SFP协议

合集下载

光模块分类

光模块分类

光收发一体模块:1.SFP:热插拔光模块,SFP常规产品(双纤双向、单纤双向)、SGMII SFP(百兆千兆速率互转)、多速率传输的SFP光模块(155M~~~2.67G)。

2.XFP:万兆模块,波长有850nm、1310nm、1550nm,距离从220m到80km,LC接口3.SFP+:10.3G的传输速率,850nm和1310nm,距离从330m到20km,LC接口。

4.GBIC:千兆速率,单纤/双纤,850/1310/1490/1550nm,RJ45/SC/LC,100m到120KM。

5.SFF:双纤/单纤,155M/622M/1.25G/2.5G,850/1310/1550nm,550m~~~120Km,LC接口,2X5/2X10小型化封装。

6.1x9:双纤/单纤/单发/单收,SC/FC链接,产品支持定制。

6.GPON:2X10,ONU端,SC插座/尾纤,突发模块式发射/持续模块式接受,突发模式支持DDMI功能,分工业级/商业级两级温度,完全支持SFF MAS协议及ITU-T G.984.2和ITU-TG.984.2—2006的修订版,符合RoHS6。

7.GEPON:SFP封装,SC接口或者其他损失还原连接器,千兆对称,ONU端1310nm的突发模式,1490nm的持续接收模式,OLT端恰好和ONU端相反,支持IEEE 802.3ah 和IEC-60825标准,符合RoHS。

8.EPON:SFF/SFP封装,符合IEEE Std 802.3ah?-2004协议标准,1.25G对称,单纤双向数据传输,1490波长的持续发射模式,1310nm的突然接受模式。

9.SFP EPON:SFP封装,1.25G传输速率,千兆以太网,无源光网OLT端。

10.SFF EPON:OLT端和ONU端,SFF封装,1.25G,10KM距离,1310nm/1490nm。

9.SFP CWDM:SFP封装,155M/622M/1.25G,40Km/80KM,1270nm—1610nm,广泛应用于以太网/光纤通信/同步光纤网/同步数字序列。

一文详解SFP+与SFP、XFP的区别

一文详解SFP+与SFP、XFP的区别

一文详解SFP+与SFP、XFP的区别
很多人不清楚SFP+与SFP、XFP的区别,所以有时候带来不必要的麻烦(安防弱电圈)。

10G模块经历了从300Pin,XENPAK,X2,XFP的发展,最终实现了用和SFP 一样的尺寸传输10G的信号,这就是SFP+。

SFP+凭借其小型化低成本等优势满足了设备对光模块高密度的需求,目前已经逐渐取代XFP成为10G市场主流。

SFP+与SFP、XFP的区别SFP封装---热插拔小封装模块,目前最高速率可达4G,多采用LC接口。

SFP+封装---标准封装,工作速率是10G,可以满足以太网10G的应用。

XFP封装---串行10G光收发模块的一种标准化封装。

SFP+光模块优点:
1、SFP+具有比X2和XFP封装更紧凑的外形尺寸(与SFP尺寸相同);
2、可以和同类型的XFP,X2,XENPAK直接连接;
3、成本比XFP,X2,XENPAK产品低。

SFP和SFP+的区别1、SFP 和SFP+ 外观尺寸相同;
2、SFP的最高速率可达4G,SFP+的速率是10G;
3、SFP协议规范:IEEE802.3、SFF-8472 ;
4、SFP+支持数字诊断。

SFP+ 和XFP 的区别1、SFP+和XFP 都是10G 的光纤模块,且与其它类型的10G模块可以互通;
2、SFP+比XFP 外观尺寸更小;
3、因为体积更小,SFP+将信号调制功能,串行/解串器、MAC、时钟和数据恢复(CDR),以及电子色散补偿(EDC)功能从模块移到主板卡上;
4、XFP 遵从的协议:XFP MSA协议;
5、SFP+遵从的协议:IEEE 802.3ae、SFF-8431、SFF-8432;。

sfp+接口与sfp接口有何区别

sfp+接口与sfp接口有何区别

sfp+接口与sfp接口有何区别SFP模块(体积比GBIC模块减少一半,可以在相同面板上配置多出一倍以上的端口数量。

由于SFP模块在功能上与GBIC基本一致,因此,也被有些交换机厂商称为小型化GBIC(Mini-GBIC)。

SFP模块则通过将CDR和电色散补偿放在了模块外面,而更加压缩了尺寸和功耗。

用于电信和数据通信中光通信应用。

SFP联接网络设备如交换机、路由器等设备的主板和光纤或UTP线缆。

SFP是一些光纤器件提供商支持的工业规格。

SFP+光纤模块,(10 Gigabit Small Form Factor Pluggable)是一种可热插拔的,独立于通信协议的光学收发器,通常传输光的波长是850nm,1310nm 或1550nm,用于10G bps的SONET/SDH,光纤通道,gigabit Ethernet,10 gigabit Ethernet和其他应用中,也包括DWDM 链路。

XFP包含类似于SFF-8472 的数字诊断模块,但是进行了扩展,提供了强大的诊断工具。

SFP类型SFP+支持SONET、Gigabit Ethernet、光纤通道(Fiber Channel)以及一些其他通信标准。

此标准扩展到了SFP+,能支持10.0 Gbit/s传输速率,包括8 gigabit光纤通道和10GbE。

引入了光纤和铜芯版本的SFP+模块版本,与模块的Xenpak、X2或XFP版本相比,SFP+模块将部分电路留在主板实现,而非模块内实现。

SFP与SFP+的区别很多人不清楚sfp与sfp+的区别,所以有时候带来不必要的麻烦。

10G 模块经历了从300Pin,XENPAK,X2,XFP的发展,最终实现了用和SFP一样的尺寸传输10G的信号,这就是SFP+。

SFP凭借其小型化低成本等优势满足了设备对光模块高密度的需求,从2002年标准推行了,到2010年已经取代XFP成为10G 市场主流。

SFP+光收发器是SFP(有时也称作“mini-GBIC”)的升级。

光模块SFP与SFP、XFP、QSFP、QSFP的区别及参数

光模块SFP与SFP、XFP、QSFP、QSFP的区别及参数

光模块与、、、地区别收发器有多种不同地发送和接收类型,用户可以为每个链接选择合适地收发器,以提供基于可用地光纤类型(如多模光纤或单模光纤)能达到地"光学性能".可用地光学模块一般分为如下类别:纳米波长米距离地 ()、纳米波长公里距离地 ()、纳米波长公里距离地、公里距离地、公里距离地或,以及.收发器也提供铜缆接口,使得主要为光纤通信设计地主机设备也能够通过网络线缆通信.也存在波分复用()以及单光纤"双向"(纳米波长上行下行)地.商用收发器能够提供速率达到 . 收发器地几种封装形式为,以及与封装基本一致地新地变种"".( 地缩写),是将千兆位电信号转换为光信号地接口器件.设计上可以为热插拔使用.是一种符合国际标准地可互换产品.采用接口设计地千兆位交换机由于互换灵活,在市场上占有较大地市场份额. ()可以简单地理解为地升级版本.支持、、光纤通道()以及一些其他通信标准.此标准扩展到了,能支持传输速率,包括光纤通道和.引入了光纤和铜芯版本地模块版本,与模块地、或版本相比,模块将部分电路留在主板实现,而非模块内实现b5E2R。

模块经历了从,,,地发展,最终实现了用和一样地尺寸传输地信号,这就是.凭借其小型化低成本等优势满足了设备对光模块高密度地需求,从年标准推出,到年已经取代成为市场主流.p1Ean。

光模块优点:、具有比和封装更紧凑地外形尺寸(与尺寸相同);、可以和同类型地直接连接;、成本比产品低.DXDiT。

和地区别:、和外观尺寸相同;、协议规范:、;和地区别:、和都是地光纤模块,且与其它类型地模块可以互通;、比外观尺寸更小;、因为体积更小将信号调制功能,串行解串器、、时钟和数据恢复(),以及电子色散补偿()功能从模块移到主板卡上;、遵从地协议:协议;、遵从地协议:、、;、是更主流地设计.、协议规范:、、.RTCrp。

