九年级数学知识点专题练习题3
九年级中考复习数学考点专题训练——专题三:一次函数
中考数学考点专题训练——专题三:一次函数1.在学习一元一次不等式与一次函数中,小明在同一个坐标系中分别作出了一次函数y=k1x+b1和y=kx+b 的图象,分别与x轴交于点A、B,两直线交于点C.已知点A(﹣1,0),B(2,0),观察图象并回答下列问题:(1)关于x的方程k1x+b1=0的解是;关于x的不等式kx+b<0的解集是;(2)直接写出关于x的不等式组的解集;(3)若点C(1,3),求关于x的不等式k1x+b1>kx+b的解集和△ABC的面积.2.为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量y(m3)与注水时间t(h)之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.求单独打开甲进水口注满游泳池需多少小时?3.规定:若直线l与图形M有公共点,则称直线l是图形M的关联直线.已知:矩形ABCD的其中三个顶点的坐标为A(t,0),B(t+2,0),C(t+2,3)(1)当t=1时,如图以下三个一次函数y1=x+4,y2=﹣x+2,y3=x+2中,是矩形ABCD的关联直线;(2)已知直线l:y=x+2,若直线l是矩形ABCD的关联直线,求t的取值范围;(3)如果直线m:y=tx+2(t>0)是矩形ABCD的关联直线,请直接写出t的取值范围.4.如图,直线y=﹣与x轴相交于点A,与直线y=x相交于点B.(1)求点A,点B的坐标;(2)动点C从原点O出发,以每秒1个单位的速度在线段OA上向点A做匀速运动,连接BC,设运动时间为t秒,△BCA的面积为S,求出S关于t的函数关系式;(3)若点P是坐标平面内任意一点,以O,A,B,P为顶点的四边形是平行四边形,请直接写出点P的坐标.5.已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于点C,直线OC的解析式为y=x,过点C作CM⊥y轴,垂足为M,OM=9.(1)如图1,求直线AB的解析式;(2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,垂足为D,交OC于点E,若NC=OM,求的值;(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ﹣FG =AF,求点P的坐标.6.如图:在平面直角坐标系xOy中,过点A(﹣2,0)的直线l1和直线l2:y=2x相交于点B(2,m).(1)求直线l1的表达式;(2)过动点P(n,0)(n<0)且垂直于x轴的直线与l1、l2的交点分别为C,D.横、纵坐标都是整数的点叫做整点.①当n=﹣1时,直接写出△BCD内部(不含边上)的整点个数;②若△BCD的内部(不含边上)恰有3个整点,直接写出n的取值范围.7.如图,在平面直角坐标系中,点O为坐标原点,直线l分别交x轴、y轴于A.B两点,OA<OB,且OA、OB的长分别是一元二次方程x2﹣14x+48=0的两根.(1)求直线AB的解析式;(2)点C从点A出发沿射线AB方向运动,运动的速度为每秒2个单位,设△OBC的面积为S,点C运动的时间为t,写出S与t的函数关系式,并直接写出自变量的取值范围;(3)点P是y轴上的点,点Q是第一象限内的点,若以A、B、P、Q为顶点的四边形是菱形请求出点Q的坐标.8.团结奋战,众志成城,齐齐哈尔市组织援助医疗队,分别乘甲、乙两车同时出发,沿同一路线赶往绥芬河.齐齐哈尔距绥芬河的路程为800km,在行驶过程中乙车速度始终保持80km/h,甲车先以一定速度行驶了500km,用时5h,然后再以乙车的速度行驶,直至到达绥芬河(加油、休息时间忽略不计).甲、乙两车离齐齐哈尔的路程y(km)与所用时间x(h)的关系如图所示,请结合图象解答下列问题:(1)甲车改变速度前的速度是km/h,乙车行驶h到达绥芬河;(2)求甲车改变速度后离齐齐哈尔的路程y(km)与所用时间x(h)之间的函数解析式,不用写出自变量x的取值范围;(3)甲车到达绥芬河时,乙车距绥芬河的路程还有km;出发h时,甲、乙两车第一次相距40km.9.如图,已知直线y=kx+b与直线y=﹣x﹣9平行,且y=kx+b还过点(2,3),与y轴交于A点.(1)求A点坐标;(2)若点P是该直线上的一个动点,过点P分别作PM垂直x轴于点M,PN垂直y轴于点N,在四边形PMON 上分别截取:PC=MP,MB=OM,OE=ON,ND=NP,试证:四边形BCDE是平行四边形;(3)在(2)的条件下,在直线y=kx+b上是否存在这样的点P,使四边形BCDE为正方形?若存在,直接写出所有符合的点P的坐标;若不存在,请说明理由.10.小碚向某校食堂王经理建议食堂就餐情况,经调查发现就餐时,有520人排队吃饭就餐,就餐开始后仍有学生继续前来排队进食堂.设学生按固定的速度增加,食堂打饭窗口打饭菜的速度也是固定的.若每分钟该食堂新增排队学生数12人,每个打饭窗口1每分钟打饭菜10人.已知食堂的前a分钟只开放了两个打饭窗口;某一天食堂排队等候的学生数y(人)与打饭菜时间x(分钟)的关系如图所示.(1)求a的值;(2)求排队到第16分钟时,食堂排队等候打饭菜的学生人数;(3)若要在开始打饭菜后8分钟内让所有排队的学生都能进食堂后来到食堂窗口的学生随到随吃,那么小碚应该建议食堂王经理一开始就需要至少同时开放几个打饭窗口?11.如图,在平面直角坐标系中,直线y1=kx+b与x轴交于点A(4,0),与y轴交于点B(0,3),点C是直线y2=﹣x+5上的一个动点,连接BC,过点C作CD⊥AB于点D.(1)求直线y1=kx+b的函数表达式;(2)当BC∥x轴时,求BD的长;(3)点E在线段OA上,OE=OA,当点D在第一象限,且△BCD中有一个角等于∠OEB时,请直接写出点C的横坐标.12.在平面直角坐标系xOy中,点A(t﹣1,1)与点B关于过点(t,0)且垂直于x轴的直线对称.(1)以AB为底边作等腰三角形ABC,①当t=2时,点B的坐标为;②当t=0.5且直线AC经过原点O时,点C与x轴的距离为;③若△ABC上所有点到y轴的距离都不小于1,则t的取值范围是.(2)以AB为斜边作等腰直角三角形ABD,直线m过点(0,b)且与x轴平行,若直线m上存在点P,△ABD 上存在点K,满足PK=1,直接写出b的取值范围.13.笛卡尔是法国数学家、科学家和哲学家,他的哲学与数学思想对历史的影响是深远的.1637年,笛卡尔发表了《几何学》,创立了直角坐标系.其中笛卡尔的思想核心是:把几何学的问题归结成代数形式的问题,用代数的方法进行计算、证明,从而达到最终解决几何问题的目的.某学习小组利用平面直角坐标系在研究直线上点的坐标规律时,发现直线y=kx+b(k≠0)上的任意三点A (x1,y1),B(x2,y2),C(x3,y3)(x1≠x1≠x3),满足===k,经学习小组查阅资料得知,以上发现是成立的,即直线y=kx+b(k≠0)上任意两点的坐标M(x1,y1)N(x2,y2)(x1≠x2),都有的值为k,其中k叫直线y=kx+b的斜率.如,P(1,3),Q(2,4)为直线y=x+2上两点,则k PQ==1,即直线y=x+2的斜率为1.(1)请你直接写出过E(2,3)、F(4,﹣2)两点的直线的斜率k EF=.(2)学习小组继续深入研究直线的“斜率”问题,得到如下正确结论:不与坐标轴平行的任意两条直线互相垂直时,这两条直线的斜率之积是定值.如图1,直线GH⊥GI于点G,G(1,3),H(﹣2,1),I(﹣1,6).请求出直线GH与直线GI的斜率之积.(3)如图2,已知正方形OKRS的顶点S的坐标为(6,8),点K,R在第二象限,OR为正方形的对角线.过顶点R作RT⊥OR于点R.求直线RT的解析式.14.定义:在平面直角坐标系中,O为坐标原点,对于任意两点P(m,y)、Q(x,y0),m为任意实数,若,则称点Q是点P的变换点,例如:若点P(m,y)在直线y=x上,则点P的变换点Q在函数的图象上,设点P(m,y)在函数y=x2﹣2x的图象上,点P的变换点Q所在的图象记为G.(1)直接写出图象G对应的函数关系式.(2)当m=3,且﹣2≤x≤3时,求图象G的最高点与最低点的坐标.(3)设点A、B的坐标分别为(m﹣1,﹣2)、(2m+2,﹣2),连结AB,若图象G与线段AB有交点,直接写出m的取值范围.(4)若图象G上的点Q的纵坐标y0的取值范围是y0≥k或y0≤n,其中k>n,令s=k﹣n,求s与m之间的函数关系式,并写出m的取值范围.15.如图,把矩形OABC放入平面直角坐标系xOy中,使OA、OC分别落在x、y轴的正半轴上,对角线AC所在直线解析式为y=﹣x+15,将矩形OABC沿着BE折叠,使点A落在边OC上的点D处.(1)求点E的坐标;(2)在y轴上是否存在点P,使△PBE为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.16.如图,直线与x、y轴交于点A、B,过点B作x轴的平行线交直线y=x+b于点D,直线y=x+b交x、y轴于点E、K,且DK=.(1)如图1,求直线DE的解析式;(2)如图2,点P为AB延长线上一点,把线段BP绕着点B顺时针旋转90°得到线段BF,若点F刚好落在直线DE上,求点P的坐标;(3)如图3,在(2)的条件下,点M为ED延长线上一点,连接PM和AM,AM交线段BD于点N,若PM+MN =AN,求线段PM的长.17.在平面上,对于给定的线段AB和点C,若平面上的点P(可以与点C重合)满足,∠APB=∠ACB.则称点P为点C关于直线AB的联络点.在平面直角坐标系xOy中,已知点A(2,0),B(0,2),C(﹣2,0).(1)在P1(2,2),P(1,0),R(1+,1)三个点中,是点O关于线段AB的联络点的是.(2)若点P既是点O关于线段AB的联络点,同时又是点B关于线段OA的联络点,求点P的横坐标m的取值范围;(3)直线y=x+b(b>0)与x轴,y轴分交于点M,N,若在线段BC上存在点N关于线段OM的联络点,直接写出b的取值范围.18.已知直线y=x+b与x轴交于点A,与y轴交于点B,(1)如图1,求∠BAO的度数;(2)如图2,点D在第三象限,连接BD,将线段BD以B为旋转中心逆时针旋转90°得到BE且点E在第四象限,连接DE、OE,若DE=2OE,求证:S△ADE=2S△AOE;(3)如图3,点C为点A关于y轴的对称点,点D在第二象限,连接BD,将线段BD以B为旋转中心逆时针旋转90°得到BE,点E在第四象限,连接OE且OE∥BC,过点A作AP⊥BE交BC于点P,点Q在AB上,BQ=BP,过点Q作QG⊥AP交x轴于点G.若OF=,CG=7,求S△AOE.19.如图,在平面直角坐标系xOy中,直线y=x+4与y=kx+4分别交x轴于点A、B,两直线交于y轴上同一点C,点D的坐标为(﹣,0),点E是AC的中点,连接OE交CD于点F.(1)求点F的坐标;(2)若∠OCB=∠ACD,求k的值;(3)在(2)的条件下,过点F作x轴的垂线1,点M是直线BC上的动点,点N是x轴上的动点,点P是直线l上的动点,使得以B,P,M、N为顶点的四边形是菱形,求点P的坐标.20.在平面直角坐标系中,O为坐标原点,直线y=x+4分别交y轴和x轴于点A、B两点,点C在x轴的正半轴上,AO=2OC,连接AC.(1)如图1,求直线AC的解析式;(2)如图2,点P在线段AB上,点Q在BC的延长线上,满足:AP=CQ,连接PQ交AC于点D,过点P作PE⊥AC于点E,设点P的横坐标为t,△PQE的面积为S,求S与t的函数关系式(不要求写出自变量t的取值范围);(3)如图3,在(2)的条件下,PQ交y轴于点M,过点A作AN⊥AC交QP的延长线于点N,过点Q作QF ∥AC交PE的延长线于点F,若MN=DQ,求点F的坐标.备战2021中考数学考点专题训练——专题三:一次函数参考答案1.在学习一元一次不等式与一次函数中,小明在同一个坐标系中分别作出了一次函数y=k1x+b1和y=kx+b 的图象,分别与x轴交于点A、B,两直线交于点C.已知点A(﹣1,0),B(2,0),观察图象并回答下列问题:(1)关于x的方程k1x+b1=0的解是;关于x的不等式kx+b<0的解集是;(2)直接写出关于x的不等式组的解集;(3)若点C(1,3),求关于x的不等式k1x+b1>kx+b的解集和△ABC的面积.【答案】解:(1)∵一次函数y=k1x+b1和y=kx+b的图象,分别与x轴交于点A(﹣1,0)、B(2,0),∴关于x的方程k1x+b1=0的解是x=﹣1,关于x的不等式kx+b<0的解集,为x>2,故答案为x=﹣1,x>2;(2)根据图象可以得到关于x的不等式组的解集﹣1<x<2;(3)∵AB=3,∴S△ABC=•y C==.2.为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量y(m3)与注水时间t(h)之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.求单独打开甲进水口注满游泳池需多少小时?【答案】解:(1)设y与t的函数解析式为y=kt+b,,解得,,即y与t的函数关系式是y=140t+100,同时打开甲、乙两个进水口的注水速度是:(380﹣100)÷2=140(m3/h);(2)∵单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.∴甲进水口进水的速度是乙进水口进水速度的,∵同时打开甲、乙两个进水口的注水速度是140m3/h,∴甲进水口的进水速度为:140÷(+1)×=60(m3/h),480÷60=8(h),即单独打开甲进水口注满游泳池需8h.3.规定:若直线l与图形M有公共点,则称直线l是图形M的关联直线.已知:矩形ABCD的其中三个顶点的坐标为A(t,0),B(t+2,0),C(t+2,3)(1)当t=1时,如图以下三个一次函数y1=x+4,y2=﹣x+2,y3=x+2中,是矩形ABCD的关联直线;(2)已知直线l:y=x+2,若直线l是矩形ABCD的关联直线,求t的取值范围;(3)如果直线m:y=tx+2(t>0)是矩形ABCD的关联直线,请直接写出t的取值范围.【答案】解:(1)当t=1时,A(1,0),B(3,0),C(3,3),D(1,3),则三个一次函数y1=x+4,y2=﹣x+2,y3=x+2中,y2=﹣x+2,y3=x+2是矩形ABCD的关联直线;故答案为:y2=﹣x+2,y3=x+2;(2)由矩形的性质得D(t,3),当y=3时,t+2=3,解得t=1;当y=0时t+2+2=0,解得t=﹣4.故t的取值范围为﹣4≤t≤1;(3)由矩形的性质得D(t,3),当y=3时,t2+2=3,解得t=±1(负值舍去).故t的取值范围为0<t≤1.4.如图,直线y=﹣与x轴相交于点A,与直线y=x相交于点B.(1)求点A,点B的坐标;(2)动点C从原点O出发,以每秒1个单位的速度在线段OA上向点A做匀速运动,连接BC,设运动时间为t秒,△BCA的面积为S,求出S关于t的函数关系式;(3)若点P是坐标平面内任意一点,以O,A,B,P为顶点的四边形是平行四边形,请直接写出点P的坐标.【答案】解:(1)当y=0时,0=﹣,解得x=4;则A(4,0);联立两直线的解析式得,解得.则B(2,2);(2)∵A(4,0),∴OA=4,∴S=(OA﹣t)×2=(4﹣t)×2=4﹣t(0≤t<4);(3)如图,当OA为平行四边形的边时,∵OA=4,∴P1(6,2),P2(﹣2,);当OA为对角线时,P3(2,﹣2).综上所示,点P的坐标为:P1(6,2),P2(﹣2,2),P3(﹣2,2).5.已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于点C,直线OC的解析式为y=x,过点C作CM⊥y轴,垂足为M,OM=9.(1)如图1,求直线AB的解析式;(2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,垂足为D,交OC于点E,若NC=OM,求的值;(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ﹣FG =AF,求点P的坐标.【答案】解:(1)∵CM⊥y轴,OM=9,∴y=9时,9=x,解得x=12,∴C(12,9),∵AC⊥x轴,∴A(12,0),∵OA=OB,∴B(0,﹣12),设直线AB的解析式为y=kx+b,则有,解得,∴直线AB的解析式为y=x﹣12.(2)如图2中,∵∠CMO=∠MOA=∠OAC=90°,∴四边形OACM是矩形,∴AO=CM=12,∵NC=OM=9,∴MN=CM﹣NC=12﹣9=3,∴N(3,9),∴直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),∴OD=4a,把x=4a,代入y=x中,得到y=3a,∴E(4a,3a),∴DE=3a,把x=4a代入,y=3x中,得到y=12a,∴P(4a,12a),∴PD=12a,∴PE=PD﹣DE=12a﹣3a=9a,∴=.(3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.∵GF∥x轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR,∴∠OFR=∠R=∠AOS=∠BSG=90°,∴四边形OSRA是矩形,∴OS=AR,AR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°﹣45°=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∵OF⊥FQ,∴∠OSR=∠R=∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠QFR+∠FQR=90°,∴∠OFS=∠FQR,∴△OFS≌△FQR(AAS),∴SF=QR,∵∠SFB=∠AFR=45°,∴∠SBF=∠SFB=45°,∴SF=SB=QR,∵∠SGB=∠QGR,∠BSG=∠R,∴△BSG≌△QRG(AAS),∴SG=GR=6,设FR=m,则AR=m,AF=m,QR=SF=12﹣m,∵GQ﹣FG=AF,∴GQ=×m+6﹣m=m+6,∵GQ2=GR2+QR2,∴(m+6)2=62+(12﹣m)2,解得m=4,∴FS=8,AR=4,∵∠OAB=∠FAR,FT⊥OA,FR⊥AR,∴FT=FR=AR=4,∠OTF=90°,∴四边形OSFT是矩形,∴OT=SF=8,∵∠DHE=∠DPH,∴tan∠DHE=tan∠DPH,∴=,由(2)可知DE=3a,PD=12a,∴=,∴DH=6a,∴tan∠PHD===2,∵∠PHD=∠FHT,∴tan∠FHT==2,∴HT=2,∵OT=OD+DH+HT,∴4a+6a+2=8,∴a=,∴OD=,PD=12×=,∴P(,).6.如图:在平面直角坐标系xOy中,过点A(﹣2,0)的直线l1和直线l2:y=2x相交于点B(2,m).(1)求直线l1的表达式;(2)过动点P(n,0)(n<0)且垂直于x轴的直线与l1、l2的交点分别为C,D.横、纵坐标都是整数的点叫做整点.①当n=﹣1时,直接写出△BCD内部(不含边上)的整点个数;②若△BCD的内部(不含边上)恰有3个整点,直接写出n的取值范围.【答案】解:(1)将点B的坐标代入y=2x得,m=2×2=4,故点B(2,4),设直线l1的表达式为y=kx+b,将点A、B的坐标代入上式并解得:,解得,故直线l1的表达式为:y=x+2;(2)①当n=﹣1时,如下图,从图中可以看出,整点个数为1,即点(0,1);②如上图,当n=﹣2时,△BCD的内部(不含边上)恰有3个整点,故﹣2≤n<﹣1.7.如图,在平面直角坐标系中,点O为坐标原点,直线l分别交x轴、y轴于A.B两点,OA<OB,且OA、OB的长分别是一元二次方程x2﹣14x+48=0的两根.(1)求直线AB的解析式;(2)点C从点A出发沿射线AB方向运动,运动的速度为每秒2个单位,设△OBC的面积为S,点C运动的时间为t,写出S与t的函数关系式,并直接写出自变量的取值范围;(3)点P是y轴上的点,点Q是第一象限内的点,若以A、B、P、Q为顶点的四边形是菱形请求出点Q的坐标.【答案】解:(1)x2﹣14x+48=0,则x=6或8,故点A、B的坐标分别为(6,0)、(0,8),则AB=10;设直线AB的表达式为:y=kx+b,则,解得,故直线AB的表达式为:y=﹣x+8;(2)过点C作CM⊥y轴于点M,则,即,解得:CM=|10﹣2t|,S=×BO×CM=×8×|10﹣2t|=|10﹣2t|,故S=;(3)点A、B的坐标分别为(6,0)、(0,8),设点P、Q的坐标分别为(0,s)、(m,n),①当AB是菱形的边时,点A向上平移8个单位向左平移6个单位得到点B,同样点Q向上平移8个单位向左平移6个单位得到点P,即0﹣8=m,s+6=n且BP=BA=10,解得:m=﹣8,n=24,故点Q的坐标为(﹣8,24);②当AB是菱形的对角线时,由中点公式得:6+0=m+0,8+0=s+n且BP=BQ,即(s﹣8)2=m2+(n﹣8)2,解得:m=6,m=,故点Q的坐标为(6,);综上,点Q的坐标为(﹣8,24)或(6,).8.团结奋战,众志成城,齐齐哈尔市组织援助医疗队,分别乘甲、乙两车同时出发,沿同一路线赶往绥芬河.齐齐哈尔距绥芬河的路程为800km,在行驶过程中乙车速度始终保持80km/h,甲车先以一定速度行驶了500km,用时5h,然后再以乙车的速度行驶,直至到达绥芬河(加油、休息时间忽略不计).甲、乙两车离齐齐哈尔的路程y(km)与所用时间x(h)的关系如图所示,请结合图象解答下列问题:(1)甲车改变速度前的速度是km/h,乙车行驶h到达绥芬河;(2)求甲车改变速度后离齐齐哈尔的路程y(km)与所用时间x(h)之间的函数解析式,不用写出自变量x的取值范围;(3)甲车到达绥芬河时,乙车距绥芬河的路程还有km;出发h时,甲、乙两车第一次相距40km.【答案】解:(1)甲车改变速度前的速度为:500出5=100(km/h),乙车达绥芬河是时间为:800÷80=10(h),故答案为:100;10;(2)∵乙车速度为80km/h,∴甲车到达绥芬河的时间为:,甲车改变速度后,到达绥芬河前,设所求函数解析式为:y=kx+b(k≠0),将(5,500)和(,800)代入得:,解得,∴y=80x+100,答:甲车改变速度后离齐齐哈尔的路程y(km)与所用时间x(h)之间的函数解析式为y=80x+100();(3)甲车到达绥芬河时,乙车距绥芬河的路程为:800﹣80×=100(km),40÷(100﹣80)=2(h),即出发2h时,甲、乙两车第一次相距40km.故答案为:100;2.9.如图,已知直线y=kx+b与直线y=﹣x﹣9平行,且y=kx+b还过点(2,3),与y轴交于A点.(1)求A点坐标;(2)若点P是该直线上的一个动点,过点P分别作PM垂直x轴于点M,PN垂直y轴于点N,在四边形PMON 上分别截取:PC=MP,MB=OM,OE=ON,ND=NP,试证:四边形BCDE是平行四边形;(3)在(2)的条件下,在直线y=kx+b上是否存在这样的点P,使四边形BCDE为正方形?若存在,直接写出所有符合的点P的坐标;若不存在,请说明理由.【答案】解:(1)∵直线y=kx+b与y=﹣x﹣9平行,且过点A(2,3),则,解得,∴一次函数解析式为y=﹣x+4,当x=0时,y=4,∴A点坐标是(0,4);(2)证明:∵PM⊥x轴,PN⊥y轴,∴∠M=∠N=∠O=90°,∴四边形PMON是矩形,∴PM=ON,OM=PN,∠M=∠O=∠N=∠P=90°.∵PC=MP,MB=OM,OE=ON,ND=NP,∴PC=OE,CM=NE,ND=BM,PD=OB,在△OBE和△PDC中,OB=PD,∠O=∠CPD,OE=PC,∴△OBE≌△PDC(SAS),∴DC=BE,同理可证△MBC≌△NDE(SAS),∴DE=BC.∴四边形BCDE是平行四边形;(3)存在这样的点P,理由:设点P(m,﹣m+4),则CM=PC=|(4﹣m)|=|﹣m|,PD=m,当四边形BCDE为正方形时,则∠DCB=90°,DC=BC,而∠CBM+∠MCB=90°,∠MCB+∠DCP=90°,∴∠CBM=∠DCP,而∠DPC=∠CMB=90°,∴△DPC≌△CMB(AAS),∴CM=PD,即=|﹣m|=m,解得:m=或﹣8,故P点坐标是(,)或(﹣8,8).10.小碚向某校食堂王经理建议食堂就餐情况,经调查发现就餐时,有520人排队吃饭就餐,就餐开始后仍有学生继续前来排队进食堂.设学生按固定的速度增加,食堂打饭窗口打饭菜的速度也是固定的.若每分钟该食堂新增排队学生数12人,每个打饭窗口1每分钟打饭菜10人.已知食堂的前a分钟只开放了两个打饭窗口;某一天食堂排队等候的学生数y(人)与打饭菜时间x(分钟)的关系如图所示.(1)求a的值;(2)求排队到第16分钟时,食堂排队等候打饭菜的学生人数;(3)若要在开始打饭菜后8分钟内让所有排队的学生都能进食堂后来到食堂窗口的学生随到随吃,那么小碚应该建议食堂王经理一开始就需要至少同时开放几个打饭窗口?【答案】解:(1)由图象知,520+12a﹣2×10a=424,∴a=12;(2)设当12≤x≤20时,y与x之间的函数关系式为y=kx+b,由题意,得,解得:,∴y=﹣53x+1060,当x=16时,y=212,即排队到第16分钟时,食堂排队等候打饭菜的学生有212人.(3)设需同时开放n个打饭窗口,由题意知10n×8≥520+12×8解得:n≥7.7,∵n为整数,∴n最小=8.答:至少需要同时开放8个打饭窗口.11.如图,在平面直角坐标系中,直线y1=kx+b与x轴交于点A(4,0),与y轴交于点B(0,3),点C 是直线y2=﹣x+5上的一个动点,连接BC,过点C作CD⊥AB于点D.(1)求直线y1=kx+b的函数表达式;(2)当BC∥x轴时,求BD的长;(3)点E在线段OA上,OE=OA,当点D在第一象限,且△BCD中有一个角等于∠OEB时,请直接写出点C的横坐标.【答案】解:(1)把A(4,0),B(0,3)代入y1=kx+b,得到,解得:,∴y1=﹣x+3.(2)∵BC∥x轴,∴点C的纵坐标为3,当y=3时,3=﹣x+5,解得x=,∴C(,3),∵CD⊥AB,∴直线CD的解析式为y=x+,由,解得,∴D(,),∴BD==.(3)如图,当∠BCD=∠BEO时,过点A作AM⊥BC交BC的延长线于M,点M作MN⊥x轴于N.∵OB=3,OE=OA=,∴tan∠BEO==2,∵CD⊥AB,AM⊥AB,∴CD∥AM,∴∠AMB=∠BCD=∠BEO,∴tan∠AMB==2,∵AB===5,∴AM=AB=,∵∠AOB=∠ANM=∠BAM=90°,∴∠BAO+∠ABO=90°,∠BAO+∠MAN=90°,∴∠MAN=∠ABO,∴△ABO∽△MAN,∴==,∴==,∴AN=,MN=2,∴M(,2),∴直线BM的解析式为y=﹣x+3,由,解得x=,∴点C的横坐标为当∠CBD=∠BEO时,同法可得点C的横坐标为.12.在平面直角坐标系xOy中,点A(t﹣1,1)与点B关于过点(t,0)且垂直于x轴的直线对称.(1)以AB为底边作等腰三角形ABC,①当t=2时,点B的坐标为;②当t=0.5且直线AC经过原点O时,点C与x轴的距离为;③若△ABC上所有点到y轴的距离都不小于1,则t的取值范围是.(2)以AB为斜边作等腰直角三角形ABD,直线m过点(0,b)且与x轴平行,若直线m上存在点P,△ABD 上存在点K,满足PK=1,直接写出b的取值范围.【答案】解:(1)①如图1中,由题意A(1,1),A,B关于直线x=2对称,∴B(3,1).故答案为(3,1).②如图2中,由题意A(﹣0.5,1),直线l:x=0.5,∵直线AC的解析式为y=﹣2x,∴C(0.5,﹣1),∴点C到x轴的距离为1,故答案为1.③由题意A(t﹣1,0),B(t+1,0),∵△ABC上所有点到y轴的距离都不小于1,∴t﹣1≥1或t+1≤﹣1,解得t≥2或t≤﹣2.故答案为t≥2或t≤﹣2.(2)如图3中,∵A(t﹣1,0),B(t+1,0),∴AB=t+1﹣(t﹣1)=2,∵△ABD是以AB为斜边的等腰直角三角形,∴点D到AB的距离为1,,∴当点D在AB上方时,若直线m上存在点P,△ABD上存在点K,满足PK=1,则0≤b≤3.当点D在AB下方时,若直线m上存在点P,△ABD上存在点K,满足PK=1,则﹣1≤b≤2.13.笛卡尔是法国数学家、科学家和哲学家,他的哲学与数学思想对历史的影响是深远的.1637年,笛卡尔发表了《几何学》,创立了直角坐标系.其中笛卡尔的思想核心是:把几何学的问题归结成代数形式的问题,用代数的方法进行计算、证明,从而达到最终解决几何问题的目的.某学习小组利用平面直角坐标系在研究直线上点的坐标规律时,发现直线y=kx+b(k≠0)上的任意三点A (x1,y1),B(x2,y2),C(x3,y3)(x1≠x1≠x3),满足===k,经学习小组查阅资料得知,以上发现是成立的,即直线y=kx+b(k≠0)上任意两点的坐标M(x1,y1)N(x2,y2)(x1≠x2),都有的值为k,其中k叫直线y=kx+b的斜率.如,P(1,3),Q(2,4)为直线y=x+2上两点,则k PQ==1,即直线y=x+2的斜率为1.(1)请你直接写出过E(2,3)、F(4,﹣2)两点的直线的斜率k EF=.(2)学习小组继续深入研究直线的“斜率”问题,得到如下正确结论:不与坐标轴平行的任意两条直线互相垂直时,这两条直线的斜率之积是定值.如图1,直线GH⊥GI于点G,G(1,3),H(﹣2,1),I(﹣1,6).请求出直线GH与直线GI的斜率之积.(3)如图2,已知正方形OKRS的顶点S的坐标为(6,8),点K,R在第二象限,OR为正方形的对角线.过顶点R作RT⊥OR于点R.求直线RT的解析式.【答案】解:(1)∵E(2,3)、F(4,﹣2),∴k EF==﹣,故答案为﹣.(2)∵G(1,3),H(﹣2,1),I(﹣1,6),∴k GH==,k GI==﹣,∴k GH•k GI=﹣1.(3)如图2中,过点K作KM⊥x轴于M,过点S作SN⊥x轴于N,连接KS交OR于J.∴S(6,8),∴ON=6,SN=8,∵四边形OKRS是正方形,∴OK=OS,∠KPS=∠KMO=∠SNO=90°,KJ=JS,JR=JO,∴∠KOM+∠SON=90°,∠SON+∠OSN=90°,∴∠KOM=∠OSN,∴△OMK≌△SNO(AAS),∴KM=ON=6,OM=SN=8,∴K(﹣8,6),∵KJ=JS,∴J(﹣1,7),∵JR=OJ,∴R(﹣2,14),∵k OR==﹣7,∵RT⊥OR,∴k RT=﹣=,设直线RT的解析式为y=x+b.把(﹣2,14)代入可得14=﹣+b,∴b=,∴直线RT的解析式为y=x+14.定义:在平面直角坐标系中,O为坐标原点,对于任意两点P(m,y)、Q(x,y0),m为任意实数,若,则称点Q是点P的变换点,例如:若点P(m,y)在直线y=x上,则点P的变换点Q在函数的图象上,设点P(m,y)在函数y=x2﹣2x的图象上,点P的变换点Q所在的图象记为G.(1)直接写出图象G对应的函数关系式.(2)当m=3,且﹣2≤x≤3时,求图象G的最高点与最低点的坐标.(3)设点A、B的坐标分别为(m﹣1,﹣2)、(2m+2,﹣2),连结AB,若图象G与线段AB有交点,直接写出m的取值范围.(4)若图象G上的点Q的纵坐标y0的取值范围是y0≥k或y0≤n,其中k>n,令s=k﹣n,求s与m之间的函数关系式,并写出m的取值范围.【答案】解:(1)图象G对应的函数关系式y=;(2)当m=3时,图象G对应的函数关系式y=,当x=3时,y=9﹣6﹣1=2.当﹣2≤x≤3时,y=﹣x2+x+1=﹣(x﹣1)2+,当x=1时,y取得最大值为;当x=﹣2时,y取得最小值为﹣3.故图象G的最高点的坐标为(3,2),最低点的坐标为(﹣2,﹣3).(3)当y=﹣2时,﹣x2+x+1=﹣2,解得x1=1﹣,x2=1+,∵点P的变换点Q在函数的图象上,∴m的取值范围为1﹣<m≤2﹣或﹣≤m≤1或1+≤m≤2+;(4)当m>1时,x=m左侧的最高点的坐标为(1,),x=m右侧的最低点的坐标为(m,m2﹣2m﹣1),∵点Q的纵坐标y0的取值范围是y0≥k或y0≤n,∴y0≥m2﹣2m﹣1或y0≤,∴k=m2﹣2m﹣1,n=,当k=时,m2﹣2m﹣1=,解得m1=1+,m2=1﹣(舍去),∵k>n,∴当m>1+时,s=m2﹣2m﹣1﹣=m2﹣2m﹣;当m≤1时,x=m左侧图象无最高点,x=m右侧的最低点的坐标为(1,﹣2),没有符合点Q的纵坐标y0的取值范围是y0≥k或y0≤n.综上所述,求s与m之间的函数关系式为s=m2﹣2m﹣(m>1+).15.如图,把矩形OABC放入平面直角坐标系xOy中,使OA、OC分别落在x、y轴的正半轴上,对角线AC 所在直线解析式为y=﹣x+15,将矩形OABC沿着BE折叠,使点A落在边OC上的点D处.(1)求点E的坐标;(2)在y轴上是否存在点P,使△PBE为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【答案】解:(1)∵AC所在直线解析式为y=﹣x+15,∴令x=0,y=15,令y=0.则﹣,解得x=9.∴A(9,0),C(0,15),B(9,15),。
