四川省遂宁市2017年中考数学试卷(含答案)

合集下载

2024年四川省遂宁市中考数学真题卷及答案

2024年四川省遂宁市中考数学真题卷及答案

秘密★启用前2024年遂宁市初中毕业暨高中阶段学校招生考试数学试卷试卷满分150分 考试时间120分钟注意事项:1.答题前,考生务必将自己的学校、姓名、准考证号用0.5毫米的黑色墨迹签字笔填写在答题卡上,并检查条形码粘贴是否正确.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号;回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1. 下列各数中,无理数是( )A. 2-B. 12C. D. 02. 古代中国诸多技艺均领先世界.榫卯结构就是其中之一,榫卯是在两个木构件上所采用的一种凹凸结合的连接方式.凸出部分叫榫(或榫头),凹进部分叫卯(或榫眼、榫槽),榫和卯咬合,起到连接作用,右图是某个部件“榫”的实物图,它的主视图是( )A. B. C. D.3. 中国某汽车公司坚持“技术为王,创新为本”发展理念,凭借研发实力和创新的发展模式在电池、电子、乘用车、商用车和轨道交通等多个领域发挥着举足轻重的作用.2024年第一季度,该公司以62万辆的销售成绩稳居新能源汽车销量榜榜首,市场占有率高达19.4%.将销售数据用科学记数法表示为( )A. 60.6210⨯B. 66.210⨯C. 56.210´D. 56210⨯4. 下列运算结果正确的是( )A. 321a a -=B. 236a a a ⋅=的C. ()44a a -=- D. ()()2339a a a +-=-5. 不等式组32212x x x -<+⎧⎨≥⎩的解集在数轴上表示为( )A.B. C. D.6. 佩佩在“黄娥古镇”研学时学习扎染技术,得到了一个内角和为1080︒的正多边形图案,这个正多边形的每个外角为( )A. 36︒B. 40︒C. 45︒D. 60︒7. 分式方程2111m x x =---的解为正数,则m 的取值范围( )A. 3m >- B. 3m >-且2m ≠-C. 3m < D. 3m <且2m ≠-8. 工人师傅在检查排污管道时发现淤泥堆积.如图所示,排污管道横截面是直径为2米的圆,为预估淤泥量,测得淤泥横截面(图中阴影部分)宽AB 为1米,请计算出淤泥横截面的面积( )A. 1π6B. 1π6C. 2π3-D. 11π64-9. 如图1,ABC 与111A B C △满足1A A ∠=∠,11AC A C =,11BC B C =,1C C ∠≠∠,我们称这样的两个三角形为“伪全等三角形”如图2,在ABC 中,AB AC =,点,D E 在线段BC 上,且BE CD =,则图中共有“伪全等三角形”( )A. 1对B. 2对C. 3对D. 4对10. 如图,已知抛物线2y ax bx c =++(a 、b 、c 为常数,且0a ≠)的对称轴为直线=1x -,且该抛物线的与x 轴交于点()1,0A ,与y 轴的交点B 在()0,2-,()0,3-之间(不含端点),则下列结论正确的有多少个( )①0abc >;②930a b c -+≥;③213a <<;④若方程21ax bx c x +=++两根为(),m n m n <,则31m n -<<<.A. 1B. 2C. 3D. 4二、填空题(本大题共5个小题,每小题4分,共20分)11. 分解因式:4ab a +=______.12. 反比例函数1k y x-=的图象在第一、三象限,则点()3k -,在第______象限.13. 体育老师要在甲和乙两人中选择1人参加篮球投篮大赛,下表是两人5次训练成绩,从稳定的角度考虑,老师应该选______参加比赛.甲88798乙6979914. 在等边ABC 三边上分别取点D E F 、、,使得AD BE CF ==,连结三点得到DEF ,易得ADF BED CFE ≌≌,设1ABC S =△,则13A EF D D FS S =-△△如图①当12AD AB =时,111344DEF S =-⨯=△如图②当13AD AB =时,211393DEF S =-⨯=△如图③当AD 1AB 4=时,37131616DEF S =-⨯=△……直接写出,当110AD AB =时,DEF S =△______.15. 如图,在正方形纸片ABCD 中,E 是AB 边的中点,将正方形纸片沿EC 折叠,点B 落在点P 处,延长CP 交AD 于点Q ,连结AP 并延长交CD 于点F .给出以下结论:①AEP △为等腰三角形;②F 为CD 的中点;③:2:3AP PF =;④3cos 4DCQ ∠=.其中正确结论是______.(填序号)三、解答题(本大题共10个小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤)16. 计算:11sin4512021-⎛⎫︒ ⎪⎝⎭.17. 先化简:2121121x x x x -⎛⎫-÷ ⎪--+⎝⎭,再从1,2,3中选择一个合适的数作为x 的值代入求值.18. 康康在学习了矩形定义及判定定理1后,继续探究其它判定定理.(1)实践与操作①任意作两条相交的直线,交点记为O ;②以点O 为圆心,适当长为半径画弧,在两条直线上分别截取相等的四条线段OA OB OC OD 、、、;③顺次连结所得的四点得到四边形ABCD .于可以直接判定四边形ABCD 是平行四边形,则该判定定理是:______.是(2)猜想与证明通过和同伴交流,他们一致认为四边形ABCD 是矩形,于是猜想得到了矩形的另外一种判定方法:对角线相等的平行四边形是矩形.并写出了以下已知、求证,请你完成证明过程.已知:如图,四边形ABCD 是平行四边形,AC BD =.求证:四边形ABCD 是矩形.19. 小明的书桌上有一个L 型台灯,灯柱AB 高40cm ,他发现当灯带BC 与水平线BM 夹角为9︒时(图1),灯带的直射宽(),DE BD BC CE BC ⊥⊥为35cm ,但此时灯的直射宽度不够,当他把灯带调整到与水平线夹角为30︒时(图2),直射宽度刚好合适,求此时台灯最高点C 到桌面的距离.(结果保留1位小数)(sin90.16,cos90.99,tan90.16≈≈≈︒︒︒)20. 某酒店有A B 、两种客房、其中A 种24间,B 种20间.若全部入住,一天营业额为7200元;若A B 、两种客房均有10间入住,一天营业额为3200元.(1)求A B 、两种客房每间定价分别是多少元?(2)酒店对A 种客房调研发现:如果客房不调价,房间可全部住满;如果每个房间定价每增加10元,就会有一个房间空闲;当A 种客房每间定价为多少元时,A 种客房一天的营业额W 最大,最大营业额为多少元?21. 已知关于x 的一元二次方程()2210x m x m -++-=.(1)求证:无论m 取何值,方程都有两个不相等的实数根;(2)如果方程的两个实数根为12,x x ,且2212129x x x x +-=,求m 的值.22. 遂宁市作为全国旅游城市,有众多著名景点,为了解“五一”假期同学们的出游情况,某实践探究小组对部分同学假期旅游地做了调查,以下是调查报告的部分内容,请完善报告:xx 小组关于xx 学校学生“五一”出游情况调查报告数据收集调查方式抽样调查调查对象xx 学校学生数据整理与描述景点A :中国死海B :龙凤古镇C :灵泉风景区D :金华山E :未出游F :其他数据分析及运用(1)本次被抽样调查的学生总人数为______,扇形统计图中,m =______,“B :龙凤古镇”对应圆心角的度数是______;(2)请补全条形统计图;(3)该学校总人数为1800人,请你估计该学校学生“五一”假期未出游的人数;(4)未出游中的甲、乙两位同学计划下次假期从A 、B 、C 、D 四个景点中任选一个景点旅游,请用树状图或列表的方法求出他们选择同一景点的概率.23. 如图,一次函数()10y kx b k =+≠的图象与反比例函数()20m y m x=≠的图象相交于()()1,3,1A B n -,两点.的(1)求一次函数和反比例函数的表达式;(2)根据图象直接写出12y y >时,x 取值范围;(3)过点B 作直线OB ,交反比例函数图象于点C ,连结AC ,求ABC 的面积.24. 如图,AB 是O 的直径,AC 是一条弦,点D 是 AC 的中点,DN AB ⊥于点E ,交AC 于点F ,连结DB 交AC 于点G .(1)求证:AF DF =;(2)延长GD 至点M ,使DM DG =,连接AM .①求证:AM 是O 的切线;②若6DG =,5DF =,求O 的半径.25. 二次函数()20y ax bx c a =++≠的图象与x 轴分别交于点()()1,03,0A B -,,与y 轴交于点()0,3C -,P Q ,为抛物线上的两点.(1)求二次函数的表达式;(2)当P C ,两点关于抛物线对称轴对称,OPQ △是以点P 为直角顶点的直角三角形时,求点Q 的坐标;(3)设P 的横坐标为m ,Q 的横坐标为1m +,试探究:OPQ △的面积S 是否存在最小值,若存在,请求出最小值,若不存在,请说明理由.的秘密★启用前2024年遂宁市初中毕业暨高中阶段学校招生考试数学试卷试卷满分150分考试时间120分钟注意事项:1.答题前,考生务必将自己的学校、姓名、准考证号用0.5毫米的黑色墨迹签字笔填写在答题卡上,并检查条形码粘贴是否正确.2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号;回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的)【1题答案】【答案】C【2题答案】【答案】A【3题答案】【答案】C【4题答案】【答案】D【5题答案】【答案】B【6题答案】【答案】C【7题答案】【答案】B【8题答案】【答案】A【9题答案】【答案】D【10题答案】【答案】B二、填空题(本大题共5个小题,每小题4分,共20分)【11题答案】【答案】()4a b +【12题答案】【答案】四##4【13题答案】【答案】甲【14题答案】【答案】73100##0.73【15题答案】【答案】①②③三、解答题(本大题共10个小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤)【16题答案】【答案】2024【17题答案】【答案】1x -;2【18题答案】【答案】(1)对角线互相平分的四边形是平行四边形(2)证明见解析【19题答案】【答案】此时台灯最高点C 到桌面的距离为57.3cm【20题答案】【答案】(1)A 种客房每间定价为200元,B 种客房每间定价为为120元;(2)当A 种客房每间定价为220元时,A 种客房一天的营业额W 最大,最大营业额为4840元.【21题答案】【答案】(1)证明见解析;(2)11m =或22m =-.【22题答案】【答案】(1)100,10,72︒;(2)见解析;(3)144;(4)14【23题答案】【答案】(1)反比例函数表达式为23y x =,一次函数表达式为12y x =+(2)30x -<<或1x >(3)8【24题答案】【答案】(1)证明见解析(2)①证明见解析,②O 的半径为203.【25题答案】【答案】(1)2=23y x x --(2)235,39Q ⎛⎫- ⎪⎝⎭(3)存在,最小值为118。

四川遂宁2017年中考试题数学卷(word版含解析)

四川遂宁2017年中考试题数学卷(word版含解析)