:四通道接口(),是为了满足市场对更高密度地高速可插拔解决方案地需求而诞生地.这种通道地可插拔接口传输速率达到了.很多中成熟地关键技术都应用到了该设计中.可以作为一种光纤解决方案,并且速度和密度均优于通道接口.由于可在相同地端口体积下以每通道地速度支持四个通道地数据传输,所以地密度可以达到产品地倍,产品地倍.具有通道且密度比高地接口已经被标准所采用.5PCzV。

一分钟了解SFP光模块

一分钟了解SFP光模块

一分钟了解SFP光模块SFP光模块是市面上最常用的一种光模块,是SMALL FORM PLUGGABLE(小型可插拔)的缩写。

SFP封装为热插拔小封装模块,传输速率从百兆到10G,目前最高速率可达10.3G,可以简单的理解为GBIC的升级版本。

SFP光模块尺寸:SFP光模块尺寸比GBIC模块减少一半,只有大拇指大小。

可以在相同的面板上配置多出一倍以上的端口数量。

SFP模块的其他功能基本和GBIC一致。

有些交换机厂商称SFP模块为小型化GBIC(MINI-GBIC)。

SFP光模块的构成:激光器(包括发射器TOSA跟接收器ROSA)和线路板IC 及外部配件构成,外部配件则有外壳、底座、PCBA、拉环、卡扣、解锁件、橡胶塞组成,为了辨认方便一般以拉环的颜色辨别模块的参数类型。

对于GE的SFP来说:黑色:单模MM SX模块蓝色:单模SM LX模块浅黄色:单模SM LH or ZX模块对于2.5G的SFP来说:灰色:单模SM SR模块绿色:单模SM LR模块SFP光模块有很多种类型,如:BIDI-SFP、电口SFP、CWDM SFP、DWDM SFP、SFP+光模块等。

另外,对于同类型的XFP、X2、XENPAK光模块而言,SFP光模块不仅能与其直连,还具有成本较其更低的特点。

SFP光模块和SFP+光模块的区别:1、SFP光模块和SFP+光模块外观尺寸相同;2、SFP+光模块的速率是10G;3、SFP光模块协议规范:IEEE802.3、SFF-8472 ;4、SFP+光模块支持数字诊断。

SFP光模块的应用SFP支持SONET、Gigabit Ethernet、光纤通道(Fiber Channel)以及一些其他通信标准。

一般用于交换机、路由器、服务器、光纤通道设备、光纤收发器、摄像机、光端机等等。

SFP光模块有哪些分类?按速率分类:按照速率分有155M/622M/1.25G/2.125G/4.25G/8G/10G,155M和1.25G市场上用的较多,10G的技术正在逐渐成熟,需求量正以上升的姿态发展。

sff8472协议最新版

sff8472协议最新版

竭诚为您提供优质文档/双击可除sff8472协议最新版篇一:光模块sFp+与sFp、xFp、qsFp、qsFp+的区别及参数光模块sFp+与sFp、xFp、qsFp、qsFp+的区别sFp收发器有多种不同的发送和接收类型,用户可以为每个链接选择合适的收发器,以提供基于可用的光纤类型(如多模光纤或单模光纤)能达到的"光学性能"。

可用的光学sFp模块一般分为如下类别:850纳米波长/550米距离的mmF(sx)、1310纳米波长/10公里距离的smF(lx)、1550纳米波长/40公里距离的xd、80公里距离的zx、120公里距离的ex或ezx,以及dwdm。

sFp收发器也提供铜缆接口,使得主要为光纤通信设计的主机设备也能够通过utp网络线缆通信。

也存在波分复用(cwdm)以及单光纤"双向"(1310/1490纳米波长上行/下行)的sFp。

商用sFp收发器能够提供速率达到4.25gbps。

10gbps 收发器的几种封装形式为xFp,以及与sFp封装基本一致的新的变种"sFp+"。

gbic(gigabitinterfaceconverter的缩写),是将千兆位电信号转换为光信号的接口器件。

gbic设计上可以为热插拔使用。

gbic是一种符合国际标准的可互换产品。

采用gbic 接口设计的千兆位交换机由于互换灵活,在市场上占有较大的市场份额。

sFp(smallForm-factorpluggable)可以简单的理解为gbic的升级版本。

sFp支持sonet、gigabitethernet、光纤通道(Fiberchannel)以及一些其他通信标准。

此标准扩展到了sFp+,能支持10.0gbit/s传输速率,包括8gigabit光纤通道和10gbe。

引入了光纤和铜芯版本的sFp+模块版本,与模块的xenpak、x2或xFp版本相比,sFp+模块将部分电路留在主板实现,而非模块内实现10g模块经历了从300pin,xenpak,x2,xFp的发展,最终实现了用和sFp一样的尺寸传输10g的信号,这就是sFp+。

SFP MSA中文翻译

SFP MSA中文翻译

小型可插拔收发器多源协议(MSA)I(合作)协议的目的(合作)各方希望建立国际兼容的可插拔光纤收发器模块源,以支持光纤系统标准,包括异步传输模式(ATM),FDDI,光纤通道,快速以太网和千兆以太网以及同步光纤网络(SONET)/同步数字体系(SDH)应用程序。

各方都希望为可互换收发器模块建立兼容的源,可以使整个光纤市场更快地发展。

这种增强的市场增长、客户选择和激烈竞争是本协议的明确目的。

各方承认,本协议提供的解决方案以高度为主要限制条件,可能无法为具有不同限制条件的应用程序提供最佳解决方案。

各方希望将来为其他产品建立兼容的来源。

II 协议电气和光学规范应与相应标准中列举的规范兼容(即IEEE 802.3z千兆以太网标准和ITU G.957同步数字系列标准)。

许可和费用:本协议任何一方的专利、专有技术、贸易记录或任何其他技术均未以明示、暗示或禁止反悔的方式获得许可。

MSA各方均同意,将在适用于该MSA方的合理和非歧视条款和条件下,向所有相关方提供所有所需知识产权的许可。

本协议的各个缔约方可能拥有他们认为可能与本协议相关的专利。

应单独联系MSA各方,以确定他们是否拥有他们认为可能与本协议相关的专利权。

为支持本协议项下的活动,各方可自由寻求与其他公司(注:指协议合作方公司,如:安捷伦科技、日立电缆、英飞凌科技公司、IBM、朗讯科技等合作制定协议的公司,具体见标题)的技术或其他交流。

协议的范围:本协议的范围包括在多模和单模光纤上运行的传输速率高达5.0 Gb / s的收发器。

促进协议:在本协议公布后,各方可以其认为适当的方式宣传或以其他方式宣传本协议。

如果要提到对方的名字,必须征得对方的同意。

注,文档基本内容:附录A.机械接口(CAD设计和PCB设计相关,略掉不译)附录B.电气接口B1、介绍B2、引脚定义B3、控制和状态I / O的时序要求B4、模块定义接口和数据字段描述【注:其中Annex B2和B3为重点翻译对象,B4由于在SFF-8472等协议中有更为完善的定义,因此只列出I2C读取的E2PROM的信息字段内容,不再此处详细分析字段含义,等到翻译SFF-8472时再统一记录翻译,并有提及此处并未定义而保留的字段】附录B电气接口B1 介绍本附件包含小尺寸可插拔(SFP)收发器的引脚定义数据。

SFP多源协议中关于LOS时间的注解-3

SFP多源协议中关于LOS时间的注解-3

SFP多源协议中关于LOS时间的注解注解::t_on和t_off注解根据协议来看,t_off时间的产生和计算如下:产生:模块正常传输时,发射端TX-Disable脚加一个高电平,与此同时,激光器的光信号输出逐渐减小,直到最后下降为正常信号的10%计算:从该高电平的上升沿开始,到光信号的输出降为原来的10%为止,要求时间不得超过10 us。