最新九年级数学高频考点核心考点 圆专题复习 (3)
最新九年级数学高频考点核心考点 圆专题复习1 如图,⊙O 是Rt△ABC 的外接圆,AB 为直径,∠ABC =30°,CD 是⊙O 的切线,ED ⊥AB 于F , (1)判断△DCE 的形状;(2)设⊙O 的半径为1,且OF =213-,求证△DCE ≌△OCB .2 如图,AB 是⊙O 的切线,切点为A,OB 交⊙O 于C 且C 为OB 中点,3 过C 点的弦CD 使∠ACD =45°,AD ,求弦AD 、AC 的长.4 如图14,直线AB 经过O 上的点C ,并且OA OB =,CA CB =,O 交直线OB 于E D ,,连接EC CD ,. (1)求证:直线AB 是O 的切线;(2)试猜想BC BD BE ,,三者之间的等量关系,并加以证明; (3)若1tan 2CED ∠=,O 的半径为3,求OA 的长.5 ⊙O 的半径OD 经过弦AB (不是直径)的中点C ,过AB 的延长线上一点P 作⊙O 的切线PE ,E 为切点,PE ∥OD ;延长直径AG 交PE 于点H ;直线DG 交OE 于点F ,交PE 于点K .(1)求证:四边形OCPE 是矩形;(2)求证:HK =HG ; (3)若EF =2,FO =1,求KE 的长.第1题图(第5题)P E D K H GC ABF O6 如图,直角坐标系中,已知两点(00)(20)O A ,,,,点B 在第一象限且OAB △为正三角形,OAB △的外接圆交y 轴的正半轴于点C ,过点C 的圆的切线交x 轴于点D .(1)求B C ,两点的坐标;(2)求直线CD 的函数解析式;(3)设E F ,分别是线段AB AD ,上的两个动点,且EF 平分四边形ABCD 的周长.试探究:AEF △的最大面积?7 如图(18),在平面直角坐标系中,ABC △的边AB 在x 轴上,且OA OB >, 以AB 为直径的圆过点C .若点C 的坐标为(02),,5AB =,A 、B 两点的 横坐标A x ,B x 是关于x 的方程2(2)10x m x n -++-=的两根.(1)求m 、n 的值;(2)若ACB ∠平分线所在的直线l 交x 轴于点D ,试求直线l 对应的一次函数解析式; (3)过点D 任作一直线l '分别交射线CA 、CB (点C 除外)于点M 、N .则11CM CN+的是否为定值?若是,求出该定值;若不是,请说明理由.8 如图,在ABC △中90ACB ∠=,D 是AB 的中点,以DC 为直径的O 交ABC △的三边,交点分别是G F E ,,点.GE CD ,的交点为M,且ME = :2:5MD CO =.(第6题)图(18)'第25题图(1)求证:GEF A ∠=∠. (2)求O 的直径CD 的长.(3)若cos 0.6B ∠=,以C 为坐标原点,CA CB ,所在的直线分别为X 轴和Y 轴, 建立平面直角坐标系,求直线AB 的函数表达式.9 如图,在平面直角坐标系xOy 中,⊙O 交x 轴于A 、B 两点,直线FA ⊥x 轴于点A , 点D 在FA 上,且DO 平行⊙O 的弦MB ,连DM 并延长交x 轴于点C . (1)判断直线DC 与⊙O 的位置关系,并给出证明;(2)设点D 的坐标为(-2,4),试求MC 的长及直线DC 的解析式.10 如图,ABC △内接于O ,60BAC ∠=,点D 是BC 的中点.BC AB ,边上的高AE CF ,相交于点H . 试证明:(1)FAH CAO ∠=∠; (2)四边形AHDO 是菱形.初三(上)中考圆习题答案1 解:(1)∵∠ABC =30°,∴∠BAC =60°.又∵OA =OC , ∴△AOC 是正三角形.又∵CD 是切线,∴∠OCD =90°,∴∠DCE =180°-60°-90°=30°. 而ED ⊥AB 于F ,∴∠CED =90°-∠BAC =30°.故△CDE 为等腰三角形.(2)证明:在△ABC 中,∵AB =2,AC =AO =1,∴BC =2212-=3. OF =213-,∴AF =AO +OF =213+. 又∵∠AEF =30°,∴AE =2AF =3+1. ∴CE =AE -AC =3=BC .而∠OCB =∠ACB -∠ACO =90°-60°=30°=∠ABC ,故△CDE ≌△COB .3 .⑴略;⑵85; 4 解:(1)证明:如图3,连接OC . OA OB =,CA CB =,OC AB ∴⊥.AB ∴是O 的切线.(2)2BC BD BE =. ED 是直径,90ECD ∴∠=.90E EDC ∴∠+∠=.又90BCD OCD ∠+∠=,OCD ODC ∠=∠,BCD E ∴∠=∠. 又CBD EBC ∠=∠,BCD BEC ∴△∽△.BC BD BE BC∴=.2BC BD BE ∴=. (3)1tan 2CED ∠=,12CD EC ∴=.BCD BEC △∽△,12BD CD BC EC ∴==. 设BD x =,则2BC x =.又2BC BD BE =,2(2)(6)x x x ∴=+.解之,得10x =,22x =.0BD x =>,2BD ∴=.325OA OB BD OD ∴==+=+=.5 解:(1)∵AC =BC ,AB 不是直径,∴OD ⊥AB ,∠PCO =90°(1分)∵PE ∥OD ,∴∠P =90°,∵PE 是切线,∴∠PEO =90°,(2分)∴四边形OCPE 是矩形.(3分) (2)∵OG =OD ,∴∠OGD =∠ODG .∵PE ∥OD ,∴∠K =∠ODG .(4分) ∵∠OGD =∠HGK ,∴∠K =∠HGK ,∴HK =HG .(5分)(3)∵EF =2,OF =1,∴EO =DO =3.(6分)∵PE ∥OD ,∴∠KEO =∠DOE ,∠K =∠ODG .∴△OFD ∽△EFK ,(7分)∴EF ∶OF =KE ∶OD =2∶1,∴KE =6.(8分) 6 (1)(20)A ,,2OA ∴=.作BG OA ⊥于G ,OAB △为正三角形,1OG ∴=,BG =B ∴.连AC ,90AOC ∠=,60ACO ABO ∠=∠=,23tan 30OC OA∴==0C ⎛∴ ⎝⎭.(2)90AOC ∠=,AC ∴是圆的直径,又CD 是圆的切线,CD AC ∴⊥.30OCD ∴∠=,2tan 303OD OC ==.203D ⎛⎫∴- ⎪⎝⎭,.设直线CD 的函数解析式为(0)y kx b k =+≠,ABC(第22题) (第6题)(第6题)则203b k b ⎧=⎪⎪⎨⎪=-+⎪⎩,解得k b ⎧⎪⎨=⎪⎩∴直线CD的函数解析式为y(3)2AB OA ==,23OD =,423CD OD ==,BC OC ==,∴四边形ABCD的周长6. 设AE t =,AEF △的面积为S,则3AF t =+,13sin 6032S AF AE t ⎛⎫==- ⎪⎪⎝⎭.23973434632S t t t ⎡⎛⎫⎛⎢=+-=--++ ⎪ ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦.∴当t =时,max 38S =+. 点E F ,分别在线段AB AD ,上,0220323t t ⎧⎪∴⎨+⎪⎩≤≤≤≤,解得123t +≤≤. 9t +=2t ≤,AEF ∴△38. 7 解:(1)以AB 为直径的圆过点C ,90ACB ∴∠=,而点C 的坐标为(02),,由CO AB ⊥易知AOC COB △∽△,2CO AO BO ∴=, 即:4(5)AO AO =-,解之得:4AO =或1AO =.OA OB >,4AO ∴=,即41A B x x =-=,.由根与系数关系有:21A B A B x x m x x n +=+⎧⎨=-⎩,解之5m =-,3n =-.(2)如图(3),过点D 作DE BC ∥,交AC 于点E , 易知DE AC ⊥,且45ECD EDC ∠=∠=, 在ABC △中,易得AC BC ==AD AEDE BC DB EC∴=∥,, AD AE DE EC BD DE =∴=,, 又AED ACB △∽△,有AE AC ED BC =,2AD ACDB BC∴==, 553AB DB ==,,则23OD =,即203D⎛⎫- ⎪⎝⎭,,易求得直线l 对应的一次函数解析式为:32y x =+.解法二:过D 作DE AC ⊥于E ,DF CN ⊥于F ,由ACD BCD ABC S S S +=△△△,求得DE =又1122BCD S BD CO BC DF ==△求得5233BD DO ==,.即203D ⎛⎫- ⎪⎝⎭,,易求直线l 解析式为:32y x =+.(3)过点D 作DE AC ⊥于E ,DF CN ⊥于F .CD 为ACB ∠的平分线,DE DF ∴=.图(3)l '由MDE MNC △∽△,有DE MDCN MN= 由DNF MNC △∽△, 有DF DN CM MN =1DE DF MD DN CN CM MN MN ∴+=+=,即111CM CN DE +==. 8 (1)连接DFCD 是圆直径,90CFD ∴∠=,即DF BC ⊥90ACB ∠=,DF AC ∴∥. BDF A ∴∠=∠.在O 中BDF GEF ∠=∠,GEF A ∴∠=∠. 2分(2)D 是Rt ABC △斜边AB 的中点,DC DA ∴=,DCA A ∴∠=∠, 又由(1)知GEF A ∠=∠,DCA GEF ∴∠=∠. 又OME EMC ∠=∠,OME ∴△与EMC △相似OM ME ME MC∴= 2ME OM MC ∴=⨯4分 又4ME =,296OM MC ∴⨯==:2:5MD CO =,:3:2OM MD ∴=,:3:8OM MC ∴=设3OM x =,8MC x =,3896x x ∴⨯=,2x ∴= ∴直径1020CD x ==.(3)Rt ABC △斜边上中线20CD =,40AB ∴=在Rt ABC △中cos 0.6BCB AB∠==,24BC ∴=,32AC ∴=设直线AB 的函数表达式为y kx b =+,根据题意得(320)A ,,(024)B ,024320k b k b ⨯+=⎧∴⎨⨯+=⎩ 解得3424k b ⎧=-⎪⎨⎪=⎩∴直线AB 的函数解析式为3244y x =-+(其他方法参照评分) ········ 9分10 (1)答:直线DC 与⊙O 相切于点M .证明如下:连OM , ∵DO ∥MB , ∴∠1=∠2,∠3=∠4 .∵OB =OM ,∴∠1=∠3 . ∴∠2=∠4 . 在△DAO 与△DMO 中,⎪⎩⎪⎨⎧DO=DO =∠∠AO=OM 42 ∴△DAO ≌△DMO . ∴∠OMD =∠OAD .由于FA ⊥x 轴于点A ,∴∠OAD =90°.∴∠OMD =90°. 即OM ⊥DC . ∴DC 切⊙O 于M . (2)解:由D (-2,4)知OA =2(即⊙O 的半径),AD =4 .由(1)知DM =AD =4,由△OMC ∽△DAC ,知MC AC = OM AD = 24 = 12. ∴AC =2MC .在Rt △ACD 中,CD =MC +4. 由勾股定理,有(2MC )2+42=(MC +4)2,解得MC = 83 或MC =0(不合,舍去).∴MC 的长为83 . ∴点C (103,0).设直线DC 的解析式为y = kx +b . 则有⎪⎩⎪⎨⎧+-=+=.b k b k 243100 解得⎪⎪⎩⎪⎪⎨⎧=-=.b k 2543第25题图∴直线DC 的解析式为 y =-34 x +52.10。
初三数学知识点练习题
初三数学知识点练习题
1. 简答题:
a) 什么是平行线?
b) 什么是垂直线?
c) 什么是相似三角形?
d) 什么是直角三角形?
2. 选择题:
a) 若两根直线之间夹角为30°,则它们之间的关系是:
A) 平行线
B) 垂直线
C) 相交线
D) 互相垂直
b) 下列哪组数字不是同一个数的倍数?
A) 3、6、9
B) 12、16、20
C) 5、15、25
D) 8、18、28
c) 已知两个数的最小公倍数是36,其中一个数是9,则另一个数是:
A) 4
B) 6
C) 12
D) 18
3. 计算题:
a) 请计算 3/4 + 2/5 的结果。
b) 若正方形的边长为8cm,则其面积为多少平方厘米?
c) 一个矩形的长是15cm,宽是8cm,请计算其周长和面积。
d) 若三角形的底边长为6cm,高为4cm,请计算其面积。
4. 应用题:
a) 爸爸今年35岁,比我大26岁。
请问我几岁?
b) 一个长方形的长是12cm,宽是8cm。
将这个长方形切割为8个
相等的小正方形,请问每个小正方形的边长是多少?
以上是初三数学知识点的练习题,希望能够帮助你巩固学习成果。
如果还有其他问题,请随时提问。
最新初中数学命题与证明的知识点训练附答案(3)
最新初中数学命题与证明的知识点训练附答案(3)一、选择题1.下列命题中真命题是()A.若a2=b2,则a=b B.4的平方根是±2C.两个锐角之和一定是钝角 D.相等的两个角是对顶角【答案】B【解析】【分析】利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.【详解】A、若a2=b2,则a=±b,错误,是假命题;B、4的平方根是±2,正确,是真命题;C、两个锐角的和不一定是钝角,故错误,是假命题;D、相等的两个角不一定是对顶角,故错误,是假命题.故选B.【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.2.下列命题是假命题的是()A.有一个角为60︒的等腰三角形是等边三角形B.等角的余角相等C.钝角三角形一定有一个角大于90︒D.同位角相等【答案】D【解析】【分析】【详解】解:选项A、B、C都是真命题;选项D,两直线平行,同位角相等,选项D错误,是假命题,故选:D.3.下列三个命题:①对顶角相等;②全等三角形的对应边相等;③如果两个实数是正数,它们的积是正数.它们的逆命题成立的个数是( )A.0个 B.1个 C.2个 D.3个【答案】B【解析】【分析】把一个命题的条件和结论互换就得到它的逆命题,再把逆命题进行判断即可.【详解】①对顶角相等的逆命题是相等的角是对顶角,逆命题错误;②全等三角形的对应边相等的逆命题是对应边相等的两个三角形全等,正确; ③如果两个实数是正数,它们的积是正数的逆命题是如果两个数的积为正数,那么这两个数也是正数,逆命题错误,也可以有都是负数,所以逆命题成立的只有一个,故选B.【点睛】本题考查了互逆命题,真命题与假命题,真命题要运用相关知识进行推导,假命题要通过举反例来进行否定.4.下列说法中,正确..的是( ) A .图形的平移是指把图形沿水平方向移动.B .平移前后图形的形状和大小都没有发生改变.C .“相等的角是对顶角”是一个真命题D .“直角都相等”是一个假命题【答案】B【解析】图形的平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移,平移前后图形的形状和大小都没有发生改变.而相等的角不一定是对顶角,C 是一个假命题,直角都相等是真命题.故选B5.下列命题中,是假命题的是( )A .若a>b ,则-a<-bB .若a>b ,则a+3>b+3C .若a>b ,则44a b > D .若a>b ,则a 2>b 2【答案】D【解析】【分析】 利用不等式的性质分别判断后即可确定正确的选项.【详解】A 、若a >b ,则-a <-b ,正确,是真命题;B 、若a >b ,则a+3>b+3,正确,是真命题;C 、若a >b ,则44a b >,正确,是真命题; D 、若a >b ,则a 2>b 2,错误,是假命题;故选:D .【点睛】 此题考查命题与定理的知识,解题的关键是了解不等式的性质,难度不大.6.下列选项中,可以用来说明命题“若22a b >,则a b >”是假命题的反例是( ) A .2,a =b=-1B .2,1a b =-=C .3,a =b=-2D .2,0a b ==【答案】B【解析】分析:根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题. 详解:∵当a =﹣2,b =1时,(﹣2)2>12,但是﹣2<1,∴a =﹣2,b =1是假命题的反例. 故选B .点睛:本题考查的是命题与定理,要说明数学命题的错误,只需举出一个反例即可.这是数学中常用的一种方法.7.下列命题:①直角三角形的两个锐角互余;②同旁内角互补;③如果直线12l l P ,直线23l l P ,那 么13l l P .其中真命题的序号是( ) A .①②B .①③C .②③D .①②③【答案】B【解析】【分析】利用直角三角形的性质、平行线的性质等知识分别判断后即可确定正确的选项.【详解】解:①直角三角形的两个锐角互余,正确,是真命题;②两直线平行,同旁内角互补,故错误,是假命题; ③如果直线12l l P ,直线23l l P ,那 么13 l l P ,正确,是真命题; 故选:B .【点睛】本题主要考查了命题与定理,掌握命题与定理是解题的关键.8.用三个不等式,0,a b ab a b >>>中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )A .0B .1C .2D .3 【答案】A【解析】【分析】由题意得出三个命题,根据不等式的性质判断命题的真假.【详解】若,0a b ab >>,则a b >为假命题.反例:a=-1,b=-2 若,a b a b >>,则0ab >为假命题.反例:a=2,b=-1若0,ab a b >>,则a b >为假命题.反例:a=-2,b=-1故选:A【点睛】 本题考查了命题与不等式的性质,解题的关键在于根据题意得出命题,根据不等式的性质判断真假.9.下列命题是真命题的是( )A .如果一个数的相反数等于这个数本身,那么这个数一定是0B .如果一个数的倒数等于这个数本身,那么这个数一定是1C .如果一个数的平方等于这个数本身,那么这个数一定是0D .如果一个数的算术平方根等于这个数本身,那么这个数一定是0【答案】A【解析】【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.【详解】A 、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B 、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;C 、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;D 、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题; 故选A .【点睛】此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.10.下列命题的逆命题正确的是( )A .如果两个角是直角,那么它们相等B .全等三角形的面积相等C .同位角相等,两直线平行D .若a b =,则22a b =【答案】C【解析】【分析】交换原命题的题设与结论得到四个命题的逆命题,然后分别根据直角的定义、全等三角形的判定、平行线的性质和平方根的定义判定四个逆命题的真假.【详解】解:A 、逆命题为:如果两个角相等,那么它们都是直角,此逆命题为假命题; B 、逆命题为:面积相等的两三角形全等,此逆命题为假命题;C 、逆命题为:两直线平行,同位角相等,此逆命题为真命题;D 、逆命题为,若a 2=b 2,则a =b ,此逆命题为假命题.故选:C .本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.11.下列命题错误的是()A.平行四边形的对角线互相平分B.两直线平行,内错角相等C.等腰三角形的两个底角相等D.若两实数的平方相等,则这两个实数相等【答案】D【解析】【分析】根据平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,分别进行判断,即可得到答案.【详解】解:A、平行四边形的对角线互相平分,正确;B、两直线平行,内错角相等,正确;C、等腰三角形的两个底角相等,正确;D、若两实数的平方相等,则这两个实数相等或互为相反数,故D错误;故选:D.【点睛】本题考查了判断命题的真假,以及平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,解题的关键是熟练掌握所学的性质进行解题.12.下列说法正确的是()A.若a>b,则a2>b2B.若三条线段的长a、b、c满足a+b>c,则以a、b、c为边一定能组成三角形C.两直线平行,同旁内角相等D.三角形的外角和为360°【答案】D【解析】【分析】利用特例对A进行分析,利用三角形三边关系、平行线的性质、三角形外角的性质分别对B、C、D进行分析判断.【详解】A、若a>b,则不一定有a2>b2,比如a=0,b=﹣1,故本选项错误;B、若三条线段的长a、b、c满足a+b>c,则以a、b、c为边不一定能组成三角形,故本C、两直线平行,同旁内角互补,故本选项错误;D、三角形的外角和为360°,故本选项正确;故选:D【点睛】本题考查真假命题的判断,解题的关键是根据相关知识对命题进行分析判断.13.下列命题正确的是()A.矩形对角线互相垂直x=B.方程214=的解为14x xC.六边形内角和为540°D.一条斜边和一条直角边分别相等的两个直角三角形全等【答案】D【解析】【分析】由矩形的对角线互相平分且相等得出选项A不正确;由方程x2=14x的解为x=14或x=0得出选项B不正确;由六边形内角和为(6-2)×180°=720°得出选项C不正确;由直角三角形全等的判定方法得出选项D正确;即可得出结论.【详解】A.矩形对角线互相垂直,不正确;B.方程x2=14x的解为x=14,不正确;C.六边形内角和为540°,不正确;D.一条斜边和一条直角边分别相等的两个直角三角形全等,正确;故选D.【点睛】本题考查了命题与定理、矩形的性质、一元二次方程的解、六边形的内角和、直角三角形全等的判定;要熟练掌握.14.用反证法证明命题:“在三角形中,至多有一个内角是直角”,正确的假设是()A.在三角形中,至少有一个内角是直角B.在三角形中,至少有两个内角是直角C.在三角形中,没有一个内角是直角D.在三角形中,至多有两个内角是直角【答案】B【解析】【分析】反证法即假设结论的反面成立,“最多有一个”的反面为“至少有两个”.【详解】解:∵“最多有一个”的反面是“至少有两个”,反证即假设原命题的否命题正确,∴应假设:在三角形中,至少有两个内角是直角.【点睛】此题主要考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,不需要一一否定,只需否定其一即可.15.下列命题中,假命题是( )A .同旁内角互补,两直线平行B .如果a b =,则22a b =C .对应角相等的两个三角形全等D .两边及夹角对应相等的两个三角形全等【答案】C【解析】【分析】根据平行线的判定、等式的性质、三角形的全等的判定判断即可.【详解】A 、同旁内角互补,两直线平行,是真命题;B 、如果a b =,则22a b =,是真命题;C 、对应角相等的两个三角形不一定全等,原命题是假命题;D 、两边及夹角对应相等的两个三角形全等,是真命题;故选:C .【点睛】此题考查命题与定理,解题关键在于掌握判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果⋯那么⋯”形式. 2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.16.下列命题中是假命题的是( )A .一个三角形中至少有两个锐角B .在同一平面内,垂直于同一直线的两条直线平行C .同角的补角相等D .如果a 为实数,那么0a >【答案】D【解析】A. 一个三角形中至少有两个锐角,是真命题;B. 在同一平面内,垂直于同一直线的两条直线平行,是真命题;C. 同角的补角相等,是真命题;D. 如果a 为实数,那么|a|>0,是假命题;如:0是实数,|0|=0,故D 是假命题;17.对于命题“若a 2>b 2,则a >b ”,下面四组关于a ,b 的值中,能说明这个命题是假命题的是( )A .a =3,b =2B .a =﹣3,b =2C .a =3,b =﹣1D .a =﹣1,b =3【答案】B【解析】试题解析:在A 中,a 2=9,b 2=4,且3>2,满足“若a 2>b 2,则a >b”,故A 选项中a 、b 的值不能说明命题为假命题;在B 中,a 2=9,b 2=4,且﹣3<2,此时虽然满足a 2>b 2,但a >b 不成立,故B 选项中a 、b 的值可以说明命题为假命题;在C 中,a 2=9,b 2=1,且3>﹣1,满足“若a 2>b 2,则a >b”,故C 选项中a 、b 的值不能说明命题为假命题;在D 中,a 2=1,b 2=9,且﹣1<3,此时满足a 2<b 2,得出a <b ,即意味着命题“若a 2>b 2,则a >b”成立,故D 选项中a 、b 的值不能说明命题为假命题;故选B .考点:命题与定理.18.下列命题的逆命题是真命题的是( )A .直角都相等B .钝角都小于180°C .如果x 2+y 2=0,那么x=y=0D .对顶角相等【答案】C【解析】【分析】根据逆命题是否为真命题逐一进行判断即可.【详解】相等的角不都是直角,故A 选项不符合题意,小于180°的角不都是钝角,故B 选项不符合题意,如果x=y=0,那么x 2+y 2=0,正确,是真命题,符合题意,相等的角不一定都是对顶角,故D 选项不符合题意,故选C【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.19.已知:在ABC V 中,AB AC ≠,求证:.B C ∠≠∠若用反证法来证明这个结论,可以假设( )A .AB ∠=∠B .AB BC = C .B C ∠=∠D .A C ∠=∠【答案】C【分析】反证法的步骤:1、假设命题反面成立;2、从假设出发,经过推理得出和反面命题矛盾,或者与定义、公理、定理矛盾;3、得出假设命题不成立是错误的,即所求证命题成立.【详解】已知:在ABC V 中,AB AC ≠,求证:.B C ∠≠∠若用反证法来证明这个结论,可以假设B C ∠=∠,由“等角对等边”可得AB=AC,这与已知矛盾,所以.B C ∠≠∠故选C【点睛】本题考核知识点:反证法. 解题关键点:理解反证法的一般步骤.20.下列命题中:①;②在同一平面内,若a ⊥b ,a ⊥c,则b ∥c ;③若ab =0,则P(a ,b)表示原点;9.是真命题的有( )A .1 个B .2 个C .3 个D .4 个【答案】A【解析】【分析】根据立方根、平行线的判定和算术平方根判断即可.【详解】解:①≥0≤0不一定成立,错误; ②在同一平面内,若a b ⊥r r ,a c ⊥,则//b c ,正确; ③若0ab =,则(,)P a b 表示原点或坐标轴,错误;3,错误;故选:A .【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.。