一、选择题(每题4分,共40分)1.-2的倒数为( ) A .12 B .12- C .-2 D .2 【答案】B . 【解析】试题分析:﹣2的倒数是12-.故选B . 考点:倒数.2.下列运算正确的是( )A .44a a a =gB .236()a a =C .23245()a b a b =D .623÷(0)a a a a =≠ 【答案】B .考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.3.我市某地区发现了H 7N 9禽流感病毒.政府十分重视,积极开展病毒防御工作,使H 7N 9禽流感病毒得到了很好的控制.病毒H 7N 9的直径为30纳米(1纳米= 910-米).将30纳米用科学记数法表示为( )米.A .93010-⨯ B .9310-⨯ C .70.310-⨯ D .8310-⨯ 【答案】D . 【解析】试题分析:禽流感病毒H 7N 9的直径约为30纳米,即0.00000003米,用科学记数法表示该数为3×10﹣8.故选D .考点:科学记数法—表示较小的数.4.点A (a ,b )关于x 轴对称的点A ′的坐标为( )A .(a ,-b )B .(-a ,b )C .(-a ,-b )D .(b ,a ) 【答案】A .考点:关于x 轴、y 轴对称的点的坐标.5.如图是某几何体的三视图,该几何体是( )A .三棱柱B .三棱锥C .圆锥D .圆柱【答案】C . 【解析】试题分析:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥.故选C . 考点:由三视图判断几何体.6.若点A (-6,1y ),B (-2,2y ),C (3,3y )在反比例函数21a y x+=(a 为常数)的图像上,则1y ,2y ,3y 大小关系为( )A .123y y y >>B .231y y y >>C .321y y y >>D .312y y y >> 【答案】D .【解析】试题分析:∵a 2≥0,∴a 2+1≥1,∴反比例函数21a y x+=(a 为常数)的图象位于第一三象限,∵﹣6<﹣2,∴0>y 1>y 2,∵3>0,∴y 3>0,∴y 3>y 1>y 2.故选D . 考点:反比例函数图象上点的坐标特征.7.顺次连接矩形四边中点所形成的四边形是( )A .矩形B .菱形C .正方形D .梯形 【答案】B . 【解析】试题分析:连接AC 、BD ,在△ABD 中,∵AH =HD ,AE =EB ,∴EH =12BD ,同理FG =12BD ,HG =12AC ,EF =12AC ,又∵在矩形ABCD 中,AC =BD ,∴EH =HG =GF =FE ,∴四边形EFGH 为菱形.故选B .考点:中点四边形.8.关于x 的一元二次方程2(1)210a x x -++=有两个实数根,则a 的取值范围为( ) A .2a ≤ B .2a < C .a ≤2且a ≠1 D .a <2且a ≠1 【答案】C .考点:根的判别式.9.如图,⊙O 的半径为6,△ABC 是⊙O 的内接三角形,连接OB 、OC ,若∠BAC 与∠BOC 互补,则线段BC 的长为( )A .B .3C .D .6【答案】C .考点:三角形的外接圆与外心.10.函数2y x bx c =++与函数y x =的图像如图所示,有以下结论:①240b c ->;②0b c +=;③0b <;④方程组2y x bx c y x ⎧=++⎨=⎩的解为1111x y =⎧⎨=⎩,2233x y =⎧⎨=⎩;⑤当13x <<时,2(1)0x b x c +-+>.其中正确的是( )A .①②③B .②③④C .③④⑤D .②③⑤【答案】B . 【解析】试题分析:∵函数y =x 2+bx +c 与x 轴无交点,∴b 2﹣4ac <0;故①错误;当x =1时,y =1+b +c =1,则b +c =0,故②正确;对称轴在y 轴的右侧,a 、b 异号,则b <0,故③正确;根据抛物线与直线y =x 的交点知:方程组2y x bx c y x⎧=++⎨=⎩的解为1111x y =⎧⎨=⎩,2233x y =⎧⎨=⎩.故④正确;∵当1<x <3时,二次函数值小于一次函数值,∴x 2+bx +c <x ,∴x 2+(b ﹣1)x +c <0. 故⑤错误. 故选B .考点:二次函数与不等式(组);正比例函数的性质;二次函数图象与系数的关系.二、填空题(每题4分,共20分)11.函数21y x =-中自变量x 的取值范围为 . 【答案】x ≠1.考点:函数自变量的取值范围;分式有意义的条件.12.在一个不透明的盒子中装有5个红球,2个黄球,3个绿球,这些球除颜色外没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为 . 【答案】12. 【解析】试题分析:∵有5个红球,2个黄球,3个绿球,共10个,∴摸到红球的概率为510=12.故答案为:12. 考点:概率公式.13.已知1x ,2x 是方程2310x x --=的两根,则1211x x += . 【答案】﹣3. 【解析】试题分析:∵1x ,2x 是方程2310x x --=的两根,∴123x x +=、121x x =-,∴1211x x +=1212x x x x +=31- =﹣3.故答案为:﹣3. 考点:根与系数的关系. 14.如图,直线113y x =+与x 轴,y 轴分别交于A 、B 两点,△BOC 与△B ′O ′C ′是以点A 为位似中心的位似图形,且相似比为1:2,则点B ′的坐标为 .【答案】(﹣9,﹣2)或(3,2).考点:位似变换;一次函数图象上点的坐标特征;分类讨论.15.如图,正方形ABCD 的边长为4,点E 、F 分别从点A 、点D 以相同速度同时出发,点E 从点A 向点D 运动,点F 从点D 向点C 运动,点E 运动到D 点时,E 、F 停止运动.连接BE 、AF 相交于点G ,连接CG .有下列结论:①AF ⊥BE ;②点G 随着点E 、F 的运动而运动,且点G 的运动路径的长度为π;③线段DG的最小值为2;④当线段DG 最小时,△BCG的面积8S =+其中正确的命题有 .(填序号)【答案】①②③.设AB 的中点为点P ,连接PD ,∵点G 是以点P 为圆心AB 为直径的圆弧上一点,∴当点G 在PD 上时,DG 有最小值,在Rt △ADP 中,AP =12AB =2,AD =4,根据勾股定理得,PD =∴DG 的最小值为2,故③正确;过点G 作BC 的垂线与AD 相交于点M ,与BC 相交于N ,∴GM ∥P A ,∴△DMG ∽△DAP ,∴GM DG AP DP =,∴GM ,∴△BCG 的高GN =4﹣GM ,∴S △BCG =12×4=4+,故④错误,∴正确的有①②③,故答案为:①②③. 考点:四边形综合题;动点型;最值问题;压轴题.三、计算题(每题7分,共21分)161°°12cos60(2017)12π-⎛⎫----+ ⎪⎝⎭【答案】﹣1. 【解析】试题分析:直接利用立方根的定义以及负指数幂的性质和零指数幂的性质、绝对值的性质分别化简得出答案. 试题解析:原式=2﹣2﹣2×12﹣1+2﹣1=﹣1. 考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.17.有这样一道题“求222111211a a a a a a a a ++--÷-+++的值,其中2017a =”,“小马虎”不小心把2017a =错抄成2007a =,但他的计算结果却是正确的,请说明原因.【答案】1.考点:分式的化简求值.18.解方程:11322xx x-+=--.【答案】无解.【解析】试题分析:去分母化为整式方程即可解决问题.试题解析:两边乘x﹣2得到,1+3(x﹣2)=x﹣1,1+3x﹣6=x﹣1,x=2,∵x=2时,x﹣2=0,∴x=2是分式方程分增根,原方程无解.考点:解分式方程.四、解答题(共69分)19.如图,在平行四边形ABCD中,BD为对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,连接AF、CE.求证:AF=CE.【答案】证明见解析.【解析】试题分析:首先证明AE∥CF,△ABE≌△CDF,再根据全等三角形的性质可得AE=CF,然后再根据一组对边平行且相等的四边形是平行四边形可得四边形AECF是平行四边形,根据平行四边形的性质可得AF=CE.试题解析:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF.又∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,AE∥CF,在△ABE和△CDF中,∵∠ABE=∠CDF,∠AEB=∠CFD,AB=CD,∴△ABE≌△CDF(AAS),∴AE=CF,∵AE∥CF,∴四边形AECF是平行四边形,∴AF=CE.考点:平行四边形的性质.20.在一次社会调查活动中,小李收集到某“健步走运动”团队20名成员一天行走的步数,记录如下:对这20个数据按组距1000进行分组,并统计整理,绘制了如下不完整的统计图表,步数分布统计图.根据以上信息解答下列问题:(1)填空:m= ,n= ;(2)请补全条形统计图;(3)这20名“健步走运动”团队成员一天行走的步数的中位数落在组;(4)若该团队共有200人,请估计其中一天行走步数少于8500步的人数.【答案】(1)2,3;(2)作图见解析;(3)B;(4)160.试题解析:(1)根据表格得:5500≤x<6500的有:5640与6430,即m=2,8500≤x<9500的有:8648,8753,9450,即n=3;故答案为:2;3;(2)补全条形统计图,如图所示:(3)这20名“健步走运动”团队成员一天行走的步数的中位数落在B组;故答案为:B;(4)根据题意得:200×210420++=160(人),则估计一天行走的步数少于8500步的人数约为160人.考点:条形统计图;用样本估计总体;频数(率)分布表;中位数;数据的收集与整理.21.2017年遂宁市吹响了全国文明城市创建决胜“集结号”.为了加快创建步伐,某运输公司承担了某标段的土方运输任务,公司已派出大小两种型号的渣土运输车运输土方.已知一辆大型渣土运输车和一辆小型渣土运输车每次共运15吨;3辆大型渣土运输车和8辆小型渣土运输车每次共运70吨.(1)一辆大型渣土运输车和一辆小型渣土运输车每次各运土方多少吨?(2)该渣土运输公司决定派出大小两种型号渣土运输车共20辆参与运输土方,若每次运输土方总量不小于148吨,且小型渣土运输车至少派出7辆,问该渣土运输公司有几种派出方案?(3)在(2)的条件下,已知一辆大型渣土运输车运输话费500元/次,一辆小型渣土运输车运输花费300元/次,为了节约开支,该公司应选择哪种方案划算?【答案】(1)一辆大型渣土运输车每次运土方10吨,一辆小型渣土运输车每次运土方5吨;(2)4种;(3)选择“派出大型渣土运输车10辆、小型渣土运输车10辆”的方案划算.(3)设运输总花费为W ,根据“总费用=大渣土车总费用+小渣土车总费用”列出W 关于a 的函数解析式,根据一次函数性质结合a 的范围求解可得.试题解析:(1)设一辆大型渣土运输车每次运土方x 吨,一辆小型渣土运输车每次运土方y吨,根据题意,可得:153870x y x y +=⎧⎨+=⎩,解得:105x y =⎧⎨=⎩. 答:一辆大型渣土运输车每次运土方10吨,一辆小型渣土运输车每次运土方5吨;(3)设运输总花费为W ,则W =500a +300(20﹣a )=200a +6000,∵200>0,∴W 随a 的增大而增大,∵9.6≤a ≤13,且a 为整数,∴当a =10时,W 取得最小值,最小值W =200×10+6000=8000,故该公司选择方案一最省钱.考点:一次函数的应用;二元一次方程组的应用;一元一次不等式组的应用;方案型;最值问题.22.关于三角函数有如下公式:sin()sin cos cos sin αβαβαβ+=+,sin()sin cos cos sin αβαβαβ-=-cos()cos cos sin sin αβαβαβ+=-,cos()cos cos sin sin αβαβαβ-=+tan tan tan()(1tan tan 0)1tan tan αβαβαβαβ++=-≠- tan tan tan()(1tan tan 0)1tan tan αβαβαβαβ--=+≠+ 利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.如:°°°°°°°tan 45tan 60tan105tan(4560=21tan 45tan 60+=+==--)根据上面的知识,你可以选择适当的公式解决下面问题:如图,两座建筑物AB 和DC 的水平距离BC 为24米,从点A 测得点D 的俯角α=15°,测得点C的俯角β=75°,求建筑物CD的高度.【答案】.【解析】试题分析:根据题意得到tan75°=2,tan15°=2,如图,延长CD交BC的延长线AE于E,解直角三角形即可得到结论.考点:解直角三角形的应用﹣仰角俯角问题.23.如图,直线1(0)y mx n m=+≠与双曲线2(0) ky kx=≠相交于A(-1,2)和B(2,b)两点,与y轴交于点C,与x轴交于点D.(1)求m,n的值;(2)在y轴上是否存在一点P,是△BCP与△OCD相似,若存在求出点P的坐标,若不存在,请说明理由.【答案】(1)m=-1,n=1;(2)点P有2个,即(0,﹣1)和(0,﹣3).(2)在y轴上存在这样的点P,理由如下:①如图,过点B作BP∥x交y轴于点P,∴△PCB∽△OCD,∵B(2,﹣1),∴P(0,﹣1);②过点B作BP′⊥AB交y轴于点P,∴△BCP′~△OCD,由(1)知,y1=﹣x+1,∴C(0,1),D(1,0),∴OC=OD,∴△OCD是等腰直角三角形,∴△BCP′是等腰直角三角形,∴CP′=PP′=2,∴P′(0,﹣3),∴这样的点P有2个.即(0,﹣1)和(0,﹣3).考点:反比例函数综合题;分类讨论.24.如图,CD是⊙O的直径,点B在⊙O上,连接BC、BD,直线AB与CD的延长线相交于点A,2AB AD ACg,OE∥BD交直线AB于点E,OE与BC相交于点F.(1)求证:直线AE是⊙O的切线;(2)若⊙O的半径为3,cos A=45,求OF的长.【答案】(1)证明见解析;(2. 【解析】试题分析:(1)连接OB 根据已知条件得到△ABD ∽△ACB ,根据相似三角形的性质得到∠ABD =∠ACB ,由等腰三角形的性质得到∠OBC =∠ACB ,等量代换得到∠OBC =∠ABD ,于是得到结论;(2)设AB =4x ,OA =5x ,根据勾股定理得到AB =4,OA =5,求得AD =2,根据平行线分相等成比例定理得到BE =6,由勾股定理得到OE得到BF =5,根据三角函数的定义即可得到结论.(2)∵OB =3,cos A =45,设AB =4x ,OA =5x ,∵OA 2=AB 2+OB 2,∴(5x )2=(4x )2+32,∴x =1,∴AB =4,OA =5,∴AD =2,∵OE ∥BD ,∴AD AB OD BE =,∴BE =6,∴OE ==,∵∠CBD =90°,BD ∥OE ,∴∠EFB =90°,∵s △OBE =12OB •BE =12OE •BF ,∴OB •BE =OE •BF ,∴BF =,∵tan ∠E =OB BF BE EF =,∴EF =5,∴OF =OE ﹣EF =5.考点:相似三角形的判定与性质;切线的判定与性质;解直角三角形.25.如图,抛物线2y ax bx c =++(a ≠0),经过点A (-1,0),B (3,0),C (0,3)三点.(1)求抛物线的解析式及顶点M 的坐标;(2)连接AC 、BC ,N 为抛物线上的点且在第四象限,当NBC ABC S S =△△时,求N 点的坐标;(3)在(2)问的条件下,过点C 作直线l ∥x 轴,动点P (m ,3)在直线l 上,动点Q (m ,0)在x 轴上,连接PM 、PQ 、NQ ,当m 为何值时,PM +PQ +QN 的和最小,并求出PM +PQ +QN 和的最小值.【答案】(1)223y x x =-++,(1,4);(2)N (4,﹣5);(3)3.(3)将顶点M (1,4)向下平移3个单位得到点M ′(1,1),连接M ′N 交x 轴于点Q ,连接PQ ,此时M ′、Q 、N 三点共线时,PM +PQ +QN =M ′Q +PQ +QN 取最小值,由点M ′、N 坐标求得直线M ′N 的解析式,即可求得点Q 的坐标,据此知m 的值,过点N 作NE ∥x轴交MM ′延长线于点E ,可得M ′E =6、NE =3、M ′N即M ′Q +QN=,据此知m =32时,PM +PQ +QN的最小值为3. 试题解析:(1)∵抛物线2y ax bx c =++(a ≠0)经过点A (﹣1,0),B (3,0),C (0,3),∴09303a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:123a b c =-⎧⎪=⎨⎪=⎩,∴223y x x =-++,∵223y x x =-++=﹣(x ﹣1)2+4,则抛物线的顶点M 坐标为(1,4);(3)将顶点M (1,4)向下平移3个单位得到点M ′(1,1),连接M ′N 交x 轴于点Q ,连接PQ ,则MM ′=3,∵P (m ,3)、Q (m ,0),∴PQ ⊥x 轴,且PQ =OC =3,∴PQ ∥MM ′,且PQ =MM ′,∴四边形MM ′QP 是平行四边形,∴PM =QM ′,由作图知当M ′、Q 、N 三点共线时,PM +PQ +QN =M ′Q +PQ +QN 取最小值,设直线M ′N 的解析式为y =k 2x +b 2(k 2≠0),将点M ′(1,1)、N (4,﹣5)代入,得:2222145k b k b +=⎧⎨+=-⎩,解得:2223k b =-⎧⎨=⎩,∴直线M ′N 的解析式为y =﹣2x +3,当y =0时,x =32,∴Q (32,0),即m =32,此时过点N 作NE ∥x 轴交MM ′延长线于点E ,在Rt △M ′EN 中,∵M ′E =1﹣(﹣5)=6,NE =4﹣1=3,∴M ′N==,∴M ′Q +QN=,∴当m =32时,PM +PQ +QN的最小值为3.考点:二次函数综合题;动点型;最值问题;压轴题.。

