定理】或【半角与边长的关系公式】式中,r为ABC的内切圆半径,且式中S为ABC的面积.。
高一数学的三角函数的所有公式
sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2sin2A=2sinA*cosA三倍角公式sin3a=3sina-4(sina)^3cos3a=4(cosa)^3-3cosatan3a=tana*tan(π/3+a)*tan(π/3-a)半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+c osA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B) )2cosAcosB=cos(A+B)+cos(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB积化和差公式sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)] 诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(pi/2-a)=cos(a)cos(pi/2-a)=sin(a)sin(pi/2+a)=cos(a)cos(pi/2+a)=-sin(a)sin(pi-a)=sin(a)cos(pi-a)=-cos(a)sin(pi+a)=-sin(a)cos(pi+a)=-cos(a)tgA=tanA=sinA/cosA公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα(以上k∈Z)csc(a) = 1/sin(a)sec(a) = 1/cos(a)两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-cot(A-B) = (cotAcotB+1)/(cotB-cotA) 倍角公式tan2A = 2tanA/[1-(tanA)²]cos2a = (cosa)²-(sina)²=2(cosa)² -1=1-2(sina)²sin2A = 2sinA·cosA三倍角公式sin3a = 3sina-4(sina)³cos3a = 4(cosa)³-3cosatan3a = tan a · tan(π/3+a)· tan(π/3-a)半角公式sin(A/2) = √((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2) = √((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2) = √((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2) = √((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))tan(A/2) = (1-cosA)/sinA=sinA/(1+cosA)和差化积sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]tanA+tanB=sin(A+B)/cosAcosB积化和差公式sin(a)sin(b) = -1/2·[cos(a+b)-cos(a-b)]cos(a)cos(b) = 1/2·[cos(a+b)+cos(a-b)]sin(a)cos(b) = 1/2·[sin(a+b)+sin(a-b)]诱导公式sin(-a) = -sin(a)cos(-a) = cos(a)sin(π/2-a) = cos(a)cos(π/2-a) = sin(a)sin(π/2+a) = cos(a)cos(π/2+a) = -sin(a)sin(π-a) = sin(a)cos(π-a) = -cos(a)sin(π+a) = -sin(a)cos(π+a) = -cos(a)tgA=tanA = sinA/cosA万能公式sin(a) = [2tan(a/2)]/[1+tan²(a/2)]cos(a) = [1-tan²(a/2)]/[1+tan²(a/2)]tan(a) = [2tan(a/2)]/[1-tan²(a/2)]其它公式a·sin(a)+b·cos(a) = sqrt(a²+b²)sin(a+c) [其中,tan(c)=b/a] a·sin(a)-b·cos(a) = sqrt(a²+b²)cos(a-c) [其中,tan(c)=a/b] 1+sin(a) = [sin(a/2)+cos(a/2)]²1-sin(a) = [sin(a/2)-cos(a/2)]²其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tg h(a) = sin h(a)/cos h(a)公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotα公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
高中三角函数公式大全
高中三角函数公式大全1. 正弦函数(sine function):正弦函数用sin表示,定义域为实数集,值域为[-1,1]。
基本关系式:sinθ=opposite/hypotenuse基本恒等式:- 余角关系式:sin(π/2 - θ) = cosθ ;sin(π/2 + θ) = cosθ- 符号关系式:sin(-θ) = - sinθ ;sin(θ + 2πn) = sinθ (n 为任意整数)三角和差化简公式:- 和差化简:sin(α ± β) = sinα * cosβ ± cosα * sinβ- 差和化简:sinα + sinβ = 2 * sin((α + β) / 2) *cos((α - β) / 2)- 和差化简:sinα - sinβ = 2 * cos((α + β) / 2) *sin((α - β) / 2)2. 余弦函数(cosine function):余弦函数用cos表示,定义域为实数集,值域为[-1,1]。
基本关系式:cosθ = adjacent/hypotenuse基本恒等式:- 余角关系式:cos(π/2 - θ) = sinθ ;cos(π/2 + θ) = -sinθ- 符号关系式:cos(-θ) = cosθ ;cos(θ + 2πn) = cosθ (n 为任意整数)三角和差化简公式:- 和差化简:cos(α ± β) = cosα * cosβ ∓ sinα * sinβ- 差和化简:cosα + cosβ = 2 * cos((α + β) / 2) * cos((α - β) / 2)- 和差化简:cosα - cosβ = -2 * sin((α + β) / 2) *sin((α - β) / 2)3. 正切函数(tangent function):正切函数用tan表示,定义域为实数集,值域为整个实数集。
