开关型直流稳压电路图

合集下载

开关电源工作原理及电路图

开关电源工作原理及电路图

开关电源工作原理及电路图本文开关电源工作原理是电子开关电源工程师全力整理的原理分析,以丰富的开关电源案例分析,介绍单端正激式开关电源,自激式开关电源,推挽式开关电源、降压式开关电源、升压式开关电源和反转式开关电源。

随着全球对能源问题的重视,电子产品的耗能问题将愈来愈突出,如何降低其待机功耗,提高供电效率成为一个急待解决的问题。

传统的线性稳压电源虽然电路结构简单、工作可靠,但它存在着效率低(只有40% -50%)、体积大、铜铁消耗量大,工作温度高及调整范围小等缺点。

为了提高效率,人们研制出了开关式稳压电源,它的效率可达85% 以上,稳压范围宽,除此之外,还具有稳压精度高、不使用电源变压器等特点,是一种较理想的稳压电源。

正因为如此,开关式稳压电源已广泛应用于各种电子设备中,本文对各类开关电源的工作原理作一阐述。

一、开关式稳压电源的基本工作原理开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。

因此下面就主要介绍调宽式开关稳压电源。

调宽式开关稳压电源的基本原理可参见下图。

对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。

直流平均电压U。

可由公式计算,即Uo=Um×T1/T式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。

从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。

这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。

二、开关式稳压电源的原理电路1、基本电路图二开关电源基本电路框图开关式稳压电源的基本电路框图如图二所示。

交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。

(5)12V直流电转3.3V稳压直流电的电路图及说明..

(5)12V直流电转3.3V稳压直流电的电路图及说明..

概述:LM2596系列开关电压调节器是降压型电源管理单片集成电路,能够输出3A的驱动电流,同时具有很好的线性和负载调节特性。

固定输出版本有3.3V、5V、12V,还有一个输出可调版本。

添加少量的外部元件就可以使用该电压调节器。

该器件内部集成有频率补偿和固定频率发生器。

开关频率为150KHz,与低频开关调节器相比较,可以使用更小规格的滤波元件。

其封装形式包括标准的5脚TO-220封装和5脚TO-263表贴封装。

由于该器件可以使用通用的标准电感,这更优化了LM2596的使用,极大地简化了开关电源电路的设计。

该器件还有其他一些特点:在特定的输入电压和输出负载的条件下,输出电压的误差可以保证在±4%的范围内,振荡频率误差在±15%的范围内;可以用仅80μA的待机电流,实现外部断电;具有自我保护电路(一个两级降频限流保护和一个在异常情况下断电的过温完全保护电路)。

特征:※ 3.3V、5V、12V的固定电压输出和可调电压输出※可调输出电压范围1.2V~37V,±4%※封装形式:TO-220(T)和TO-263(S)※保证输出负载电流3A※输入电压可高达40V※仅需4个外接元件※很好的线性和负载调节特性※150KHz固定频率的内部振荡器※TTL关断能力※低功耗待机模式,I Q的典型值为80μA※高转换效率※使用容易购买的标准电感※具有过热保护和限流保护功能应用:※简易高效率降压调节器※在卡上的开关电压调节器※正到负电压转换器专利号:5382918典型电路(固定输出电压版本):封装和型号:※弯曲交叉的引脚,通孔封装,5脚TO-220 (T)订货型号:LM2596T-3.3, LM2596T-5.0,LM2596T-12 or LM2596T-ADJ ※表面贴封装,5脚TO-263 (S)订货型号:LM2596S-3.3, LM2596S-5.0, LM2596S-12 or LM2596S-ADJ极限条件:最大供电电压45VON /OFF 管脚输入电压-0.3≤V≤+25V反馈脚电压-0.3≤V≤+25V输出电压到地(稳态)-1V功率消耗内部限定储存温度-65°C 到+150°CESD易感性(人体模式)2KV焊接温度T封装(锡焊, 10秒) +260°C最大结温+150°C运行条件:温度范围-40°C≤T J≤+125°C供电电压 4.5V 到40VLM2596-3.3电参数说明:标准字体对应的项目适合于TJ=25℃时,粗体字对应的项目适合于全温度范围符号意义测试条件典型值(注3)极限值(注4)单位(极限)系统参数(注5) 测试电路图 1V OUT输出电压 4.75V ≤ V IN≤ 40V,0.2A ≤ I LOAD≤ 3A 3.33.168/3.1353.432/3.465VV(min)V(max)η效率V IN = 12V,I LOAD = 3A73 %LM2596-5.0电参数说明:标准字体对应的项目适合于TJ=25℃时,粗体字对应的项目适合于全温度范围符号意义测试条件典型值(注3)极限值(注4)单位(极限)系统参数(注5) 测试电路图 1V OUT输出电压7V ≤ V IN ≤ 40V,0.2A ≤ I LOAD≤ 3A 5.04.800/4.7505.200/5.250VV(min)V(max)η效率V IN = 12V,I LOAD = 3A80 %LM2596-12电参数说明:标准字体对应的项目适合于TJ=25℃时,粗体字对应的项目适合于全温度范围符号意义测试条件典型值(注3)极限值(注4)单位(极限)系统参数(注5) 测试电路图 1V OUT输出电压15V ≤ V IN≤ 40V,0.2A ≤ I LOAD≤ 3A 12.011.52/11.4012.48/12.60VV(min)V(max)η效率V IN = 25V,I LOAD = 3A90 %LM2596-ADJ电参数说明:标准字体对应的项目适合于TJ=25℃时,粗体字对应的项目适合于全温度范围符号意义测试条件典型值(注3)极限值(注4)单位(极限)系统参数(注5) 测试电路图 1V FB反馈电压 4.5V ≤ V IN≤ 40V,0.2A ≤ I LOAD≤ 3AV OUT设计为3V,电路图 1 1.2301.193/1.1801.267/1.280VV(min)V(max)η效率V IN = 12V, V OUT =3V, I LOAD = 3A73 %所有输出电压版本电参数说明:标准字体对应的项目适合于TJ=25℃时,带下划线的粗斜体字对应的项目适合于整个温度范围。