初中数学 中考复习二次根式专题练习(含答案)

初中数学 中考复习二次根式专题练习(含答案)

二次根式复习一、知识归纳 (一)二次根式定义1注意:(12,(2)被开方数是非负数2、二次根式在实数范围内有意义的条件是 a ≥0 。

(二)二次根式的性质1、二次根式的双重非负性≥0,a ≥0a ≥0)表示非负数a 的算术平方根,≥0,2、)2=a (a ≥0)(0)0(0)(0)a a a a a a ⎧⎪===⎨⎪-⎩><(三)、最简二次根式和同类二次根式 1、最简二次根式的两个条件:(1)被开方数不含 ;(2)被开方数不含 的因数或因式。

满足:(1)根号内不含有分母,有分母的先通分,再将分母开出来 (2)根号内每个因式或因数的指数都小于根指数2,如果根号内含有因式或因数的指数大于根指数2,就利用,将每个因式或因数的指数都小于根指数2(3)分母内不含有根式,如果分母内含有根号,则利用分母有理化,将根号划去。

(1)判断一个二次根式是否是最简二次根式,要紧扣最简二次根式的特点: ①被开方数不含分母;②被开方数不能含开得尽方的因数或因式.即把每一个因数或因式都写成底数较小、乘方的形式后,因数或因式的指数小于2.③若被开方数是和(或差)的形式,则先把被开放方数写成积的形式,再作判定,若无法写成积(或一个数)的形式,则为最简二次根式.=简二次根式.=,且因式2和22()x y +的指数都是1,是最简二次根式.22a b +无法变成一个数(或因式)式.(2)化简二次根式一般例如为两步:一如果被开方数是分数或分式,利用分母有理化化简;二化去被开方数中的分母之后,再将被开方数分解成几个数相乘的形式或分解因式,然后利用积的算术平方根的性质把能开得尽方的因数或因式开出来.若被开方数中不含分母,则只需第二步.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式.同类二次根式与同类项类似. 对同类二次根式的理解应注意以下几点:(1)判断几个二次根式是否是同类二次根式时,首先将二次根式化为最简二次根式,其次看被开方数是否相同.(2)几个二次根式是否是同类二次根式,只与被开方数和根指数有关,与根号外的系数无关. 将同类二次根式的系数相加减,根指数与被开方数保持不变.(1)二次根式的系数就是这个二次根式根号外的因式(或因数),它包含前面的符号.(2)当二次根式的系数为带分数时,必须将其化为假分数.(3)不是同类二次根式,千万不要合并.(四)二次根式的运算0)=≥,≥0a b=≥,>00)a b≥,≥0a b0)=≥,>00)a b二次根式的加减实质上就是合并同类二次根式.4、二次根式加减的步骤:(1)先将二次根式化成。

四川省遂宁市中考真题分类汇编(数学):专题10 四边形

四川省遂宁市中考真题分类汇编(数学):专题10 四边形

四川省遂宁市中考真题分类汇编(数学):专题10 四边形姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2017八下·鹿城期中) 如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4.将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E,F,则线段B′F的长为()A .B .C .D .2. (2分) (2017八上·乐清期中) 我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么ab的值为()A . 49B . 25C . 12D . 103. (2分)如图,矩形ABOC的顶点A的坐标为,D是OB的中点,E是OC上的一点,当的周长最小时,点E的坐标是A .B .C .D .4. (2分)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A . 2B . 3C . 4D . 55. (2分)将某图形的横坐标都减去2,纵坐标不变,则该图形()A . 向右平移2个单位B . 向左平移2个单位C . 向上平移2个单位D . 向下平移2个单位6. (2分)(2016·泰安) 如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O 于点F,则∠BAF等于()A . 12.5°B . 15°C . 20°D . 22.5°7. (2分)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连结CE交AD于点F ,连结BD交CE于点G ,连结BE. 下列结论中:① CE=BD;② △ADC是等腰直角三角形;③ ∠ADB=∠AEB;④ CD·AE=EF·CG;一定正确的结论有()A . 1个B . 2个C . 3个D . 4个8. (2分)已知矩形ABCD中,AB=1,在BC上取一点E ,沿AE将△ABE向上折叠,使B点落在AD上的F 点,若四边形EFDC与矩形ABCD相似,则AD=().A .B .C .D . 2二、填空题 (共6题;共7分)9. (1分)(2019·广州模拟) 如图,已知,第一象限内的点A在反比例函数y=的图象上,第四象限内的点B在反比例函数y=的图象上.且OA⊥OB,∠OAB=60°,则k的值为________.10. (1分)(2018·道外模拟) 在正方形ABCD中,点E在直线AB上,EF⊥AC于点F,连接EC,EC=5,△EFC 的周长为12,则AE的长为________.11. (1分) (2020九上·大丰期末) 如图,⊙O的弦AB=8,半径ON交AB于点M,M是AB的中点,且OM=3,则MN的长为________.12. (1分)(2018·罗平模拟) 一次函数y= x+b(b<0)与y= x﹣1图象之间的距离等于3,则b的值为________.13. (1分)(2018·眉山) 如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.14. (2分) (2020九下·无锡月考) 如图,在⊙O中,B,P,A,C是圆上的点,,PD⊥CD,CD 交⊙O于A,若AC=AD,PD = ,sin∠PAD = ,则△PAB的面积为________.三、解答题 (共11题;共138分)15. (10分)如图所示,点E、F分别为正方形ABCD边AB、BC的中点,DF、CE交于点M,CE的延长线交DA 的延长线于G,试探索:(1) DF与CE的位置关系;(2) MA与DG的大小关系.16. (15分)在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB 交直线AC于点E.(1)当点D在边BC上时,如图①,求证:DE+DF=AC.(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.(3)若AC=6,DE=4,则DF= .17. (10分)如图,在等腰三角形ABC中,AD、BE分别是底边BC和腰AC上的高线,DA、BE的延长线交于点P.若∠BAC=110°,求∠P的度数。

2017年四川省各市中考数学试题汇编(1)(含参考答案与解析)

2017年四川省各市中考数学试题汇编(1)(含参考答案与解析)