如下图,由于这个时间太小,图上无法标示出来。

t_on 时间的产生和计算如下:产生:模块加电,发射端TX-Disable 脚先加一个高电平,这时模块激光器没有光信号输出。

将该高电平突然转变为低电平,激光器开始恢复工作,输出光信号逐渐加大,直到输出光信号加大到正常输出光信号的90% 计算:从高电平转换为低电平的下降沿开始算起,直到激光器的输出光信号恢复到正常工作的90%为止,要求时间不得超过1ms 。

如下图,两条绿线所夹的时间。

时间注解::t_loss_on和t_loss_off时间注解t_loss_on时间的产生和计算如下:产生:模块正常传输时,发射端TX-Disable脚先加一个高电平,与此同时,激光器的光信号输出逐渐减小,接受端的PIN-TIA或APD-TIA检测到的光信号也在同步减小,当信号减小到一定程度时,后级的LA会产生一个LOS高电平信号。

计算:从激光器的输出光信号开始减小算起,直到最后建立一个稳定的LOS电平(丛低电平转为高电平)。

要求时间不超过100 us。

如下图所示:t_loss_off时间的产生和计算如下:产生:模块加电,发射端TX-Disable脚先加一个高电平,这时模块激光器没有光信号输出。

将该高电平突然转变为低电平,激光器开始恢复工作,输出光信号逐渐加大,接受端的PIN-TIA或APD-TIA检测到的光信号也在同步加大,当信号加大到一定程度时,后级的LA 会产生一个LOS低电平信号。

计算:从激光器的输出光信号开始加大算起,直到最后建立一个稳定的LOS电平(丛高电平转为低电平)。

SFP收发器多源协议

SFP收发器多源协议

SFP收发器多源协议SFP收发器是一种热拔插小型光模块,作用是集光电转换与光信号接收于一体,完成激光信号的发射与接收。

该产品是GBIC光模块的升级产品。

SFP收发器多元协议的作用是制定了该产品尺寸、外形、封装、标签,外壳、电子接口、引脚规定、主板设计、时序控制、Serial ID(数据域)等属性规定,以方便生产商统一化设计。

SFP收发器的主板引脚有20个,其中输入引脚pin1/pin17/pin20(VeeT), pin9/pin10/pin11/pin14(VeeR) , pin15(VccR), pin16(VccT) ,pin3(发射器使能) , pin7(速率选择), pin12/pin13(接收器差分数据线),pin4/5/6(Mod_Def2/1/0);输出引脚pin2(Tx_fault) , pin8(LOS 检测), pin18/pin19(发射器差分数据线)。

引脚功能介绍:pin3(Tx_disable):接高电平,发射器不工作,整个sfp模块不工作,接低电平时正常工作;pin4为Serial ID双线串口数据线,pin5为serial ID双线串口的时钟线,pin6被模块内部接地;pin7为接收器带宽选择引脚,接高电平时表示满带宽,低电平表示受限带宽;pin12/13为接收器差分数据线,pin18/19为发射器差分数据线;pin2(Tx_fault)是输出引脚,高电平显示有光偏差,为低电平时则无偏差;pin8(LOS)是输出引脚,高电平表示接收器接收到的光功率过小(损耗过大),为低电平则正常。

所有的Vee引脚都接地线,Vcc引脚都接电源线。

SFP的时序规定如下。

t_off(<10us)和t_on(<1ms)为Tx_disable的响应时间,t_off 就是从Tx_disable 引脚电平变高到发射机器停止工作的时间,t_on就是从Tx_disable 被置零到发射机恢复工作的时间。

光模块SFP+与SFP、XFP、QSFP、QSFP+地区别及全参数

光模块SFP+与SFP、XFP、QSFP、QSFP+地区别及全参数

SFP收发器有多种不同的发送和接收类型,用户可以为每个链接选择合适的收发器,以提供基于可用的光纤类型(如多模光纤或单模光纤)能达到的"光学性能"。

可用的光学SFP模块一般分为如下类别:850纳米波长/550米距离的 MMF (SX)、1310纳米波长/10公里距离的 SMF (LX)、1550 纳米波长/40公里距离的XD、80公里距离的ZX、120公里距离的EX或EZX,以及DWDM。

SFP收发器也提供铜缆接口,使得主要为光纤通信设计的主机设备也能够通过UTP网络线缆通信。

也存在波分复用(CWDM)以及单光纤"双向"(1310/1490纳米波长上行/下行)的SFP。

商用SFP收发器能够提供速率达到4.25 G bps。

10 Gbps 收发器的几种封装形式为XFP,以及与SFP封装基本一致的新的变种"SFP+"。

GBIC(Gigabit Interface Converter的缩写),是将千兆位电信号转换为光信号的接口器件。

GBIC设计上可以为热插拔使用。

GBIC是一种符合国际标准的可互换产品。

采用GBIC接口设计的千兆位交换机由于互换灵活,在市场上占有较大的市场份额。

SFP (Small Form-factor Pluggable)可以简单的理解为GBIC的升级版本。

SFP支持SONET、Gigabit Ethernet、光纤通道(Fiber Channel)以及一些其他通信标准。

此标准扩展到了SFP+,能支持10.0 Gbit/s传输速率,包括8 gigabit光纤通道和10GbE。

引入了光纤和铜芯版本的SFP+模块版本,与模块的Xenpak、X2或XFP版本相比,SFP+模块将部分电路留在主板实现,而非模块内实现10G模块经历了从300Pin,XENPAK,X2,XFP的发展,最终实现了用和SFP一样的尺寸传输10G的信号,这就是SFP+。

光模块SFP与SFP、XFP、QSFP、QSFP的区别及参数

光模块SFP与SFP、XFP、QSFP、QSFP的区别及参数

光模块SF‎P+与SFP、XFP、QSFP、QSFP+的区别SFP收发‎器有多种不‎同的发送和‎接收类型,用户可以为‎每个链接选‎择合适的收‎发器,以提供基于‎可用的光纤‎类型(如多模光纤‎或单模光纤‎)能达到的"光学性能"。

可用的光学‎S FP模块‎一般分为如‎下类别:850纳米‎波长/550米距‎离的 MMF (SX)、1310纳‎米波长/10公里距‎离的 SMF (LX)、1550 纳米波长/40公里距‎离的XD、80公里距‎离的ZX、120公里‎距离的EX‎或EZX,以及DWD‎M。

SFP收发‎器也提供铜‎缆接口,使得主要为‎光纤通信设‎计的主机设‎备也能够通‎过UTP网‎络线缆通信‎。

也存在波分‎复用(CWDM)以及单光纤‎"双向"(1310/1490纳‎米波长上行‎/下行)的SFP。

商用SFP‎收发器能够‎提供速率达‎到4.25 G bps。

10 Gbps 收发器的几‎种封装形式‎为XFP,以及与SF‎P封装基本‎一致的新的‎变种"SFP+"。

GBIC(Gigab‎i t Inter‎f ace Conve‎r ter的‎缩写),是将千兆位‎电信号转换‎为光信号的‎接口器件。

GBIC设‎计上可以为‎热插拔使用‎。

GBIC是‎一种符合国‎际标准的可‎互换产品。

采用GBI‎C接口设计‎的千兆位交‎换机由于互‎换灵活,在市场上占‎有较大的市‎场份额。

SFP (Small‎Form-facto‎r Plugg‎a ble)可以简单的‎理解为GB‎I C的升级‎版本。

SFP支持‎S ONET‎、Gigab‎i t Ether‎n et、光纤通道(Fiber‎Chann‎e l)以及一些其‎他通信标准‎。

此标准扩展‎到了SFP‎+,能支持10‎.0 Gbit/s传输速率‎,包括8 gigab‎i t光纤通‎道和10G‎b E。

引入了光纤‎和铜芯版本‎的SFP+模块版本,与模块的X‎e npak‎、X2或XF‎P版本相比‎,SFP+模块将部分‎电路留在主‎板实现,而非模块内‎实现10G模块‎经历了从3‎00Pin‎,XENPA‎K,X2,XFP的发‎展,最终实现了‎用和SFP‎一样的尺寸‎传输10G‎的信号,这就是SF‎P+。