开关直流降压电源(BUCK)设计

开关直流降压电源(BUCK)设计

开关直流降压电源(BUCK)设计摘要随着电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多,电子设备与人们的工作、生活的关系日益密切。

近年来,随着功率电子器件(如IGBT、MOSFET)、PWM技术以及电源理论发展,新一代的电源开始逐步取代传统的电源电路。

该电路具有体积小,控制方便灵活,输出特性好、纹波小、负载调整率高等特点。

开关电源中的功率调整管工作在开关状态,具有功耗小、效率高、稳压范围宽、温升低、体积小等突出优点,在通信设备、数控装置、仪器仪表、视频音响、家用电器等电子电路中得到广泛应用。

开关电源的高频变换电路形式很多, 常用的变换电路有推挽、全桥、半桥、单端正激和单端反激等形式。

本论文采用双端驱动集成电路——TL494输的PWM脉冲控制器设计开关电源,利用MOSFET 管作为开关管,可以提高电源变压器的工作效率,有利于抑制脉冲干扰,同时还可以减小电源变压器的体积。

关键词:直流,降压电源,TL494,MOSFET1目录摘要 (1)Abstract........................................................... ........ 错误!未定义书签。

1.方案论证与比较 (4)1.1 总方案的设计与论证 ...................................... 错误!未定义书签。

1.2 控制芯片的选择 (4)1.3 隔离电路的选择 .............................................. 错误!未定义书签。

2. BUCK电路工作原理 ......................................... 错误!未定义书签。

3. 控制电路的设计及电路参数的计算 ................ 错误!未定义书签。

3.1 TL494控制芯片................................................ 错误!未定义书签。

常见几种开关电源工作原理及电路图

常见几种开关电源工作原理及电路图

常见几种开关电源工作原理及电路图图二开关电源基本电路框图开关式稳压电源的基本电路框图如图二所示。

交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。

控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。

这部分电路目前已集成化,制成了各种开关电源用集成电路。

控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。

2.单端反激式开关电源单端反激式开关电源的典型电路如图三所示。

电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。

所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。

当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

单端反激式开关电源是一种成本最低的电源电路,输出功率为20-100W,可以同时输出不同的电压,且有较好的电压调整率。

唯一的缺点是输出的纹波电压较大,外特性差,适用于相对固定的负载。

单端反激式开关电源使用的开关管VT1 承受的最大反向电压是电路工作电压值的两倍,工作频率在20-200kHz之间。

3.单端正激式开关电源单端正激式开关电源的典型电路如图四所示。

这种电路在形式上与单端反激式电路相似,但工作情形不同。

当开关管VT1导通时,VD2也导通,这时电网向负载传送能量,滤波电感L储存能量;当开关管VT1截止时,电感L通过续流二极管VD3 继续向负载释放能量。

在电路中还设有钳位线圈与二极管VD2,它可以将开关管VT1的最高电压限制在两倍电源电压之间。

为满足磁芯复位条件,即磁通建立和复位时间应相等,所以电路中脉冲的占空比不能大于50%。

由于这种电路在开关管VT1导通时,通过变压器向负载传送能量,所以输出功率范围大,可输出50-200 W的功率。

线性电源和开关电源

线性电源和开关电源

一、水声设备电源电源分为交流电源和直流电源,就水声设备而言,主要应用为直流稳压电源。

直流电源可分为线性稳压电源和开关稳压电源。

线性稳压电源就是它的功率器件调整管工作在线性区,靠调整管之间的电压降来稳定输出。

与线性稳压电源不同的一类稳电源就是开关型直流稳压电源,它的电路型式主要有单端反激式,单端正激式、半桥式、推挽式和全桥式。

它和线性电源的根本区别在于它变压器不工作在工频而是工作在几十千赫兹到几兆赫兹,功率管工作在饱或及截止区即开关状态。

线性电源和开关电源的区别:1、工作方式不同(1)线性电源的调整管工作在放大状态,因而发热量大,效率低(不高于50%),需要加体积庞大的散热片,而且还需要同样也是大体积的工频变压器,当要制作多组电压输出时变压器会更庞大。

