山东省菏泽市曹县博宇中学八年级下3月月考数学试卷(解析版)-教育文档

合集下载

八年级第二学期3月份月考检测数学试卷及解析

八年级第二学期3月份月考检测数学试卷及解析

八年级第二学期3月份月考检测数学试卷及解析一、选择题1.如果0,0a b <<,且6a b -= )A .6B .6-C .6或6-D .无法确定2.下列运算结果正确的是( )A 9=-B 3=C .(22= D 5=-3的倒数是( )A B .2C .D .2-4.下列各式计算正确的是( )A .6232126()b a b a b a---⋅=B .(3xy )2÷(xy )=3xyC =D .2x •3x 5=6x 65.设a b 21b a-的值为( )A 1+B 1+C 1D 16.若a ,b =,则a b 的值为( )A .12B .14C .321+D7.已知a ( )A .0B .3C .D .98.下列各式中,不正确的是( )A ><C > D 5=9.下列运算正确的是( )A =B .(28-= C 12=D 1=10.a 的值是( ) A .2B .-1C .3D .-1或311.下列运算中正确的是( )A .27?3767=B .()24423233333=== C .3313939===D .155315151÷⨯=÷=12.下面计算正确的是( ) A .3+3=33B .273=3÷C .2?3=5D .()22=2--二、填空题13.(1)已知实数a 、b 在数轴上的位置如图所示,化简()222144a a ab b +--+=_____________;(2)已知正整数p ,q 满足32016p q +=,则整数对()p q ,的个数是_______________;(3)△ABC 中,∠A=50°,高BE 、CF 所在的直线交于点O,∠BOC 的度数__________. 14.把31a a -根号外的因式移入根号内,得________ 15.已知72x =-,a 是x 的整数部分,b 是x 的小数部分,则a-b=_______ 16.若2x ﹣1=3,则x 2﹣x=_____.17.将1、2、3、6按右侧方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(9,4)表示的两数之积是______.181262_____. 19.若实数23a =-,则代数式244a a -+的值为___. 20.4x -x 的取值范围是_____三、解答题21.先阅读材料,再回答问题:因为)111=1=;因为1=,所以=1== (1= ,= ; (2⋅⋅⋅+的值.【答案】(12)9 【分析】(1)仿照例子,由1+=的值;由1+=1的值;(2)根据(1)中的规律可将每个二次根式分母有理化,可转化为实数的加减法运算,再寻求规律可得答案. 【详解】解:(1)因为1-=;因为1=1(2⋅⋅⋅+1=+⋅⋅⋅1=1019=-=.【点睛】本题考查了分母有理化,分子分母都乘以分母这两个数的差进行分母有理化是解题关键.22.先化简,再求值:24211326x x x x -+⎛⎫-÷⎪++⎝⎭,其中1x =.. 【分析】根据分式的运算法则进行化简,再代入求解. 【详解】原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭.将1x == 【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.23.计算:10099+【答案】910【解析】 【分析】先对代数式的每一部分分母有理化,然后再进行运算 【详解】10099++=21009926129900-++++=991-++-=1100- =1110- =910【点睛】本题看似计算繁杂,但只要找到分母有理化这个突破口,就会化难为易。

八年级(下)学期3月份月考检测数学试卷含解析

八年级(下)学期3月份月考检测数学试卷含解析

八年级(下)学期3月份月考检测数学试卷含解析一、选择题 1.若a 是最简二次根式,则a 的值可能是( ) A .2- B .2 C .32 D .82.若实数m 、n 满足等式402n m -+=-,且m 、n 恰好是等腰ABC 的两条边的边长,则ABC 的周长( )A .12B .10C .8D .63.下列等式正确的是( ) A .497-=- B .2(3)3-= C .2(5)5--=D .822-= 4.下列各式中,正确的是( )A .42=±B .822-=C .()233-=-D .342=5.下列各式是二次根式的是( )A .3B .1-C .35D .4π- 6.式子2x -在实数范围内有意义,则x 的取值范围是( ) A .0x <B .0xC .2xD .2x 7.设S=2222222211111111111112233499100++++++++++++,则不大于S 的最大整数[S]等于( ) A .98B .99C .100D .101 8.下列各式计算正确的是( ) A .2+3=5B .43-33=1C .2333=63⨯D .123=2÷ 9.将1、、、按图2所示的方式排列,若规定(m ,n )表示第m 排从左到右第n 个数,则(4,2)与(21,2)表示的两数的积是( )A .1B .2C .D .610.若|x 2﹣4x+4|23x y --x+y 的值为( )A .3B .4C .6D .911.若a b >3a b - )A .ab --B .-abC .a abD .-ab12.下列计算正确的是( )A=B.2-= C.22= D3=二、填空题13.若mm 3﹣m 2﹣2017m +2015=_____. 14.==________.15.甲容器中装有浓度为a,乙容器中装有浓度为b,两个容器都倒出m kg ,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m 的值为_________.16.若6x ,小数部分为y,则(2x y 的值是___.17.化简二次根式_____. 18.若a 、b 、c 均为实数,且a 、b 、c 均不为0=___________ 19.已知:可用含x=_____. 20.对于任意实数a ,b ,定义一种运算“◇”如下:a ◇b =a(a -b)+b(a +b),如:3◇2=3×(3-2)+2×(3+2)=13=_____.三、解答题21.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式a =,)111=11互为有理化因式.(1)1的有理化因式是 ;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:==24====进行分母有理化. (3)利用所需知识判断:若a =,2b =a b ,的关系是 .(4)直接写结果:)1=.【答案】(1)1;(2)7-;(3)互为相反数;(4)2019【分析】(1)根据互为有理化因式的定义利用平方差公式即可得出;(2)原式分子分母同时乘以分母的有理化因式(2,化简即可;(3)将a=(4)化简第一个括号内的式子,里面的每一项进行分母有理化,然后利用平方差公式计算即可.【详解】解:(1)∵()()1111=,∴1的有理化因式是1;(2227 -==-(3)∵2a===,2b=-,∴a和b互为相反数;(4))1 ++⨯=)11⨯=)11=20201-=2019,故原式的值为2019.【点睛】本题考查了互为有理化因式的定义及分母有理化的方法,并考查了利用分母有理化进行计算及探究相关式子的规律,本题属于中档题.22.计算(1)(4﹣3)+2(2)(3)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如表:请计算两组数据的方差.【答案】(1)6﹣3;(2)-6(3)甲的方差1.65;乙的方差0.76【解析】试题分析:(1)先去括号,再合并;(2)先进行二次根式的乘法运算,然后去绝对值合并;(3)先分别计算出甲乙的平均数,然后根据方差公式分别进行甲乙的方差.试题解析:(1)原式=4﹣3+2=6﹣3;(2)原式=﹣3﹣2+﹣3=-6;(3)甲的平均数=(0+1+0+2+2+0+3+1+2+4)=1.5,乙的平均数=(2+3+1+1+0+2+1+1+0+1)=1.2,甲的方差=×[3×(0﹣1.5)2+2×(1﹣1.5)2+3×(2﹣1.5)2+(3﹣1.5)2+(4﹣1.5)2]=1.65;乙的方差=×[2×(0﹣1.2)2+5×(1﹣1.2)2+2×(2﹣1.2)2+(3﹣1.2)2]=0.76.考点:二次根式的混合运算;方差.23.计算:11(1)÷(233【答案】(12+;(2)【分析】(1)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同;(2)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同.【详解】11解:)=31-2==【点睛】本题考查了二次根式的混合运算,二次根式的混合运算顺序与实数的混合运算顺序一样,先乘方,再乘除,最后加减,有括号时要先算括号里的或先去括号.24.先化简再求值:(a﹣22ab ba-)÷22a ba-,其中,b=1.【答案】原式=a ba b-=+【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可.【详解】原式=()()222a ab b aa ab a b-+⨯+-=()()()2·a b aa ab a b-+-=a ba b-+,当,b=1时,原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.25.计算(1))(121123-⎛⨯--⎝⎭(2)已知:11,22x y==,求22x xy y++的值.【答案】(1)28-;(2)17.【分析】(1)先利用完全平方公式和平方差公式计算二次根式的乘法、负指数幂运算,再计算二次根式的加减法即可得;(2)先求出x y +和xy 的值,再利用完全平方公式进行化简求值即可得.【详解】(1)原式()((221312⎡⎤=⨯+--⎢⎥⎣⎦, (()1475452=⨯+---230=+28=-;(2)(1119,22x y ==, 1122x y ∴+=+=, ()11119112224xy =⨯=⨯-=, 则()222x xy y x y xy ++=+-, 22=-,192=-, 17=.【点睛】本题考查了二次根式的混合运算、完全平方公式和平方差公式等知识点,熟练掌握二次根式的运算法则是解题关键.26.计算:(1;(2+2)2+2).【答案】(1-2)【分析】(1)直接化简二次根式进而合并得出答案;(2)直接利用乘法公式计算得出答案.【详解】解:(1)原式=-(2)原式=3434++-=6+.【点睛】本题考查了二次根式的运算,在进行二次根式运算时,可以运用乘法公式,运算率简化运算.27.2020(1)-【答案】1【分析】先计算乘方,再化简二次根式求解即可.【详解】2020(1)-=1=1.【点睛】本题考查了二次根式的混合运算,先把二次根式化为最简二次根式,再合并即可.28.计算:(1)()202131)()2---+ (2【答案】(1)12;(2)【分析】(1)按照负整数指数幂、0指数幂、乘方的运算法则计算即可;(2)根据二次根式的加减乘除运算法则计算即可.【详解】(1)解:原式= 9-1+4=12(2)【点睛】本题考查负整数指数幂、0指数幂、乘方以及二次根式的运算法则,熟练掌握二次根式的化简是关键.29.已知长方形的长a =b =. (1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.【答案】(1)2)长方形的周长大.【解析】试题分析:(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可.试题解析:(1)()11222223a b ⎛+=⨯=⨯⨯⨯=⨯= ⎝∴长方形的周长为 .(2)11 4.23=⨯⨯=正方形的面积也为4. 2.=周长为:428.⨯=8.>∴长方形的周长大于正方形的周长.30.02020((1)π-.【答案】【分析】本题根据零次幂,最简二次根式,整数次幂的运算规则求解即可.【详解】原式11=-=【点睛】本题考查幂的运算与二次根式的综合,需牢记非零常数的零次幂为1,二次根式运算时需化为最简二次根式,其次注意计算仔细.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】直接利用最简二次根式的定义分析得出答案.【详解】∴a ≥0,且a故选项中-2,32,8都不合题意, ∴a 的值可能是2.故选:B .此题主要考查了最简二次根式的定义,正确把握定义是解题关键.2.B解析:B【分析】先根据绝对值的非负性、二次根式的非负性求出m 、n 的值,再根据三角形的三边关系、等腰三角形的定义求出第三边长,然后根据三角形的周长公式即可得.【详解】由题意得:20,40m n -=-=,解得2,4m n ==,设等腰ABC 的第三边长为a ,,m n 恰好是等腰ABC 的两条边的边长,n m a n m ∴-<<+,即26a <<,又ABC 是等腰三角形,4a n ∴==,则ABC 的周长为24410++=,故选:B .【点睛】 本题考查了绝对值的非负性、二次根式的非负性、三角形的三边关系、等腰三角形的定义等知识点,根据三角形的三边关系和等腰三角形的定义求出第三边长是解题关键.3.B解析:B【分析】根据二次根式的性质求出每个式子的值,再得出选项即可.【详解】解:AB 3=,故本选项符合题意;C 、5=-,故本选项不符合题意;D 、=-,故本选项不符合题意;故选:B .【点睛】本题考查了二次根式的性质和化简,能熟记二次根式的性质是解此题的关键.4.B解析:B【分析】本题可利用二次根式的化简以及运算法则判断A 、B 、C 选项;利用立方根性质判断D 选项.A,故该选项错误;B==C3=,故该选项错误;D11223334=(2)2==,故该选项错误;故选:B.【点睛】本题考查二次根式以及立方根,二次根式计算时通常需要化为最简二次根式,然后按照运算法则求解即可,解题关键是细心.5.A解析:A【分析】根据二次根式定义和有意义的条件:被开方数是非负数,即可判断.【详解】解:A、符合二次根式有意义条件,符合题意;B、-1<0B选项不符合题意;C、是三次根式,所以C选项不符合题意;D、π-4<0D选项不符合题意.故选:A.【点睛】a≥0.6.D解析:D【分析】根据二次根式有意义的条件(被开方数≥0),列出不等式求解即可得到答案;【详解】即:20x-≥,解得:2x,故选:D;【点睛】本题主要考查了二次根式有意义的条件,掌握二次根式有意义即被开方数≥0是解题的关键. 7.B解析:B【分析】1111n n =+-+,代入数值,求出=99+1-1100,由此能求出不大于S 的最大整数为99.【详解】∵==()211n n n n ++=+ =111+1n n -+, ∴=1111111+11122399100-++-+++- =199+1100- =100-1100, ∴不大于S 的最大整数为99.故选B.【点睛】 1111n n =+-+是解答本题的基础.8.D解析:D【解析】不是同类二次根式,因此不能计算,故不正确.根据同类二次根式,可知4333-=3,故不正确;根据二次根式的性质,可知2333⨯=18,故不正确; 根据二次根式除法的性质,可知2733333÷=÷=,故正确.故选D.9.D解析:D【解析】(4,2)表示第4排从左向右第2个数是:,(21,2)表示第21排从左向右第2个数,可以看出奇数排最中间的一个数都是1, 第21排是奇数排,最中间的也就是这排的第1个数是1,那么第2个就是:, •=6,故选D10.A解析:A【解析】根据题意得:|x 2–4x 23x y --,所以|x 2–4x +4|=023x y --,即(x –2)2=0,2x –y –3=0,所以x =2,y =1,所以x +y =3.故选A .11.D解析:D【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可;【详解】3a b -∴-a 3b≥0∵a >b ,∴a >0,b <023=a b ab a a ab --=-,故选:D .【点睛】此题考查二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.12.C解析:C【分析】根据立方根、二次根式的加减乘除运算法则计算.【详解】A、非同类二次根式,不能合并,故错误;B、=C、22=,正确;D故选C.【点睛】本题考查二次根式、立方根的运算法则,熟练掌握基本法则是关键.二、填空题13.4030【分析】利用平方差公式化简m,整理要求的式子,将m的值代入要求的式子计算即可. 【详解】m== m==+1,∴m3-m2-2017m+2015=m2(m﹣1)﹣2017m+2015解析:4030【分析】利用平方差公式化简m,整理要求的式子,将m的值代入要求的式子计算即可.【详解】mm,∴m3-m2-2017m+2015=m2(m﹣1)﹣2017m+2015= )22017)+2015=(2017+2015﹣2=4030.故答案为4030.【点睛】本题主要考查二次根式的化简以及二次根式的混合运算.14.3【解析】设,则可化为:,∴,两边同时平方得:,即:,∴,解得:,∴.故答案为:.点睛:本题的解题要点是:设原式中的,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形解析:【解析】设24x a -====两边同时平方得:128a a +=++4=,∴3216a =,解得:12a =,===故答案为: 点睛:本题的解题要点是:设原式中的24x a -=,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形即可求得a 的值,使问题得到解决.15.【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg 溶液中纯果汁的含量,最后利用混合后果汁的浓度相等列出关系式,求出m 即可.【详解】解:根据题意,甲容器中纯果汁含量为akg ,乙容器解析:5【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg 溶液中纯果汁的含量,最后利=,求出m 即可.【详解】, 甲容器倒出mkg 果汁中含有纯果汁makg ,乙容器倒出mkg 果汁中含有纯果汁mbkg ,,=,整理得,-6b =5ma -5mb ,∴(a -b )=5m (a -b ),∴m故答案为:5 【点睛】本题考查二次根式的应用,能够正确理解题意,化简二次根式是解题的关键. 16.3【分析】先估算,再估算,根据6-的整数部分为x,小数部分为y,可得: x=2, y=,然后再代入计算即可求解.【详解】因为,所以,因为6-的整数部分为x,小数部分为y,所以x=2,解析:3【分析】先估算34<<,再估算263<<,根据6x ,小数部分为y ,可得: x =2, y=4然后再代入计算即可求解.【详解】因为34<,所以263<-<,因为6x ,小数部分为y ,所以x =2, y=4-,所以(2x y =(4416133=-=, 故答案为:3.【点睛】本题主要考查无理数整数部分和小数部分,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法. 17.【解析】根据二次根式的性质,可知a≠0,-(a+1)≥0,因此可知a≤-1,因此可知a==. 故答案为.解析:【解析】根据二次根式的性质,可知a≠0,-(a+1)≥0,因此可知a≤-1,因此可知=故答案为18.【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0时,=;当b <0时,=.故答案为:.解析:00b b 当时当时>⎨⎪<⎪⎩【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0= 当b <0=故答案为:00b b ⎧>⎪⎪⎨⎪<⎪⎩当时当时. 19.【解析】∵=,∴=== -==﹣x3+x ,故答案为:﹣x3+x. 解析:211166x x -+ 【解析】∵x =-==123=146+= -21116⎡⎤-⎢⎥⎣⎦=311166-+=﹣16x 3+116x , 故答案为:﹣16x 3+116x. 20.5【解析】◇==5.故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a 对应,b 对应,即将a=,b=,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则解析:5【解析】32==5. 故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a ,b ,即将,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则进行计算,注意最终的结果一定要化为最简二次根式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

八年级(下)学期3月份月考检测数学试卷及解析

八年级(下)学期3月份月考检测数学试卷及解析

八年级(下)学期3月份月考检测数学试卷及解析一、选择题1.下列计算正确的是( ) A .93=±B .382-=C .2(7)5=D .222=2.下列二次根式中是最简二次根式的为( ) A .12B .30C .8D .123.下列计算正确的是( ) A .42=±B .()233-=-C .()255-= D .()233-=-4.下列等式正确的是( ) A .497-=-B .2(3)3-=C .2(5)5--=D .822-=5.2的倒数是( ) A .2B .22C .2-D .22-6.已知()()44220,24,180x y x y x yx y>+=++-=、.则xy=( )A .8B .9C .10D .117.当119942x +=时,多项式()20193419971994x x --的值为( ).A .1B .1-C .20022D .20012-8.若ab <0,则代数式可化简为( )A .aB .aC .﹣aD .﹣a9.下列二次根式是最简二次根式的是( ) A 0.1 B 19C 8D 14410.若3235a =++,2610b =+a b 的值为( )A .12B .14C 23+D 610+11.32的结果是( ) A .±3B .﹣3C .3D .912.x ≥3是下列哪个二次根式有意义的条件( ) A 3x +B 13x - C 13x +D 3x -二、填空题13.若a ,b ,c 是实数,且10a b c ++=,则2b c +=________.14.3=,且01x <<=______. 15.已知aa 3+5a 2﹣4a ﹣6的值为_____.16.+的形式(,,a b c 为正整数),则abc =______.17.若6x ,小数部分为y ,则(2x y 的值是___.18.,则x+y=_______.19.对于任意实数a ,b ,定义一种运算“◇”如下:a ◇b =a(a -b)+b(a +b),如:3◇2=3×(3-2)+2×(3+2)=13=_____.20.已知4a|2|a -=_____.三、解答题21.计算:10099+【答案】910【解析】 【分析】先对代数式的每一部分分母有理化,然后再进行运算 【详解】10099++=2100992-++++=991-++-=1- =1110- =910【点睛】本题看似计算繁杂,但只要找到分母有理化这个突破口,就会化难为易。

八年级第二学期3月份月考数学试卷及解析

八年级第二学期3月份月考数学试卷及解析
10.若 成立,那么a的取值范围是( )
A. B. C. D.
11.已知实数x、y满足 ,则yx值是()
A.﹣2B.4C.﹣4D.无法确定
12.下列运算正确的是()
A. B. C. D.
二、填空题
13.已知a,b是正整数,且满足 是整数,则这样的有序数对(a,b)共有____对.
14.化简 ___________.
【答案】(1)6 ﹣3 ;(2)-6(3)甲的方差1.65;乙的方差0.76
【解析】
试题分析:(1)先去括号,再合并;
(2)先进行二次根式的乘法运算,然后去绝对值合并;
(3)先分别计算出甲乙的平均数,然后根据方差公式分别进行甲乙的方差.
试题解析:(1)原式=4 ﹣3 +2
=6 ﹣3 ;
(2)原式= ﹣3﹣2 + ﹣3
八年级第二学期3月份月考数学试卷及解析
一、选择题
1.若 ,则 的值用 、 可以表示为 ( )
A. B. C. D.
2.对于所有实数a,b,下列等式总能成立的是()
A. B.
C. D.
3.下列计算正确的是()
A. B.
C. D.
4. 的倒数是()
A. B. C. D.
5.下列式子中,是二次根式的是()
所以a-2=- .
所以(a-2)2=3,即a2-4a+4=3.
所以a2-4a=-1.
所以2a2-8a+1=2(a2-4a)+1=2×(-1)+1=-1.
请你根据小明的分析过程,解决如下问题:
(1)计算: =-.
(2)计算: +…+ ;
(3)若a= ,求4a2-8a+1的值.
【答案】(1) ,1;(2) 9;(3) 5

八年级下学期3月份月考数学试卷含解析

八年级下学期3月份月考数学试卷含解析

八年级下学期3月份月考数学试卷含解析一、选择题1.下列式子为最简二次根式的是( ) A .22a b +B.2aC .12aD .122.若a 是最简二次根式,则a 的值可能是( ) A .2-B .2C .32D .83.下列运算正确的是( ) A .732-= B .()255-=-C .1232÷=D .03812+=4.已知实数a 在数轴上的位置如图所示,则化简2||(-1)a a +的结果为( )A .1B .﹣1C .1﹣2aD .2a ﹣15.下列运算正确的是 ( )A .3223=B 235=C .233363=D 18126=6.下列运算正确的是( ) A .32-=﹣6 B31182--C 4=±2D .52=107.下列说法错误的个数是( ) ()23-32a a =;④数轴上的点都表示有理数 A .1个B .2个C .3个D .4个8.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )12325672310A .10B 41C .2D 519.已知a 为实数,则代数式227122a a -+的最小值为( ) A .0B .3C .33D .910.下列各式计算正确的是( ) A .2+3=5 B .43-33=1 C .2333=63⨯D .123=2÷11.下列二次根式中,最简二次根式是( ) A .23aB .13C . 2.5D .22a b -12.下列二次根式中是最简二次根式的是( ) A .6B .18C .27D .12二、填空题13.若m =20161-,则m 3﹣m 2﹣2017m +2015=_____.14.定义:对非负实数x “四舍五入”到个位的值记为()f x z , 即:当n 为非负整数时,如果1122n x n -<+≤,则()f x n =z .如:(0)(0.48)0f f ==z z ,(0.64)(1.49)1f f ==z z ,(4)(3.68)4f f ==z z ,试解决下列问题:①(3)f =z __________;②2(33)f +=z __________; ③222222(11)(22)(22)(33)(33)(44)f f f f f f ++++⋅++⋅++⋅+z z z z z z22(20172017)(20182018)f f +=+⋅+z z __________.15.计算(π-3)02-211(223)-4--22--()的结果为_____. 16.当x =2+3时,式子x 2﹣4x +2017=________. 17.若0xy >,则二次根式2yx x -化简的结果为________. 18.计算:()()200820092+323⋅-=_________.19.已知20n 是整数,则正整数n 的最小值为___ 20.实数a 、b 在数轴上的位置如图所示,则化简()222a b a b -+-=_____.三、解答题21.若x ,y 为实数,且y12.求x y y x ++2-xy y x +-2的值.【分析】根据二次根式的性质,被开方数大于等于0可知:1﹣4x ≥0且4x ﹣1≥0,解得x =14,此时y =12.即可代入求解. 【详解】解:要使y 有意义,必须140410x x -≥⎧⎨-≤⎩,即1414x x ⎧≤⎪⎪⎨⎪≥⎪⎩∴ x =14.当x =14时,y =12.又∵x y y x ++2-x yy x +-2=-| ∵x =14,y =12,∴ x y <y x.∴+当x =14,y =12时,原式=.【点睛】(a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.22.已知x=2,求代数式(7+x 2+(2)x【答案】2【解析】试题分析:先求出x 2,然后代入代数式,根据乘法公式和二次根式的性质,进行计算即可. 试题解析:x 2=(2)2=7﹣则原式=(7﹣+(2=49﹣48+1+3 =2+3.23.先化简,再求值:a+212a a -+,其中a =1007. 如图是小亮和小芳的解答过程.(1) 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: ; (3)先化简,再求值:269a a -+a =﹣2018. 【答案】(1)小亮(22a (a <0)(3)2013. 【解析】试题分析:(12a ,判断出小亮的计算是错误的; (22a 的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮 (22a (a <0) (3)原式=()23a -a+2(3-a )=6-a=6-(-2007)=2013.24.先化简,再求值:221a a a -+,其中3 【答案】2a-1,3【分析】先根据二次根式的性质进行化简,再代入求值即可. 【详解】 解:13a =-∴原式=1a a --=21a -当13a =-∴原式=(2131-=123-【点睛】此题主要考查化简求值,正确理解二次根式的性质是解题关键.25.计算②)21-【答案】① 【分析】①根据二次根式的加减法则计算; ②利用平方差、完全平方公式进行计算. 【详解】解:①原式=②原式=(5-2-= 【点睛】本题考查二次根式的运算,熟练掌握完全平方公式、平方差公式是关键.26.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中,b=1.【答案】原式=a ba b-=+【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可. 【详解】原式=()()222a ab b aa ab a b -+⨯+-=()()()2·a b a aa b a b -+- =a ba b-+,当,b=1时,原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关27.在一个边长为(cm 的正方形的内部挖去一个长为()cm ,cm 的矩形,求剩余部分图形的面积.【答案】 【解析】试题分析:用大正方形的面积减去长方形的面积即可求出剩余部分的面积.试题解析:剩余部分的面积为:(2﹣()=()﹣(﹣)=(cm 2). 考点:二次根式的应用28.计算:(1)-(2)【答案】(1)21 【分析】(1)先把二次根式化为最简二次根式,然后合并即可; (2)先利用二次根式的乘除法则运算,再合并即可. 【详解】解:(1)原式==(2)原式3+21==.【点睛】本题考查二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质.29.已知长方形的长a =b =. (1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.【答案】(1)2)长方形的周长大. 【解析】试题分析:(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可. 试题解析:(1)()11222223a b ⎛+=⨯=⨯⨯⨯=⨯= ⎝∴长方形的周长为 .(2)114.23=⨯⨯=正方形的面积也为4. 2.= 周长为:428.⨯=8.>∴长方形的周长大于正方形的周长.30.计算下列各题:(1(2)2-.【答案】(1)2)2-- 【分析】(1)根据二次根式的运算顺序和运算法则计算即可; (2)利用平方差、完全平方公式进行计算. 【详解】解:(1)原式==;(2)原式22(5=--+525=---2=--【点睛】本题考查二次根式的加减乘除混合运算,熟练掌握运算法则和乘法公式是关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察. 【详解】AB|a|,可以化简,故不是最简二次根式;C=D2=,可以化简,故不是最简二次根式;故选:A.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.B解析:B【分析】直接利用最简二次根式的定义分析得出答案.【详解】∴a≥0,且a故选项中-2,32,8都不合题意,∴a的值可能是2.故选:B.【点睛】此题主要考查了最简二次根式的定义,正确把握定义是解题关键.3.C解析:C【分析】由二次根式的性质,二次根式的混合运算,分别进行计算,即可得到答案.【详解】解:A A错误;B5=,故B错误;C2==,故C正确;D01213=+=,故D错误;故选:C.【点睛】本题考查了二次根式的性质,二次根式的混合运算,立方根,零指数幂,解题的关键是熟练掌握运算法则进行解题.4.A【分析】先由点a 在数轴上的位置确定a 的取值范围及a-1的符号,再代入原式进行化简即可 【详解】由数轴可知0<a <1,所以,||1a a a =+-=1,选A . 【点睛】此题考查二次根式的性质与化简,实数与数轴,解题关键在于确定a 的大小5.A解析:A 【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题. 【详解】A 、3=,故选项A 正确;B B 错误;C 、18=,故选项C 错误;D =D 错误; 故选:A . 【点睛】本题考查了二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.6.B解析:B 【分析】分别根据负整数指数幂的运算、立方根和算术平方根的定义及二次根式的乘法法则逐一计算可得. 【详解】 A 、3311228-==,此选项计算错误;B 12=-,此选项计算正确;C 2=,此选项计算错误;D 、,此选项计算错误; 故选:B . 【点睛】本题考查了负整数指数幂、立方根和算术平方根及二次根式的乘法,熟练掌握相关的运算法则是解题的关键.7.C【分析】根据无理数定义判断①;根据平方根的算法判断②;利用二次根式的性质化简判断③;根据数轴的特点,判断④.【详解】无限不循环小数才是无理数,①错误;3=,3的平方根是②正确;a=,③错误;数轴上的点可以表示所有有理数和无理数,④错误故选:C.【点睛】本题考查无理数的定义、平方根的计算、二次根式的性质以及数轴表示数,紧抓相关定义是解题关键.8.B解析:B【解析】【分析】由图形可知,第n(n =案.【详解】由图形可知,第n(n =∴第8=,则第9行从左至右第5=,故选B.【点睛】本题主要考查数字的变化类,解题的关键是根据题意得出第n行最后一个数为9.B解析:B【解析】=,可知当(a﹣3)2=0,即a=3故选B.10.D解析:D【解析】试题分析:根据同类二次根式,可知2与3不是同类二次根式,因此不能计算,故不正确.-=3,故不正确;根据同类二次根式,可知4333⨯=18,故不正确;根据二次根式的性质,可知2333÷=÷=,故正确.根据二次根式除法的性质,可知2733333故选D.11.A解析:A【解析】试题分析:最简二次根式是指不能继续化简的二次根式,A、原式=;B、是最简二次根式,不能化简;C、原式=;D、原式=.考点:最简二次根式12.A解析:A【分析】根据最简二次根式的定义判断即可.【详解】A6是最简二次公式,故本选项正确;B1832C2733D12=23故选A.【点睛】本题考查了最简二次根式,掌握最简二次根式的定义是解题的关键.二、填空题13.4030【分析】利用平方差公式化简m,整理要求的式子,将m的值代入要求的式子计算即可. 【详解】m== m==+1,∴m3-m2-2017m+2015=m2(m ﹣1)﹣2017m+2015解析:4030【分析】利用平方差公式化简m ,整理要求的式子,将m 的值代入要求的式子计算即可.【详解】mm , ∴m 3-m 2-2017m +2015=m 2(m ﹣1)﹣2017m +2015= )22017)+2015=(2017+2015﹣2=4030.故答案为4030.【点睛】本题主要考查二次根式的化简以及二次根式的混合运算.14.3【解析】1、;2、根据题意,先推导出等于什么,(1)∵,∴,(2)再比较与的大小关系,①当n=0时,;②当为正整数时,∵,∴,∴,综合(1)、(2)可得:,解析:320172018【解析】1、(1.732)2z z f f ==;2、根据题意,先推导出f 等于什么,(1)∵2221142n n n n n ⎛⎫+<++=+ ⎪⎝⎭,12n <+,(2)12n -的大小关系,①当n=012n >-; ②当n 为正整数时,∵2212n n n ⎛⎫+-- ⎪⎝⎭1204n =->, ∴2212n n n ⎛⎫+>- ⎪⎝⎭,12n >-,综合(1)、(2)可得:1122n n -<+,∴f n =z ,∴3f =z .3、∵f n =z ,∴(2017z f +111112233420172018=++++⨯⨯-⨯ 111111112233420172018=-+-+-++- 112018=-20172018=. 故答案为(1)2;(2)3;(3)20172018. 点睛:(1)解第②小题的关键是应用“完全平方公式”和“作差的方法”分别证明到当n 为非负整数时,1122n n -<+,从而得到f n =z ;(2)解题③的要点是:当n 为正整数时,111(1)1n n n n =-++. 15.﹣6【解析】根据零指数幂的性质,二次根式的性质,负整指数幂的性质,可知(π-3)0=1﹣(3﹣2)﹣4×﹣4=1﹣3+2﹣2﹣4=﹣6.故答案为﹣6.解析:﹣6【解析】根据零指数幂的性质01(0)a a =≠,二次根式的性质,负整指数幂的性质1(0)pp a a a -=≠,可知(π-3)0-21-2()=1﹣(3﹣)﹣4×2﹣4=1﹣﹣﹣4=﹣6. 故答案为﹣6.16.2016【解析】把所求的式子化成(x ﹣2)2+2013然后代入式子计算,即可得到:x2﹣4x+2017=(x ﹣2)2+2013 =()2+2013=3+2013=2016.故答案是:2016.解析:2016【解析】把所求的式子化成(x ﹣2)2+2013然后代入式子计算,即可得到:x 2﹣4x+2017=(x ﹣2)2+2013 =2+2013=3+2013=2016.故答案是:2016.点睛:此题主要考查了配方法的应用,解题关键是把式子配成完全平方,然后整体代入即可求解,考查了学生对整体思想的认识和应用,学生对整体思想不熟时出错的主要原因.17.-【分析】首先判断出x ,y 的符号,再利用二次根式的性质化简求出答案.【详解】解:∵,且有意义,∴,∴.故答案为.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是 解析:【分析】首先判断出x ,y 的符号,再利用二次根式的性质化简求出答案.【详解】解:∵0xy >∴00x y <,<,∴x ==.故答案为.【点睛】 此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.即(0)(0)a a a a a ≥⎧==⎨-<⎩=(a ≥0,b >0). 18.【解析】原式==19.5【分析】因为是整数,且,则5n 是完全平方数,满足条件的最小正整数n 为5.【详解】∵,且是整数,∴是整数,即5n 是完全平方数;∴n 的最小正整数值为5.故答案为5.【点睛】主要考查了解析:5【分析】,则5n 是完全平方数,满足条件的最小正整数n 为5.【详解】∴是整数,即5n 是完全平方数;∴n 的最小正整数值为5.故答案为5.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.20.﹣2a【分析】首先根据实数a 、b 在数轴上的位置确定a 、b 的正负,然后利用二次根式的性质化简,最后合并同类项即可求解.【详解】依题意得:a<0<b,|a|<|b|,∴=-a-b+b-a=-解析:﹣2a【分析】首先根据实数a、b在数轴上的位置确定a、b的正负,然后利用二次根式的性质化简,最后合并同类项即可求解.【详解】依题意得:a<0<b,|a|<|b|,.故答案为-2a.【点睛】此题主要考查了二次根式的性质与化简,其中正确利用数轴的已知条件化简是解题的关键,同时也注意处理符号问题.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