SFP+_光模块测试指导要点

SFP+_光模块测试指导要点

10G模块经历了从300Pin,XENPAK,X2,XFP的发展,最终实现了用和SFP一样的尺寸传输10G的信号,这就是SFP+。

SFP凭借其小型化低成本等优势满足了设备对光模块高密度的需求,从2002年标准推了,到2010年已经取代XFP成为10G 市场主流。

SFP+光模块优点:1、SFP+具有比X2和XFP封装更紧凑的外形尺寸(与SFP尺寸相同);2、可以和同类型的XFP,X2,XENPAK直接连接;3、成本比XFP,X2,XENPAK产品低。

SFP+和SFP的区别:1、SFP 和SFP+ 外观尺寸相同;2、SFP协议规范:IEEE802.3、SFF-8472 ;SFP+ 和XFP 的区别:1、SFP+和XFP 都是10G 的光纤模块,且与其它类型的10G模块可以互通;2、SFP+比XFP 外观尺寸更小;3、因为体积更小SFP+将信号调制功能,串行/解串器、MAC、时钟和数据恢复(CDR),以及电子色散补偿(EDC)功能从模块移到主板卡上;4、XFP 遵从的协议:XFP MSA协议;5、SFP+遵从的协议:IEEE 802.3ae、SFF-8431、SFF-8432;6、SFP+是更主流的设计。

3、SFP+ 协议规范:IEEE 802.3ae、SFF-8431、SFF-8432。

一、目的高质量的完成维修任务,保证模块能及时完成交付。

二、适用范围SFP 6G生产模块三、产品测试连接图装备测试连接图测试原理:信号发生器的输出信号经过RF Spliter(射频分路器)分成两路,一路给待测模块发射端,另外一端给光源。

待测模块发出的光信号给示波器进行相关参数(光功率、消光比、交叉点等)的测试。

光源发出的光信号进过衰减器,再通过50:50光分路器,一路给光功率计,另外一路给被测模块接收端进行灵敏度测试。

四、模块功能介绍4.1、简要说明模块在系统中的位置、作用、采用的标准SFP 6G光模块用于无线产品(模块主要使用在中国的3G业务上),为6Gbps可插拔收发一体的SFP光模块,可插在使用6G单板上,该版本可应用于无线TD系统中,完成6G信号的光/电和电/光转换,同时还完成模块自身的性能上报等功能。

sfp28电气标准

sfp28电气标准

sfp28电气标准
SFP28电气标准是指SFP28光模块的电气规范。

SFP28
光模块是一种可热插拔的、能对光信号进行转换的光模块,主要应用于高密度、高速率的数据中心和云计算中心网络中。

SFP28电气标准主要规定了SFP28光模块的电压、电流、传输速率、接口类型、接口协议等方面的电气性能参数和规范。

这些规范确保了SFP28光模块在不同设备和应用环境中的兼容性和互操作性。

具体来说,SFP28电气标准的主要内容包括:
1. 电压范围:SFP28光模块的电压范围一般在+3.3V和+5V之间。

2. 电流消耗:SFP28光模块的电流消耗因速率和型号而异,但一般不超过1A。

3. 传输速率:SFP28光模块支持多种传输速率,如
1Gbps、10Gbps等。

4. 接口类型:SFP28光模块采用LC接口,支持双通道四通道并行传输。

5. 接口协议:SFP28光模块支持多种协议,如以太网、光纤通道、CPRI等。

总之,SFP28电气标准是为了确保SFP28光模块在各种
设备和应用环境中的兼容性和互操作性而制定的一系列规范。

DDM功能与SFF-8472协议

DDM功能与SFF-8472协议
同时,如果光网络数据链路出现问题,可以帮助系统管理员找出光 纤链路中发生故障的位置,简化维护工作,提高系统的可靠性。
精选ppt
30
模块使用时间预测
这种故障预测可以使网络管理人员在系统性能受到影 响之前找到潜在的链路故障。通过故障预告,系统管理员 可以将业务切换到备份链路上或者替换可疑器件,从而在 不间断业务的情况下修复系统。 智能SFP提供了一种预测激光器劣化的实时的参数监测手 段。光模块内部的光功率反馈控制单元会将输出功率控制 在一个稳定的水平上,但是,随着激光器的老化,激光器 的量子效率会降低。功率的控制是通过提高激光的偏置电 流(Tx_Bias)来实现的。因此,我们可以通过监测激光 的偏置电流来预测激光器的寿命。这种方法可粗略的估计 激光器的使用寿命是否接近终了。
验证就是分析模块的工作环境是否符合数据手册或和相关 的标准兼容。模块的性能只有在这种兼容的工作环境下才 能得到保证。在有些情况下,由于环境参数超出数据手册 或相关的标准,将造成模块性能下降,从而出现传输误码。 工作环境与模块不兼容的情况有:1)电压超出规定范围; 2)接收光功率过载或低于接收机灵敏度;3)温度超出工 作温度范围。
精选ppt
15
精选ppt
16
3、外校准
采用外部校准时,存储的是未经处理的 A/D转换值,监测软件通过读取存储单元 A2H中38H~5FH地址内的校准常数,再通 过外部校准公式把A/D值换算成实际值
外部校准可分为两类:线性和非线性
精选ppt
17
精选ppt
18
外部校准运算法则定义
• T(C) = Tslope * TAD (16 bit signed twos complement value) + Toffset. The result is in units of 1/256C。

SFF-协议中文

SFF-协议中文

编号:_______________本资料为word版本,可以直接编辑和打印,感谢您的下载SFF-协议中文甲方:___________________乙方:___________________日期:___________________此文档用于看英文文档的参照,并非〈〈SFF -8472 Rev 10.1 »所有内容均被翻译(当然没有翻译的地方我作了注释啦)。

精选范本范围和概述W前是关于版本号等一些描述性的东西,不做翻译这个文件定义了一个带有数字诊断接口的增强型的内存表,数字诊断接口是为收发机服务的,这可以让虚实时系统能够获得设备的测量参数。

它同样加入了新的选项到先前定义的两线的存储表中,以便于兼容新的SFPMS成者GBICC件的收发器类型。

接口是一个在GBI俄者SFPMS硕明书中定义的两线的接口ID的扩展。

两个说明书定义的25鲜节的存储表可以通过串行的两线接口在8位的地址结构1010000XA0h处得到访问。

数字诊断监控接口利用的是8位的地址1010001XA2h ,这样原始定义的两线的接口ID存储表就可以保持不变。

这些接口既向后兼容GBITX兼容SFPMSA可应用的文件GigabitInterfaceConverte(GBIC).SFF documentiumber:SFF-8053rev. 5.5, Septemb27,2000. SmalFormFactoPluggablebFPTransceivSiFFdocumemtumbeIrNF-8074^v.1.0,May122001(BasedntheinitiaSeptembe4,2001MS/publicelease).SFPRateandApplicati(SelectioSFFdocume n timbeBFF-8079v1.7,February 2,2005. SFPRateanclApplicatiOnodeSSFFdocume n tmbe^BFF-8089!v1.3,Februa3/; 2005.Enhanced5and10GigabSmalFornFactoPluggabModuieSFPP|us). SFFdocume n tjmbe{BFF-843rfe;v1.6,Decemb21,2006. 增强的数字诊断接口定义概述增强数字诊断接口是一个在200评9月14日的SFPMSA^件数据定义的MOD_DEF接口,之后,遵从了SF成员会后变成了INF-8074^及两线的接口的定义、硬件、和时序都在这里被清晰的定义了。