微专题:图形的旋转选择题专项——2021年九年级中考数学分类专题提分训练:(三)
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯微专题:图形的旋转选择题专项——2021年中考数学分类专题提分训练:(三)1.如图,在△ABC中,AB=AC,将线段BC绕点B逆时针旋转60°得到线段BD,∠BCE=150°,∠ABE=60°,连接DE,若∠DEC=45°,则∠BAC的度数为.2.如图,把△ABC绕着点A顺时针方向旋转角度α(0°<α<90°),得到△AB'C',若B',C,C'三点在同一条直线上,∠B'CB=46°,则α的度数是.3.已知:如图,△ABC中,∠C=90°,AB=3,BC=2,将△ABC绕A点按顺时针旋转60°,得到△AB'C′,则CC′=.4.如图,直角坐标系中,已知点A(﹣3,0),B(0,4),将△AOB连续作旋转变换,依次得到三角形①,②,③,④,…则第19个三角形中顶点A的坐标是.5.如图,将△ABC绕点A逆时针旋转一定的角度后,得到△ADE,且点B的对应点D恰好落在BC边上,若∠B=70°,则∠CAE的度数是度.6.如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,那么点A2019的坐标是.7.如图,在矩形ABCD中,AB=3,AD=4,将矩形ABCD绕着点B顺时针旋转后得到矩形A'BC'D',点A的对应点A'在对角线AC上,点C、D分别与点C'、D'对应,A′D'与边BC交于点E,那么BE的长是.8.如图,线段AB=4,M为AB的中点,动点P到点M的距离是1,连接PB,线段PB绕点P逆时针旋转90°得到线段PC,连接AC,则线段AC长度的最大值是.9.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M 是BC的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最大值是.10.将点A(2,0)绕着原点按逆时针方向旋转135°得到点B,则点B的坐标为.11.如图,正方形ABCD的边长为1,P为AB上的点,Q为AD上的点,且△APQ的周长为2,则∠PCQ=度.12.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A=°.13.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是.14.如图,四边形ABCD的∠BAD=∠C=90°,AB=AD,AE⊥BC于E,△ABE绕着点A旋转后能与△ADF重合,若AF=5cm,则四边形ABCD的面积为.15.如图,在Rt△ABC中,∠BAC=90°,AB=2.将△ABC绕点A按顺时针方向旋转至△AB1C1的位置,点B1恰好落在边BC的中点处,则CC1的长为.16.如图,将△ABC的绕点A顺时针旋转得到△AED,点D正好落在BC边上.已知∠C=80°,则∠EAB=°.17.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′与点B是对应点,点C′与点C是对应点),连接CC′,则∠CC′B′的度数是.18.如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转60°后,得到△P′AB,则点P与P′之间的距离为,∠APB=.19.已知A,B,O三点不共线,点A,Aʹ关于点O对称,点B,Bʹ关于点O对称,那么线段AB 与A ʹB ʹ的关系是 .20.如图,Rt △ABC 中,∠C =90°,AB =5,AC =3,现将△ABC 绕着顶点B 旋转,记点C 的对应点为点C 1,当点A ,B ,C 1三点共线时,求∠BC 1C 的正切值= .21.在平面直角坐标系中,点A (﹣1,1),将线段OA (O 为坐标原点)绕点O 逆时针旋转135°得线段OB ,则点B 的坐标是 .22.图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是 .23.将点(0,1)绕原点顺时针旋转90°,所得的点的坐标为 .24.如图,将矩形ABCD 绕点A 旋转至矩形AB ′C ′D ′位置,此时AC ′的中点恰好与D 点重合,AB ′交CD 于点E .若AB =3,则△AEC 的面积为 .25.如图,在平面直角坐标系中,矩形OABC 的顶点B 坐标为(8,4),将矩形OABC 绕点O 逆时针旋转,使点B 落在y 轴上的点B ′处,得到矩形OA ′B ′C ′,OA ′与BC 相交于点D ,则经过点D 的反比例函数解析式是 .参考答案1.解:连接AD,∵线段BC绕B逆时针旋转60°得到线段BD,则BC=BD,∠DBC=60°,∴△BCD为等边三角形,∴BD=CD,∠DCB=∠DBC=60°,在△ABD与△ACD中,∴△ABD≌△ACD(SSS),∴∠ABD=∠ACD,∵∠BCE=150°,∴∠DCE=90°,∵∠DEC=45°,∴∠CDE=∠DEC=45°,∴CD=CE=CB,且∠BCE=150°,∴∠CBE=∠CEB=15°,∵∠ABE=∠DBC=60°∴∠ABD=∠ACD=∠CBE=15°,∴∠ABC=∠ACB=75°,∴∠BAC=180°﹣∠ABC﹣∠ACB=30°,故答案为:30°.2.解:由题意可得:AC=AC′,∠C'=∠ACB,∴∠ACC'=∠C',∵把△ABC绕着点A顺时针方向旋转α,得到△AB′C′,点C刚好落在边B′C′上,∴∠B'CB+∠ACB=∠C'+∠CAC′,∠B'CB=∠CAC'=46°.故答案为:46°.3.解:连接CC′,如图所示.由旋转,可知:AC=AC′,∠CAC′=60°,∴△ACC′为等边三角形,∴CC′=AC.在Rt△ABC中,∠C=90°,AB=3,BC=2,∴AC==,∴CC′=.故答案为:.4.解:∵A(﹣3,0),B(0,4),∴OA=3,OB=4,∴AB==5,∵△AOB连续作三次旋转变换回到原来的状态,而19=3×6+1,∴第19个三角形的状态与第1个一样,∴第19个三角形中顶点A的横坐标为6×12=72,纵坐标是4,即第19个三角形中顶点A的坐标是(72,3).故答案为(72,3).5.解:∵将△ABC绕点A逆时针旋转一定的角度后,得到△ADE,∴AB=AD,∠BAD=∠CAE,∴∠B=∠ADB=70°,∴∠BAD=40°=∠CAE,故答案为:40.6.解:∵四边形OABC是正方形,且OA=1,∴A(0,1),∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,∴A1(,),A2(1,0),A3(,﹣),…,发现是8次一循环,所以2019÷8=252……3,∴点A2019的坐标为(,﹣).故答案为(,﹣).7.解:如图,过点B作BF⊥AC,过点E作EH⊥AC,∵AB=3,AD=4,∠ABC=90°,∴AC===5,∵S△ABC=AB×BC=AC×BF,∴3×4=5BF,∴BF=∴AF===,∵将矩形ABCD绕着点B顺时针旋转后得到矩形A'BC'D',∴AB=BA',∠BAD=∠BA'D'=90°,且BF⊥AC,∴∠BAC=∠BA'A,AF=A'F=,∠BA'A+∠EA'C=90°,∴A'C=AC﹣AA'=,∵∠BA'A+∠EA'C=90°,∠BAA'+∠ACB=90°,∴∠ACB=∠EA'C,∴A'E=EC,且EH⊥AC,∴A'H=HC=A'C=,∵∠ACB=∠ECH,∠ABC=∠EHC=90°,∴△EHC∽△ABC,∴∴∴EC=,∴BE=BC﹣EC=4﹣=,故答案为:.8.解:如图所示:过点C作CD⊥y轴,垂足为D,过点P作PE⊥DC,垂足为E,延长EP交x轴于点F.∵AB=4,M为AB的中点,∴A(﹣2,0),B(2,0).设点P的坐标为(x,y),则x2+y2=1.∵∠EPC+∠BPF=90°,∠EPC+∠ECP=90°,∴∠ECP=∠FPB.由旋转的性质可知:PC=PB.在△ECP和△FPB中,,∴△ECP≌△FPB.∴EC=PF=y,FB=EP=2﹣x.∴C(x+y,y+2﹣x).∵AB=4,M为AB的中点,∴AC==.∵x2+y2=1,∴AC=.∵﹣1≤y≤1,∴当y=1时,AC有最大值,AC的最大值为=3.故答案为:3.9.解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故答案为:3.10.解:过B作BH⊥x轴于H,如图,∵点A的坐标为(2,0),∴OA=2,∵点A绕着原点按逆时针方向旋转135°得到点B,∴OB=OA=2,∠AOB=135°,∴∠BOH=45°,∴△OBH为等腰直角三角形,∴BH=OH=×2=2,∴B(﹣2,2).故答案为(﹣2,2).11.解:把Rt△CBP绕C顺时针旋转90°,得到Rt△CDE,如图,则E在AD的延长线上,并且CE=CP,DE=PB,∠ECP=90°,∵△APQ的周长为2,∴QP=2﹣AQ﹣AP,而正方形ABCD的边长为1,∴DE=PB=1﹣AP,DQ=1﹣AQ,∴QE=DE+DQ=2﹣AQ﹣AP,∴QE=QP,而CQ公共,∴△CQE≌△CQP,∴∠PCQ=∠QCE,∴∠PCQ=45°.故答案为:45.12.解:∵三角形△ABC绕着点C时针旋转35°,得到△AB′C′∴∠ACA′=35°,∠A'DC=90°∴∠A′=55°,∵∠A的对应角是∠A′,即∠A=∠A′,∴∠A=55°;故答案为:55°.13.解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA﹣∠A′OB′=45°﹣15°=30°,故答案是:30°.14.解:∵AE⊥BC,∴∠AEB=∠AEC=90°,∵AB=AD,△BEA旋转后能与△DFA重合,∴△ADF≌△ABE,∴∠AEB=∠F,AE=AF,∵∠C=90°,∴∠AEC=∠C=∠F=90°,∴四边形AECF是矩形,又∵AE=AF,∴矩形AECF是正方形,∵AF=5cm,∴四边形ABCD的面积=四边形AECF的面积=52=25cm2.故答案为:25cm2.15.解:∵在Rt△ABC中,∠BAC=90°,将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处,∴AB1=BC,BB1=B1C,AB=AB1,∴BB1=AB=AB1,∴△ABB1是等边三角形,∴∠BAB1=∠B=60°,∴∠CAC1=60°,∵将△ABC绕点A按顺时针方向旋转至△AB1C1的位置,∴CA=C1A,∴△AC1C是等边三角形,∴CC1=CA,∵AB=2,∴CA=2,∴CC1=2.故答案为:2.16.解:∵△ABC的绕点A顺时针旋转得到△AED,∴AC=AD,∠BAC=∠EAD,∵点D正好落在BC边上,∴∠C=∠ADC=80°,∴∠CAD=180°﹣2×80°=20°,∵∠BAE=∠EAD﹣∠BAD,∠CAD=∠BAC﹣∠BAD,∴∠BAE=∠CAD,∴∠EAB=20°.故答案为:20.17.解:∵∠BAC=90°,∠B=60°,∴∠ACB=90°﹣60°=30°,∵△AB′C由△ABC绕点A顺时针旋转90°得到,∴AC′=AC,∠C′AB′=∠CAB=90°,∠AC′B′=30°,∴△ACC′为等腰直角三角形,∴∠AC′C=45°,∴∠CC′B′=∠AC′C﹣∠AC′B′=45°﹣30°=15°.故答案为15°.18.解:连接PP′,如图,∵△PAC绕点A逆时针旋转60°后,得到△P′AB,∴∠PAP′=60°,PA=P′A=6,P′B=PC=10,∴△PAP′为等边三角形,∴PP′=PA=6,∠P′PA=60°,在△BPP′中,P′B=10,PB=8,PP′=6,∵62+82=102,∴PP′2+PB2=P′B2,∴△BPP′为直角三角形,且∠BPP′=90°,∴∠APB=∠P′PB+∠BPP′=60°+90°=150°.故答案为6,150°.19.解:∵点A′与点A关于点O对称,点B′与点B关于点O对称,∴线段AB与A′B′关于点O对称.∴AB∥A′B′,且AB=A′B′故答案为:平行且相等.20.解:如图作CE⊥AB,垂足为E,情形①当点C在线段AB上时,1∵∠C=90°,AB=5,AC=3,∴BC===4,∵AB•CE=AC•BC,∴CE =,∴EB ===,∵BC =BC 1, ∴EC 1=BC 1﹣EB =4﹣=,∴tan ∠BC 1C ==3.情形②当C 1′在AB 的延长线上时,tan ∠BC 1′C ===.故答案为3或.21.解:∵点A 的坐标是(﹣1,1), ∴OA =,线段OA (O 为坐标原点)绕点O 逆时针旋转135°得线段OB ,则B 一定在y 轴的负半轴上,且OB =OA , 则B 的坐标是(0,﹣).22.解:当正方形放在③的位置,即是中心对称图形.23.解:将点(0,1)绕原点顺时针旋转90°,所得的点在x轴的正半轴上,到原点的距离为1,因而该点的坐标为(1,0).故答案为(1,0).24.解:如图,由旋转的性质可知:AC=AC',∵D为AC'的中点,∴AD=,∵ABCD是矩形,∴AD⊥CD,∴∠ACD=30°,∵AB∥CD,∴∠CAB=30°,∴∠C'AB'=∠CAB=30°,∴∠EAC=30°,∴AE=EC,∴DE=,∴CE==,DE=,AD=,∴=.25.解:∵B(8,4),∴OA=8,AB=OC=4,∴A′O=OA=8,A′B′=AB=4,tan∠COD==,即=,解得CD=2,∴点D的坐标为(2,4),设经过点D的反比例函数解析式为y=(k≠0),则=4,解得k=8,所以,经过点D的反比例函数解析式为y=.故答案为:y=.一天,毕达哥拉斯应邀到朋友家做客。
湘教版九年级上册数学教材习题课件-习题3
3. 在纳鞋底时,先用锥子穿透鞋底,然后用栓有
细绳的针顺着小孔眼从鞋底的这一面穿到另一面.
为什么是用锥子穿透鞋底,而不用小铁棍呢?
解:由压力 F(N)、压强 p(Pa) 与受力面积 S(m2)
之间的关系 p = F 可知,当压力 F 一定时,压强
p
随着受力面积
S
S
的减小而增大,锥子比小铁棍
更尖,即作用在鞋底上的受力面积更小,故压强
更大,更容易穿透.
4. 为了降低输电线路上的电能损耗,发电站都采 用高压输电. 输出电压 U(V) 与输出电流 I(A) 的乘 积等于发电功率 P(即 P = UI)(W),且通常把某发 电站在某时段内的发电功率 P 看作是恒定不变的. (1)输出电压 U 与输出电流 I 之 间成反比例关系吗?为什么? 解:成反比例关系. 因为 P = UI, 所以 U = P(P 为定值).
湘教版
九(上)数学教材习题
习题 1.3
1. 某动物园根据杠杆原理 G1·l1 = G2·l2 上演了一幕现代 版“曹冲称象”,具体做法如下:如图所示,在一根已经 水平地挂在起重机上的钢梁的左右两边分别挂上一根弹
簧秤(重量可以忽略不计)
和装有大象的铁笼,其中
l1 = 6 m,l2 = 0.2 m. 已知 当钢梁又呈水平状态(铁
解:当物体所受的力 F 一定时,物体的加速度 a 是它的质量 m 的反比例函数,其表达式为 a = F .
m
2.(2)在光滑的地面上摆着两辆一样的小车, 一辆是空车,另一辆装有石头. 用同样大小的力, 向同一个方向猛推这两辆小车,立即撒手. 根据 (1)的结果,哪辆车的加速度大?为什么? 解:由(1)知当推 力 F 一定时(F > 0), 物体的加速度 a 随着它的质量 m 的增大而减小, 而空车的质量更小,故其加速度更大.
2021年九年级数学中考复习分类专题练习:等边三角形的判定与性质(三)
2021年九年级数学中考复习分类专题:等边三角形的判定与性质(三)一.选择题1.如图,等边△ABC中,D、E分别为AC、AB上两点,下列结论:①若AD=AE,则△ADE是等边三角形;②若DE∥BC,则△ADE是等边三角形,其中正确的有()A.①B.②C.①②D.都不对2.如图,D是等边△ABC的边AC上的一点,E是等边△ABC外一点,若BD=CE,∠1=∠2,则对△ADE的形状最准确的是()A.等腰三角形B.直角三角形C.等边三角形D.不等边三角形3.设M,N,P分别是等边三角形ABC各边上的点,AM=BN=CP,则△MNP是()A.等边三角形B.等腰三角形C.直角三角形D.不等边三角形4.已知:如图,△ABC和△DEC都是等边三角形,D是BC延长线上一点,AD与BE相交于点P,AC、BE相交于点M,AD、CE相交于点N,则下列五个结论:①AD=BE;②∠BMC=∠ANC;③∠APM=60°;④AN=BM;⑤△CMN是等边三角形.其中,正确的有()A.2个B.3个C.4个D.5个5.如图,在△ABC中,D、E在BC上,且BD=DE=AD=AE=EC,则∠BAC的度数是()A.30°B.45°C.120°D.15°6.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于()A.25°B.30°C.45°D.60°7.如图,已知△ABC是等边三角形,点D,E,F分明是边AB,BC,AC的中点,则图中等边三角形的个数是()A.2个B.3个C.4个D.5个8.如图,等边三角形ABC中,AD是BC上的高,∠BDE=∠CDF=60°,图中与BD相等的线段有()A.5条B.6条C.7条D.8条9.如图,已知∠ABC=120°,BD平分∠ABC,∠DAC=60°,若AB=2,BC=3,则BD的长是()A.5 B.7 C.8 D.910.如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC≌△BPA,连接PQ,则以下结论错误的是()A.△BPQ是等边三角形B.△PCQ是直角三角形C.∠APB=150°D.∠APC=135°二.填空题11.已知∠AOB=30°,点P在OA上,且OP=2,点P关于直线OB的对称点是Q,则PQ=.12.在△ABC 中,AB =AC =8cm ,∠B =60°,则BC = cm .13.如图,△ABC 是等边三角形,D ,E ,F 分别是AB ,BC ,CA 边上一点,且AD =BE =CF .则△DEF 的形状是 .14.两块完全一样的含30°角的三角板重叠在一起,若绕长直角边中点M 转动,使上面一块的斜边刚好过下面一块的直角顶点.如图,∠A =30°,AC =8,则此时两直角顶点C ,C ′间的距离是 .15.如图,已知△ABC 中高AD 恰好平分边BC ,∠B =30°,点P 是BA 延长线上一点,点 O 是线段AD 上一点且OP =OC ,下面的结论:①∠APO +∠DCO =30°;②△OPC 是等边三角形;③AC =AO +AP ;④S △ABC =S 四边形AOCP .其中正确的为 .(填序号)16.如图所示是两块完全一样的含30°角的三角板,分别记作△ABC 和△A 1B 1C 1,现将两块三角板重叠在一起,设较长直角边的中点为M ,绕中点M 转动三角板ABC ,使其直角顶点C 恰好落在三角板A 1B 1C 1的斜边A 1B 1上,当∠A =30°,AC =10时,两直角顶点C ,C 1的距离是 .三.解答题17.如图,已知:边长相等的等边△ABC和等边△DEF重叠部分的周长是6.(1)求证:△FGH和△CHL和△LEK和△KBJ和△JDI和△IAG都是等边三角形.(或证明∠AGF=∠FHC=∠CLE=∠EKB=∠BJI=∠DIA=120°)(2)求等边△ABC的边长.18.如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,且BE=8cm.(1)求∠D的度数;(2)若BC=10cm,求ED的长.19.如图,△ABC是等边三角形,O为△ABC内一点,且∠AOB=120°,∠BOC=120°.求证:由线段AO、BO、CO构成的一个三角形是等边三角形.证明过程如下,请仔细阅读并将证明继续下去:证明:将△ABO绕点A逆时针旋转60°,此时B点与C点重合,O落在O′,连接AO′、OO′、CO′,∴AO=AO′,∠OAO′=60°∴△AOO′是一个等边三角形∴AO=OO′又∵OB=O′C∴线段OA、OB、OC构成了△OCO′请继续:20.如图,等边△ABC中,点D、E、F分别同时从点A、B、C出发,以相同的速度在AB、BC、CA上运动,连结DE、EF、DF.(1)证明:△DEF是等边三角形;(2)在运动过程中,当△CEF是直角三角形时,试求的值.21.已知,在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC.(1)【特殊情况,探索结论】如图1,当点E为AB的中点时,确定线段AE与DB的大小关系,请你直接写出结论:AE DB(填“>”、“<”或“=”).(2)【特例启发,解答题目】如图2,当点E为AB边上任意一点时,确定线段AE与DB的大小关系,请你直接写出结论,AE DB(填“>”、“<”或“=”);理由如下,过点E作EF∥BC,交AC 于点F.(请你完成以下解答过程).(3)【拓展结论,设计新题】在等边三角形ABC中,点E在直线AB上,点D在线段CB的延长线上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长(请你画出相应图形,并直接写出结果).参考答案一.选择题1.解:∵△ABC为等边三角形,∴∠A=60°,∵AD=AE,∴△ADE是等边三角形;所以①正确;∵△ABC为等边三角形,∴∠C=∠B=60°,∵DE∥BC,∴∠ADE=∠C=∠B=∠AED=60°,∴△ADE是等边三角形,所以②正确.故选:C.2.解:∵三角形ABC为等边三角形,∴AB=AC,∵BD=CE,∠1=∠2,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE=60°,∴△ADE是等边三角形.故选:C.3.解:∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°,∵AM=BN=CP,∴BM=CN=AP,在△AMP,△BNM和△CPN中,,∴△AMP≌△BNM≌△CPN(SAS),∴PM=MN=NP,∴△MNP是等边三角形.4.解:∵△ABC和△DEC都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD,∴△BCE≌△ACD(SAS),∴AD=BE,故选项①正确;∵∠ACB=∠ACE=60°,由△BCE≌△ACD得:∠CBE=∠CAD,∴∠BMC=∠ANC,故选项②正确;由△BCE≌△ACD得:∠CBE=∠CAD,∵∠ACB是△ACD的外角,∴∠ACB=∠CAD+∠ADC=∠CBE+∠ADC=60°,又∠APM是△PBD的外角,∴∠APM=∠CBE+∠ADC=60°,故选项③正确;在△ACN和△BCM中,,∴△ACN≌△BCM,∴AN=BM,故选项④正确;∴CM=CN,∴△CMN为等腰三角形,∵∠MCN=60°,∴△CMN是等边三角形,故选项⑤正确;故选:D.5.解:设∠B=x∵BD=AD则∠B=∠BAD=x,∠ADE=2x,∵AD=AE∴∠AED=∠ADE=2x,∵AE=EC,∠AED=∠EAC+∠C∴∠EAC=∠C=x又BD=DE=AD,由直角三角形斜边的中线等于斜边的一半,知∠BAE=90°,则∠B+∠AED=x+2x=90°得x=30°∴∠BAC=180°﹣2x=120°故选:C.6.解:△ABC沿CD折叠B与E重合,则BC=CE,∵E为AB中点,△ABC是直角三角形,∴CE=BE=AE,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选:B.7.解:∵D,E,F分明是边AB,BC,AC的中点,∴AD=BD=BE=EC=CF=FA=DF=DE=EF=AB=AC=∴等边三角形有:△ABC、△ADF、△BDE、△CEF、△DEF共5个,故选:D.8.解:如图,连接EF.∵等边△ABC中,AD是BC边上的高,∴∠BAD=∠CAD=30°,∵∠BDE=∠CDF=60°,∴∠ADE=∠ADF=30°,△AEF、△BDE、△CDF、△DEF都是全等的等边三角形,∴∴BD=DC=DE=BE=AE=AF=FC=FD,即图中与BD相等的线段有7条.故选:C.9.解:在CB的延长线上取点E,使BE=AB,连接AE,∵∠ABC=120°,∴∠ABE=180﹣∠ABC=60°,∵BE=AB,∴△ABE为等边三角形,∴AE=AB,∠BAE=∠E=60°,∵∠DAC=60°,∴∠DAC=BAE,∵∠BAD=∠BAC+∠DAC,∠EAC=∠BAC+∠BAE,∴∠BAD=∠EAC,∵BD平分∠ABC,∴∠ABD=∠ABC=60°,∴∠ABD=∠E,在△ABD和△AEC中,,∴△ABD≌△AEC(ASA),∴BD=CE,∵CE=BE+BC=AB+BC=3+2=5,∴BD=5,故选:A.10.解:∵△ABC是等边三角形,∴∠ABC=60°,∵△BQC≌△BPA,∴∠BPA=∠BQC,BP=BQ=4,QC=PA=3,∠ABP=∠QBC,∴∠PBQ=∠PBC+∠CBQ=∠PBC+∠ABP=∠ABC=60°,∴△BPQ是等边三角形,∴PQ=BP=4,∵PQ2+QC2=42+32=25,PC2=52=25,∴PQ2+QC2=PC2,∴∠PQC=90°,即△PQC是直角三角形,∵△BPQ是等边三角形,∴∠BOQ=∠BQP=60°,∴∠BPA=∠BQC=60°+90°=150°,∴∠APC=360°﹣150°﹣60°﹣∠QPC=150°﹣∠QPC,∵∠PQC=90°,PQ≠QC,∴∠QPC≠45°,即∠APC≠135°,∴选项A、B、C正确,选项D错误.故选:D.二.填空题(共6小题)11.解:如图,连OQ,∵点P关于直线OB的对称点是Q,∴OB垂直平分PQ,∴∠POB=∠QOB=30°,OP=OQ,∴∠POQ=60°,∴△POQ为等边三角形,∴PQ=PO=2.故答案为2.12.解:∵在△ABC中,AB=AC=8cm,∠B=60°,∴△ABC是等边三角形,∴BC=8cm.故答案为:8.13.解:∵△ABC为等边三角形,且AD=BE,∴AF=BD,∠A=∠B=60°,∴在△ADF与△BED中,,∴△ADF≌△BED(SAS).同理证得△ADF≌△CFE(SAS),∴△ADF≌△BED≌△CFE(SAS),∴DF=ED=EF,∴△DEF是一个等边三角形.故答案是:等边三角形.14.解:如图,连接CC',∵点M是AC中点,∴AM=CM=AC=4,∵旋转,∴CM=C'M,AM=A'M∴A'M=MC=C'M=4,∴∠A'=∠A'CM=30°∴∠CMC'=∠A'+∠MCA'=60°,且CM=C'M∴△CMC'是等边三角形∴C'C=CM=4故答案为:415.解:①连接OB,如图1,∵△ABC中高AD恰好平分边BC,即AD是BC垂直平分线,∴AB=AC,BD=CD,∴OB=OC=OP,∴∠APO=∠ABO,∠DBO=∠DCO,∵∠ABC=∠ABO+∠DBO=30°,∴∠APO+∠DCO=30°.故①正确;②△OBP中,∠BOP=180°﹣∠OPB﹣∠OBP,△BOC中,∠BOC=180°﹣∠OBC﹣∠OCB,∴∠POC=360°﹣∠BOP﹣∠BOC=∠OPB+∠OBP+∠OBC+∠OCB,∵∠OPB=∠OBP,∠OBC=∠OCB,∴∠POC=2∠ABD=60°,∵PO=OC,∴△OPC是等边三角形,故②正确;③如图2,在AC上截取AE=PA,∵∠PAE=180°﹣∠BAC=60°,∴△APE是等边三角形,∴∠PEA=∠APE=60°,PE=PA,∴∠APO+∠OPE=60°,∵∠OPE+∠CPE=∠CPO=60°,∴∠APO=∠CPE,∵OP=CP,在△OPA和△CPE中,,∴△OPA≌△CPE(SAS),∴AO=CE,∴AC=AE+CE=AO+AP;故③正确;④如图3,作CH⊥BP,∵∠HCB=60°,∠PCO=60°,∴∠PCH=∠OCD,在△CDO和△CHP中,,∴△CDO≌△CHP(AAS),∴S△OCD =S△CHP∴CH=CD,∵CD=BD,∴BD=CH,在Rt△ABD和Rt△ACH中,,∴Rt△ABD≌Rt△ACH(HL),∴S △ABD =S △AHC ,∵四边形OAPC 面积=S △OAC +S △AHC +S △CHP ,S △ABC =S △AOC +S △ABD +S △OCD∴四边形OAPC 面积=S △ABC .故④正确.故答案为:①②③④.16.解:如图,连接CC 1,∵两块三角板重叠在一起,较长直角边的中点为M ,∴M 是AC 、A 1C 1的中点,AC =A 1C 1,∴CM =A 1M =C 1M =AC =5,∵∠A =30°,∴∠A 1=∠A 1CM =30°,∴∠CMC 1=60°,∴△CMC 1为等边三角形,∴CC 1=CM =5,∴CC 1长为5.故答案为5.三.解答题(共5小题)17.解:(1)∵△ABC和△DEF都是等边三角形,∴∠F=60°,FG=FH,FD=BC,∴△FGH是等边三角形,同理△CHL、△LEK、△KBJ、△JDI、△TAG都是等边三角形;(2)∵△FGH是等边三角形,∴GH=FG.同理,IJ=ID,HL=CL,JK=KB,∴重叠部分的周长为:FD+BC=6,∴FD=BC=3,即等边△ABC的边长是 3.18.解:(1)延长ED交BC于点F,延长AD交BC于H,如图.∵∠EBC=∠E=60°,∴△BEF是等边三角形,∴EF=BF=BE=8,∠EFB=60°.∵AB=AC,AD平分∠BAC,∴AH⊥BC,即∠AHC=90°,∴∠HDF=30°,∴∠ADE=∠HDF=30°;(2)∵BC=10,∴FC=2.∵AB=AC,AD平分∠BAC,∴BH=CH=BC=5,∴HF=5﹣2=3.在Rt△DHF中,∵∠HDF=30°,∴DF=2HF=6,∴DE=8﹣6=2.∴ED的长为2cm.19.证明:将△ABO绕点A逆时针旋转60°,此时B点与C点重合,O落在O′,连接AO′、OO′、CO′,∴AO=AO′,∠OAO′=60°,∴△AOO′是一个等边三角形,∴AO=OO′,又∵OB=O′C,∴线段OA、OB、OC构成了△OCO′,∵∠AOB=120°,∠BOC=120°.∴∠AOC=120°,∠AO′C=120°∵△AOO′是一个等边三角形,∴∠AOO′=∠AO′O=60°,∴∠O′OC=∠OO′C=60°,∴△OCO′是等边三角形,∴线段AO、BO、CO构成的一个三角形是等边三角形.20.(1)证明:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=CA,∵AD=BE=CF,∴BD=EC=AF,在△ADF、△BED和△CFE中∴△ADF≌△BED≌△CFE,∴DE=EF=FD,∴△DEF是等边三角形;(2)解:∵△ABC和△DEF是等边三角形,∴△DEF∽△ABC,∵DE⊥BC,∴∠BDE=30°,∴BE=BD,即BE=BC,CE=BC,∵EF=EC•sin60°=BC•=BC,∴=()2=()2=.21.解:(1)当E为AB的中点时,AE=DB;(2)AE=DB,理由如下,过点E作EF∥BC,交AC于点F,证明:∵△ABC为等边三角形,∴△AEF为等边三角形,∴AE=EF,BE=CF,∵ED=EC,∴∠D=∠ECD,∵∠DEB=60°﹣∠D,∠ECF=60°﹣∠ECD,∴∠DEB=∠ECF,在△DBE和△EFC中,,∴△DBE≌△EFC(SAS),∴DB=EF,则AE=DB;(3)点E在AB延长线上时,如图所示,同理可得△DBE≌△EFC,∴DB=EF=2,BC=1,则CD=BC+DB=3.故答案为:(1)=;(2)=。