(2)开关电源的调整管工作在饱和和截至状态,因而发热量小,效率高(75%以上)而且省掉了大体积的变压器。

但开关电源输出的直流上面会叠加较大的纹波,另外开关管工作时会产生很大的尖峰脉冲干扰,也需要在电路中串连磁珠加以改善。

2、内部结构不同(1)开关电源利用变占空比或变频的方法实现不同的电压,实现较为复杂,最大的优点是高效率,缺点是纹波和开关噪声较大,适用于对纹波和噪声要求不高的场合。

(2)线性电源没有开关动作,属于连续模拟控制,内部结构相对简单,芯片面积也较小,成本较低,优点是成本低,纹波噪声小,最大的缺点是效率低。

它们各有有缺点在应用上互补共存。

3、适用要求不一样效率和安装体积有要求的地方用开关电源为佳,对于电磁干扰和电源纯净性有要求的地方多选用线性电源。

稳压电路对整流后的直流电压采用负反馈技术进一步稳定直流电压。

二、直流电源主要参数1、源电压效应输入电压的变化引起输出量变化的效应,改变量是源电压,被测量是输出电压的稳态值。

%100max ⨯∆=oNU U U S其中 S U — 源电压效应系数(电压调整率),这个值越小越好,是衡量稳压电源性能的一个重要指标。

直流开关稳压电源设计

直流开关稳压电源设计

直流开关稳压电源设计一、设计背景及意义随着电子技术的飞速发展,各类电子设备对电源的需求日益增长。

直流开关稳压电源以其高效、稳定、体积小、重量轻等优点,在通信、计算机、家用电器等领域得到了广泛应用。

设计一款性能优越、可靠性高的直流开关稳压电源,对于提高电子设备的整体性能具有重要意义。

二、设计目标1. 输出电压范围:12V±1V;2. 输出电流:2A;3. 转换效率:≥85%;4. 工作温度范围:25℃~+85℃;5. 具有过压、过流、短路保护功能;6. 体积小,便于安装。

三、设计方案1. 电路拓扑选择本设计采用开关电源的主流拓扑——反激式变换器。

反激式变换器具有电路简单、体积小、效率高等优点,适用于中小功率电源设计。

2. 主控芯片选型选用ST公司的STM32F103系列微控制器作为主控芯片,该芯片具有高性能、低功耗、丰富的外设资源等特点,能够满足开关电源的设计需求。

3. 功率开关管选型功率开关管是开关电源的核心元件,本设计选用N沟道MOSFET作为功率开关管。

根据设计指标,选用IRF530N型号MOSFET,其导通电阻低,可降低开关损耗,提高转换效率。

4. 输出整流滤波电路设计输出整流滤波电路采用肖特基二极管和LC滤波电路。

肖特基二极管具有正向压降低、开关速度快的特点,适用于开关电源整流。

LC滤波电路能有效抑制输出电压纹波,提高输出电压稳定性。

5. 保护电路设计为实现过压、过流、短路保护功能,设计如下保护电路:(1)过压保护:在输出端设置一个电压比较器,当输出电压超过设定值时,触发保护动作,切断功率开关管的驱动信号。

(2)过流保护:在功率开关管源极串联一个取样电阻,实时监测电流值。

当电流超过设定值时,触发保护动作,切断功率开关管的驱动信号。

(3)短路保护:在输出端设置一个电流比较器,当输出电流超过设定值时,触发保护动作,切断功率开关管的驱动信号。

四、实验验证与优化1. 搭建实验平台,对设计的直流开关稳压电源进行测试,观察输出电压、电流、效率等参数是否符合设计要求。

直流稳压电源的组成和功能

直流稳压电源的组成和功能

UOmax
=
R1
+
R2 R2
+
RW
UZ
=4.7 +4.7+ 4.7
4.74=12V
(d) 实际的稳压电源采取的改进措施
+
R3
UI _
T1 R
R1
T2
RW1 RW
RW2
UZ UB2 R2
+
RL UO _
集成化集成稳压电源
1. 比较放大级采用差动放大器或集成运放 2.调整管采用复合三极管 3. 采用辅助电源(比较放大部分的电源) 4. 用恒流源负载代替集电极电阻以提高增益 5. 内部加短路和过热保护电路
u1
u2
RL uo
t
0 2
b
Uo
=1
2
2
0 uo
d
(t
)
=
1
2
0
=
2U2

0.45U2
2U2 sin td (t)
Io= Uo /RL =0.45 U2 / RL
二极管上的平均电流及承受的最高反向电压:
uD
T
D
io uD
u1
t
u2
RL
uo
0
2
UDRM
二极管上的平均电流: ID = IO 承受的最高反向电压: UDRM= 2U2
uo=u2

b
u2<0时:
二极管截止, uo=0
为分析简单起见,把二极管当作理想元件处理,即 二极管的正向导通电阻为零,反向电阻为无穷大。
单相半波整流电压波形 u2
uD
Ta
D
0
uo