光模块的重要协议

光模块的重要协议

光模块的重要协议光模块是一种广泛应用于光通信领域的设备,它的工作原理是利用光信号进行信息传输。

光模块中的重要协议扮演着关键的角色,确保光模块的正常工作和高效传输。

本文将介绍光模块中的几个重要协议,并探讨它们的作用和特点。

一、SFP协议SFP(Small Form-factor Pluggable)是一种小型可插拔光模块,它是一种热插拔设备,可以在不中断系统工作的情况下进行更换。

SFP协议定义了光模块与主机之间的接口标准,确保光模块与主机之间的通信正常进行。

SFP协议支持多种传输速率和传输距离,是当前应用最广泛的光模块协议之一。

二、GBIC协议GBIC(Gigabit Interface Converter)是一种用于千兆以太网的光模块,它能够将电信号转换为光信号进行传输。

GBIC协议定义了光模块与主机之间的接口和通信规范,确保光模块与主机之间的数据传输稳定和可靠。

GBIC协议支持长距离传输和多种光纤类型,是早期广泛使用的光模块协议之一。

三、QSFP协议QSFP(Quad Small Form-factor Pluggable)是一种四倍速率的小型可插拔光模块,它支持高达40Gbps的传输速率。

QSFP协议定义了光模块与主机之间的接口和通信规范,确保高速数据传输的稳定和可靠。

QSFP协议支持多种传输距离和传输介质,广泛应用于数据中心和高性能计算领域。

四、CFP协议CFP(C Form-factor Pluggable)是一种大型可插拔光模块,它支持高速率的光信号传输,最高可达100Gbps。

CFP协议定义了光模块与主机之间的接口和通信规范,确保高速率数据传输的稳定和可靠。

CFP协议支持多种传输距离和传输介质,是目前应用最广泛的高速率光模块协议之一。

以上是光模块中的几个重要协议,它们在光模块的工作中起到了至关重要的作用。

这些协议定义了光模块与主机之间的接口和通信规范,确保了数据传输的稳定和可靠。

同时,这些协议支持多种传输速率和传输距离,满足了不同应用场景的需求。

SFP+_光模块测试指导PDF

SFP+_光模块测试指导PDF

SFP与SFP、XFP的区别10G模块经历了从300PinXENPAKX2XFP的发展最终实现了用和SFP一样的尺寸传输10G的信号这就是SFP。

SFP凭借其小型化低成本等优势满足了设备对光模块高密度的需求从2002年标准推了到2010年已经取代XFP成为10G 市场主流。

SFP光模块优点1、SFP具有比X2和XFP封装更紧凑的外形尺寸与SFP 尺寸相同2、可以和同类型的XFPX2XENPAK直接连接3、成本比XFPX2XENPAK 产品低。

SFP和SFP的区别1、SFP 和SFP 外观尺寸相同2、SFP协议规范IEEE802.3、SFF-8472 SFP 和XFP 的区别1、SFP和XFP 都是10G 的光纤模块且与其它类型的10G模块可以互通2、SFP比XFP 外观尺寸更小3、因为体积更小SFP将信号调制功能串行/解串器、MAC、时钟和数据恢复CDR以及电子色散补偿EDC功能从模块移到主板卡上4、XFP 遵从的协议XFP MSA协议5、SFP遵从的协议IEEE 802.3ae、SFF-8431、SFF-8432 6、SFP是更主流的设计。

3、SFP 协议规范IEEE 802.3ae、SFF-8431、SFF-8432。

一、目的高质量的完成维修任务保证模块能及时完成交付。

二、适用范围SFP 6G生产模块三、产品测试连接图装备测试连接图测试原理:信号发生器的输出信号经过RF Spliter射频分路器分成两路一路给待测模块发射端另外一端给光源。

待测模块发出的光信号给示波器进行相关参数光功率、消光比、交叉点等的测试。

光源发出的光信号进过衰减器再通过50:50光分路器一路给光功率计另外一路给被测模块接收端进行灵敏度测试。

四、模块功能介绍 4.1、简要说明模块在系统中的位置、作用、采用的标准SFP 6G光模块用于无线产品模块主要使用在中国的3G业务上为6Gbps可插拔收发一体的SFP光模块可插在使用6G单板上该版本可应用于无线TD系统中完成6G信号的光/电和电/光转换同时还完成模块自身的性能上报等功能。

交换机中的SFP是什么意思和三层交换机

交换机中的SFP是什么意思和三层交换机

交换机中的SFP是什么意思10/100/1000T+4SFP,这个SFP是该交换机有4个SFP模块插槽的意思。

SFP是SMALL FORM PLUGGABLE的缩写,可以简单的理解为GBIC的升级版本。

SFP模块体积比GBIC模块减少一半,可以在相同的面板上配置多出一倍以上的端口数量。

SFP模块的其他功能基本和GBIC一致。

有些交换机厂商称SFP模块为小型化GBIC(MINI-GBIC)。

S2100不能使用SFP扩展,应该是用FS1UA\GS1UA等插卡进行扩展。

交换机上的SFP接口是什么接口那是高速接口插槽,需要插入高速接口模块才能接上光纤等高整传输设备三层交换机三层交换机就是具有部分路由器功能的交换机,三层交换机的最重要目的是加快大型局域网内部的数据交换,所具有的路由功能也是为这目的服务的,能够做到一次路由,多次转发。

对于数据包转发等规律性的过程由硬件高速实现,而像路由信息更新、路由表维护、路由计算、路由确定等功能,由软件实现。

三层交换技术就是二层交换技术+三层转发技术。

传统交换技术是在OSI网络标准模型第二层——数据链路层进行操作的,而三层交换技术是在网络模型中的第三层实现了数据包的高速转发,既可实现网络路由功能,又可根据不同网络状况做到最优网络性能。

目录1应用背景2应用目的▪网络骨干▪连接子网3优势特性▪高可扩充性▪高性价比▪内置安全机制▪适合多媒体传输▪计费功能4工作原理1应用背景编辑出于安全和管理方便的考虑,主要是为了减小广播风暴的危害,必须把大型局域网按功能或地域等因素划成一个个小的局域网,这就使VLAN技术在网络中得以大量应用,而各个不同VLAN间的通信都要经过路由器来完成转发,随着网间互访的不断增加。