2017年四川省各市中考数学试题汇编(1)(含参考答案)(word版,9份)目录1.四川省成都市中考数学试题及参考答案 (2)2.四川省攀枝花市中考数学试题及参考答案 (15)3.四川省自贡市中考数学试题及参考答案 (36)4.四川省泸州市中考数学试题及参考答案 (53)5.四川省宜宾市中考数学试题及参考答案 (70)6.四川省绵阳市中考数学试题及参考答案 (87)7.四川省眉山市中考数学试题及参考答案 (109)8.四川省南充市中考数学试题及参考答案 (125)9.四川省达州市中考数学试题及参考答案 (136)2017年四川省成都市中考数学试题及参考答案A 卷(共100分)一、选择题(本大题共10 个小题,每小题3 分,共30 分).1. 《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若气温为零上010C 记作010C +,则03C -表示气温为 ( ) A.零上03C B.零下03C C.零上07C D.零下07C2. 如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是( )A. B. C. D.3. 总投资647 亿元的西域高铁预计2017 年11月竣工,届时成都到西安只需3 小时,上午游武侯区,晚上看大雁塔将成为现实.用科学计数法表示647 亿元为( )A.864710⨯B.96.4710⨯C.106.4710⨯D. 116.4710⨯4. x 的取值范围是( )A.1x ≥B. 1x >C. 1x ≤D.1x < 5. 下列图标中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.6. 下列计算正确的是 ( )A.5510a a a +=B. 76a a a ÷=C. 326a a a =D.()236aa -=-7. 学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:则得分的众数和中位数分别为( )A.70 分,70 分B.80 分,80 分C. 70 分,80 分D.80 分,70 分 8. 如图,四边形ABCD 和A B C D '''' 是以点O 为位似中心的位似图形,若:2:3OA OA '= ,则四边形ABCD 与四边形A B C D ''''的面积比为( )A. 4:9B. 2:5C. 2:3 9. 已知3x =是分式方程2121kx k x x--=-的解,那么实数k 的值为( ) A.-1 B. 0 C. 1 D.210. 在平面直角坐标系xOy 中,二次函数2y ax bx c =++的图像如图所示,下列说法正确的是 ( )A. 20,40abc b ac <-> B.20,40abc b ac >-> C. 20,40abc b ac <-< D.20,40abc b ac >-< 二、填空题(本大题共4 个小题,每小题4 分,共16 分).11.)1=________________.12. 在ABC ∆中,::2:3:4A B C ∠∠∠=,则A ∠的度数为______________.13.如图,正比例函数11y k x =和一次函数22y k x b =+的图像相交于点()2,1A .当2x <时,1y2y .(填“>”或“<”)14.如图,在平行四边形ABCD 中,按以下步骤作图:①以A 为圆心,任意长为半径作弧,分别交,AB AD 于点,M N ;②分别以,M N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点P ;③作AP 射线,交边CD 于点Q ,若2,3DQ QC BC ==,则平行四边形ABCD 周长为 .三、解答题(本大题共6 个小题,共54 分)15.(12112sin 452-⎛⎫+ ⎪⎝⎭.(2)解不等式组:()2731423133x x x x ⎧-<-⎪⎨+≤-⎪⎩①② . 16.化简求值:2121211x x x x -⎛⎫÷- ⎪+++⎝⎭,其中1x = .17. 随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类, 并将检查结果绘制成下面两个统计图.(1)本次调查的学生共有__________人,估计该校1200 名学生中“不了解”的人数是__________人. (2)“非常了解”的4 人有12,A A 两名男生,12,B B 两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.18. 科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C 游玩,到达A 地后,导航显示车辆应沿北偏西60°方向行驶4 千米至B 地,再沿北偏东45°方向行驶一段距离到达古镇C ,小明发现古镇C 恰好在A 地的正北方向,求,B C 两地的距离.19. 如图,在平面直角坐标系xOy 中,已知正比例函数12y x =的图象与反比例函数ky x=的图象交于(),2,A a B -两点.(1)求反比例函数的表达式和点B 的坐标;(2)P 是第一象限内反比例函数图像上一点,过点P 作y 轴的平行线,交直线AB 于点C ,连接PO ,若POC ∆的面积为3,求点P 的坐标.20. 如图,在ABC ∆中,AB AC =,以AB 为直径作圆O ,分别交BC 于点D ,交CA 的延长线于点E ,过点D 作DH AC ⊥于点H ,连接DE 交线段OA 于点F . (1)求证:DH 是圆O 的切线;(2)若AE 为H 的中点,求EFFD的值; (3)若1EA EF ==,求圆O 的半径.B 卷(共50分)一、填空题(本大题共5 个小题,每小题4 分,共20 分) 21. 如图,数轴上点A 表示的实数是_____________.22.已知12,x x 是关于x 的一元二次方程250x x a -+=的两个实数根,且221210x x -=,则a =___________. 23.已知O 的两条直径,AC BD 互相垂直,分别以,,,AB BC CD DA 为直径向外作半圆得到如图所示的图形.现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为1P ,针尖落在O 内的概率为2P ,则12P P =______________.24.在平面直角坐标系xOy 中,对于不在坐标轴上的任意一点(),P x y ,我们把点11,P x y ⎛⎫'⎪⎝⎭称为点P 的 “倒影点”.直线1y x =-+上有两点,A B ,它们的倒影点,A B ''均在反比例函数ky x=的图像上.若AB =k =____________.25.如图1,把一张正方形纸片对折得到长方形ABCD ,再沿ADC ∠的平分线DE 折叠,如图2,点C 落在点C '处,最后按图3所示方式折叠,使点A 落在DE 的中点A '处,折痕是FG .若原正方形纸片的边长为6cm ,则FG =_____________cm .二、解答题(共3个小题 ,共30分)26. 随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的,,,,A B C D E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x ,(单位:千米),乘坐地铁的时间1y 单位:分钟)是关于x 的一次函数, 其关系如下表:(1)求1y 关于x 的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x 的影响,其关系可以用22111782y x x =-+来描述,请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家里所需的时间最短?并求出最短时间. 27.问题背景:如图1,等腰ABC ∆中,0,120AB AC BAC =∠=,作AD BC ⊥于点D ,则D 为BC的中点,01602BAD BAC ∠=∠=,于是2BC BD AB AB== 迁移应用:如图2,ABC ∆和ADE ∆都是等腰三角形,0120BAC ADE ∠=∠=,,,D E C 三点在同一条直线上,连接BD .① 求证:ADB AEC ∆≅∆;② 请直接写出线段,,AD BD CD 之间的等量关系式;拓展延伸:如图3,在菱形ABCD 中,0120BAC ∠=,在ABC ∠内作射线BM ,作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接,CE CF . ① 证明:CEF ∆是等边三角形; ② 若5,2AE CE ==,求BF 的长.28.如图1,在平面直角坐标系xOy 中,抛物线2:C y ax bx c =++与x 轴相交于,A B 两点,顶点为()0,4D ,AB =(),0F m 是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180°,得到新的抛物线C '.(1)求抛物线C 的函数表达式;(2)若抛物线C '与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围;(3)如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线C '上的对应点为P ',设M 是C 上的动点,N 是C '上的动点,试探究四边形PMP N '能否成为正方形,若能,求出m 的值;若不能,请说明理由.试卷答案A 卷一、选择题1-5:BCCAD 6-10: BCADB. 二、填空题11. 1; 12. 40°; 13. <; 14. 15. 三、解答题15.(1)解:原式1241432-⨯+=-= (2)解:①可化简为:2733x x -<-,4x -<,∴4x >-; ②可化简为:213x ≤-,∴1x ≤- ∴ 不等式的解集为41x -<≤-. 16.解:原式=()()2211211111111x x x x x x x x x -+--+÷==+-+++,当1x =时,原式=. 17.解:(1)50,360;(2)树状图:由树状图可知共有12种结果,抽到1男1女分别为1112212212112122A B A B A B A B B A B A B A B A 、、、、、、、 共8种.∴82123P ==. 18.解:过点B 作BD AC ⊥,由题060,4BAD AB ∠==,∴0cos602AD AB ==,∵0145∠=, ∴045CBD ∠=,∴BD CD =,∵0sin 60BD AB ==∴CD =∴0cos 45BC BD ==19.解:(1)把(),2A a -代入12y x =,4a ⇒=-, ∴()4,2A --, 把()4,2A --代入ky x=,8k ⇒=, ∴8y x=, 联立812y x y x ⎧=⎪⎪⎨⎪=⎪⎩4x ⇒=-或4x =,∴()4,2B ;(2)如图,过点P 作//PE y 轴,设8,P m m ⎛⎫⎪⎝⎭,AB y kx b =+,代入A B 、两点, 12AB y x ⇒=, ∴1,2C m m ⎛⎫ ⎪⎝⎭, 118322POCS m m m ∆=-=,1862m m m -=,2862m m -=⇒=,218622m m -=⇒=,∴P ⎛ ⎝⎭或()2,4P . 20.(1)证明: 连接OD ,∵OB OD =,∴OBD ∆是等腰三角形, OBD ODB ∠=∠ ①,又在ABC ∆中, ∵AB AC =, ∴ABC ACB ∠=∠ ②,则由①②得,ODB OBD ACB ∠=∠=∠, ∴//OD AC , ∵DH AC ⊥, ∴DH OD ⊥,∴DH 是O 的切线;(2)在O 中, ∵E B ∠=∠, ∵由O 中可知,E B C ∠=∠=∠,EDC ∆是等腰三角形,又∵DH AC ⊥且点A 是EH 中点,∴设,4AE x EC x ==,则3AC x =, 连接AD ,则在O 中,090ADB ∠=,即AD BD ⊥,又∵ABC ∆是等腰三角形,∴D 是BC 中点, 则在ABC ∆中,OD 是中位线, ∴13//,22OD AC OD x =, ∵//OD AC , ∴E ODF ∠=∠,在AEF ∆和ODF ∆中,E ODFOFD AFE ∠=∠⎧⎨∠=∠⎩, ∴AEFODF ∆∆,∴2,332EF AE AE x FD OD OD x ===, ∴23EF FD =. (3)设O 半径为r ,即OD OB r ==, ∵EF EA =, ∴EFA EAF ∠=∠, 又∵//OD EC , ∴FOD EAF ∠=∠,则FOD EAF EFA OFD ∠=∠=∠=∠, ∴OF OD r ==, ∴1DE DF EF r =+=+, ∴1BD CD DE r ===+,在O 中, ∵BDE EAB ∠=∠,∴BFD EFA EAB BDE ∠=∠=∠=∠, ∵BF BD =,BDF ∆是等腰三角形, ∴1BF BD r ==+,∴()2211AF AB BF OB BF r r r =-=-=-+=-, 在BFD ∆与EFA ∆中BFD EFAB E ∠=∠⎧⎨∠=∠⎩,∵BFD EFA ∆∆,∴11,1EF BF r FA DF r r+==-,解得12r r ==(舍) ∴综上,O.B 卷一、填空题21.; 22.752; 23.2π; 24.43-;二、解答题26. 解:(1)设y 1=kx+b ,将(8,18),(9,20),代入得:818920k b k b +=⎧⎨+=⎩,解得:22k b =⎧⎨=⎩, 故y 1关于x 的函数表达式为:y 1=2x+2;(2)设李华从文化宫回到家所需的时间为y ,则y=y 1+y 2=2x+2+12x 2﹣11x+78=12x 2﹣9x+80, ∴当x=9时,y 有最小值,y min =2148092142⨯⨯-⨯=39.5, 答:李华应选择在B 站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟. 27. 迁移应用:①证明:如图2,∵∠BAC=∠ADE=120°, ∴∠DAB=∠CAE , 在△DAE 和△EAC 中,DA EA DAB EAC AB AC =⎧⎪∠=∠⎨⎪=⎩, ∴△DAB ≌△EAC ,②解:结论:理由:如图2﹣1中,作AH ⊥CD 于H.∵△DAB ≌△EAC , ∴BD=CE ,在Rt △ADH 中,, ∵AD=AE ,AH ⊥DE , ∴DH=HE ,∵AD+BD.拓展延伸:①证明:如图3中,作BH ⊥AE 于H ,连接BE.∵四边形ABCD 是菱形,∠ABC=120°, ∴△ABD ,△BDC 是等边三角形, ∴BA=BD=BC ,∵E 、C 关于BM 对称,∴BC=BE=BD=BA ,FE=FC , ∴A 、D 、E 、C 四点共圆, ∴∠ADC=∠AEC=120°, ∴∠FEC=60°,∴△EFC 是等边三角形, ②解:∵AE=5,EC=EF=2, ∴AH=HE=2.5,FH=4.5,在Rt △BHF 中,∵∠BHF=30°, ∴HFBF=cos30°,∴BF ==28.解:(1)由题意抛物线的顶点C (0,4),A(0),设抛物线的解析式为y=ax 2+4,把A(0)代入可得a=12-, ∴抛物线C 的函数表达式为y=12-x 2+4.(2)由题意抛物线C′的顶点坐标为(2m ,﹣4),设抛物线C′的解析式为y=12(x ﹣m )2﹣4, 由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到x 2﹣2mx+2m 2﹣8=0, 由题意,抛物线C′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()()2222428020280m m m m ⎧--⎪⎪⎨⎪-⎪⎩>>>,解得2<m<∴满足条件的m 的取值范围为2<m<(3)结论:四边形PMP′N 能成为正方形.理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H.由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP′N 是正方形, ∴PF=FM ,∠PFM=90°,易证△PFE ≌△FMH ,可得PE=FH=2,EF=HM=2﹣m , ∴M (m+2,m ﹣2), ∵点M 在y=﹣12x 2+4上, ∴m ﹣2=﹣12(m+2)2+4,解得﹣3﹣3(舍弃), ∴﹣3时,四边形PMP′N 是正方形. 情形2,如图,四边形PMP′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M(m﹣2,2﹣m)代入y=﹣12x2+4中,2﹣m=﹣12(m﹣2)2+4,解得m=6或0(舍弃),∴m=6时,四边形PMP′N是正方形.2017年四川省攀枝花市中考数学试题及参考答案一、选择题(本大题共l0小题,每小题3分,共30分)1.长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为()A.6.7×106B.6.7×10﹣6C.6.7×105D.0.67×1072.下列计算正确的是()A.33=9 B.(a﹣b)2=a2﹣b2C.(a3)4=a12D.a2•a3=a63.如图,把一块含45°角的直角三角板的直角顶点放在直尺的一边上,如果∠1=33°,那么∠2为()A.33°B.57°C.67°D.60°4.某篮球队10名队员的年龄如下表所示:则这10名队员年龄的众数和中位数分别是()年龄(岁)18 19 20 21人数 2 4 3 1 A.19,19 B.19,19.5 C.20,19 D.20,19.55.如图是每个面上都有一个汉字的正方体的一种表面展开图,那么在这个正方体的表面,与“我”相对的面上的汉字是()A.花B.是C.攀D.家6.关于x的一元二次方程(m﹣1)x2﹣2x﹣1=0有两个实数根,则实数m的取值范围是()A.m≥0B.m>0 C.m≥0且m≠1D.m>0且m≠17.下列说法正确的是()A.真命题的逆命题都是真命题B.在同圆或等圆中,同弦或等弦所对的圆周角相等C.等腰三角形的高线、中线、角平分线互相重合D.对角线相等且互相平分的四边形是矩形8.如图,△ABC内接于⊙O,∠A=60°,BC=6√3,则BĈ的长为()A .2πB .4πC .8πD .12π9.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则下列命题中正确的是( )A .a >b >cB .一次函数y=ax+c 的图象不经第四象限C .m (am+b )+b <a ( m 是任意实数)D .3b+2c >010.如图,正方形ABCD 中.点E ,F 分别在BC ,CD 上,△AEF 是等边三角形.连接AC 交EF 于点G .过点G 作GH ⊥CE 于点H ,若S △EGH =3,则S △ADF =( )A .6B .4C .3D .2二、填空题(本大题共6小题,每小题4分,共24分)11.在函数y =中,自变量x 的取值范围是 .12.一个不透明的袋中装有除颜色外均相同的5个红球和n 个黄球,从中随机摸出一个,摸到红球的概率是58,则n .13.计算:()113|12π-⎛⎫-+= ⎪⎝⎭.14.若关于x 的分式方程7311mxx x +=--无解,则实数m= . 15.如图,D 是等边△ABC 边AB 上的点,AD=2,DB=4.现将△ABC 折叠,使得点C 与点D 重合,折痕为EF ,且点E 、F 分别在边AC 和BC 上,则CFCE= .16.如图1,E为矩形ABCD的边AD上一点,点P从点B出发沿折线BE﹣ED﹣DC运动到点C 停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、点Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③当14<t<22时,y=110﹣5t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤△BPQ与△ABE相似时,t=14.5.其中正确结论的序号是.三、解答题(本大题共8小题,共66分)17.(本题满分6分)先化简,再求值:222111xx x x-⎛⎫-÷⎪++⎝⎭,其中x=2.18.(本题满分6分)中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)参加比赛的学生共有名;(2)在扇形统计图中,m的值为,表示“D等级”的扇形的圆心角为度;(3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.19.(本题满分6分)如图,在平行四边形ABCD中,AE⊥BC,CF⊥AD,垂足分别为E,F,AE,CF分别与BD交于点G和H,且AB=(1)若tan∠ABE=2,求CF的长;(2)求证:BG=DH.20.(本题满分8分)攀枝花芒果由于品质高、口感好而闻名全国,通过优质快捷的网络销售渠道,小明的妈妈先购买了2箱A品种芒果和3箱B品种芒果,共花费450元;后又购买了1箱A品种芒果和2箱B品种芒果,共花费275元(每次两种芒果的售价都不变).(1)问A品种芒果和B品种芒果的售价分别是每箱多少元?(2)现要购买两种芒果共18箱,要求B品种芒果的数量不少于A品种芒果数量的2倍,但不超过A品种芒果数量的4倍,请你设计购买方案,并写出所需费用最低的购买方案.21.(本题满分8分)如图,在平面直角坐标系中,坐标原点O是菱形ABCD的对称中心.边AB与x轴平行,点B(1,﹣2),反比例函数kyx(k≠0)的图象经过A,C两点.(1)求点C的坐标及反比例函数的解析式.(2)直线BC与反比例函数图象的另一交点为E,求以O,C,E为顶点的三角形的面积.22.(本题满分8分)如图,△ABC中,以BC为直径的⊙O交AB于点D,AE平分∠BAC交BC 于点E,交CD于点F.且CE=CF.(1)求证:直线CA是⊙O的切线;(2)若BD=43DC,求DFCF的值.23.(本题满分12分)如图1,在平面直角坐标系中,直线MN分别与x轴、y轴交于点M(6,0),N(0,2√3),等边△ABC的顶点B与原点O重合,BC边落在x轴正半轴上,点A恰好落在线段MN上,将等边△ABC从图l的位置沿x轴正方向以每秒l个单位长度的速度平移,边AB,AC分别与线段MN交于点E,F(如图2所示),设△ABC平移的时间为t(s).(1)等边△ABC的边长为;(2)在运动过程中,当t=时,MN垂直平分AB;(3)若在△ABC开始平移的同时.点P从△ABC的顶点B出发.以每秒2个单位长度的速度沿折线BA﹣AC运动.当点P运动到C时即停止运动.△ABC也随之停止平移.①当点P在线段BA上运动时,若△PEF与△MNO相似.求t的值;②当点P在线段AC上运动时,设S△PEF=S,求S与t的函数关系式,并求出S的最大值及此时点P 的坐标.24.(本题满分12分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0).与y 轴交于点C(0,3).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;②若△BCD是锐角三角形,求点D的纵坐标的取值范围.参考答案与解析一、选择题1.长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为()A.6.7×106B.6.7×10﹣6C.6.7×105D.0.67×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6 700 000=6.7×106,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.下列计算正确的是()A.33=9 B.(a﹣b)2=a2﹣b2C.(a3)4=a12D.a2•a3=a6【考点】幂的乘方与积的乘方;同底数幂的乘法;完全平方公式.【分析】直接利用完全平方公式以及幂的乘方运算法则和同底数幂的乘法运算法则计算得出答案.【解答】解:A、33=27,故此选项错误;B、(a﹣b)2=a2﹣2ab+b2,故此选项错误;C、(a3)4=a12,正确;D、a2•a3=a5,故此选项错误;故选:C.【点评】此题主要考查了完全平方公式以及幂的乘方运算和同底数幂的乘法运算等知识,正确掌握运算法则是解题关键.3.如图,把一块含45°角的直角三角板的直角顶点放在直尺的一边上,如果∠1=33°,那么∠2为()A.33°B.57°C.67°D.60°【考点】平行线的性质.【分析】由题意可求得∠3的度数,然后由两直线平行,同位角相等,求得∠2的度数.【解答】解:如图,∵把一块直角三角板的直角顶点放在直尺的一边上,∴∠3=90°﹣∠1=90°﹣33°=57°,∵a∥b,∴∠2=∠3=57°.故选:B.【点评】此题考查了平行线的性质.注意运用:两直线平行,同位角相等.4.某篮球队10名队员的年龄如下表所示:则这10名队员年龄的众数和中位数分别是()年龄(岁)18 19 20 21人数 2 4 3 1 A.19,19 B.19,19.5 C.20,19 D.20,19.5【考点】众数;中位数.【分析】由表格中的数据可以直接看出众数,然后将这十个数据按照从小到大的顺序排列即可得到中位数,本题得以解决.【解答】解:由表格可知,一共有2+4+3+1=10个数据,其中19出现的次数最多,故这组数据的众数是19,按从小到大的数据排列是:18、19、19、19、19、19、20、20、20、21,故中位数是19.故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义.5.如图是每个面上都有一个汉字的正方体的一种表面展开图,那么在这个正方体的表面,与“我”相对的面上的汉字是()。