《开关型稳压电源》PPT课件

《开关型稳压电源》PPT课件

i1
VD4
VD2
uin
uo
i1
i2
图 5 - 2 单相桥式整流电路输入电压和电流的波形
第5章 开关型稳压电源
功率因数较低的开关电源存在许多问题, 主要有: (1) 谐波电流污染电网, 干扰其他用电设备, 造 成测量仪表产生较大的误差, 还会使电动机产生较大 的噪声。 (2) 在输入功率一定的条件下, 输入电流有效值 较大, 因此必须增大输入熔断器、 断路器和电源线的 规格。 (3) 特别应当指出, 通信用开关型电源通常都采 用三相五线制供电, 三相基波电流可分别由下列各式 表示:
第5章 开关型稳压电源
5.1.2 目前, 通信和其他电子设备采用的稳压电源主要
有线性稳压电源、 相控型稳压电源和开关型稳压电路。 线性稳压电源中, 调整元件串联在负载回路中,
其作用就像一只可变电阻, 输入电压或负载变化时, 串联调整元件的压降改变, 从而使输出电压稳定不变。 当输入电压过高时, 串联调整管的功耗很大, 因此效 率很低。 当输入电压波动范围为±20 %时, 5 V稳压 器 的 典 型 效 率 只 有 35% , 输 入 电 压 波 动 范 围 小 于 ±16%时, 典型效率也只能达到50%。
第5章 开关型稳压电源
由此可知, 三相电流的三次谐波分量是同相位的, 同理, 三相电流的六次、 九次等谐波分量也是同相位 的。 由于三相电流都流过中线, 当功率因数为1时, 流过中线的电流为零; 当功率因数很低时, 中线内的 电流很大。 由于中线无过流保护装置, 所以, 中线有 可能因过热而着火。
IR为电网电流有效值; I1为基波电流有效值; VL为电网电压有效值; cosφ为基波电流与基波电压的位移因数。
第5章 开关型稳压电源

开关直流电源设计(原理及结构)

开关直流电源设计(原理及结构)

并联型高频开关直流电源的系统设计关键字:开关电源 PWM 并联均流模块随着模块化电源系统的发展,开关电源并联技术的重要性日见重要。

这里介绍了一种新型并联型高频开关电源整流模块的系统设计方案。

其中,对开关电源的驱动电路、缓冲电路、控制电路及主要磁元件进行优化、设计。

控制电路以UC3525为核心,构成电流内环、电压外环的双环控制模式,实现系统稳压和限流。

并且通过小信号模型分析,对电压电流环的PI调节器进行设计。

近几年来,各式各样的开关电源以其小巧的体积、较高的功率密度和高效率越来越得到广泛的应用。

随着电力系统自动化程度的提高,特别是其保护装置的微机化,通讯装置的程控化,对电源的体积和效率的要求不断提高。

电源中磁性元件和散热器件成了提高功率密度的巨大障碍。

开关频率的提高可以使开关变换器(特别是变压器、电感等磁性元件以及电容)的体积、重量大为减小,从而提高变换器的功率密度。

另外,提高开关频率可以降低开关电源的音频噪声和改善动态响应。

但是由于开关管的通断控制与开关管上流过的电流和两端所加的电压无关,而早期的脉宽调制(PWM)开关电源工作在硬开关模式,在硬开关中功率开关管的开通或关断是在器件上的电压或电流不等于零的状态下强迫进行的,电路的开关损耗很大,开关频率越高,损耗越大,不但增加了热设计的难度而且大大降低了系统得可靠性,这使得PWM开关技术的高频化受到了许多的限制。

根据高频电力操作电源的设计要求,结合实际的经验和实验结果选择合适的开关器件,设计出稳定可靠、性能优越的控制电路、驱动电路、缓冲电路以及主要的磁性元器件。

对最大电流自动均流法的工作原理以及系统稳定性进行了较为深入的研究。

采用均流控制芯片UC3907设计了电源的均流控制电路,使模块单元具有可并联功能,可以实现多电源模块并联组成更大功率的电源系统。

1、系统原理的设计思想在设计大型的开关电源模块时,首先需要对系统有一个整体的规划,以便于设计整体结构及相应的辅助电源。

12V4a直流开关电源原理图

12V4a直流开关电源原理图

12V4a直流开关电源原理图由MC33374T/TV构成的12V/4.2A 50W开关电源的电路如图所示。

其交流输入电压u的允许变化范围为92~276V。

整流桥VD1~VD4采用4只1N5406型3A/600V的硅整流管。

初级保护电路由RC吸收电路(R2、C2)和钳位电路(VDz、VD5)构成,能有效地抑制因高频变压器存在漏感而产生的尖峰电压,保护C33374内部的功率开关管不受损坏。