基本关系式:tanθ = opposite/adjacent基本恒等式:- 余角关系式:tan(π/2 - θ) = 1/tanθ ;tan(π/2 + θ) = -1/tanθ三角和差化简公式:- 和差化简:tan(α ± β) = (tanα ± tanβ) / (1 ∓ tanα * tanβ)- 和差化简:tanα + tanβ = sin(α + β) / cosα * cosβ- 和差化简:tanα - tanβ = sin(α - β) / cosα * cosβ4. 正割函数(secant function):正割函数用sec表示,定义域为除了θ = π/2 + πn (n为任意整数)的实数集,值域为实数集的负数和正数。
高一数学三角函数公式大全
三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB cos(A+B) = cosAcosB-sinAsinBsin(A-B) = sinAcosB-cosAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) = tan(A-B) =倍角公式tan2A =cos2A= cos A - sin A = 2cos A-1 = 1-2sin A }= 三条公式由两角和公式化来Sin2A=2SinA•CosA诱导公式sin(-a) = -sina cos(-a) = cosa tan( -a )= -tan(a)sin( -a) = cosa cos( -a) = sinasin( +a) = cosa cos( +a) = -sinasin(π-a) = sina cos(π-a) = -cosa tan( π -a )= -tan(a)sin(π+a) = -sina cos(π+a) = -cosa tan( π +a )=tan(a)tanA =其它公式(辅助公式)a•sina+b•cosa= × sin(a+ ) [ 其中 tan = ]a•sin(a)-b•cos(a) = × cos(a- ) [ 其中 tan( )= ] ( 注意这条公式区分 ) 公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ +α )= sinαcos (2kπ +α )= cosαtan (2kπ +α )= tanα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin (π +α ) = -sinαcos (π +α ) = -cosαtan (π +α )= tanα公式三:任意角α与 -α的三角函数值之间的关系:sin ( -α ) = -sinαcos ( -α )= cosαtan ( -α ) = -tanα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin (π-α )= sinαcos (π-α ) = -cosαtan (π-α ) = -tanαcot (π-α ) = -cotα公式五:利用公式 - 和公式三可以得到 2π-α与α的三角函数值之间的关系:sin (2π-α ) = -sinαcos (2π-α )= cosαtan (2π-α ) = -tanαcot (2π-α ) = -cotα公式六:±α及±α与α的三角函数值之间的关系:sin (+α )= cosα cos (+α ) = -sinα tan (+α ) = -cotαsin (-α )= cosα cos (-α )= sinα tan (-α )= cotαsin (+α ) = -cosα cos (+α )= sinα tan (+α ) = -cotαsin (-α ) = -cosα cos (-α ) = -sinα tan (-α )= cotα( 以上k ∈ Z)三角函数公式证明(全部)正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理注:角 B 是边 a 和边 c 的夹角一般凑角2 =( + )+( - ) 2 =( + )-( - ) =( + )-其它常用 ( 特殊角 )Sin(30)= 1/2 cos(30)= tan(30)= Sin45= cos45= tan45=1 Sin60= cos60=1/2 tan60=Sin(15)=sin(45-30) =sin(60-45) cos15=cos(45-30)=cos(60-45)Tan15=tan(45-30)=tan(60-45) Sin(75)=sin(45+30) cos75=cos(45+30) tan75= tan (45+30)2+4+6+8+10+12+14+ … +(2n)=n(n+1) 12+22+32+42+52+62+72+82+ …+n2=n(n+1)(2n+1)/613+23+33+43+53+63+ … n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+ …+n(n+1)=n(n+1)(n+2)/3正切定理 :圆的标准方程 (x-a)2+(y-b)2=r2 注:( a,b )是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注: D2+E2-4F>0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式 l=a*r a 是圆心角的弧度数 r >0 扇形面积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积 V=S'L 注:其中 ,S' 是直截面面积, L 是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h----------------------- 三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到 2 组积化和差 :相加: cosAcosB=[cos(A+B)+cos(A-B)]/2相减: sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到 2 组积化和差 :相加: sinAcosB=[sin(A+B)+sin(A-B)]/2相减: sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共 4 组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负. 3. 三角形中的一些结论: ( 不要求记忆 )(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1。
精通高一数学:三角函数公式的概括
精通高一数学:三角函数公式的概括一、正弦函数(Sine Function)正弦函数是三角函数中最常用的函数之一。
其定义如下:$$y = \sin(x)$$其中,$x$ 表示自变量,$y$ 表示函数值。
正弦函数的主要特点有:1. 周期性:正弦函数的周期为$2\pi$,即在每个周期内,函数的值会重复出现。