八年级(下)学期3月份月考数学试卷及解析

八年级(下)学期3月份月考数学试卷及解析

八年级(下)学期3月份月考数学试卷及解析一、选择题1.下列运算中,正确的是 ( )A .53-23=3B .22×32=6 C.33÷3=3D .23+32=55 2.下列计算正确的是( )A .325+=B .1233-=C .326D .1234÷= 3.下列各式计算正确的是( ) A .2+3=5 B .43﹣33=1 C .27÷3=3D .23×33=6 4.下列二次根式中,是最简二次根式的是( )A .15B .8C .13D .265.已知实数a 在数轴上的位置如图所示,则化简2||(-1)a a +的结果为( )A .1B .﹣1C .1﹣2aD .2a ﹣1 6.下列各式一定成立的是( ) A 2()a b a b +=+B 222(1)1a a +=+C 22(1)1a a -=-D 2()ab ab = 7.已知m 、n 2m 5nm ,n )为( )A .(2,5)B .(8,20)C .(2,5),(8,20)D .以上都不是 8.如果关于x 的不等式组0,2223x m x x -⎧>⎪⎪⎨-⎪-<-⎪⎩的解集为2x >3m -则符合条件的所有整数m 的个数是( ).A .5B .4C .3D .29.已知1200722007n n x =⋅,n 是大于1的自然数,那么(21nx x +的值是( ). A .12007 B .12007- C .()112007n - D .()112007n --10.设1199++S 的最大整数[S]等于( ) A .98B .99C .100D .101 11.下列各式中,不正确的是( )A ><C > D 5=12.x y x x y >=->+中,二次根式有( )A .2个B .3个C .4个D .5个 二、填空题13.实数a 、b 10-b 4-b-2=+,则22a b +的最大值为_________.14.已知函数1x f x x ,那么1f _____.15的最小值是______.16.若2x ﹣x 2﹣x=_____.17.化简二次根式_____.18.已知|a ﹣2007=a ,则a ﹣20072的值是_____.19.x 的取值范围是______.20.a ,小数部分是b b -=______.三、解答题21.先阅读下列解答过程,然后再解答:,a b ,使a b m +=,ab n =,使得22m +==)a b ==>7,12m n ==,由于437,4312+=⨯=,即:227+=,=2===+。

八年级第二学期3月份月考数学试卷及解析

八年级第二学期3月份月考数学试卷及解析

八年级第二学期3月份月考数学试卷及解析一、选择题1.下列式子中,属于最简二次根式的是( )A B C D2.)5=( )A .5+B .5+C .5+D .3.下列二次根式中,是最简二次根式的是( )A BC D4.下列各式是二次根式的是( )A B C D 5.下列各式一定成立的是( )A 2a b =+B 21a =+C 21a =-D ab =6.m 能取的最小整数值是( ) A .m = 0B .m = 1C .m = 2D .m = 37.x 的取值范围是( ) A .x≥2020 B .x≤2020C .x> 2020D .x< 20208.下列计算正确的是( )A =B 1-=C =D 6==9.关于代数式12a a ++,有以下几种说法, ①当3a =-时,则12a a ++的值为-4.②若12a a ++值为2,则a = ③若2a >-,则12a a ++存在最小值且最小值为0. 在上述说法中正确的是( ) A .①B .①②C .①③D .①②③10.下列运算中错误的是( )A =B =C 2÷=D .2 (3=11.已知m =12+,n =12-,则代数式223m n mn +-的值为 ( ) A .±3 B .3C .5D .9 12.下列各式中,一定是二次根式的是( )A .1-B .4xC .24a -D .2a二、填空题13.设42-的整数部分为 a,小数部分为 b.则1a b-= __________________________. 14.将2(3)(0)3a a a a-<-化简的结果是___________________.15.化简322+=___________.16.已知2216422x x ---=,则22164x x -+-=________. 17.实数a ,b 在数轴上的位置如图所示,则化简()22b a b +-﹣|a +b |的结果是_____.18.化简:321x19.使式子32xx -+有意义的x 的取值范围是______. 20.观察分析下列数据:0,36,-3,231532的规律得到第10个数据应是__________.三、解答题21.计算: (112﹣133 (22153)15 (3)244x -﹣12x -. 【答案】(1)322+65(3)-12x + 【解析】分析:(1)根据二次根式的运算,先把各二次根式化为最简二次根式,再合并同类二次根式即可;(2)根据乘法的分配律以及二次根式的性质进行计算即可;(3)根据异分母的分式的加减,先因式分解,再通分,然后按同分母的分式进行加减计算,再约分即可.详解:(1(2)(3)24142x x --- =41(2)(2)2x x x -+--= 42(2)(2)(2)(2)x x x x x +-+-+-=2(2)(2)xx x -+-=12x -+ 点睛:此题主要考查了二次根式的运算和分式的加减运算,熟练应用运算法则和运算律以及二次根式的性质进行计算是解题关键.22.计算 (1)(4﹣3)+2(2)(3)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如表:请计算两组数据的方差. 【答案】(1)6﹣3;(2)-6(3)甲的方差1.65;乙的方差0.76【解析】试题分析:(1)先去括号,再合并;(2)先进行二次根式的乘法运算,然后去绝对值合并;(3)先分别计算出甲乙的平均数,然后根据方差公式分别进行甲乙的方差.试题解析:(1)原式=4﹣3+2=6﹣3; (2)原式=﹣3﹣2+﹣3=-6;(3)甲的平均数=(0+1+0+2+2+0+3+1+2+4)=1.5,乙的平均数=(2+3+1+1+0+2+1+1+0+1)=1.2,甲的方差=×[3×(0﹣1.5)2+2×(1﹣1.5)2+3×(2﹣1.5)2+(3﹣1.5)2+(4﹣1.5)2]=1.65; 乙的方差=×[2×(0﹣1.2)2+5×(1﹣1.2)2+2×(2﹣1.2)2+(3﹣1.2)2]=0.76.考点: 二次根式的混合运算;方差.23.(1)计算:(2)先化简,再求值:(()8a a a a +--,其中14a =.【答案】(1)2)82-a ,【分析】(1)分别根据二次根式的除法法则、二次根式的性质、二次根式的乘法法则计算和化简各项,再合并同类二次根式即可;(2)分别根据平方差公式和单项式乘以多项式的法则计算各项,再把a 的值代入化简后的式子计算即可. 【详解】(1)==;(2)(()8a a a a +--2228a a a =--+82a =-,当14a =时,原式1824⎫=⨯-=⎪⎭.【点睛】本题考查了整式的乘法和二次根式的混合运算,属于常考题型,熟练掌握基本知识是解题的关键.24.计算(2)2;(4)【答案】(1)2)9-;(3)1;(4)【分析】(1)根据二次根式的性质和绝对值的代数意义进行化简后合并即可;(2)根据完全平方公式进行计算即可;(3)根据二次根式的乘除法法则进行计算即可;(4)先进行乘法运算,再合并即可得到答案.【详解】解:==(2)2=22-=63-=9-=1;(4)===【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.25.观察下列各式.====……根据上述规律回答下列问题.(1)接着完成第⑤个等式: _____;n n≥的式子写出你发现的规律;(2)请用含(1)(3)证明(2)中的结论.=+3)见解析【答案】(1=2(n【分析】(1)当n=5==+(2(n(3)直接根据二次根式的化简即可证明.【详解】解:(1==+(2(n(3=(n==+【点睛】此题主要考查探索数与式的规律,熟练发现规律是解题关键.26.在一个边长为(cm的正方形的内部挖去一个长为()cm,cm的矩形,求剩余部分图形的面积.【答案】【解析】试题分析:用大正方形的面积减去长方形的面积即可求出剩余部分的面积.试题解析:剩余部分的面积为:(2﹣()=()﹣(﹣)=(cm2).考点:二次根式的应用27.(1)已知a2+b2=6,ab=1,求a﹣b的值;(2)已知b=,求a2+b2的值.【答案】(1)±2;(2)2.【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(2)先分母有理化,再根据完全平方公式和平方差公式即可求解.【详解】(1)由a2+b2=6,ab=1,得a2+b2-2ab=4,(a-b)2=4,a-b=±2.(2)a===b===2222()22312a b a b ab+=+-=-=-=⎝⎭【点睛】本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.28.已知a,b(1)求a2﹣b2的值;(2)求ba+ab的值.【答案】(1);(2)10【分析】(1)先计算出a+b、a-b的值,然后将所求的式子因式分解后利用整体代入思想代入数值进行计算即可;(2)先计算ab的值,然后将所求的式子通分,分子进行变形后利用整体代入思想代入相关数值进行计算即可.【详解】(1)∵a b,∴a+ba﹣b=,∴a2﹣b2=(a+b)(a﹣b)==;(2)∵a b,∴ab=)×)=3﹣2=1,则原式=22b aab+=()22a b abab+-=(2211-⨯=10.【点睛】本题考查了二次根式的化简求值,熟练掌握整体代入思想是解题的关键.29.先化简,再求值:2443(1)11m mmm m-+÷----,其中2m=.【答案】22mm-+1.【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m的值代入计算可得.详解:原式=221 mm--()÷(31m-﹣211mm--)=221 mm--()÷2 41m m--=221 mm--()•122mm m--+-()()=﹣22 mm-+=22mm -+当m﹣2时,原式===﹣1+=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.30.计算:(1;(2+2)2+2).【答案】(1-2)【分析】(1)直接化简二次根式进而合并得出答案;(2)直接利用乘法公式计算得出答案.【详解】解:(1)原式=-++-=6+.(2)原式=3434【点睛】本题考查了二次根式的运算,在进行二次根式运算时,可以运用乘法公式,运算率简化运算.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据直角二次根式满足的两个条件进行判断即可.【详解】被开方数中含能开得尽方的因数,不是最简二次根式,故选项A错误;=被开方数中含分母,不是最简二次根式,故选项B错误;3=被开方数中含能开得尽方的因数,不是最简二次根式,故选项C错误;是最简二次根式,故选项D正确.故选D.【点睛】本题考查的是最简二次根式的概念,满足(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式两个条件的二次根式是最简二次根式.2.B解析:B【分析】根据乘法分配律可以解答本题.【详解】)5=5+故选:B.【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.3.D解析:D【分析】最简二次根式的被开方数中不含能开得尽方的因数或因式,其中小数要转化为分数,分数中分母不可以是二次根式,注意这几点即可得出答案.【详解】ABC,不是最简二次根式,故本选项不符合题意;2D故选:D.【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式,最简二次根式必须满足两个条件:被开方数中不含能开得尽方的因数或因式;被开方数的因数是整数,因式是整式,本题属于基础题型.4.A解析:A【分析】根据二次根式定义和有意义的条件:被开方数是非负数,即可判断.【详解】解:A、符合二次根式有意义条件,符合题意;B、-1<0B选项不符合题意;C、是三次根式,所以C选项不符合题意;D、π-4<0D选项不符合题意.故选:A.【点睛】a≥0.5.B解析:B【分析】分别利用二次根式的性质化简求出即可.【详解】解;A2=|a+b|,故此选项错误;B2+1,正确;C,无法化简,故此选项错误;D,故此选项错误;故选:B.【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.6.B解析:B【分析】根据被开方数大于等于0列式计算即可得解.【详解】310m-≥,解得13 m≥,所以,m能取的最小整数值是1.故选:B.【点睛】本题考查了二次根式的意义和性质,性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.7.A解析:A【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】∴x-2020≥0,解得:x≥2020;故选:A.【点睛】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.8.A解析:A【分析】本题涉及二次根式化简,在计算时,需要针对每个选项分别进行计算,然后根据实数的运算法则求得计算结果.【详解】=D. 6===,故本项错误;故选:A .【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式的运算.9.C解析:C【分析】①将3a =-代入12a a ++计算验证即可;②根据题意12a a ++=2,解得a 的值即可作出判断;③若a >-2,则a+2>0,则对12a a ++配方,利用偶次方的非负性可得答案. 【详解】解:①当3a =-时,1134232a a +=-+=-+-+. 故①正确; ②若12a a ++值为2, 则122a a +=+, ∴a 2+2a+1=2a+4,∴a 2=3,∴a =.故②错误;③若a >-2,则a+2>0, ∴12a a ++=1222a a ++-+=222+-=2≥0. ∴若a >-2,则12a a ++存在最小值且最小值为0.综上,正确的有①③.故选:C .【点睛】本题考查了分式的加减法、分式的值的计算及最值问题等知识点,熟练运用相关公式及运算法则是解题的关键.10.A解析:A【分析】根据合并同类二次根式的法则对A 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断;根据二次根式的性质对D 进行判断.【详解】==2÷,故此项正确,不符合要求;D. 2 (3=,故此项正确,不符合要求;故选A .【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.11.B解析:B【分析】由已知可得:2,(11m n mn +==+-=-,【详解】由已知可得:2,(11m n mn +==+-=-,原式3===故选B【点睛】考核知识点:二次根式运算.配方是关键. 12.D解析:D【分析】根据二次根式的意义,如果一定是二次根式,则不论字母取何值,被开方数一定是非负数,逐一判断即可得.解:A ,不是二次根式;B x <0时无意义,不一定是二次根式;C 在-2<a <2时,无意义,不一定是二次根式;D a 2≥0,一定是二次根式;故选:D .【点睛】本题主要考查二次根式的定义,一般地,a≥0)的式子叫做二次根式.二、填空题13.【分析】根据实数的估算求出a,b ,再代入即可求解.【详解】∵1<<2,∴-2<-<-1,∴2<<3∴整数部分a=2,小数部分为-2=2-,∴==故填:.【点睛】此题主要考查无理解析:12-【分析】根据实数的估算求出a,b ,再代入1a b -即可求解. 【详解】∵1<2,∴-2<<-1,∴2<43∴整数部分a=2,小数部分为4,∴1ab -=2222=-=1故填:12-.此题主要考查无理数的估算,分母有理化等,解题的关键熟知实数的性质.14..【分析】根据二次根式的性质化简即可.【详解】∵a<0.∴a-3<0,∴==.故答案为:.【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.解析:【分析】根据二次根式的性质化简即可.【详解】∵a<0.∴a-3<0,∴(a-=-=故答案为:【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.15.+1【分析】先将用完全平方式表示,再根据进行化简即可.【详解】因为,所以,故答案为:.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二+1【分析】先将3+,()()()00a aa aa a⎧>⎪===⎨⎪-<⎩进行化简即可.【详解】因为(2231211+=+=+=+,11===故答案为:1.【点睛】 本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二次根式利用完全平方公式分解.16.3【解析】设,则 可化为:,∴,两边同时平方得:,即:,∴,解得:,∴.故答案为:.点睛:本题的解题要点是:设原式中的,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形解析:【解析】设24x a -====两边同时平方得:128a a +=++4=, ∴3216a =,解得:12a =,===故答案为: 点睛:本题的解题要点是:设原式中的24x a -=,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形即可求得a 的值,使问题得到解决.17.3b【分析】先判断a ,b 的取值范围,并分别判断a-b ,a+b 的符号,再根据二次根式的性质和绝对值的性质化简,计算即可求解.【详解】解:由数轴可知:b >0,a ﹣b <0,a+b <0,∴原式=|解析:3b【分析】先判断a ,b 的取值范围,并分别判断a-b ,a+b 的符号,再根据二次根式的性质和绝对值的性质化简,计算即可求解.【详解】解:由数轴可知:b >0,a ﹣b <0,a +b <0,∴原式=|b |+|a ﹣b |﹣|a +b |=b ﹣(a ﹣b )+(a +b )=b ﹣a +b +a +b=3b ,故答案为:3b【点睛】a =和绝对值的性质是解题的关键.18.【解析】根据二次根式的性质,化简为:-=-=-4;==.故答案为 ; .解析: 【解析】根据二次根式的性质,化简为:故答案为 ; 19.且【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:,解得且,故答案为:且.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分解析:3x ≤且2x ≠-【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:2030x x +≠⎧⎨-≥⎩, 解得3x ≤且2x ≠-,故答案为:3x ≤且2x ≠-.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键. 20.6【分析】通过观察可知,根号外的符号以及根号下的被开方数依次是:,,…,可以得到第13个的答案.【详解】解:由题意知道:题目中的数据可以整理为:,,…,∴第13个答案为:.故答案为6.解析:6【分析】 通过观察可知,根号外的符号以及根号下的被开方数依次是:11(1)30,21(1)31,31(1)32…1(1)3(1)n n ,可以得到第13个的答案.【详解】 解:由题意知道:题目中的数据可以整理为:11(1)30,21(1)31,31(1)32…1(1)3(1)n n ,∴第13个答案为:131(1)3(131)6.故答案为6.【点睛】此题主要考查了二次根式的运算以及学生的分析、总结、归纳的能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律. 三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

八年级(下)学期3月份月考数学试题含解析

八年级(下)学期3月份月考数学试题含解析

八年级(下)学期3月份月考数学试题含解析一、选择题1.如果0,0a b <<,且6a b -=,则22a b -的值是( ) A .6 B .6- C .6或6- D .无法确定 2.计算32782-⨯的结果是( ) A .3B .3-C .23D .53 3.计算()21273632÷+⨯--的结果正确的是( ) A .3 B .3 C .6 D .33-4.下列运算中,正确的是( )A .1333⎛⎫+ ⎪ ⎪⎝⎭=3 B .(12-7)÷3=-1 C .32÷122=2 D .(2+3)×3=63+ 5.下列运算正确的是( )A .52223-=y yB .428x x x ⋅=C .(-a-b )2=a 2-2ab+b 2D .27123-=6.如果关于x 的不等式组0,2223x m x x -⎧>⎪⎪⎨-⎪-<-⎪⎩的解集为2x >,且式子3m -的值是整数,则符合条件的所有整数m 的个数是( ).A .5B .4C .3D .2 7.当119942x +=时,多项式()20193419971994x x --的值为( ). A .1 B .1- C .20022 D .20012-8.若|x 2﹣4x+4|与23x y --互为相反数,则x+y 的值为( )A .3B .4C .6D .99.下列二次根式中,与3是同类二次根式的是( )A .18B .13 C 24D 0.310.下列运算中正确的是( )A .27?3767=B ()24423233333===C .3313939===D .155315151÷⨯=÷=11.下列计算正确的是( )A .234265+=B .842=C .2733÷= D .2(3)3-=- 12.若3x -在实数范围内有意义,则x 的取值范围是( )A .x >0B .x >3C .x ≥3D .x ≤3二、填空题13.已知412x =-,则()21142221x x x x -⎛⎫+⋅= ⎪-+-⎝⎭_________ 14.已知x=3+1,y=3-1,则x 2+xy +y 2=_____.15.222a a ++-1的最小值是______.16.若a 、b 、c 均为实数,且a 、b 、c 均不为0化简43252a c b=___________ 17.将1、2、3、6按右侧方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(9,4)表示的两数之积是______.18.把1a- 19.已知2,n=1222m n mn +-的值________.20.3x -x 的取值范围是______. 三、解答题21.观察下列各式子,并回答下面问题.211-222-(1)试写出第n 个式子(用含n 的表达式表示),这个式子一定是二次根式吗?为什么? (2)你估计第16个式子的值在哪两个相邻整数之间?试说明理由.【答案】(1,该式子一定是二次根式,理由见解析;(215和16之间.理由见解析.【分析】(1)依据规律可写出第n 个式子,然后判断被开方数的正负情况,从而可做出判断;(2)将16n =代入,得出第16,再判断即可.【详解】解:(1该式子一定是二次根式,因为n 为正整数,2(1)0n n n n -=-≥,所以该式子一定是二次根式(215=16=,∴1516<<.15和16之间.【点睛】本题考查的知识点是二次根式的定义以及估计无理数的大小,掌握用“逼近法”估算无理数的大小的方法是解此题的关键.22.x 的值,代入后,求式子的值. 【答案】答案见解析.【解析】试题分析:先把除式化为最简二次根式,再用二次根式的乘法法则化简,选取的x 的值需要使原式有意义.试题解析:原式==== 要使原式有意义,则x >2.所以本题答案不唯一,如取x =4.则原式=223.阅读下面的解答过程,然后作答:m 和n ,使m 2+n 2=a 且,则a 可变为m 2+n 2+2mn ,即变成(m +n )2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可.【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==24.在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:2224312111-=-=-+=).善于动脑的小明继续探究:当a b m n 、、、为正整数时,若2a n +=+),则有22(2a m n =+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若2a n =+),请用含有mn 、的式子分别表示a b 、,得:a = ,b = ;(2)填空:13-( - 2;(3)若2a m +=(),且a m n 、、为正整数,求a 的值.【答案】(1)223a m n =+,2b mn =;(2)213--;(3)14a =或46.【解析】试题分析:(1)把等式)2a n +=+右边展开,参考范例中的方法即可求得本题答案;(2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ ,结合a b m n 、、、都为正整数可得:m=2,n=1,这样就可得到:21343(123)-=-; (3)将()2655a m n +=+右边展开,整理可得:225a m n =+,62mn =结合a m n 、、为正整数,即可先求得m n 、的值,再求a 的值即可.试题解析:(1)∵233a b m n +=+(),∴223323a b m n mn +=++,∴2232a m n b mn =+=,;(2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ , ∵a b m n 、、、都为正整数,∴12m n =⎧⎨=⎩或21m n =⎧⎨=⎩ , ∵当m=1,n=2时,223713a m n =+=≠,而当m=2,n=1时,22313a m n =+=, ∴m=2,n=1,∴()21343=123--; (3)∵22265(5)525a m n m n mn +=+=++,∴225a m n =+,62mn = ,又∵a m n 、、为正整数,∴=1=3m n ,, 或者=3=1m n ,,∴当=1=3m n ,时,46a =;当=3=1m n ,,14a =,即a 的值为:46或14.25.先化简,再求值:a+212a a -+,其中a =1007.如图是小亮和小芳的解答过程.(1) 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: ;(3)先化简,再求值:269a a -+a =﹣2018.【答案】(1)小亮(22a (a <0)(3)2013.【解析】试题分析:(1,判断出小亮的计算是错误的;(2的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮(2(a <0)(3)原式=a+2(3-a )=6-a=6-(-2007)=2013.26.计算:0(3)|1|π-+.【答案】【分析】根据二次根式的意义和性质以及零次幂的定义可以得到解答. 【详解】解:原式11=+=【点睛】本题考查实数的运算,熟练掌握二次根式的运算和零次幂的意义是解题关键.27.计算:(1 ;(2)))213【答案】(1)2)1-.【分析】(1)根据二次根式的混合运算法则可以算得答案.(2)结合整式的乘法公式和二次根式的运算法则计算.【详解】(1)原式==(2)原式=212---=1-.【点睛】本题考查二次根式的运算,熟练掌握二次根式的意义、性质和运算法则是解题关键.28.计算下列各题:(1(2)2-.【答案】(1)2)2--【分析】(1)根据二次根式的运算顺序和运算法则计算即可;(2)利用平方差、完全平方公式进行计算.【详解】解:(1)原式==;(2)原式22(5=--+525=---2=--【点睛】本题考查二次根式的加减乘除混合运算,熟练掌握运算法则和乘法公式是关键.29.02020((1)π-.【答案】【分析】本题根据零次幂,最简二次根式,整数次幂的运算规则求解即可.【详解】原式11=-=【点睛】本题考查幂的运算与二次根式的综合,需牢记非零常数的零次幂为1,二次根式运算时需化为最简二次根式,其次注意计算仔细.30.先阅读下面的解题过程,然后再解答.a ,b ,使a b m +=,ab n =,即22m +==0)a b ==±>.这里7m =,12n =,由于437+=,4312⨯=,所以22+==,2===..【答案】见解析【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【详解】根据题意,可知13m =,42n =,由于7613+=,7642⨯=,所以2213+=,====【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】=-a-(-b)=b-a=-6.故选B2.A解析:A【分析】先计算二次根式乘法,再合并同类二次根式即可.【详解】原式=故选:A .本题考查二次根式的运算,熟练掌握运算法则是解题关键.3.A解析:A【分析】分别根据二次根式的除法和乘法法则以及二次根式的平方计算每一项,再合并即可.【详解】解:原式333=+=故选:A .【点睛】本题主要考查了二次根式的混合运算,属于基础题型,熟练掌握二次根式的乘除法则是解题的关键.4.D解析:D【分析】根据二次根式的加减乘除法则逐项判断即可得.【详解】A 314=+=,此项错误B 、2==,此项错误C 2428===⨯=,此项错误D 、3=,此项正确 故选:D .【点睛】本题考查了二次根式的加减乘除运算,熟记二次根式的运算法则是解题关键.5.D解析:D【分析】由合并同类项、同底数幂乘法、完全平方公式、以及二次根式的加减运算,分别进行判断,即可得到答案.【详解】解:A 、222523y y y -=,故A 错误;B 、426x x x ⋅=,故B 错误;C 、222()2a b a ab b --=++,故C 错误;D ==D 正确;【点睛】本题考查了合并同类项、同底数幂乘法、完全平方公式、以及二次根式的加减运算,解题的关键是熟练掌握运算法则进行解题.6.C解析:C【分析】先求出两个不等式的解集,根据不等式组的解集为2x >可得出m ≤2的值是整数,得出|m|=3或2,于是m=-3,3,-2或2,由m ≤2,得m=-3,-2或2.【详解】 解:解不等式02x m ->得x >m , 解不等式223x x --<-得x >2, ∵不等式组解集为x >2,∴m ≤2,则|m|=3或2,∴m=-3,3,2或-2,由m ≤2得,m=-3,-2或2.即符合条件的所有整数m 的个数是3个.故选:C .【点睛】本题考查了解一元一次不等式组以及二次根式的性质,熟练运用一元一次不等式组的解法是解题的关键.7.B解析:B【解析】【分析】由原式得()2211994x -=,得244+11994x x -=,原式变形后再将244+11994x x -=代和可得出答案.【详解】∵12x +=, ()2211994x ∴-=,即24419930x x --=,()()32241997199444199344199311x x x x x x x ∴--=--+---=-.∴原式()201911=-=-.本题难度较大,需要对要求的式子进行变形,学会转化.8.A解析:A【解析】根据题意得:|x2–4x,所以|x2–4x+4|=0,即(x–2)2=0,2x–y–3=0,所以x=2,y=1,所以x+y=3.故选A.9.B解析:B【详解】A不是同类二次根式,故此选项错误;BC=不是同类二次根式,故此选项错误;D不是同类二次根式,故此选项错误;故选B.10.B解析:B【分析】根据二次根式的乘除法则求出每个式子的值,再判断即可.【详解】=⨯==42,故本选项不符合题意;解: A. 67===,故本选项,符合题意;===,故本选项不符合题意;D. ==3,故本选项不符合题意;故选B.【点睛】本题考查二次根式的性质和二次根式的乘除法则,能灵活运用二次根式的乘除法则进行计算是解题关键.11.C解析:C【分析】根据合并二次根式的法则、二次根式的性质、二次根式的除法法则即可判定.A 、A 错误;B =B 错误;C 3=,故选项C 正确;D 3=,故选项D 错误;故选:C .【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.12.C解析:C【详解】解:根据题意得:x-3≥0解得:x≥3故选C.二、填空题13.【分析】利用完全平方公式化简,得到;化简分式,最后将代入化简后的分式,计算即可.【详解】将代入得:故答案为:【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在解析:1-【分析】利用完全平方公式化简x =1x =;化简分式,最后将1x =代入化简后的分式,计算即可.【详解】1x =====()211422(2)(2)2221(2)(2)2(1)x x x x x x x x x x x -++-+-⎛⎫+⋅= ⎪-+--+-⎝⎭ 1x x =-将1x =1=-故答案为:1-【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在于化简x =熟练掌握相关知识点是解题关键. 14.10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y )2﹣xy=(2)2﹣(+1)(﹣1)=12﹣2=10. 故答案为10.解析:10【解析】根据完全平方式的特点,可得x 2+xy+y 2=(x+y )2﹣xy=(2﹣1)=12﹣2=10.故答案为10.15.0【解析】【分析】先将化简为就能确定其最小值为1,再和1作差,即可求解。

八年级(下)学期3月份 月考检测数学试卷含解析

八年级(下)学期3月份 月考检测数学试卷含解析

八年级(下)学期3月份 月考检测数学试卷含解析一、选择题1.下列运算结果正确的是( )A 9=-B 3=C .(22= D 5=-2.下列各式中,运算正确的是( )A .=-=.2=D 2=-3.下列各式一定成立的是( )A 2a b =+B 21a =+C 21a =-D ab =4.下列各式中正确的是( )A 6B 2=-C 4D .2(=75.下列二次根式是最简二次根式的是( )AB C D6.若2019202120192020a =⨯-⨯,b =,c a ,b ,c 的大小关系是( ) A .a b c <<B .a c b <<C .b a c <<D .b c a <<7.设,n k 为正整数,1A =2A =3A =4A =…k A =….,已知1002005A =,则n =( ).A .1806B .2005C .3612D .40118.下列运算中错误的是( )A =B =C 2÷=D .2 (3=9.下列二次根式是最简二次根式的是( )AB C D10.已知0xy <,化简二次根式 )A BC .D .11.已知实数x 、y 满足2y =,则yx 值是( )A .﹣2B .4C .﹣4D .无法确定12.如果实数x ,y =-(),x y 在( )A.第一象限B.第二象限C.第一象限或坐标轴上D.第二象限或坐标轴上二、填空题13.若mm3﹣m2﹣2017m+2015=_____.14.甲容器中装有浓度为a,乙容器中装有浓度为b,两个容器都倒出m kg,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m的值为_________.15.已知aa3+5a2﹣4a﹣6的值为_____.16的最小值是______.17.化简二次根式_____.18.n的最小值为___19.有意义,则x的取值范围是____.20.1=-==++……=___________.三、解答题21.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式a=,)111=11互为有理化因式.(1)1的有理化因式是;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:==24====进行分母有理化. (3)利用所需知识判断:若a =,2b =a b ,的关系是 . (4)直接写结果:)1= .【答案】(1)1;(2)7-;(3)互为相反数;(4)2019 【分析】(1)根据互为有理化因式的定义利用平方差公式即可得出; (2)原式分子分母同时乘以分母的有理化因式(2,化简即可; (3)将a =(4)化简第一个括号内的式子,里面的每一项进行分母有理化,然后利用平方差公式计算即可. 【详解】解:(1)∵()()1111=,∴1的有理化因式是1;(22243743--==--(3)∵2a ===,2b =-, ∴a 和b 互为相反数;(4))1++⨯=)11⨯=)11=20201- =2019, 故原式的值为2019. 【点睛】本题考查了互为有理化因式的定义及分母有理化的方法,并考查了利用分母有理化进行计算及探究相关式子的规律,本题属于中档题.22.计算:22322343341009999100++++++++【答案】910【解析】 【分析】先对代数式的每一部分分母有理化,然后再进行运算 【详解】 解:22322343341009999100++++++++=223223433410099991002---+++++=22334991001224-+-+-++-=1001- =1110- =910【点睛】本题看似计算繁杂,但只要找到分母有理化这个突破口,就会化难为易。