VDz采用P6KE200A型瞬变电压抑制二极管(TVS),其反向击穿电压UB=200V。

VD5选用的是MURl60型超快恢复二极管(SRD)。

C5为Vcc端的旁路电容。

S 为控制开关稳压电源通、断状态的按键。

S上串接R7后,能提高模式转换的可靠性。

VD6与C6组成反馈线圈输出端的高频整流滤波器。

次级高频整流管采用大电流、低压降的肖特基二极管,型号为MBR20100CT(20A/100V)。

此管属于共阴对管,两个负极(阴极)在内部短接,使用时需将两个正极(阳极)在外部连通,进行并联。

由C8、C11、L、C12和C13组成输出滤波电路。

鉴于滤波电感L的电感量很小,仅为5.0μH,而大容量滤波电容C8、Cl1上存在的等效电感Lo,会直接影响到实际电感量从L变成L+Lo,因此需将馈线圈N3用声φ0.55mm漆包线绕7匝,并应绕在骨架的中间位置,以减小漏感;然后也绕两层聚脂薄膜。

铁氧体磁心型号为E25。

为防止发生磁饱和现象,在两个E形磁心之间应留出0.43mm的空气隙。

开关式稳压电路

开关式稳压电路

第七章 *输出电压Uo的确定 输出电压为:
Uo(1R7) 5.( 1 V) R8
分析时,注意的是R8上端接的是11脚,然后看原理 图,分析这是的压降。
第七章
7.5.3并联开关电源
一.基本构成
并联开关电源换能电路如图7.21, 储能电感,负载和输入电压是并联 的VT。饱和导通时,UI给电感L储能,同 时L自感电动势使VD截止。VT截止时, L自感使自感电动势极性立即改变, VD导通,L通过VD释放能量向C2充 电,并同时向负载供电。当VT再次饱 和导通时,L储能,VD反向截止,电 容C2向负载供电,负载上获得连续能 量。既VT导通期间,L储能,电容C2 向负载供电;VT截止时,L释放能量 对C2充电,同时向负载供电;L,C2 同时具备滤波作用,使得输出波形平 滑。
LC(C0 C) CC0 C
fp
C C1C2 C1 C2
由于
C C0C
f0 21LCfs
第六章
2.串联型石英晶体振荡电路
当振荡频率等于 fS 时, 晶体阻抗最小,且为纯电 阻,此时正反馈最强,相 移为零,电路满足自激振 荡条件。
振荡频率 f0 fs
图 6.1.30 串联型石英晶 体振荡电路
4.比较器是组成非正弦波发生电路的基本单元,在 测量、控制、D/A和A/D转换电路中应用广泛。
第六章 一、 电压比较器的传输特性
1.电压比较器的输出电压与输入端的电压之间函数关系
u f(u)
O
I
2.阈值电压: UT
当比较器的输出电压由一种状态跳变为另一种状态所 对应的输入电压。
3.电压传输特性的三要素 (1)输出电压的高电平UOH和低电平UOL的数值。 (2)阈值电压的数值UT。 (3)当uI变化且经过UT时, uO跃变的方向。

电路图详解大全

电路图详解大全

电路图详解大全用电路元件符号表示电路连接的图,叫电路图。

电路图是人们为研究、工程规划的需要,用物理电学标准化的符号绘制的一种表示各元器件组成及器件关系的原理布局图,可以得知组件间的工作原理,为分析性能、安装电子、电器产品提供规划方案。

电路图是电子工程师必学的基本技能之一,本文集合了稳压电源、DCDC转换电源、开关电源、充电电路、恒流源相关的经典电路资料,为工程师提供最新鲜的电路图参考资料一、稳压电源1、3~25V电压可调稳压电路图此稳压电源可调范围在3.5V~25V之间任意调节,输出电流大,并采用可调稳压管式电路,从而得到满意平稳的输出电压。

工作原理:经整流滤波后直流电压由R1提供给调整管的基极,使调整管导通,在V1导通时电压经过RP、R2使V2导通,接着V3也导通,这时V1、V2、V3的发射极和集电极电压不再变化(其作用完全与稳压管一样)。

调节RP,可得到平稳的输出电压,R1、RP、R2与R3比值决定本电路输出的电压值。

元器件选择:变压器T选用80W~100W,输入AC220V,输出双绕组AC28V。

FU1选用1A,FU2选用3A~5A。

VD1、VD2选用6A02。

RP选用1W左右普通电位器,阻值为250K~330K,C1选用3300µF/35V电解电容,C2、C3选用0.1µF独石电容,C4选用470µF/35V电解电容。

R1选用180~220Ω/0.1W~1W,R2、R4、R5选用10KΩ、1/8W。

V1选用2N3055,V2选用3DG180或2SC3953,V3选用3CG12或3CG80。

2、10A3~15V稳压可调电源电路图无论检修电脑还是电子制作都离不开稳压电源,下面介绍一款直流电压从3V到15V连续可调的稳压电源,最大电流可达10A,该电路用了具有温度补偿特性的,高精度的标准电压源集成电路TL431,使稳压精度更高,如果没有特殊要求,基本能满足正常维修使用,电路见下图。