单纯使用路由器来实现网间访问,不但由于端口数量有限,而且路由速度较慢,从而限制了网络的规模和访问速度。

基于这种情况三层交换机便应运而生,三层交换机是为IP设计的,接口类型简单,拥有很强二层包处理能力,非常适用于大型局域网内的数据路由与交换,它既可以工作在协议第三层替代或部分完成传统路由器的功能,同时又具有几乎第二层交换的速度,且价格相对便宜些。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Cooperation Agreement for Small Form-Factor Pluggable Transceivers Agilent Technologies, Blaze Network Products, E2O Communications, Inc., ExceLight Communications, Finisar Corporation, Fujikura Technology America Corp., Hitachi Cable, Infineon Technologies Corp., IBM Corp., Lucent Technologies, Molex, Inc., Optical Communication Products, Inc., Picolight, Inc.,Stratos Lightwave, Tyco ElectronicsI. Purpose of the Cooperation Agreement (Agreement)Each party desires to establish internationally compatible sources of a pluggable fiber optic transceiver module in support of standards for fiber optic systems including Asynchronous Transfer Mode (ATM), FDDI, Fibre Channel, Fast Ethernet and Gigabit Ethernet, and Synchronous Optical Network (SONET) / Synchronous Digital Hierarchy (SDH) applications. Each party further desires to establish uniformity in the industry for the Transceiver “Package Dimensions”, “Cage and Electrical Connector System”, “Host Board Layout”, “Electrical Interfaces”, and “Front Panel Bezel Requirements” as described in Appendices A-B.Each party expects that the establishment of compatible sources for an interchangeable transceiver module will allow the entire fiber optic marketplace to grow more rapidly. This enhanced marketplace growth, customer choice, and vigorous competition are the express purposes of this Agreement. Each party acknowledges this agreement provides a solution with height as a primary limiting constraint and may not provide an optimum solution for applications with different constraints.The parties desire to establish compatible sources for additional products in the future.II. AgreementA. GeneralThe parties agree to cooperate by supporting common product specifications for pluggable fiber optic transceivers with the package “Package Dimensions”, “Cage and Electrical Connector System”, “Host Board Layout”, “Electrical Interfaces”, and “Front Panel Bezel Requirements” as shown in Appendices A-B. The overall package dimensions shall not exceed the maximum indicated dimensions, and the mounting features shall be located such that the products are mechanically interchangeable with the cage and connector system. In addition the overall dimensions and mounting requirements for the cage and connector system on a circuit board shall be configured such that the products are mechanically and electrically interchangeable.The electrical and optical specifications shall be compatible with those enumerated in the appropriate standards (i.e. the IEEE 802.3z Gigabit Ethernet standard and the ITU G.957 Synchronous Digital Hierarchy standard). Recommended circuit layouts for electrical input and output terminations, and grounding practices are also described in Appendix B.The transceivers per this Agreement will accept an optical connector such as the duplex LC, MT-RJ or the SG connector. This Agreement does not preclude any of the parties from offering SFP transceivers with other connectors.Internal design of the SFP transceiver is entirely at the discretion of each party and is not covered by this Agreement. The parties recognize that their products may not be identical, but need only meet the above criteria.B. Licensing and FeesNo license is granted under the patents, know-how, tradesecrets or any other technology of any party to this Agreement either expressly or by implication or by estoppel. Each of the MSA parties have agreed that licenses to all required intellectual property will be made available to all interested parties under reasonable and non-discriminatory terms and conditions applicable to that MSA party. Individual parties to this Agreement may have patents, which they believe may be relevant to this Agreement. The MSA parties should be contacted individually to determine if they have patent rights, which they believe may be pertinent to this Agreement. Each party is free to seek technology or other exchanges with other firms in order to support its activities under this Agreement.C. Scope of the AgreementThe scope of this Agreement includes transceivers with transmission rates up to 5.0 Gb/s operating over multimode and single mode fiber.Each party agrees to be responsible for its own development, manufacturing, marketing and selling in order to supply transceivers meeting the attached specifications.This Agreement does not preclude any party from offering other products that may not meet the attached specifications.Each party retains complete liberty regarding its methods of implementing a supply of product, e.g., by engineering effort or by technology licensing or transfer or combination of these or other practices.Each party also retains sole discretion in its choice of sales channels and distribution.Each party affirms its intention to compete freely and openly in the marketplace with the parties as well as other competitors.Each party expects to support products meeting the attached specifications for as long as marketplace conditions warrant. No specific time limit is associated with this Agreement. The determination of market condition suitability is to be made by each party individually and in each party’s sole discretion.III. PublicAnnouncementA. Announcing the AgreementEach party agrees to announce this Agreement in a manner agreed upon by the parties. These announcements will mention all the parties who have signed this Agreement.Each party agrees to seek public attention by means of such an announcement.Each party agrees to contribute time and effort at its sole discretion toward preparing and making such an announcement.B. Promotion of the AgreementAfter the Agreement is announced, each party may advertise or otherwise promote this Agreement in any way that it deems appropriate. Mutual consent of the other party is required if such other party is to be mentioned by name.IV. Other VendorsA. Other Vendors Matching the Product ConfigurationThe parties recognize that additional vendors may choose to match the attached product specifications after this Agreement is announced.Each party recognizes it is desirable and keeping with the intent of the Agreement for such additional vendors to support the transceiver mechanical dimensions and functional attributes described in Appendix A.Therefore, each party agrees to encourage other vendors to support these product specifications.B. Naming Other VendorsEach party agrees to have written internal procedures that require such party to name the other parties when customers ask who intends to be a source for transceivers as described in this Agreement. Each party agrees for such procedures to require it to name the others regardless as to whether another of the parties has already supplied similar transceiver products to that customer.An example of suggested wording is: “Agilent, Blaze Networks, E2O, ExceLight, Finisar, Fujikura, Hitachi Cable, Infineon, IBM, Lucent, Molex, OCP, Picolight, Stratos Lightwave, and Tyco have signed a Cooperation Agreement relating to the establishment of Small Form-factor Pluggable transceivers for multimode and single mode fiber operating up to 5.0 Gb/s data rates.”The parties are not obligated to provide any information other than the identities of the other parties. The requirements of this provision are met entirely if a party has the aforementioned written procedures and they are made available to its sales force in the same way as are other sales related procedures.DirectionV. FutureA. Current ProductShould the parties agree to further explore technical and other exchanges pertaining to the products described in this Agreement, then this shall be under a separate agreement.B. WithdrawalThe parties recognize that at some future time it may become less feasible to offer the products envisioned by this Agreement. A party may withdraw from its commitment to cooperate at its own discretion upon a 90-day notice to the other parties. This notice is necessary to allow the other parties to discontinue mentioning the withdrawing part as a participant in this Agreement and to reconsider any jointly planned promotional activities.VI. Limitation of LiabilityWith the exception of disputes arising out of intellectual property issues, no party to this Agreement shall be liable for any indirect, incidental, punitive, or consequential damages, including without limitation, lost profits or changes of good will, or similar losses, even if advised of the possibility of such damages. In addition, each party’s liability under this Agreement for direct damages shall be limited to $10,000.Appendix A. Mechanical InterfaceA1. SFP Transceiver Package DimensionsA2. Mating of SFP Transceiver PCB to SFP Electrical ConnectorA3. Host Board LayoutA4. Insertion, Extraction and Retention Forces for SFP Transceivers A5. Labeling of SFP TransceiversA6. Bezel Design for Systems Using SFP TransceiversA7. SFP Electrical Connector Mechanical SpecificationsA8. SFP Cage Assembly DimensionsAppendix B. Electrical InterfaceB1. IntroductionB2. Pin DefinitionsB3. Timing Requirements of Control and Status I/OB4. Module Definition Interface and Data Field DescriptionAppendix C. Agreement