八年级第二学期3月份月考数学试题含解析

八年级第二学期3月份月考数学试题含解析

八年级第二学期3月份月考数学试题含解析一、选择题1.下列各式计算正确的是( ) A .235+=B .2222+=C .236⨯=D .1222= 2.下列运算错误的是( ) A .1832= B .322366⨯=C .()2516+=D .()()72723+-=3.下列计算正确的是( ) A .42=±B .()233-=- C .()255-= D .()233-=-4.下列计算正确的是( ) A .93=±B .8220-=C .532-=D .2(5)5-=-5.下列运算中,正确的是( )A .1333⎛⎫+ ⎪ ⎪⎭=3B .(12-7)÷3=-1C .32÷122=2 D .(2+3)×3=63+6.已知226a b ab +=,且a>b>0,则a ba b+-的值为( ) A .2 B .±2C .2D .±27.已知,那么满足上述条件的整数的个数是( ).A .4B .5C .6D .78.下列说法中正确的是( )A 25±5B .两个无理数的和仍是无理数C .-3没有立方根.D 22-a b .9.若|x 2﹣4x+4|23x y --x+y 的值为( ) A .3 B .4C .6D .910.()23-A .﹣3B .3C .﹣9D .911.x ≥3是下列哪个二次根式有意义的条件( ) A 3x +B 13x - C 13x +D 3x -12.下列运算中正确的是( )A .=B===C 3===D 1==二、填空题13.若0a >化成最简二次根式为________.14.若a ,b ,c 是实数,且10a b c ++=,则2b c +=________.15.设12211112S =++,22211123S =++,32211134S =++,设...S =S=________________ (用含有n 的代数式表示,其中n 为正整数).16.当x x 2﹣4x +2017=________. 17.观察下列等式:第1个等式:a 11=,第2个等式:a 2=,第3个等式:a 3,第4个等式:a 42=, …按上述规律,回答以下问题: (1)请写出第n 个等式:a n =__________. (2)a 1+a 2+a 3+…+a n =_________18.将1按右侧方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(9,4)表示的两数之积是______.19.把1a-20.如果332y x x --,那么y x =_______________________.三、解答题21.阅读下面问题: 阅读理解:2221(21)(21)==++-1; 323232(32)(32)-==++-1(52)5252(52)(52)⨯-==-++-.应用计算:(176+ (211n n++(n 为正整数)的值.归纳拓展:(3122334989999100++++++【答案】应用计算:(17621n n + 归纳拓展:(3)9. 【分析】由阅读部分分析发现式子的分子、分母都乘以分母的有理化因式,为此(17-6分母利用平方差公式计算即可,(2n 1-n +(3)根据分母的特点各项分子分母乘以各分母的有理化因式,分母用公式计算化去分母,分子合并同类项二次根式即可. 【详解】(1(2(3+98+,(+98+,++99-, =10-1, =9. 【点睛】本题考查二次根式化简求值问题,关键找到各分母的有理化因式,用平方差公式化去分母.22.计算:(1(2))((222+-+.【答案】(1) 【分析】(1)先化简二次根式,再合并同类二次根式即可; (2)根据平方差公式化简,再化简、合并同类二次根式即可. 【详解】(1==(2))((222+-+=2223--+ =5-4-3+2 =023.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式a =,)111=11互为有理化因式.(1)1的有理化因式是;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:3==,24====进行分母有理化.(3)利用所需知识判断:若a=,2b=a b,的关系是.(4)直接写结果:)1=.【答案】(1)1;(2)7-;(3)互为相反数;(4)2019【分析】(1)根据互为有理化因式的定义利用平方差公式即可得出;(2)原式分子分母同时乘以分母的有理化因式(2,化简即可;(3)将a=(4)化简第一个括号内的式子,里面的每一项进行分母有理化,然后利用平方差公式计算即可.【详解】解:(1)∵()()1111=,∴1的有理化因式是1;(22243743--==--(3)∵2a===,2b=-,∴a和b互为相反数;(4))1++⨯=)11⨯=)11=20201- =2019, 故原式的值为2019. 【点睛】本题考查了互为有理化因式的定义及分母有理化的方法,并考查了利用分母有理化进行计算及探究相关式子的规律,本题属于中档题.24.解:设x222x =++2334x =+,x 2=10 ∴x =10.0.【分析】根据题意给出的解法即可求出答案即可. 【详解】设x两边平方得:x 2=2+2+即x 2=4+4+6, x 2=14∴x =.0,∴x . 【点睛】本题考查了二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题型.25.小明在解决问题:已知2a 2﹣8a+1的值,他是这样分析与解的:∵=2∴a﹣2=∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1(2)若,求4a2﹣8a+1的值.【答案】(1)9;(2)5.【解析】试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得1===.(2)先对a1,若就接着代入求解,计算量偏大.模仿小明做法,可先计算2(1)a-的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.解:(1)原式=1)+++⋯(2)∵1a===,解法一:∵22(1)11)2a-=-=,∴2212a a-+=,即221a a-=∴原式=24(2)14115a a-+=⨯+=解法二∴原式=24(211)1a a-+-+24(1)3a=--211)3=--4235=⨯-=点睛:(1得22=-=-a b,去掉根号,实现分母有理化.(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多. 26.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如3、3+1这样的式子,其实我们还可以将其进一步化简:535==33333⨯⨯;22(31)2(31)=313+1(3+1)(31)(3)1⨯-⨯-==---.以上这种化简过程叫做分母有理化.3+1还可以用以下方法化简:22(3)1(3+1)(31)=313+13+13+13+1--===-.(1)请用其中一种方法化简1511-;(2)化简:++++3+15+37+599+97.【答案】(1) 15+11;(2) 311-1.【分析】(1)运用了第二种方法求解,即将4转化为1511-;(2)先把每一个加数进行分母有理化,再找出规律,即后面的第二项可以和前面的第一项抵消,然后即可得出答案.【详解】(1)原式==;(2)原式=+++…=﹣1+﹣+﹣+…﹣=﹣1=3﹣1【点睛】本题主要考查了分母有理化,找准有理化的因式是解题的关键.27.已知a32,b32(1)求a2﹣b2的值;(2)求ba+ab的值.【答案】(1)6;(2)10【分析】(1)先计算出a+b、a-b的值,然后将所求的式子因式分解后利用整体代入思想代入数值进行计算即可;(2)先计算ab的值,然后将所求的式子通分,分子进行变形后利用整体代入思想代入相关数值进行计算即可.【详解】(1)∵ab,∴a+ba﹣b=,∴a2﹣b2=(a+b)(a﹣b)==;(2)∵ab,∴ab=)×)=3﹣2=1,则原式=22b aab+=()22a b abab+-=(2211-⨯=10.【点睛】本题考查了二次根式的化简求值,熟练掌握整体代入思想是解题的关键.28.计算:(1(2|a﹣1|,其中1<a【答案】(1)1;(2)1【分析】(1)根据二次根式的乘法法则计算;(2)由二次根式的非负性,a的取值范围进行化简.【详解】解:(1-1=2-1=1(2)∵1<a,a﹣1=2﹣a+a﹣1=1.【点睛】本题考查二次根式的性质、二次根式的乘法法则,主要检验学生的计算能力.29.(1|5-+;(2)已知实数a、b、c满足|3|a+=,求2(b a+的值.【答案】(1)5;(2)4【分析】(1)先利用二次根式的乘法法则和绝对值的意义计算,再进行回头运算即可;(2)先根据二次根式有意义的条件确定b的值,再根据非负数的和的意义确定a,c的值,然后再计算代数式的值即可.【详解】解:(15-+5)=+5=+5=(2)由题意可知:50 50 bb-≥⎧⎨-≥⎩,解得5b=由此可化简原式得,30a+=30a∴+=,20c-=3a∴=-,2c=22((534b a∴+=--=【点睛】可不是考查了二次根式的混合运算以及二次根式的化简求值,熟练掌握运算法则和运算顺序是解答此题的关键.30.计算:(1)-(2)【答案】(1)21【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先利用二次根式的乘除法则运算,再合并即可.【详解】解:(1)原式==(2)原式3+21==.【点睛】本题考查二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】计算出各个选项中的正确结果,即可得到哪个选项是正确【详解】A 错误;∵2+B 错误;=,故选项C 正确;=,故选项D 错误. 故选C.【点睛】本题考查二次根式的混合运算,解题的关键是明确二次根式的混合运算的计算方法.2.C解析:C【分析】根据二次根式的化简、乘法、完全平方公式、平方差公式逐项判断即可得.【详解】A =,此项正确;B 、=C 、)21516=+=+D 、)22743=-=,此项正确; 故选:C .【点睛】本题考查了二次根式的化简与乘法运算,熟记运算法则是解题关键.3.C解析:C【分析】直接利用二次根式的性质分别求解,即可得出答案.【详解】解:A ,故A 选项错误;B ,故B 选项错误;C选项:2=5,故C选项正确;D选项:2=3,故D选项错误,故选:C.【点睛】此题主要考查了二次根式的性质,正确求解二次根式是解题的关键.4.B解析:B【分析】直接利用二次根式的性质化简得出答案.【详解】=,故此选项错误;3=,正确;D. 5=,故此选项错误;故选:B【点睛】此题主要考查了二次根式的加减,正确掌握二次根式的性质是解题关键.5.D解析:D【分析】根据二次根式的加减乘除法则逐项判断即可得.【详解】=+=,此项错误A314==-,此项错误B、23===⨯=,此项错误C2428=,此项正确D、3故选:D.【点睛】本题考查了二次根式的加减乘除运算,熟记二次根式的运算法则是解题关键.6.A解析:A【解析】【分析】已知a2+b2=6ab,变形可得(a+b)2=8ab,(a-b)2=4ab,可以得出(a+b)和(a-b )的值,即可得出答案.【详解】∵a 2+b 2=6ab ,∴(a+b )2=8ab ,(a-b )2=4ab ,∵a >b >0,∴a+b=8ab ,a-b=4ab ,∴a b a b +-=824ab ab=, 故选A.【点睛】本题考查了分式的化简求值问题,观察式子可以得出应该运用完全平方式来求解,要注意a 、b 的大小关系以及本身的正负关系.7.C解析:C【解析】【分析】利用分母有理化进行计算即可.【详解】由原式得:所以,因为,, 所以. 故选:C【点睛】此题考查解一元一次不等式的整数解,解题关键在于分母有理化. 8.D解析:D【分析】根据算术平方根和平方根的概念,无理数的概念立方根的概念,和二次根式的概念逐一判断即可.【详解】255=,故A 选项错误;0ππ-+=,故B 选项错误;-33333-=,故C 选项错误;22-a b D 选项正确;故选D .【点睛】本题考查了算术平方根和平方根的区别,无理数、二次根式和立方根的概念,题目较为综合,熟练掌握相关概念是本题的关键.9.A解析:A【解析】根据题意得:|x2–4x,所以|x2–4x+4|=0,即(x–2)2=0,2x–y–3=0,所以x=2,y=1,所以x+y=3.故选A.10.B解析:B【分析】利用二次根式的性质进行化简即可.【详解】﹣3|=3.故选B.11.D解析:D【分析】根据二次根式有意义的条件逐项求解即可得答案.【详解】A、x+3≥0,解得:x≥-3,故此选项错误;B、x-3>0,解得:x>3,故此选项错误;C、x+3>0,解得:x>-3,故此选项错误;D、x-3≥0,解得:x≥3,故此选项正确,故选D.【点睛】本题考查了二次根式和分式有意义的条件,二次根式的被开方数是非负数.分式的分母不能等于0.12.B解析:B【分析】根据二次根式的乘除法则求出每个式子的值,再判断即可.【详解】=⨯==42,故本选项不符合题意;解: A. 67===,故本选项,符合题意;===,故本选项不符合题意;D. ==3,故本选项不符合题意;故选B.【点睛】本题考查二次根式的性质和二次根式的乘除法则,能灵活运用二次根式的乘除法则进行计算是解题关键.二、填空题13.【分析】先判断b的符号,再根据二次根式的性质进行化简即可.【详解】解:∵∴∴所以答案是:【点睛】本题考查了二次根式的性质.解析:【分析】先判断b的符号,再根据二次根式的性质进行化简即可.【详解】解:∵40,0 aab-≥>∴0b<2a bb b b=--所以答案是:【点睛】a=.14.21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得,,的值,从而得到答案.【详解】∵∴∴∴∴∴∴∴.【点睛】本题考查了二次根式、完全平方公式的知识;解题的解析:21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得a ,b ,c 的值,从而得到答案.【详解】∵10a b c ++=∴100a b c ---=∴2221490⎡⎤⎡⎤⎡⎤-+-+-=⎣⎦⎣⎦⎣⎦∴2221)2)3)0++=∴123===∴111429a b c -=⎧⎪-=⎨⎪-=⎩∴2511a b c =⎧⎪=⎨⎪=⎩∴2251121b c +=⨯+=.【点睛】本题考查了二次根式、完全平方公式的知识;解题的关键是熟练掌握二次根式、完全平方公式、一元一次方程的性质,从而完成求解.15.【分析】先根据题目中提供的三个式子,分别计算的值,用含n 的式子表示其规律,再计算S 的值即可.【详解】解:∵,∴;∵,∴;∵,∴;……∵,∴;∴.故答案为:【点睛】本题 解析:221n n n ++ 【分析】n 的式子表示其规律,再计算S 的值即可.【详解】 解:∵1221191=124S =++311122===+-; ∵222114912336S =++=7111116623===+=+-; ∵32211169134144S =++=1311111121234===+=+-; …… ∵()()()222222111111n n n S n n n n ++=++=++,()()2111111111n n n n n n n n ++===+=+-+++;∴...S =1111111112231n n =+-++-++-+…+ 111n n =+-+.221n n n +=+ 故答案为:221n n n ++ 【点睛】本题为规律探究问题,难度较大,根据提供的式子发现规律,并表示规律是解题的关键,同时要注意对于式子()11111n n n n =-++的理解. 16.2016【解析】把所求的式子化成(x ﹣2)2+2013然后代入式子计算,即可得到:x2﹣4x+2017=(x ﹣2)2+2013 =()2+2013=3+2013=2016.故答案是:2016.解析:2016【解析】把所求的式子化成(x ﹣2)2+2013然后代入式子计算,即可得到:x 2﹣4x+2017=(x ﹣2)2+2013 =2+2013=3+2013=2016.故答案是:2016.点睛:此题主要考查了配方法的应用,解题关键是把式子配成完全平方,然后整体代入即可求解,考查了学生对整体思想的认识和应用,学生对整体思想不熟时出错的主要原因.17.【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.【详解】解:∵第1个等式:a1=,第2个等式:a2=,第3个等式:=1-【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.【详解】解:∵第1个等式:a11=,第2个等式:a 2=,第3个等式:a3,第4个等式:a42=,……∴第n==(2)123(21)(32)(23)(1) na a a a n n+++=-+-+-+++-=121n+++=1-;1-.【点睛】本题考查了二次根式的加减混合运算,以及数字规律问题,解题的关键是掌握题目中的规律,从而进行解题18.【解析】试题解析:(5,4)表示第5排从左向右第4个数是:,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第解析:【解析】试题解析:(5,4)表示第5排从左向右第4,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第4,∴(5,4)与(9,4)故答案为19.﹣【解析】解:通过有意义可以知道≤0,≤0,所以=﹣=﹣.故答案为:.点睛:此题主要考查了二次根式的性质应用,正确判断二次根式的整体符号是解题关键.解析:【解析】解:通过a ≤0,,所以故答案为:点睛:此题主要考查了二次根式的性质应用,正确判断二次根式的整体符号是解题关键.20.【分析】根据二次根式的有意义的条件可求出x ,进而可得y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵x-3≥0,3-x≥0,∴x=3,∴y=﹣2,∴.故答案为:.【点睛】 解析:19【分析】根据二次根式的有意义的条件可求出x ,进而可得y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵x -3≥0,3-x ≥0,∴x =3,∴y =﹣2, ∴2139y x -==. 故答案为:19. 【点睛】 本题考查了二次根式有意义的条件和负整数指数幂的运算,属于常考题型,熟练掌握基本知识是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

八年级(下)学期3月份月考数学试卷含解析

八年级(下)学期3月份月考数学试卷含解析

八年级(下)学期3月份月考数学试卷含解析一、选择题1.下列计算正确的是( )A .()25-=﹣5B .4y =2yC .822aa a = D .235+=2.已知526x =-,则2101x x -+的值为( )A .306-B .106C .1862--D .0 3.下列运算正确的是( ) A .52223-=y yB .428x x x ⋅=C .(-a-b )2=a 2-2ab+b 2D .27123-= 4.下列计算不正确的是 ( )A .35525-=B .236⨯=C 7742=D 363693=+== 5.下列计算或判断:(1)±3是27的立方根;(233a ;(3642;(422(8)±;(565-65 ) A .1个 B .2个 C .3个 D .4个6.下列计算正确的是( )A 366=±B .422222=C .83266=D a b ab =(a≥0,b≥0) 7.下列计算正确的是( )A 235=B 623=C 23(3)86-=-D 321= 8.下列运算中错误的是( )A 235=B 236=C 822÷=D .2 (3)3-=9.下列各式成立的是( )A ()222-B ()255-=-C 2x xD ()266-=-10.751m +m 的值为( )A .7B .11C .2D .1 11.230x x +-=成立的x 的值为( ) A .-2 B .3 C .-2或3 D .以上都不对12.下列根式中是最简二次根式的是( )A .23B .10C .9D .3a二、填空题13.将2(3)(0)3a a a a-<-化简的结果是___________________. 14.设12211112S =++,22211123S =++,32211134S =++,设12...n S S S S =+++,则S=________________ (用含有n 的代数式表示,其中n 为正整数).15.已知()230m m --≤,若整数a 满足52m a +=,则a =__________.16.把1m m -根号外的因式移到根号内,得_____________. 17.对于任意实数a ,b ,定义一种运算“◇”如下:a ◇b =a(a -b)+b(a +b),如:3◇2=3×(3-2)+2×(3+2)=13,那么3◇2=_____.18.若a 、b 都是有理数,且2222480a ab b a -+++=,则ab =__________.19.实数a 、b 在数轴上的位置如图所示,则化简()222a b a b -+-=_____.20.2121=-+3232=+4343=+20202324320202019+++++……=___________. 三、解答题21.1123124231372831-+- 533121【分析】先根据二次根式的乘除法法则计算乘除法,同时分别化简各加数中的二次根式,最后计算加减法.【详解】1123124231372831-+-=1)2(3+⨯=121. 【点睛】此题考查二次根式的混合运算,二次根式的化简,正确掌握二次根式的化简法则是解题的关键.22.计算 (1)2213113a a a a a a +--+-+-;(2)已知a 、b +b =0.求a 、b 的值(3)已知abc =1,求111a b c ab a bc b ac c ++++++++的值【答案】(1)22223a a a ----;(2)a =-3,b ;(3)1. 【分析】(1)先将式子进行变形得到()()113113a a a a a a +--+-+-,此时可以将其化简为1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭,然后根据异分母的加减法法则进行化简即可;(2)根据二次根式及绝对值的非负性得到2a +6=0,b =0,从而可求出a 、b ; (3)根据abc =1先将所求代数式转化:11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,然后再进行分式的加减计算即可. 【详解】解:(1)原式=()()113113a a a a a a +--+-+- =1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭ =1113a a --+- =()()()()3113a a a a -++-+-=22223a a a ----;(20b =,∴2a +6=0,b =0,∴a =-3,b ;(3)∵abc =1, ∴11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++, ∴原式=1111a ab ab a ab a ab a ++++++++ =11a ab ab a ++++ =1.【点睛】本题考查了分式的化简求值和二次根式、绝对值的非负性,分式中一些特殊求值题并非一味的化简,代入,求值,熟练掌握转化、整体思想等解题技巧是解答这类题目的关键.23.已知1,2y =. 【答案】1【解析】【分析】根据已知和二次根式的性质求出x 、y 的值,把原式根据二次根式的性质进行化简,把x 、y 的值代入化简后的式子计算即可.【详解】1-8x≥0,x≤18 8x-1≥0,x≥18,∴x=18,y=12,∴原式532-==1222. 【点睛】本题考查的是二次根式的化简求值,把已知条件求出x 、y ,把要求的代数式进行正确变形是解题的关键,注意因式分解在化简中的应用.24.在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:2224312111-=-=-+=).善于动脑的小明继续探究:当a b m n 、、、为正整数时,若2a n +=+),则有22(2a m n =+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若2a n =+),请用含有mn 、的式子分别表示a b 、,得:a = ,b = ;(2)填空:13-( - 2;(3)若2a m +=(),且a m n 、、为正整数,求a 的值.【答案】(1)223a m n =+,2b mn =;(2)213--;(3)14a =或46.【解析】试题分析:(1)把等式)2a n +=+右边展开,参考范例中的方法即可求得本题答案; (2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ ,结合a b m n 、、、都为正整数可得:m=2,n=1,这样就可得到:213(1-=-;(3)将()2a m +=+右边展开,整理可得:225a m n =+,62mn =结合a m n 、、为正整数,即可先求得m n 、的值,再求a 的值即可.试题解析:(1)∵2a n =+),∴223a m n +=++,∴2232a m n b mn =+=,;(2)由(1)中结论可得:2231324a m n b mn ⎧=+=⎨==⎩, ∵a b m n 、、、都为正整数,∴12m n =⎧⎨=⎩或21m n =⎧⎨=⎩ , ∵当m=1,n=2时,223713a m n =+=≠,而当m=2,n=1时,22313a m n =+=, ∴m=2,n=1,∴(2131--;(3)∵222()52a m m n +=+=++∴225a m n =+,62mn = ,又∵a m n 、、为正整数,∴=1=3m n ,, 或者=3=1m n ,,∴当=1=3m n ,时,46a =;当=3=1m n ,,14a =,即a 的值为:46或14.25.(1)计算:(2)先化简,再求值:(()8a a a a +--,其中14a =.【答案】(1)2)82-a ,【分析】(1)分别根据二次根式的除法法则、二次根式的性质、二次根式的乘法法则计算和化简各项,再合并同类二次根式即可;(2)分别根据平方差公式和单项式乘以多项式的法则计算各项,再把a 的值代入化简后的式子计算即可.【详解】(1)==;(2)(()8a a a a +--2228a a a =--+82a =-,当14a =时,原式1824⎫=⨯-=⎪⎭. 【点睛】本题考查了整式的乘法和二次根式的混合运算,属于常考题型,熟练掌握基本知识是解题的关键.26.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中,b=1.【答案】原式=a b a b-=+【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可.【详解】 原式=()()222a ab b a a a b a b -+⨯+-=()()()2·a b a a a b a b -+- =a b a b-+,当,b=1时,原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.27.计算下列各式:(1;(2【答案】(12 ;(2) 【分析】 先根据二次根式的性质化简,再合并同类二次根式即可.【详解】(1)原式2=-2=;(2)原式==. 【点睛】本题考查了二次根式的加减,熟练掌握性质是解答本题的关键(0)(0)a a a a a ≥⎧==⎨-<⎩,)0,0a b =≥≥=(a ≥0,b >0).28.在一个边长为(cm 的正方形的内部挖去一个长为()cm ,cm 的矩形,求剩余部分图形的面积.【答案】【解析】试题分析:用大正方形的面积减去长方形的面积即可求出剩余部分的面积.试题解析:剩余部分的面积为:(2﹣()=()﹣(﹣)=(cm 2).考点:二次根式的应用29.(1|5-+;(2)已知实数a 、b 、c 满足|3|a +=,求2(b a +的值.【答案】(1)5;(2)4【分析】(1)先利用二次根式的乘法法则和绝对值的意义计算,再进行回头运算即可;(2)先根据二次根式有意义的条件确定b 的值,再根据非负数的和的意义确定a ,c 的值,然后再计算代数式的值即可.【详解】解:(15-+5)=+5=+5=(2)由题意可知:5050b b -≥⎧⎨-≥⎩, 解得5b =由此可化简原式得,30a +=30a ∴+=,20c -=3a ∴=-,2c =22((534b a ∴+=--=【点睛】可不是考查了二次根式的混合运算以及二次根式的化简求值,熟练掌握运算法则和运算顺序是解答此题的关键.30.先化简,再求值:221()a b a b a b b a -÷-+-,其中a =2b =- 【答案】1a b -+,12-. 【分析】 先把分式进行化简,得到最简分式,然后把a 、b 的值代入计算,即可得到答案.【详解】 解:原式1()()a b a b a a b a b b a b b --=⨯-⨯+-+ ()()a b a b a b b a b -=--++ ()b b b a =-+ 1a b=-+,当a =2b = 原式12==-. 【点睛】本题考查了二次根式的混合运算,分式的化简求值,分式的混合运算,解题的关键是熟练掌握运算法则进行解题.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次根式的性质对A 、B 进行判断;利用分母有理化对C 进行判断;利用二次根式的加减法对D 进行判断.【详解】解:A 、原式=5,所以A 选项错误;B 、原式=,所以B 选项错误;Ca =,所以C 选项正确;D D 选项错误.故选:C .【点睛】本题主要考查了二次根式的性质以及合并同类项法则,正确化简各式是解题的关键.2.D解析:D【分析】把x 的值代入原式计算即可求出值.【详解】解:当时,原式=()2-10×()+1+1=0.故选:D .【点睛】本题考查了二次根式的化简求值,熟练掌握运算法则是解题的关键.3.D解析:D【分析】由合并同类项、同底数幂乘法、完全平方公式、以及二次根式的加减运算,分别进行判断,即可得到答案.【详解】解:A 、222523y y y -=,故A 错误;B 、426x x x ⋅=,故B 错误;C 、222()2a b a ab b --=++,故C 错误;D ==D 正确;故选:D .【点睛】本题考查了合并同类项、同底数幂乘法、完全平方公式、以及二次根式的加减运算,解题的关键是熟练掌握运算法则进行解题.4.D解析:D【解析】根据二次根式的加减法,合并同类二次根式,可知=故正确;=根据二次根式的性质和化简,=,故正确;根据二次根式的加减,不是同类二次根式,故不正确.故选D.5.B解析:B【解析】根据立方根的意义,可知27的立方根是3,故(1a=正确,故(2)正=8,可知其平方根为±,故(3)不正确;根据算术平方根的意义,可知=,故=,故(4(5)正确.故选B.6.D解析:D6=,故A不正确;=,故B不正确;根据二次根式的除法,可直接得到2根据同类二次根式的性质,可知C不正确;=(a≥0,b≥0)可知D正确.故选:D7.B解析:B【分析】根据二次根式加减运算和二次根式的性质逐项排除即可.【详解】与A选项错误;===B选项正确;=-=,所以C选项错误;321与D选项错误;故选答案为B.【点睛】本题考查了二次根式加减运算和二次根式的性质,掌握同类二次根式的定义和二次根式的性质是解答本题的关键.8.A解析:A根据合并同类二次根式的法则对A 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断;根据二次根式的性质对D 进行判断.【详解】==2÷,故此项正确,不符合要求;D. 2 (3=,故此项正确,不符合要求;故选A .【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.9.A解析:A【分析】直接利用二次根式的性质化简求出即可.【详解】解:,正确,故选项A 符合题意;=,原选项计算错误,故选项B 不符合题意;||x =,原选项计算错误,故选项C 不符合题意;D. =,原选项计算错误,故选项D 不符合题意.故选:A .【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解答此题的关键.10.C解析:C【分析】几个二次根式化为最简二次根式后,如果被开方数相同,则这几个二次根式即为同类二次根式.【详解】解=m=7时==,故A 错误;当m=11时==B 错误;当m=1时=故D 错误;当m=2时=故C 正确;【点睛】本题考查了同类二次根式的定义.11.B解析:B【分析】根据二次根式有意义的条件以及二次根式的乘法进行分析即可得答案.【详解】x30-=,=0=,∴x=-2或x=3,又∵2030 xx+≥⎧⎨-≥⎩,∴x=3,故选B.【点睛】本题考查了二次根式的乘法以及二次根式有意义的条件,熟练掌握相关知识是解题的关键. 12.B解析:B【分析】根据最简二次根式的条件:①根号下不含能开得尽方的因数或因式;②根号下不含分母,据此逐项判断即可.【详解】解:A、被开方数含分母,故A不符合题意;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式.,故B符合题意;C被开方数含能开得尽方的因数或因式,故C不符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意;故选:B.【点睛】本题考查了最简二次根式,解题的关键是掌握最简二次根式的两个条件.二、填空题13..【分析】根据二次根式的性质化简即可.【详解】∵a<0.∴a-3<0,∴==.故答案为:.【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.解析:【分析】根据二次根式的性质化简即可.【详解】∵a<0.∴a-3<0,∴(a-=-=故答案为:【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.14.【分析】先根据题目中提供的三个式子,分别计算的值,用含n的式子表示其规律,再计算S的值即可.【详解】解:∵,∴;∵,∴;∵,∴;……∵,∴;∴.故答案为:【点睛】本题解析:221 n n n++【分析】n的式子表示其规律,再计算S的值即可.【详解】解:∵1221191=124S =++311122===+-; ∵222114912336S =++=7111116623===+=+-; ∵32211169134144S =++=1311111121234===+=+-; …… ∵()()()222222111111n n n S n n n n ++=++=++,()()2111111111n n n n n n n n ++===+=+-+++;∴...S =1111111112231n n =+-++-++-+…+ 111n n =+-+. 221n n n +=+ 故答案为:221n n n ++ 【点睛】本题为规律探究问题,难度较大,根据提供的式子发现规律,并表示规律是解题的关键,同时要注意对于式子()11111n n n n =-++的理解. 15.【分析】先根据确定m 的取值范围,再根据,推出,最后利用来确定a 的取值范围.【详解】解:为整数为故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用解析:5【分析】)30m -≤确定m 的取值范围,再根据m a +=32a ≤≤,最后利用78<<来确定a 的取值范围.【详解】 解:()230m m --≤23m ∴≤≤m a +=a m ∴=32a ∴≤≤7528<<46a ∴<<a 为整数a ∴为5故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用“逼近法”得出围是解此题的关键.16.-【解析】【分析】根据二次根式的性质,可得答案【详解】由题意可得: ,即∴故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定解析:【解析】【分析】根据二次根式的性质,可得答案【详解】 由题意可得:10m ,即0m ∴11m m m mm m m故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定m 的取值范围.17.5【解析】◇==5.故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a 对应,b 对应,即将a=,b=,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则解析:5【解析】32==5. 故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a ,b ,即将,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则进行计算,注意最终的结果一定要化为最简二次根式.18.【分析】先将原等式两边同时乘2,然后将左侧配方,然后利用平方的非负性即可求出a 和b 的值,然后代入即可.【详解】解:∵∴∴∴∵∴解得:a=-4,b=-2∴=故答案为:.【点睛解析:【分析】先将原等式两边同时乘2,然后将左侧配方,然后利用平方的非负性即可求出a 和b 的值,然后代入即可.【详解】解:∵2222480a ab b a -+++=∴222448160a ab b a -+++=∴()()222448160a ab ba a -+++=+ ∴()()22240ab a +-+=∵()()2220,40a b a +-≥≥∴20,40a b a +-==解得:a=-4,b=-2=故答案为:【点睛】此题考查的是配方法、非负性的应用和化简二次根式,掌握完全平方公式、平方的非负性和二次根式的乘法公式是解决此题的关键.19.﹣2a【分析】首先根据实数a 、b 在数轴上的位置确定a 、b 的正负,然后利用二次根式的性质化简,最后合并同类项即可求解.【详解】依题意得:a <0<b ,|a|<|b|,∴=-a-b+b-a=-解析:﹣2a【分析】首先根据实数a 、b 在数轴上的位置确定a 、b 的正负,然后利用二次根式的性质化简,最后合并同类项即可求解.【详解】依题意得:a <0<b ,|a|<|b|,.故答案为-2a.【点睛】此题主要考查了二次根式的性质与化简,其中正确利用数轴的已知条件化简是解题的关键,同时也注意处理符号问题.20.2018【分析】先根据已知等式归纳类推出一般规律,再根据二次根式的加减法与乘法运算法则即可得.【详解】第1个等式为:,第2个等式为:,第3个等式为:,归纳类推得:第n个等式为:(其中,解析:2018【分析】先根据已知等式归纳类推出一般规律,再根据二次根式的加减法与乘法运算法则即可得.【详解】=,第11=,第2=第3=-n为正整数),归纳类推得:第n++,则=+,2020=,=-,20202=,2018故答案为:2018.【点睛】本题考查了二次根式的加减法与乘法运算,依据已知等式,正确归纳出一般规律是解题关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