直流稳压电源

直流稳压电源

4.稳压过程:
当 VO 由于某种原因偏高时,V4 基极电位升高,IC4 增大, C1 放电速度增加,使 V3 截止时间缩短,V1、V2 饱和时间缩 短,使 VO 降低,从而稳定 VO。
优点 是电源效率高,稳压效果好。缺点是纹波较大, 电路复杂,对元器件要求较高。被广泛应用在彩色电视机、 计算机等设备中。
CW317 为三端可调式正压输出稳压器,其引脚排列请查 阅手册。
CW337 为三端可调 式负压输出稳压器,其 引脚排列请查阅手册。
CW317 和 CW337 的基本应用电路
应用特点是外接两个电阻(R1和 RP)就可得到所需的输出 电压。为了使电路正常工件,一般输出电流不小于 5 mA。输 入电压范围在 3 ~ 40 V之间,输出电压可调范围为 1.25 ~ 37 V, 器件最大输出电流约 1.5 A。
综上所述,带有放大环节 的串联型晶体管稳压电路,一 般由四部分组成,即采样电路、 基准电压、比较放大电路和调 整元件。
电路的优点是输出电流较大,输出电压可调;缺点是电源 效率低,大功率电源需设散热装置。
[例 8.2.1] 设图中的稳压管为 2 CW14,VZ = 7 V。采样 电阻 R1 = 1 k,RP = 200 ,R2 = 680 ,试估算输出电压的 调节范围。
2.稳压过程
设 RL 恒定,当 VI→VO →VB2 →VBE2 →VC2 →VBE1 →VCE1 →VO
3.输出电压调节范围
由于
VB 2
VBE2
VZ
RP R2 R1 RP R2
VO

VO
R1 RP R2 RP R2
(VBE2
VZ )
当 RP 的滑动臂移到最上端时,RP = 0,RP = Rp ,Vo 达到 最小值。即

开关电源类型

开关电源类型

1.2 用高频变压器的开关电源结构概述
图5 高频变压器开关电源基本功能框 图 电路
这类电源的共同特点是具有高 频变压器、直流稳压是从变压 器次级绕组的高频脉冲电压整 流滤波而来。变压器原副方是 隔离的,或是部分隔离的,而 输入电压是直接从交流市电整 流得到的高压直流。
传输功 率 20~ 100W
50~ 200W 100~ 500W 100~ 5000W
(b) b)外接PNP管扩流式
图14 CW34063的Buck—Boost converter
4单端反激式开关电源 单端反激式开关电源
4.1 工作原理分析
(一)在开关VT导通期间: 在开关VT导通期间: VT导通期间 U iP (t on ) = in t on + I P min = I P max LP (二)在开关VT截止期间 在开关 截止期间
2.1 Buck converter
(一)在开关VT导通期间 在开关VT导通期间 VT U −U 0 i L1 = in t + I L min L U −U 0 I L max = in t on + I L min L 在开关VT VT截止期间 (二)在开关VT截止期间
iL 2 =
−U0 (t − t on ) + I L max L
I P min
TS 1 = U in t on [ − ] 2 2 RL n t off 2 LP
3 单端功率输出的直流变换器
(二)升压式电路 3.1 CW34063的工作原理
图11 CW34063的原理框图 8.3.2 CW34063的应用电路 (一)降压式电路
(a) (b) a) 直接升压式 b)外接NPN管扩流式 图13 CW34063的Boost converter

《开关稳压电源》课件

《开关稳压电源》课件

不断试验
持续学习
常见问题与解决方案
问题1
01
电源发热严重
原因
02
可能由于电路设计不合理或元件性能不佳。
解决方案
03
优化电路设计,更换性能更好的元件。
常见问题与解决方案
问题2
电源效率低下
原因
可能由于损耗过大或电路结构不合理。
解决方案
降低损耗,对电路结构进行优化。
常见问题与解决方案
问题3
输出电压不稳定
应用
广泛应用于各种电子设备中,如音频功率放大器、逆变器等。
升降压型开关稳压电源
• 总结词:同时具有升压和降压功能的开关稳压电源。
• 详细描述:升降压型开关稳压电源是一种较为特殊的开关稳压电源类型,其工作原理是通过控制开关管的导通和截止时 间,既可以降低输入电压来降低输出电压,也可以增加输入电压来提高输出电压,具有双重调节功能。
空调
在空调中,开关稳压电源 用于控制压缩机和风扇的 运行,保持室内温度的恒 定。
冰箱
冰箱的开关稳压电源确保 冷藏和冷冻系统的正常运 行,保持食品的新鲜。源自通信领域的应用手机
手机的开关稳压电源为通 话、数据传输和各种功能 提供稳定的电力。
路由器
在路由器中,开关稳压电 源为处理数据和信号传输 提供稳定的电力。
初步检查
检查电路中各元件是否正常,无损坏。
调试步骤与注意事项
通电测试
逐步通电,观察各部分工作是否正常 。
调整参数
根据需要调整相关参数,如电压、电 流等。
调试步骤与注意事项
安全第一
确保调试过程中人员和设备安全。
逐步进行
不要一次性将所有参数调整到位,应逐步调整。