SignaturesAppendix A. Mechanical InterfaceA1.SFP Transceiver Package DimensionsA common mechanical outline is used for all SFP transceivers. The package dimensions for the SFP transceiver are described in Table 1 and Figures 1A and 1B.Table 1. Dimension Table for Drawing of SFP TransceiverDesignator Dimension(mm)Tolerance(mm)CommentsA13.7± 0.1Transceiver width, nosepiece or front that extends inside cage B8.6± 0.1Transceiver height, front, that extends inside cageC8.5± 0.1Transceiver height, rearD13.4± 0.1Transceiver width, rearE 1.0Maximum Extension of front sides outside of cage, see Note 2 Figure 1BF 2.3Reference Location of cage grounding springs from centerline, topG 4.2Reference Location of side cage grounding springs from topH 2.0Maximum Width of cage grounding springsJ28.5Minimum Location of transition between nose piece and rear oftransceiverK56.5Reference Transceiver overall lengthL 1.1x45°Minimum Chamfer on bottom of housingM 2.0± 0.25Height of rear shoulder from transceiver printed circuit board N 2.25± 0.1Location of printed circuit board to bottom of transceiverP 1.0± 0.1Thickness of printed circuit boardQ9.2± 0.1Width of printed circuit boardR0.7Maximum Width of skirt in rear of transceiverS45.0± 0.2Length from latch shoulder to rear of transceiverT34.6± 0.3Length from latch shoulder to bottom opening of transceiverU41.8± 0.15Length from latch shoulder to end of printed circuit boardV 2.5± 0.05Length from latch shoulder to shoulder of transceiver outsideof cage (location of positive stop).W 1.7± 0.1Clearance for actuator tinesX9.0Reference Transceiver length extending outside of cage, see Note 2Figure 1BY 2.0Maximum Maximum length of top and bottom of transceiver extendingoutside of cage, see Note 2 Figure 1BZ0.45± 0.05Height of latch bossAA8.6Reference Transceiver height, front, that extends inside cageAB 2.6Maximum Length of latch boss (design optional)AC45°± 3°Entry angle of actuatorAD0.3Maximum Radius on entry angle of actuatorAE 6.3Reference Width of cavity that contains the actuatorAF 2.6± 0.05Width of latch boss (design optional)AG0.40Minimum Maximum radius of front of latch boss, 2 places (designoptional)Figure 1A. Drawing of SFP TransceiverNotes:1. Cage grounding springs permitted in thisarea and may extend full length oftransceiver, 4 places. Grounding springsmay contribute a maximum force of 3.5N(Newtons) to the withdrawal force of thetransceiver from the cage.2. A representative MT-RJ configuration isillustrated. Indicated outline defines thepreferred maximum envelope outside ofthe cage.3. Design of actuation method and shape isoptional.4. Color code: An exposed colored feature ofthe transceiver (a feature or surfaceextending outside the cage assembly) shallbe color coded as follows:•Black or beige for multi-mode•Blue for single modeFigure 1B. Drawing of SFP Transceiver (Cont.)A2.Mating of SFP Transceiver PCB to SFP Electrical ConnectorThe SFP transceiver contains a printed circuit board that mates with the SFP electrical connector. The pads are designed for a sequenced mating:•First mate – ground contacts•Second mate – power contacts•Third mate – signal contactsThe design of the mating portion of the transceiver printed circuit board is illustrated in Figure 2 and the electrical pad layout is illustrated in Figure 3. A typical contact pad plating for the printed circuit board is 0.38 micrometers minimum hard gold over 1.27 micrometers minimum thick nickel.Other plating options that meet the performance requirements are acceptable.Figure 2. Recommended Pattern Layout for SFP Printed Circuit BoardFigure 3. SFP Transceiver Electrical Pad LayoutA3. Host Board LayoutA typical host board mechanical layout for attaching the SFP Connector and Cage System is shown in Figures 4A and 4B.VeeT TD-TD+VeeT VccT VccR VeeR RD+RD-VeeR20191817161514131211VeeT TxFault Tx Disable MOD-DEF(2)MOD-DEF(1)MOD-DEF(0)Rate Select LOS VeeR VeeR12345678910Top of BoardBottom of Board (as viewed thru top of board)Figure 4A. SFP Host Board Mechanical LayoutFigure 4B. SFP Host Board Mechanical Layout (Cont.)A4. Insertion, Extraction and Retention Forces for SFP TransceiversThe requirement for the various functional forces and the durability cycles are specified in Table 2.Table 2. Insertion, Extraction, and Retention Forces Measurement Minimum Maximum Units CommentsSFP transceiver insertion040NewtonsSFP transceiver extraction011.5NewtonsSFP transceiver retention90170Newtons No damage to transceiverbelow 90N Cage retention (Latch strength)180N/A Newtons No damage to latch below180N Cage kickout spring force11.522NewtonsInsertion / removal cycles,connector/cage100N/A cyclesInsertion / removal cycles, SFP transceiver 50N/A cyclesA5. Labeling of SFP TransceiversColor coding requirements for optical SFP transceivers are specified in Figure 1B.Each SFP transceiver should be clearly labeled. The complete labeling need not be visible when the SFP transceiver is installed. Labeling should include appropriate manufacturing and part number identification, appropriate regulatory compliance labeling, and a clear specification of the external port characteristics. The external port characteristic label may include such information as optical wavelength, required fiber characteristics, operating data rate, interface standards supported, and link length supported.A6. Bezel Design for Systems Using SFP TransceiversHost enclosures that use SFP devices should provide appropriate clearances between the SFP transceivers to allow insertion and extraction without the use of special tools and a bezel enclosure with sufficient mechanical strength. For most systems a nominal centerline to centerline spacing of 16.25mm (0.640”) is sufficient. See Figure 5 for the recommended bezel design. For double-sided board mounting, a printed circuit board thickness of 3.0mm (0.118”) is required.The SFP transceiver insertion slot should be clear of nearby moldings and covers that might block convenient access to the latching mechanisms, the SFP transceiver, or the cables connected to the SFP transceiver.Figure 5. Recommended Bezel DesignA7. SFP Electrical Connector Mechanical SpecificationsThe SFP Connector is a 20-contact, right angle surface mount connector. It is described in Table 3 and Figure 6. The plating on the contacts is specified as follows:• Contact area:0.38 micrometers minimum hard gold over 2.54 micrometers minimum thick nickel•Solder terminal area: gold flash or 2.54 micrometers tin lead plating over 2.54 minimum thick nickel.Table 3. SFP Transceiver Connector DimensionsDesignator Dimension(mm)Tolerance(mm)CommentsA9.4± 0.08Connector card slot widthB 1.4± 0.05Guide pin diameterC11.2Maximum Connector widthD9.2Maximum Connector lengthE 3.5Reference Distance from centerline of connectorto outer contactF 3.9Reference Distance from centerline of connectorto outer contactG 1.35Maximum Connector card slot heightH 2.6Minimum Height from bottom of connector tobottom of card slotJ9.6TP Distance between guide pinsK0.9Reference Diamond guide pin widthL 1.4± 0.05Diamond guide pin lengthM 5.4Maximum Connector heightN0.8Reference Length of solder leads past housing,front & rearP 6.0Minimum Depth of card slot from front face ofhousingQ 3.0Maximum Depth of contact point from front faceof connectorR0.7± 0.1Size of chamfer on top face ofconnectorS0.3Reference Distance boss extends past front faceof connectorT 1.0Minimum Size of chamfer at entry of card slot,all aroundU 4.5Reference Length from centerline of guide poststo end of solder leadFigure 6. SFP Transceiver Connector IllustrationA8. SFP Cage Assembly DimensionsThe SFP Cage Assembly consists of two components: a lower cage that is soldered to the host board and a top cage that is assembled to the lower cage after soldering. A reference drawing describing the SFP Cage Assembly is provided in Table 4 and Figures 7A and 7B. The cage material is copper alloy and plating options are:•Tin-lead plate 2.54 micrometers minimum over copper flash•Tin plate 2.54 micrometers minimum over 0.76 micrometers minimum nickelTable 4. Dimension Table for Drawing of SFP Cage AssemblyDesignator Dimension(mm)Tolerance(mm)CommentsA48.8Maximum Overall lengthB8.3Maximum Length from inside top of cage to latchC14.0± 0.1Inside width of cageD14.25Basic Distance between solderleg centerlines on side of cage E0.249± 0.025Thickness of solderlegF9.0Basic Distance between vent holes along lengthG11.8Basic Distance from front of cage to beginning of center venthole rowH7.9Basic Distance between vent holes across the width of thecageJ 2.0± 0.1Diameter of vent holesK16.5Basic Distance from front of cage to solderlegL10.0Basic Distance between chassis ground solderlegs along side M0.6± 0.1Width of EMI pinsN0.7± 0.1Width of all chassis ground solderlegsP 2.0Maximum Width of solderleg shoulderQ 1.25Maximum Length of solderlegR 3.95Basic Distance from centerline of cage to centerline ofchassis ground solderlegS 1.45Basic Distance from centerline of cage to centerline ofchassis ground solderlegT 1.45Basic Distance from centerline of cage to centerline ofchassis ground solderlegU 4.8Basic Distance from centerline of cage to centerline of EMIpinsV0.5± 0.05Width of EMI pins on top cageW9.2± 0.15Distance from inside top of cage to inside bottomsurface of front section of cage assemblyX9.8Maximum Maximum height of cage assembly from host