八年级(下)月考数学试卷(3月份)+答案与解析

八年级(下)月考数学试卷(3月份)+答案与解析

八年级下学期月考数学试卷(3月份)一、选择题(每题3分,共30分)1.完成下列任务,宜用抽样调查的是( )A.调查你班同学的年龄情况B.了解你所在学校的男、女生人数C.考察一批炮弹的杀伤半径D.奥运会上对参赛运动员进行尿样检查2.如图的图形中,是中心对称图形,但不是轴对称图形的是( )A.B.C.D.3.平行四边形的对角线长为x,y,一边长为12,则x,y的值可能是( )A.8和14 B.10和14 C.18和20 D.10和344.已知▱ABCD中,∠A+∠C=200°,则∠B的度数是( )A.100°B.160°C.80°D.60°5.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,若AE=4,AF=6,平行四边形ABCD的周长为40.则平行四边形ABCD的面积为( )A.24 B.36 C.40 D.486.如图,在平面内,把矩形ABCD沿EF对折,若∠1=50°,则∠AEF等于( )A.115°B.130°C.120°D.65°7.如图,在方格纸上上建立的平面直角坐标系中,将OA绕原点O按顺时针方向旋转180°得到OA′,则点A′的坐标为( )A.(3,1)B.(3,﹣1)C.(1,﹣3)D.(1,3)8.下列条件中,不能判定四边形ABCD为菱形的是( )A.AC⊥BD,AC与BD互相平分B.AB=BC=CD=DAC.AB=BC,AD=CD,AC⊥BD D.AB=CD,AD=BC,AC⊥BD9.如图,已知四边形ABCD是四个角都是直角,四条边都相等的正方形,点E在BC上,且CE=BC,点F是CD的中点,延长AF与BC的延长线交于点M.以下结论:①AB=CM;②AE=AB+CE;③S△AEF=;④∠AFE=90°,其中正确的结论的个数有( )A.1个B.2个C.3个D.4个10.如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2013的坐标为( )A.(2,0)B.(﹣2,2)C.(0,﹣2)D.(2,2)二、填空题(本大题共10小题,每空2分,共26分)11.在对25个数据进行整理的频数分布表中,各组的频数之和等于__________,各组的频率之和等于__________.12.三角形的三条中位线的长分别是3,4,5,则这个三角形的周长是__________.13.在矩形ABCD中,AB=3cm,BC=4cm,点A到对角线BD的距离为__________.14.若菱形两条对角线长分别为6cm和8cm,则它的周长为__________,面积是__________.15.如图所示,▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为__________.16.如图,延长正方形ABCD的边BC至E,使CE=AC,则∠AFC=__________.17.如图,正方形ABCD的边长为4,点P在DC边上且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为__________.18.连接对角线相等的四边形,它的中点四边形是:__________,菱形的中点四边形是:__________.19.已知:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=4cm,则OE的长为__________.20.如图,在梯形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒8个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间t=__________秒时,以点P、Q、E、D为顶点的四边形是平行四边形.三、解答题(共44分)21.目前我市“校园手机”现象越来越受到社会关注,针对这种现象,我市某中学2015届九年级数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的看法,统计整理并制作了如下的统计图:(1)这次调查的家长总数为__________.家长表示“不赞同”的人数为__________;(2)求图②中表示家长“无所谓”的扇形圆心角的度数.22.如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.23.△ABC在平面直角坐标系xOy中的位置如图.(1)作△ABC关于点C成中心对称的△A1B1C1;(2)将△A1B1C1绕点A1顺时针方向旋转90°后得到的△A2B2C,作出△A2B2C2;(3)写出△A2B2C2的三个顶点坐标.24.已知:在四边形ABCD中,E、F、G、H分别是BC、AD、BD、AC的中点.①求证:EF与GH互相平分;②当四边形ABCD的边满足__________ 条件时,EF⊥GH.25.如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由;(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由;(3)在(2)的条件下,当△ABC满足什么条件时,四边形AECF会是正方形.26.某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:●操作发现:在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是__________.(填序号即可)①AF=AG=AB;②MD=ME;③四边形AFMG是菱形;④整个图形是轴对称图形;⑤MD⊥ME.●数学思考:在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD和ME具有怎样的数量关系和位置关系?请给出证明过程;●类比探索:在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.答:__________.八年级下学期月考数学试卷(3月份)一、选择题(每欢迎登陆全品2015届中考网“题3分,共30分)1.完成下列任务,宜用抽样调查的是( )A.调查你班同学的年龄情况B.了解你所在学校的男、女生人数C.考察一批炮弹的杀伤半径D.奥运会上对参赛运动员进行尿样检查考点:全面调查与抽样调查.分析:根据抽样调查和全面调查的特点即可作出判断.解答:解:A、调查你班同学的年龄情况,因人数较少,适用普查;B、了解你所在学校的男、女生人数,因人数较少,适用普查;C、考察一批炮弹的杀伤半径,调查过程带有破坏性,只能采取抽样调查;D、奥运会上对参赛运动员进行尿样检查,因人数较少,适用普查.故选C.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.如图的图形中,是中心对称图形,但不是轴对称图形的是( )A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是中心对称图形,也是轴对称图形,故本选项错误;B、是中心对称图形,不是轴对称图形,故本选项正确;C、是轴对称图形,也是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选B.点评:本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.平行四边形的对角线长为x,y,一边长为12,则x,y的值可能是( )A.8和14 B.10和14 C.18和20 D.10和34考点:平行四边形的性质;三角形三边关系.分析:如图:因为平行四边形的对角线互相平分,所OB=,OC=,在△OBC中任意两边之和大于第三边,任意两边之差小于第三边,将各答案代入验证即可求得.即x+y>24,y﹣x<24.解答:解:A、=4+7=11<12,所以不可能;B、=5+7=12=12,所以不可能;D、34﹣10=24,所以不可能;故选C.点评:本题考查平行四边形的性质以及三角形的三边关系定理.4.已知▱ABCD中,∠A+∠C=200°,则∠B的度数是( )考点:平行四边形的性质.分析:由四边形ABCD是平行四边形,可得∠A=∠C,AD∥BC,又由∠A+∠C=200°,即可求得∠A的度数,继而求得答案.解答:解:∵四边形ABCD是平行四边形,∴∠A=∠C,AD∥BC,∵∠A+∠C=200°,∴∠A=100°,∴∠B=180°﹣∠A=80°.故选C.点评:此题考查了平行四边形的性质.此题比较简单,注意掌握平行四边形的对角相等、邻角互补的知识.5.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,若AE=4,AF=6,平行四边形ABCD的周长为40.则平行四边形ABCD的面积为( )A.24 B.36 C.40 D.48考点:平行四边形的性质.分析:已知平行四边形的高AE、AF,设BC=xcm,则CD=cm,根据“等面积法”列方程,求BC,从而求出平行四边形的面积.解答:解:设BC=xcm,则CD=cm,根据“等面积法”得4x=6,解得x=12,∴平行四边形ABCD的面积=4x=4×12=48.故选D.点评:本题应用的知识点为:平行四边形一组邻边之和为平行四边形周长的一半,平行四边形的面积=底×高,可用两种方法表示.6.如图,在平面内,把矩形ABCD沿EF对折,若∠1=50°,则∠AEF等于( )考点:翻折变换(折叠问题).专题:压轴题.分析:根据折叠前后角相等可知.解答:解:∵∠1=50°,∴∠AEF=180°﹣∠BFE=180°﹣(180°﹣50°)÷2=115°故选A.点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.7.如图,在方格纸上上建立的平面直角坐标系中,将OA绕原点O按顺时针方向旋转180°得到OA′,则点A′的坐标为( )A.(3,1)B.(3,﹣1)C.(1,﹣3)D.(1,3)考点:坐标与图形变化-旋转.分析:根据关于原点对称的点的坐标特点直接得出答案即可.解答:解:∵将OA绕原点O按顺时针方向旋转180°得到OA′,A点坐标为:(﹣3,1),∴点A′的坐标为:(3,﹣1).故选:B.点评:此题主要考查了旋转的性质以及关于原点对称点的性质,熟练掌握其性质是解题关键.8.下列条件中,不能判定四边形ABCD为菱形的是( )A.AC⊥BD,AC与BD互相平分B.AB=BC=CD=DAC.AB=BC,AD=CD,AC⊥BD D.AB=CD,AD=BC,AC⊥BD考点:菱形的判定.分析:直接利用菱形的判定定理求解即可求得答案,注意掌握排除法在选择题中的应用.解答:解:A、∵AC与BD互相平分,∴四边形ABCD为平行四边形,∵AC⊥BD,∴四边形ABCD为菱形,故正确;B、∵AB=BC=CD=DA,∴四边形ABCD为菱形,故正确;C、AB=BC,AD=CD,AC⊥BD,不能判定四边形ABCD是平行四边形,故错误;D、∵AB=CD,AD=BC,∴四边形ABCD为平行四边形,∵AC⊥BD,∴四边形ABCD为菱形,故正确;故选C.点评:此题考查了菱形的判定.此题比较简单,注意熟记定理是解此题的关键.9.如图,已知四边形ABCD是四个角都是直角,四条边都相等的正方形,点E在BC上,且CE=BC,点F是CD的中点,延长AF与BC的延长线交于点M.以下结论:①AB=CM;②AE=AB+CE;③S△AEF=;④∠AFE=90°,其中正确的结论的个数有( )A.1个B.2个C.3个D.4个考点:正方形的性质.专题:几何综合题.分析:由“点F是CD的中点,延长AF与BC的延长线交于点M”知AD=CM,即AB=CM,由边长关系可知AE=EM,F为中点知,EF⊥AM,再根据面积S四边形ABCF=S□ABCD﹣S△ADF 得面积关系.解答:解:由题意知,∵点F是CD的中点,∴DF=CF,又∵∠D=∠FCM,∠DFA=∠CFM,∴△ADF≌△MCF,∴CM=AD=AB,①正确;设正方形ABCD边长为4,∵CE=BC=1,∴BE=3,∴AE=5,∴AE=AB+CE,②正确;EM=CM+CE=5=AE,又∵F为AM的中点,∴EF⊥AM,④正确,由CF=2,CE=1得EF=,由DF=2,AD=4得AF=2,∴S△AEF=5,又S△ADF=4,∴S四边形ABCF=S□ABCD﹣S△ADF=12,③不正确,故正确的有3个,选C.点评:本题考查了正方形的性质与全等三角形的判定与性质.注意对角线相互垂直平分相等的综合性质的应用,是基础题,要熟练掌握.10.如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2013的坐标为( )A.(2,0)B.(﹣2,2)C.(0,﹣2)D.(2,2)考点:规律型:点的坐标.分析:计算出前几次跳跃后,点P1,P2,P3,P4,P5,P6,P7的坐标,可得出规律,继而可求出点P2013的坐标.解答:解:点P1(2,0),P2(﹣2,2),P3(0,﹣2),P4(2,2),P5(﹣2,0),P6(0,0),P7(2,0),从而可得出6次一个循环,∵=335…3,∴点P2013的坐标为(0,﹣2),故选C.点评:本题主要考查了中心对称及点的坐标的规律变换,求出前几次跳跃后点的坐标,总结出一般规律是解答本题的关键.二、填空题(本大题共10小题,每空2分,共26分)11.在对25个数据进行整理的频数分布表中,各组的频数之和等于25,各组的频率之和等于1.考点:频数(率)分布表.分析:根据各小组频数之和等于数据总和,各小组频率之和等于1求解.解答:解:在一组数据中,频数之和等于数据总数,故频数之和等于25;频率之和等于1.故本题答案为:25;1.点评:本题是对频率、频数灵活运用的综合考查,各小组频数之和等于数据总和,各小组频率之和等于1.12.三角形的三条中位线的长分别是3,4,5,则这个三角形的周长是24.考点:三角形中位线定理.专题:计算题.分析:已知三角形三条中位线的长,从而可求得三角形三条边的长,从而不难求得其周长的值.解答:解:∵三角形的三条中位线的长分别是3,4,5,∴三角形的三条边的长分别是6,8,10,∴这个三角形的周长=6+8+10=24.点评:此题主要考查三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.13.在矩形ABCD中,AB=3cm,BC=4cm,点A到对角线BD的距离为.考点:矩形的性质.分析:先由矩形的性质和勾股定理求出BD,再根据△ABD的面积=AD•AB=BD•AE,求出AE,即可得出结果.解答:解:作AE⊥BD于E,如图所示:∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC=4cm,∴BD==5,△ABD的面积=AD•AB=BD•AE,即×4×3=×5×AE,∴AE=(cm),即点A到对角线BD的距离为;故答案为:.点评:本题考查了矩形的性质、勾股定理以及直角三角形面积的计算;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.14.若菱形两条对角线长分别为6cm和8cm,则它的周长为20cm,面积是24cm2.考点:菱形的性质.专题:计算题.分析:根据菱形的对角线互相平分且垂直,可得菱形的周长为20cm;根据菱形的面积等于对角线积的一半,可得菱形的面积为24cm2.解答:解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,OB=OD,AB=BC=CD=AD,∵AC=8cm,BD=6cm,∴AD=5cm,S菱形ABCD=AC•BD=24cm2.故答案为:20cm、24cm2.点评:此题考查了菱形的性质:菱形的对角线互相平分且垂直;菱形的四条边都相等.解题的关键注意菱形面积的求解方法:底乘以高或对角线积的一半.15.如图所示,▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为7.考点:翻折变换(折叠问题).专题:压轴题.分析:由平行四边形可得对边相等,由折叠,可得AE=EF,AB=BF,结合两个三角形的周长,通过列方程可求得FC的长,本题可解.解答:解:设DF=x,FC=y,∵▱ABCD,∴AD=BC,CD=AB,∵BE为折痕,∴AE=EF,AB=BF,∵△FDE的周长为8,△FCB的周长为22,∴BC=AD=8﹣x,AB=CD=x+y,∴y+x+y+8﹣x=22,解得y=7.故答案为7.点评:本题考查了平行四边形的性质及图形的翻折问题;解决翻折问题的关键是找着相等的边,利用等量关系列出方程求得答案.16.如图,延长正方形ABCD的边BC至E,使CE=AC,则∠AFC=112.5°.考点:正方形的性质;等腰三角形的性质.分析:由于CE=AC,∠ACB=45°,可根据外角定理求得∠E的值,同样根据外角定理∠AFC=∠FCE+∠E,从而求得∠AFC.解答:解:∵四边形ABCD是正方形,∴∠ACB=45°,∠DCB=90°,∵AC=CE,∴∠E=∠CAF,∵∠ACB是△ACE的外角,∴∠E=∠ACB=22.5°,∵∠AFC是△CFE的外角,∴∠AFC=∠FCE+∠E=112.5°,故答案为:112.5°.点评:本题主要考查了三角形外角定理以及正方形性质的综合运用,解答和正方形有关的题目,要充分利用正方形的对角线平分每一组对角,且解答时要注意45°角的特殊作用.17.如图,正方形ABCD的边长为4,点P在DC边上且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为5.考点:轴对称-最短路线问题;正方形的性质.分析:要求DQ+PQ的最小值,DQ,PQ不能直接求,可考虑通过作辅助线转化DQ,PQ的值,从而找出其最小值求解.解答:解:如图,连接BP,∵点B和点D关于直线AC对称,∴QB=QD,则BP就是DQ+PQ的最小值,∵正方形ABCD的边长是4,DP=1,∴CP=3,∴BP==5,∴DQ+PQ的最小值是5.故答案为:5.点评:此题考查了正方形的性质和轴对称及勾股定理等知识的综合应用,得出DQ+PQ的最小值时Q点位置是解题关键.18.连接对角线相等的四边形,它的中点四边形是:菱形,菱形的中点四边形是:矩形.考点:中点四边形.分析:因为四边形的两条对角线相等,根据三角形的中位线定理,可得所得的四边形的四边相等,则所得的四边形是菱形;根据三角形的中位线定理以及菱形的性质即可.解答:解:如图,AC=BD,E、F、G、H分别是线段AB、BC、CD、AD的中点,则EH、FG分别是△ABD、△BCD的中位线,EF、HG分别是△ACD、△ABC的中位线,根据三角形的中位线的性质知,EH=FG=BD,EF=HG=AC,∵AC=BD,∴EH=FG=FG=EF,∴四边形EFGH是菱形;当四边形ABCD是菱形时,AC⊥BD,∵EH∥BD,∴AC⊥EH,∵EF∥AC,∴EF⊥EH,∴平行四边形EFGH是矩形.故答案为:菱形;矩形.点评:本题考查了中点四边形、三角形的中位线定理、矩形的判定定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半和四边相等的四边形是菱形、一个角是直角的平行四边形的矩形是解题的关键.19.已知:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=4cm,则OE的长为2cm.考点:菱形的性质;三角形中位线定理.专题:几何图形问题.分析:根据已知可得OE是△ABC的中位线,从而求得OE的长.解答:解:∵OE∥DC,AO=CO,∴OE是△ABC的中位线,∵四边形ABCD是菱形,∴AB=AD=4cm,∴OE=2cm.故答案为:2cm.点评:本题考查了菱形的性质及三角形的中位线定理,属于基础题,关键是得出OE是△ABC 的中位线,难度一般.20.如图,在梯形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒8个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间t=或秒时,以点P、Q、E、D为顶点的四边形是平行四边形.考点:平行四边形的判定;梯形.专题:动点型.分析:由已知以点P,Q,E,D为顶点的四边形是平行四边形有两种情况,(1)当Q运动到E和C之间,(2)当Q运动到E和B之间,根据平行四边形的判定,由AD∥BC,所以当PD=QE时为平行四边形.根据此设运动时间为t,列出关于t的方程求解.解答:解:BC=16,E是BC的中点,∴BE=CE=8,①当Q运动到E和B之间,PD=QE时,设运动时间为t,则得:8﹣8t=6﹣t,解得:t=,②当Q运动到E和C之间,PD=QE时,设运动时间为t,则得:8t﹣8=6﹣t,解得:t=,故当运动时间t为或秒时,以点P,Q,E,D为顶点的四边形是平行四边形.故答案为:或.点评:此题主要考查了平行四边形的判定,关键是掌握一组对边平行且相等的四边形是平行四边形.三、解答题(共44分)21.目前我市“校园手机”现象越来越受到社会关注,针对这种现象,我市某中学2015届九年级数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的看法,统计整理并制作了如下的统计图:(1)这次调查的家长总数为600.家长表示“不赞同”的人数为80;(2)求图②中表示家长“无所谓”的扇形圆心角的度数.考点:条形统计图;扇形统计图.分析:(1)根据赞成的人数与所占的百分比列式计算即可求调查的家长的总数,然后求出不赞成的人数;(2)求出无所谓的人数所占的百分比,再乘以360°,计算即可得解.解答:解:(1)调查的家长总数为:360÷60%=600(人),很赞同的人数:600×20%=120(人),不赞同的人数:600﹣120﹣360﹣40=80(人);故答案为:600,80;(2)表示家长“无所谓”的圆心角的度数为:×360°=24°.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.考点:菱形的性质;平行四边形的判定与性质.专题:证明题.分析:(1)根据菱形的对边平行且相等可得AB=CD,AB∥CD,然后证明得到BE=CD,BE∥CD,从而证明四边形BECD是平行四边形,再根据平行四边形的对边相等即可得证;(2)根据两直线平行,同位角相等求出∠ABO的度数,再根据菱形的对角线互相垂直可得AC⊥BD,然后根据直角三角形两锐角互余计算即可得解.解答:(1)证明:∵菱形ABCD,∴AB=CD,AB∥CD,又∵BE=AB,∴BE=CD,BE∥CD,∴四边形BECD是平行四边形,∴BD=EC;(2)解:∵平行四边形BECD,∴BD∥CE,∴∠ABO=∠E=50°,又∵菱形ABCD,∴AC丄BD,∴∠BAO=90°﹣∠ABO=40°.点评:本题主要考查了菱形的性质,平行四边形的判定与性质,熟练掌握菱形的对边平行且相等,菱形的对角线互相垂直是解本题的关键.23.△ABC在平面直角坐标系xOy中的位置如图.(1)作△ABC关于点C成中心对称的△A1B1C1;(2)将△A1B1C1绕点A1顺时针方向旋转90°后得到的△A2B2C,作出△A2B2C2;(3)写出△A2B2C2的三个顶点坐标.考点:作图-旋转变换.专题:计算题;作图题;几何变换.分析:(1)根据△ABC关于点C成中心对称的△A1B1C1;进而得出A,B,C关于原点对称的对应点即可得出答案;(2)将△A1B1C1绕点A1顺时针方向旋转90°,得到对应点A2,B2,C2进而得出答案;(3)根据(2)中图象得出对应点坐标即可.解答:解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2即为所求;(3)A2(2,﹣3),B2(4,﹣2),C2(3,﹣1).点评:此题主要考查了图形的旋转以及坐标确定位置,利用旋转的性质得出对应点位置是解题关键.24.已知:在四边形ABCD中,E、F、G、H分别是BC、AD、BD、AC的中点.①求证:EF与GH互相平分;②当四边形ABCD的边满足AB=BC=CD=DA 条件时,EF⊥GH.考点:中点四边形.专题:证明题.分析:(1)连接GE、GF、HF、EH,根据三角形的中位线定理即可证得EG=FH/GF=EH,则四边形EFGH是平行四边形,利用平行四边形的性质即可证得;(2)EF⊥GH时能得到四边形GFHE四边相等,从而得到四边形ABCD的四边相等.解答:解:(1)连接GE、GF、HF、EH.∵E、G分别是AD、BD的中点,∴EG=CD,同理FH=CD,FG=,EH=∴EG=FH、GF=EH∴四边形EFGH是平行四边形.∴EF与GH互相平分;(2)当EF⊥GH时四边形EFGH是菱形,此时GF=FH=HE=EG,∵EG=CD,FH=CD,FG=,EH=∴AB=BC=CD=DA,∴当四边形ABCD的边满足条件AB=BC=CD=DA时,EF⊥GH.点评:本题考查了三角形的中位线定理,菱形的判定与性质,正确证明四边形EFGH是菱形是关键.25.如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,交∠ACB 的平分线于点E,交∠ACB的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由;(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由;(3)在(2)的条件下,当△ABC满足什么条件时,四边形AECF会是正方形.考点:正方形的判定;矩形的判定.分析:(1)利用角平分线的性质的得出,∠1=∠2,进而得出,∠3=∠2,即可得出OE与OF的大小关系;(2)首先的很粗四边形AECF是平行四边形,进而得出∠ECF=90度,再利用矩形的判定得出即可;(3)由(2)证明可知,当点O运动到AC的中点时,四边形AECF是矩形,进而得出AC⊥MN,即可得出答案.解答:(1)证明:∵CE平分∠ACB,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO.(2)解:当点O运动到AC的中点时,四边形AECF是矩形.理由:∵EO=FO,点O是AC的中点.∴四边形AECF是平行四边形,∵CF平分∠BCA的外角,∴∠4=∠5,又∵∠1=∠2,∴∠2+∠4=×180°=90°.即∠ECF=90度,∴平行四边形AECF是矩形.(3)解:当△ABC是直角三角形时,即∠ACB=90°时,四边形AECF会是正方形,理由:由(2)证明可知,当点O运动到AC的中点时,四边形AECF是矩形,∵∠ACB=90°,CE、CN分别是∠ACB与∠ACB的外角平分线,∴∠1=∠2=∠3=∠4=∠5=45°,∴AC⊥MN,∴四边形AECF是正方形.点评:此题主要考查了矩形的判定、平行四边形的判定以及正方形的判定等知识,正确区分它们的定义是解题关键.26.某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:●操作发现:在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是①②③④⑤.(填序号即可)①AF=AG=AB;②MD=ME;③四边形AFMG是菱形;④整个图形是轴对称图形;⑤MD⊥ME.●数学思考:在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD和ME具有怎样的数量关系和位置关系?请给出证明过程;●类比探索:在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.答:等腰直角三角形.考点:四边形综合题.分析:操作发现:由条件可以通过三角形全等和轴对称的性质,直角三角形斜边上的中线性质以及四点共圆即可得出结论;数学思考:取AB、AC的中点F、G,连接DF,MF,EG,MG,根据三角形的中位线的性质和等腰直角三角形的性质就可以得出四边形AFMG是平行四边形,从而得出△DFM≌△MGE,根据其性质以及各个角之间的关系即可得出结论;类比探索:取AB、AC的中点F、G,连接DF,MF,EG,MG,DF和MG相交于H,根据三角形的中位线的性质K可以得出△DFM≌△MGE,由全等三角形的性质就可以得出结论.解答:操作发现:解:∵△ADB和△AEC是等腰直角三角形,∴∠ABD=∠DAB=∠ACE=∠EAC=45°,∠ADB=∠AEC=90°∵在△ADB和△AEC中,,∴△ADB≌△AEC(AAS),∴BD=CE,AD=AE,∵DF⊥AB于点F,EG⊥AC于点G,。