直流稳压电源课件

直流稳压电源课件

8
电工基础教学部
目录
电工电子技术
Tr a-
u1
o
t
D4
+ io
u2
D1 D3
RL
uo
D2
-
b
+
u2负半周时电流通路
电工基础教学部
9
目录
+
a
(-) u2
b
(+)
u2
桥式整流电路输出波形
电工电子技术
D4
RL
D1 D3
u0
D2
u2>0 时
a+ b-
u2<0 时 b(+) a(-)
D1,D3导通 D2,D4导通 D2,D4截止 D1,D3截止 电流通路: 电流通路:由 由a+经D1 b(+)经D2
电工基础教学部
Uo

U
i


U
CE
31
目录
电工电子技术
T UCE
+ 调整
UBE
UB

Ui
A
比较放大
UF
R1
URE
取 样
F

基准电压 R2
当忽略电 感线圈的直流电阻时,输出平均电压约为:
U0=0.9U2
(3)电感滤波的特点
整流管导电角较大,峰值电流很小,输出 特性比较平坦,适 用于低电压大电流(RL较小)的场合。缺点是电感铁芯笨重,体 积大,易引起电磁干扰。
电工基础教学部
21
目录
电工电子技术
3、复式滤波器
为了进一步改善滤波特 性,可采取多级滤波的办法, 如在电 容滤波后再接一级RC滤 波电路,或在电感滤波后面再接一电容。