2017-2019年四川省遂宁市数学中考真题试卷分析 题型分析

2017-2019年四川省遂宁市数学中考真题试卷分析 题型分析
7
0.7
初二
19
平行四边形的性质与全等三角形
9
0.6
初二
20
样本估计总体、统计图
9
0.6
初三
21
二元一次方程组、一元一次不等式组的应用
9
0.4
初一、初二
22
解直角三角形
10
0.3
初三
23
反比例函数与一次函数综合
10
0.5
初二
24
圆综合题
10
0.3
初三
25
二次函数综合
12
0.2
初三
按知识板块分析
知识板块
填空题:15
解答题:19
17
初二、初三

选择题:9
填空题:
解答题:24
14
初三
空间与图形
选择题:5
填空题:
解答题:
4
初一
统计与概率
选择题:
填空题:12
解答题:20
13
初二、初三
四川省遂宁市2018年中考试卷分析
按题号分析
题号
知识点
分值
难易程度
分布年级
1
有理数的乘法
4
0.9
初一
2
科学计数法
4
0.9
初一
涉及题号及题型
总分值
分布年级
数与式
选择题:1、2、3
填空题:11
解答题:16、17
26
初一、初二
方程与不等式
选择题:8
填空题:13
解答题:18、21
24
初一、初二、初三
变量与函数
选择题:4、6、10

2017年四川省各市中考数学试题汇总(12套)

2017年四川省各市中考数学试题汇总(12套)
1.﹣2的倒数是( )
A. B. C.2D.﹣2
2.随着经济发展,人民的生活水平不断提高,旅游业快速增长,2016年国民出境旅游超过120000000人次,将120000000用科学记数法表示为( )
A.1.2×109B.12×107C.0.12×109D.1.2×108
3.下列图形中,既是轴对称图形又是中心对称图形的是( )
2017年四川省南充市中考数学试题(含答案)
2017年四川省宜宾市中考数学试题(含答案)
2017年四川省成都市中考数学试题(含答案)
2017届四川省自贡市毕业生学业考试(中考)数学试卷(含答案)
2017年四川省达州市中考数学试题(含答案)
2017年四川省乐山市中考数学试卷
一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求.
四、本大题共3小题,每小题10分,共30分.
20.化简: .
21.为了了解我市中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图所示.请根据图表信息解答下列问题:
(1)在表中:m=,n=;
(2)补全频数分布直方图;
(3)小明的成绩是所有被抽查学生成绩的中位数,据此推断他的成绩在组;
16.对于函数 ,我们定义 ( 为常数).
例如 ,则 .
已知: .
(1)若方程 有两个相等实数根,则m的值为;
(2)若方程 有两个正数根,则m的取值范围为.
三、本大题共3小题,每小题9分,共27分.
17.计算: .
18.求不等式组 的所有整数解.
19.如图,延长▱ABCD的边AD到F,使DF=DC,延长CB到点E,使BE=BA,分别连结点A、E和C、F.求证:AE=CF.

2024年四川省遂宁市中考数学试卷(附答案)

2024年四川省遂宁市中考数学试卷(附答案)