八年级第二学期3月份月考数学试题含解析

八年级第二学期3月份月考数学试题含解析

一、选择题1.如图钢架中,∠A=15°,现焊上与AP1等长的钢条P1P2,P2P3…来加固钢架,若最后一根钢条与射线AB的焊接点P到A点的距离为4+23,则所有钢条的总长为()A.16 B.15 C.12 D.102.如图,四边形ABCD中,AC⊥BD于O,AB=3,BC=4,CD=5,则AD的长为()A.1 B.32C.4 D.233.在直角三角形中,自两锐角所引的两条中线长分别为5和210,则斜边长为()A.10 B.410C.13D.2134.在△ABC中,∠BCA=90∘,AC=6,BC=8,D是AB的中点,将△ACD沿直线CD折叠得到△ECD,连接BE,则线段BE的长等于()A.5 B.75C.145D.3655.如图,有一张直角三角形纸片,两直角边AC=6cm,BC=8cm,D为BC边上的一点,现将直角边AC沿直线AD折叠,使AC落在斜边AB上,且与AE重合,则CD的长为()A .2cmB .2.5cmC .3cmD .4cm6.如图,在数轴上点A 所表示的数为a ,则a 的值为( )A .15--B .15-C .5-D .15-+7.如图,在等腰Rt △ABC 中,∠C =90°,AC =7,∠BAC 的角平分线AD 交BC 于点D ,则点D 到AB 的距离是( )A .3B .4C .7(21)-D .7(21)+8.如图,直角三角形两直角边的长分别为3和4,以直角三角形的两直边为直径作半圆,则阴影部分的面积是( )A .6B .32πC .2πD .129.如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC+PQ 的最小值是( )A .245B .5C .6D .810.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”翻译成数学问题是:如图所示,ABC 中,90ACB ∠=︒,10AC AB +=尺,4BC =尺,求AC 的长. AC 的长为( )A.3尺B.4.2尺C.5尺D.4尺二、填空题11.如图,在四边形ABCD中,AB =AD,BC=DC,点E为AD边上一点,连接BD、CE,CE 与BD交于点F,且CE∥AB,若 A =60°,AB=4,CE=3,则BC的长为_______.12.如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2018的坐标是_____.13.已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP 是腰长为5的等腰三角形时,点P的坐标为_____.14.在ABC ∆中,90BAC ∠=︒,以BC 为斜边作等腰直角BCD ∆,连接DA ,若22AB =,42AC =,则DA 的长为______.15.如图,Rt ABC 中,90A ∠=︒,8AC =,6AB =,DE AC ⊥,13CD BC =,13CE AC =,P 是直线AC 上一点,把CDP 沿DP 所在的直线翻折后,点C 落在直线DE 上的点H 处,CP 的长是__________16.《算法统宗》中有一道“荡秋干”的问题,其译文为:“有一架秋千,当它静止时,踏板上一点A 离地1尺,将它往前推送10尺(水平距离)时,点A 对应的点B 就和某人一样高,若此人的身高为5尺,秋干的绳索始终拉得很直,试问绳素有多长?”根据上述条件,秋干绳索长为________尺.17.如图,BAC 90∠=度,AB AC =,AE AD ⊥,且AE AD =,AF 平分DAE ∠交BC 于F ,若BD 6=,CF 8=,则线段AD 的长为______.18.如图,长方形ABCD 中,∠A =∠ABC =∠BCD =∠D =90°,AB =CD =6,AD =BC =10,点E 为射线AD 上的一个动点,若△ABE 与△A ′BE 关于直线BE 对称,当△A ′BC 为直角三角形时,AE 的长为______.19.已知x,y为一个直角三角形的两边的长,且(x﹣6)2=9,y=3,则该三角形的第三边长为_____.20.如图,在□ABCD中,AC与BD交于点O,且AB=3,BC=5.①线段OA的取值范围是______________;②若BD-AC=1,则AC•BD= _________.三、解答题21.如图,在△ABC中,AB=30 cm,BC=35 cm,∠B=60°,有一动点M自A向B以1 cm/s的速度运动,动点N自B向C以2 cm/s的速度运动,若M,N同时分别从A,B出发.(1)经过多少秒,△BMN为等边三角形;(2)经过多少秒,△BMN为直角三角形.△中,∠ACB = ∠DCE=90°.22.如图,在两个等腰直角ABC和CDE(1)观察猜想:如图1,点E在BC上,线段AE与BD的数量关系是,位置关系是;△绕直角顶点C旋转到图2的位置,(1)中的结论还成立吗?(2)探究证明:把CDE说明理由;△绕点C在平面内自由旋转,若AC = BC=10,DE=12,当A、E、(3)拓展延伸:把CDED三点在直线上时,请直接写出 AD的长.23.定义:有一组邻边均和一条对角线相等的四边形叫做邻和四边形.(1)如图1,四边形ABCD 中,∠ABC =70°,∠BAC =40°,∠ACD =∠ADC =80°,求证:四边形ABCD 是邻和四边形.(2)如图2,是由50个小正三角形组成的网格,每个小正三角形的顶点称为格点,已知A 、B 、C 三点的位置如图,请在网格图中标出所有的格点.......D .,使得以A 、B 、C 、D 为顶点的四边形为邻和四边形.(3)如图3,△ABC 中,∠ABC =90°,AB =2,BC =23,若存在一点D ,使四边形ABCD 是邻和四边形,求邻和四边形ABCD 的面积.24.如图,已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C →方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)当2t =秒时,求PQ 的长;(2)求出发时间为几秒时,PQB ∆是等腰三角形?(3)若Q 沿B C A →→方向运动,则当点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.25.定义:如图1,点M 、N 把线段AB 分割成AM 、MN 和BN ,若以AM 、MN 、BN 为边的三角形是一个直角三角形,则称点M 、N 是线段AB 的勾股分割点.(1)已知点M 、N 是线段AB 的勾股分割点,若2AM =,3MN =,求BN 的长; (2)如图2,在Rt ABC △中,AC BC =,点M 、N 在斜边AB 上,45MCN ∠=︒,求证:点M 、N 是线段AB 的勾股分割点(提示:把ACM 绕点C 逆时针旋转90︒);(3)在(2)的问题中,15ACM ∠=︒,1AM =,求BM 的长.26.我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在ABC ∆中,AO 是BC 边上的中线,AB 与AC 的“广益值”就等于22AO BO -的值,可记为22AB AC OA BO ∇=-(1)在ABC ∆中,若90ACB ∠=︒,81AB AC ∇=,求AC 的值.(2)如图2,在ABC ∆中,12AB AC ==,120BAC ∠=︒,求AB AC ∇,BA BC ∇的值.(3)如图3,在ABC ∆中,AO 是BC 边上的中线,24ABC S ∆=,8AC =,64AB AC ∇=-,求BC 和AB 的长.27.已知ABC ∆中,90ACB ∠=︒,AC BC =,过顶点A 作射线AP .(1)当射线AP 在BAC ∠外部时,如图①,点D 在射线AP 上,连结CD 、BD ,已知21AD n =-,21AB n =+,2BD n =(1n >).①试证明ABD ∆是直角三角形;②求线段CD 的长.(用含n 的代数式表示)(2)当射线AP 在BAC ∠内部时,如图②,过点B 作BD AP ⊥于点D ,连结CD ,请写出线段AD 、BD 、CD 的数量关系,并说明理由.28.如图,在边长为2正方形ABCD 中,点O 是对角线AC 的中点,E 是线段OA 上一动点(不包括两个端点),连接BE .(1)如图1,过点E 作EF BE ⊥交CD 于点F ,连接BF 交AC 于点G .①求证:BE EF =;②设AE x =,CG y =,求y 与x 的函数关系式,并写出自变量x 的取值范围. (2)在如图2中,请用无刻度的直尺作出一个以BE 为边的菱形.29.已知n 组正整数:第一组:3,4,5;第二组:8,6,10;第三组:15,8,17;第四组:24,10,26;第五组:35,12,37;第六组:48,14,50;…(1)是否存在一组数,既符合上述规律,且其中一个数为71?若存在,请写出这组数;若不存在,请说明理由;(2)以任意一个大于2的偶数为一条直角边的长,是否一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数?若可以,请说明理由;若不可以,请举出反例.30.菱形ABCD 中,∠BAD =60°,BD 是对角线,点E 、F 分别是边AB 、AD 上两个点,且满足AE =DF ,连接BF 与DE 相交于点G .(1)如图1,求∠BGD 的度数;(2)如图2,作CH ⊥BG 于H 点,求证:2GH =GB +DG ; (3)在满足(2)的条件下,且点H 在菱形内部,若GB =6,CH =3ABCD 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,求出钢条的根数,然后根据最后一根钢条与射线AB的焊接点P到A点的距离即AP5为3AP1=a,作P2D⊥AB于点D,再用含a的式子表示出P1P3,P3P5,从而可求出a的值,即得出每根钢条的长度,从而可以求得所有钢条的总长.【详解】解:如图,∵AP1与各钢条的长度相等,∴∠A=∠P1P2A=15°,∴∠P2P1P3=30°,∴∠P1P3P2=30°,∴∠P3P2P4=45°,∴∠P3P4P2=45°,∴∠P4P3P5=60°,∴∠P3P5P4=60°,∴∠P5P4P6=75°,∴∠P4P6P5=75°,∴∠P6P5B=90°,此时就不能再往上焊接了,综上所述总共可焊上5根钢条.设AP1=a,作P2D⊥AB于点D,∵∠P2P1D=30°,∴P2D=12P1P2,∴P1D3,∵P1P2=P2P3,∴P1P3=2P13a,∵∠P4P3P5=60°,P3P4=P4P5,∴△P4P3P5是等边三角形,∴P3P5=a,∵最后一根钢条与射线AB的焊接点P到A点的距离为3,∴AP5=a3a+a=3解得,a=2,∴所有钢条的总长为2×5=10,故选:D.【点睛】本题考查了三角形的内角和、等腰三角形的性质、三角形外角的性质、等边三角形的判定与性质以及勾股定理等知识,发现并利用规律找出钢条的根数是解答本题的关键.2.B解析:B【分析】设OA=a,OB=b,OC=c,OD=d,根据勾股定理求出a2+b2=AB2=9,c2+b2=BC2=16,c2+d2=CD2=25,即可证得a2+d2=18,由此得到答案.【详解】设OA=a,OB=b,OC=c,OD=d,由勾股定理得,a2+b2=AB2=9,c2+b2=BC2=16,c2+d2=CD2=25,则a2+b2+c2+b2+c2+d2=50,∴a2+d2+2(b2+c2)=50,∴a2+d2=50﹣16×2=18,∴AD221832a d+==故选:B.【点睛】此题考查勾股定理的运用,根据题中的已知条件得到直角三角形,再利用勾股定理求出未知的边长,解题中注意直角边与斜边.3.D解析:D【分析】根据已知设AC=x,BC=y,在Rt△ACD和Rt△BCE中,根据勾股定理分别列等式,从而求得AC,BC的长,最后根据勾股定理即可求得AB的长.【详解】如图,在△ABC中,∠C=90°,AD、BE为△ABC的两条中线,且AD=10,BE=5,求AB的长.设AC=x,BC=y,根据勾股定理得:在Rt△ACD中,x2+(12y)2=(10)2,在Rt△BCE中,(12x)2+y2=52,解之得,x =6,y =4,∴在Rt △ABC 中,2264213AB =+= ,故选:D .【点睛】此题考查勾股定理的运用,在直角三角形中,已知两条边长时,可利用勾股定理求第三条边的长度.4.C解析:C【分析】根据勾股定理及直角三角形的中线、翻折得CD=DE=BD=5,CE=AC=6,作DH ⊥BE 于H ,EG ⊥CD 于G ,证明△DHE ≌△EGD ,利用勾股定理求出75EH DG ==,即可得到BE. 【详解】∵∠BCA=90∘,AC=6,BC=8, ∴22226810AB AC BC ,∵D 是AB 的中点,∴AD=BD=CD=5,由翻折得:DE=AD=5,∠EDC=∠ADC ,CE=AC=6,∴BD=DE ,作DH ⊥BE 于H ,EG ⊥CD 于G ,∴∠DHE=∠EGD=90︒,∠EDH=12∠BDE=12(180︒-2∠EDC )=90︒-∠EDC , ∴∠DEB= 90︒-∠EDH=90︒-(90︒-∠EDC)=∠EDC ,∵DE=DE ,∴△DHE ≌△EGD ,∴DH=EG ,EH=DG ,设DG=x ,则CG=5-x ,∵2EG =2222DE DG CE CG -=-,∴222256(5)x x -=--,∴75x =,∴75 EH DG==,∴BE=2EH=145,故选:C.【点睛】此题考查翻折的性质,勾股定理,等腰三角形的性质,将求BE转换为求其一半的长度的想法是关键,由此作垂线,证明△DHE≌△EGD,由此求出BE的长度.5.C解析:C【分析】首先由勾股定理求得AB=10,然后由翻折的性质求得BE=4,设DC=x,则BD=8x-,在△BDE中,利用勾股定理列方程求解即可.【详解】在Rt△ABC中,由勾股定理可知:22226810AC BC+=+=,由折叠的性质可知:DC=DE,AC=AE=6,∠DEA=∠C=90°,∴BE=AB-AE=10-6=4,∠DEB=90°,设DC=x,则BD=8-x,DE=x,在Rt△BED中,由勾股定理得:BE2+DE2=BD2,即42+x2=(8-x)2,解得:x=3,∴CD=3.故选:C.【点睛】本题主要考查了勾股定理与折叠问题,熟练掌握翻折的性质和勾股定理是解决问题的关键.6.A解析:A【分析】首先根据勾股定理得出圆弧的半径,然后得出点A的坐标.【详解】解:2212=5+∴由图可知:点A 所表示的数为: 15--故选:A【点睛】本题主要考查的就是数轴上点所表示的数,属于基础题型.解决这个问题的关键就是求出斜边的长度.在数轴上两点之间的距离是指两点所表示的数的差的绝对值.7.C解析:C【分析】过点D 作DE ⊥AB 于点E ,根据角平分线的性质定理,可得:DE =DC =x ,则BE =72-x ,进而可得到AE =AC =7,在Rt △BDE 中,应用勾股定理即可求解.【详解】过点D 作DE ⊥AB 于点E ,则∠AED =90°,AE =AC =7,∵△ABC 是等腰直角三角形,∴BC =AC =7,AB =22AC +BC =72,在Rt △AED 和Rt △ACD 中,AE =AC ,DE =DC ,∴Rt △AED ≌Rt △ACD ,∴AE =AC =7,设DE =DC =x ,则BD =7-x ,在Rt △BDE 中,222BE +DE =BD ,即:()()22272-77-x x +=, 解得: 7(21)x =-,故选:C .【点睛】本题考查角平分线的性质定理,全等三角形的判定与性质,勾股定理等,运用方程思想是解题的关键.8.A解析:A【分析】分别求出以AB、AC、BC为直径的半圆及△ABC的面积,再根据S阴影=S1+S2+S△ABC-S3即可得出结论.【详解】解:如图所示:∵∠BAC=90°,AB=4cm,AC=3cm,BC=5cm,∴以AB为直径的半圆的面积S1=2π(cm2);以AC为直径的半圆的面积S2=98π(cm2);以BC为直径的半圆的面积S3=258π(cm2);S△ABC=6(cm2);∴S阴影=S1+S2+S△ABC-S3=6(cm2);故选A.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.9.A解析:A【分析】过C作CM⊥AB于M,交AD于P,过P作PQ⊥AC于Q,由角平分线的性质得出PQ=PM,这时PC+PQ有最小值,为CM的长,然后利用勾股定理和等面积法求得CM的长即可解答.【详解】过C作CM⊥AB于M,交AD于P,过P作PQ⊥AC于Q,∵AD是∠BAC的平分线,∴PQ=PM,则PC+PQ=PC+PM=CM,即PC+PQ有最小值,为CM的长,∵在Rt△ABC中,∠ACB=90°,AC=6,BC=8,∴由勾股定理得:AB=10,又1122ABCS AB CM AC BC==△,∴6824105 CM⨯==,∴PC+PQ的最小值为245,故选:A.【点睛】本题考查了角平分线的性质、最短路径问题、勾股定理、三角形等面积法求高,解答的关键是掌握线段和最短类问题的解决方法:一般是运用轴对称变换将直线同侧的点转化为异侧的点,从而把两条线段的位置关系转换,再根据两点之间线段最短或垂线段最短,使两条线段之和转化为一条直线来解决.10.B解析:B【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x 尺,则斜边为(10)x -尺,利用勾股定理解题即可.【详解】解:设竹子折断处离地面x 尺,则斜边为(10)x -尺,根据勾股定理得:2224(10)x x +=-.解得: 4.2x =,∴折断处离地面的高度为4.2尺,故选:B .【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.二、填空题117【分析】连接AC 交BD 于点O ,由题意可证AC 垂直平分BD ,△ABD 是等边三角形,可得∠BAO =∠DAO =30°,AB =AD =BD ,BO =OD ,通过证明△EDF 是等边三角形,可得DE =EF =DF ,由勾股定理可求OC ,BC 的长.【详解】连接AC ,交BD 于点O ,∵AB=AD,BC=DC,∠A=60°,∴AC垂直平分BD,△ABD是等边三角形,∴∠BAO=∠DAO=30°,AB=AD=BD=4,BO=OD=2,∵CE∥AB,∴∠BAO=∠ACE=30°,∠CED=∠BAD=60°,∴∠DAO=∠ACE=30°,∴AE=CE=3,∴DE=AD−AE=1,∵∠CED=∠ADB=60°,∴△EDF是等边三角形,∴DE=EF=DF=1,∴CF=CE−EF=2,OF=OD−DF=1,22OC CF OF3∴-=22BC=OB+OC=7∴7【点睛】本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.12.(0,21009)【解析】【分析】本题点A坐标变化规律要分别从旋转次数与点A所在象限或坐标轴、点A到原点的距离与旋转次数的对应关系.【详解】∵∠OAA1=90°,OA=AA1=1,以OA1为直角边作等腰Rt△OA1A2,再以OA2为直角边作等腰Rt△OA2A3,…,∴OA12,OA2=2)2,…,OA2018=2)2018,∵A1、A2、…,每8个一循环,∵2018=252×8+2∴点A2018的在y轴正半轴上,OA2018=20182=21009,故答案为(0,21009).【点睛】本题是平面直角坐标系下的规律探究题,除了研究动点变化的相关数据规律,还应该注意象限符号.13..(3,4)或(2,4)或(8,4).【分析】题中没有指明△ODP的腰长与底分别是哪个边,故应该分情况进行分析,从而求得点P的坐标.【详解】解:(1)OD是等腰三角形的底边时,P就是OD的垂直平分线与CB的交点,此时OP=PD≠5;(2)OD是等腰三角形的一条腰时:①若点O是顶角顶点时,P点就是以点O为圆心,以5为半径的弧与CB的交点,在直角△OPC中,CP=22-=3,则P的坐标是(3,4).54OP OC-=22②若D是顶角顶点时,P点就是以点D为圆心,以5为半径的弧与CB的交点,过D作DM⊥BC于点M,在直角△PDM中,PM=22-=3,PD DM当P在M的左边时,CP=5﹣3=2,则P的坐标是(2,4);当P在M的右侧时,CP=5+3=8,则P的坐标是(8,4).故P的坐标为:(3,4)或(2,4)或(8,4).故答案为:(3,4)或(2,4)或(8,4).【点睛】本题考查了等腰三角形的性质和勾股定理的运用等知识,注意正确地进行分类,考虑到所有可能的情况并进行分析求解是解题的关键.14.6或2.【分析】由于已知没有图形,当Rt△ABC固定后,根据“以BC为斜边作等腰直角△BCD”可知分两种情况讨论:①当D点在BC上方时,如图1,把△ABD绕点D逆时针旋转90°得到△DCE,证明A、C、E三点共线,在等腰Rt△ADE中,利用勾股定理可求AD长;②当D点在BC下方时,如图2,把△BAD绕点D顺时针旋转90°得到△CED,证明过程类似于①求解.【详解】解:分两种情况讨论:①当D点在BC上方时,如图1所示,把△ABD绕点D逆时针旋转90°,得到△DCE,则∠ABD=∠ECD,CE=AB=22,AD=DE,且∠ADE=90°在四边形ACDB中,∠BAC+∠BDC=90°+90°=180°,∴∠ABD+∠ACD=360°-180°=180°,∴∠ACD+∠ECD=180°,∴A、C、E三点共线.∴AE=AC+CE=42+22=62在等腰Rt△ADE中,AD2+DE2=AE2,即2AD2=(62)2,解得AD=6②当D点在BC下方时,如图2所示,把△BAD绕点D顺时针旋转90°得到△CED,则CE=AB=22,∠BAD=∠CED,AD=AE且∠ADE=90°,所以∠EAD=∠AED=45°,∴∠BAD=90°+45°=135°,即∠CED=135°,∴∠CED+∠AED=180°,即A、E、C三点共线.∴AE=AC-CE=42-22=22在等腰Rt△ADE中,2AD2=AE2=8,解得AD=2.故答案为:6或2.【点睛】本题主要考查了旋转的性质、勾股定理,解决这类等边(或共边)的两个三角形问题,一般是通过旋转的方式作辅助线,转化线段使得已知线段于一个特殊三角形中进行求解.15.53或203 【分析】 根据折叠后点C 的对应点H 与AC 的位置关系分类讨论,分别画出对应的图形,利用勾股定理求出各边的长,再根据折叠的性质与勾股定理列出对应的方程即可求出结论.【详解】解:①当折叠后点C 的对应点H 在AC 的下方时,如下图所示∵Rt ABC 中,90A ∠=︒,8AC =,6AB =,根据勾股定理可得2210AB AC += ∵13CD BC =,13CE AC =, ∴13CD BC ==103,13CE AC ==83 ∵DE AC ⊥根据勾股定理可得222CD CE -=由折叠的性质可得:DH=CD=103,CP=PH ∴EH=DH -DE=43设CP=PH=x ,则EP=CE -CP=83-x 在Rt △PEH 中,EP 2+EH 2=PH 2即(83-x )2+(43)2=x 2 解得:x=53即此时CP=53; ②当折叠后点C 的对应点H 在AC 的上方时,如下图所示根据折叠的性质可得DH=CD=103,CP=PH ∴EH=DH +DE=163设CP=PH=y ,则EP= CP -CE =y -83在Rt △PEH 中,EP 2+EH 2=PH 2即(y -83)2+(163)2=y 2 解得:y=203即此时CP=203. 综上所述:CP=53或203. 故答案为:53或203. 【点睛】 此题考查的是勾股定理和折叠问题,掌握利用勾股定理解直角三角形、折叠的性质和分类讨论的数学思想是解决此题的关键.16.5【分析】设绳索x 尺,过点B 向地面及AO 作垂线BE 、BC ,构成直角三角形OBE ,利用勾股定理求出x 的值【详解】如图, 过点B 作BC ⊥OA 于点C ,作BD 垂直于地面,延长OA 交地面于点D 由题意知AD=1,BE=5,BC=10设绳索x 尺,则OA=OB=x∴OC=x+1-5=x-4在Rt △OBC 中,OB 2=OC 2+BC 2∴222(4)10x x =-+得x=14.5(尺)故填14.5 ,【点睛】此题考察勾股定理的实际运用,理解题意作辅助线构建直角三角形是解题关键. 17.65【分析】由“SAS”可证ABD ≌ACE ,DAF ≌EAF 可得BD CE =,4B ∠∠=,DF EF =,由勾股定理可求EF 的长,即可求BC 的长,由勾股定理可求AD 的长.【详解】解:如图,连接EF ,过点A 作AG BC ⊥于点G ,AE AD ⊥,DAE DAC 290∠∠∠∴=+=,又BAC DAC 190∠∠∠=+=,12∠∠∴=,在ABD 和ACE 中 12AB AC AD AE =⎧⎪∠=∠⎨⎪=⎩,ABD ∴≌()ACE SAS .BD CE ∴=,4B ∠∠=BAC 90∠=,AB AC =,∴B 345∠∠==4B 45∠∠∴==,ECF 3490∠∠∠∴=+=,222CE CF EF ∴+=,222BD FC EF ∴+=,AF 平分DAE ∠,DAF EAF ∠∠∴=,在DAF 和EAF 中AD AE DAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩,DAF ∴≌()EAF SAS .DF EF ∴=.222BD FC DF ∴+=.22222DF BD FC 68100∴=+=+=,∴DF 10=BC BD DF FC 610824∴=++=++=,AB AC =,AG BC ⊥, 1BG AG BC 122∴===, DG BG BD 1266∴=-=-=,∴22AD AG DG 65=+=故答案为65【点睛】考查等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.18.2或18【分析】分两种情况:点E 在AD 线段上,点E 为AD 延长线上的一点,进一步分析探讨得出答案即可.【详解】解:①如图点E 在AD 线段上,△ABE 与△A ′B E 关于直线BE 对称,∴△A ′BE ≌△ABE,∴∠B A′E=∠A=90o ,AB=A ′B∠B A′C =90o ,∴E 、A',C 三点共线,在△ECD 与△CB A′中,{CD A BD BA C DEC ECB='∠=∠'∠=∠,∴△ECD ≌△CB A′,∴CE=BC=10,在RT △CB A′中,A′C=22BC BA -'=22106-=8,∴AE= A′E=CE - A′C=10-8=2;②如图点E 为AD 延长线上,由题意得:∠A"BC+∠A"CB=∠DCE+∠A"CB=90o∴∠A"BC=∠DCE,在△A"BC 与△DCE 中,"={""A CDECD A B A BC DCE∠∠=∠=∠∴△A"BC ≌△DCE,DE= A"C,在RT △ A"BC 中,22"BC BA -22106-∴AE=AD+DE=AD+ A"C=10+8=18;综上所知,AE=2或18.故答案为:2或18.【点睛】此题考查翻折的性质,三角形全等的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键.19.106232【解析】【详解】∵(x-6)2=9,∴x-6=±3,解得:x 1=9,x 2=3,∵x ,y 为一个直角三角形的两边的长,y=3,∴当x=3时,x 、y 223332+=;当x=9时,x 、y 2293310+=;当x=9时,x 为斜边、y 为直角边,则第三边为263922=-.故答案为:310232【点睛】本题主要考查了勾股定理的应用,正确分类讨论是解决问题的关键,解题时注意一定不要漏解.20.①1<OA <4. ②672. 【解析】(1)由三角形边的性质5-3<2OA <5+3,1<OA <4. (2)过A 作AF BC ,F ⊥于过D 作DE BC ⊥于E,可知,ABF 全等DCE ,由题意知,22BD DE =+()2BC CE +=2DE +()24CE +, ()()222225AC DE BC CE DE CE ∴=+-=+-,2AC ∴+ 2BD=2DE +()()22245CE DE CE +++-=2(22)5018DE CE ++=+50=68,BD -AC =1,两边平方2AC ∴+ 2BD -2AC •BD =1, ∴AC •BD =672.三、解答题21.(1) 出发10s 后,△BMN 为等边三角形;(2)出发6s 或15s 后,△BMN 为直角三角形.【分析】(1)设时间为x ,表示出AM=x 、BN=2x 、BM=30-x ,根据等边三角形的判定列出方程,解之可得;(2)分两种情况:①∠BNM=90°时,即可知∠BMN=30°,依据BN=12BM 列方程求解可得;②∠BMN=90°时,知∠BNM=30°,依据BM=12BN 列方程求解可得. 【详解】解 (1)设经过x 秒,△BMN 为等边三角形,则AM =x ,BN =2x ,∴BM =AB -AM =30-x ,根据题意得30-x =2x ,解得x =10,答:经过10秒,△BMN 为等边三角形;(2)经过x 秒,△BMN 是直角三角形,①当∠BNM =90°时,∵∠B =60°,∴∠BMN =30°,∴BN =12BM ,即2x =12(30-x), 解得x =6;②当∠BMN =90°时,∵∠B =60°,∴∠BNM =30°, ∴BM =12BN ,即30-x =12×2x , 解得x =15,答:经过6秒或15秒,△BMN 是直角三角形.【点睛】本题考查勾股定理的逆定理,等边三角形的判定.22.(1)AE BD =,AE BD ⊥;(2)成立,理由见解析;(3)14或2.【分析】(1)先根据等腰三角形的定义可得AC BC =,CE CD =,再根据三角形全等的判定定理与性质可得AE BD =,EAC DBC ∠=∠,然后根据直角三角形两锐角互余、等量代换即可得90AHD ∠=︒,由此即可得;(2)先根据三角形全等的判定定理与性质可得AE BD =,EAC DBC ∠=∠,再根据直角三角形两锐角互余可得90EAC AOC ∠+∠=︒,然后根据对顶角相等、等量代换可得90BOH DBC ∠∠+=︒,从而可得90OHB ∠=︒,由此即可得;(3)先利用勾股定理求出AB =,再分①点,,A E D 在直线上,且点E 位于中间,②点,,A E D 在直线上,且点D 位于中间两种情况,结合(1)(2)的结论,利用勾股定理求解即可得.【详解】(1)AE BD =,AE BD ⊥,理由如下:如图1,延长AE 交BD 于H ,由题意得:AC BC =,90ACE BCD ∠=∠=︒,CE CD =,∴()ACE BCD SAS ≅,∴AE BD =,EAC DBC ∠=∠,∵90DBC BDC ∠+∠=︒,∴90EAC BDC ∠+∠=︒,∴0)9018(EAC BD A D C H ∠+∠∠︒==-︒,即AE BD ⊥,故答案为:AE BD =,AE BD ⊥;(2)成立,理由如下:如图2,延长AE 交BD 于H ,交BC 于O ,∵90ACB ECD ∠=∠=︒,∴ACB BCE ECD BCE ∠-∠=∠-∠,即ACE BCD ∠=∠,在ACE △和BCD 中,AC BC ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴()ACE BCD SAS ≅,∴AE BD =,EAC DBC ∠=∠,∵90ACB ∠=︒,∴90EAC AOC ∠+∠=︒,∵AOC BOH ∠=∠,∴90BOH DBC ∠∠+=︒,即90OBH BOH ∠+∠=︒,∴180()90OHB OBH BOH ∠=︒-∠+∠=︒,即AE BD ⊥;(3)设AD x =,10,90AC BC ACB ==∠=︒,2102AB AC ∴==,由题意,分以下两种情况:①如图3-1,点,,A E D 在直线上,且点E 位于中间,同理可证:AE BD =,AE BD ⊥,12DE =,12BD AE AD DE x ∴==-=-,在Rt ABD △中,222AD BD AB +=,即222(12)(102)x x +-=,解得14x =或2x =-(不符题意,舍去),即14AD =,②如图3-2,点,,A E D 在直线上,且点D 位于中间,同理可证:AE BD =,AE BD ⊥,12DE =,12BD AE AD DE x ∴==+=+,在Rt ABD △中,222AD BD AB +=,即222(12)(102)x x ++=,解得2x =或14x =-(不符题意,舍去),即2AD =,综上,AD 的长为14或2.【点睛】本题考查了三角形全等的判定与性质、勾股定理等知识点,较难的是题(3),正确分两种情况讨论,并画出图形是解题关键.23.(1)见解析;(2)见解析;(3)363【分析】(1)先由三角形的内角和为180°求得∠ACB 的度数,从而根据等腰三角形的判定证得AB=AC=AD ,按照邻和四边形的定义即可得出结论.(2)以点A 为圆心,AB 长为半径画圆,与网格的交点,以及△ABC 外侧与点B 和点C 组成等边三角形的网格点即为所求.(3)先根据勾股定理求得AC 的长,再分类计算即可:①当DA=DC=AC 时;②当CD=CB=BD 时;③当DA=DC=DB 或AB=AD=BD 时.【详解】(1)∵∠ACB =180°﹣∠ABC ﹣∠BAC =70°,∴∠ACB =∠ABC ,∴AB =AC .∵∠ACD =∠ADC ,∴AC =AD ,∴AB =AC =AD .∴四边形ABCD 是邻和四边形;(2)如图,格点D 、D'、D''即为所求作的点;(3)∵在△ABC 中,∠ABC =90°,AB =2,BC =23,∴AC =()22222234AB BC +=+=,显然AB ,BC ,AC 互不相等.分两种情况讨论:①当DA =DC =AC=4时,如图所示:∴△ADC 为等边三角形,过D 作DG ⊥AC 于G ,则∠ADG =160302⨯︒=︒, ∴122AG AD ==, 22224223DG AD AG =-=-= ∴S △ADC =1423432⨯⨯=S △ABC =12AB×BC =3, ∴S 四边形ABCD =S △ADC +S △ABC =3②当CD =CB =BD =3∴△BDC 为等边三角形,过D 作DE ⊥BC 于E ,则∠BDE =160302⨯︒=︒, ∴132BE BD == ()()22222333DE BD BE =-=-=, ∴S △BDC =1233332⨯= 过D 作DF ⊥AB 交AB 延长线于F ,∵∠FBD=∠FBC -∠DBC =90︒-60︒=30︒,∴DF=123 S △ADB =12332⨯=, ∴S 四边形ABCD =S △BDC +S △ADB =3;③当DA =DC =DB 或AB =AD =BD 时,邻和四边形ABCD 不存在.∴邻和四边形ABCD 的面积是3或3【点睛】本题属于四边形的新定义综合题,考查了等腰三角形的判定和性质、勾股定理、三角形的面积计算等知识点,数形结合并读懂定义是解题的关键.24.(1)132)83;(3)5.5秒或6秒或6.6秒 【分析】(1)根据点P 、Q 的运动速度求出AP ,再求出BP 和BQ ,用勾股定理求得PQ 即可; (2)由题意得出BQ BP =,即28t t =-,解方程即可;(3)当点Q 在边CA 上运动时,能使BCQ ∆成为等腰三角形的运动时间有三种情况: ①当CQ BQ =时(图1),则C CBQ ∠=∠,可证明A ABQ ∠=∠,则BQ AQ =,则CQ AQ =,从而求得t ;②当CQ BC =时(图2),则12BC CQ +=,易求得t ;③当BC BQ =时(图3),过B 点作BE AC ⊥于点E ,则求出BE ,CE ,即可得出t .【详解】(1)解:(1)224BQ cm =⨯=, 8216BP AB AP cm =-=-⨯=, 90B ∠=︒, 222246213()PQ BQ BP cm =+=+=; (2)解:根据题意得:BQ BP =, 即28t t =-,解得:83t =; 即出发时间为83秒时,PQB ∆是等腰三角形; (3)解:分三种情况:①当CQ BQ =时,如图1所示:则C CBQ ∠=∠,90ABC ∠=︒, 90CBQ ABQ ∴∠+∠=︒,90A C ∠+∠=︒,A ABQ ∴∠=∠BQ AQ ∴=,5CQ AQ ∴==,11BC CQ ∴+=,112 5.5t ∴=÷=秒.②当CQ BC =时,如图2所示:则12BC CQ +=1226t ∴=÷=秒.③当BC BQ =时,如图3所示:过B 点作BE AC ⊥于点E , 则68 4.8()10AB BC BE cm AC ⨯=== 22 3.6CE BC BE cm ∴=-=,27.2CQ CE cm ∴==,13.2BC CQ cm ∴+=,13.22 6.6t ∴=÷=秒.由上可知,当t 为5.5秒或6秒或6.6秒时,BCQ ∆为等腰三角形.【点睛】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.25.(15132)见解析;(3)23【分析】(1)分两种分割法利用勾股定理即可解决问题;(2)如图,过点A 作AD ⊥AB ,且AD=BN .只要证明△ADC ≌△BNC ,推出CD=CN ,∠ACD=∠BCN ,再证明△MDC ≌△MNC ,可得MD=MN ,由此即可解决问题;(3)过点B 作BP ⊥AB ,使得BP=AM=1,根据题意可得△CPB ≌△CMA ,△CMN ≌△CPN ,利用全等性质推出∠BNP=30°,从而得到NB 和NP 的长,即得BM.【详解】 解:(1)当MN 最长时,225MN AM -,当BN 最长时,2213AM MN +(2)证明:如图,过点A 作AD ⊥AB ,且AD=BN ,在△ADC 和△BNC 中,AD BN DAC B AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△BNC (SAS ),∴CD=CN ,∠ACD=∠BCN ,∵∠MCN=45°,∴∠DCA+∠ACM=∠ACM+∠BCN=45°,∴∠MCD=∠MCN ,在△MDC 和△MNC 中,CD CN MCD MCN CM CM =⎧⎪∠=∠⎨⎪=⎩,∴△MDC ≌△MNC (SAS ),∴MD=MN在Rt △MDA 中,AD 2+AM 2=DM 2,∴BN 2+AM 2=MN 2,∴点M ,N 是线段AB 的勾股分割点;(3)过点B 作BP ⊥AB ,使得BP=AM=1,根据(2)中过程可得:△CPB ≌△CMA ,△CMN ≌△CPN ,∴∠AMC=∠BPC=120°,AM=PB=1,∠CMN=∠CPN=∠A+∠ACM=45°+15°=60°,∴∠BPN=120°-60°=60°,∴∠BNP=30°,∴NP=2BP=2=MN ,∴BN=22213-=,∴BM=MN+BN=23+.【点睛】本题是三角形的综合问题,考查了全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.26.(1)AC=9;(2)AB ∇AC =-72,BA ∇BC =73【分析】(1)在Rt AOC ∆中,根据勾股定理和新定义可得AO 2-OC 2=81=AC 2;(2)①先利用含30°的直角三角形的性质求出AO =2,OB =23再用新定义即可得出结论; ②先构造直角三角形求出BE ,AE ,再用勾股定理求出BD ,最后用新定义即可得出结论;(3)作BD ⊥CD,构造直角三角形BCD,根据三角形面积关系求出BD,根据新定义和勾股定理逆定理得出三角形AOD 是直角三角形,根据中线性质得出OA 的长度,根据勾股定理求出OC,从而得出BC,再根据勾股定理求出CD,再求出AD,再运用勾股定理求出AB.【详解】(1)已知如图:AO 为BC 上的中线,在Rt AOC ∆中,AO 2-OC 2=AC 2因为81AB AC ∇=所以AO 2-OC 2=81所以AC 2=81所以AC=9.(2)①如图2,取BC 的中点D ,连接AO ,∵AB =AC ,∴AO ⊥BC ,在△ABC 中,AB =AC ,∠BAC =120°,∴∠ABC =30°,在Rt △AOB 中,AB =12,∠ABC =30°,∴AO =6,OB =2222126AB AO -=-=63,∴AB ∇AC =AO 2﹣BO 2=36﹣108=﹣72, ②取AC 的中点D ,连接BD ,∴AD =CD =12AC =6,过点B 作BE ⊥AC 交CA 的延长线于E ,在Rt △ABE 中,∠BAE =180°﹣∠BAC =60°,∴∠ABE =30°, ∵AB =12,∴AE =6,BE =222212663AB AE -=-=, ∴DE =AD +AE =12,在Rt △BED 中,根据勾股定理得,BD =()2222631267BE DE +=+= ∴BA ∇BC =BD 2﹣CD 2=216;(3)作BD ⊥CD,因为24ABC S ∆=,8AC =,所以BD=26ABC S AC ∆÷=,因为64AB AC ∇=-,AO 是BC 边上的中线,所以AO 2-OC 2=-64,所以OC 2-AO 2=64,由因为AC 2=82=64,所以OC 2-AO 2= AC 2所以∠OAC=90°所以OA=24228322ABC S AC ∆⨯÷=⨯÷= 所以OC=22228373AC OA +=+= 所以BC=2OC=273,在Rt △BCD 中, CD=()2222276163BC BD -=-=所以AD=CD-AC=16-8=8所以AB=22228610AD BD +=+=【点睛】考核知识点:勾股定理逆定理,含30°直角三角形性质.借助辅助线构造直角三角形,运用勾股定理等直角三角形性质解决问题是关键.27.(1)①详见解析;(2)222222CD n n =+-(1n >);(2)2AD BD CD -=,理由详见解析.【分析】(1)①根据勾股定理的逆定理进行判断;②过点C 作CE ⊥CD 交DB 的延长线于点E ,利用同角的余角相等证明∠3=∠4,∠1=∠E ,进而证明△ACD ≌△BCE ,求出DE 的长,再利用勾股定理求解即可.(2)过点C 作CF ⊥CD 交BD 的延长线于点F ,先证∠ACD=∠BCF ,再证△ACD ≌△BCF ,得CD=CF ,AD=BF ,再利用勾股定理求解即可.【详解】。