开关型直流稳压电路

开关型直流稳压电路

开关型直流稳压电路稳压电源属于线性稳压电路,电路中的调整管工作在放大区。

而开关型稳压电路的调整管工作在开关状态,一般以(10~100)kHz的调制频率快速地工作于饱和区和截止区。

当管子截止时,尽管电压较高,而电流为零;当管子饱和时,尽管电流较大,而管压降很小。

通常只要考虑管子的高频开关损耗。

因此,管子功耗小,其效率很高(80%~90%以上)。

串联型开关电源:电路由开关调整管(T)、续流滤波环节D和L-C2、掌握环节(A、R1-R2、VREF)三个部分组成。

续流滤波环节的作用是将调整管输出的开关脉冲电压波形加以平滑,变成平稳的直流输出电压。

由于这个电压是不稳定的,因而必需通过输出取样,反馈掌握调整管的饱和与截止时间,使输出电压自动进行调整。

设比较放大器输出电压VF<0。

在三角波信号电压VS>VF期间,比较器输出负电位,VB=-Vom。

反之,在VS<VF期间,VB=+Vom,由此可得VB为矩形脉冲。

当VF变动时,VB波形的脉宽ton和占空比q(=ton/T)随着转变。

当VB=+Vom时,调整管T饱和导通,iL=iE,并在L中储能。

T的放射极电位为VE=VI-VCES≈VI,而当VB=-Vom时,调整管T截止,iE=0。

此时,电感L释放储能,其反电势使二极管D导通,iL=iD,所以负载上连续有电流通过,续流二极管D的名称由此而得。

此时,T的放射极电位VE=-VD≈0。

若忽视L中的直流电阻,则输出直流电压Vo即为VE的平均重量。

,q为放射极脉冲占空比。

当VI肯定时,Vo与占空比q成正比。

当滤波器的参数L和C不是足够大时,输出电压将消失肯定的纹波,其基波频率与三角波的频率相同。

稳压过程如下:当输出直流电压Vo下降时,取样电压FVo随着减小,所以|VF|减小。

由图(a)可见,此时调整管T的导通时间ton增加,所以VB波形的占空比q增大,这使Vo增大,由此可弥补Vo的减小。

而当Vo因某种缘由增大时,反馈掌握的结果将使VB波形的占空比q减小,从而使Vo下降,以弥补Vo的增大。

直流稳压电路

直流稳压电路

二极管冲击电流
输出电压
返回
全波整流滤波电路(C=470UF)波形图
二极管冲击电流 滤波输出电压
返回
全波整流滤波电路(C=1000UF)波形图
二极管冲击电流
滤波输出电压
返回
全波整流滤波电路(C=3300UF)波形图
整流二极管中 得冲击电流
滤波输出电压
返回
全波整流滤波电路(C=6800UF)波形图
2、 负载波动
RL Io IR UR Uo IZ UR Uo
返回
通过调节R上得压降来达到稳定输出电压Uo得目得。
三、稳压管稳压电路特点
优点:电路简单,元件少。 缺点:稳压效果不太好,输出电压不可调。
四、稳压管选择办法
UZ Uo
IZ max 1.5 3 IOmax
Ui 2 3Uo
五、限流电阻 R 得选择原则
一般选管时,取
IDF (2~3) I 0 (2 ~ 3) 1 U 0
返回
2
2 RL
(3) 输出特性(外特性):
Uo
1、4U2
0、9U2
电阻负载 有电容滤波
电阻负载 无电容滤波
0
Io
输出波形随负载电阻RL或C得变化而改变,U0和S也随 之改变。
如:RL愈小(Io越大),Uo下降多, S增大。
返回
电感线圈体积大而笨重、成本高。
返回
§19、4 稳压电 路
常用稳压电路 (小功率设备)
稳压管 稳压电路
线性 稳压电路
开关型 稳压电路
在小功率设备中常用得稳压电路有稳压管稳压电路、线 性稳压电路和开关型稳压电路等。其中稳压管稳压电路最简 单,但就是带负载能力差,一般只提供基准电压,不作为电源使 用。开关型稳压电源效率较高,目前用得也比较多,但因学时 有限,这里不做介绍。以下主要讨论线性稳压电路。

开关电源工作原理及电路图

开关电源工作原理及电路图

开关电源工作原理及电路图本文以丰富的开关电源案例分析,介绍单端正激式开关电源,自激式开关电源,推挽式开关电源、降压式开关电源、升压式开关电源和反转式开关电源。

随着全球对能源问题的重视,电子产品的耗能问题将愈来愈突出,如何降低其待机功耗,提高供电效率成为一个急待解决的问题。

传统的线性稳压电源虽然电路结构简单、工作可靠,但它存在着效率低(只有40%-50%)、体积大、铜铁消耗量大,工作温度高及调整范围小等缺点。

为了提高效率,人们研制出了开关式稳压电源,它的效率可达85%以上,稳压范围宽,除此之外,还具有稳压精度高、不使用电源变压器等特点,是一种较理想的稳压电源。

正因为如此,开关式稳压电源已广泛应用于各种电子设备中,本文对各类开关电源的工作原理作一阐述。

一、开关式稳压电源的基本工作原理开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。

因此下面就主要介绍调宽式开关稳压电源。

调宽式开关稳压电源的基本原理可参见下图。

对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。

直流平均电压U。

可由公式计算,即Uo=Um×T1/T式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。

从上式可以看出,当Um与T不变时,直流平均电压Uo将与脉冲宽度T1成正比。

这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。

二、开关式稳压电源的原理电路1、基本电路图二开关电源基本电路框图开关式稳压电源的基本电路框图如图二所示。

交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。

控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关型直流稳压电路图
基本的稳压电源,都属于线性稳压电路,电路中的调整管工作在放大区。

而开关型稳压电路的调整管工作在开关状态,一般以(10~100)kHz的调制频率快速地工作于饱和区和截止区。

当管子截止时,尽管电压较高,而电流为零;当管子饱和时,尽管电流较大,而管压降很小。

通常只要考虑管子的高频开关损耗。

因此,管子功耗小,其效率很高(80%~90%以上)。

串联型开关电源:
电路由开关调整管(T)、续流滤波环节D和L-C2、控制环节(A、R1-R2、VREF)三个部分组成。

续流滤波环节的作用是将调整管输出的开关脉冲电压波形加以平滑,变成平稳的直流输出电压。

由于这个电压是不稳定的,因而必须通过输出取样,反馈控制调整管的饱和与截止时间,使输出电压自动进行调
节。

设比较放大器输出电压VF<0。

在三角波信号电压VS>VF期间,比较器输出负电位,VB=-Vom。

反之,在VS <VF期间,VB=+V om,由此可得VB为矩形脉冲。

当VF变动时,VB波形的脉宽ton和占空比q(=ton/T)随着改变。

当VB=+V om时,调整管T饱和导通,iL=iE,并在L中储能。

T的发射极电位为VE=VI-VCES≈VI,而当VB=-V om 时,调整管T截止,iE=0。

此时,电感L释放储能,其反电势使二极管D导通,iL=iD,所以负载上继续有电流通过,续流二极管D的名称由此而得。

此时,T的发射极电位VE=-VD≈0。

若忽略L中的直流电阻,则输出直流电压V o即为VE的平均分量。

,q为发射极脉冲占空比。

当VI一定时,V o与占空比q成正比。

当滤波器的参数L和C不是足够大时,输出电压将出现一定的纹波,其基
波频率与三角波的频率相同。

稳压过程如下:当输出直流电压Vo下降时,取样电压FV o随着减小,所以|VF|减小。

由图(a)可见,此时调整管T的导通时间ton增加,所以VB波形的占空比q增大,这使V o增大,由此可弥补V o的减小。

而当Vo因某种原因增大时,反馈控制的结果将使VB波形的占空比q减小,从而使V o下降,以弥补V o的增大。

可见这种开
关电源的稳压过程是通过改变VB波形的脉宽(或占空比)来实现的,因而称为脉宽调制(PWM)型开关电源。

相关文档
最新文档