2. 奇偶性:正弦函数是奇函数,即关于原点对称。
3. 取值范围:正弦函数的值域为$[-1, 1]$。
正弦函数的常见公式有:1. 正弦函数的和差公式:$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$2. 正弦函数的倍角公式:$$\sin(2A) = 2\sin A \cos A$$3. 正弦函数的半角公式:$$\sin\left(\frac{A}{2}\right) = \pm \sqrt{\frac{1 - \cos A}{2}}$$ 二、余弦函数(Cosine Function)余弦函数也是三角函数中常用的函数之一。
其定义如下:$$y = \cos(x)$$余弦函数的主要特点有:1. 周期性:余弦函数的周期为$2\pi$,即在每个周期内,函数的值会重复出现。
2. 偶奇性:余弦函数是偶函数,即关于$y$轴对称。
3. 取值范围:余弦函数的值域为$[-1, 1]$。
余弦函数的常见公式有:1. 余弦函数的和差公式:$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$2. 余弦函数的倍角公式:$$\cos(2A) = \cos^2 A - \sin^2 A$$3. 余弦函数的半角公式:$$\cos\left(\frac{A}{2}\right) = \pm \sqrt{\frac{1 + \cos A}{2}}$$三、正切函数(Tangent Function)正切函数是三角函数中的另一重要函数。
其定义如下:$$y = \tan(x)$$正切函数的主要特点有:1. 周期性:正切函数的周期为$\pi$,即在每个周期内,函数的值会重复出现。
高一数学常用三角函数
高一数学常用三角函数
三角函数是高中数学中的一个重要内容,常用的一些基本三角函数包括正弦函数sin、余弦函数cos、正切函数tan、余切函数cot等。
以下是这些函数的定义和基本性质:
1.正弦函数sin:表示直角三角形中锐角的对边与斜边的比值,即sinθ=y/r(其中θ为锐角,r为斜边长度,y为对边长度)。
正弦函数的值域为[-1,1],在第一象限内,随着角度的增大而增大;在第二象限内,随着角度的增大而减小。
2.余弦函数cos:表示直角三角形中锐角的邻边与斜边的比值,即cosθ=x/r(其中θ为锐角,r为斜边长度,x为邻边长度)。
余弦函数的值域也为[-1,1],在第一象限内,随着角度的增大而增大;在第二象限内,随着角度的增大而减小。
3.正切函数tan:表示直角三角形中锐角的对边与邻边的比值,即tanθ=y/x(其中θ为锐角,x为
邻边长度,y为对边长度)。
正切函数的值域为全体实数,在每个象限内,随着角度的增大而增大。
4.余切函数cot:表示直角三角形中锐角的邻边与对边的比值,即cotθ=x/y(其中θ为锐角,x为邻边长度,y为对边长度)。
余切函数的值域也为全体实数,在每个象限内,随着角度的增大而减小。
除了这四个基本的三角函数之外,还有一些其他的三角函数和公式,例如两角和与差的三角函数公式、倍角公式、半角公式等。
这些公式可以用来进行三角函数的计算和变换。
高一数学三角函数公式大全
锐角三角函数公式:sin α=∠α的对边/ 斜边cos α=∠α的邻边/ 斜边tan α=∠α的对边/ ∠α的邻边cot α=∠α的邻边/ ∠α的对边倍角公式:Sin2A=2SinA·CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方sin2(A) )三倍角公式:sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推导:sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式:sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))推导公式:tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin³acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-sin²a)cosa=4cos³a-3cosasin3a=3sina-4sin³a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos³a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)²]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)半角公式:tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)两角和差:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)和差化积:sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 积化和差:sinαsinβ = [cos(α-β)-cos(α+β)] /2cosαcosβ = [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2cosαsinβ = [sin(α+β)-sin(α-β)]/2诱导公式:sin(-α) = -sinαcos(-α) = cosαtan (—a)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式:sinα=2tan(α/2)/[1+tan^(α/2)]cosα=[1-tan^(α/2)]/1+tan^(α/2)]tanα=2tan(α/2)/[1-tan^(α/2)]其它公式:(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC(9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n ]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n] =0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0。
高中三角函数公式大全
高中三角函数公式大全高中三角函数是高中数学中重要的内容之一,它涉及到正弦、余弦、正切等基本函数的性质及其应用。
下面将介绍一些高中三角函数的公式和性质,希望能对大家的学习有所帮助。
一、基本关系式1. 正弦函数的定义:对于任意实数x,正弦函数sin(x)可以定义为一个新的函数,它的值等于x点处的单位圆上的纵坐标,即sin(x)=y,其中x 为弧度制。
2. 余弦函数的定义:对于任意实数x,余弦函数cos(x)可以定义为一个新的函数,它的值等于x点处的单位圆上的横坐标,即cos(x)=x,其中x 为弧度制。
3. 正切函数的定义:对于任意实数x,正切函数tan(x)可以定义为一个新的函数,它的值等于sin(x)除以cos(x),即tan(x)=sin(x)/cos(x),其中x为弧度制。