八年级数学第二学期3月份月考测试卷及解析

八年级数学第二学期3月份月考测试卷及解析

八年级数学第二学期3月份月考测试卷及解析一、选择题1.下列计算正确的是( )A 3=±B 2=C .2=D 2=2.下列运算错误的是( )A =B .=C .)216=D .)223=3.若01x <<=( ). A .2xB .2x-C .2x -D .2x4.下列各式计算正确的是( )A B .C =3D .5.在实数范围内有意义,则x 的取值范围是( ) A .x >3B .x >-3C .x≥-3D .x≤-3 6.下列计算正确的是( )A 3=±B 0-=C =D 5=-7.下列各式计算正确的是( )A .6232126()b a b a b a---⋅=B .(3xy )2÷(xy )=3xyC =D .2x •3x 5=6x 68.下列二次根式中,是最简二次根式的是( )A BC D9.估计( ( ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间10.如图直线a ,b 都与直线m 垂直,垂足分别为M 、N ,MN =1,等腰直角△ABC 的斜边,AB 在直线m 上,AB =2,且点B 位于点M 处,将等腰直角△ABC 沿直线m 向右平移,直到点A 与点N 重合为止,记点B 平移平移的距离为x ,等腰直角△ABC 的边位于直线a ,b 之间部分的长度和为y ,则y 关于x 的函数图象大致为( )A .B .C .D .11.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )12325672310A .10B 41C .2D 5112.如果实数x ,y 23x y xy y =-(),x y 在( ) A .第一象限 B .第二象限C .第一象限或坐标轴上D .第二象限或坐标轴上二、填空题13.能力拓展:12121A =+23232A =+;3:4343A =+;454A =________.…n A :________.()1请观察1A ,2A ,3A 的规律,按照规律完成填空.()2比较大小1A 和2A3221()3-14.化简并计算:...+=________.(结果中分母不含根式)15.定义:对非负实数x “四舍五入”到个位的值记为()f x z , 即:当n 为非负整数时,如果1122n x n -<+≤,则()f x n =z .如:(0)(0.48)0f f ==z z ,(0.64)(1.49)1f f ==z z ,(4)(3.68)4f f ==z z ,试解决下列问题:①f =z __________;②f =z __________;+=__________.16.已知,-1,则x 2+xy +y 2=_____. 17.若实数x ,y ,m 满足等式()223x y m +-=m+4的算术平方根为________.18.=_______. 19.有意义,则x 的取值范围是____.20.能合并成一项,则a =______.三、解答题21.观察下列等式:1==;==== 回答下列问题:(1(2)计算:【答案】(1(2)9 【分析】(1)根据已知的31=-n=22代入即可求解;(2)先利用上题的规律将每一个分数化为两个二次根式的差的形式,再计算即可. 【详解】解:(1=(2+99+=1100++-=1 =10-1 =9.22.-10 【分析】先根据二次根式的性质和平方差公式化简,然后再进行计算即可 【详解】=(22⎡⎤--⎢⎥⎣⎦=()212--10+.10. 【点睛】本题主要考查了二次根式的性质、平方差公式,灵活运用二次根式的性质化简是解答本题的关键.23.(1)计算:(2)先化简,再求值:(()8a a a a +--,其中14a =.【答案】(1)2)82-a ,【分析】(1)分别根据二次根式的除法法则、二次根式的性质、二次根式的乘法法则计算和化简各项,再合并同类二次根式即可;(2)分别根据平方差公式和单项式乘以多项式的法则计算各项,再把a 的值代入化简后的式子计算即可. 【详解】(1)==;(2)(()8a a a a +--2228a a a =--+82a =-,当14a =时,原式1824⎫=⨯-=⎪⎭.【点睛】本题考查了整式的乘法和二次根式的混合运算,属于常考题型,熟练掌握基本知识是解题的关键.24.先观察下列等式,再回答下列问题:111111112=+-=+;111112216=+-=+1111133112=+-=+(1) (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数).【答案】(1)1120(2)()111n n++(n为正整数)【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.试题解析:(1)=1+14−141+=1120,1 1 20(2)1n−1n1+=1+()1n n1+ (n为正整数).a=,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.25.计算:(1)0 1 2⎛⎫ ⎪⎝⎭(2)(4【答案】(1)-5;(2)9【分析】(1)第一项利用算术平方根的定义计算,后一项利用零指数幂法则计算,即可得到结果;(2)利用平方差公式计算即可.【详解】(1)0 1 2⎛⎫ ⎪⎝⎭41=--,5=-;(2)(4167=-9=.【点睛】本题考查了二次根式的混合运算以及零指数幂,熟练掌握平方差公式是解题的关键.26.(1)已知a 2+b 2=6,ab =1,求a ﹣b 的值;(2)已知b =,求a 2+b 2的值. 【答案】(1)±2;(2)2. 【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(2)先分母有理化,再根据完全平方公式和平方差公式即可求解. 【详解】(1)由a 2+b 2=6,ab=1,得a 2+b 2-2ab=4, (a-b )2=4, a-b=±2.(2)12a ===,12b ===,2222()22312a b a b ab +=+-=-=-=⎝⎭ 【点睛】本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.27.(1)计算:21)-(2)已知a ,b 是正数,4a b +=,8ab =【答案】(1)5-2 【分析】(1)根据完全平方公式、平方差公式可以解答本题;(2)先将所求式子化简,然后将a+b=4,ab=8代入化简后的式子即可解答本题. 【详解】解:(1)原式21)=-(31)(23)=---5=-;(2)原式=== a ,b 为正数, ∴原式=把4a b +=,8ab =代入,则原式== 【点睛】本题考查二次根式的化简求值,完全平方公式、平方差公式,解答本题的关键是明确二次根式化简求值的方法.28.计算(1(2)21)-【答案】(1)4;(2)3+ 【分析】(1)先把各根式化为最简二次根式,再去括号,合并同类项即可; (2)利用平方差公式和完全平方公式计算即可. 【详解】解:(1)解:原式=4=+4=-(2)解:原式()22161=---63=-+3=+【点睛】本题考查了二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.29.先化简,再求值:221()a ba b a b b a-÷-+-,其中a =2b =- 【答案】1a b -+,12-. 【分析】先把分式进行化简,得到最简分式,然后把a 、b 的值代入计算,即可得到答案.解:原式1()()a b a b aa b a b b a b b--=⨯-⨯+-+()()a b a b a b b a b -=--++()b bb a =-+1a b=-+,当a =2b =原式12==-.【点睛】本题考查了二次根式的混合运算,分式的化简求值,分式的混合运算,解题的关键是熟练掌握运算法则进行解题.30.计算:(1 ;(2)))213【答案】(1)2)1-. 【分析】(1)根据二次根式的混合运算法则可以算得答案. (2)结合整式的乘法公式和二次根式的运算法则计算. 【详解】(1)原式==(2)原式=212---=1-. 【点睛】本题考查二次根式的运算,熟练掌握二次根式的意义、性质和运算法则是解题关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D【分析】根据算术平方根、立方根、二次根式的乘法逐项判断即可得. 【详解】A 3=,此项错误;B 2=-,此项错误;C 、27=≠D 2==,此项正确;故选:D . 【点睛】本题考查了算术平方根、立方根、二次根式的乘法,熟练掌握算术平方根与立方根是解题关键.2.C解析:C 【分析】根据二次根式的化简、乘法、完全平方公式、平方差公式逐项判断即可得. 【详解】A =,此项正确;B 、=C 、)21516=+=+D 、)22743=-=,此项正确;故选:C . 【点睛】本题考查了二次根式的化简与乘法运算,熟记运算法则是解题关键.3.D解析:D 【分析】根据二次根式的意义先化简各项,再进行分式的加减运算可得出解. 【详解】 解:∵0<x <1, ∴0<x <1<1x, ∴10x x +>,10x x-<.原式=11 x xx x +--=11 x xx x ++-=2x.故选D.点睛:本题考查了二次根式的性质和绝对值化简,也考查了分式的加减.4.C解析:C【分析】根据二次根式的化简进行选择即可.【详解】AB、C,故本选项正确;D、=18,故本选项错误;故选:C.【点睛】本题考查了二次根式的混合运算,掌握二次根式的化简是解题的关键.5.C解析:C【解析】分析:根据被开方数大于等于0列式进行计算即可得解.详解:根据题意得,x+3≥0,解得x≥-3.故选C.点睛:本题考查的知识点为:二次根式的被开方数是非负数,这也是解答本题的关键. 6.B解析:B【分析】直接利用二次根式的性质化简得出答案.【详解】3=,故此选项错误;=,正确;D. 5=,故此选项错误;故选:B此题主要考查了二次根式的加减,正确掌握二次根式的性质是解题关键.7.D解析:D 【分析】依据单项式乘以单项式、单项式除以单项式以及二次根式的加法法则对各项分别计算出结果,再进行判断即可得到结果. 【详解】A. 2321526()b a b a b a---⋅=,故选项A 错误;B. (3xy )2÷(xy )=9xy ,故选项B 错误;C 错误; D. 2x •3x 5=6x 6,正确. 故选:D . 【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.8.D解析:D 【分析】最简二次根式的被开方数中不含能开得尽方的因数或因式,其中小数要转化为分数,分数中分母不可以是二次根式,注意这几点即可得出答案. 【详解】AB 10不是最简二次根式,故本选项不符合题意;C 2,不是最简二次根式,故本选项不符合题意;D 故选:D . 【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式,最简二次根式必须满足两个条件:被开方数中不含能开得尽方的因数或因式;被开方数的因数是整数,因式是整式,本题属于基础题型.9.A解析:A 【分析】根据二次根式的混合运算法则进行计算,再估算无理数的大小.()1 23323+⨯=11 233233⨯+⨯=2+6,∵4<6<9,∵2<6<3,∴4<2+6<5,故选:A.【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的运算法则、会进行无理数的大小估算是解题的关键.10.D解析:D【解析】【分析】根据等腰直角△ABC被直线a和b所截的图形分为三种情况讨论:①当0≤x≤1时,y是BM+BD;②当1<x≤2时,y是CP+CQ+MN;当2<x≤3时,y=AN+AF,分别用x表示出这三种情况下y的函数式,然后对照选项进行选择.【详解】①当0≤x≤1时,如图1所示.此时BM=x,则DM=x,在Rt△BMD中,利用勾股定理得BD=2x,所以等腰直角△ABC的边位于直线a,b之间部分的长度和为y=BM+BD=(2+1)x,是一次函数,当x=1时,B点到达N点,y=2+1;②当1<x≤2时,如图2所示,△CPQ是直角三角形,此时y=CP+CQ+MN2+1.即当1<x≤2时,y2+1.③当2<x≤3时,如图3所示,此时△AFN是等腰直角三角形,AN=3﹣x,则AF=2(3﹣x),y=AN+AF=(﹣1﹣2)x+3+32,是一次函数,当x=3时,y=0.综上所述只有D答案符合要求.故选:D.【点睛】本题主要考查动点问题的函数图象,解题的方法是动中找静,在不同的情况下找到y与x 的函数式.11.B解析:B【解析】【分析】由图形可知,第n()1 1232n nn+ +++=案.【详解】由图形可知,第n()1 1232n nn+ +++=∴第889362⨯=,则第9行从左至右第536541+=,故选B.【点睛】本题主要考查数字的变化类,解题的关键是根据题意得出第n行最后一个数为()12n n+12.D解析:D 【分析】先判断出点的横纵坐标的符号,进而判断点所在的象限或坐标轴. 【详解】=- ∴x 、y 异号,且y>0,∴x<0,或者x 、y 中有一个为0或均为0. ∴那么点(),x y 在第二象限或坐标轴上. 故选:D . 【点睛】根据二次根式的意义,确定被开方数的取值范围,进而确定a 、b 的取值范围,从而确定点的坐标位置.二、填空题13.(1)、;(2);(3) 【解析】 【分析】(1)观察A1,A2,A3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式;(2)先根据不等式的性质等式的两边同时加上或減去一个数,等解析:(1)=;(2),,><<;(3),,<<< 【解析】 【分析】(1)观察A 1,A 2,A 3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式;(2)先根据不等式的性质等式的两边同时加上或減去一个数,等式仍成立,求得>1)的结论解答;(3)利用(2)的结论进行填空. 【详解】解:(1)观察A 1,A 2,A 3的规律可知,将等式右边的分式分母有理化,即得等式左边的代数式,所以=,(2>1>>,<<(3)由(1)、(2<,故答案为:=;(2),,><<;(3),,<<<【点睛】主要考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.14.【分析】根据=,将原式进行拆分,然后合并可得出答案. 【详解】 解:原式= =. 故答案为. 【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观【分析】-,将原式进行拆分,然后合并可得出答案.【详解】 解:原式====220400xx x-.故答案为220400xx x-. 【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观察.15.3 【解析】 1、;2、根据题意,先推导出等于什么, (1)∵, ∴,(2)再比较与的大小关系, ①当n=0时,; ②当为正整数时,∵, ∴, ∴,综合(1)、(2)可得:,解析:3 20172018【解析】1、(1.732)2z z f f ==;2、根据题意,先推导出f 等于什么, (1)∵2221142n n n n n ⎛⎫+<++=+ ⎪⎝⎭,12n <+,(2)12n -的大小关系,①当n=012n >-; ②当n 为正整数时,∵2212n n n ⎛⎫+-- ⎪⎝⎭1204n =->,∴2212n n n ⎛⎫+>- ⎪⎝⎭,12n >-,综合(1)、(2)可得:1122n n -<+,∴f n =z ,∴3f =z .3、∵f n =z , ∴(2017zf +111112233420172018=++++⨯⨯-⨯111111112233420172018=-+-+-++- 112018=- 20172018=. 故答案为(1)2;(2)3;(3)20172018. 点睛:(1)解第②小题的关键是应用“完全平方公式”和“作差的方法”分别证明到当n 为非负整数时,1122n n -<+,从而得到f n =z ;(2)解题③的要点是:当n 为正整数时,111(1)1n n n n =-++.16.10 【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y )2﹣xy=(2)2﹣(+1)(﹣1)=12﹣2=10. 故答案为10.解析:10 【解析】根据完全平方式的特点,可得x 2+xy+y 2=(x+y )2﹣xy=(2﹣1)=12﹣2=10. 故答案为10.17.3 【解析】 【分析】先根据二次根式有意义的条件得出x+y 的值,再根据非负数的性质列出关于x,y,m的方程组,求出m的值,进而可得出结论.【详解】依题意得:,解得:x=1,y=1,m=5,∴3解析:3【解析】【分析】先根据二次根式有意义的条件得出x+y的值,再根据非负数的性质列出关于x,y,m的方程组,求出m的值,进而可得出结论.【详解】依题意得:35302302x y mx y mx y+--=⎧⎪+-=⎨⎪+=⎩,解得:x=1,y=1,m=5,∴==3.故答案为3.【点睛】本题考查了二次根式有意义得条件及非负数的性质,熟知二次根式具有非负性是解答此题的关键.18.【分析】设,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】解:设,由算术平方根的非负性可得t≥0,则.故答案为:.【点睛】此题考查的是二【分析】t=,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】t=,由算术平方根的非负性可得t≥0,则244t=+=+8=+8=+81)=+62=1)∴=.t1.【点睛】此题考查的是二次根式的化简,掌握完全平方公式和二次根式的性质是解题关键.19.x≥0.【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】∵有意义,∴x≥0,故答案为x≥0.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.解析:x≥0.【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】有意义,∴x≥0,故答案为x≥0.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.20.4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】由最简二次根式与能合并成一项,得a-1=3.解解析:4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】能合并成一项,得a-1=3.解得a=4.故答案为:4.【点睛】本题考查同类二次根式和最简二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无30.无。

八年级第二学期3月份月考数学试题含解析

八年级第二学期3月份月考数学试题含解析

一、选择题1.如图,点A 的坐标是(2)2,,若点P 在x 轴上,且APO △是等腰三角形,则点P 的坐标不可能是( )A .(2,0)B .(4,0)C .(-22,0)D .(3,0) 2.已知:△ABC 中,BD 、CE 分别是AC 、AB 边上的高,BQ =AC ,点F 在CE 的延长线上,CF =AB ,下列结论错误的是( ).A .AF ⊥AQB .AF=AQC .AF=AD D .F BAQ ∠=∠3.已知等边三角形的边长为a ,则它边上的高、面积分别是( )A .2,24a a B .23,4a a C .233,a a D .233,4a a 4.如图,正方形ABCD 的边长为8,M 在DC 上,且DM=2,N 是AC 上的一动点,则DN+MN 的最小值是( )A .8B .9C .10D .125.在ABC 中,,,A B C ∠∠∠的对边分别是a b c 、、,下列条件中,不能说明ABC 是直角三角形的是( )A .222b a c =-B .;C A B ∠=∠-∠ C .::3:4:5A B C ∠∠∠=D .::5:12:13a b c =6.甲、乙两艘轮船同时从港口出发,甲以16海里/时的速度向北偏东75︒的方向航行,它们出发1.5小时后,两船相距30海里,若乙以12海里/时的速度航行,则它的航行方向为( )A .北偏西15︒B .南偏西75°C .南偏东15︒或北偏西15︒D .南偏西15︒或北偏东15︒7.如图,已知数轴上点P 表示的数为1-,点A 表示的数为1,过点A 作直线l 垂直于PA ,在l 上取点B ,使1AB =,以点P 为圆心,以PB 为半径作弧,弧与数轴的交点C 所表示的数为( )A .5B .51-C .51+D .51-+8.以下列各组数为边长,能组成直角三角形的是( ) A .1,2,3B .2,3,4C .3,4,6D .1,3,2 9.如图,∠ACB =90°,AC =BC ,AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD =3,BE =1,则BC 的长是( )A .32B .2C .22D .1010.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( ) A .7,24,25 B .111,4,5222 C .3,4,5 D .114,7,822二、填空题11.如图,ACB △和ECD 都是等腰直角三角形,CA CB =,CE CD =,ABC 的顶点A 在ECD 的斜边上.若3AE =,7AD =,则AC 的长为_________12.如图,在Rt △ABC 中,∠ACB =90°,AB =7.5cm ,AC =4.5cm ,动点P 从点B 出发沿射线BC 以2cm/s 的速度移动,设运动的时间为t 秒,当△ABP 为等腰三角形时,t 的取值为_____.13.如图,△ABC中,∠ACB=90°,AB=2,BC=AC,D为AB的中点,E为BC上一点,将△BDE沿DE翻折,得到△FDE,EF交AC于点G,则△ECG的周长是___________.14.如图,长方体纸箱的长、宽、高分别为50cm、30cm、60cm,一只蚂蚁从点A处沿着纸箱的表面爬到点B处.蚂蚁爬行的最短路程为_______cm.的角平分线,E是AD上的动点,F 15.如图,△ABC中,AB=AC=13,BC=10,AD是BAC是AB边上的动点,则BE+EF的最小值为_____.16.如图,Rt△ABC中,∠BCA=90°,AB=5,AC=2,D为斜边AB上一动点(不与点A,B重合),DE⊥AC,DF⊥BC,垂足分别为E、F,连接EF,则EF的最小值是_____.17.如图,把平面内一条数轴x绕点O逆时针旋转角θ(0°<θ<90°)得到另一条数轴y,x轴和y轴构成一个平面斜坐标系.规定:已知点P是平面斜坐标系中任意一点,过点P作y轴的平行线交x轴于点A,过点P作x轴的平行线交y轴于点B,若点A在x轴上对应的实数为a,点B在y轴上对应的实数为b,则称有序实数对(a,b)为点P的斜坐标.在平面斜坐标系中,若θ=45°,点P的斜坐标为(1,2),点G的斜坐标为(7,﹣2),连接PG,则线段PG的长度是_____.18.如图,在ABC 中,AB AC =,点D 在ABC 内,AD 平分BAC ∠,连结CD ,把ADC 沿CD 折叠,AC 落在CE 处,交AB 于F ,恰有CE AB ⊥.若10BC =,7AD =,则EF =__________.19.已知,在△ABC 中,BC=3,∠A=22.5°,将△ABC 翻折使得点B 与点A 重合,折痕与边AC 交于点P ,如果AP=4,那么AC 的长为_______20.已知:如图,等腰Rt OAB ∆的直角边OA 的长为1,以AB 边上的高1OA 为直角边,按逆时针方向作等腰11Rt OA B ∆,11A B 与OB 相交于点2A ,若再以2OA 为直角边按逆时针方向作等腰22Rt OA B ∆,22A B 与1OB 相交于点3A ,按此作法进行下去,得到33OA B ∆,44OA B ∆,…,则66OA B ∆的周长是______.三、解答题21.在等腰△ABC 与等腰△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE ,且点D 、E 、C 三点在同一条直线上,连接BD .(1)如图1,求证:△ADB ≌△AEC(2)如图2,当∠BAC =∠DAE =90°时,试猜想线段AD ,BD ,CD 之间的数量关系,并写出证明过程;(3)如图3,当∠BAC =∠DAE =120°时,请直接写出线段AD ,BD ,CD 之间的数量关系式为: (不写证明过程)22.已知a ,b ,c 满足88a a -+-=|c ﹣17|+b 2﹣30b +225,(1)求a ,b ,c 的值;(2)试问以a ,b ,c 为边能否构成三角形?若能构成三角形,求出三角形的周长和面积;若不能构成三角形,请说明理由.23.我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在ABC ∆中,AO 是BC 边上的中线,AB 与AC 的“广益值”就等于22AO BO -的值,可记为22AB AC OA BO ∇=-(1)在ABC ∆中,若90ACB ∠=︒,81AB AC ∇=,求AC 的值.(2)如图2,在ABC ∆中,12AB AC ==,120BAC ∠=︒,求AB AC ∇,BA BC ∇的值.(3)如图3,在ABC ∆中,AO 是BC 边上的中线,24ABC S ∆=,8AC =,64AB AC ∇=-,求BC 和AB 的长.24.Rt ABC ∆中,90CAB ∠=,4AC =,8AB =,M N 、分别是边AB 和CB 上的动点,在图中画出AN MN +值最小时的图形,并直接写出AN MN +的最小值为 .25.如图,己知Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =,ED 为AB 垂直平分线,且23DE =DB ,DA .(1)直接写出BC =__________,AC =__________;(2)求证:ABD ∆是等边三角形;(3)如图,连接CD ,作BF CD ⊥,垂足为点F ,直接写出BF 的长;(4)P 是直线AC 上的一点,且13CP AC =,连接PE ,直接写出PE 的长. 26.在ABC ∆中,AB AC =,CD 是AB 边上的高,若10,5AB BC ==.(1)求CD 的长.(2)动点P 在边AB 上从点A 出发向点B 运动,速度为1个单位/秒;动点Q 在边AC 上从点A 出发向点C 运动,速度为v 个单位秒()v>1,设运动的时间为()0t t >,当点Q 到点C 时,两个点都停止运动.①若当2v =时,CP BQ =,求t 的值.②若在运动过程中存在某一时刻,使CP BQ =成立,求v 关于t 的函数表达式,并写出自变量t 的取值范围.27.问题情境:综合实践活动课上,同学们围绕“已知三角形三边的长度,求三角形的面积”开展活动,启航小组同学想到借助正方形网格解决问题问题解决:图(1)、图(2)都是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,操作发现,启航小组同学在图(1)中画出△ABC ,其顶点A ,B ,C 都在格点上,同时构造长方形CDEF ,使它的顶点都在格点上,且它的边EF 经过点A ,ED 经过点B .同学们借助此图求出了△ABC 的面积.(1)在图(1)中,△ABC 的三边长分别是AB = ,BC = ,AC = .△ABC 的面积是 .(2)已知△PMN 中,PM =17,MN =25,NP =13.请你根据启航小组的思路,在图(2)中画出△PMN ,并直接写出△RMN 的面积 .28.在ABC ∆中,90ACB ∠=︒,6AC BC ==,点D 是AC 的中点,点E 是射线DC 上一点,DF DE ⊥于点D ,且DE DF =,连接CF ,作FH CF ⊥于点F ,交直线AB 于点H .(1)如图(1),当点E 在线段DC 上时,判断CF 和FH 的数量关系,并加以证明; (2)如图(2),当点E 在线段DC 的延长线上时,问题(1)中的结论是否依然成立?如果成立,请求出当ABC △和CFH △面积相等时,点E 与点C 之间的距离;如果不成立,请说明理由.29.如图1,在正方形ABCD 中,点E ,F 分别是AC ,BC 上的点,且满足DE ⊥EF ,垂足为点E ,连接DF .(1)求∠EDF= (填度数);(2)延长DE 交AB 于点G ,连接FG ,如图2,猜想AG ,GF ,FC 三者的数量关系,并给出证明;(3)①若AB=6,G 是AB 的中点,求△BFG 的面积;②设AG=a ,CF=b ,△BFG 的面积记为S ,试确定S 与a ,b 的关系,并说明理由.30.如图1,点E 是正方形ABCD 边CD 上任意一点,以DE 为边作正方形DEFG ,连接BF ,点M 是线段BF 中点,射线EM 与BC 交于点H ,连接CM .(1)请直接写出CM 和EM 的数量关系和位置关系.(2)把图1中的正方形DEFG 绕点D 顺时针旋转45︒,此时点F 恰好落在线段CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.(3)把图1中的正方形DEFG 绕点D 顺时针旋转90︒,此时点E 、G 恰好分别落在线段AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【详解】解:(1)当点P在x轴正半轴上,①以OA为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=22,∴P的坐标是(4,0)或(22,0);②以OA为底边时,∵点A的坐标是(2,2),∴当点P的坐标为:(2,0)时,OP=AP;(2)当点P在x轴负半轴上,③以OA为腰时,∵A的坐标是(2,2),∴OA= 22∴OA=AP=2∴P的坐标是(-220).故选D.2.C解析:C【分析】根据BD 、CE 分别是AC 、AB 边上的高,推导出EBH DCH ∠=∠;再结合题意,可证明FAC AQB △≌△,由此可得F BAQ ∠=∠,AF AQ =;再经90AEF ∠=得90F FAE ∠+∠=,从而证明AF ⊥AQ ;最后由勾股定理得222AQ AD QD =+,从而得到AF AD ≠,即可得到答案.【详解】如图,CE 和BD 相较于H∵BD 、CE 分别是AC 、AB 边上的高∴CE AB ⊥,BD AC ⊥∴90BEC BDC AEF ADQ ∠=∠=∠=∠=∴90EBH EHB DHC DCH ∠+∠=∠+∠=∵EHB DHC ∠=∠∴EBH DCH ∠=∠又∵BQ =AC 且CF =AB∴FAC AQB △≌△∴F BAQ ∠=∠,AF AQ =,故B 、D 结论正确;∵90AEF ∠=∴90F FAE ∠+∠=∴90BAQ FAE F FAE ∠+∠=∠+∠=∴AF ⊥AQ 故A 结论正确;∵90ADQ ∠=∴222AQ AD QD =+∵0QD ≠∴AQ AD ≠∴AF AD ≠故选:C .【点睛】本题考查了全等三角形、直角三角形、勾股定理、三角形的高等知识;解题的关键是熟练掌握全等三角形、直角三角形、勾股定理、三角形的高的性质,从而完成求解.3.C解析:C【分析】作出等边三角形一边上的高,利用直角三角形中,30°角所对的直角边等于斜边的一半,得出BD ,利用勾股定理即可求出AD ,再利用三角形面积公式即可解决问题.【详解】解:如图作AD ⊥BC 于点D .∵△ABC 为等边三角形,∴∠B =60°,∠B AD =30° ∴1122BD AB a == 由勾股定理得,2222213()2AD AB BD a a a =-=-= ∴边长为a 的等边三角形的面积为12×a ×32a =34a 2, 故选:C .【点睛】本题考点涉及等边三角形的性质、含30°角的直角三角形、勾股定理以及三角形面积公式,熟练掌握相关性质定理是解题关键.4.C解析:C【解析】【分析】要求DN +MN 的最小值,DN ,MN 不能直接求,可考虑通过作辅助线转化DN ,MN 的值,从而找出其最小值求解.【详解】解:∵正方形是轴对称图形,点B 与点D 是关于直线AC 为对称轴的对称点,∴连接BN ,BD ,则直线AC 即为BD 的垂直平分线,∴BN =ND ∴DN +MN =BN +MN 连接BM 交AC 于点P ,∵点 N 为AC 上的动点,由三角形两边和大于第三边,知当点N 运动到点P 时,BN +MN =BP +PM =BM ,BN +MN 的最小值为BM 的长度,∵四边形ABCD 为正方形,∴BC =CD =8,CM =8−2=6,BCM =90°,∴BM ==10, ∴DN +MN 的最小值是10.故选:C .【点睛】此题考查正方形的性质和轴对称及勾股定理等知识的综合应用,解题的难点在于确定满足条件的点N 的位置:利用轴对称的方法.然后熟练运用勾股定理. 5.C解析:C【分析】此题考查的是直角三角形的判定方法,大约有以下几种:①勾股定理的逆定理,即三角形三边符合勾股定理;②三个内角中有一个是直角,或两个内角的度数和等于第三个内角的度数;根据上面两种情况进行判断即可.【详解】解:A 、由222b a c =-得a 2=b 2+c 2,符合勾股定理的逆定理,能够判定△ABC 为直角三角形,不符合题意;B 、由C A B ∠=∠-∠得∠C +∠B=∠A ,此时∠A 是直角,能够判定△ABC 是直角三角形,不符合题意;C 、∠A :∠B :∠C=3:4:5,那么∠A=45°、∠B=60°、∠C=75°,△ABC 不是直角三角形,故此选项符合题意;D 、a :b :c=5:12:13,此时c 2=b 2+ a 2,符合勾股定理的逆定理,△ABC 是直角三角形,不符合题意;故选:C .【点睛】此题主要考查了直角三角形的判定方法,只有三角形的三边长构成勾股数或三内角中有一个是直角的情况下,才能判定三角形是直角三角形.6.C解析:C【分析】先求出出发1.5小时后,甲乙两船航行的路程,进而可根据勾股定理的逆定理得出乙船的航行方向与甲船的航行方向垂直,进一步即可得出答案.【详解】解:出发1.5小时后,甲船航行的路程是16×1.5=24海里,乙船航行的路程是12×1.5=18海里;∵222241857632490030+=+==,∴乙船的航行方向与甲船的航行方向垂直,∵甲船的航行方向是北偏东75°,∴乙船的航行方向是南偏东15°或北偏西15°.故选:C .【点睛】本题考查了勾股定理的逆定理和方位角,属于常考题型,正确理解题意、熟练掌握勾股定理的逆定理是解题的关键.7.B解析:B【分析】由数轴上点P 表示的数为1-,点A 表示的数为1,得PA=2,根据勾股定理得PB 而即可得到答案.【详解】∵数轴上点P 表示的数为1-,点A 表示的数为1,∴PA=2,又∵l ⊥PA ,1AB =,∴PB =∵∴数轴上点C 1.故选B .【点睛】本题主要考查数轴上点表示的数与勾股定理,掌握数轴上两点之间的距离求法,是解题的关键.8.D解析:D【分析】根据勾股定理的逆定理,只要两边的平方和等于第三边的平方即可构成直角三角形.【详解】解:A 、12+22=5≠32,故不符合题意;B 、22+32=13≠42,故不符合题意;C 、32+42=25≠62,故不符合题意;D 、12+2=4=22,符合题意. 故选D.【点睛】本题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,简便的方法是:判断两个较小的数的平方和是否等于最大数的平方即可.9.D解析:D【分析】根据条件可以得出∠E =∠ADC =90°,进而得出△CEB ≌△ADC ,就可以得出AD =CE ,再利用勾股定理就可以求出BC 的值.【详解】解:∵BE ⊥CE ,AD ⊥CE ,∴∠E =∠ADC =90°,∴∠EBC +∠BCE =90°.∵∠BCE +∠ACD =90°,∴∠EBC =∠DCA .在△CEB 和△ADC 中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CEB ≌△ADC (AAS ),∴CE =AD =3,在Rt △BEC中,,故选D .【点睛】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解题的关键.10.B解析:B【分析】根据勾股定理的逆定理分别计算各个选项,选出正确的答案.【详解】A 、22272425+=,能组成直角三角形,故正确;B 、22211145222⎛⎫⎛⎫⎛⎫+≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,不能组成直角三角形,故错误; C 、222345+=,能组成直角三角形,故正确; D 、2221147822⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,能组成直角三角形,故正确; 故选:B .【点睛】本题考查了勾股定理的逆定理:已知三角形ABC 的三边满足a 2+b 2=c 2,则三角形ABC 是直角三角形.二、填空题11.5【分析】由题意可知,AC =BC ,DC =EC ,∠DCE =∠ACB =90°,∠D =∠E =45°,求出∠ACE =∠BCD 可证△ACE ≌△BCD ,可得AE =BD =3,∠ADB =90°,由勾股定理求出AB 即可得到AC 的长.【详解】解:如图所示,连接BD ,∵△ACB 和△ECD 都是等腰直角三角形,∴AC =BC ,DC =EC ,∠DCE =∠ACB =90°,∠D =∠E =45°,且∠ACE =∠BCD =90°-∠ACD ,在ACE 和BCD 中,AC=BC ACE=BCD CE=CD ⎧⎪∠∠⎨⎪⎩∴△ACE ≌△BCD (SAS ),∴AE =BD 3E =∠BDC =45°, ∴∠ADB =∠ADC+∠BDC =45°+45°=90°, ∴AB 22AD +BD =7+3=10,∵AB=2BC ,∴BC =2AB=525【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质以及勾股定理等知识,添加恰当的辅助线构造全等三角形是解题的关键.12.75或6或94【分析】当△ABP 为等腰三角形时,分三种情况:①当AB =BP 时;②当AB =AP 时;③当BP =AP时,分别求出BP的长度,继而可求得t值.【详解】在Rt△ABC中,BC2=AB2﹣AC2=7.52﹣4.52=36,∴BC=6(cm);①当AB=BP=7.5cm时,如图1,t=7.52=3.75(秒);②当AB=AP=7.5cm时,如图2,BP=2BC=12cm,t=6(秒);③当BP=AP时,如图3,AP=BP=2tcm,CP=(4.5﹣2t)cm,AC=4.5cm,在Rt△ACP中,AP2=AC2+CP2,所以4t2=4.52+(4.5﹣2t)2,解得:t=94,综上所述:当△ABP为等腰三角形时,t=3.75或t=6或t=94.故答案为:3.75或6或94.【点睛】此题是等腰三角形与动点问题,考查等腰三角形的性质,勾股定理,解题中应根据每两条边相等分情况来解答,不要漏解.13.2【分析】连接CE.根据“直角三角形斜边上的中线等于斜边的一半”、等腰三角形的性质以及折叠的性质推知EG+CG=EG+GF=EF=BE,【详解】解:(1)如图,连接CD、CF.∵Rt△ABC中,∠ACB=90°,AC=BC,D为AB边的中点,∴BD=CD=1.BC=2 ,∵由翻折可知BD=DF,∴CD=BD=DF=1,∠DFE=∠B=∠DCA=45°,∴∠DCF=∠DFC,∴∠DCF-∠DCA=∠DFC-∠DFE,即∠GCF=∠GFC,∴GC=GF,∴EG+CG=EG+GF=EF=BE,∴△ECG的周长=EG+GC+CE=BE+EC=BC=2,故答案为2.【点睛】本题考查了折叠的性质、勾股定理、直角三角形的性质,能将三角形的周长转移到已知线段上是解题的关键..14.100【解析】蚂蚁有三种爬法,就是把正视和俯视(或正视和侧视,或俯视和侧视)二个面展平成一个长方形,然后求其对角线:第一种情况:如图1,把我们所看到的前面和上面组成一个平面,则这个长方形的长和宽分别是90cm和50cm,则所走的最短线段AB==10cm;第二种情况:如图2,把我们看到的左面与上面组成一个长方形,则这个长方形的长和宽分别是110cm和30cm,所以走的最短线段AB==10cm;第三种情况:如图3,把我们所看到的前面和右面组成一个长方形,则这个长方形的长和宽分别是80cm和60cm,所以走的最短线段AB==100cm;三种情况比较而言,第三种情况最短.故答案为100cm.点睛:本题考查了立体图形中的最短路线问题;通常应把立体几何中的最短路线问题转化为平面几何中的求两点间距离的问题;注意长方体展开图形应分情况进行探讨.15.120 13【解析】∵AB=AC,AD是角平分线,∴AD⊥BC,BD=CD,∴B点,C点关于AD对称,如图,过C作CF⊥AB于F,交AD于E,则CF=BE+FF的最小值,根据勾股定理得,AD=12,利用等面积法得:AB⋅CF=BC⋅AD,∴CF=BC ADAB⋅=101213⨯=12013故答案为120 13.点睛:本题主要考查的是翻折的性质、垂线段最短、勾股定理的应用及三角形面积的等积法.明确当CF⊥AB时,CF有最小值是解题的关键.16.25【解析】试题分析:根据勾股定理可求出BC=1,然后根据∠BCA=90°,DE⊥AC,DF⊥BC,证得四边形CEDF是矩形,连接CD,则CD=EF,当CD⊥AB时,CD最短,即EF=CD=25.故答案为25 5.点睛:本题考查了勾股定理的运用,矩形的判定和性质以及垂线段最短的性质,同时也考查了学生综合运用性质进行推理和计算的能力.17.25【分析】如图,作PA∥y轴交X轴于A,PH⊥x轴于H.GM∥y轴交x轴于M,连接PG交x轴于N,先证明△ANP≌△MNG(AAS),再根据勾股定理求出PN的值,即可得到线段PG的长度.【详解】如图,作PA∥y轴交X轴于A,PH⊥x轴于H.GM∥y轴交x轴于M,连接PG交x轴于N.∵P(1,2),G(7.﹣2),∴OA=1,PA=GM=2,OM=7,AM=6,∵PA ∥GM ,∴∠PAN =∠GMN ,∵∠ANP =∠MNG ,∴△ANP ≌△MNG (AAS ),∴AN =MN =3,PN =NG ,∵∠PAH =45°,∴PH =AH =2,∴HN =1,∴PN ===∴PG =2PN =.故答案为【点睛】本题考查了全等三角形的综合问题,掌握全等三角形的性质以及判定定理、勾股定理是解题的关键.18.4913【解析】【分析】如图(见解析),延长AD ,交BC 于点G ,先根据等腰三角形的三线合一性得出AG BC ⊥,再根据折叠的性质、等腰三角形的性质(等边对等角)得出2345∠+∠=︒,从而得出CDG ∆是等腰直角三角形,然后根据勾股定理、面积公式可求出AC 、CE 、CF 的长,最后根据线段的和差即可得.【详解】如图,延长AD ,交BC 于点G AD 平分BAC ∠,,10AB AC BC ==,B ACB AG BC ∴∠=∠⊥,且AG 是BC 边上的中线1123,52B CG BC ∴∠=∠+∠+∠== 由折叠的性质得12,CE AC ∠=∠=123223B ∠=∠+∠+∠=∠+∠∴CE AB ⊥,即90BFC ∠=︒390B ∴∠+∠=︒230239+∴∠∠=∠+︒,即2345∠+∠=︒CDG ∴∆是等腰直角三角形,且5DG CG ==7512AG AD DG ∴=+=+=在Rt ACG ∆中,13AC ===13CE AB AC ==∴=由三角形的面积公式得1122ABCS BC AG AB CF ∆=⋅=⋅即1110121322CF⨯⨯=⨯⋅,解得12013CF=12049131313EF CE CF∴=-=-=故答案为:49 13.【点睛】本题是一道较难的综合题,考查了等腰三角形的判定与性质、勾股定理等知识点,通过作辅助线,构造一个等腰直角三角形是解题关键.19.522,322++【分析】过B作BF⊥CA于F,构造直角三角形,分两种情况讨论,利用勾股定理以及等腰直角三角形的性质,即可得到AC的长.【详解】分两种情况:①当∠C为锐角时,如图所示,过B作BF⊥AC于F,由折叠可得,折痕PE垂直平分AB,∴AP=BP=4,∴∠BPC=2∠A=45°,∴△BFP是等腰直角三角形,∴BF=DF=22又∵BC=3,∴Rt△BFC中,221BC BF-=,∴AC=AP+PF+CF=5+22;②当∠ACB 为钝角时,如图所示,过B 作BF ⊥AC 于F ,同理可得,△BFP 是等腰直角三角形,∴BF=FP=22又∵BC=3,∴Rt △BCF 中,221BC BF -=,∴AC=AF-CF=3+22故答案为:5+223+22【点睛】本题主要考查了折叠问题以及勾股定理的运用,解决问题的关键是分两种情况画出图形进行求解.解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.20.228+ 【分析】 依次求出在Rt △OAB 中,OA 12Rt △OA 1B 1中,OA 22OA 12)2;依此类推:在Rt △OA 5B 5中,OA 6=(22)6,由此可求出△OA 6B 6的周长. 【详解】∵等腰Rt OAB ∆的直角边OA 的长为1, ∴在Rt △OA 1B 1中OA 1=22OA =22, 在22Rt OA B ∆中OA 2=22OA 1=(22)2, … 故在Rt △OA 6B 6中OA 6=22OA 5=(22)6= OB 6 66A B 2OB 62 故△OA 6B 62+2×2)62+2×1822+故答案为:228.【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.三、解答题21.(1)见解析;(2)CD=2AD+BD,理由见解析;(3)CD=3AD+BD【分析】(1)由“SAS”可证△ADB≌△AEC;(2)由“SAS”可证△ADB≌△AEC,可得BD=CE,由直角三角形的性质可得DE=2AD,可得结论;(3)由△DAB≌△EAC,可知BD=CE,由勾股定理可求DH=3AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=3AD+BD,即可解决问题;【详解】证明:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);(2)CD=2AD+BD,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠BAC=90°,AD=AE,∴DE=2AD,∵CD=DE+CE,∴CD=2AD+BD;(3)作AH⊥CD于H.∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠DAE=120°,AD=AE,∴∠ADH=30°,∴AH=12 AD,∴DH2AD,∵AD=AE,AH⊥DE,∴DH=HE,∴CD=DE+EC=2DH+BD+BD,故答案为:CD+BD.【点睛】本题是结合了全等三角形的性质与判定,勾股定理等知识的综合问题,熟练掌握知识点,有简入难,层层推进是解答关键.22.(1)a=8,b=15,c=17;(2)能,60【分析】(1)根据算术平方根,绝对值,平方的非负性即可求出a、b、c的值;(2)根据勾股定理的逆定理即可求出此三角形是直角三角形,由此得到面积和周长【详解】解:(1)∵a,b,c|c﹣17|+b2﹣30b+225,21||7(15)c b+-﹣,∴a﹣8=0,b﹣15=0,c﹣17=0,∴a=8,b=15,c=17;(2)能.∵由(1)知a=8,b=15,c=17,∴82+152=172.∴a2+c2=b2,∴此三角形是直角三角形,∴三角形的周长=8+15+17=40;三角形的面积=12×8×15=60.【点睛】此题考查算术平方根,绝对值,平方的非负性,勾股定理的逆定理判断三角形的形状.23.(1)AC=9;(2)AB∇AC=-72,BA∇BC=【分析】(1)在Rt AOC∆中,根据勾股定理和新定义可得AO2-OC2=81=AC2;(2)①先利用含30°的直角三角形的性质求出AO =2,OB =23,再用新定义即可得出结论; ②先构造直角三角形求出BE ,AE ,再用勾股定理求出BD ,最后用新定义即可得出结论;(3)作BD ⊥CD,构造直角三角形BCD,根据三角形面积关系求出BD,根据新定义和勾股定理逆定理得出三角形AOD 是直角三角形,根据中线性质得出OA 的长度,根据勾股定理求出OC,从而得出BC,再根据勾股定理求出CD,再求出AD,再运用勾股定理求出AB.【详解】(1)已知如图:AO 为BC 上的中线,在Rt AOC ∆中,AO 2-OC 2=AC 2因为81AB AC ∇=所以AO 2-OC 2=81所以AC 2=81所以AC=9.(2)①如图2,取BC 的中点D ,连接AO ,∵AB =AC ,∴AO ⊥BC ,在△ABC 中,AB =AC ,∠BAC =120°,∴∠ABC =30°,在Rt △AOB 中,AB =12,∠ABC =30°,∴AO =6,OB 2222126AB AO -=-3∴AB ∇AC =AO 2﹣BO 2=36﹣108=﹣72, ②取AC 的中点D ,连接BD ,∴AD =CD =12AC =6,过点B 作BE ⊥AC 交CA 的延长线于E ,在Rt △ABE 中,∠BAE =180°﹣∠BAC =60°,∴∠ABE =30°, ∵AB =12,∴AE =6,BE 222212663AB AE -=-=, ∴DE =AD +AE =12,在Rt △BED 中,根据勾股定理得,BD ()2222631267BE DE +=+=∴BA ∇BC =BD 2﹣CD 2=216;(3)作BD ⊥CD,因为24ABC S ∆=,8AC =,所以BD=26ABC S AC ∆÷=,因为64AB AC ∇=-,AO 是BC 边上的中线,所以AO 2-OC 2=-64,所以OC 2-AO 2=64,由因为AC 2=82=64,所以OC 2-AO 2= AC 2所以∠OAC=90°所以OA=24228322ABC S AC ∆⨯÷=⨯÷= 所以OC=22228373AC OA +=+=所以BC=2OC=273,在Rt △BCD 中,CD=()2222276163BC BD -=-=所以AD=CD-AC=16-8=8所以AB=22228610AD BD +=+=【点睛】考核知识点:勾股定理逆定理,含30°直角三角形性质.借助辅助线构造直角三角形,运用勾股定理等直角三角形性质解决问题是关键.24.作图见解析,325【分析】作A 点关于BC 的对称点A',A'A 与BC 交于点H ,再作A'M ⊥AB 于点M ,与BC 交于点N ,此时AN+MN 最小,连接AN ,首先用等积法求出AH 的长,易证△ACH ≌△A'NH ,可得A'N=AC=4,然后设NM=x ,利用勾股定理建立方程求出NM 的长,A'M 的长即为AN+MN 的最小值.【详解】如图,作A 点关于BC 的对称点A',A'A 与BC 交于点H ,再作A'M ⊥AB 于点M ,与BC 交于点N ,此时AN+MN 最小,最小值为A'M 的长.连接AN ,在Rt △ABC 中,AC=4,AB=8,∴2222AB AC =84=45++ ∵11AB AC=BC AH 22⋅⋅ ∴8545∵CA ⊥AB ,A 'M ⊥AB ,∴CA ∥A 'M∴∠C=∠A 'NH ,由对称的性质可得AH=A 'H ,∠AHC=∠A'HN=90°,AN=A'N在△ACH 和△A'NH 中,∵∠C=∠A 'NH ,∠AHC=∠A'HN ,AH=A 'H ,∴△ACH ≌△A'NH (AAS )∴A'N=AC=4=AN ,设NM=x ,在Rt △AMN 中,AM 2=AN 2-NM 2=222416-=-x x在Rt △AA'M 中,165,A 'M=A 'N+NM=4+x ∴AM 2=AA '2-A 'M 2=()221654-+⎝⎭x ∴()2221654=16-+-⎝⎭x x 解得125x =此时AN MN +的最小值=A'M=A'N+NM=4+125=325【点睛】 本题考查了最短路径问题,正确作出辅助线,利用勾股定理解直角三角形是解题的关键.25.(1)2,2)证明见解析(3)7(4【分析】(1)根据含有30°角的直角三角形的性质可得BC=2,再由勾股定理即可求出AC 的长; (2)由ED 为AB 垂直平分线可得DB=DA ,在Rt △BDE 中,由勾股定理可得BD=4,可得BD=2BE ,故∠BDE 为60°,即可证明ABD ∆是等边三角形;(3)由(1)(2)可知,AC AD=4,进而可求得CD 的长,再由等积法可得BCD ACD ACBD S S S =+四边形,代入求解即可;(4)分点P 在线段AC 上和AC 的延长线上两种情况,过点E 作AC 的垂线交AC 于点Q ,构造Rt △PQE ,再根据勾股定理即可求解.【详解】(1)∵Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =,∴122BC AB ==,∴AC = (2)∵ED 为AB 垂直平分线,∴ADB=DA ,在Rt △BDE 中,∵122BE AE AB ===,DE =∴BD =,∴BD=2BE ,∴∠BDE 为60°,∴ABD ∆为等边三角形;(3))由(1)(2)可知,AC ,AD=4,∴CD =∵BCD ACD ACBD S SS =+四边形, ∴111()222BC AD AC AC AD BF CD +⨯=⨯+⨯,∴7BF =(4)分点P 在线段AC 上和AC 的延长线上两种情况,如图,过点E 作AC 的垂线交AC 于点Q ,∵AE=2,∠BAC=30°,∴EQ=1, ∵=23AC ,∴=3CQ QA =,①若点P 在线段AC 上, 则23=3333PQ CQ CP =-=, ∴22233PE PQ EQ =+; ②若点P 在线段AC 的延长线上, 则2533333PQ CQ CP =+=, ∴22221=3PE PQ EQ =+; 综上,PE 23221. 【点睛】 本题考查勾股定理及其应用、含30°的直角三角形的性质等,解题的关键一是能用等积法表示并求出BF 的长,二是对点P 的位置要分情况进行讨论.26.(1)CD=8;(2)t=4;(3)12-=t v t (26t ≤<) 【分析】(1)作AE ⊥BC 于E ,根据等腰三角形三线合一的性质可得BE=12BC ,然后利用勾股定理求出AE ,再用等面积法可求出CD 的长;(2)①过B 作BF ⊥AC 于F ,易得BF=CD ,分别讨论Q 点在AF 和FC 之间时,根据△BQF ≌△CPD ,得到PD=QF ,建立方程即可求出t 的值;(3)同(2)建立等式关系即可得出关系式,再根据Q 在FC 之间求出t 的取值范围即可.【详解】解:(1)如图,作AE ⊥BC 于E ,∵AB=AC,∴BE=12BC=25在Rt△ABE中,()2222AE=AB BE=1025=45--∵△ABC的面积=11BC AE=AB CD 22⋅⋅∴BC AE4545 CD===8AB10⋅⨯(2)过B作BQ⊥AC,当Q在AF之间时,如图所示,∵△ABC的面积=11AC BF=AB CD22⋅⋅,AB=AC∴BF=CD在Rt△CPD和Rt△BQF中∵CP=BQ,CD=BF,∴Rt△CPD≌Rt△BQF(HL)∴PD=QF在Rt△ACD中,CD=8,AC=AB=10∴22AD=AC CD=6-同理可得AF=6∴PD=AD=AP=6-t,QF=AF-AQ=6-2t 由PD=QF得6-t=6-2t,解得t=0,∵t>0,∴此种情况不符合题意,舍去;当Q 点在FC 之间时,如图所示,此时PD=6-t ,QF=2t-6由PD=QF 得6-t=2t-6,解得t=4,综上得t 的值为4.(3)同(2)可知v >1时,Q 在AF 之间不存在CP=BQ ,Q 在FC 之间存在CP=BQ ,Q 在F 点时,显然CP ≠BQ ,∵运动时间为t ,则AP=t ,AQ=vt ,∴PD=6-t ,QF=vt-6,由PD=QF 得6-t=vt-6, 整理得12-=t v t, ∵Q 在FC 之间,即AF <AQ ≤AC∴610<≤vt ,代入12-=t v t得 61210<-≤t ,解得26t ≤< 所以答案为12-=t v t (26t ≤<) 【点睛】本题考查三角形中的动点问题,熟练掌握勾股定理求出等腰三角形的高,利用全等三角形对应边相等建立方程是解题的关键.27.(1131710,112;(2)图见解析;7. 【分析】(1)利用勾股定理求出AB ,BC ,AC ,理由分割法求出△ABC 的面积.(2)模仿(1)中方法,画出△PMN ,利用分割法求解即可.【详解】解:(1)如图1中,AB 22AE BE +2232+13BC 22BD CD +2214+17AC 22AF CF +2213+10,S △ABC =S 矩形DEFC ﹣S △AEB ﹣S △AFC ﹣S △BDC =12﹣3﹣32﹣2=112, 故答案为13,17,10,112. (2)△PMN 如图所示.S △PMN =4×4﹣2﹣3﹣4=7, 故答案为7. 【点睛】此题重点考查学生对勾股定理的应用,熟练掌握勾股定理是解题的关键.28.(1)CF FH =,证明见解析;(2)依然成立,点E 与点C 之间的距离为333.理由见解析.【分析】(1)做辅助线,通过已知条件证得ADG 与DEF 是等腰直角三角形.证出CEF FGH ≌,利用全等的性质即可得到CF FH =.(2)设AH ,DF 交于点G ,可根据ASA 证明△FCE ≌△HFG ,从而得到CF FH =,当ABC △和CFH △均为等腰直角三角形当他们面积相等时,6CF AC ==.利用勾股定理可以求DE 、CE 的长,即可求出CE 的长,即可求得点E 与点C 之间的距离.【详解】(1)CF FH =证明:延长DF 交AB 于点G∵在ABC △中,90ACB ∠=︒,6AC BC ==,∴45A B ∠=∠=︒∵DF DE ⊥于点D ,且DE DF =,∴90EDF ∠=︒,ADG 与DEF 是等腰直角三角形.∴45AGD DEF ∠=∠=︒,AD DG =,90DCF CFD ∠+∠=︒,∴135CEF FGH ∠=∠=︒,∵点D 是AC 的中点,∴132CD AD AC ===,∴CD DG = ∴CE FG =∵FH CF ⊥于点F ,∴90CFG ∠=︒,∴90GFH CFD ∠+∠=︒∴DCF GFH ∠=∠∴CEF FGH ≌∴CF FH =;(2)依然成立理由:设AH ,DF 交于点G ,由题意可得出:DF=DE ,∴∠DFE=∠DEF=45°,∵AC=BC ,∴∠A=∠CBA=45°,∵DF ∥BC ,∴∠CBA=∠FGB=45°,∴∠FGH=∠CEF=45°,∵点D 为AC 的中点,DF ∥BC ,∴DG=12BC,DC=12AC , ∴DG=DC ,∴EC=GF ,∵∠DFC=∠FCB ,∴∠GFH=∠FCE ,在△FCE 和△HFG 中 CEF FGH EC GFECF GFH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△FCE ≌△HFG(ASA),∴HF=FC.由(1)可知ABC △和CFH △均为等腰直角三角形当他们面积相等时,6CF AC ==. ∴2233DE DF CF CD =-= ∴333CE DE DC =-=∴点E 与点C 之间的距离为333.。