boardZ10.0Basic Distance between chassis ground solderlegs along side AA11.5Basic Distance from front of cage to solderlegAB7.5Minimum Length of 9.2 (W) dimension from front of cageAC15.0Maximum Maximum width of cage assemblyAD13.9Minimum Minimum width of inside of cageAE8.95± 0.15Height of inside of cage assemblyAF 1.0Minimum Height of clearance slotsAG 2.4Basic Distance of clearance slots from cage centerlineTable 4. Dimension Table for Drawing of SFP Cage Assembly (Cont.)Designator Dimension(mm)Tolerance(mm)CommentsAH 3.0± 0.1Width of clearance slotsAJ 2.35± 0.1Distance from front of cage to latch openingAK 2.8± 0.1Length of latch openingAL0.5Minimum Height of latch lead-inAM45.6Maximum Distance from front of cage to kickout springAN35.0Maximum Distance from front of cage to end of cage floorAP0.7± 0.1Width of solderlegs that extend from floor of cageAQ 5.1Maximum Width of latchAR 3.0± 0.05Width of latch openingAS16.3Basic Front of cage to beginning of outer vent hole rowsAT0.65Maximum Inside radius of cage, four placesAU 5.8Minimum Distance between panel ground spring supportsAV12.7MaximumrecommendedLength of plug extending outside of the cage AW15.75Maximum Width of plug extending outside of the cageAX10.9Maximum Height of plug extending outside of the cageA9. Dust / EMI CoverThe order to prevent contamination of the internal components and to optimize EMI performance, it is recommended that a Dust/EMI Plug be inserted into cage assemblies when no transceiver is present. The maximum dimensions of the Dust/EMI Cover are listed in Table 4 and the maximum size is illustrated in Figure 7A. The Dust/EMI Cover shall exert a maximum force of 4.0 Newtons per side to the inside surfaces of the cage. This force shall be measured as the force/side required to compress the Dust/EMI Cover’s compliant feature(s) to the maximum dimensions listed in Table 4 (Illustrated in Figure 7A).Figure 7A. SFP Cage AssemblyFigure 7B. SFP Cage Assembly (Cont.)Appendix B. Electrical InterfaceB1. IntroductionThis annex contains pin definition data for the small form-factor pluggable (SFP) transceiver.The pin definition data is specific to gigabit rate datacom applications such as Fibre Channel and Gigabit Ethernet. It is expected that different pin definitions will be developed for SONET/ATM and lower data rate datacom applications.B2. Pin DefinitionsFigure 1 below shows the pin names and numbering for the connector block on the host board.The diagram is in the same relative orientation as the host board layout (see Appendix A,Figure 4.). As mentioned, this pinout only applies to gigabit rate datacom applications. The pin functions are defined in Table 1 and the accompanying notes. Figure 2A shows the recommended power supply filtering network. Figure 2B shows an example of a complete SFP host board schematic with connections to SerDes and protocol ICs. For EMI protection the signals to the 20-pin connector should be shut off when the transceiver is removed.Standard board layout practices such as connections to Vcc and GND with Vias, use of short-and equal-length differential signal lines, use of microstrip-lines and 50Ω terminations are recommended. Chassis grounds and external electromagnetic interference shields should notbe attached to circuit ground.1234567891020191817161514131211Towards ASICTowards BezelFigure 1. Diagram of Host Board Connector Block Pin Numbers and NamesTable 1. Pin Function DefinitionsPin Function PlugSeq.Notes1VeeT Transmitter Ground12TX Fault Transmitter FaultIndication3Note 13TX Disable Transmitter Disable3Note 2Module disables on high or open 4MOD-DEF2Module Definition 23Note 3, 2 wire serial ID interface 5MOD-DEF1Module Definition 13Note 3, 2 wire serial ID interface 6MOD-DEF0Module Definition 03Note 3, Grounded in Module7Rate Select Select between full orreducedreceiver bandwidth 3Note 4Low or Open – reduced bandwidth,High– full bandwidth8LOS Loss of Signal3Note 59VeeR Receiver Ground1Note 610VeeR Receiver Ground1Note 611VeeR Receiver Ground1Note 612RD-Inv. Received Data Out3Note 713RD+Received Data Out3Note 714VeeR Receiver Ground1Note 615VccR Receiver Power2 3.3 ± 5%, Note 816VccT Transmitter Power2 3.3 ± 5%, Note 817VeeT Transmitter Ground1Note 618TD+Transmit Data In3Note 919TD-Inv. Transmit Data In3Note 920VeeT Transmitter Ground1Note 6Plug Seq.: Pin engagement sequence during hot plugging.1) TX Fault is an open collector/drain output, which should be pulled up with a 4.7K – 10KΩresistor on the host board. Pull up voltage between 2.0V and VccT, R+0.3V. When high, output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.2) TX disable is an input that is used to shut down the transmitter optical output. It is pulledup within the module with a 4.7 – 10 KΩ resistor. Its states are:Low (0 – 0.8V): Transmitter on(>0.8, < 2.0V): UndefinedHigh (2.0 – 3.465V): Transmitter DisabledOpen:TransmitterDisabledTable 1 Notes (Cont.)3) Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a4.7K – 10KΩ resistor on the host board. The pull-up voltage shall be VccT or VccR (seeSection IV for further details).Mod-Def 0 is grounded by the module to indicate that the module is presentMod-Def 1 is the clock line of two wire serial interface for serial IDMod-Def 2 is the data line of two wire serial interface for serial ID4) This is an optional input used to control the receiver bandwidth for compatibility withmultiple data rates (most likely Fibre Channel 1x and 2x Rates). If implemented, the input will be internally pulled down with > 30kΩ resistor. The input states are:Low (0 – 0.8V): Reduced Bandwidth(>0.8 , < 2.0V):UndefinedHigh (2.0 – 3.465V): Full BandwidthBandwidthOpen: Reduced5) LOS (Loss of Signal) is an open collector/drain output, which should be pulled up with a4.7K – 10KΩ resistor. Pull up voltage between 2.0V and VccT, R+0.3V. When high, thisoutput indicates the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.6) VeeR and VeeT may be internally connected within the SFP module.7) RD-/+: These are the differential receiver outputs. They are AC coupled 100 Ω differentiallines which should be terminated with 100 Ω (differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board. The voltage swing on these lines will be between 370 and 2000 mV differential (185 – 1000 mV single ended) when properly terminated.8) VccR and VccT are the receiver and transmitter power supplies. They are defined as 3.3V±5% at the SFP connector pin. Maximum supply current is 300 mA. Recommended host board power supply filtering is shown below. Inductors with DC resistance of less than 1Ω=should be used in order to maintain the required voltage at the SFP input pin with 3.3V supply voltage. When the recommended supply filtering network is used, hot plugging of the SFP transceiver module will result in an inrush current of no more than 30 mA greater than the steady state value. VccR and VccT may be internally connected within the SFP transceiver module.9) TD-/+: These are the differential transmitter inputs. They are AC-coupled, differential lineswith 100Ω differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board. The inputs will accept differential swings of 500 – 2400 mV (250 – 1200 mV single-ended), though it is recommended that values between 500 and 1200 mV differential (250 – 600 mV single-ended) be used for best EMI performance.3.3 V Figure 2A. Recommended Host Board Supply Filtering NetworkFigure 2B. Example SFP Host Board SchematicB3. Timing Requirements of Control and Status I/OThe timing requirements of the control and status lines are drawn largely from the GBIC standard at the time of writing. They are summarized in Table 2 below:Table 2. Timing Requirements of Control and Status I/0 Parameter Symbol Min Max Unit ConditionTX Disable AssertTime t_off10µs Time from rising edge of TX Disable to when the optical output falls below 10% of nominalTX Disable NegateTime t_on1ms Time from falling edge of TX Disable to when the modulated optical output rises above 90% of nominalTime to initialize,including reset of TX_Fault t_init300msFrom power on or negation of TXFault using TX DisableTX Fault Assert Time t_fault100µs Time from fault to TX fault on. TX Disable to reset t_reset10µs Time TX Disable must be heldhigh to reset TX_faultLOS Assert Time t_loss_on100µs Time from LOS state to RX LOSassertLOS Deassert Time t_loss_off100µs Time from non-LOS state to RXLOS deassertRate-Select Change Time t_ratesel10µs Time from rising or falling edgeof Rate Select input until receiverbandwidth is in conformancewith appropriate specification.Serial ID Clock Rate f_serial_clock100kHzSFP transceiver power on initialization procedure, TX_DISABLE negated.During power on of the SFP transceiver, TX_FAULT, if implemented, may be asserted (High) as soon as power supply voltages are within specification. For transceiver initialization with TX_DISABLE negated, TX_FAULT shall be negated when the transmitter safety circuitry, if implemented, has detected that the transmitter is operating in its normal state. If a transmitter fault has not occurred, TX_FAULT shall be negated within a period t_init from the time that V CC T exceeds the specified minimum operating voltage (see Table 2). If TX_FAULT remains asserted beyond the period t_init, the host may assume that a transmission fault has been detected by the transceiver.。

相关文档
最新文档