二、基本恒等式1. 余弦函数与正弦函数的关系:cos(x)=sin(π/2-x)2. 正弦函数和余弦函数的平方和恒为1:sin²(x)+cos²(x)=13. 正切函数与余切函数的关系:tan(x)=1/cot(x)4. 正切函数和余弦函数的关系:tan(x)=sin(x)/cos(x)5. 余切函数和正切函数的关系:cot(x)=1/tan(x)三、和差化积公式1. 正弦函数的和差化积公式:sin(a+b) = sin(a)cos(b) + cos(a)sin(b)sin(a-b) = sin(a)cos(b) - cos(a)sin(b)2. 余弦函数的和差化积公式:cos(a+b) = cos(a)cos(b) - sin(a)sin(b)cos(a-b) = cos(a)cos(b) + sin(a)sin(b)3. 正切函数的和差化积公式:tan(a+b) = (tan(a) + tan(b))/(1 - tan(a)tan(b)) tan(a-b) = (tan(a) - tan(b))/(1 + tan(a)tan(b))四、倍角公式1. 正弦函数的倍角公式:sin(2x) = 2sin(x)cos(x)2. 余弦函数的倍角公式:cos(2x) = cos²(x) - sin²(x)3. 正切函数的倍角公式:tan(2x) = 2tan(x)/(1 - tan²(x))五、半角公式1. 正弦函数的半角公式:sin²(x/2) = (1 - cos(x))/22. 余弦函数的半角公式:cos²(x/2) = (1 + cos(x))/23. 正切函数的半角公式:tan(x/2) = sin(x)/(1 + cos(x))六、和差化弦公式1. 正弦函数的和差化弦公式:2sin(a+b)cos(a-b) = sin(2a) + sin(2b)2sin(a-b)cos(a+b) = sin(2a) - sin(2b)2. 余弦函数的和差化弦公式:2cos(a+b)cos(a-b) = cos(2a) + cos(2b)-2sin(a-b)sin(a+b) = cos(2a) - cos(2b)七、其他公式1. 正弦函数的倒数性质:cosec(x) = 1/sin(x)2. 余弦函数的倒数性质:sec(x) = 1/cos(x)3. 正切函数的倒数性质:cot(x) = 1/tan(x)以上是一些常见的高中三角函数公式和性质,希望这些公式能够帮助大家更好地理解和应用三角函数。
高中三角函数公式大全免费
三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB-1tanB tanA +tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB +cot(A-B) =cotA cotB 1cotAcotB -+倍角公式tan2A =A tan 12tanA2-Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)半角公式sin(2A )=2cos 1A-cos(2A)=2cos 1A+tan(2A)=AA cos 1cos 1+-cot(2A)=AA cos 1cos 1-+tan(2A )=AA sin cos 1-=A Acos 1sin + 和差化积sina+sinb=2sin 2b a +cos 2ba -sina-sinb=2cos 2b a +sin 2ba -cosa+cosb = 2cos 2b a +cos 2ba -cosa-cosb = -2sin 2b a +sin 2ba -tana+tanb=b a b a cos cos )sin(+积化和差sinasinb = -21[cos(a+b)-cos(a-b)]cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)]cosasinb = 21[sin(a+b)-sin(a-b)]诱导公式sin(-a) = -sina cos(-a) = cosasin(2π-a) = cosa cos(2π-a) = sinasin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =aa cos sin万能公式 sina=2)2(tan 12tan2aa +cosa=22)2(tan 1)2(tan 1aa+- tana=2)2(tan 12tan2a a -其它公式 a•sina+b•cosa=)b (a 22+×sin(a+c)[其中tanc=ab ]a•sin(a)-b•c os(a) = )b (a 22+×cos(a-c) [其中tan(c)=ba ]1+sin(a) =(sin 2a +cos 2a )21-sin(a) = (sin 2a -cos 2a )2其他非重点三角函数csc(a) =a sin 1sec(a) =acos 1双曲函数sinh(a)=2e-e -aacosh(a)=2e e -aa tg h(a)=)cosh()sinh(a a公式一:设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα公式六:π±α及23π±α与α的三角函数值之间2的关系:sin(π+α)= cosα2π+α)= -sinαcos(2π+α)= -cotαtan(2π+α)= -tanαcot(2π-α)= cosαsin(2π-α)= sinαcos(2π-α)= cotαtan(2π-α)= tanαcot(23π+α)= -cosαsin(2cos (23π+α)= sinα tan (23π+α)= -cotα cot (23π+α)= -tanα sin (23π-α)= -cosα cos (23π-α)= -sinα tan (23π-α)= cotαcot (23π-α)= tanα(以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin)cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A三角函数公式证明(全部)公式表达式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cos A)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角正切定理:[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h-----------------------三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负.3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβ sin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1)tan(α+β)=(1+m)/(1-m)tanβ。