山东省菏泽八年级下学期3月月考数学试卷

山东省菏泽八年级下学期3月月考数学试卷

山东省菏泽市八年级下学期3月月考数学试卷一、选择题(共24分)1、具有下列条件的两个等腰三角形,不能判断它们全等的是( )A. 顶角、一腰对应相等B. 底边、一腰对应相等C. 两腰对应相等D. 一底角、底边对应相等2、下列命题的逆命题是真命题的是( )A. 对顶角相等B. 若a=b ,则|a|=|b|C. 末位是零的整数能被5整除D. 直角三角形的两个锐角互余3、如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD ,则∠A 的度 数为( )A. 30°B. 36°C. 45°D. 70°4、△ABC 中,∠A :∠B :∠C=1:2:3,CD ⊥AB 于点D ,若BC=a ,则AD 等于( )A a B a C a D a (1232323)5. 若a>b ,则下列不等式中一定成立的是( )A. B. C. D.6、 与不等式的解集相同的是( )A.B. 325-≤xC.D.7、 不等式的负整数解的个数有( ) A. 0个 B. 2个 C. 4个 D. 6个8、若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A)a <0 (B)a >-1 (C)a <-1 (D)a <1(二)填空题(共16分)a b - > 0 - > - a b b a < 1a b > 1x x - - < - 3 21 3 1 3 32 5 1 - ≤ - x3 2 5 - ≥ x 2 3 5 x - ≥ x ≤ 41. 如果等腰三角形的一个角是80°,那么另外两个角是____________度。

2. 等腰三角形底角15°,则等腰三角形的腰上的高与底边的夹角是__________度。

3. 在△ABC 和△ADC 中,下列论断:①AB=AD ;②∠BAC=∠DAC ;③BC=DC ,把其中两个论断作为条件,另一个论断作为结论,写出一个真命题:____________。

菏泽市八年级下学期数学3月月考试卷

菏泽市八年级下学期数学3月月考试卷

菏泽市八年级下学期数学3月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共16题;共32分)1. (2分)(2020·邯郸模拟) 的相反数是()A .B .C .D .2. (2分) (2018九上·南召期中) 已知,则化简的结果是()A .B .C .D .3. (2分) (2017八上·金牛期末) 下列各组数中不能作为直角三角形三边长的是()A . ,,B . 7,24,25C . 6,8,10D . 1,2,34. (2分) (2015八下·金平期中) 若代数式有意义,则实数x的取值范围是()A . x≠1B . x≥0C . x>0D . x≥0且x≠15. (2分) (2016八下·市北期中) 已知a、b、c是三角形的三边长,如果满足(a﹣6)2+ +|c﹣10|=0,则三角形的形状是()A . 直角三角形B . 等边三角形C . 钝角三角形D . 底与腰不相等的等腰三角形6. (2分) (2020八下·淮滨期中) 下列二次根式:、、、、中,是最简二次根式的有()A . 2个B . 3个C . 4个D . 5个7. (2分)如图,已知等腰Rt△ABC和等腰Rt△ADE,AB=AC=4,∠BAC=∠EAD=90°,D是射线BC上任意一点,连接EC.下列结论:①△AEC △ADB;② EC⊥BC ;③以A、C、D、E为顶点的四边形面积为8;④当BD= 时,四边形AECB的周长为;⑤ 当BD= B时,ED= AB;其中正确的有()A . 5个B . 4个C . 3 个D . 2个8. (2分)下列根式中,不能与合并的是()A .B .C .D .9. (2分) (2017八上·阜阳期末) 若x2+6x+k是完全平方式,则k=()A . 9B . ﹣9C . ±9D . ±310. (2分)将一个半径为8cm,面积为32πcm2的扇形铁皮围成一个圆锥形容器(不计接缝),那么这个圆锥形容器的高为()A . 4B .C .D .11. (2分) (2017八下·常山月考) 下列计算正确的是()A .B .C . =6D . (a≥0,b≥0)12. (2分)有一边长为2的正三角形,则它的外接圆的面积为()A . 2πB . 4πC . 4πD . 12π13. (2分)当分式有意义时,字母x应满足()A . x≠-1B . x=0C . x≠1D . x≠014. (2分)如图,正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果C也是图中的格点,且使得为等腰三角形,则点C的个数有A . 4个B . 6个C . 8个D . 10个15. (2分) (2019七下·蔡甸月考) 已知y= + -3,那么yx的值是()A . -6B . -9C . 6D . 916. (2分) (2019八上·通州期末) 锐角△ABC中,AB=a-1,AC=a,BC=a+1(a>4),BD⊥AC于点D.则CD-DA 的值为()A .B . 2C .D . 4二、填空题 (共2题;共2分)17. (1分)命题“同旁内角互补”中,题设是________ ,结论是________ .18. (1分)(2011·钦州) 如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2011次运动后,动点P的坐标是________.三、解答题 (共5题;共29分)19. (2分) (2018九上·大连月考) 如图,在中,,点从点开始沿边向点以的速度匀速移动,同时另一点由点开始以的速度沿着匀速移动,几秒时,的面积等于?20. (10分) (2019八下·东台月考) 计算(1)(2)21. (2分)(2019·零陵模拟) 在Rt△ABC中,∠ACB=90°,BE平分∠ABC , D是边AB上一点,以BD为直径的⊙O经过点E ,且交BC于点F .(1)求证:AC是⊙O的切线;(2)若BF=12,⊙O的半径为10,求CE的长.22. (5分) (2019七下·雨花期末) 若不等式3(x+1)-1<4(x-1)+3的最小整数解是方程 x-mx=6的解,求m2-2m-11的值.23. (10分)一点A从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位……(1)写出第一次移动后这个点在数轴上表示的数为________;(2)写出第二次移动结果这个点在数轴上表示的数为________;(3)写出第五次移动后这个点在数轴上表示的数为________;(4)写出第n次移动结果这个点在数轴上表示的数为________;(5)如果第m次移动后这个点在数轴上表示的数为56,求m的值.参考答案一、单选题 (共16题;共32分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、二、填空题 (共2题;共2分)17-1、18-1、三、解答题 (共5题;共29分)19-1、20-1、20-2、21-1、21-2、22-1、23-1、23-2、23-3、23-4、23-5、。