2024年四川省遂宁市中考数学试卷(附答案)一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)下列各数中,无理数是()A.﹣2B.C.D.0【分析】分别根据无理数的定义即可判定选择项.【解答】解:﹣2,,0是有理数,是无理数,故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(4分)古代中国诸多技艺均领先世界.榫卯结构就是其中之一,榫卯是在两个木构件上所采用的一种凹凸结合的连接方式.凸出部分叫榫(或榫头),凹进部分叫卯(或榫眼、榫槽),榫和卯咬合,起到连接作用.如图是某个部件“榫”的实物图,它的主视图是()A.B.C.D.【分析】从正面看到的平面图形是主视图,根据主视图的含义可得答案.【解答】解:如图所示的几何体的主视图如下:.故选:A.【点评】此题主要考查了简单组合体的三视图;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.3.(4分)中国某汽车公司坚持“技术为王,创新为本”的发展理念,凭借研发实力和创新的发展模式在电池、电子、乘用车、商用车和轨道交通等多个领域发挥着举足轻重的作用.2024年第一季度,该公司以62万辆的销售成绩稳居新能源汽车销量榜榜首,市场占有率高达19.4%.将销售数据用科学记数法表示为()A.0.62×106B.6.2×106C.6.2×105D.62×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:62万=620000=6.2×105.故选:C.【点评】本题主要考查了科学记数法—表示较大的数,熟练掌握科学记数法的表示方法是解题的关键.4.(4分)下列运算结果正确的是()A.3a﹣2a=1B.a2•a3=a6C.(﹣a)4=﹣a4D.(a+3)(a﹣3)=a2﹣9【分析】根据公式化简代数式即可.【解答】解:3a﹣2a=a,故A选项错误;a2•a3=a5,故B选项错误;(﹣a)4=a4,故C选项错误;(a+3)(a﹣3)=a2﹣9,故D选项正确;故选:D.【点评】本题考查了代数式的化简,关键是要掌握平方差公式,同底数幂的乘法.5.(4分)不等式组的解集在数轴上表示为()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由3x﹣2<2x+1,得x<3,所以不等式组的解集在数轴上表示为:.故选:B.【点评】本题考查不等式组的解法和在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.6.(4分)佩佩在“黄娥古镇”研学时学习扎染技术,得到一个内角和为1080°的正多边形图案,这个正多边形的每个外角为()A.36°B.40°C.45°D.60°【分析】设这个正多边形的边数为n,利用多边形的内角和公式求得n的值,再利用多边形的外角和列式计算即可.【解答】解:设这个正多边形的边数为n,由题意得:(n﹣2)•180°=1080°,解得:n=8,则360°÷8=45°,即这个正多边形的每个外角为45°,故选:C.【点评】本题考查多边形的内角和及外角和,结合已知条件求得正多边形的边数是解题的关键.7.(4分)分式方程=1﹣的解为正数,则m的取值范围()A.m>﹣3B.m>﹣3且m≠﹣2C.m<3D.m<3且m≠﹣2【分析】分式方程去分母化为整式方程,表示出方程的解,由分式方程的解为正数求出m的范围即可.【解答】解:去分母得:2=x﹣1﹣m,解得:x=m+3,由方程的解为正数,得到m+3>0,且m+3≠1,则m的范围为m>﹣3且m≠﹣2.故选:B.【点评】本题考查了根据分式方程的解,求参数的取值范围,找出x的取值范围是本题的关键.8.(4分)工人师傅在检查排污管道时发现淤泥堆积.如图所示,排污管道的横截面是直径为2米的圆,为预估淤泥量,测得淤泥横截面(图中阴影部分)宽AB 为1米,请计算出淤泥横截面的面积()A .B .C .D .【分析】证明△OAB 是等边三角形,根据S 阴=S 扇形OAB ﹣S △OAB ,求解即可.【解答】解:如图,由题意OA =OB =1,AB =1,∴OA =OB =AB ,∴△OAB 是等边三角形,∴S 阴=S 扇形OAB ﹣S △OAB =﹣×12=﹣.故选:A .【点评】本题考查扇形的面积,等边三角形的判定等知识,解题的关键是理解题意,灵活运用所学知识解决问题.9.(4分)如图1,△ABC 与△A 1B 1C 1满足∠A =∠A 1,AC =A 1C 1,BC =B 1C 1,∠C ≠∠C 1,我们称这样的两个三角形为“伪全等三角形”如图2,在△ABC 中,AB =AC ,点D ,E 在线段BC 上,且BE =CD ,则图中共有“伪全等三角形”()A .1对B .2对C .3对D .4对【分析】根据所给“伪全等三角形”的定义,找出图2中的“伪全等三角形”即可.【解答】解:∵AB=AC,∴∠B=∠C.在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴AD=AE.∵AB=AB,∠B=∠B,AD=AE,∠BAD≠∠BAE,∴△ABD和△ABE是一对“伪全等三角形”.同理可得,△ABD和△ACD是一对“伪全等三角形”.△ACD和△ACE是一对“伪全等三角形”.△ABE和△ACE是一对“伪全等三角形”.所以图中的“伪全等三角形”共有4对.故选:D.【点评】本题考查全等三角形的判定、全等三角形的性质及等腰三角形的性质,熟知三角形全等的判定与性质及理解“伪全等三角形”的定义是解题的关键.10.(4分)如图,已知抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)的对称轴为直线x=﹣1,且该抛物线与x轴交于点A(1,0),与y轴的交点B在(0,﹣2),(0,﹣3)之间(不含端点),则下列结论正确的有多少个()①abc>0;②9a﹣3b+c>0;③<a<1;④若方程ax2+bx+c=x+1两根为m,n(m<n),则﹣3<m<1<n.A.1B.2C.3D.4【分析】根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标、根与系数的关系等知识,逐个判断即可.【解答】解:∵抛物线开口向上,∴a>0,∵对称轴为直线x=﹣1<0,a、b同号,∴b>0,∵与y轴的交点B在(0,﹣2)和(0,﹣3)之间,∴﹣3<c<﹣2<0,∴abc<0,故①不正确;∵对称轴为直线x=﹣1,且该抛物线与x轴交于点A(1,0),∴与x轴交于另一点(﹣3,0),∵x=﹣3,y=9a﹣3b+c=0,故②不正确;由题意可得,方程ax2+bx+c=0的两个根为x1=1,x2=﹣3,又∵x1•x2=,即c=﹣3a,∵﹣3<c<﹣2,∴﹣3<﹣3a<﹣2,因此<a<1,故③正确;若方程ax2+bx+c=x+1两根为m,n(m<n),则直线y=x+1与抛物线的交点的横坐标为m,n,∵直线y=x+1过一、二、三象限,且过点(﹣1,0),∴直线y=x+1与抛物线的交点在第一、第三象限,由图象可知﹣3<m<1<n.故④正确;综上所述,正确的结论有③④,故选:B.【点评】本题考查二次函数的图象与系数的关系,根与系数的关系,抛物线与x轴的交点,掌握二次函数与一元二次方程的关系,是正确判断的前提.二、填空题(本大题共5个小题,每小题4分,共20分)11.(4分)分解因式:ab+4a=a(b+4).【分析】提取a进行化简.【解答】解:ab+4a=a(b+4),故答案为:a(b+4).【点评】本题考查了因式分解,重要的是找到公因式.12.(4分)反比例函数y=的图象在第一、三象限,则点(k,﹣3)在第四象限.【分析】根据所给反比例函数图象在第一、三象限,得出k的取值范围,进而可解决问题.【解答】解:因为反比例函数y=的图象在第一、三象限,所以k﹣1>0,解得k>1,所以点(k,﹣3)在第四象限.故答案为:四.【点评】本题考查反比例函数的性质及反比例函数的图象,熟知反比例函数的图象和性质及每个象限内点的坐标特征是解题的关键.13.(4分)体育老师要在甲和乙两人中选择1人参加篮球投篮大赛,下表是两人5次训练成绩,从稳定的角度考虑,老师应该选甲参加比赛.甲88798乙69799【分析】根据平均数的计算公式算出甲和乙的平均数,再根据方差公式算出甲和乙的方差,然后根据方差的意义即可得出答案.【解答】解:甲的平均数是:=8,甲的方差是:S2=×[3×(8﹣8)2+(7﹣8)2+(9﹣8)2]=0.4,乙的平均数是:=8,乙的方差是:S2=×[3×(9﹣8)2+(7﹣8)2+(6﹣8)2]=1.6,∵S甲2<S乙2,∴老师应该选甲.故答案为:甲.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.(4分)在等边△ABC三边上分别取点D、E、F,使得AD=BE=CF,连结三点得到△DEF,易得△ADF≌△BED≌△CFE,设S△ABC=1,则S△DEF=1﹣3S△ADF.如图①当=时,S△DEF=1﹣3×=;如图②当=时,S△DEF=1﹣3×=;如图③当=时,S△DEF=1﹣3×=;…直接写出,当=时,S△DEF=.【分析】探究规律,利用规律解决问题.【解答】解:如图①当=时,S△DEF=1﹣3×=1﹣3×=;=1﹣3×=1﹣3×=;如图②当=时,S△DEF=1﹣3×=1﹣3×=;如图③当=时,S△DEF…=1﹣3×;当=时,S△DEF=1﹣3×=.故当=时,S△DEF【点评】本题考查全等三角形的判定和性质,等边三角形的性质,规律型﹣图形变化等知识,解题的关键是学会探究规律,利用规律解决问题.15.(4分)如图,在正方形纸片ABCD中,E是AB边的中点,将正方形纸片沿EC折叠,点B落在点P 处,延长CP交AD于点Q,连结AP并延长交CD于点F.给出以下结论:①△AEP为等腰三角形;②F为CD的中点;②AP:PF=2:3;④cos∠DCQ=.其中正确结论是①②③(填序号).【分析】利用翻折的性质,证明EA=EP,即可判断①;利用AAS证明△BEC≌△DFA,即可判断②;过点P作PM⊥BC于点M,过点E作EN⊥AF于点N,设AE=BE=EP=DF=CF=a,然后求出AP,PF,再计算即可判断③;证明出AQ=PQ,再在Rt△CDQ中,利用勾股定理求出AQ,DQ,根据三角函数定义即可判断④.【解答】解:∵E是AB边的中点,∴EA=EB,∵将正方形纸片沿EC折叠,点B落在点P处,∴EB=EP,∴EA=EP,即△AEP为等腰三角形,故①正确;∵EA=EP,∴∠EAP=∠EPA,∵将正方形纸片沿EC折叠,点B落在点P处,∴∠BEC=∠PEC,∵∠BEP=∠EAP+∠EPA,∴∠BEC=∠EAP,∵四边形ABCD是正方形,∴∠CBE=∠ADF,AB∥CD,BC=AD,∴∠EAP=∠DFA,∴∠BEC=∠DFA,∴△BEC≌△DFA(AAS),∴DF=BE,∴DF=AB=CD,即F为CD的中点,故②正确;过点P作PM⊥BC于点M,过点E作EN⊥AF于点N,∵∠BEC=∠EAP,∴EC∥AF,∴EN=PM,设AE=BE=EP=DF=CF=a,则BC=AD=PC=2a,∴EC=AF==a,=EC•PM=PE•PC,∵S△PEC∴PM===,∴EN=,∴PN===,∴AP=2PN=,PF=AF﹣AP==,∴AP:PF=:=2:3,故③正确;∵∠EAP=∠EPA,∠EAD=∠EPQ=90°,∴∠QAP=∠QPA,∴AQ=PQ,∵正方形的边长为2a,∴AD=CD=CP=2a,QD=2a﹣AQ,CQ=2a+PQ=2a+AQ,在Rt△CDQ中,由勾股定理,得CD2+QD2=CQ2,即(2a)2+(2a﹣AQ)2=(2a+AQ)2,解得AQ=a,∴DQ=2a﹣a=a,∴CQ=2a+a=a,∴cos∠DCQ===.故④不正确.故答案为:①②③.【点评】本题考查翻折变换,轴对称的性质,正方形的性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质,三角函数,能够熟练运用相关图形的判定和性质是解题的关键.三、解答题(本大题共10个小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤)16.(7分)计算:sin45°+|﹣1|++()﹣1.【分析】根据实数的运算、负整数指数幂法则、特殊角的三角函数值进行解题即可.【解答】解:原式=+1﹣+2+2021=2024.【点评】本题考查实数的运算、负整数指数幂、特殊角的三角函数值,熟练掌握运算法则是解题的关键.17.(7分)先化简:(1﹣)÷,再从1,2,3中选择一个合适的数作为x的值代入求值.【分析】先化简分式,再将x=3代入求出结果.【解答】解:(1﹣)÷===x﹣1,∵x﹣1≠0,x﹣2≠0,∴x≠1,x≠2,当x=3时,原式=2.【点评】本题考查了分式的化简,要注意分母不为0.18.(8分)康康在学习了矩形定义及判定定理1后,继续探究其它判定定理.(1)实践与操作①任意作两条相交的直线,交点记为O;②以点O为圆心,适当长为半径画弧,在两条直线上分别截取相等的四条线段OA、OB、OC、OD;③顺次连结所得的四点得到四边形ABCD.于是可以直接判定四边形ABCD是平行四边形,则该则定定理是:对角线互相平分的四边形是平行四边形.(2)猜想与证明通过和同伴交流,他们一致认为四边形ABCD是矩形,于是猜想得到了矩形的另外一种判定方法:对角线相等的平行四边形是矩形.并写出了以下已知、求证,请你完成证明过程.已知:如图,四边形ABCD是平行四边形,AC=BD.求证:四边形ABCD是矩形.【分析】(1)由题意可知,OA=OC,OB=OD,故根据“对角线互相平分的四边形是平行四边形”可以判定四边形ABCD是平行四边形;(2)由平行四边形的性质,根据SSS证明△BAD≌△ABC,从而证明∠BAD=∠ABC,根据平行线的性质可以证明∠BAD=∠ABC=90°,进而根据“有一个角是直角的平行四边形是矩形”证明四边形ABCD是矩形.【解答】(1)解:∵OA=OC,OB=OD,∴四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形).故答案为:对角线互相平分的四边形是平行四边形.(2)证明:∵四边形ABCD是平行四边形,∴AD=BC,∴在△BAD和△ABC中,,∴△BAD≌△ABC(SSS),∴∠BAD=∠ABC,∵AD∥BC,∴∠BAD+∠ABC=180°,∴∠BAD=∠ABC=90°,∴四边形ABCD是矩形(有一个角是直角的平行四边形是矩形).【点评】本题考查平行四边形及矩形的判定,熟练掌握并灵活运用其判定定理是解题的关键.19.(8分)小明的书桌上有一个L型台灯,灯柱AB高40cm,他发现当灯带BC与水平线BM夹角为9°时(图1),灯带的直射宽DE(BD⊥BC,CE⊥BC)为35cm,但此时灯的直射宽度不够,当他把灯带调整到与水平线夹角为30°时(图2),直射宽度刚好合适,求此时台灯最高点C到桌面的距离.(结果保留1位小数)(sin9°≈0.16,cos9°≈0.99,tan9°≈0.16)【分析】如图2中,过点C作CK⊥AE′于点K,交BM于点J.解直角三角形求出CJ,可得结论.【解答】解:如图2中,过点C作CK⊥AE′于点K,交BM于点J.如图1中,∵DB⊥BC,EC⊥BC,∴BD∥EC,∵BM∥DE,∴四边形BDEM是平行四边形,∴BM=DE=35cm,∴BC=BM•cos9°=35×0.99≈34.65(cm),如图2中,∵BM∥AE′,CK⊥AE′,∴CJ⊥BM,∴CJ=BC•sin30°≈17.32(cm),∵AB⊥AE′,∴BA=JK=40cm,∴CK=CJ+JK=17.32+40≈67.3(cm).答:台灯最高点C到桌面的距离约为67.3cm.【点评】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.20.(9分)某酒店有A、B两种客房,其中A种24间,B种20间.若全部入住,一天营业额为7200元;若A、B两种客房均有10间入住,一天营业额为3200元.(1)求A、B两种客房每间定价分别是多少元?(2)酒店对A种客房调研发现:如果客房不调价,房间可全部住满;如果每个房间定价每增加10元,就会有一个房间空闲;当A种客房每间定价为多少元时,A种客房一天的营业额W最大,最大营业额为多少元?【分析】(1)依据题意,设A种客房每间定价是x元,B种客房每间定价是y元,进而建立方程组,计算即可得解;(2)依据题意,设A种客房每间定价为m元,从而可得W=m(24﹣)=﹣(m﹣220)2+4840,再结合二次函数的性质即可判断得解.【解答】解:(1)设A种客房每间定价是x元,B种客房每间定价是y元,∴.∴.答:A、B两种客房每间定价分别是200元、120元.(2)由题意,设A种客房每间定价为m元,∴W=m(24﹣)=﹣(m﹣220)2+4840.∵﹣<0,∴当m=220时,W取最大值,最大值为4840.答:当A种客房每间定价为220元时,A种客房一天的营业额W最大,最大营业额为4840元.【点评】本题主要考查了二次函数的应用和二元一次方程组的应用,解题时要熟练掌握并能灵活运用二次函数的性质是关键.21.(9分)已知关于x的一元二次方程x2﹣(m+2)x+m﹣1=0.(1)求证:无论m取何值,方程都有两个不相等的实数根;(2)如果方程的两个实数根为x1,x2,且+﹣x1x2=9,求m的值.【分析】(1)先确定a、b、c,再计算根的判别式,利用根的判别式得结论;(2)先利用根与系数的关系求出两根的和与积,再代入已知中得关于m的方程,求解即可.【解答】解:(1)x2﹣(m+2)x+m﹣1=0,这里a=1,b=﹣(m+2),c=m﹣1,Δ=b2﹣4ac=[﹣(m+2)]2﹣4×1×(m﹣1)=m2+4m+4﹣4m+4=m2+8.∵m2≥0,∴△>0.∴无论m取何值,方程都有两个不相等的实数根;(2)设方程x2﹣(m+2)x+m﹣1=0的两个实数根为x1,x2,则x1+x2=m+2,x1x2=m﹣1.∵+﹣x1x2=9,即(x1+x2)2﹣3x1x2=9,∴(m+2)2﹣3(m﹣1)=9.整理,得m2+m﹣2=0.∴(m+2)(m﹣1)=0.解得m1=﹣2,m2=1.∴m的值为﹣2或1.【点评】本题考查了一元二次方程,掌握根的判别式、根与系数的关系及完全平方公式的变形等知识点是解决本题的关键.22.(10分)遂宁市作为全国旅游城市,有众多著名景点,为了解“五一”假期同学们的出游情况,某实践探究小组对部分同学假期旅游地做了调查,以下是调查报告的部分呢,请完善报告:××小组关于××学校学生“五一”出游情况调查报告数据收集调查方式抽样调查调查对象××学校学生数据的整理与描述景点A:中国死海B:龙风古镇C:灵泉风景区D:金华山E:未出游F:其他数据分析及运用(1)本次被抽样调查的学生总人数为100,扇形统计图中,m=10,“B:龙风古镇”对应圆心角的度数是72°;(2)请补全条形统计图;(3)该学校总人数为1800人,请你估计该学校学生“五一”假期未出游的人数;(4)未出游中的甲、乙两位同学计划下次假期从A、B、C、D四个景点中任选一个景点旅游,请用树状图或列表的方法求出他们选择同一景点的概率.【分析】(1)将出游景点F的人数除以其所占百分比,即可得到本次被抽样调查的学生总人数;求出出游景点C的人数,再除以总人数,乘以100,即可求出m的值;将出游景点B的人数除以总人数,再乘以360°,即可得到“B:龙风古镇”对应圆心角的度数;(2)求出出游景点C的人数,再补全条形统计图即可;(3)将未出游的人数出游总人数,再乘以1800,即可估计该学校学生“五一”假期未出游的人数;(4)用树状图或列表的方法即可求出他们选择同一景点的概率.【解答】解:(1)∵30÷30%=100(人),∴本次被抽样调查的学生总人数为100人;∵出游C景点的人数为:100﹣(12+20+20+8+30)=10(人),∴m=×100=10;∵×360°=72°,∴“B:龙风古镇”对应圆心角的度数是72°,故答案为:100,10,72°;(2)由(1)知:出游景点C的人数为10人,补全条形统计图如下:(3)×1800=144(人),答:估计该学校学生“五一”假期未出游的有144人;(4)画树状图如下:一共有16种等可能的结果,其中两人选择同一景点有4种可能的结果,∴P(选择同一景点)==.【点评】本题考查条形统计图,扇形统计图,用样本估计总体,用列表法和树状图法求等可能事件的概率,能从统计图种获取数据,掌握用列表法和树状图法求等可能事件的概率的方法是解题的关键.23.(10分)如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m≠0)的图象相交于A(1,3),B(n,﹣1)两点.(1)求一次函数和反比例函数的表达式;(2)根据图象,直接写出y1>y2时,x的取值范围;(3)过点B作直线OB,交反比例函数图象于点C,连结AC,求△ABC的面积.【分析】(1)先将点A坐标代入反比例函数解析式,求出m,再求出点B坐标,最后用待定系数法求出一次函数解析式即可.(2)利用数形结合的数学思想即可解决问题.(3)连接AO,根据反比例函数与正比例函数的对称性,将△ABC的面积转化为△AOB面积的2倍即可解决问题.【解答】解:(1)将点A坐标代入反比例函数解析式得,m=1×3=3,所以反比例函数解析式为y=.将点B坐标代入反比例函数解析式得,n=﹣3,所以点B的坐标为(﹣3,﹣1).将A,B两点坐标代入一次函数解析式得,,解得,所以一次函数解析式为y=x+2.(2)由函数图象可知,当﹣3<x<0或x>1时,一次函数的图象在反比例函数图象的上方,即y1>y2,所以当y1>y2,x的取值范围是:﹣3<x<0或x>1.(3)连接AO,令直线AB与x轴的交点为M,将y=0代入y=x+2得,x=﹣2,所以点M的坐标为(﹣2,0),=S△AOM+S△BOM=.所以S△AOB因为正比例函数图象与反比例函数图象都是中心对称图形,且坐标原点是对称中心,所以点B和点C关于点O成中心对称,所以BO=CO,=2S△AOB=8.所以S△ABC【点评】本题考查反比例函数与一次函数的交点问题,熟知反比例函数及一次函数的图象和性质是解题的关键.24.(10分)如图,AB是⊙O的直径,AC是一条弦,点D是的中点,DN⊥AB于点E,交AC于点F,连结DB交AC于点G.(1)求证:AF=DF;(2)延长GD至点M,使DM=DG,连结AM.①求证:AM是⊙O的切线;②若DG=6,DF=5,求⊙O的半径.【分析】(1)连接AD,设OD交AC于点I,由OD=OA,得∠ODA=∠OAD,由点D是的中点,得OD⊥AC于点I,可证明∠ODF=∠OAF=90°﹣∠AOD,进而推导出∠FDA=∠FAD,则AF=DF;(2)①先证明AD垂直平分GM,则AM=AG,所以∠MAD=∠CAD=∠B,则∠OAM=∠BAD+∠MAD=∠BAD+∠B=90°,即可证明AM是⊙O的切线;②可证明∠FDG=∠FGD,则GF=DF=AF=5,所以AG=2AF=10,求得AD==8,==cos∠DAG,求得AI==,则DI=,由勾股定理得(OA﹣)2+()2=OA2,求得OA=,则⊙O的半径长为.【解答】(1)证明:连接AD,设OD交AC于点I,∵OD=OA,∴∠ODA=∠OAD,∵点D是的中点,∴OD⊥AC于点I,∵DN⊥AB于点E,∴∠OED=∠OIA=90°,∴∠ODF=∠OAF=90°﹣∠AOD,∴∠ODA﹣∠ODF=∠OAD﹣∠OAF,∴∠FDA=∠FAD,∴AF=DF.(2)①证明:∵AB是⊙O的直径,DM=DG,∴∠ADB=90°,∴AD垂直平分GM,∴AM=AG,∴∠MAD=∠CAD,∵=,∴∠B=∠CAD,∴∠MAD=∠B,∴∠OAM=∠BAD+∠MAD=∠BAD+∠B=90°,∵OA是⊙O的半径,且AM⊥OA,∴AM是⊙O的切线.②解:∵∠FDG+∠FDA=90°,∠FGD+∠FAD=90°,且∠FDA=∠FAD,∴∠FDG=∠FGD,∴GF=DF=AF=5,∴AG=2AF=10,∵DG=6,∴AD===8,∵∠AID=∠ADG=90°,∴==cos∠DAG,∴AI===,∴DI===,∵∠OIA=90°,OI=OD﹣=OA﹣,∴OI2+AI2=OA2,∴(OA﹣)2+()2=OA2,解得OA=,∴⊙O的半径长为.【点评】此题重点考查等腰三角形的性质、垂径定理、圆周角定理、切线的判定定理、勾股定理、锐角三角函数与解直角三角形等知识,正确地作出辅助线是解题的关键.25.(12分)二次函数y=ax2+bx+c(a≠0)的图象与x轴分别交于点A(﹣1,0),B(3,0),与y轴交于点C(0,﹣3),P、Q为抛物线上的两点.(1)求二次函数的表达式;(2)当P、C两点关于抛物线对称轴对称,△OPQ是以点P为直角顶点的直角三角形时,求点Q的坐标;(3)设P的横坐标为m,Q的横坐标为m+1,试探究:△OPQ的面积S是否存在最小值,若存在,请求出最小值,若不存在,请说明理由.【分析】(1)由待定系数法即可求解;(2)△OPQ是以点P为直角顶点的直角三角形时,则点P、C关于抛物线对称轴对称,设Q(m,m2﹣2m﹣3),运用勾股定理代入可列式子,解出即可求解;﹣S△OHQ=OH×(y Q﹣y P),即可求解.(3)由S=S△OHP【解答】解:(1)由题意得:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),则﹣3a=﹣3,则抛物线的表达式为:y=x2﹣2x﹣3;(2)△OPQ是以点P为直角顶点的直角三角形时,抛物线的对称轴为直线x=1,则点P、C关于抛物线对称轴对称,则点P(2,﹣3),设Q(m,m2﹣2m﹣3),∵∠OPQ=90°,∴OP2+PQ2=OQ2,∴[(0﹣2)2+(0+3)2]+[(2﹣m)2+(﹣3﹣m2+2m+3)2]=[m2+(m2﹣2m﹣3)2]整理得:3m2﹣8m+4=0,解得:m1=,m2=2(舍去),∴m=,∴Q(,﹣);(3)存在,理由:设点P(m,m2﹣2m﹣3),则点Q(m+1,(m+1)2﹣2(m+1)﹣3),设直线PQ交x轴于点H,由点P、Q的坐标得,直线PQ的表达式为:y=(2m﹣1)(x﹣m)+m2﹣2m﹣3,令y=0,则x=+m,则OH=+m,﹣S△OHQ=OH×(y Q﹣y P)=×(+m)[(m+1)2﹣2(m+1)﹣3﹣m2+2m+3]则S=S△OHP=(m2+m+3)=(m+)2+≥,即S存在最小值为.。