反比例函数与一次函数综合三类型(解析版)九年级数学下册常考点微专题提分精练(人教版)
专题03 反比例函数与一次函数综合三类型类型一反比例函数与一次函数图像综合判断1.如图,直线y1=x+b交x轴于点B,交y轴于点A(0,2),与反比例函数2kyx=的图象交于C(1,m),D(n,-1),连接OC、OD.(1)求k的值;(2)求COD的面积;(3)根据图象直接写出y1<y2时,x的取值范围.数y =kx(x >0)的图象交于点C (6,m ).(1)求直线和反比例函数的表达式;(2)连接OC ,在x 轴上找一点P ,使S △POC =2S △AOC ,请求出点P 的坐标.3.如图,一次函数15y k x =+(1k 为常数,且10k ≠)的图象与反比例函数2y x=(2k 为常数,且20k ≠)的图象相交于()2,4A -,(),1B n 两点.(1)求n 的值;(2)若一次函数1y k x m =+的图象与反比例函数2k y x=的图象有且只有一个公共点,求m 的值.【答案】(1)8n =- (2)4m =或4-【分析】(1)由待定系数法求出反比例函数的解析式,再由B 点坐标计算求值即可; (2)根据函数图象交点的意义,利用一次函数和反比例函数构建一元二次方程,令0∆=,4.一次函数y =﹣12x +3的图象与反比例函数y =x的图象交于点A (4,1).(1)画出反比例函数y =m x 的图象,并写出﹣12x +3>m x的x 取值范围; (2)将y =﹣12x +3沿y 轴平移n 个单位后得到直线l ,当l 与反比例函数的图象只有一个交点时,求n 的值.1m则()26=--解得12n =-当l 与反比例函数的图像只有一个交点时,则【点睛】本题考查了反比例函数、一次函数的综合.解题的关键在于了解不等式的意义,一次函数平移后解析式的表达,将交点转化为二次方程根的个数.易错点在于求解集时落解.5.如图:一次函数的图象与反比例函数y x=的图象交于()2,6A -和点()4,B n .(1)求点B 的坐标;(2)根据图象回答,当x 在什么范围时,一次函数的值大于反比例函数的值. )一次函数的值大于反比例函数的值表示的是一次函数的图象位于反比例函数的图象6.如图,已知双曲线y =kx与直线y =mx +5都经过点A (1,4).(1)求双曲线和直线的表达式;(2)将直线y =mx +5沿y 轴向下平移n 个单位长度,使平移后的图象与双曲线y =kx有且只有一个交点,求n 的值.47.如图所示,平面直角坐标系中,直线1y kx b =+分别与x ,y 轴交于点A ,B ,与曲线2my x=分别交于点C ,D ,作CE x ⊥轴于点E ,已知OA =4,OE =OB =2.(1)求反比例函数2y 的表达式; (2)在y 轴上存在一点P ,使ABPCEOS S=,请求出P 的坐标.12ABPCEOSSCE ==243a ⨯-⨯=,解出S=CEOS=3ABPP(0,BP=S=ABPa-22解得:a=交于A,B两点,其中A的坐标为8.如图,在平面直角坐标系中,直线y= x与双曲线yx(1,a),P是以点C(- 2,2)为圆心,半径长为1的圆上一动点,连接AP,Q为AP的中点.(1)求双曲线的解析式:(2)将直线y = x向上平移m(m > 0)个单位长度,若平移后的直线与∵C相切,求m的值(3)求线段OQ长度的最大值.(3)【点睛】本题主要考查了圆与函数综合,待定系数法求函数解析式,勾股定理,三角形中位9.如图,在平面直角坐标系中,一次函数y=﹣x+b的图象与反比例函数y=(x<0)的x图象交于点A(﹣1,6),与x轴交于点B.点C是线段AB上一点,且∵OCB与∵OAB的面积比为1:2.(1)求k和b的值;(2)将∵OBC绕点O逆时针旋转90°,得到ΔOB′C′,判断点C′是否落在函数y=kx(k<0)的图象上,并说明理由.y x=-+y∴=时,(5,0)B∴OCB∆与C∴为AB(1,6)A-(2,3)C∴.如图,过点将OBC∆C'在第二象限,(3,2)C∴'-∴点C'是落在函数【点睛】本题考查了待定系数法求函数的解析式,三角形的面积,线段中点坐标公式,全等10.如图,一次函数y=-x+b与反比例函数y=x(x> 0)的图象交于点A(m,4)和B(4,1)(1)求b、k、m的值;(2)根据图象直接写出-x+b< kx(x> 0)的解集;(3)点P是线段AB上一点,过点P作PD∵x轴于点D,连接OP,若∵POD的面积为S,求S的最大值和最小值.)一次函数)一次函数14n≤≤S12 =-1 2a=-11.在平面直角坐标系xOy 中,已知点(1,2)P ,(2,2)Q -,函数y x=.(1)当函数my x=的图象经过点Q 时,求m 的值并画出直线y =-x -m . (2)若P ,Q 两点中恰有一个点的坐标(x ,y )满足不等式组m y x y x m ⎧>⎪⎨⎪<--⎩(m <0),求m 的取值范围.(2)12.如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(1,2),B(﹣2,xn)两点.(1)求一次函数和反比例函数的表达式;(2)直线AB交x轴于点C,点P是x轴上的点,若△ACP的面积是4,求点P的坐标.A,(1,2)∴△的ACPACP的面积是13.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y(∵)与时间x(h)之间的函数关系,其中线段AB.BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求线段AB和双曲线CD的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10∵时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?20x小时,蔬菜才能避免受到伤害.本题考查一次函数和反比例函数的应用,.病人按规定的剂量服用某种药物,测得服药后值为4毫克,已知服药后,2小时前每毫升血液中的含药量y (毫克)与时间x (小时)成正比例,2小时后y 与x 成反比例(如图所示).根据以上信息解答下列问题. (1)求当02x ≤≤时,y 与x 的函数关系式; (2)求当2x >时,y 与x 的函数关系式;(3)若每毫升血液中的含药量不低于2毫克时治疗有效,则服药一次,治疗疾病的有效时间是多长?【答案】(1)2y x =8k , 与x 的函数关系式为第5分钟起每分钟每毫升血液中含药量增加0.2微克,第100分钟达到最高,接着开始衰退.血液中含药量y (微克)与时间x (分钟)的函数关系如图.并发现衰退时y 与x 成反比例函数关系.(1)=a ;(2)当5100x 时,y 与x 之间的函数关系式为 ;当100x >时,y 与x 之间的函数关系式为 ;(3)如果每毫升血液中含药量不低于10微克时是有效的,求出一次服药后的有效时间多久?5100x 时,设经过点(5,0),(100,19)019b =+= 0.21k b =⎧⎨=-⎩解析式为0.2y x =经过点堂还给学生.通过实验发现:学生在课堂上听课注意力指标随上课时间的变化而变化,上课开始后,学生的学习兴趣递增,中间一段时间,学生的兴趣保持平稳高效状态,后阶段注意力开始分散.学生注意力指标y 随时间x (分钟)变化的函数图象如图所示,当010x ≤<和1020x ≤<时,图象是线段,当2045x ≤≤时,图象是反比例函数的一部分.(1)求点A 对应的指标值.(2)如果学生在课堂上的注意力指标不低于30属于学习高效阶段,请你求出学生在课堂上的学习高效时间段.空气中的含药量y(毫克)与药物点燃后的时间x(分)满足函数关系式y=2x,药物点燃后6分钟燃尽,药物燃尽后,校医每隔6分钟测一次空气中含药量,测得数据如下表:(1)在如图所示平面直角坐标系中描出以表格中数据为坐标的各点;(2)观察上述各点的分布规律,判断它们是否在同一个反比例函数图象上,如果在同一个反比例函数图象上,求出这个反比例函数图象所对应的函数表达式,如果不在同一个反比例函数图象上,说明理由;(3)研究表明:空气中每立方米的含药量不低于8毫克,且持续4分钟以上才能有效杀灭空气中的病菌,应用上述发现的规律估算此次消毒能否有效杀灭空气中的病菌?【答案】(1)见解析(2)温y (∵)与开机时间x (分)满足一次函数关系,当加热到100∵时自动停止加热,随后水温开始下降,此过程中水温y (∵)与开机时间x (分)成反比例关系,当水温降至20∵时,饮水机又自动开始加热……,重复上述程序(如图所示),根据图中提供的信息,解答问题:(1)当010x ≤≤时,求水温y (∵)与开机时间x (分)的函数关系式;(2)求图中t 的值;(3)若小丽在通电开机后即外出散步,请你预测小丽散步70分钟回到家时,饮水机内的温度约为多少∵?x时,20小丽散步70【点睛】本题考查了待定系数法求一次函数解析式、数值,解决本题的关键是熟练掌握待定系数法的应用.。
九年级数学人教版(上册)小专题3 二次函数的图象和性质
A.2 个 B.3 个 C.4 个 D.5 个
函数值越大,∴y1>y2.
9.(2021·江西)在同一平面直角坐标系中,二次函数 y=ax2 与一 次函数 y=bx+c 的图象如图所示,则二次函数 y=ax2+bx+c 的图 象可能是( D )
10.已知二次函数 y=mx2-2x+1,当 x<13时,y 的值随 x 值的 增大而减小,则 m 的取值范围是0<m≤3 .
A.a<0 B.点 A 的坐标为(-4,0) C.当 x<0 时,y 随 x 的增大而减小 D.图象的对称轴为直线 x=-2
5.对二次函数 y=12x2+2x+3 的性质描述正确的是(C ) A.函数图象开口向下 B.当 x<0 时,y 随 x 的增大而减小 C.该函数图象的对称轴在 y 轴左侧 D.该函数图象与 y 轴的交点位于 y 轴负半轴
6.若二次函数 y=mx2+x+m(m-2)的图象经过原点,则 m 的 值为 2 .
7.(2021·益阳)已知 y 是 x 的二次函数,下表给出了 y 与 x 的几 对对应值:
x … -2 -1 0 1 2 3 4 … y … 11 a 3 2 3 6 11 …
由此判断,表中 a=6 .
8.(2021·安徽节选)已知抛物线 y=ax2-2x+1(a≠0)的对称轴为 直线 x=1.
第二十二章 二次函数
小专题3 二次函数的图象和性质
1.(2021·兰州)二次函数 y=x2+2x+2 的图象的对称轴是( A )
A.直线 x=-1
B.直线 x=-2
C.直线 x=1
D.直线 x=2
2.(2021·上海)将函数 y=ax2+bx+c(a≠0)的图象向下平移 2 个 单位长度,以下说法错误的是(D )
【初中数学】人教版九年级上册第3课时 几何图形问题(练习题)
人教版九年级上册第3课时几何图形问题(2912)A 知识要点分类练夯实基础1.如图,把一块长为40cm,宽为30cm的矩形硬纸板的四角剪去四个相同的小正方形,然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个无盖纸盒.若该无盖纸盒的底面积为600cm2,设剪去的小正方形的边长为xcm,则可列方程为()A.(30−2x)(40−x)=600B.(30−x)(40−x)=600C.(30−x)(40−2x)=600D.(30−2x)(40−2x)=6002.为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x米,根据题意,可列方程为.3.一条长为12cm的铁丝被剪成两段,每段均折成正方形.若两个正方形的面积和等于5cm2,则这两个正方形的边长分别为.4.如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m).试设计一种砌法,使所砌三面墙的总长度为50m,且矩形花园的面积为300m2.5.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图所示),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为x m,则可列方程为()A.(x+1)(x+2)=18B.x2−3x+16=0C.(x−1)(x−2)=18D.x2+3x+16=06.如图,学校课外生物小组的试验园地的形状是长(AB)35米、宽20米的矩形,为便于管理,要在中间开辟一横两纵共三条等宽的小道,若设小道的宽为x米,则种植面积(单位:平方米)为()A.35×20−35x−20x+2x2B.35×20−35x−2×20xC.(35−2x)(20−x)D.(35−x)(20−2x)7.如图,小明家有一块长1.5m、宽1m的矩形地毯,为了使地毯美观,小明请来工匠在地毯的四周镶上宽度相同的花色地毯,镶完后地毯的面积是原地毯面积的2倍,则花色地毯的宽为m.8.在一张矩形的床单四周绣上宽度相等的花边,剩下部分的面积为1.6m2,已知床单的长是2m,宽是1.4m,求花边的宽度.B 规律方法综合练训练思维9.如图,矩形ABCD的周长是20cm,以AB,AD为边向外作正方形ABEF和正方形ADGH,若正方形ABEF和ADGH的面积之和为68cm2,则矩形ABCD的面积是()A.24cm2B.21cm2C.16cm2D.9cm210.如图,有一块长5米、宽4米的地毯,为了美观,设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,其所占面积是整个地毯面.积的1780(1)求配色条纹的宽度;(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.C 拓广探究创新练提升素养11.已知:如图,在△ABC中,∠B=90∘,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s的速度匀速运动,同时点Q从点B开始沿BC边向点C以2cm/s的速度匀速运动.当其中一点到达终点时,另一点也随之停止运动.设运动时间为xs(x>0).(1) s后,△PBQ的面积为4cm2;(2)几秒后,PQ的长度为5cm?(3)△PBQ的面积能否为7cm2?请说明理由参考答案1.【答案】:D【解析】:设剪去小正方形的边长是xcm,则纸盒底面的长为(40−2x)cm,宽为(30−2x)cm,根据题意得:(40−2x)(30−2x)=600.故选:D.2.【答案】:x(x+40)=12005.【答案】:C3.【答案】:1cm,2cm4.【答案】:解:设AB的长为xm,则BC的长为(50−2x)m.根据题意,得x(50−2x)=300,2x2−50x+300=0,解得x1=10,x2=15.当x=10时,50−2x=30>25(不合题意,舍去);当x=15时,50−2x=20<25(符合题意).答:当AB的长为15m,BC的长为20m时,可使矩形花园的面积为300m2.6.【答案】:C【解析】:依题意,得:(35−2x)(20−x),故选:C.7.【答案】:0.25【解析】:设花色地毯的宽为xm,那么地毯的面积=(1.5+2x)(1+2x)m2.因为镶完后地毯的面积是原地毯面积的2倍,所以(1.5+2x)(1+2x)=2×1.5×1,即8x2+10x−3=0.解得x1=0.25,x2=−1.5(不合题意,舍去).故花色地毯的宽为0.25m.8.【答案】:设花边的宽度为xm.依题意,得 (2−2x)(1.4−2x)=1.6,解得x 1=1.5(舍去),x 2=0.2.答:花边的宽度为0.2m【解析】:设花边的宽度为xm .表示出剩下部分的长与宽,以“剩下部分的面积为1.6m 2”为等量关系列方程求解9.【答案】:C【解析】:设正方形ABEF 的边长为xcm ,正方形ADGH 的边长为ycm , 依题意得x 2+y 2=68,①又2x +2y =20,②因为x 2+y 2=(x +y)2−2xy ,将①②代入得xy =16,即矩形ABCD 的面积是16cm 210(1)【答案】解:设配色条纹的宽度为x 米. 依题意,得2x ×5+2x ×4−4x 2=1780×5×4, 解得x 1=174(不符合题意,舍去),x 2=14. 答:配色条纹的宽度为14米.(2)【答案】配色条纹部分的造价为1780×5×4×200=850(元), 其余部分的造价为(1−1780)×5×4×100=1575(元), 所以总造价为850+1575=2425(元).答:地毯的总造价是2425元11(1)【答案】1【解析】:由S △PBQ =12BP ·BQ ,得12(5−x)·2x =4, 整理,得x 2−5x +4=0,解得x 1=1,x 2=4.当x =4时,2x =8>7,说明此时点Q越过点C,不符合要求,舍去.所以1s后△PBQ的面积为4cm2.故答案为1.(2)【答案】解:由BP2+BQ2=PQ2,得(5−x)2+(2x)2=52,整理,得x2−2x=0,解得x1=0(不合题意,舍去),x2=2.答:2s后,PQ的长度为5cm.(3)【答案】不能.理由:假设△PBQ的面积为7cm2,则(5−x)·2x=7,由题意,得12整理,得x2−5x+7=0.因为Δ=b2−4ac=(−5)2−4×1×7=25−28=−3<0,所以此方程无实数根,所以△PBQ的面积不能为7cm2.。
中考数学几何模型专题3对角互补模型(学生版)知识点+例题
【压轴必刷】2023年中考数学压轴大题之经典模型培优案专题3对角互补模型90°对角互补模型模型2:全等形——120°对角互补模型模型3:全等形——任意角对角互补模型模型4:相似形——90°对角互补模型如图1,在四边形ABCD 中,AB=AD ,∠B+∠ADC=180°,点E ,F 分别在四边形ABCD 的边BC ,CD 上,∠EAF=12∠BAD ,连接EF ,试猜想EF ,BE ,DF之间的数量关系.(1)思路梳理将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合,由∠B+∠ADC=180°,得∠FDG=180°,即点F,D,G三点共线,易证△AFG∠∠AFE,故EF,BE,DF之间的数量关系为__;(2)类比引申如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC延∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.长线上,∠EAF=12(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°,若BD=1,EC=2,直接写出DE的长为________________.【例2】.(2019·山东枣庄·中考真题)在ΔABC中,∠BAC=90°,AB=AC,AD⊥BC于点D,(1)如图1,点M,N分别在AD,AB上,且∠BMN=90°,当∠AMN=30°,AB=2时,求线段AM的长;(2)如图2,点E,F分别在AB,AC上,且∠EDF=90°,求证:BE=AF;(3)如图3,点M在AD的延长线上,点N在AC上,且∠BMN=90°,求证:AB+AN=√2AM;【例3】.(2022·江苏·八年级课时练习)(1)如图∠,在四边形ABCD中,AB=AD,∠B=∠D=∠BAD.请直接写出线段EF,BE,FD之90°,E,F分别是边BC,CD上的点,且∠EAF=12间的数量关系:__________;(2)如图∠,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E ,F 分别是边BC ,CD 上的点,且∠EAF =12∠BAD ,(1)中的结论是否仍然成立?请写出证明过程;(3)在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E ,F 分别是边BC ,CD 所在直线上的点,且∠EAF =12∠BAD .请画出图形(除图∠外),并直接写出线段EF ,BE ,FD 之间的数量关系.【例4】.(2022·全国·八年级课时练习)四边形ABCD 是由等边ΔABC 和顶角为120°的等腰ΔABD 排成,将一个60°角顶点放在D 处,将60°角绕D 点旋转,该60°交两边分别交直线BC 、AC 于M 、N ,交直线AB 于E 、F 两点.(1)当E 、F 都在线段AB 上时(如图1),请证明:BM +AN =MN ;(2)当点E 在边BA 的延长线上时(如图2),请你写出线段MB ,AN 和MN 之间的数量关系,并证明你的结论;(3)在(1)的条件下,若AC =7,AE =2.1,请直接写出MB 的长为 .一、解答题1.(2022·陕西·西安市第三中学七年级期末)回答问题(1)【初步探索】如图1:在四边形ABCD 中,AB =AD ,∠B =∠ADC =90°,E 、F 分别是BC 、CD 上的点,且EF =BE +FD ,探究图中∠BAE 、∠F AD 、∠EAF 之间的数量关系.。
中考数学九年级专题训练50题-含答案
中考数学九年级专题训练50题含答案_一、单选题1.在一个不透明的口袋中装有6个红球,2个绿球,这些球除颜色外无其他差别,从这个袋子中随机摸出一个球,摸到红球的概率为( ) A .B .C .D .12.今年元旦期间,某种女服装连续两次降价处理,由每件200元调至72元,设平均每次的降价百分率为x ,则得方程( ) A .()2001722x -=⨯ B .()22001%72x -= C .()2200172x -=D .220072x =3.如图,已知BD 与CE 相交于点A ,DE BC ∥,如果348AD AB AC ===,,,那么AE 等于( )A .247B .1.5C .14D .64.如图,CD 是⊙O 的直径,A ,B 是⊙O 上的两点,若15ABD ∠=°,则 ⊙ADC 的度数为( )A .55°B .65°C .75°D .85°5.一元二次方程()()()221211x x x --+=的解为( ) A .2x = B .121,12x x =-=-C .121,22x x ==D .121,12x x ==-6.如图,在Rt ABC 中,90C ∠=︒,10AB =,8AC =,D 是AC 上一点,5AD =,DE AB ⊥,垂足为E ,则AE =( )A .2B .3C .4D .57.如图,抛物线211242y x x =--与x 轴相交于A ,B 两点,与y 轴相交于点C ,点D 在抛物线上,且//CD AB .AD 与y 轴相交于点E ,过点E 的直线MN 平行于x 轴,与抛物线相交于M ,N 两点,则线段MN 的长为( )AB C .D .8.小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能的是( )A .B .C .D .9.如图,O 中,弦AB AC ⊥,4AB =,2AC =,则O 直径的长是( ).A .B .CD 10.在平面直角坐标系中,点2(2,1)A x x +与点(3,1)B -关于y 对称,则x 的值为( ) A .1B .3或1C .3-或1D .3或1-11.2022年,某省新能源汽车产能达到30万辆.到了2024年,该省新能源汽车产能将达到41万辆,设这两年该省新能源汽车产能的平均增长率为x .则根据题意可列出的方程是( ) A .()301241x +=B .()230141x += C .()()23030130141x x ++++=D .()23030141x ++=12.已知抛物线2y x bx c =-++的顶点在直线y=3x+1上,且该抛物线与y 轴的交点的纵坐标为n ,则n 的最大值为( ) A .134B .154C .238D .25813.下列说法正确的是( )A .了解我市市民观看2022北京冬奥会开幕式的观后感,适合普查B .若一组数据2、2、3、4、4、x 的众数是2,则中位数是2或3C .一组数据2、3、3、5、7的方差为3.2D .“面积相等的两个三角形全等”这一事件是必然事件 14.下列事件发生的概率为0的是( )A .随意掷一枚均匀的硬币两次,至少有一次反面朝上B .今年夏天马鞍山不会下雪C .随意掷两枚质地均匀的骰子,朝上的点数之和为1D .库里罚球投篮3次,全部命中15.如图是二次函数2(1)2y a x =++图象的一部分,则关于x 的不等式2(1)20a x ++>的解集是( )A .x<2B .x>-3C .-3<x<1D .x<-3或x>116.已知抛物线y =ax 2+bx +3中(a ,b 是常数)与y 轴的交点为A ,点A 与点B 关于抛物线的对称轴对称,二次函数y =ax 2+bx +3中(b ,c 是常数)的自变量x 与函数值y 的部分对应值如下表:下列结论正确的是( )A .抛物线的对称轴是x =1 B .当x =2时,y 有最大值-1C .当x <2时,y 随x 的增大而增大D .点A 的坐标是(0,3)点B 的坐标是(4,3)17.当x =a 和x =b (a ≠b )时,二次函数y =2x 2﹣2x +3的函数值相等、当x =a +b 时,函数y =2x 2﹣2x +3的值是( ) A .0B .﹣2C .1D .318.如图,在平面直角坐标系中,抛物线23(0)y ax bx a =++<交x 轴于A ,B 两点(B 在A 左侧),交y 轴于点C .且CO AO =,分别以,BC AC 为边向外作正方形BCDE ,正方形ACGH .记它们的面积分别为12,S S ,ABC 面积记为3S ,当1236S S S +=时,b 的值为( )A .12-B .23-C .34-D .43-19.将方程()()212523x x x x -=--化为一般形式后为( ) A ..2x -8x-3=0 B .9.2x +12x-3=0 C .2x -8x+3=0D .9.2x -12x+3=020.如图,抛物线y=14(x+2)(x ﹣8)与x 轴交于A ,B 两点,与y 轴交于点C ,顶点为M ,以AB 为直径作⊙D .下列结论:⊙抛物线的最小值是-8;⊙抛物线的对称轴是直线x=3;⊙⊙D 的半径为4;⊙抛物线上存在点E ,使四边形ACED 为平行四边形;⊙直线CM 与⊙D 相切.其中正确结论的个数是( )A .5B .4C .3D .2二、填空题21.已知反比例函数1ky x-=,每一象限内,y 都随x 的增大而增大,则k 的值可以是(写出一个即可)_____.22.下图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形可能是________.(把下图中正确的立体图形的序号都填在横线上).23.如图,直线CD 与O 相切于点C ,AB AC =且//CD AB ,则cos A ∠=______.24.若二次函数261(0)y mx mx m =-+>的图象经过A (2,a ),B (﹣1,b ),C (5,c )三点,则a ,b ,c 从小到大排列是_____.25.如图,AB 是O 的直径,点M 在O 上,且不与A 、B 两点重合,过点M 的切线交AB 的延长线于点C ,连接AM ,若⊙MAO=27°,则⊙C 的度数是______.26.如图,在平面直角坐标系中,点E 在x 轴上,E 与两坐标轴分别交于A B C D 、、、四点,已知()()6,0,2,0A C -,则B 点坐标为___________27.请写出一个以2和-5为根的一元二次方程:______________________. 28.已知ab =2,那么3232a b a b-+=______.29.二次函数2y x x 2=+-的图象与x 轴有______个交点. 30.对于函数6y x=,若x >2,则y ______3(填“>”或“<”). 31.如图,C ,D 是两个村庄,分别位于一个湖的南,北两端A 和B 的正东方向上,且点D 位于点C 的北偏东60°方向上,CD=12km ,则AB=_______km32.皮影戏中的皮影是由________投影得到.33.计算:011(2019)12sin 45()3π---+=____.34.如图,在Rt △ABC 中,⊙C =90°.△ABC 的内切圆⊙O 切AB 于点D ,切BC 于点E ,切AC 于点F ,AD =4,BD =6,则Rt △ABC 的面积=_____.35.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 与小圆相切于点C ,若AB 的长为8cm ,则图中阴影部分的面积为____cm 2.36.