北师大版初中数学八年级下册月考试题3月份(山东省菏泽市

北师大版初中数学八年级下册月考试题3月份(山东省菏泽市

2016-2017学年山东省菏泽市曹县博宇中学八年级(下)月考数学试卷(3月份)一、选择题(每小题3分,共36分)1.(3分)一矩形两对角线之间的夹角有一个是60°,且这角所对的边长5cm,则对角线长为()A.5cm B.10cm C.5cm D.无法确定2.(3分)顺次连结对角线互相垂直的四边形各边上的中点,得到的新四边形是()A.矩形B.正方形C.菱形D.平行四边形3.(3分)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S△AOB =S四边形DEOF中正确的有()A.4个B.3个C.2个D.1个4.(3分)如图,在△ABC中,D,E分别是AB,AC的中点,AC=20,F是DE 上一点,连接AF,CF,DF=4.若∠AFC=90°,则BC的长度为()A.24B.28C.20D.125.(3分)两条对角线互相垂直的四边形是()A.矩形B.菱形C.正方形D.以上都不对6.(3分)下列运算中,错误的是()①=1,②=﹣4,③=﹣,④()2=.A.1个B.2个C.3个D.4个7.(3分)等边三角形ABC的边长AB=10cm,则这个三角形的BC边上的高为()cm.A.B.C.D.8.(3分)已知第一个三角形的周长为1,它的三条中位线组成第二个三角形,第二个三角形的三条中位线又组成第三个三角形,以此类推,则第50个三角形的周长为()A.()50B.()51C.()49D.()48 9.(3分)菱形ABCD中,边长AB=2,∠A=45°,则菱形ABCD的面积是()A.4B.2C.4D.10.(3分)如图,在给定的一张平行四边形纸片上作一个菱形,甲、乙两人的作法如下:甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.根据两人的作法可判断()A.甲正确,乙错误B.甲、乙均正确C.乙正确,甲错误D.甲、乙均错误11.(3分)的估值在下列哪两个整数之间()A.3和4B.4和5C.5和6D.6和7 12.(3分)矩形具有而平行四边形不具有的性质是()A.对边相等B.对角相等C.对角互补D.对角线互相平分二、填空题(每小题3分,共24分)13.(3分)如图,在▱ABCD中,E、F分别是AD、CB上任一点,AE≠CF,AB=8,CB=10,S△BOE =6;则S△DOF=.14.(3分)如图,矩形ABCD中,AB=3,B C=4,P是边AD上的动点,PE 丄AC于点E,PF丄BD于点F,则PE+PF的值为.15.(3分)在平行四边形ABCD中,∠B的平分线将CD分成4cm和2cm两部分,则平行四边形ABCD的周长为.16.(3分)如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠PEF=30°,则∠EPF的度数是.17.(3分)如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC、BC 为直径作半圆,面积分别记为S1、S2,则S1+S2等于.18.(3分)已知:Rt△ABC中,AB=4,AC=3,则BC的长为.19.(3分)的算术平方根是.20.(3分)已知a、b为两个连续的整数,且,则a+b=.三、解答题(每题10分,共60分)21.(10分)如果正方形ABCD的顶点A(2,2)、B(﹣2,2)、C(﹣2,﹣2),求顶点D和对角线BD的长.22.(10分)已知a是的整数部分,b是的小数部分,求(﹣2a)2+(﹣b)2的值.23.(10分)已知,在△ABC中,AB=AC=a,M为底边BC上任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由.24.(10分)如图,有一块直角三角形纸片,两直角边AC=7cm,BC=24cm,现将直角边AC沿直线AD折叠,使它恰好落在斜边AB上,且与AE重合,求CD的长.25.(10分)如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.26.(10分)如图,在△ABC中,D是BC边的中点,BC∥AF,且AF=DB,连接BF交AD于E.(1)求证:AE=FC;(2)若AB⊥AC,AC=AB,判别四边形ADCF的形状,并证明.2016-2017学年山东省菏泽市曹县博宇中学八年级(下)月考数学试卷(3月份)参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)一矩形两对角线之间的夹角有一个是60°,且这角所对的边长5cm,则对角线长为()A.5cm B.10cm C.5cm D.无法确定【分析】作出图形,根据矩形的对角线互相平分且相等可得OA=OB,然后判断出△AOB是等边三角形,根据等边三角形的性质可得OA=AB,再求解即可.【解答】解:如图,∵四边形ABCD是矩形,∴OA=OB,∵AC、BD的夹角∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=5cm,∴AC=2OA=2×5=10cm.故选:B.【点评】本题考查了矩形的性质,等边三角形的判定与性质,熟记性质是解题的关键,作出图形更形象直观.2.(3分)顺次连结对角线互相垂直的四边形各边上的中点,得到的新四边形是()A.矩形B.正方形C.菱形D.平行四边形【分析】根据四边形对角线互相垂直,运用三角形中位线平行于第三边证明四个角都是直角,判断是矩形.【解答】解:如图:∵E、F、G、H分别为各边中点,∴EF∥GH∥DB,EF=GH=DB,EH=FG=AC,EH∥FG∥AC,∵DB⊥AC,∴EF⊥EH,∴四边形EFGH是矩形.故选:A.【点评】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边且等于第三边的一半是解题的关键.3.(3分)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S△AOB =S四边形DEOF中正确的有()A.4个B.3个C.2个D.1个【分析】根据正方形的性质得AB=AD=DC,∠BAD=∠D=90°,则由CE=DF易得AF=DE,根据“SAS”可判断△ABF≌△DAE,所以AE=BF;根据全等的性质得∠ABF=∠EAD,利用∠EAD+∠EAB=90°得到∠ABF+∠EAB=90°,则AE⊥BF;连结BE,BE >BC,BA≠BE,而BO⊥AE,根据垂直平分线的性质得到OA≠OE;最后根据△ABF≌△DAE得S△ABF =S△DAE,则S△ABF﹣S△AOF=S△DAE﹣S△AOF,即S△AOB=S四边形DEOF.【解答】解:∵四边形ABCD为正方形,∴AB=AD=DC,∠BAD=∠D=90°,而CE=DF,∴AF=DE,在△ABF和△DAE中,∴△ABF≌△DAE,∴AE=BF,所以(1)正确;∴∠ABF=∠EAD,而∠EAD+∠EAB=90°,∴∠ABF+∠EAB=90°,∴∠AOB=90°,∴AE⊥BF,所以(2)正确;连结BE,∵BE>BC,∴BA≠BE,而BO⊥AE,∴OA≠OE,所以(3)错误;∵△ABF≌△DAE,∴S△ABF =S△DAE,∴S△ABF ﹣S△AOF=S△DAE﹣S△AOF,∴S△AOB =S四边形DEOF,所以(4)正确.故选:B.【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了正方形的性质.4.(3分)如图,在△ABC中,D,E分别是AB,AC的中点,AC=20,F是DE 上一点,连接AF,CF,DF=4.若∠AFC=90°,则BC的长度为()A.24B.28C.20D.12【分析】如图,首先证明EF=10,继而得到DE=6;再证明DE为△ABC的中位线,即可解决问题.【解答】解:如图,∵∠AFC=90°,AE=CE,AC=20,∴EF=AC=10,又DF=4,∴DE=4+10=14;∵D,E分别是AB,AC的中点,∴DE为△ABC的中位线,∴BC=2DE=28,故选:B.【点评】本题主要考查了三角形的中位线定理、直角三角形的性质等几何知识点及其应用问题;牢固掌握三角形的中位线定理、直角三角形的性质等几何知识点是解题的基础和关键.5.(3分)两条对角线互相垂直的四边形是()A.矩形B.菱形C.正方形D.以上都不对【分析】根据矩形、菱形、正方形的判定定理分别判断即可.【解答】解:两条对角线互相垂直,但不互相平分的四边形不是矩形、菱形、正方形,因为这三种四边形都是特殊的平行四边形,只有对角线互相平分的四边形才是平行四边形故选:D.【点评】本题考查了矩形、菱形、正方形的判定.用到的知识点:对角线互相平分且相等的四边形是矩形;对角线互相垂直平分的四边形是菱形.正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个菱形有一个角为直角.③还可以先判定四边形是平行四边形,再用1或2进行判定.6.(3分)下列运算中,错误的是()①=1,②=﹣4,③=﹣,④()2=.A.1个B.2个C.3个D.4个【分析】直接利用二次根式的性质分别化简分析得出答案.【解答】解:①==,故此选项错误,符合题意;②=4,故此选项错误,符合题意;③无意义,故此选项错误,符合题意;④()2=,故此选项错误,符合题意.故选:D.【点评】此题主要考查了二次根式的性质以及二次根式的化简,正确化简二次根式是解题关键.7.(3分)等边三角形ABC的边长AB=10cm,则这个三角形的BC边上的高为()cm.A.B.C.D.【分析】过点A作AD⊥BC于点D,根据等边三角形的性质结合AB=10cm,即可得出BD=5cm,在Rt△ABD中,理由勾股定理即可求出AD的长度,此题得解.【解答】解:过点A作AD⊥BC于点D,如图所示.∵△ABC为等边三角形,AB=10cm,∴BD=BC=5cm.在Rt△ABD中,AB=10cm,BD=5cm,∠ADB=90°,∴AD===5cm.故选:D.【点评】本题考查了等边三角形的性质以及解直角三角形,根据等边三角形的性质结合勾股定理求出AD的长度是解题的关键.8.(3分)已知第一个三角形的周长为1,它的三条中位线组成第二个三角形,第二个三角形的三条中位线又组成第三个三角形,以此类推,则第50个三角形的周长为()A.()50B.()51C.()49D.()48【分析】根据三角形中位线定理得到三角形的三条中位线分别是三边的一半,求出第二个三角形的周长,根据规律解答即可.【解答】解:由三角形中位线定理得,三角形的三条中位线分别是三边的一半,∴第二个三角形的周长为,则第三个三角形的周长为()2,…以此类推,则第50个三角形的周长为()49,故选:C.【点评】本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.9.(3分)菱形ABCD中,边长AB=2,∠A=45°,则菱形ABCD的面积是()A.4B.2C.4D.【分析】如图,作BH⊥AD于H.在Rt△ABH中,先求出BH,根据菱形ABCD 的面积=AD•BH即可解决问题.【解答】解:如图,作BH⊥AD于H.在Rt△ABH中,∵∠AHB=90°,AB=2,∠A=45°,∴BH=AB•sin45°=×2=,∵四边形ABCD是菱形,∴AB=AD=2,∴菱形ABCD的面积=AD•BH=2.故选:B.【点评】本题考查菱形的性质,解直角三角形等知识,解题的关键是记住菱形的两种面积公式,属于基础题,中考常考题型.10.(3分)如图,在给定的一张平行四边形纸片上作一个菱形,甲、乙两人的作法如下:甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.根据两人的作法可判断()A.甲正确,乙错误B.甲、乙均正确C.乙正确,甲错误D.甲、乙均错误【分析】首先证明△AOM≌△CON(ASA),可得MO=NO,再根据对角线互相平分的四边形是平行四边形可判定判定四边形ANCM是平行四边形,再由AC ⊥MN,可根据对角线互相垂直的四边形是菱形判定出ANCM是菱形;四边形ABCD是平行四边形,可根据角平分线的定义和平行线的定义,求得AB=AF,所以四边形ABEF是菱形.【解答】解:甲的作法正确;∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACN,∵MN是AC的垂直平分线,∴AO=CO,在△AOM和△CON中,∵,∴△AOM≌△CON(ASA),∴MO=NO,∴四边形ANCM是平行四边形,∵AC⊥MN,∴四边形ANCM是菱形;乙的作法正确;∵AD∥BC,∴∠1=∠2,∠6=∠7,∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠6,∴∠1=∠3,∠5=∠7,∴AB=AF,AB=BE,∴AF=BE∵AF∥BE,且AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴平行四边形ABEF是菱形;故选:B.【点评】本题考查的是作图﹣复杂作图,熟知平行四边形的性质及菱形的判定定理是解答此题的关键.11.(3分)的估值在下列哪两个整数之间()A.3和4B.4和5C.5和6D.6和7【分析】先估算出的范围,即可得出答案.【解答】解:∵5<<6,∴在5和6之间,故选:C.【点评】本题考查了估算无理数的大小,能估算出的范围是解此题的关键.12.(3分)矩形具有而平行四边形不具有的性质是()A.对边相等B.对角相等C.对角互补D.对角线互相平分【分析】根据矩形、平行四边形的性质即可判定.【解答】解:因为矩形和平行四边形的对边相等,对角互补、对角线互相平分,平行四边形的对角不一定互补,所以矩形具有而平行四边形不具有的性质是C.故选:C.【点评】本题考查矩形的性质、平行四边形的性质等知识,解题的关键是熟练掌握矩形、平行四边形的性质.二、填空题(每小题3分,共24分)13.(3分)如图,在▱ABCD中,E、F分别是AD、CB上任一点,AE≠CF,AB=8,CB=10,S△BOE =6;则S△DOF=6.【分析】由平行四边形的性质以及等底等高的三角形面积相等即可求出S△DOF的值.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,∴S△BFE =S△BFD,∵S△BOE =S△BFE﹣S△BOF,S△DOF=S△BFD﹣S△BOF,∴S△DOF =S△BOE=6,故答案为:6.【点评】本题考查了平行四边形的性质以及三角形面积公式运用,熟记平行四边形的各种性质是解题的关键.14.(3分)如图,矩形ABCD中,AB=3,B C=4,P是边AD上的动点,PE 丄AC于点E,PF丄BD于点F,则PE+PF的值为.【分析】根据已知条件得到△AEP∽△ADC,△DFP∽△DAB.从而可得出PE,PF的关系式,然后整理即可解答本题.【解答】解:设AP=x,PD=4﹣x,由勾股定理,得AC=BD==5,∵∠P AE=∠CAD,∠AEP=∠ADC=90°,∴Rt△AEP∽Rt△ADC;∴=,即=①同理可得Rt△DFP∽Rt△DAB,∴=,②故①+②,得=,∴PE+PF=.另解:∵四边形ABCD为矩形,∴△OAD为等腰三角形,∴PE+PF等于△OAD腰OA上的高,即Rt△ADC斜边上的高,∴PE+PF==.故答案是:.【点评】本题考查了矩形的性质,比较简单,根据矩形的性质及相似三角形的性质解答即可.15.(3分)在平行四边形ABCD中,∠B的平分线将CD分成4cm和2cm两部分,则平行四边形ABCD的周长为16cm或20cm.【分析】如图:由▱ABCD,根据平行四边形的对边相等且平行,可得AD=BC,AB=CD,AD∥BC,即可得∠AEB=∠CBE,又因为BE是∠ABC的平分线,则∠ABE=∠CBE,∠ABE=∠AEB,故AB=AE,∠ABC的平分线分对边AD 为2cm和4cm两部分,所以AE可能等于2cm或等于4cm,然后即可得出答案.【解答】解:如图所示:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE是∠ABC的平分线,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE,∵∠ABC的平分线分对边AD为2cm和4cm两部分,如果AE=2cm,则四边形周长为16cm;如果AE=4cm,则AB=DC=4cm,AD=BC=6cm,∴▱ABCD的周长为20cm;∴▱ABCD的周长为16cm或20cm.故答案为:16cm或20cm.【点评】此题考查了平行四边形的性质:平行四边形的对边相等且平行.注意当有平行线和角平分线出现时,会有等腰三角形出现.解题时还要注意分类讨论思想的应用.16.(3分)如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠PEF=30°,则∠EPF的度数是120°.【分析】根据三角形中位线定理得到PF=BC,PE=AD,根据题意得到PE =PF,根据等腰三角形的性质、三角形内角和定理计算即可.【解答】解:∵点P是对角线BD的中点,点E、F分别是AB、CD的中点,∴PF=BC,PE=AD,又AD=BC,∴PE=PF,∴∠PFE=∠PEF=30°,∴∠EPF=120°,故答案为:120°.【点评】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.17.(3分)如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC、BC 为直径作半圆,面积分别记为S1、S2,则S1+S2等于2π.【分析】根据半圆面积公式结合勾股定理,知S1+S2等于以斜边为直径的半圆面积.【解答】解:S1=π()2=πAC2,S2=πBC2,所以S1+S2=π(AC2+BC2)=πAB2=2π.故答案为:2π.【点评】此题根据半圆的面积公式以及勾股定理证明:以直角三角形的两条直角边为直径的半圆面积和等于以斜边为直径的半圆面积,重在验证勾股定理.18.(3分)已知:Rt△ABC中,AB=4,AC=3,则BC的长为或5.【分析】分两种情况解答:①AC为斜边,BC,AB为直角边;②BC为斜边,AC,AB为直角边;根据勾股定理计算即可.【解答】解:①AC为斜边,BC,AB为直角边,由勾股定理得BC===;②BC为斜边,AC,AB为直角边,由勾股定理得BC===5;所以BC的长为或5.故答案为:或5.【点评】本题考查的是勾股定理,解答此题时要注意进行分类讨论,不要漏解.19.(3分)的算术平方根是2.【分析】首先根据算术平方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.【解答】解:∵=4,∴的算术平方根是=2.故答案为:2.【点评】此题主要考查了算术平方根的定义,注意要首先计算=4.20.(3分)已知a、b为两个连续的整数,且,则a+b=11.【分析】先求出,得出a=5,b=6,代入求出即可.【解答】解:∵∴∵a<b,且a、b为两个连续的整数∴a=5,b=6∴a+b=5+6=11,故答案为11.【点评】本题考查了估计无理数的大小的应用,解此题的关键是确定的范围,题目比较好,但是一道比较容易出错的题目.三、解答题(每题10分,共60分)21.(10分)如果正方形ABCD的顶点A(2,2)、B(﹣2,2)、C(﹣2,﹣2),求顶点D和对角线BD的长.【分析】画出A、B、C三点,即可解决问题,利用勾股定理可以求出对角线的长.【解答】解:如图,∵A(2,2)、B(﹣2,2)、C(﹣2,﹣2),∴由图象可知,D(2,﹣2),在Rt△BCD中,BD===4.∴顶点D坐标(2,﹣2),对角线BD=4.【点评】本题考查正方形的性质、坐标与图形的性质、勾股定理等知识,解题的关键是学会正确画出图形,熟练掌握正方形的性质解决问题,属于基础题.22.(10分)已知a是的整数部分,b是的小数部分,求(﹣2a)2+(﹣b)2的值.【分析】先估算出的范围,求出a、b的值,代入求出即可.【解答】解:∵3<<4,∴a=3,b=﹣3,∴(﹣2a)2+(﹣b)2=(﹣2×3)2+[﹣(﹣3)]2=36+9=45.【点评】本题考查了估算无理数的大小和求代数式的值,能求出a、b的值是解此题的关键.23.(10分)已知,在△ABC中,AB=AC=a,M为底边BC上任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由.【分析】(1)根据平行四边形的性质可得到对应角相等对应边相等,从而不难求得其周长;(2)根据中位线的性质及菱形的判定不难求得四边形AQMP为菱形.【解答】解:(1)∵AB∥MP,QM∥AC,∴四边形APMQ是平行四边形,∠B=∠PMC,∠C=∠QMB.∵AB=AC,∴∠B=∠C,∴∠PMC=∠QMB.∴BQ=QM,PM=PC.∴四边形AQMP的周长=AQ+AP+QM+MP=AQ+QB+AP+PC=AB+AC=2a;(2)当点M在BC的中点时,四边形APMQ是菱形,∵AB∥MP,点M是BC的中点,∴==,∴P是AC的中点,∴PM是三角形ABC的中位线,同理:QM是三角形ABC的中位线.∵AB=AC,∴QM=PM=AB=AC.又由(1)知四边形APMQ是平行四边形,∴平行四边形APMQ是菱形.【点评】此题主要考查了平行四边形的判定和性质,中位线的性质,菱形的判定等知识点的综合运用.24.(10分)如图,有一块直角三角形纸片,两直角边AC=7cm,BC=24cm,现将直角边AC沿直线AD折叠,使它恰好落在斜边AB上,且与AE重合,求CD的长.【分析】根据折叠的性质可得AC=AE=7cm,CD=DE,∠ACD=∠AED=∠DEB=90°,利用勾股定理列式求出AB,从而求出BE,设CD=DE=x,表示出BD,然后在Rt△DEB中,利用勾股定理列式计算即可得解.【解答】解:∵△ACD与△AED关于AD成轴对称,∴AC=AE=7cm,CD=DE,∠ACD=∠AED=∠DEB=90°,在Rt△ABC中,AB2=AC2+BC2=72+242 =252,∴AB=25,BE=AB﹣AE=25﹣7=18,设CD=DE=xcm,则DB=BC﹣CD=24﹣x,在Rt△DEB中,由勾股定理,得x2+182=(24﹣x)2,解得x=,即CD=cm.【点评】本题考查了翻折变换的性质,勾股定理的应用,熟记性质并表示出Rt △DEB的三边,然后利用勾股定理列出方程是解题的关键.25.(10分)如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.【分析】过点B作BF⊥CE于F,根据同角的余角相等求出∠BCF=∠D,再利用“角角边”证明△BCF和△CDE全等,根据全等三角形对应边相等可得BF =CE,再证明四边形AEFB是矩形,根据矩形的对边相等可得AE=BF,从而得证,【解答】证明:如图,过点B作BF⊥CE于F,∵CE⊥AD,∴∠D+∠DCE=90°,∵∠BCD=90°,∴∠BCF+∠DCE=90°,∴∠BCF=∠D,在△BCF和△CDE中,,∴△BCF≌△CDE(AAS),∴BF=CE,又∵∠A=90°,CE⊥AD,BF⊥CE,∴四边形AEFB是矩形,∴AE=BF,∴AE=CE.【点评】本题考查了全等三角形的判定与性质,矩形的判定与性质,难度中等,作辅助线构造出全等三角形与矩形是解题的关键.26.(10分)如图,在△ABC中,D是BC边的中点,BC∥AF,且AF=DB,连接BF交AD于E.(1)求证:AE=FC;(2)若AB⊥AC,AC=AB,判别四边形ADCF的形状,并证明.【分析】(1)证明四边形ADCF是平行四边形,得FC=AD,FC∥AD,由三角形中位线定理可得结论;(2)先得△ACB是等腰直角三角形,则∠ACB=45°,由等腰三角形性质得:∠ADC=90°,CD=AD,所以四边形ADCF为正方形.【解答】证明:(1)∵D是BC边的中点,∴BD=CD,∵AF=BD,∴AF=CD,∵BC∥AF,∴四边形ADCF是平行四边形,∴FC=AD,FC∥AD,∵BD=CD,∴BE=EF,∴DE=CF=AD=AE,即AE=FC;(2)四边形ADCF是正方形,理由是:∵AB⊥AC,AC=AB,∴△ACB是等腰直角三角形,∴∠ACB=45°,∵D是BC边的中点,∴AD⊥BC,∴∠ADC=90°,∴∠ACD=∠CAD=45°,∴CD=AD,由(1)知:四边形ADCF是平行四边形,∴▱ADCF为正方形.【点评】此题主要考查了平行四边形的判定与性质,三角形中位线定理,等腰三角形的性质以及正方形的判定,关键是掌握:①两组对边分别平行的四边形是平行四边形;②一组邻边相等、一个角是直角的平行四边形是正方形;③等腰三角形三线合一的性质.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2019学年山东省菏泽市曹县博宇中学八年级(下)月考数学试卷(3月份)一、选择题(每小题3分,共36分)1.(3分)一矩形两对角线之间的夹角有一个是60°,且这角所对的边长5cm,则对角线长为()A.5cm B.10cm C.5cm D.无法确定2.(3分)顺次连结对角线互相垂直的四边形各边上的中点,得到的新四边形是()A.矩形B.正方形C.菱形D.平行四边形3.(3分)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S△=S四边形DEOF中正确的有()AOBA.4个 B.3个 C.2个 D.1个4.(3分)如图,在△ABC中,D,E分别是AB,AC的中点,AC=20,F是DE 上一点,连接AF,CF,DF=4.若∠AFC=90°,则BC的长度为()A.24 B.28 C.20 D.125.(3分)两条对角线互相垂直的四边形是()A.矩形B.菱形C.正方形D.以上都不对6.(3分)下列运算中,错误的是()①=1,②=﹣4,③=﹣,④()2=.A.1个 B.2个 C.3个 D.4个7.(3分)等边三角形ABC的边长AB=10cm,则这个三角形的BC边上的高为()cm.A. B. C. D.8.(3分)已知第一个三角形的周长为1,它的三条中位线组成第二个三角形,第二个三角形的三条中位线又组成第三个三角形,以此类推,则第50个三角形的周长为()A.()50 B.()51 C.()49 D.()489.(3分)菱形ABCD中,边长AB=2,∠A=45°,则菱形ABCD的面积是()A.4 B.2 C.4 D.10.(3分)如图,在给定的一张平行四边形纸片上作一个菱形,甲、乙两人的作法如下:甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.根据两人的作法可判断()A.甲正确,乙错误 B.甲、乙均正确C.乙正确,甲错误 D.甲、乙均错误11.(3分)的估值在下列哪两个整数之间()A.3和4 B.4和5 C.5和6 D.6和712.(3分)矩形具有而平行四边形不具有的性质是()A.对边相等B.对角相等C.对角互补D.对角线互相平分二、填空题(每小题3分,共24分)13.(3分)如图,在▱ABCD中,E、F分别是AD、CB上任一点,AE≠CF,AB=8,CB=10,S△BOE=6;则S△DOF=.14.(3分)如图,矩形ABCD中,AB=3,B C=4,P是边AD上的动点,PE丄AC 于点E,PF丄BD于点F,则PE+PF的值为.15.(3分)在平行四边形ABCD中,∠B的平分线将CD分成4cm和2cm两部分,则平行四边形ABCD的周长为.16.(3分)如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠PEF=30°,则∠EPF的度数是.17.(3分)如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2等于.18.(3分)已知:Rt△ABC中,AB=4,AC=3,则BC的长为.19.(3分)的算术平方根是.20.(3分)已知a、b为两个连续的整数,且,则a+b=.三、解答题(每题10分,共60分)21.(10分)如果正方形ABCD的顶点A(2,2)、B(﹣2,2)、C(﹣2,﹣2),求顶点D和对角线BD的长.22.(10分)已知a是的整数部分,b是的小数部分,求(﹣2a)2+(﹣b)2的值.23.(10分)已知,在△ABC中,AB=AC=a,M为底边BC上任意一点,过点M 分别作AB、AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由.24.(10分)如图,有一块直角三角形纸片,两直角边AC=7cm,BC=24cm,现将直角边AC沿直线AD折叠,使它恰好落在斜边AB上,且与AE重合,求CD 的长.25.(10分)如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.26.(10分)如图,在△ABC中,D是BC边的中点,BC∥AF,且AF=DB,连接BF交AD于E.(1)求证:AE=FC;(2)若AB⊥AC,AC=AB,判别四边形ADCF的形状,并证明.2019-2019学年山东省菏泽市曹县博宇中学八年级(下)月考数学试卷(3月份)参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)一矩形两对角线之间的夹角有一个是60°,且这角所对的边长5cm,则对角线长为()A.5cm B.10cm C.5cm D.无法确定【分析】作出图形,根据矩形的对角线互相平分且相等可得OA=OB,然后判断出△AOB是等边三角形,根据等边三角形的性质可得OA=AB,再求解即可.【解答】解:如图,∵四边形ABCD是矩形,∴OA=OB,∵AC、BD的夹角∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=5cm,∴AC=2OA=2×5=10cm.故选:B.【点评】本题考查了矩形的性质,等边三角形的判定与性质,熟记性质是解题的关键,作出图形更形象直观.2.(3分)顺次连结对角线互相垂直的四边形各边上的中点,得到的新四边形是()A.矩形B.正方形C.菱形D.平行四边形【分析】根据四边形对角线互相垂直,运用三角形中位线平行于第三边证明四个角都是直角,判断是矩形.【解答】解:如图:∵E、F、G、H分别为各边中点,∴EF∥GH∥DB,EF=GH=DB,EH=FG=AC,EH∥FG∥AC,∵DB⊥AC,∴EF⊥EH,∴四边形EFGH是矩形.故选:A.【点评】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边且等于第三边的一半是解题的关键.3.(3分)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S△=S四边形DEOF中正确的有()AOBA.4个 B.3个 C.2个 D.1个【分析】根据正方形的性质得AB=AD=DC,∠BAD=∠D=90°,则由CE=DF易得AF=DE,根据“SAS”可判断△ABF≌△DAE,所以AE=BF;根据全等的性质得∠ABF=∠EAD,利用∠EAD+∠EAB=90°得到∠ABF+∠EAB=90°,则AE⊥BF;连结BE,BE>BC,BA ≠BE,而BO⊥AE,根据垂直平分线的性质得到OA≠OE;最后根据△ABF≌△DAE 得S△ABF=S△DAE,则S△ABF﹣S△AOF=S△DAE﹣S△AOF,即S△AOB=S四边形DEOF.【解答】解:∵四边形ABCD为正方形,∴AB=AD=DC,∠BAD=∠D=90°,而CE=DF,∴AF=DE,在△ABF和△DAE中∴△ABF≌△DAE,∴AE=BF,所以(1)正确;∴∠ABF=∠EAD,而∠EAD+∠EAB=90°,∴∠ABF+∠EAB=90°,∴∠AOB=90°,∴AE⊥BF,所以(2)正确;连结BE,∵BE>BC,∴BA≠BE,而BO⊥AE,∴OA≠OE,所以(3)错误;∵△ABF≌△DAE,∴S△ABF=S△DAE,∴S△ABF ﹣S△AOF=S△DAE﹣S△AOF,∴S△AOB=S四边形DEOF,所以(4)正确.故选:B.【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了正方形的性质.4.(3分)如图,在△ABC中,D,E分别是AB,AC的中点,AC=20,F是DE上一点,连接AF,CF,DF=4.若∠AFC=90°,则BC的长度为()A.24 B.28 C.20 D.12【分析】如图,首先证明EF=10,继而得到DE=6;再证明DE为△ABC的中位线,即可解决问题.【解答】解:如图,∵∠AFC=90°,AE=CE,AC=20,∴EF=AC=10,又DF=4,∴DE=4+10=14;∵D,E分别是AB,AC的中点,∴DE为△ABC的中位线,∴BC=2DE=28,故选:B.【点评】本题主要考查了三角形的中位线定理、直角三角形的性质等几何知识点及其应用问题;牢固掌握三角形的中位线定理、直角三角形的性质等几何知识点是解题的基础和关键.5.(3分)两条对角线互相垂直的四边形是()A.矩形B.菱形C.正方形D.以上都不对【分析】根据矩形、菱形、正方形的判定定理分别判断即可.【解答】解:两条对角线互相垂直,但不互相平分的四边形不是矩形、菱形、正方形,因为这三种四边形都是特殊的平行四边形,只有对角线互相平分的四边形才是平行四边形故选:D.【点评】本题考查了矩形、菱形、正方形的判定.用到的知识点:对角线互相平分且相等的四边形是矩形;对角线互相垂直平分的四边形是菱形.正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个菱形有一个角为直角.③还可以先判定四边形是平行四边形,再用1或2进行判定.6.(3分)下列运算中,错误的是()①=1,② =﹣4,③ =﹣,④()2=. A .1个 B .2个 C .3个 D .4个【分析】直接利用二次根式的性质分别化简分析得出答案.【解答】解:①==,故此选项错误,符合题意;②=4,故此选项错误,符合题意;③无意义,故此选项错误,符合题意;④()2=,故此选项错误,符合题意.故选:D .【点评】此题主要考查了二次根式的性质以及二次根式的化简,正确化简二次根式是解题关键.7.(3分)等边三角形ABC 的边长AB=10cm ,则这个三角形的BC 边上的高为( )cm .A .B .C .D .【分析】过点A 作AD ⊥BC 于点D ,根据等边三角形的性质结合AB=10cm ,即可得出BD=5cm ,在Rt △ABD 中,理由勾股定理即可求出AD 的长度,此题得解.【解答】解:过点A 作AD ⊥BC 于点D ,如图所示.∵△ABC 为等边三角形,AB=10cm ,∴BD=BC=5cm .在Rt △ABD 中,AB=10cm ,BD=5cm ,∠ADB=90°,∴AD===5cm .故选:D .【点评】本题考查了等边三角形的性质以及解直角三角形,根据等边三角形的性质结合勾股定理求出AD 的长度是解题的关键.8.(3分)已知第一个三角形的周长为1,它的三条中位线组成第二个三角形,第二个三角形的三条中位线又组成第三个三角形,以此类推,则第50个三角形的周长为( )A .()50B .()51C .()49D .()48【分析】根据三角形中位线定理得到三角形的三条中位线分别是三边的一半,求出第二个三角形的周长,根据规律解答即可.【解答】解:由三角形中位线定理得,三角形的三条中位线分别是三边的一半,∴第二个三角形的周长为,则第三个三角形的周长为()2,以此类推,则第50个三角形的周长为()49,故选:C.【点评】本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.9.(3分)菱形ABCD中,边长AB=2,∠A=45°,则菱形ABCD的面积是()A.4 B.2 C.4 D.【分析】如图,作BH⊥AD于H.在Rt△ABH中,先求出BH,根据菱形ABCD 的面积=AD•BH即可解决问题.【解答】解:如图,作BH⊥AD于H.在Rt△ABH中,∵∠AHB=90°,AB=2,∠A=45°,∴BH=AB•sin45°=×2=,∵四边形ABCD是菱形,∴AB=AD=2,∴菱形ABCD的面积=AD•BH=2.故选:B.【点评】本题考查菱形的性质,解直角三角形等知识,解题的关键是记住菱形的两种面积公式,属于基础题,中考常考题型.10.(3分)如图,在给定的一张平行四边形纸片上作一个菱形,甲、乙两人的作法如下:甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.根据两人的作法可判断()A.甲正确,乙错误 B.甲、乙均正确C.乙正确,甲错误 D.甲、乙均错误【分析】首先证明△AOM≌△CON(ASA),可得MO=NO,再根据对角线互相平分的四边形是平行四边形可判定判定四边形ANCM是平行四边形,再由AC⊥MN,可根据对角线互相垂直的四边形是菱形判定出ANCM是菱形;四边形ABCD 是平行四边形,可根据角平分线的定义和平行线的定义,求得AB=AF,所以四边形ABEF是菱形.【解答】解:甲的作法正确;∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACN,∵MN是AC的垂直平分线,∴AO=CO,在△AOM和△CON中,∴△AOM≌△CON(ASA),∴MO=NO,∴四边形ANCM是平行四边形,∵AC⊥MN,∴四边形ANCM是菱形;乙的作法正确;∵AD∥BC,∴∠1=∠2,∠6=∠7,∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠6,∴∠1=∠3,∠5=∠7,∴AB=AF,AB=BE,∴AF=BE∵AF∥BE,且AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴平行四边形ABEF是菱形;故选:B.【点评】本题考查的是作图﹣复杂作图,熟知平行四边形的性质及菱形的判定定理是解答此题的关键.11.(3分)的估值在下列哪两个整数之间()A.3和4 B.4和5 C.5和6 D.6和7【分析】先估算出的范围,即可得出答案.【解答】解:∵5<<6,∴在5和6之间,故选:C.【点评】本题考查了估算无理数的大小,能估算出的范围是解此题的关键.12.(3分)矩形具有而平行四边形不具有的性质是()A.对边相等B.对角相等C.对角互补D.对角线互相平分【分析】根据矩形、平行四边形的性质即可判定.【解答】解:因为矩形和平行四边形的对边相等,对角互补、对角线互相平分,平行四边形的对角不一定互补,所以矩形具有而平行四边形不具有的性质是C.故选:C.【点评】本题考查矩形的性质、平行四边形的性质等知识,解题的关键是熟练掌握矩形、平行四边形的性质.二、填空题(每小题3分,共24分)13.(3分)如图,在▱ABCD中,E、F分别是AD、CB上任一点,AE≠CF,AB=8,CB=10,S△BOE=6;则S△DOF=6.的【分析】由平行四边形的性质以及等底等高的三角形面积相等即可求出S△DOF 值.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,=S△BFD,∴S△BFE=S△BFE﹣S△BOF,S△DOF=S△BFD﹣S△BOF,∵S△BOE=S△BOE=6,∴S△DOF故答案为:6.【点评】本题考查了平行四边形的性质以及三角形面积公式运用,熟记平行四边形的各种性质是解题的关键.14.(3分)如图,矩形ABCD中,AB=3,B C=4,P是边AD上的动点,PE丄AC于点E,PF丄BD于点F,则PE+PF的值为.【分析】根据已知条件得到△AEP∽△ADC,△DFP∽△DAB.从而可得出PE,PF 的关系式,然后整理即可解答本题.【解答】解:设AP=x,PD=4﹣x,由勾股定理,得AC=BD==5,∵∠PAE=∠CAD,∠AEP=∠ADC=90°,∴Rt△AEP∽Rt△ADC;即=①同理可得Rt△DFP∽Rt△DAB,故①+②,得∴PE+PF=.另解:∵四边形ABCD为矩形,∴△OAD为等腰三角形,∴PE+PF等于△OAD腰OA上的高,即Rt△ADC斜边上的高,∴PE+PF==.故答案是:.【点评】本题考查了矩形的性质,比较简单,根据矩形的性质及相似三角形的性质解答即可.15.(3分)在平行四边形ABCD中,∠B的平分线将CD分成4cm和2cm两部分,则平行四边形ABCD的周长为16cm或20cm.【分析】如图:由▱ABCD,根据平行四边形的对边相等且平行,可得AD=BC,AB=CD,AD∥BC,即可得∠AEB=∠CBE,又因为BE是∠ABC的平分线,则∠ABE=∠CBE,∠ABE=∠AEB,故AB=AE,∠ABC的平分线分对边AD为2cm和4cm两部分,所以AE可能等于2cm或等于4cm,然后即可得出答案.【解答】解:如图所示:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE是∠ABC的平分线,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE,∵∠ABC的平分线分对边AD为2cm和4cm两部分,如果AE=2cm,则四边形周长为16cm;如果AE=4cm,则AB=DC=4cm,AD=BC=6cm,∴▱ABCD的周长为20cm;∴▱ABCD的周长为16cm或20cm.故答案为:16cm或20cm.【点评】此题考查了平行四边形的性质:平行四边形的对边相等且平行.注意当有平行线和角平分线出现时,会有等腰三角形出现.解题时还要注意分类讨论思想的应用.16.(3分)如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠PEF=30°,则∠EPF的度数是120°.【分析】根据三角形中位线定理得到PF=BC,PE=AD,根据题意得到PE=PF,根据等腰三角形的性质、三角形内角和定理计算即可.【解答】解:∵点P是对角线BD的中点,点E、F分别是AB、CD的中点,∴PF=BC,PE=AD,又AD=BC,∴PE=PF,∴∠PFE=∠PEF=30°,∴∠EPF=120°,故答案为:120°.【点评】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.17.(3分)如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2等于2π.【分析】根据半圆面积公式结合勾股定理,知S1+S2等于以斜边为直径的半圆面积.【解答】解:S1=π()2=πAC2,S2=πBC2,所以S1+S2=π(AC2+BC2)=πAB2=2π.故答案为:2π.【点评】此题根据半圆的面积公式以及勾股定理证明:以直角三角形的两条直角边为直径的半圆面积和等于以斜边为直径的半圆面积,重在验证勾股定理.18.(3分)已知:Rt△ABC中,AB=4,AC=3,则BC的长为或5.【分析】分两种情况解答:①AC为斜边,BC,AB为直角边;②BC为斜边,AC,AB为直角边;根据勾股定理计算即可.【解答】解:①AC为斜边,BC,AB为直角边,由勾股定理得BC===;②BC为斜边,AC,AB为直角边,由勾股定理得BC===5;所以BC的长为或5.故答案为:或5.【点评】本题考查的是勾股定理,解答此题时要注意进行分类讨论,不要漏解.19.(3分)的算术平方根是2.【分析】首先根据算术平方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.【解答】解:∵=4,∴的算术平方根是=2.故答案为:2.【点评】此题主要考查了算术平方根的定义,注意要首先计算=4.20.(3分)已知a、b为两个连续的整数,且,则a+b=11.【分析】先求出,得出a=5,b=6,代入求出即可.【解答】解:∵∵a<b,且a、b为两个连续的整数∴a=5,b=6∴a+b=5+6=11,故答案为11.【点评】本题考查了估计无理数的大小的应用,解此题的关键是确定的范围,题目比较好,但是一道比较容易出错的题目.三、解答题(每题10分,共60分)21.(10分)如果正方形ABCD的顶点A(2,2)、B(﹣2,2)、C(﹣2,﹣2),求顶点D和对角线BD的长.【分析】画出A、B、C三点,即可解决问题,利用勾股定理可以求出对角线的长.【解答】解:如图,∵A(2,2)、B(﹣2,2)、C(﹣2,﹣2),∴由图象可知,D(2,﹣2),在Rt△BCD中,BD===4.∴顶点D坐标(2,﹣2),对角线BD=4.【点评】本题考查正方形的性质、坐标与图形的性质、勾股定理等知识,解题的关键是学会正确画出图形,熟练掌握正方形的性质解决问题,属于基础题.22.(10分)已知a是的整数部分,b是的小数部分,求(﹣2a)2+(﹣b)2的值.【分析】先估算出的范围,求出a、b的值,代入求出即可.【解答】解:∵3<<4,∴a=3,b=﹣3,∴(﹣2a)2+(﹣b)2=(﹣2×3)2+[﹣(﹣3)]2=36+9=45.【点评】本题考查了估算无理数的大小和求代数式的值,能求出a、b的值是解此题的关键.23.(10分)已知,在△ABC中,AB=AC=a,M为底边BC上任意一点,过点M 分别作AB、AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由.【分析】(1)根据平行四边形的性质可得到对应角相等对应边相等,从而不难求得其周长;(2)根据中位线的性质及菱形的判定不难求得四边形AQMP为菱形.【解答】解:(1)∵AB∥MP,QM∥AC,∴四边形APMQ是平行四边形,∠B=∠PMC,∠C=∠QMB.∵AB=AC,∴∠B=∠C,∴∠PMC=∠QMB.∴BQ=QM,PM=PC.∴四边形AQMP的周长=AQ+AP+QM+MP=AQ+QB+AP+PC=AB+AC=2a;(2)当点M在BC的中点时,四边形APMQ是菱形,∵AB∥MP,点M是BC的中点,∴P是AC的中点,∴PM是三角形ABC的中位线,同理:QM是三角形ABC的中位线.∵AB=AC,∴QM=PM=AB=AC.又由(1)知四边形APMQ是平行四边形,∴平行四边形APMQ是菱形.【点评】此题主要考查了平行四边形的判定和性质,中位线的性质,菱形的判定等知识点的综合运用.24.(10分)如图,有一块直角三角形纸片,两直角边AC=7cm,BC=24cm,现将直角边AC沿直线AD折叠,使它恰好落在斜边AB上,且与AE重合,求CD的长.【分析】根据折叠的性质可得AC=AE=7cm,CD=DE,∠ACD=∠AED=∠DEB=90°,利用勾股定理列式求出AB,从而求出BE,设CD=DE=x,表示出BD,然后在Rt △DEB中,利用勾股定理列式计算即可得解.【解答】解:∵△ACD与△AED关于AD成轴对称,∴AC=AE=7cm,CD=DE,∠ACD=∠AED=∠DEB=90°,在Rt△ABC中,AB2=AC2+BC2=72+242 =252,∴AB=25,BE=AB﹣AE=25﹣7=18,设CD=DE=xcm,则DB=BC﹣CD=24﹣x,在Rt△DEB中,由勾股定理,得x2+182=(24﹣x)2,解得x=,即CD=cm.【点评】本题考查了翻折变换的性质,勾股定理的应用,熟记性质并表示出Rt △DEB的三边,然后利用勾股定理列出方程是解题的关键.25.(10分)如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.【分析】过点B作BF⊥CE于F,根据同角的余角相等求出∠BCF=∠D,再利用“角角边”证明△BCF和△CDE全等,根据全等三角形对应边相等可得BF=CE,再证明四边形AEFB是矩形,根据矩形的对边相等可得AE=BF,从而得证,【解答】证明:如图,过点B作BF⊥CE于F,∵CE⊥AD,∴∠D+∠DCE=90°,∵∠BCD=90°,∴∠BCF+∠DCE=90°,∴∠BCF=∠D,在△BCF和△CDE中,,∴△BCF≌△CDE(AAS),∴BF=CE,又∵∠A=90°,CE⊥AD,BF⊥CE,∴四边形AEFB是矩形,∴AE=BF,∴AE=CE.【点评】本题考查了全等三角形的判定与性质,矩形的判定与性质,难度中等,作辅助线构造出全等三角形与矩形是解题的关键.26.(10分)如图,在△ABC中,D是BC边的中点,BC∥AF,且AF=DB,连接BF交AD于E.(1)求证:AE=FC;(2)若AB⊥AC,AC=AB,判别四边形ADCF的形状,并证明.【分析】(1)证明四边形ADCF是平行四边形,得FC=AD,FC∥AD,由三角形中位线定理可得结论;(2)先得△ACB是等腰直角三角形,则∠ACB=45°,由等腰三角形性质得:∠ADC=90°,CD=AD,所以四边形ADCF为正方形.【解答】证明:(1)∵D是BC边的中点,∴BD=CD,∵AF=BD,∴AF=CD,∵BC∥AF,∴四边形ADCF是平行四边形,∴FC=AD,FC∥AD,∵BD=CD,∴BE=EF,∴DE=CF=AD=AE,即AE=FC;(2)四边形ADCF是正方形,理由是:∵AB⊥AC,AC=AB,∴△ACB是等腰直角三角形,∴∠ACB=45°,∵D是BC边的中点,∴AD⊥BC,∴∠ADC=90°,∴∠ACD=∠CAD=45°,∴CD=AD,由(1)知:四边形ADCF是平行四边形,∴▱ADCF为正方形.【点评】此题主要考查了平行四边形的判定与性质,三角形中位线定理,等腰三角形的性质以及正方形的判定,关键是掌握:①两组对边分别平行的四边形是平行四边形;②一组邻边相等、一个角是直角的平行四边形是正方形;③等腰三角形三线合一的性质.。

相关文档
最新文档