104--2017年四川省遂宁市2017年中考数学试卷(解析版)

104--2017年四川省遂宁市2017年中考数学试卷(解析版)

四川省遂宁市2017年中考数学试卷一、选择题:本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求1.(4分)(2017•遂宁)﹣3的相反数是()2.(4分)(2017•遂宁)下列计算错误的是()、=23.(4分)(2017•遂宁)如图所示的是三通管的立体图,则这个几何体的俯视图是()B4.(4分)(2017•遂宁)以下问题,不适合用全面调查的是()5.(4分)(2017•遂宁)已知反比例函数y=的图象经过点(2,﹣2),则k的值为()6.(4分)(2017•遂宁)下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是()B7.(4分)(2017•遂宁)将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是()8.(4分)(2017•遂宁)用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为()9.(4分)一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,口袋外有两张卡片,分别写有数字2,3,现随机从口袋里取出一张卡片,求这张卡片与口袋外的两张卡片上的数能构成三角形的概率是()10.(4分)(2017•遂宁)如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.二、填空题:本大题共5个小题,每小题共4分,共20分,把答案填在题中的横线上.11.(4分)(2017•遂宁)我国南海海域的面积约为3600000km2,该面积用科学记数法应表示为 3.6×106km2.12.(4分)(2017•遂宁)如图,有一块含有60°角的直角三角板的两个顶点放在矩形的对边上.如果∠1=18°,那么∠2的度数是12°.13.(4分)(2007•黄石)若一个多边形内角和等于1260°,则该多边形边数是9.14.(4分)(2017•遂宁)如图,△ABC的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC绕点B逆时针旋转到△A′BC′的位置,且点A′、C′仍落在格点上,则图中阴影部分的面积约是7.2.(π≈3.14,结果精确到0.1)=,∠'==﹣15.(4分)(2017•遂宁)为庆祝“六•一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆第(n)图,需用火柴棒的根数为6n+2.三、(本大题共3小题,每小题7分,共21分)=3+×﹣17.(7分)(2017•遂宁)先化简,再求值:,其中a=.=•==时,原式18.(7分)(2017•遂宁)解不等式组:并把它的解集在数轴上表示出来.解:四、(本大题共3小题,每小题9分,共27分)19.(9分)(2017•遂宁)如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是E、F,并且DE=DF.求证:(1)△ADE≌△CDF;(2)四边形ABCD是菱形.20.(9分)(2017•遂宁)2017年4月20日,我省雅安市芦山县发生了里氏7.0级强烈地震.某厂接到在规定时间内加工1500顶帐篷支援灾区人民的任务.在加工了300顶帐篷后,厂家把工作效率提高到原来的1.5倍,于是提前4天完成任务,求原来每天加工多少顶帐篷?21.(9分)(2017•遂宁)钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一我国渔政执法船C,求此时船C与船B的距离是多少.(结果保留根号)=20×=10=(海里)20五、(本大题2个小题,每小题10分,共20分)22.(10分)(2017•遂宁)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.==(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2=160.∴<23.(10分)(2017•遂宁)四川省第十二届运动会将于2017年8月18日在我市隆重开幕,根据大会组委会安排,某校接受了开幕式大型团体操表演任务.为此,学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商:A公司给出的优惠条件是,全部服装按单价打七折,但校方需承担2200元的运费;B公司的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人.(1)分别写出学校购买A、B两公司服装所付的总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式;(2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由.六、(本大题2个小题,第24题10分,第25题12分,共22分)24.(10分)(2017•遂宁)如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM 的延长线交⊙O于点G,交过C的直线于F,∠1=∠2,连结CB与DG交于点N.(1)求证:CF是⊙O的切线;(2)求证:△ACM∽△DCN;(3)若点M是CO的中点,⊙O的半径为4,cos∠BOC=,求BN的长.==,=,=,∴==﹣.25.(12分)(2017•遂宁)如图,抛物线y=x2+bx+c与x轴交于点A(2,0),交y轴于点B(0,).直线y=kx过点A与y轴交于点C,与抛物线的另一个交点是D.(1)求抛物线y=x2+bx+c与直线y=kx的解析式;(2)设点P是直线AD上方的抛物线上一动点(不与点A、D重合),过点P作y轴的平行线,交直线AD于点M,作DE⊥y轴于点E.探究:是否存在这样的点P,使四边形PMEC 是平行四边形?若存在请求出点P的坐标;若不存在,请说明理由;(3)在(2)的条件下,作PN⊥AD于点N,设△PMN的周长为l,点P的横坐标为x,求l与x的函数关系式,并求出l的最大值.x解得xx得:,=∴=,即=x,﹣+。