若一个圆锥的底面积为16πcm 2,母线长为12cm ,则该圆锥的侧面积为_____. 37.如图,矩形OABC 的顶点,A C 分别在x 轴、y 轴上,顶点B 在第二象限,AB =将线段OA 绕点О按顺时针方向旋转60︒得到线段,OD 连接,AD 反比例函数()0ky k x=≠的图象经过,D B 两点,则k 的值为____.38.如图(1),在Rt ABC △中,=90ACB ∠︒,点P 以每秒1cm 的速度从点A 出发,沿折线AC CB -运动,到点B 停止,过点P 作PD AB ⊥,垂足为D ,PD 的长()y cm 与点P 的运动时间()x s 的函数图象如图(2)所示,当点P 运动5s 时,PD 的长是___________.39.在平面直角坐标系中,经过反比例函数ky x=图象上的点A (1,5)的直线2y x b =-+与x 轴,y 轴分别交于点C ,D ,且与该反比例函数图象交于另一点B .则BC AD +=______.三、解答题40.解方程:2(2)9x -=. 41.已知二次函数y=﹣x 2+2x+3(1)在如图所示的坐标系中,画出该函数的图象 (2)根据图象回答,x 取何值时,y >0?(3)根据图象回答,x 取何值时,y 随x 的增大而增大?x 取何值时,y 随x 的增大而减小?42.在直角坐标平面内,直线y =12x +2分别与x 轴、y 轴交于点A 、C .抛物线y =﹣212x +bx +c 经过点A 与点C ,且与x 轴的另一个交点为点B .点D 在该抛物线上,且位于直线AC 的上方.(1)求上述抛物线的表达式;(2)联结BC 、BD ,且BD 交AC 于点E ,如果⊙ABE 的面积与⊙ABC 的面积之比为4:5,求⊙DBA 的余切值;(3)过点D 作DF ⊙AC ,垂足为点F ,联结CD .若⊙CFD 与⊙AOC 相似,求点D 的坐标.43.如图,已知直线2y x =与双曲线ky x=的图象交于A ,B 两点,且点A 的坐标为()1,a .(1)求k 的值和B 点坐标;(2)设点()(),00P m m ≠,过点P 作平行于y 轴的直线,交直线2y x =于点C ,交双曲线ky x=于点D .若POC △的面积大于POD 的面积,结合图象,直接写出m 的取值范围.44.随着人民生活水平不断提高,家庭轿车的拥有量逐年增加,据统计,某小区16年底拥有家庭轿车640辆,到18年底家庭轿车拥有量达到了1000辆. (1)若该小区家庭轿车的年平均增长量都相同, 请求出这个增长率;(2)为了缓解停车矛盾,该小区计划投入15万元用于再建若干个停车位,若室内每个车位0.4万元,露天车位每个0.1万元,考虑到实际因素,计划露天车位数量大于室内车位数量的2倍,但小于室内数量的3.5倍,求出所有可能的方案.45.为了测量某教学楼CD 的高度,小明在教学楼前距楼基点C ,12米的点A 处测得楼顶D 的仰角为50°,小明又沿CA 方向向后退了3米到点B 处,此时测得楼顶D 的仰角为40°(B 、A 、C 在同一水平线上),依据这些数据小明能否求出教学楼的高度?若能求,请你帮小明求出楼高;若不能求,请说明理由. 2.24)46.(1)用配方法解方程:x2﹣2x﹣1=0.(2)解方程:2x2+3x﹣1=0.(3)解方程:x2﹣4=3(x+2).47.梯形ABCD中DC⊙AB,AB =2DC,对角线AC、BD相交于点O,BD=4,过AC的中点H作EF⊙BD分别交AB、AD于点E、F,求EF的长.48.计算:3-+;⊙222602cos458︒+︒+︒sin45cos60tan3049.小明根据学习函数的经验,对函数y=|x2﹣2x|﹣2的图象与性质进行了探究,下面是小明的探究过程,请补充完整:(1)在给定的平面直角坐标系中;画出这个函数的图象,⊙列表,其中m=,n=.⊙描点:请根据表中数据,在如图所示的平面直角坐标系中描点:⊙连线:画出该函数的图象.(2)写出该函数的两条性质:.(3)进一步探究函数图象,解决下列问题:⊙若平行于x轴的一条直线y=k与函数y=|x2﹣2x|﹣2的图象有两个交点,则k的取值范围是;⊙在网格中画出y=x﹣2的图象,直接写出方程|x2﹣2x|﹣2=x﹣2的解为.参考答案:1.A【详解】试题分析:先求出总的球的个数,再出摸到红球的概率.已知袋中装有6个红球,2个绿球,可得共有8个球,根据概率公式可得摸到红球的概率为;故答案选A.考点:概率公式.2.C【分析】设调价百分率为x ,根据售价从原来每件200元经两次调价后调至每件72元,可列方程.【详解】解:设调价百分率为x ,则:2200(1)72.x -=故选:C .【点睛】本题考查一元二次方程的应用,关键设出两次降价的百分率,根据调价前后的价格列方程求解.3.D【分析】证明ABC ADE △△∽ ,由相似三角形的性质得出AB AC AD AE=,则可得出答案. 【详解】解:⊙DE BC ∥,⊙ABC ADE △△∽, ⊙AB AC AD AE =, 即483AE =, ⊙6AE =,故选:D .【点睛】本题考查了相似三角形的判定与性质,熟记性质是解题的关键.4.C【分析】根据圆周角定理可得⊙ACD =15°,再由直径所对的圆周角是直角,可得⊙CAD =90°,即可求解.【详解】解:⊙⊙ACD =⊙ABD ,15ABD ∠=°,⊙⊙ACD =15°,⊙CD 是⊙O 的直径,⊙⊙CAD =90°,⊙⊙ADC =90°-⊙ACD =75°.故选:C【点睛】本题主要考查了圆周角定理,熟练掌握在同圆(或等圆)中,同弧(或等弧)所对的圆周角相等,直径所对的圆周角是直角是解题的关键.5.C【分析】根据因式分解法解一元二次方程,即可求解.【详解】解:()()()221211x x x --+= ()()212110x x x ----=,()()2120x x --=, 解得121,22x x ==, 故选C .【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键. 6.C【分析】先证明⊙ADE ⊙⊙ABC ,得出对应边成比例,即可求出AE 的长.【详解】解:⊙ED ⊙AB ,⊙⊙AED =90°=⊙C ,⊙⊙A =⊙A ,⊙⊙ADE ⊙⊙ABC , ⊙AD AE AB AC =,即5108AE =, 解得:AE =4.故选:C .【点睛】本题考查了相似三角形的判定与性质;熟练掌握相似三角形的判定方法,证明三角形相似得出比例式是解决问题的关键.7.D【分析】利用二次函数图象上点的坐标特征求出点A 、B 、C 、D 的坐标,由点A 、D 的坐标,利用待定系数法求出直线AD 的解析式,利用一次函数图象上点的坐标特征求出点E的坐标,再利用二次函数图象上点的坐标特征得出点M 、N 的坐标,进而可求出线段MN 的长.【详解】当0y =时,2112042x x --=, 解得:1224x x =-=,,⊙点A 的坐标为(-2,0);当0x =时,2112242y x x =--=-, ⊙点C 的坐标为(0,-2);当2y =-时,2112242x x --=-, 解得:1202x x ==,,⊙点D 的坐标为(2,-2),设直线AD 的解析式为()0y kx b k =+≠,将A(-2,0),D(2,-2)代入y kx b =+,得:2022k b k b -+=⎧⎨+=-⎩,解得:121k b ⎧=-⎪⎨⎪=-⎩, ⊙直线AD 的解析式为112y x =--, 当0x =时,1112y x =--=-, ⊙点E 的坐标为(0,1-).当1y =-时,2112142x x --=-,解得:1211x x ==⊙点M 、N 的坐标分别为(1,-1)、(1-1),⊙MN=(11=故选:D .【点睛】本题考查了抛物线与x 轴的交点、二次函数图象上点的坐标特征、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,利用二次函数图象上点的坐标特征求出点M 、N 的坐标是解题的关键.8.A【分析】在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.【详解】解:矩形木框在地面上形成的投影应是平行四边形或一条线段,即相对的边平行或重合,故A 不可能,即不会是梯形.故选A .【点睛】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应视其外在形状,及其与光线的夹角而定.9.A【分析】连接BC ,由90BAC ∠=︒可知BC 为直径,利用勾股定理求解即可.【详解】解:连接BC ,如图:⊙AB AC ⊥,⊙90BAC ∠=︒,⊙BC 为直径,由勾股定理可得:BC =故选:A【点睛】此题考查了圆的有关性质,勾股定理,解题的关键是熟练掌握圆的相关知识. 10.C【分析】先根据关于y 轴对称点的坐标特点建立方程,然后解一元二次方程,即可得出结果.【详解】解:⊙A 、B 两点关于y 轴对称,⊙223x x +=,⊙()()310x x +-=,解得3x =-或1,故选:C .【点睛】本题考查了关于y 轴对称点的坐标特点和解一元二次方程,根据关于y 轴对称点的坐标特点建立方程是解题的关键.11.B【分析】设这两年该省新能源汽车产能的平均增长率为x ,根据题意列出一元二次方程即可求解.【详解】解:设这两年该省新能源汽车产能的平均增长率为x ,根据题意得,()230141x +=, 故选:B .【点睛】本题考查了一元二次方程的应用,根据题意列出方程是解题的关键.12.A【分析】将抛物线顶点坐标代入一次函数解析式,求出b 与c 的关系,再根据抛物线与y 轴交点的纵坐标为c ,即n c =,再利用二次函数的性质即可解答. 【详解】 抛物线2y x bx c =-++的顶点在3+1y x =上,抛物线2y x bx c =-++的顶点标为(2b 、24b c +) ∴23142b bc +=+ 23124b bc ∴=+- 抛物线与y 轴交点的纵坐标为cn c ∴=23124b b n ∴=+- ()21136944n b b ∴=--++ ()2113344n b ∴=--+ n ∴的最大值为134故选:A .【点睛】本题考查了二次函数的性质,函数图像上点坐标的特征,熟练掌握二次函数性质是解题关键.13.C【分析】根据全面调查与抽样调查、中位数与众数、方差、必然事件的定义逐项判断即可得.【详解】解:A 、了解我市市民观看2022北京冬奥会开幕式的观后感,适合抽样调查,则此项说法错误,不符题意;B 、因为一组数据2、2、3、4、4、x 的众数是2,所以2x =,将这组数据按从小到大进行排序为2,2,2,3,4,4,则第三个数和第四个数的平均数为中位数, 所以中位数是23 2.52+=,则此项说法错误,不符题意; C 、这组数据的平均数为2335745++++=, 则方差为222221(24)(34)(34)(54)(74) 3.25⎡⎤⨯-+-+-+-+-=⎣⎦,此项说法正确,符合题意;D 、“面积相等的两个三角形不一定全等”,则这一事件是随机事件,此项说法错误,不符题意;故选:C .【点睛】本题考查了全面调查与抽样调查、中位数与众数、方差、必然事件,熟练掌握各定义和计算公式是解题关键.14.C【分析】事件的发生的概率为0,即为一定不可能发生的事件.【详解】解:C 中事件中两个骰子投的数一定大于或等于2,故选C.【点睛】本题考查了不可能事件的定义,熟悉掌握概念是解决本题的关键.15.C【分析】直接根据二次函数的图像和性质即可得出结论.【详解】二次函数y =a(x +1)2+2的对称轴为x =﹣1,⊙二次函数y =a(x +1)2+2与x 轴的一个交点是(﹣3,0),⊙二次函数y =a(x +1)2+2与x 轴的另一个交点是(1,0),⊙由图像可知关于x 的不等式a(x +1)2+2>的解集是﹣3<x <1.故选C.【点睛】本题主要考查二次函数的图像与性质,找出y=a(x+1)2+2与x轴的两个交点是解本题的关键.16.D【分析】利用当x=1和3时,y=0,得出抛物线的对称轴是直线x=2,然后根据x=-1时,y=8,判断增减性,再利用x=0时,y=3,结合对称轴,即可得出A、B点坐标.【详解】)⊙当x=1和3时,y=0,⊙抛物线的对称轴是直线x=2,故A选项错误;又⊙x=-1时,y=8,⊙x<2时,y随x增大而减小;x>2时,y随x增大而大,故C选项错误;⊙x=2时,y有最小值,故B选项错误;⊙x=0时,y=3,则点A(0,3),⊙点A与点B关于抛物线的对称轴对称,⊙B点坐标(4,3),⊙A、B、C错误,D正确.故选:D .【点睛】此题主要考查了二次函数的性质,由表格数据获取信息是解题的关键.17.D【分析】先找出二次函数y=2x2﹣2x+3的对称轴为直线x=12,求得a+b=1,再把x=1代入y=2x2﹣2x+3即可.【详解】解:⊙当x=a或x=b(a≠b)时,二次函数y=2x2﹣2x+3的函数值相等,⊙以a、b为横坐标的点关于直线x=12对称,则122a b+=,⊙a+b=1,⊙x=a+b,⊙x=1,当x=1时,y=2x2﹣2x+3=2﹣2+3=3,故选D.【点睛】题考查了二次函数图象上点的坐标特征,主要利用了二次函数的对称性和对称轴公式,是基础题,熟记性质是解题的关键.18.B【分析】先确定(0,3)C 得到3OC OA ==,利用正方形的性质,由1236S S S +=得到2222163(3)2OC OB OC OA OB +++=⨯⨯⨯+,求出OB 得到0()9,B -,于是可设交点式(9)(3)y a x x =+-,然后把(0,3)C 代入求出a 即可得到b 的值.【详解】解:当0x =时,233y ax bx =++=,则(0,3)C ,3OC OA ∴==,(3,0)A ∴,1236S S S +=,2222163(3)2OC OB OC OA OB ∴+++=⨯⨯⨯+, 整理得290OB OB -=,解得9OB =,(9,0)B ∴-,设抛物线解析式为(9)(3)y a x x =+-,把(0,3)C 代入得9(3)3a ⨯⨯-=,解得19a =-, ∴抛物线解析式为1(9)(3)9y x x =-+-, 即212393y x x =--+,23b ∴=-. 故选:B .【点睛】本题考查了抛物线与x 轴的交点:把求二次函数2(y ax bx c a =++,b ,c 是常数,0)a ≠与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质和正方形的性质.19.C【分析】通过去括号、移项、合并同类项将已知方程转化为一般形式.【详解】解:由原方程,得2x-4x 2=10x-5x 2-3,则x 2-8x+3=0.故选C .【点睛】本题考查了一元二次方程的一般形式.一般地,任何一个关于x 的一元二次方程经过整理,都能化成如下形式ax 2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.20.D【分析】根据抛物线的解析式将其化为一般式,再利用抛物线的性质,求解最小值,对称轴.⊙D 的半径计算,主要是计算AB ,将y=0,带入就可以解得.【详解】解:根据抛物线的解析式y=14(x+2)(x ﹣8)将其化为一般式可得213442y x x =-- ⊙错误,抛物线的最小值是2134(4)25421444⎛⎫⨯⨯-- ⎪⎝⎭=-⨯ ;⊙正确,抛 物线的对称轴是323124--=⨯ ;⊙错误,根据y=14(x+2)(x ﹣8)可得,要使y=0,则 x=-2或8,因此(2,0)A - ,(8,0)B ,可得10AB = ,所以⊙D 的半径的半径为5;⊙错误,抛物线上不存在点E ,使四边形ACED 为平行四边形;⊙正确,直线CM 与⊙D 相切 故选D【点睛】本题主要考查二次函数的性质,二次函数的最值,对称轴,交点坐标一直是考试的重点内容,必须熟练的掌握.21.2【分析】根据反比例函数的性质,每一象限内,y 都随x 的增大而增大,则1-k<0解出k 值范围,取合适的数即可.【详解】⊙反比例函数1k y x -=,每一象限内,y 都随x 的增大而增大, ⊙1-k<0,⊙k>1,取k=2,满足题意,故答案为:2.【点睛】本题考查了反比例函数的增减性,理解反比例函数的增减性是解题的关键. 22.⊙、⊙、⊙【详解】本题考查的是由三视图判断几何体依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可. ⊙主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形; ⊙主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形; ⊙主视图左往右2列正方形的个数均依次为1,2,不符合所给图形;⊙主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故答案为⊙⊙⊙.23【分析】连接BC,连接CO并延长CO交AB于点H,切线性质定理得⊙OCD=90°,CD AB得CH⊙AB,由垂径定理可得CH垂直平分AB,可推出ABC为等边三角形,进//而得出答案.【详解】解:如图,连接BC,连接CO并延长CO交AB于点H,⊙,直线CD与O相切于点C,⊙OC⊙CD⊙⊙OCD=90°⊙//CD AB⊙⊙AHC=⊙OCD=90°⊙CH⊙AB⊙AH=BH⊙CH垂直平分AB⊙AC=BC=⊙AB AC⊙AC=BC=AB⊙ABC为等边三角形,⊙60A∠=︒,⊙cos⊙A【点睛】本题考查垂径定理、切线的性质定理等,熟练掌握垂径定理是解题的关键.24.a<c<b【分析】抛物线开口向上,可根据二次函数的性质拿出对称轴,再根据A,B,C三点横坐标到对称轴的距离判断大小关系.【详解】由题意对称轴x=-62m m-=3, A 点横坐标到对称轴的距离为3-2=1B 点横坐标到对称轴的距离为3-(-1)=4C 点横坐标到对称轴的距离为5-3=2⊙4>2>1⊙b >c >a,从小到大排列为a <c <b.【点睛】考察二次函数的性质,根据横坐标到对称轴的距离即可判断大小关系,不需要求出具体坐标.25.36【详解】如图:连接MO,因为M 为切点,所以OM⊙MC, ⊙OMC=90°,因为OA=OM,所以⊙MAO=⊙OMA= 27°,所以⊙MOC=54°,所以⊙C=90°-54°=36°26.(0,-【分析】根据A 、C 的坐标得到圆的半径长和OE 长,利用勾股定理求出OB 的长,得到点B 坐标.【详解】解:如图,连接BE ,⊙()6,0A ,()2,0C -,⊙8AC =,4BE CE ==,2OC =,⊙422OE =-=,⊙在Rt OBE 中,OB =⊙(0,B -.故答案是:(0,-.【点睛】本题考查圆的性质和平面直角坐标系,解题的关键是根据已知点坐标得到线段长,结合几何的性质求点坐标.27.答案不唯一,如【详解】试题分析:方程的根的定义:方程的根就是使方程左右两边相等的未知数的值. 答案不唯一,如.考点:一元二次方程的根的定义28.12 【分析】由已知可得a=2b ,代入式子进行计算即可.【详解】⊙a b=2, ⊙a=2b , ⊙3a 2b 3a 2b -+=6262b b b b -+=12, 故答案为12. 【点睛】本题考查了比例的性质,得出a=2b 是解题的关键.29.两【分析】二次函数2y x x 2=+-的图象与x 轴的交点个数,即是2x x 2=0+-解的个数.【详解】令2x x 2=0+-,即()()120x x -+=解得x=1或x=-2,二次函数2y x x 2=+-的图象与x 轴有两个交点.故答案为两【点睛】此题考查抛物线与坐标轴的交点,解题关键在于使函数值等于0.30.<【分析】根据反比例函数的性质即可解答.【详解】当x=2时,632y==,⊙k=6时,⊙y随x的增大而减小⊙x>2时,y<3故答案为<【点睛】此题主要考查了反比例函数的性质,解题的关键在于利用反比例函数图象上点的坐标特点判断函数值的取值范围.31.6.【分析】过点C作CE⊙BD于E构造直角三角形,由方位角确定⊙ECD=60°,在Rt⊙CED 中利用三角函数AB=CD•cos⊙ECD即可.【详解】过点C作CE⊙BD于E,由湖的南,北两端A和B⊙⊙EBA=⊙BAC=90º,又⊙BEC=90º则四边形ABCE为矩形,⊙AB=CE⊙点D位于点C的北偏东60°方向上,⊙⊙ECD=60°,⊙CD=12km,在Rt⊙CED中,⊙CE=CD•cos⊙ECD=12×12=6km,⊙AB=CE=6km.故答案为:6.【点睛】本题考查解直角三角形的应用,通过辅助线,将问题转化矩形和三角形中,利用三角函数与矩形性质便可解决是关键.32.中心【分析】皮影戏是有灯光照射下在影布上形成的投影,故是中心投影.【详解】皮影戏是有灯光照射下在影布上形成的投影,故是中心投影.【点睛】本题属于基础题,考查了投影的知识,可运用投影的知识或直接联系生活实际解答.33.3【分析】原式第一项利用零指数幂法则计算,第二项根据绝对值的代数意义去绝对值符号,第三项代入特殊角三角函数值计算,第四项利用负整数指数幂法则进行计算,最后进行加减运算即可得到结果.【详解】解:011(2019)12sin 45()3π-︒--+=123-+=13=3【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.34.24【分析】设内切圆半径为r ,根据内切圆的性质和勾股定理求出r 即可.【详解】设内切圆半径为r,则OE=OF=OD=r易知BD=BE=6,AD=AF=4⊙Rt△ABC中,AC2+BC2=(4+r)2+(6+r)2=AB2=100解得r=2,则AC=6,BC=8⊙S△ABC=24【点睛】本题考查的是三角形,熟练掌握熟练掌握三角形的内切圆是解题的关键. 35.16π.【分析】根据大圆的弦AB与小圆相切于点C,运用垂径定理和勾股定理解答.【详解】设AB切小圆于点C,连接OC,OB,⊙AB切小圆于点C,⊙OC⊙AB,⊙BC=AC=12AB=12×8=4,⊙Rt⊙OBC中,OB2=OC2+BC2,即OB2-OC2= BC2=16,⊙圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2)=16π(cm2).故答案为:16π.【点睛】本题考查了圆的切线,熟练掌握圆的切线性质定理,垂径定理和勾股定理是解决此类问题的关键.36.48πcm2【分析】根据圆锥的底面面积,得出圆锥的半径,进而利用圆锥的侧面积的面积公式求解.【详解】解:⊙圆锥的底面面积为16πcm2,⊙圆锥的半径为4cm,这个圆锥的侧面积为:212412482cm ππ⨯⨯⨯= 故答案为:48πcm 2.【点睛】本题考查了圆锥的计算,解题的关键是根据圆锥的底面面积得出圆锥的半径.37.-【分析】作DE⊙x 轴,垂足为E ,设OA=m ,则点B 坐标为(m -,根据旋转的性质求出OA=OD=m ,⊙AOD=60°,求出点D 坐标为12m ⎛⎫- ⎪ ⎪⎝⎭,构造关于m 的方程,解方程得出点B 坐标,即可求解.【详解】解:如图,作DE⊙x 轴,垂足为E ,设OA=m ,则点B 坐标为(m -, ⊙线段OA 绕点О按顺时针方向旋转60︒得到线段,OD⊙OA=OD=m ,⊙AOD=60°, ⊙1cos 2OE OD DOE m =∠=,sin DE OD DOE =∠=,⊙点D 坐标为12m ⎛⎫- ⎪ ⎪⎝⎭, ⊙点B 、D 都在反比例函数()0k y k x=≠的图象上,⊙1322m m -=, 解得124,0x x ==(不合题意,舍去),⊙点B 坐标为(-,⊙4k =--故答案为:-【点睛】本题为反比例函数与几何综合题,考查了反比例函数的性质,旋转的性质,三角函数等知识,理解反比例函数性质,构造方程,求出点B 坐标是解题关键.38.1.2cm【分析】根据图2可判断AC=3,BC=4,则可确定t=5时BP 的值,利用sinB 的值,可求出PD .【详解】解:由题图(2)可得3AC =cm ,4BC =cm ,5AB ∴=cm. 当5x =时,点P 在BC 边上,⊙5AC CP +=cm ,2BP AC BC AC CP ∴=+--=,在Rt ABC △中,3sin 5AC B AB ==, 在Rt PBD △中, 36sin 2 1.255PD BP B ∴=⋅=⨯==(cm ).【点睛】此题考查了动点问题的函数图象,解答本题的关键是根据图2得到AC 、BC 的长度.39.【分析】先分别求出k ,b 的值得到函数解析式,得到点C ,D 的坐标,勾股定理求出CD 及AB 的长,即可得到答案. 【详解】解:将点(1,5)代入k y x =,得k =5,⊙5y x=, 将点(1,5)代入y =-2x +b ,得-2+b =5,解得b =7,⊙y =-2x +7,当527x x=-+时,解得x =1或x =2.5, 当x =2.5时,y =2,⊙B (2.5,2),令y =-2x +7中x =0,得y =7;令y =0,得x =3.5,⊙C (3.5,0),B (0,7),⊙CD =⊙AB⊙BC +AD =CD -AB故答案为:【点睛】此题考查了待定系数法求函数解析式,一次函数图象与坐标轴的交点,勾股定理,正确掌握待定系数法求出解析式是解题的关键.40.15 =x,21x=-【分析】直接利用开平方的方法解一元二次方程即可得到答案.【详解】解:(1)⊙()229x-=,⊙23x-=±,解得15 =x,21x=-.【点睛】本题主要考查了解一元二次方程,解题的关键在于能够熟练掌握解一元二次方程的方法.41.(1)图象见解析;(2)-1<x<3;(3)当x<1时,y随x的增大而增大.当x>1时,y随x的增大而减小.【详解】试题分析:(1)列表,描点,连线,画出抛物线;(2)(3)根据图象回答问题即可.试题解析:(1)列表:描点、连线可得如图所示抛物线.(2)当-1<x <3时,y >0;(3)当x <1时,y 随x 的增大而增大.当x >1时,y 随x 的增大而减小.42.(1)y =﹣21322x -x +2;(2)98;(3)(﹣32,258)或(﹣3,2). 【分析】(1)由直线得到A 、C 的坐标,然后代入二次函数解析式,利用待定系数法即可得;(2)过点E 作EH ⊙AB 于点H ,由已知可得141252AB EH AB OC =⨯ ,从而可得EH 、HB 的长,然后再根据三角函数的定义即可得;(3)分情况讨论即可得.【详解】(1)令直线y =12x +2中y =0得12x +2=0解得x =-4,⊙A (-4,0),令x =0得y =2,⊙C (0,2) 把A 、C 两点的坐标代入212y x bx c =-++得, 2840c b =⎧⎨-=⎩, ⊙322b c ⎧=-⎪⎨⎪=⎩ , ⊙213222y x x =--+ ;(2)过点E 作EH ⊙AB 于点H ,由上可知B (1,0), ⊙45ABE ABC S S ∆∆=, ⊙141••252AB EH AB OC =⨯ , ⊙4855EH OC ==, 将85y =代入直线y =12x +2,解得45x =- ⊙4855E ⎛⎫- ⎪⎝⎭, ⊙49155HB =+= , ⊙90EHB ∠=︒ ⊙995cot 885HB DBA EH ∠===; (3)⊙DF ⊙AC ,⊙90DFC AOC ∠=∠=︒,⊙若DCF CAO ∠=∠,则CD//AO ,⊙点D 的纵坐标为2,把y=2代入213222y x x =--+得x=-3或x=0(舍去), ⊙D (-3,2) ;⊙若DCF ACO ∠=∠时,过点D 作DG ⊙y 轴于点G ,过点C 作CQ ⊙DG 交x 轴于点Q ,⊙90DCQ AOC ∠=∠=︒ ,⊙90DCF ACQ ACO CAO ∠+∠=∠+∠=︒,⊙ACQ CAO ∠=∠,⊙AQ CQ =,设Q (m ,0),则4m + ⊙32m =- , ⊙302Q ⎛⎫- ⎪⎝⎭,, 易证:COQ ∆⊙DCG ∆ , ⊙24332DG CO GC QO === ,设D (-4t ,3t+2)代入213222y x x =--+得t=0(舍去)或者38t =, ⊙32528D ⎛⎫- ⎪⎝⎭,. 综上,D 点坐标为(﹣32,258)或(﹣3,2) 43.(1)2k =;点B 的坐标为()1,2--(2)1m >或1m <-【分析】(1)利用待定系数法进行求值即可;(2)结合图象,可知当PC >PD ,POC △的面积大于POD 的面积,由此可知1m >或1m <-.(1)解:⊙点()1,A a 在直线2y x =上,⊙212a =⨯=,⊙点A 的坐标是()1,2, 代入函数k y x=中,得212k =⨯= ⊙直线2y x =经过原点⊙由双曲线的对称性可知,点A 与点B 关于原点对称,点B 的坐标为()1,2--; (2)如图所示:⊙点A 的坐标是()1,2,点B 的坐标为()1,2--,若POC △的面积大于POD 的面积,则:PC >PD ,结合图象可知此时:1m >或1m <-,【点睛】本题考查了一次函数与反比例函数的交点问题,待定系数法求解析式,利用函数图象性质解决问题是本题的关键.44.(1)25%;(2)室内21露天66;室内22露天62;室内23露天58;室内24露天54;【分析】(1)设平均增长率为x ,根据题意可列出关于x 的一元二次方程,解方程即可. (2)设室内车位为a 个,露天车位为b 个,根据计划投入15万元用于建若干个停车位,可列出一个关于a ,b 的方程,再根据计划露天车位数量大于室内车位数量的2倍,但小于室内数量的3.5倍,列出关于a ,b 的不等式,解不等式可求出a 的范围,因为a 是整数,所以最后的方案有有限个.【详解】(1)设平均增长率为x ,根据题意得2640(1)1000x += 解得125%4x ==或94x =-(不符合题意,舍去)。
中考数学复习考点题型专题练习3---《二元一次方程组实际应用》(解析版)
保护环境 决定 台全 混合动力 8.为了
,某市公交公司 购买一批共 10 新的
公交车,现有 A、B
台 省油 两种型号,其中每 的价格,年 量如表:
A
B
台 价格(万元/ )
a
b
节省的油量(万升/年•台)
.2 4
2
经调查 台 台 台 台 ,购买一 A 型车比购买一 B 型车多 20 万元,购买 2 A 型车比购买 3 B 型
(1)请求出 a 和 b 的值.
(2)小明家离电影院有 7 千米,他有 15 元,请问他的钱够吗?如果不够,还差多少.
米 环形跑道 点 发 匀速运动 反向而 17.在 400 的
上,甲、乙两人从同一起 同时出 做
,若
行,40
秒后 遇 向而 秒后 追 两人第一次相 ;若同 行,200 甲第一次 上乙.
速度吗 (1)你能求出甲、乙两人的
?
(2)若甲乙同向而行时,丙也在跑道上匀速前行,且与甲乙的方向一致,出发后 20 秒
追 丙 发后 秒 追 丙 发 丙 米 丙 速度 甲 上 ,出 100 乙 上 ,请问出 时, 在甲乙前方多少 ? 的 是多
少?
图 宽 形被 割 块 除 块外 余 块 18.如 ,长为 60cm, 为 xcm 的大长方 分 为 10 , A、B 两 ,其 8 是
元;
自己 提 提 金 手 (2)小亮用 的微信账户共 现 3 次,3 次 现 额和 续费分别如下:
提 第一次 现
提 第二次 现
提 第三次 现
提 金现 额(元)
a
b
+3a 2b
手续费(元)
0
.0 4
.3 4
① 程 关知识 用二元一次方 组的相
2021年九年级数学中考复习——几何小专题:三角形综合之解答题专项(三)
2021年九年级数学中考复习——几何小专题:三角形综合之解答题专项(三)练习一1.在△ABC中,AB=AC,点D是直线BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=度;(2)如图2,如果∠BAC=60°,则∠BCE=度;(3)设∠BAC=α,∠BCE=β.①如图3,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,请直接写出α,β之样的数量关系,不用证明.2.在△ABC中,∠ACB=90°,AC=BC.点D是直线AB上一点(点D与点A、B不重合),以CD为直角边作等腰直角三角形DCE,使∠DCE=90°,连结AE.(1)如图①,当点D在线段AB上,点E与点A在CD同侧.求证:AE=BD.(2)如图②,当点D在AB的延长线上,点E与点A在CD同侧.若AE=1,AB=4,则AD=.(3)如图③,当点D在BA的延长线上,点E与点A在CD的两侧时,直接写出线段AB、AD、AE三者之间的数量关系:.3.如图,在Rt△ABC中,∠ACB=90°,AC=20,BC=15,动点P从点A出发(动点P不与△ABC的顶点重合),沿折线AC﹣CB以每秒5个单位的速度向终点B运动,过点P作PD⊥AB于点D,以点P为直角顶点作Rt△PDE,使DE与点P所在的直角边平行,设点P的运动时间为t(秒).(1)求AB的长;(2)当点E落在△ABC的直角边上时,求t的值;(3)当△PDE的两条直角边所在的直线截△ABC所得的三角形全等时,求△PDE与△ABC重叠部分图形的周长;(4)设Q为边DE的中点,作射线CQ,当CQ将△PDE分成面积比为1:3两部分时,直接写出t的值.4.如图,在△ABC中,AB=AC=3,∠B=50°,点D在线段BC上运动(不与B、C 重合),连接AD,作∠ADE=50°,DE交线段AC于E.(1)当∠BDA=105°时,∠BAD=°,∠DEC=°;(2)若DC=AB,求证:△ABD≌△DCE;(3)在点D的运动过程中,是否存在△ADE是等腰三角形?若存在,请直接写出此时∠BDA的度数;若不存在,请说明理由.5.已知△ABC是等边三角形,点P,Q分别为边AB,BC上的动点(端点除外)点P,Q 以相同的速度,同时从点A,点B出发,直线AQ,CP相交于点M.(Ⅰ)如图①,求证:△ABQ≌△CAP;(Ⅱ)如图①,当点P,Q分别在AB,BC边上运动时,∠QMC的大小是否变化?若变化,请说明理由;若不变,求出它的大小;(Ⅲ)如图②,当点P,Q分别在AB,BC的延长线上运动时,∠QMC的大小是否变化?若变化,请说明理由;若不变,求出它的度数.练习二6.在Rt△ABC中,∠ACB=90°,AC=BC,点D、F是线段AB上两点,连结CD,过A作AE⊥CD于点E,过点F作FM⊥CD于点M.(1)如图1,若点E是CD的中点,求∠CAE的大小;(2)如图2,若点D是线段BF的中点,求证:CE=FM;(3)如图3,若点F是线段AB的中点,AE=,CE=1,求FM的值.7.在△ABC中,∠A=90°,AB=AC=+1.且AD=AE=1.(1)如图1,点D,E分别在边AB,AC上,连接DE.直接写出DE的值,BC的值;(2)现将△ADE如图2放置,连接CE,BE,CD,求证:CD=BE;(3)现将△ADE如图3放置,使C,A,E三点共线,延长CD交BE于点F,求证:CF垂直平分BE.8.在等腰直角△ABC中,AB=AC,∠A=90°,过点B作BC的垂线l.点P为直线AB上的一个动点(不与点A,B重合),将射线PC绕点P顺时针旋转90°交直线l 于点D.(1)如图l,点P在线段AB上,依题意补全图形.①求证:∠BDP=∠PCB;②用等式表示线段BC,BD,BP之间的数量关系,并证明.(2)点P在线段AB的延长线上,直接写出线段BC,BD,BP之间的数量关系.9.定义:点P是△ABC内部的一点,若经过点P和△ABC中的一个顶点的直线把△ABC 平分成两个面积相等的图形,则称点P是△ABC关于这个顶点的均分点,例如图1中,点P是△ABC关于顶点A的均分点.(1)下列图形中,点D一定是△ABC关于顶点B的均分点的是;(填序号)(2)在△ABC中,BC=2,AB=AC且AB>BC,点P是△ABC关于顶点A的均分点,且≤BP≤2,直接写出∠BPC的范围;(3)如图2,在△ABC中,∠BAC=90°,BC=10,点P是△ABC关于顶点A的均分点,直线AP与BC交于点D,当BP⊥AD时,BP=4,求CP的长.10.在△ABC和△DBE中,CA=CB,EB=ED,点D在AC上.(1)如图1,若∠ABC=∠DBE=60°,求证:∠ECB=∠A;(2)如图2,设BC与DE交于点F.当∠ABC=∠DBE=45°时,求证:CE∥AB;(3)在(2)的条件下,若tan∠DEC=时,求的值.练习三11.如图,△AOB是等边三角形,以直线OA为x轴建立平面直角坐标系,若B(a,b)且a、b满足+(b﹣5)2=0,D为y轴上一动点,以AD为边作等边△ADC,CB交y轴于E.(1)如图1,求A点坐标;(2)如图2,D为y正半轴上一点,C在第二象限,CE的延长线交x轴于M,当D 点在y轴正半轴上运动时,M点坐标是否变化,若不变,求M点的坐标,若变化,说明理由;(3)如图3,D在y轴负半轴上,以DA为边向右构造等边△DAC,CB交y轴于E 点,如果D点在y轴负半轴上运动时,仍保持△DAC为等边三角形,连BE,试求CE,OD,AE三者的数量关系,并证明你的结论.12.【教材呈现】数学课上,胡老师用无刻度的直尺和圆规按照华师版教材八年级上册87页完成角平分线的作法,方法如下:【试一试】如图1,∠AOB为已知角,试按下列步骤用直尺和圆规准确地作出∠AOB的平分线.第一步:在射线OA、OB上,分别截取OD、OE,使OD=OE;第二步:分别以点D和点E为圆心、适当长(大于线段DE长的一半)为半径作圆弧,在∠AOB内,两弧交于点C;第三步:作射线OC.射线OC就是所要求作的∠AOB的平分线.【问题1】胡老师用尺规作角平分线时,用到的三角形全等的判定方法是.【问题2】小萱同学发现只利用直角三角板也可以作∠AOB的角平分线,方法如下(如图2):步骤:①利用三角板上的刻度,在OA、OB上分别截取OM、ON,使OM=ON.②分别过点M、N作OM、ON的垂线,交于点P.③作射线OP,则OP为∠AOB的平分线.(1)请写出小萱同学作法的完整证明过程.(2)当∠MON=60°时,量得MN=4cm,则△MON的面积是cm2.13.某校组织数学兴趣探究活动,爱思考的小实同学在探究两条直线的位置关系查阅资料时发现,两条中线互相垂直的三角形称为“中垂三角形”.如图1、图2、图3中,AF、BE是△ABC的中线,AF⊥BE于点P,像△ABC这样的三角形均称为“中垂三角形”.【特例探究】(1)如图1,当∠PAB=45°,AB=6时,AC=,BC=;如图2,当sin∠PAB=,AB=4时,AC=,BC=;【归纳证明】(2)请你观察(1)中的计算结果,猜想AB2、BC2、AC2三者之间的关系,用等式表示出来,并利用图3证明你的结论.【拓展证明】(3)如图4,在△ABC中,AB=4,BC=2,D、E、F分别是边AB、AC、BC的中点,连结DE并延长至G,使得GE=DE,连结BG,当BG⊥AC于点M时,求GF的长.14.如图,△ABC为等边三角形,直线l经过点C,在l上位于C点右侧的点D满足∠BDC =60°.(1)如图1,在l上位于C点左侧取一点E,使∠AEC=60°,求证:△AEC≌△CDB;(2)如图2,点F、G在直线l上,连AF,在l上方作∠AFH=120°,且AF=HF,∠HGF=120°,求证:HG+BD=CF;(3)在(2)的条件下,当A、B位于直线l两侧,其余条件不变时(如图3),线段HG、CF、BD的数量关系为.15.阅读材料:小明遇到这样一个问题:如图1,在△AC中,∠A=2∠B,CD平分∠ACB,AD=2.2,AC=3.6,求BC的长.小明的想法:因为CD平分∠ACB,所以可利用“翻折”来解决该问题.即在BC边上取点E,使EC=AC,并连接DE(如图2).(1)如图2,根据小明的想法,回答下面问题:①△DEC和△DAC的关系是,判断的依据是;②△BDE是三角形;③BC的长为.(2)参考小明的想法,解决下面问题:已知:如图3,在△ABC中,AB=AC,∠A=20°,BD平分∠ABC,BD=2.3,BC =2,求AD的长.参考答案1.解:(1)∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵∠DAE=∠BAC,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△BAD≌△CAE(SAS)∴∠ABC=∠ACE=45°,∴∠BCE=∠ACB+∠ACE=90°,故答案为:90;(2)∵∠BAC=60°,AB=AC,∴△ABC为等边三角形,∴∠ABD=∠ACB=60°,∵∠BAC=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,∵∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE=60°,∴∠BCE=∠ACE+∠ACB=60°+60°=120°,故答案为:120.(3)①α+β=180°,理由:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB.∵∠ACE+∠ACB=β,∴∠B+∠ACB=β,∵α+∠B+∠ACB=180°,∴α+β=180°.②如图1:当点D在射线BC上时,α+β=180°,连接CE,∵∠BAC=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,在△ABC中,∠BAC+∠B+∠ACB=180°,∴∠BAC+∠ACE+∠ACB=∠BAC+∠BCE=180°,即:∠BCE+∠BAC=180°,∴α+β=180°,如图2:当点D在射线BC的反向延长线上时,α=β.连接BE,∵∠BAC=∠DAE,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∴∠ABD=∠ACE=∠ACB+∠BCE,∴∠ABD+∠ABC=∠ACE+∠ABC=∠ACB+∠BCE+∠ABC=180°,∵∠BAC=180°﹣∠ABC﹣∠ACB,∴∠BAC=∠BCE.∴α=β;综上所述:点D在直线BC上移动,α+β=180°或α=β.2.(1)证明:如图①,∵∠ACB=90°,∠DCE=90°,∴∠BCD+∠ACD=90°,∠ACE+∠ACD=90°,∴∠BCD=∠ACE,在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴AE=BD;(2)解:如图②,∵∠ACB=90°,∠DCE=90°,∴∠BCD+∠BCE=90°,∠ACE+∠BCE=90°,∴∠BCD=∠ACE,在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴AE=BD,∴AD=AB+BD=AB+AE=5,故答案为:5;(3)解:同(2)的证明方法可得,△BCD≌△ACE(SAS),∴AE=BD,∴AB+BD=BD=AE,故答案为:AB+AD=AE.3.解:(1)在Rt△ABC中,∠ACB=90°,AC=20,BC=15,∴AB===25;(2)如图1,P在AC上时,点E在BC上,DE∥AC,∵DE∥AC,∴∠CPE=∠DEP,∵PD⊥AB,∴∠ADP=90°,由题意得:AP=5t,sin A=,即,∴PD=3t,∴AD=4t,BD=25﹣4t,∵∠DPE=90°,∴∠APD+∠CPE=90°=∠APD+∠A,∴∠CPE=∠A=∠DEP,∴sin∠DEP=,∴DE=5t,∵DE∥AC,∴,即,解得:t=;如图2,P在BC上时,点E在AC上,DE∥BC,由题意得:CP=5t﹣20,PB=15﹣(5t﹣20)=35﹣5t,∵∠EPD=∠PDB=90°,∴EP∥AB,∵DE∥BC,∴四边形EPBD是平行四边形,∴DE=PB=35﹣5t,∵∠CEP=∠A=∠PDE,∴sin∠CEP=sin∠PDE,∴=,即,∴EP=,∴=,解得:t=;综上,t的值是或;(3)如图3,P在AC上,△PDE与△ABC重叠部分图形是△PDE,设直线PE与BC 交于点F,∵AP∥DE,AD∥PE,∴四边形APED是平行四边形,∴DE=AP=5t,AD=PE=4t,∵△ADP≌△PCF,∴PC=AD=4t,∵AC=AP+CP,即20=5t+4t,∴t=,∴△PDE的周长=PD+PE+DE=3t+4t+5t=12t=12×=,即△PDE与△ABC重叠部分图形的周长是;如图4,P在BC上,△PDE与△ABC重叠部分的图形是△PDE,设直线PE与AC交于点G,同理得:四边形DEPB是平行四边形,∴DE=PB,∵△GCP≌△PDB,∴PC=BD=5t﹣20,Rt△PDB中,cos B==,∴=,解得:t=,∴PB=35﹣5×=,∵∠C=∠PDB=90°,∠B=∠B,∴△PDB∽△ACB,∴=,∴△PDB的周长=×(15+20+25)=,∴△PDE的周长=,即△PDE与△ABC重叠部分图形的周长是;综上,△PDE与△ABC重叠部分图形的周长为或;(4)分两种情况:①如图5,P在AC上,设PE与CQ交于点O,连接PQ,∵Q是DE的中点,∴DQ=EQ=t,∴S△PDQ=S△PQE,Rt△PDE中,PD=3t,PE=4t,DE=5t,∵==,∴=,∴=,∴=1,∵DE∥CP,∴,即=1,解得:t=;②如图6,P在BC上,=,同理得:=1,∵CP=5t﹣20,PB=35﹣5t,由上题知:四边形DEPB是平行四边形,∴DE=PB=35﹣5t,∴EQ=,∵ED∥PC,∴=1,∴EQ=CP,∴=5t﹣20,解得:t=5;综上,t的值是或5.4.解:(1)∵在△BAD中,∠B=∠50°,∠BDA=105°,∴∠BAD=180°﹣∠B﹣∠BDA=180°﹣50°﹣105°=25°;∵AB=AC,∴∠B=∠C=50°,∴∠DEC=180°﹣∠C﹣∠EDC=180°﹣50°﹣25°=105°,故答案为:25,105;(2)∵∠B=∠C=50°,∴∠DEC+∠EDC=130°,又∵∠ADE=50°,∴∠ADB+∠EDC=130°,∴∠ADB=∠DEC,在△ABD和△DCE中,,∴△ABD≌△DCE(AAS).(3)当∠BDA的度数为100°或115°时,△ADE的形状是等腰三角形,①∠BDA=100°时,则∠ADC=80°,∵∠C=50°,∴∠DAC=50°,∴∠DAC=∠ADE,∴△ADE的形状是等腰三角形;②∠BDA=115°时,则∠ADC=65°,∵∠C=50°,∴∠DAC=65°,∵∠ADE=50°,∴∠AED=65°,∴∠DAC=∠AED,∴△ADE的形状是等腰三角形.5.解:(1)证明:如图1,∵△ABC是等边三角形∴∠ABQ=∠CAP=60°,AB=CA,又∵点P、Q运动速度相同,∴AP=BQ,在△ABQ与△CAP中,,∴△ABQ≌△CAP(SAS);(2)点P、Q在AB、BC边上运动的过程中,∠QMC不变.理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC是△ACM的外角,∴∠QMC=∠ACP+∠MAC=∠BAQ+∠MAC=∠BAC,∵∠BAC=60°,∴∠QMC=60°;(3)如图2,点P、Q在运动到终点后继续在射线AB、BC上运动时,∠QMC不变.理由:同理可得,△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC是△APM的外角,∴∠QMC=∠BAQ+∠APM,∴∠QMC=∠ACP+∠APM=180°﹣∠PAC=180°﹣60°=120°,即若点P、Q在运动到终点后继续在射线AB、BC上运动,∠QMC的度数为120°.6.(1)解:∵AC=BC,∠ACB=90°,∴∠CAB=∠B=45°,∵AE⊥CD,EC=ED,∴AC=AD,∴∠CAE=∠DAE=22.5°,∴∠CAE=22.5°.(2)证明:过点B作BN⊥CD交CD的延长线于点N.∴∠BNC=90°,∵AE⊥CD,∴∠CEA=∠BNC=90°,∴∠CAE+∠ACD=90°,∵∠ACB=90°,∴∠ACD+∠BCN=90°,∴∠CAE=∠BCN,在△AEC和△CNB中,,∴△AEC≌△CNB(AAS),∴CE=BN,∵FM⊥CD,BN⊥CD,∴∠FMD=∠BND=90°,∵点D是线段BF的中点,∴FD=BD,在△FMD和△BND中,,∴△FMD≌△BND(AAS),∴FM=BN,∴CE=FM.(3)解:在线段AE上取点G,使得AG=CE,连结CF、EF,如图3所示:∵AF=FB,AC=BC,∠ACB=90°,∴CF⊥AB,CF=AF,∵∠FAG+∠ADE=90°,∠ADE+∠FCE=90°,∴∠GAF=∠ECF,在△AGF和△CEF中,,∴△AGF≌△CEF(SAS),∴FG=EF,∠AFG=∠CFE,∴∠EFG=∠AFC=90°∴△EFG是等腰直角三角形,∴EG=EF,∠GEF=45°,∴∠MEF=90°﹣45°=45°,∴△EFM是等腰直角三角形,∴EF=FM,∴AE﹣CE=AE﹣AG=EG=EF=2FM=﹣1,∴FM=.7.(1)解:在Rt△ADE中,∠A=90°,AD=AE=1,∴DE===,同理,BC==2+,故答案为:;2+;(2)证明:∵∠CAB=∠DAE=90°,∴∠CAB﹣∠DAB=∠DAE﹣∠DAB,即∠CAD=∠BAE,在△CAD和△BAE中,,∴△CAD≌△BAE(SAS),∴CD=BE;(3)证明:∵C,A,E三点共线,∴CE=CA+AE=+2,∴CE=CB,∴点C在线段BE的垂直平分线上,∵BD=AB﹣AD=,DE=,∴BD=DE,∴点D在线段BE的垂直平分线上,∴CF垂直平分BE.8.解:(1)①补全图形如图1,证明:如图1,设PD与BC的交点为点E,根据题意可知,∠CPD=90°,∵BC⊥l,∴∠DBC=90°,∴∠BDP+∠BED=∠PCB+∠PEC=90°,∴∠BDP=∠PCB;②BC﹣BD=BP.证明:如图2,过点P作PF⊥BP交BC于点F,∵AB=AC,∠A=90°,∴∠ABC=45°,∴BP=BF,∠PFB=45°,∴∠PBD=∠PFC=135°,又∵∠BDP=∠PCF,∴△BPD≌△FPC(AAS),∴BD=FC,在等腰直角△BPF中,BF=BP,∴BC﹣BD=BP.(2)BD﹣BC=BP.证明:如图3,过点P作PM⊥PB交BD于点M,由(1)可知∠ABC=∠PBM=45°,∴∠PBM=∠PMB=45°,∴PB=PM,∠PBC=∠PCB=135°,同(1)可得∠PDB=∠PCB,∴△PMD≌△PBC(AAS),∴DM=BC,∵PB=PM,∠BPM=90°,∴BM=PB,∴BD﹣DM=BM=BD﹣BC=PB.9.解:(1)在图①中,∵∠BAE=∠CAE,∴点D不一定是△ABC关于顶点B的均分点;在图②中,∵BE=CE,∴点D一定是△ABC关于顶点A的均分点,但点D不一定是△ABC关于顶点B的均分点.在③中,∵∠ABE=∠CBE,AB≠BC,∴点D不一定是△ABC关于顶点B的均分点;④∵AE=CE,∴点D一定是△ABC关于顶点B的均分点.故答案为:④.(2)60°≤∠BPC≤90°.如图1,点P是△ABC关于顶点A的均分点,∵AB=AC,点P是△ABC关于顶点A的均分点,∴BD=CD,∴AD⊥BC,∵BC=2,∴BD=1,∴当∠BED=45°时,BE=,当∠BFD=30°时,BF=2BD=2,∵点P在AD上运动,且≤BP≤2,∴60°≤∠BPC≤90°.(3)解:如图2,过C点作CE⊥AP,交直线AP于点E.∵点P是△ABC关于顶点A的均分点,BC=10,∴BD=CD=5.在Rt△BPD中,∵∠BPD=90°,∴BP2+PD2=BD2.∵BP=4,BD=5,∴PD=3.∵BP⊥AP,CE⊥AP,∴∠BPD=∠CED=90°.∵∠BDP=∠CDE,∴△BPD≌△CDE(AAS).∴PD=DE,PB=CE=4.∴PE=2PD=6.在Rt△PEC中,∵∠PEC=90°,∴PE2+CE2=CP2.∴CP===.10.(1)证明:∵CA=CB,EB=ED,∠ABC=∠DBE=60°,∴△ABC和△DBE都是等边三角形,∴AB=BC,DB=BE,∠A=60°.∵∠ABC=∠DBE=60°,∴∠ABD=∠CBE,∴△ABD≌△CBE(SAS).∴∠A=∠ECB;(2)证明:∵∠ABC=∠DBE=45°,CA=CB,EB=ED,∴△ABC和△DBE都是等腰直角三角形,∴∠CAB=45°,∴,∴,∵∠ABC=∠DBE,∴∠ABD=∠CBE,∴△ABD∽△CBE,∴∠BAD=∠BCE=45°,∵∠ABC=45°,∴∠ABC=∠BCE,∴CE∥AB;(3)解:过点D作DM⊥CE于点M,过点D作DN∥AB交CB于点N,∵∠ACB=90°,∠BCE=45°,∴∠DCM=45°,∴∠MDC=∠DCM=45°,∴DM=MC,设DM=MC=a,∴a,∵DN∥AB,∴△DCN为等腰直角三角形,∴DN=DC=2a,∵tan∠DEC=,∴ME=2DM,∴CE=a,∴,∵CE∥DN,∴△CEF∽△NDF,∴.11.解:(1)如图1中,作BF⊥AO于F.∵+(b﹣5)2=0,∴a=﹣5,b=5,∴B(﹣5,5),∵BA=BO,BF⊥OA,∴FA=FO=5,∴OA=10,∴A(﹣10,0).(2)点M的坐标不发生变化.理由:如图2中,∵△ABO,△ADC都是等边三角形,∴∠OAB=∠DAC,OA=OB,AD=AC,∴∠OAD=∠BAC,∴△OAD≌△BAC,∴∠AOD=∠CBA=90°,在Rt△ABM中,∵∠ABM=90°,AB=OA=10,∠BAM=60°,∴AM=2AB=20,∴OM=AM﹣OA=10,∴M(10,0).(3)结论:OD=CE+AE.理由:如图3中,取AE的中点R,连接BR、OR.∵∠ABE=∠AOE=90°,AR=ER,∴BR=AR=RE=OR,∴A、B、E、O四点共圆,∴∠BAE=∠BOE=90°﹣60°=30°,∴BE=AE,∵△ABO,△ADC都是等边三角形,∴∠OAB=∠DAC,OA=OB,AD=AC,∴∠OAD=∠BAC,∴△OAD≌△BAC,∴OD=BC=CE+BE=CE+AE.即OD=CE+AE.12.解:【问题1】胡老师用尺规作角平分线时,用到的三角形全等的判定方法是SSS,故答案为:SSS;【问题2】(1)在Rt△OPN和Rt△OPM中,,∴Rt△OPN≌Rt△OPM(HL),∴∠NOP=∠MOP,∴OP为∠AOB的平分线;(2)∵∠MON=60°,OM=ON,∴△MON为等边三角形,∴OM=ON=MN=4(cm),∵OM=ON,OP为∠AOB的平分线,∴NH=HM=MN=2(cm),由勾股定理得,OH===2(cm),∴△MON的面积=×MN×OH=×4×2=4(cm2),故答案为:4.13.(1)解:如图1,∵AF⊥BE,∴∠APB=∠APE=∠BPF=90°,∵∠PAB=45°,AB=6,∴AP=PB=6,如图1,连接EF,∵AF,BE是△ABC的中线,∴EF是△ABC的中位线,∴EF∥AB.且EF=AB,∴,∴PE=PF=3,由勾股定理得:AE=BF===3,∴AC=BC=2AE=6,如图2,∵sin∠PAB=,AB=4,AF⊥BE,∴∠PAB=30°,∴BP=AB=2,AP=2,∵AF、BE是△ABC的中线,∴PE=PB=1,PF=AP=,由勾股定理得:AE===,BF===,∴AC=2AE=2,BC=2BF=2,故答案为:6,6,2,2;(2)解:猜想:AB2、BC2、AC2三者之间的关系是:AC2+BC2=5AB2,证明:如图3,设PF=m,PE=n则AP=2m,PB=2n,在Rt△APB中,(2m)2+(2n)2=AB2①,在Rt△APE中,(2m)2+n2=()2②,在Rt△BPF中,m2+(2n)2=()2③,由①得:m2+n2=,由②+③得:5(m2+n2)=,∴AC2+BC2=5AB2;(3)解:如图4,连接CG,EF,过点F作FN∥BG交CG于点N,FG与AC交于点Q,∵FN∥BG,BG⊥AC,∴FN⊥AC,∵F是BC的中点,∴N是CG的中点,∵D、E分别是AB、AC的中点,∴DE=FC,DE∥FC,∵ED=EG,∴EG=FC,EG∥FC,∴四边形EFCG是平行四边形,∴Q是FG的中点,∴△FCG是中垂三角形,∵AB=4,BC=2,∴CG=EF=BD=2,FC=,由(2)中结论可知:5FC2=CG2+FG2,即5×5=(2)2+FG2,∴GF=.14.(1)证明:如图1,∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,∴∠BCD+∠ACE=120°,∵∠AEC=60°,∴∠ACE+∠EAC=120°,∴∠BCD=∠EAC,∵∠AEC=∠BDC=60°,∴△AEC≌△CDB(AAS);(2)证明:如图2,在l上位于C点左侧取一点E,使∠AEC=60°,连接AE,由(1)知:△AEC≌△CDB,∴BD=CE,∵∠AEF=∠AFH=60°,∴∠AFE+∠FAE=∠AFE+∠GFH=60°,∴∠FAE=∠GFH,∵∠HGF=∠AEF=120°,AF=FH,∴∠HGF≌△FEA(AAS),∴GH=EF,∴CF=EF+CE=HG+BD;(3)解:HG=CF+BD,理由是:如图3,在l上位于C点右侧取一点E,使∠AED=60°,连接AE,在l上取一点M,使BM=BD,∵∠BDC=60°,∴△BDM是等边三角形,∴∠DBM=60°,∴∠CBM+∠ABM=∠ABM+∠ABD,∴∠ABD=∠CBM,∵∠CAB=∠BDC=60°,∠ANC=∠DNB,∴∠ACE=∠ABD=∠CBM,∵∠ACE+∠BCE=∠ACE+∠CAE=60°,∴∠CAE=∠BCE,∵AC=BC,∴△ACE≌△CBM(ASA),∴CE=BM=BD,∵∠AFH=120°,∴∠AFC+∠GFH=∠AFC+∠FAE=60°,∴∠GFH=∠FAE,∵∠HGF=∠AEF=120°,AF=FH,∴△HGF≌△FEA(AAS),∴GH=FE,∵EF=CF+CE∴HG=CF+BD.故答案为:HG=CF+BD.15.解:(1)如答图1,①在△ACD与△ECD中,,∴△ACD≌△ECD(SAS);②由①知,△ACD≌△ECD,∴AD=DE,∠A=∠DEC,∵∠A=2∠B,∴∠DEC=2∠B,∴∠B=∠EDB,∴BE=DE,∴△BDE是等腰三角形;③由①知,△ACD≌△ECD,则EC=AC=3.6,DE=AD=2.2.又∵BE=DE,∴BE=AD=2.2.∴BC=BE+EC=2.2+3.6=5.8.故答案是:①△ACD≌△ECD;SAS;②等腰;③5.8;(2)∵△ABC中,AB=AC,∠A=20°,∴∠ABC=∠C=80°,∵BD平分∠B,∴∠1=∠2=40°∠BDC=60°,如答图2,在BA边上取点E,使BE=BC=2,连接DE,则△DEB≌△DBC,∴∠BED=∠C=80°,∴∠4=60°,∴∠3=60°,在DA边上取点F,使DF=DB,连接FE,则△BDE≌△FDE,∴∠5=∠1=40°,BE=EF=2,∵∠A=20°,∴∠6=20°,∴AF=EF=2,∵BD=DF=2.3,∴AD=BD+BC=4.3.。
【初中数学】人教版九年级下册第3课时 特殊角的三角函数值(练习题)
人教版九年级下册第3课时 特殊角的三角函数值(188)1.计算:(12)−1+(sin60∘−1)0−2cos30∘+|√3−1|.2.等腰三角形的底边长为20cm ,面积为100√33cm 2,求它的各内角的度数. 3.如图,根据图中数据完成填空,再按要求答题:(1)sin 2A 1+sin 2B 1= ;sin 2A 2+sin 2B 2= ;sin 2A 3+sin 2B 3= .(2)观察上述等式,猜想:在Rt △ABC 中,若∠C =90∘,则都有sin 2A +sin 2B = . (3)如图④,在Rt △ABC 中,∠C =90∘,∠A,∠B,∠C 的对边分别是a,b,c ,利用三角函数的定义和勾股定理,证明你的猜想.(4)已知∠A +∠B =90∘,且sinA =513,求sinB 的值.4.如图,△ABC 内接于⊙O,AB,CD 为⊙O 的直径,DE ⊥AB 于点E,sinA =12,则∠D 的度数是 .5.已知∠A 为锐角,sinA =√22,则∠A 等于() A.30∘ B.45∘ C.60∘ D.75∘6.在直角三角形中,锐角α满足2sin(α+20∘)=√3,则角α的度数是() A.60∘B.80∘C.40∘D.以上都不对7.在△ABC 中,∠A ,∠B 都是锐角,若sinA =√32,cosB =12,则∠C = . 8.在△ABC 中,如果锐角∠A,∠B 满足|tanA −1|+(cosB −12)2=0,那么∠C = . 9.计算2cos 30∘−tan45∘−√(1−tan60∘)2的结果是() A.2√3−2B.0C.2√3D.210.计算:sin 260∘+cos60∘−tan45∘= .11.计算:(1)√2×(2cos45∘−sin60∘)+√244;(2)sin 30∘sin 60∘−cos 45∘−(1−tan 30∘)2−tan 45∘; (3)|−3|+√3·tan30∘−√83−(2018−π)0+(12)−1.12.用计算器计算cos44∘的结果(精确到0.01)是() A.0.90 B.0.72 C.0.69 D.0.66 13.已知tanα=0.3249,则α约为() A.17∘B.18∘C.19∘D.20∘14.用计算器求下列各式的值(结果精确到0.0001). (1)tan63∘27′; (2)cos18∘59′27″; (3)sin67∘38′24″.15.如图,已知⊙O 的两条弦AC,BD 相交于点E,∠BAC =70∘,∠C =50∘,那么sin∠AEB 的值为()A.12B.√33 C.√22 D.√3216.如图,AB 是⊙O 的直径,C 是⊙O 上的点,过点C 作⊙O 的切线交AB 的延长线于点E ,若∠A =30∘,则sinE 的值为()A.12B.√22 C.√32 D.√3317.为了方便行人推车过某天桥,市政府在10m 高的天桥一侧修建了40m 长的斜道(如图所示).我们可以借助科学计算器求这条坡道倾斜角的度数,具体按键顺序是()A.B.C. D.18.sin30∘的值为()A.12B.√32C.√22D.√3319.sin45∘−cos60∘等于()A.√32B.√3−13C.√2−12D.√3−√2220.如图,在Rt△ABC中,∠C=90∘,∠B=30∘,AB=8,则BC的长是()A.4√33B.4C.8√3D.4√321.如图,点A,B,C在⊙O上,∠ACB=30∘,则sin∠AOB的值是()A.12B.√22C.√32D.√33参考答案1.【答案】:原式=2+1−2×√32+√3−1=2.【解析】:原式=2+1−2×√32+√3−1=2.2.【答案】:如图,在△ABC中,AB=AC,BC=20cm.设等腰三角形底边上的高AD为xcm,底角为α,则有12x·20=100√33,解得x=10√33.∵tanα=10√3310=√33,∴α=30∘,∴顶角为180∘−2×30∘=120∘.∴该等腰三角形的三个内角的度数分别为30∘,30∘,120∘【解析】:如图,在△ABC中,AB=AC,BC=20cm.设等腰三角形底边上的高AD为xcm,底角为α,则有12x·20=100√33,解得x=10√33.∵tanα=10√3310=√33,∴α=30∘,∴顶角为180∘−2×30∘=120∘.∴该等腰三角形的三个内角的度数分别为30∘,30∘,120∘3(1)【答案】1;1;1【解析】:首先求出各个角的正弦值和余弦值,然后求出平方和即可.(2)【答案】1【解析】:根据第(1)结果猜想出结果. (3)【答案】∵sinA =ac ,sinB =bc ,a 2+b 2=c 2, ∴sin 2A +sin 2B =a 2c 2+b 2c 2=a 2+b 2c 2=1【解析】:利用勾股定理求出平方和. (4)【答案】∵∠A +∠B =90∘, ∴sin 2A +sin 2B =1.∵sinA =513,sin 2A +sin 2B =1,sinB >0, ∴sinB =√1−(513)2=1213【解析】:利用(3)得到的结论,代入公式求出结果4.【答案】:30∘ 【解析】:∵sinA =12, ∴∠A =30∘.∵AB 是⊙O 的直径,∴∠ACB =90∘,于是∠B =90∘−30∘=60∘. ∵OC =OB ,∴△OBC 为等边三角形,于是∠AOD =∠COB =60∘. ∵DE ⊥AB , ∴∠D =90∘−60∘=30∘6.【答案】:C【解析】:∵2sin(α+20∘)=√3,∴sin(α+20∘)=√32, ∴α+20∘=60∘, ∴α=40∘7.【答案】:60∘【解析】:∵在△ABC 中,∠A ,∠B 都是锐角,sinA =√32, cosB =12,∴∠A =∠B =60∘,∴∠C =180∘−∠A −∠B =180∘−60∘−60∘=60∘8.【答案】:75∘【解析】:∵|tanA −1|+(cosB −12)2=0, ∴|tanA −1|=0,(cosB −12)2=0, ∴tanA =1,cosB =12. ∵∠A,∠B 为锐角, ∴∠A =45∘, ∠B =60∘,∴∠C =180∘−45∘−60∘=75∘. 故答案为75∘9.【答案】:B10.【答案】:14【解析】:原式=(√32)2+12−1=34+12−1=14.11(1)【答案】原式=√2×(2×√22−√32)+2√64 =2−√62+√62=2. (2)【答案】原式=12√32−√22−|1−√33|−1=√3+√2−1+√33−1=43√3+√2−2 (3)【答案】原式=3+√3×√33−2−1+2 =3+1−2−1+2=312.【答案】:B【解析】:本题要求熟练应用计算器,对计算器显示的结果,根据近似数的概念用四舍五入法取近似数13.【答案】:B 14(1)【答案】tan63∘27′≈2.0013 【解析】:利用计算器求出结果 (2)【答案】cos18∘59′27″≈0.9456【解析】:利用计算器求出结果(3)【答案】sin67∘38′24″≈0.9248【解析】:利用计算器求出结果15.【答案】:D【解析】:∵∠B=∠C=50∘∴∠AEB=180∘−∠BAC−∠B=180∘−70∘−50∘=60∘∴sin∠AEB=sin60∘=√3 216.【答案】:A【解析】:连接OC.∵CE是⊙O的切线,∴OC⊥CE.∵∠A=30∘,∴∠BOC=2∠A=60∘,∴∠E=90∘−∠BOC=30∘,∴sinE=sin30∘=12.故选A17.【答案】:A【解析】:sinA=14=0.25,求∠A的度数的按键顺序为2ndFsin0·25=18.【答案】:A19.【答案】:C【解析】:原式=√22−12=√2−12.故选C20.【答案】:D【解析】:∵Rt△ABC中,∠C=90∘,∠B=30∘,AB=8, ∴cosB=BCAB,即cos30∘=BC8,∴BC=8×√32=4√3.故选 D21.【答案】:C【解析】:由题意,得∠AOB=2∠ACB=60∘,所以sin∠AOB=sin60∘=√32。
最新人教版九年级初中数学 第16-21题专项训练(3)
第16-21题专项训练(3)16、先化简,再求值:121)1(222++-÷-+x x x x x x ,其中160tan -︒=x .17、某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)①则a=_____________;②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.18、如图,AB 是⊙O 的直径,BC 是⊙O 的切线,D 是⊙O 上的一点,且AD ∥CO ,连结CD(1)求证:CD 是⊙O 的切线;(2)若AB=2,2=CD ,求AD 的长.(结果保留根号)19、一项工程,甲,乙两公司合作,12天可以完成;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,要使乙公司的总施工费较少,则甲公司每天的施工费应低于多少元?20、如图,在平面直角坐标系xoy中,一次函数y1=ax+b的图象分别与x,y轴交于点B,A,与反比例函数y2=mx的图象交于点C,D,CE⊥x轴于点E,tan∠ABO=12,OB=4,OE=2.(1)求一次函数与反比例函数的解析式;(2)根据图象直接写出当y1<y2时x的取值范围.21、某玩具专柜要经营一种新上市的儿童玩具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.(1)写出专柜销售这种玩具,每天所得的销售利润W(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该玩具每天的销售利润最大;(3)专柜结合上述情况,设计了A、B两种营销方案:方案A:该玩具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件玩具的利润至少为25元.请比较哪种方案的最大利润更高,并说明理由.。
九年级数学下册知识讲义-3圆内接正多边形(附练习及答案)-北师大版
一、考点突破1. 了解圆内接正多边形的有关概念。
2. 理解并掌握正多边形半径和边长、边心距、中心角之间的关系。
3. 会应用正多边形和圆的有关知识画正多边形。
二、重难点提示重点:圆内接正多边形的定义及相关性质。
难点:正多边形半径、中心角、弦心距、边长之间的关系。
考点精讲 1. 圆内接正多边形的有关概念 ① 顶点都在同一个圆上的正多边形叫做圆内接正多边形。
这个圆叫做该正多边形的外接圆。
② 正多边形的中心、半径、边心距、中心角正多边形的外接圆的圆心叫做这个正多边形的中心;正多边形的外接圆的半径叫做这个正多边形的半径;正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距;正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。
如图:五边形ABCDE 是⊙O 的内接正五边形, 圆心O 叫做这个正五边形的中心; OA 是这个正五边形的半径; OM 是这个正五边形的边心距。
AOB 叫做这个正五边形的中心角。
A E【要点诠释】① 只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。
② 求正n 边形中心角的常用方法:正n 边形有n 条边,每条边对应一个中心角,所以正n 边形的中心角为。
(正n 边形中心角度数与正n 边形的一个外角相等)2. 特殊的圆内接正多边形的半径、弦心距、边长之间的关系① 正三角形——在中进行:;② 正四边形——在中进行,;③ 正六边形——在中进行,。
D E OC OB O D B A CA A B【规律总结】正多边形的外接圆半径R 与边长a 、边心距r 之间的关系:R 2=r 2+(a )2,连接正n 边形的半径,弦心距,把正n 边形的有关计算转化为直角三角形中的问题。
典例精讲例题1 (义乌市)一张圆心角为45°的扇形纸板和圆形纸板按如下图所示方式分别剪成一个正方形,边长都为1,则扇形和圆形纸板的面积比是( )A. 5:4B. 5:2C.:2D.:思路分析:先画出图形,分别求出扇形和圆的半径,再根据面积公式求出面积,最后求出比值即可。
2021年九年级数学中考复习专题:圆的综合(考查切线证明、长度计算等)(三)
中考复习专题:圆的综合(考察切线证明、长度计算等)1.如图所示,AB是⊙O的直径,∠B=30°,弦BC=6,∠ACB的平分线交⊙O于D,连AD.(1)求直径AB的长.(2)求阴影部分的面积(结果保留π).2.如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E (1)求证:AC平分∠DAE;(2)若AB=6,BD=2,求CE的长.3.如图,⊙O的直径AB与弦CD相交于点E,且DE=CE,⊙O的切线BF与弦AD的延长线交于点F.(1)求证:CD∥BF;(2)若⊙O的半径为6,∠A=35°,求的长.4.如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF.(1)判断直线EF与⊙O的位置关系,并说明理由;(2)若∠A=30°,求证:DG=DA;(3)若∠A=30°,且图中阴影部分的面积等于2,求⊙O的半径的长.5.如图所示,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC于E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线.6.如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D 作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求DE的长.7.如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD 交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)8.已知,如图在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于D,过D作DE⊥BD 交AB于E,经过B,D,E三点作⊙O.(1)求证:AC与⊙O相切.(2)若AD=15,AE=9,求⊙O的半径.9.如图,⊙O是△ABC外接圆,AC是直径,OF∥AB,过点B⊙O的切线相交于点D,与OF的延长线交点E.(1)求证:△ABD∽△BCD;(2)若∠C=30°,求证:△OED是等腰三角形;(3)若⊙O的半径为3,cos D=,求OF的长.10.如图,AB是⊙O的直径,C是AB延长线上一点,CD与⊙O相切于点E,AD⊥CD 于点D.(1)求证:AE平分∠DAC,(2)若AB=6,∠ABE=60°,求①AD的长,②图中阴影部分的面积.11.△ABC内接于⊙O,点D在BC上,连接AD、BO,AD=AC.(1)如图1,求证:∠DAC=2∠ABO;(2)如图2,点E在弧BC上,连接AE交BC于点F,∠CAE=3∠DAE,连接BE,DE,若∠EDC=∠EBC+60°,求∠DEA的度数:(3)如图3,在(2)的条件下,若tan∠ACB=2,AE=2+1,求半径BO的长.12.如图1,△ABC内接于⊙O,连接AO,延长AO交BC于点D,AD⊥BC.(1)求证:AB=AC;(2)如图2,在⊙O上取一点E,连接BE、CE,过点A作AF⊥BE于点F,求证:EF+CE =BF;(3)如图3在(2)的条件下,在BE上取一点G,连接AG、CG,若∠AGB+∠ABC =90°,∠AGC=∠BGC,AG=6,BG=5,求EF的长.13.如图,在Rt△ABC中,∠C=90°,O为BC边上一点,以OC为半径的圆O,交AB于D点,且AD=AC.延长DO交圆O于E点,连接AE.(1)求证:DE⊥AB;(2)若DB=4、BC=8,求AE的长.14.如图,AB是⊙C的直径,M、D两点在AB的延长线上,E是⊙C的点,且DE2=DB •DA,延长AE至F,使得AE=EF,设BF=5,cos∠BED=.(1)求证:△DEB∽△DAE;(2)求DA,DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长.15.如图,AB是⊙O的直径,点C为⊙O上一点,点P是半径OB上一动点(不与O,B 重合),过点P作射线l⊥AB,分别交弦BC,于D、E两点,在射线l上取点F,使FC=FD.(1)求证:FC是⊙O的切线;(2)当点E是的中点时,①若∠BAC=60°,判断以O,B,E,C为顶点的四边形是什么特殊四边形,并说明理由;②若=,且AB=20,求OP的长.参考答案1.解:(1)∵AB为⊙O的直径,∴∠ACB=90°,∵∠B=30°,∴AB=2AC,∵AB2=AC2+BC2,∴AB2=AB2+62,∴AB=4.(2)连接OD.∵AB=4,∴OA=OD=2,∵CD平分∠ACB,∠ACB=90°,∴∠ACD=45°,∴∠AOD=2∠ACD=90°,∴S△AOD=OA•OD=•2•2=6,∴S扇形△AOD=•π•OD2=•π•(2)2=3π,∴阴影部分的面积=S扇形△AOD﹣S△AOD=3π﹣6.2.(1)证明:连接OC.∵CD是⊙O的切线,∴∠OCD=90°,∵∠AEC=90°,∴∠OCD=∠AEC,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠OAC=∠OCA,∴∠EAC=∠OAC,∴AC平分∠DAE.(2)作CF⊥AB于F.在Rt△OCD中,∵OC=3,OD=5,∴CD=4,∵•OC•CD=•OD•CF,∴CF=,∵AC平分∠DAE,CE⊥AE,CF⊥AD,∴CE=CF=.3.(1)证明:∵AB是⊙O的直径,DE=CE,∴AB⊥CD,∵BF是⊙O的切线,∴AB⊥BF,∴CD∥BF;(2)解:连接OD、OC,∵∠A=35°,∴∠BOD=2∠A=70°,∴∠COD=2∠BOD=140°,∴的长==.4.解:(1)连接OE,∵OA=OE,∴∠A=∠AEO,∵BF=EF,∴∠B=∠BEF,∵∠ACB=90°,∴∠A+∠B=90°,∴∠AEO+∠BEF=90°,∴∠OEG=90°,∴EF是⊙O的切线;(2)∵∠AED=90°,∠A=30°,∴ED=AD,∵∠A+∠B=90°,∴∠B=∠BEF=60°,∵∠BEF+∠DEG=90°,∴∠DEG=30°,∵∠ADE+∠A=90°,∴∠ADE=60°,∵∠ADE=∠EGD+∠DEG,∴∠DGE=30°,∴∠DEG=∠DGE,∴DG=DE,∴DG=DA;(3)∵AD是⊙O的直径,∴∠AED=90°,∵∠A=30°,∴∠EOD=60°,∴∠EGO=30°,∵阴影部分的面积=×r×r﹣=2﹣π.解得:r2=4,即r=2,即⊙O的半径的长为2.5.证明:(1)连接AD;∵AB是⊙O的直径,∴∠ADB=90°.又∵DC=BD,∴AD是BC的中垂线.∴AB=AC.(2)连接OD;∵OA=OB,CD=BD,∴OD∥AC.∴∠0DE=∠CED.又∵DE⊥AC,∴∠CED=90°.∴∠ODE=90°,即OD⊥DE.∴DE是⊙O的切线.6.证明:(1)连接OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O切线.(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF==4.∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.7.(1)证明:连接OD,∵BC是⊙O的切线,∴∠ABC=90°,∵CD=CB,∴∠CBD=∠CDB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODC=∠ABC=90°,即OD⊥CD,∵点D在⊙O上,∴CD为⊙O的切线;(2)在Rt△OBF中,∵∠ABD=30°,OF=1,∴∠BOF=60°,OB=2,BF=,∵OF⊥BD,∴BD=2BF=2,∠BOD=2∠BOF=120°,∴S阴影=S扇形OBD﹣S△BOD==.8.(1)证明:连接OD,如图所示:∵OD=OB,∴∠1=∠2,又∵BD平分∠ABC,∴∠2=∠3,∴∠1=∠3,∴OD∥BC,而∠C=90°,∴OD⊥AD,∴AC与⊙O相切于D点;(2)解:∵OD⊥AD,∴在RT△OAD中,OA2=OD2+AD2,又∵AD=15,AE=9,设半径为r,∴(r+9)2=152+r2,解方程得,r=8,即⊙O的半径为8.9.解:(1)如图1,连接BO,∵BD是⊙O的切线,∴∠OBD=90°,∴∠OBA+∠ABD=90°,∵AC是⊙O的直径,∴∠ABC=90°,∴∠CBO+∠OBA=90°,∴∠ABD=∠CBO,∵OB=OC,∴∠CBO=∠C,∴∠ABD=∠C,又∵∠D=∠D,∴△ABD∽△BCD;(2)证明:∵∠C=30°,OE∥AB,∠ABC=90°,∴∠BAO=60°=∠BOA=∠BOE,由(1)知OB⊥DE,∠EBO=∠DBO=90°,又∵OB=OB,∴△BOE≌△BOD(ASA),∴OE=OD,∴△OED是等腰三角形;(3)∵OE∥AB,CO=AO,∴CF=BF,∴OF是△ABC中位线,∴OF=AB,又∵在Rt△OBD中,cos∠D==,设BD=4x,则OD=5x,由勾股定理(5x)2=(4x)2+32,解得,x=1(取正值),∴DB=4,OD=5,如图2,过点B作BM⊥OA于M,则∠OMB=∠OBD=90°,又∵∠BOM=∠DOB,∴△OBM∽△ODB,∴==,∴==,∴BM=,OM=,∴AM=,∴AB==,∴OF=AB=.10.证明:(1)如图,连接OE,∵DC为切线,∴OE⊥CD,且AD⊥CD,∴OE∥AD,∴∠DAE=∠AEO,∵OE=OA,∴∠AEO=∠EAO,∴∠DAE=∠EAO,即AE平分∠DAC;(2)①∵∠ABE=60°,∠AEB=90°,∴∠EAB=30°,∠AOE=120°∴BE=AB=3,AE=BE=3∵AE平分∠DAC,∴∠DAE=∠BAE=30°,且∠D=90°∴DE=AE=,AD=DE=,②∵OA=OB=BE=3,∴S扇形AOE=π•OA2=3π,S△AOE=S△ABE=×AE•BE=,∴S阴影=S扇形AOE﹣S△AOE=3π﹣11.解:(1)连接OA,∵OA=OB,∴∠ABO=(180°﹣∠AOB),∵AD=AC,∴∠ADC=∠C,∴∠DAC=180°﹣2∠C,∵∠AOB=2∠C,∴∠DAC=180°﹣∠AOB,∴∠AOB=180°﹣∠DAC,∴∠ABO=(180°﹣∠AOB)=[180°﹣(180°﹣∠DAC)]=,即∠DAC=2∠ABO;(2)如图2,过点A作AH⊥BC于H,∵∠CAE=3∠DAE,∴∠CAD=4∠DAE,∵AD=AC,AH⊥BC,∴∠DAH=∠CAH=2∠DAE,∠ADH+∠DAH=90°,∴∠ADH+2∠DAE=90°,∵∠EDC=∠EBC+60°,∠EBC=∠EAC,∴∠EDC=∠EAC+60°=∠DAE+60°,∵∠AED+∠DAE+∠ADH+∠EDC=180°,∴∠DEA+∠DAE+∠DAE+60°+∠ADH=180°,∴∠DEA+90°+60°=180°,∴∠DEA=30°,(3)如图3,过点D作DG⊥AE交AH的延长线于点G,连接GC,OE,CE,过点B 作BN⊥AE于N,∵∠CAD=4∠DAE,AD=AC,AH⊥DC,∴∠DAH=∠CAH=2∠DAE,AH是CD的中垂线,∴∠DAE=∠FAH,∵DG⊥AE,∠DAE=∠FAH,∴∠ADG=∠AGD,∴AD=AG,且∠DAE=∠FAH,AE=AE,∴△ADE≌△AGE(SAS)∴∠AED=∠AEG=30°,DE=EG,∴∠DEG=60°,∴△DEG是等边三角形,∴DG=EG=DE,∠DGE=60°,∵AH是CD的中垂线,∴DG=GC,∴DG=GC=EG,∴点D,点G,点E在以点G为圆心,DG为半径的圆上,∴∠DCE=∠DCE=30°,∴∠BAE=∠BCE=30°,∴∠BOE=60°,且BO=OE,∴△BOE是等边三角形,∴BE=BO,∵∠BAE=30°,BN⊥AE,∴AN=BN∵∠ACB=∠AEB,∴tan∠ACB=tan∠AEB=2=,∴EN=BN,∵AE=EN+AN,∴2+1=BN+BN,∴BN=2,∴EN=1,∴BE===,∴BO=.12.证明:(1)∵AD⊥BC,AD过圆心O,∴BD=CD,且AD⊥BC,∴AB=AC;(2)如图2,在BF上截取FH=EF,连接AE,AH,∵AF⊥EH,EF=FH,∴AH=AE,∴∠AHE=∠AEH,∵AB=AC,∴∠ABC=∠ACB,且∠ACB=∠AEH,∴∠AEH=∠AHE=∠ABC=∠ACB,∴∠BAC=∠HAE,∴∠BAH=∠CAE,且AH=AE,AB=AC,∴△ABH≌△ACE(SAS)∴BH=CE,∴BF=EF+CE;(3)如图3,延长CG交⊙O于M,交AB于K,过点A作AP⊥CM于P,过点B作BN⊥CM于N,连接AE,AM,MB,∵∠AGB+∠ABC=90°,∴∠AGB=90°﹣∠ABC,∴∠AGB=2∠BAC,∵∠AGC=∠BGC,∴∠BGM=∠AGM=∠AGB,∴∠BGM=∠AGM=∠BAC,且∠BAC=∠BMC,∴∠BMG=∠BGM,∴BM=BG=5,∵∠AMC=∠ABC,∠AGM=∠BAC,∴∠GAM=∠ACB,∴∠AMG=∠MAG,∴MG=AG=6,∵BM=BG,BN⊥MG,∴MN=NG=3,∴BN===4,∵∠BMG=∠AGM,∴BM∥AG,∴=,∵AP∥BN,∴=,∴AP=,∴PG==,∴PN=PG﹣NG=,且∴PK=,KN=,∴AK==,BK==,∴AB=AK+BK=,∵AF2=AG2﹣GF2,AF2=AB2﹣BF2,∴AG2﹣GF2=AB2﹣(5+GF)2,∴GF=,∴BF=,∵MP=MG﹣PG=,∴MK=,∵∠AMC=∠ABC,∠MAB=∠BCM,∴△MAK∽△BCK,∴,∴CK=,∴GC﹣KC﹣KG=,∵∠BMC=∠BEC,∠BGM=∠CGE,∠BGM=∠BMG,∴∠CGE=∠CEG,∴CG=CE=,∵EF+CE=BF,∴EF=BF﹣CE==.13.(1)证明:连接AO.∵AD=AC,AO=AO,OD=OC,∴△AOD≌△AOC(SSS),∴∠ADO=∠ACO=90°,∴DE⊥AB.(2)解:设OD=OC=x,在Rt△OBD中,∵OB2=BD2+OD2,∴(8﹣x)2=x2+42,解得x=3,设AD=AC=y,在Rt△ACB中,∵AB2=AC2+BC2,∴(y+4)2=y2+82,∴y=6,在Rt△ADE中,AE===6.14.解:(1)∵DE2=DB•DA,∴=,又∵∠D=∠D,∴△DEB∽△DAE.(2)∵△DEB∽△DAE,∴∠DEB=∠DAE=α,∵AB是直径,∴∠AEB=90°,又AE=EF,∴AB=BF=5,∴∠BFE=∠BAE=α,则BF⊥ED交于点H,∵cos∠BED=,则BE=3,AE=4∴==,即:==,解得:BD=,DE=,则AD=AB+BD=,ED=.(3)由点F在B、E、M三点确定的圆上,则BF是该圆的直径,连接MF,∵BF⊥ED,∠BMF=90°,∴∠MFB=∠D=β,在△BED中,过点B作HB⊥ED于点H,设HD=x,则EH=﹣x,则9﹣(﹣x)2=()2﹣x2,解得:x=,则cosβ==,则sinβ=,MB=BF sinβ=5×=,DM=BD﹣MB=.15.证明:(1)连接OC,∵OB=OC,∴∠OBC=∠OCB,∵PF⊥AB,∴∠BPD=90°,∴∠OBC+∠BDP=90°,∵FC=FD∴∠FCD=∠FDC∵∠FDC=∠BDP∴∠OCB+∠FCD=90°∴OC⊥FC∴FC是⊙O的切线;(2)如图2,连接OC,OE,BE,CE,①以O,B,E,C为顶点的四边形是菱形.理由如下:∵AB是直径,∴∠ACB=90°,∵∠BAC=60°,∴∠BOC=120°,∵点E是的中点,∴∠BOE=∠COE=60°,∵OB=OE=OC∴△BOE,△OCE均为等边三角形,∴OB=BE=CE=OC∴四边形BOCE是菱形;②∵,∴设AC=3k,BC=4k(k>0),由勾股定理得AC2+BC2=AB2,即(3k)2+(4k)2=202,解得k=4,∴AC=12,BC=16,∵点E是的中点,∴OE⊥BC,BH=CH=8,∴S△OBE=OE×BH=OB×PE,即10×8=10PE,解得:PE=8,由勾股定理得OP===6.。
初三数学专题练习
清大学习吧中考数学专用资料姓名:学校:专题一:计算综合知识点: 1、二次根式(1)二次根式的概念:一般地,我们把形如)0(0≥≥a a 的式子叫做二次根式。
二次根式的实质是一个非负数数a 的算数平方根。
(2)二次根式的性质:①二次根式的非负性:0≥a ;0≥a 。
0=,则a=0,b=0;0b =,则a=0,b=0;20b =,则a=0,b=0。
②2a =(),语言叙述:一个非负数的算术平方根的平方等于这个非负数③二次根式的乘法法则)0,0(≥≥=⋅b a ab b a )0,0(≥≥=⋅b a ab mn b n a m)0,0(≥≥⋅=b a b a ab④二次根式的除法法则b a ba =).0,0(>≥b a b a n m bn a m =).0,0(>≥b a ba ba=).0,0(>≥b a(3)二次根式的加减①最简二次根式:被开放数不含分母;被开放数中不含开得尽方的因数或因式。
②同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这样的二次根式叫做同类二次根式。
③二次根式的加减:二次根式加减时,可以先将二次根式化为最简的二次根式,再将被开放数相同的根式进行合并。
,2、绝对值(1)⎪⎩⎪⎨⎧=<->=)0(0)0()0(a a a a a a(2)去绝对值①⎪⎩⎪⎨⎧<-=>-=-=+-)()(0)(b a a b b a b a b a b a b a ②⎪⎩⎪⎨⎧<+--=+>++=--=+)()0(0)0(o b a b a b a b a b a b a b a3、负整数幂①),(1*-∈⎪⎭⎫⎝⎛=N b a a a bb② )0,,,(≠∈⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛*-a N m b a a b b a mm4、三角函数5、因式分解(1)公式法:))((22b a b a b a -+=- ()2222b a b ab a +=++()2222b a b ab a -=+-(2)提取公因式法:)(c b a ac ab -=-6、解一元一次方程步骤:1.去分母:在方程两边都乘以各分母的最小公倍数;2.去括号:先去小括号,再去中括号,最后去大括号;3.移项:把含有未知数的项都移到方程的左边,其他项都移到方程右边;4.合并同类项:把方程化成ax=b(a≠0)的形式;5.系数化成1:在方程两边都除以未知数的系数a ,得到方程的解。
初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)
初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)1.32的倒数是(). A .32 B .23 C .32- D .23-2.据报道,2010年苏州市政府有关部门将在市区完成130万平⽅⽶⽼住宅⼩区综合整治⼯作.130万(即1 300 000)这个数⽤科学记数法可表⽰为().A .1.3×104B .1.3×105C .1.3×106D .1.3×1073.记n S =n a a a +++ 21,令12n n S S S T n+++=,称n T 为1a ,2a ,……,n a 这列数的“理想数”。
已知1a ,2a ,……,500a 的“理想数”为2004,那么8,1a ,2a ,……,500a 的“理想数”为(). A .2004 B .2006 C .2008 D .20104.某汽车维修公司的维修点环形分布如图。
公司在年初分配给A 、B 、C 、D 四个维修点某种配件各50件。
在使⽤前发现需将A 、B 、C 、D 四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进⾏。
那么要完成上述调整,最少的调动件次(n 件配件从⼀个维修点调整到相邻维修点的调动件次为n )为().A .15B .16C .17D .185.在2,1,0,1-这四个数中,既不是正数也不是负数的是…………………………()A )1- B )0 C )1 D )26. 2010年⼀季度,全国城镇新增就业⼈数为289万⼈,⽤科学记数法表⽰289万正确的是()A )2.89×107.B )2.89×106 .C )2.89×105..7.下⾯两个多位数1248624……、6248624……,都是按照如下⽅法得到的:将第⼀位数字乘以2,若积为⼀位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。
对第2位数字再进⾏如上操作得到第3位数字……,后⾯的每⼀位数字都是由前⼀位数字进⾏如上操作得到的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学分类汇编——折叠一、选择题1.用若干根相同的火柴棒首尾顺次相接围成一个梯形(提供的火柴棒全部用完),下列根数的火柴棒不能围成梯形的是(▲) .A.5 B.6 C.7 D.8【答案】B二、填空题1.做如下操作:在等腰三角形ABC中,AB= AC,AD平分∠BAC,交BC于点D.将△ABD作关于直线AD的轴对称变换,所得的像与△ACD重合.对于下列结论:①在同一个三角形中,等角对等边;②在同一个三角形中,等边对等角;③等腰三角形的顶角平分线、底边上的中线和高互相重合.由上述操作可得出的是(将正确结论的序号都填上).【答案】②③2.将一块正五边形纸片(图①)做成一个底面仍为正五边形且高相等的无盖纸盒(侧面均垂直于底面,见图②),需在每一个顶点处剪去一个四边形,例如图①中的四边形ABCD,则BAD的大小是_______度.【答案】72三、解答题1.(本小题满分10分)小沈准备给小陈打电话,由于保管不善,电话本上的小陈手机号码中,有两个数字已模糊不清.如果用x、y表示这两个看不清的数字,那么小陈的手机号码为139x370y580(手机号码由11个数字组成),小沈记得这11个数字之和是20的整数倍.(1)求x +y 的值;(2)求小沈一次拨对小陈手机号码的概率.【答案】(1)因为1393705803620x y x y n ++++++++++=++=(n 为正整数)双因为0909,x y ≤≤,≤≤所以0,x y +≤≤18所以3636,x y ++≤≤54即3620,n ≤≤54所以,2n =,所以4x y +=(2)因为4x y +=,且090x y ≤≤,≤≤所以有0,4;1,3;2,2;3,1;4,0x y x y x y x y x y ==========①②③④⑤,这5种情况,因此,一次拨对小陈手机号的概率为0.22.问题再现现实生活中,镶嵌图案在地面、墙面乃至于服装面料设计中随处可见.在八年级课题学习“平面图形的镶嵌”中,对于单种多边形的镶嵌,主要研究了三角形、四边形、正六边形的镶嵌问题.今天我们把正多边形....的镶嵌作为研究问题的切入点,提出其中几个问题,共同来探究.我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面.如右图中,用正方形镶嵌平面,可以发现在一个顶点O 周围围绕着4个正方形的内角.试想:如果用正六边形来镶嵌平面,在一个顶点周围应该围绕着 个 正六边形的内角.问题提出如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种不同的组合方案?问题解决猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?分析:我们可以将此问题转化为数学问题来解决.从平面图形的镶嵌中可以发现,解决问题的关键在于分析能同时用于完整镶嵌平面的两种正多边形的内角特点.具体地说,就是在镶嵌平面时,一个顶点周围围绕的各个正多边形的内角恰好拼成一个周角.验证1:在镶嵌平面时,设围绕某一点有x 个正方形和y 个正八边形的内角可以拼成一个周角.根据题意,可得方程:()82180903608x y -⨯+= ,整理得:238x y +=,我们可以找到惟一一组适合方程的正整数解为12x y =⎧⎨=⎩. 结论1:镶嵌平面时,在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.验证2:结论2:.上面,我们探究了同时用两种不同的正多边形组合镶嵌平面的部分情况,仅仅得到了一部分组合方案,相信同学们用同样的方法,一定会找到其它可能的组合方案.问题拓广请你仿照上面的研究方式,探索出一个同时用三种不同的正多边形组合进行平面镶嵌的方案,并写出验证过程.猜想3:.验证3:结论3:.【答案】解:3个; ·········· 1分验证2:在镶嵌平面时,设围绕某一点有a个正三角形和b个正六边形的内角可以拼成一个周角.根据题意,可得方程:60120360a b+=.整理得:26a b+=,可以找到两组适合方程的正整数解为22ab=⎧⎨=⎩和41ab=⎧⎨=⎩.········ 3分结论2:镶嵌平面时,在一个顶点周围围绕着2个正三角形和2个正六边形的内角或者围绕着4个正三角形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形和正六边形两种正多边形组合可以进行平面镶嵌.5分猜想3:是否可以同时用正三角形、正方形和正六边形三种正多边形组合进行平面镶嵌? ····················· 6分验证3:在镶嵌平面时,设围绕某一点有m个正三角形、n个正方形和c个正六边形的内角可以拼成一个周角. 根据题意,可得方程:6090120360m n c++=,整理得:23412m n c++=,可以找到惟一一组适合方程的正整数解为121mnc=⎧⎪=⎨⎪=⎩. ····················8分结论3:镶嵌平面时,在一个顶点周围围绕着1个正三角形、2个正方形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形、正方形和正六边形三种正多边形组合可以进行平面镶嵌.(说明:本题答案不惟一,符合要求即可.)··························10分3.如图①,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片△ABC,△A1B1C1.﹙1﹚将△ABC,△A1B1C1如图②摆放,使点A1与B重合,点B1在AC边的延长线上,连接CC1交BB1于点E.求证:∠B1C1C=∠B1BC.﹙2﹚若将△ABC,△A1B1C1如图③摆放,使点B1与B重合,点A1在AC边的延长线上,连接CC1交A1B于点F.试判断∠A1C1C与∠A1BC是否相等,并说明理由.﹙3﹚写出问题﹙2﹚中与△A1FC相似的三角形.【答案】(1)证明:由题意,知△ABC≌△A1B1C1,∴AB= A1B1,BC1=AC,∠2=∠7,∠A=∠1.∴∠3=∠A=∠1.……………………………………………………………………1分∴BC1∥AC.∴四边形ABC1C是平行四边形.………………2分∴ AB ∥CC 1.∴ ∠4=∠7=∠2. …………………………………3分 ∵ ∠5=∠6,∴ ∠B 1C 1C =∠B 1BC .……………………………4分 ﹙2﹚∠A 1C 1C =∠A 1BC . …………………………5分 理由如下:由题意,知△ABC ≌△A 1B 1C 1,∴ AB= A 1B 1,BC 1=BC ,∠1=∠8,∠A =∠2.∴ ∠3=∠A ,∠4=∠7. (6)分∵ ∠1+∠FBC =∠8+∠FBC ,∴ ∠C 1BC =∠A 1BA . …………………………7分 ∵ ∠4=21(180°-∠C 1BC ),∠A=21(180°-∠A 1BA ).∴ ∠4=∠A . …………………………………8分 ∴ ∠4=∠2. ∵ ∠5=∠6, ∴ ∠A 1C 1C =∠A 1BC .……………………………………………………………………9分﹙3﹚△C 1FB ,…………10分; △A 1C 1B ,△ACB .…………11分﹙写对一个不得分﹚4.(1)探究新知:①如图,已知AD ∥BC ,AD =BC ,点M ,N 是直线CD 上任意两点. 求证:△ABM 与△ABN 的面积相等.②如图,已知AD ∥BE ,AD =BE ,AB ∥CD ∥EF ,点M 是直线CD 上任一点,点G 是直线EF 上任一点.试判断△ABM 与△ABG 的面积是否相等,并说明理由.(2)结论应用:如图③,抛物线c+=2的顶点为C(1,4),交x轴于点A(3,0),y+bxax交y轴于点D.试探究在抛物线c+=2上是否存在除点C以外的点E,y+axbx使得△ADE与△ACD的面积相等?若存在,请求出此时点E的坐标,若不存在,请说明理由.﹙友情提示:解答本问题过程中,可以直接使用“探究新知”中的结论.﹚【答案】﹙1﹚①证明:分别过点M,N作ME⊥AB,NF⊥AB,垂足分别为点E,F.∵AD∥BC,AD=BC,∴四边形ABCD为平行四边形.∴AB∥CD.∴ ME = NF .∵S △ABM =ME AB ⋅21,S △ABN =NF AB ⋅21, ∴S △ABM= S △ABN . ……………………………………………………………………1分②相等.理由如下:分别过点D ,E 作DH ⊥AB ,EK ⊥AB ,垂足分别为H ,K .则∠DHA =∠EKB =90°.∵ AD ∥BE ,∴ ∠DAH =∠EBK . ∵ AD =BE ,∴ △DAH ≌△EBK .∴ DH =EK . ……………………………2分 ∵ CD ∥AB ∥EF ,∴S △ABM =DH AB ⋅21,S △ABG =EK AB ⋅21,∴S △ABM= S △ABG . ………………………………………………………………………3分 ﹙2﹚答:存在. …………………………………………………………………………4分 解:因为抛物线的顶点坐标是C (1,4),所以,可设抛物线的表达式为4)1(2+-=x a y . 又因为抛物线经过点A (3,0),将其坐标代入上式,得()41302+-=a ,解得1-=a . ∴ 该抛物线的表达式为4)1(2+--=x y ,即322++-=x x y . ………………………5分∴ D 点坐标为(0,3).设直线AD 的表达式为3+=kx y ,代入点A 的坐标,得330+=k ,解得1-=k . ∴ 直线AD 的表达式为3+-=x y .过C 点作CG ⊥x 轴,垂足为G ,交AD 于点H .则H 点的纵坐标为231=+-. ∴ CH =CG -HG =4-2=2. …………………………………………………………6分 设点E 的横坐标为m ,则点E 的纵坐标为322++-m m .过E 点作EF ⊥x 轴,垂足为F ,交AD 于点P ,则点P 的纵坐标为m -3,EF ∥CG .由﹙1﹚可知:若EP =CH ,则△ADE 与△ADC 的面积相等.①若E 点在直线AD 的上方﹙如图③-1﹚, 则PF =m -3,EF =322++-m m .∴ EP =EF -PF =)3(322m m m --++-=m m 32+-.∴ 232=+-m m .解得21=m ,12=m . ……………………………7分 当2=m 时,PF =3-2=1,EF=1+2=3. ∴ E 点坐标为(2,3). 同理 当m =1时,E 点坐标为(1,4),与C 点重合. ………………………………8分②若E 点在直线AD 的下方﹙如图③-2,③-3﹚,则m m m m m PE 3)32()3(22-=++---=. ……………………………………………9分∴232=-m m .解得21733+=m ,21734-=m . ………………………………10分 当2173+=m 时,E 点的纵坐标为2171221733+-=-+-;当2173-=m 时,E 点的纵坐标为2171221733+-=---.∴ 在抛物线上存在除点C 以外的点E ,使得△ADE 与△ACD 的面积相等,E 点的坐标为E 1(2,3);)21712173(2+-+,E ;)21712173(3+--,E . ……………………12分 ﹙其他解法可酌情处理﹚5.如图1,有一张菱形纸片ABCD ,AC =8, BD =6.(1)请沿着AC剪一刀,把它分成两部分,把剪开的两部分拼成一个平行四边形,在图2中用实线画出你所拼成的平行四边形;若沿着BD剪开,请在图3中用实线画出拼成的平行四边形.并直接写出这两个平行四边形的周长.(2)沿着一条直线剪开,拼成与上述两种都不全等的平行四边形,请在图4中用实线画出拼成的平行四边形.(注:上述所画的平行四边形都不能与原菱形全等)【答案】解:(1)1分周长为26 2分3分周长为22 4分(2)6分注:画法不唯一.6.(1) 如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,∠AOF=90°.求证:BE=CF.(2) 如图2,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°, EF=4.求GH的长.(3) 已知点E,H,F,G分别在矩形ABCD的边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=4.直接写出下列两题的答案:①如图3,矩形ABCD由2个全等的正方形组成,求GH的长;②如图4,矩形ABCD由n个全等的正方形组成,求GH的长(用n的代数式表示).【答案】(1) 证明:如图1,∵四边形ABCD为正方形,∴AB=BC,∠ABC=∠BCD=90°,∴∠EAB+∠AEB=90°.∵∠EOB=∠AOF=90°,∴∠FBC+∠AEB=90°,∴∠EAB=∠FBC,∴△ABE≌△BCF,∴BE=CF.(2) 解:如图2,过点A作AM//GH交BC于M,过点B作BN//EF交CD于N,AM与BN交于点O/,则四边形AMHG和四边形BNFE均为平行四边形,∴EF=BN,GH=AM,∵∠FOH=90°, AM//GH,EF//BN, ∴∠NO/A=90°,故由(1)得, △ABM≌△BCN,∴AM=BN,∴GH=EF=4.(3) ①8.②4n.7.如图1,Rt △ABC ≌Rt △EDF ,∠ACB =∠F =90°,∠A =∠E =30°.△EDF 绕着边AB 的中点D 旋转, DE ,DF 分别交线段..AC 于点M ,K .(1)观察: ①如图2、图3,当∠CDF =0° 或60°时,AM +CK _______MK (填“>”,“<”或“=”).②如图4,当∠CDF =30° 时,AM +CK ___MK (只填“>”或“<”). (2)猜想:如图1,当0°<∠CDF <60°时,AM +CK _______MK ,证明你所得到的结论.(3)如果222AM CK MK =+,请直接写出∠CDF 的度数和AMMK 的值.【答案】 (1)① =② > 分 (2)>证明:作点C 关于FD 的对称点G , 连接GK ,GM ,GD ,则CD =GD ,GK = CK ,∠GDK =∠CDK , ∵D 是AB 的中点,∴AD =CD =GD . ∵=∠A 30°,∴∠CDA =120°,∵∠EDF =60°,∴∠GDM +∠GDK =60°, ∠ADM +∠CDK =60°. ∴∠ADM =∠GDM , ∵DM =DM ,∴△ADM ≌△GDM ,∴GM =AM . ∵GM +GK >MK ,∴AM +CK >MK . (3)∠CDF =15°,23=AMMK.8.如图1是一个三棱柱包装盒,它的底面是边长为10cm 的正三角形,三个侧面都是矩形.现将宽为15cm 的彩色矩形纸带AMCN 裁剪成一个平行四边形ABCD (如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.(1)请在图2中,计算裁剪的角度∠BAD ;(2)计算按图3方式包贴这个三棱柱包装盒所需的矩形纸带的长度.【答案】(1)由图2的包贴方法知:AB 的长等于三棱柱的底边周长,∴AB =30 ∵纸带宽为15,∴sin ∠DAB =sin ∠ABM=151302AM AB==,∴∠DAB =30°.(2)在图3中,将三棱柱沿过点A 的侧棱剪开,得到如图甲的侧面展开图,将图甲种的△ABE 向左平移30cm ,△CDF 向右平移30cm ,拼成如图乙中的□ABCD , 此平行四边形即为图2中的□ABCD由题意得,知:BC =BE+CE =2CE =2×cos 30CD =︒∴所需矩形纸带的长为MB +BC =30·cos30°+.9. 观察思考某种在同一平面进行传动的机械装置如图14-1,图14-2是它的示意图.其工作原理是:滑块Q在平直滑道l上可以左右滑动,在Q滑动的过程中,连杆PQ也随之运动,并且PQ带动连杆OP绕固定点O摆动.在摆动过程中,两连杆的接点P在以OP为半径的⊙O上运动.数学兴趣小组为进一步研究其中所蕴含的数学知识,过点O作OH ⊥l于点H,并测得OH = 4分米,PQ = 3分米,OP = 2分米.解决问题(1)点Q与点O间的最小距离是分米;点Q与点O间的最大距离是分米;点Q在l上滑到最左端的位置与滑到最右端位置间的距离是分米.(2)如图14-3,小明同学说:“当点Q滑动到点H的位置时,PQ与⊙O是相切的.”你认为他的判断对吗?为什么?(3)①小丽同学发现:“当点P运动到OH上时,点P到l的距离最小.”事实上,还存在着点P到l距离最大的位置,此时,点P到l的距离是分米;②当OP绕点O左右摆动时,所扫过的区域为扇形,求这个扇形面积最大时圆心角的度数.【答案】解:(1)4 5 6;(2)不对.∵OP = 2,PQ = 3,OQ = 4,且42≠32 + 22,即OQ2≠PQ2 + OP2,∴OP与PQ不垂直.∴PQ与⊙O不相切.(3)①3;②由①知,在⊙O上存在点P,P'到l的距离为3,此时,OP将不能再向下转动,如图3.OP在绕点O左右摆动过程中所扫过的最大扇形就是P'OP.连结P'P,交OH于点D.∵PQ,P'Q'均与l垂直,且PQ =P'3Q'=,∴四边形PQ Q'P'是矩形.∴OH⊥P P',PD =P'D.由OP = 2,OD = OH-HD = 1,得∠DOP = 60°.∴∠PO P ' = 120°.∴ 所求最大圆心角的度数为120°.10. ●探究 (1) 在图1中,已知线段AB ,CD ,其中点分别为E ,F . ①若A (-1,0), B (3,0),则E 点坐标为__________; ②若C (-2,2), D (-2,-1),则F 点坐标为__________;(2)在图2中,已知线段AB 的端点坐标为A (a ,b ) ,B (c ,d ), 求出图中AB 中点D 的坐标(用含a ,b ,c ,d 的 代数式表示),并给出求解过程. ●归纳 无论线段AB 处于直角坐标系中的哪个位置, 当其端点坐标为A (a ,b ),B (c ,d ), AB 中点为D (x ,y ) 时, x =_________,y =___________.(不必证明) ●运用 在图2中,一次函数2-=x y 与反比例函数xy 3=的图象交点为A ,B . ①求出交点A ,B 的坐标;②若以A ,O ,B ,P 为顶点的四边形是平行四边形, 请利用上面的结论求出顶点P 的坐标. 【答案】解: 探究 (1)①(1,0);②(-2,21); (2)过点A ,D ,B 三点分别作x 轴的垂线,垂足分别为A ',D ',B ' ,则A A '∥B B '∥C C '.∵D 为AB 中点,由平行线分线段成比例定理得A 'D '=D 'B '.∴O D '=22ca a c a +=-+. 即D 点的横坐标是2ca +同理可得D 点的纵坐标是2db +.∴AB 中点D 的坐标为(2c a +,2db +).归纳:2c a +,2db +.运用 ①由题意得⎪⎩⎪⎨⎧=-=x y x y 32.,解得⎩⎨⎧==13y x .,或⎩⎨⎧-=-=31y x .,.∴即交点的坐标为A (-1,-3),B (3,1) . ②以AB 为对角线时,由上面的结论知AB 中点M 的坐标为(1,-1) . ∵平行四边形对角线互相平分, ∴OM =OP ,即M 为OP 的中点. ∴P 点坐标为(2,-2) .同理可得分别以OA ,OB 为对角线时, 点P 坐标分别为(4,4) ,(-4,-4) .∴满足条件的点P 有三个,坐标分别是(2,-2) ,(4,4) ,(-4,-4) .11.课题:两个重叠的正多边型,其中一个绕某一顶点旋转所形成的有关问题。