[2017中考真题数学]2017中考真题以及答案-

[2017中考真题数学]2017中考真题以及答案-

[2017中考真题数学]2017中考真题以及答案-一、选择题1. (2017湖北宜昌,第2题3分)在﹣2,0,3,A.﹣2 0B. 3C. 这四个数中,最大的数是( )D.2. (__?湖北宜昌,第14题3分)如图,M,N两点在数轴上表示的数分别是m,n,则下列式子中成立的是( )A.m+n0B. ﹣m﹣nC. |m|﹣|n|0D. 2+m2+n3. (2017?湖南永州,第5题3分)若用湘教版初中数学教材上使用的某种计算器进行计算,则按键的结果为( )4. (2017河北,第5题2分)a,b是两个连续整数,若a5.(2014?陕西,第1题3分)4的算术平方根是( )A.﹣2B. 2C. ±2D. 166.(2017重庆A,第1题4分)实数﹣17的相反数是( )A.17B.C. ﹣17D. ﹣7.(2017湖北黄冈,第1题3分)﹣8的立方根是( )8. (2014?湖北荆门,第2题3分)下列运算正确的是( )A.31=﹣3 ﹣B. =±3C. (ab2)3=a3b6D. a6÷a2=a39.(2017莱芜,第1题3分)下列四个实数中,是无理数的为()10. (2017青岛,第1题3分)﹣7的绝对值是()11. (2017乐山,第1题3分)﹣2的绝对值是()12. (2017攀枝花,第1题3分)2的绝对值是( )内容需要下载文档才能查看13.(2017广西来宾,第2题3分)去年我市参加中考人数约__人,这个数用科学记数法表示是( )14.(2017黔南州,第1题4分)在﹣2,﹣3,0.1四个数中,最小的实数是( )A.﹣3B. ﹣2 0C. 1D.15.(2014年广西钦州,第3题3分)我市2014年参加中考的考生人数约为__人,将__用科学记数法表示为( )A.434×102B. 43.4×103C. 4.34×104D. 0.434×10516.(2017年广西南宁,第3题3分)南宁东高铁火车站位于南宁青秀区凤岭北路,火车站总建筑面积约为__平方米,其中数据__用科学记数法表示为( )A.26.7×104B.2.67×104 C. 2.67×105 D. 0.267×10617.(2017年贵州安顺,第2题3分)地球上的陆地而积约为__0km2.将__0用科学记数法表示为( )A.1.49×106二、填空题1. (2014?随州,第11题3分)计算:|﹣3|++(﹣1)0= B.1.49×107 C. 1.49×108 D. 1.49×1092.(2017江西,第7题3_______3.(2017陕西,第14题3分)用科学计算器计算:4.(2014?四川成都,第11题4分)计算:|﹣5.(2017黑龙江牡丹江, 第11题3分)计算|1﹣6. (2017湖北黄石,第17题7分)计算:|+3tan56°≈(结果精确到0.01) |=. |+(﹣1)0﹣()1= ﹣﹣﹣5|+2cos30°()1+(9﹣﹣)0+. 7. (2017年湖北荆门) (2014?湖北荆门,第13题3分)若﹣2xmny2与3x4y2m+n是同类项,则m﹣3n的立方根是 .8.(2017莱芜,第14题4分)计算:三、解答题1. (2017黑龙江绥化,第19题5分)计算:2. (2017湖北宜昌,第16题6分)计算:+|﹣2|+(﹣6)×(﹣). . =.3. (2017湖南永州,第17题6分)计算:﹣4cos30°+(π﹣3.14)0+4. (2017无锡,第19题8分)(1)(2)(x+1)(x﹣1)﹣(x﹣2)2.5.(2017宁夏,第17题6分)计算:(﹣)2+﹣. ﹣|﹣2|+(﹣2)0; ﹣2sin45°﹣|1﹣﹣5)0﹣﹣4sin45°﹣|. cos30°. +.﹣2|. . 6.(2017四川广安,第17题5分)+(﹣)1+(﹣7.(2014?浙江绍兴,第17题4分)(1)计算:8.(2017重庆A,第19题7分)计算:+(﹣3)2﹣__×|﹣4|+﹣9.(2017贵州黔西南州, 第21题6分)(1)计算:()2+(π﹣2014)0+sin60°+|10.(2017山西,第17题(1)5分)计算:(﹣2)2?sin60°﹣()1×﹣;11. (2017乐山,第17题9分)计算:+(﹣2014)0﹣2cos30°﹣()﹣1.)0+. 12. (2017攀枝花,第17题6分)计算:(﹣1)2014+()﹣1+(13. (2017丽水,第17题6分)计算:(﹣)2+|﹣4|×21﹣(﹣﹣1)0.|+﹣(﹣π)0; 14.(2017广西来宾,第19题12分)(1)计算:(﹣1)2014﹣|﹣(2)先化简,再求值:(2x﹣1)2﹣2(3﹣2x),其中x=﹣2.15.(2017年广西南宁,第19题6分)计算:(﹣1)2﹣4sin45°+|﹣3|+16.(2017年广西钦州,第19题5分)计算:(﹣2)2+(﹣3)×2﹣17.(2017年贵州安顺,第19题8分)计算:(18.1. (2017海南,第19题10分)计算:(1)12×(﹣)+8×22﹣(﹣1)2 ﹣﹣. . ﹣| ﹣2)0+()1+4cos30°﹣|。

四川省遂宁市中考数学专题二:2.5分式方程

四川省遂宁市中考数学专题二:2.5分式方程

四川省遂宁市中考数学专题二:2.5分式方程姓名:________ 班级:________ 成绩:________一、选择题 (共11题;共22分)1. (2分)下列关于x的方程是分式方程的是()A .B .C .D .2. (2分) (2020八下·温州月考) 若关于x的方程的解为整数解,则满足条件的所有整数m的和是()A . 8B . 9C . -5D . 03. (2分)已知a,b为实数,(a2+b2)2﹣(a2+b2)﹣6=0,则代数式a2+b2的值为()A . 2B . 3C . ﹣2D . 3或﹣24. (2分)(2020·云梦模拟) 若关于x的不等式组的所有整数解的和为5,且使关于y 的分式方程的解大于1,则满足条件的所有整数a的和是()A . 6B . 11C . 12D . 155. (2分) (2020八下·曹县月考) 某车间加工12个零件后,采用新工艺,工效比原来提高了50%,这样加工同样多的零件就少用1小时。

那么采用新工艺前每小时加工的零件数为()A . 3个B . 4个C . 5个D . 6个6. (2分) (2015八上·郯城期末) 已知点P(1﹣2a,a﹣2)关于y轴的对称点在第四象限内,且a为整数,则关于x的分式方程 + =2的解是()A . 3B . 1C . 5D . 不能确定7. (2分)解分式方程时,去分母后变形为()A . 2+(x+2)=3(x-1)B . 2-x+2=3(x-1)C . 2-(x+2)=3(1- x)D . 2-(x+2)=3(x-1)8. (2分)我校七年级某班的师生到距离8千米的农场学农,出发小时后,小亮同学骑自行车从学校按原路追赶队伍,结果他们同时到达农场.已知小亮骑车的速度比队伍步行的速度每小时快6千米.若设队伍步行的速度为每小时x千米,则可列方程()A .B .C .D .9. (2分) (2016八上·端州期末) 甲队修路120米与乙队修路100米所用天数相同,已知甲队比乙队每天多修10米,设甲队每天修路x米,依题意得,下列所列方程正确的是()A .B .C .D .10. (2分)(2017·深圳模拟) 某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x套服装,则根据题意可得方程为()A . + =18B . + =18C . + =18D . + =1811. (2分)(2016·昆明) 八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A .B .C .D .二、填空题 (共8题;共8分)12. (1分)分母中含有________的方程叫做分式方程;分式方程的识别标准是:一是________;二要________中含有未知数.13. (1分) (2020八下·巴中月考) 关于x的分式方程的解是正数,则m的取值范围为________.14. (1分)如果代数式与的值相等,那么x=________.15. (1分)分式方程+=3的解是________ .16. (1分)(2020·哈尔滨模拟) 方程的解是________.17. (1分)分式方程的解是________.18. (1分) (2016八上·泰山期中) 若分式方程﹣ = 有增根,则m的值是________.19. (1分)(2018·宜宾模拟) “五一”期间,一批九年级同学包租一辆面包车前去竹海游览,面包车的租金为300元,出发时,又增加了4名同学,且租金不变,这样每个同学比原来少分摊了20元车费.若设参加游览的同学一共有x人,为求x,可列方程________.三、计算题 (共3题;共35分)20. (10分) (2018八上·沁阳期末) 若关于x的分式方程的解为正实数,求实数m的取值范围.21. (10分)(2017·湖州模拟) 解方程: = .22. (15分) (2017九上·河口期末) 一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.四、解答题 (共7题;共36分)23. (6分) (2017八下·江都期中) 解下列方程:(1)﹣ =1(2)﹣ =1.24. (5分)列方程或方程组解应用题:某市在旧城改造过程中,需要整修一段全长2400米的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.25. (5分)(2017·丹东模拟) “母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?26. (5分) (2019八下·双阳期末) 甲、乙两名同学在练习打字时发现,甲打1800字的时间与乙打2400字的时间相同。

四川省遂宁市中考数学真题试题(含答案)

四川省遂宁市中考数学真题试题(含答案)

四川省遂宁市xx年中考数学真题试题一、选择题〔每题只有一个正确选项,此题共10小题,每题4分,共40分〕1.〔4.00分〕﹣2×〔﹣5〕的值是〔〕A.﹣7 B.7 C.﹣10 D.102.〔4.00分〕以下等式成立的是〔〕A.x2+3x2=3x4×10﹣3C.〔a3b2〕3=a9b6D.〔﹣a+b〕〔﹣a﹣b〕=b2﹣a23.〔4.00分〕二元一次方程组的解是〔〕A.B.C.D.4.〔4.00分〕以下说法正确的选项是〔〕A.有两条边和一个角对应相等的两个三角形全等B.正方形既是轴对称图形又是中心对称图形C.矩形的对角线互相垂直平分D.六边形的内角和是540°5.〔4.00分〕如图,5个完全一样的小正方体组成了一个几何体,那么这个几何体的主视图是〔〕A.B.C.D.6.〔4.00分〕圆锥的母线长为6,将其侧面沿着一条母线展开后所得扇形的圆心角为120°,那么该扇形的面积是〔〕A.4πB.8πC.12π D.16π7.〔4.00分〕一次函数y1=kx+b〔k≠0〕与反比例函数y2=〔m≠0〕的图象如下列图,那么当y1>y2时,自变量x满足的条件是〔〕A.1<x<3 B.1≤x≤3 C.x>1 D.x<38.〔4.00分〕如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,假设AB=2,CD=1,那么BE的长是〔〕A.5 B.6 C.7 D.89.〔4.00分〕二次函数y=ax2+bx+c〔a≠0〕的图象如下列图,那么以下结论同时成立的是〔〕A.B.C.D.10.〔4.00分〕如图,在正方形ABCD中,AD=4,E,F分别是CD,BC上的一点,且∠EAF=45°,EC=1,将△ADE绕点A沿顺时针方向旋转90°后与△ABG重合,连接EF,过点B作BM∥AG,交AF于点M,那么以下结论:①DE+BF=EF,②BF=,③AF=,④S△MBF=中正确的选项是〔〕A.①②③B.②③④C.①③④D.①②④二、细心填一填〔本大题共5小题,每题4分,总分值20分,请把答案填在答題卷相应题号的横线上〕11.〔4.00分〕分解因式3a2﹣3b2= .12.〔4.00分〕一组数据:12,10,8,15,6,8.那么这组数据的中位数是.13.〔4.00分〕反比例函数y=〔k≠0〕的图象过点〔﹣1,2〕,那么当x>0时,y随x的增大而.14.〔4.00分〕A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.假设设乙车的速度是x千米/小时,那么根据题意,可列方程.15.〔4.00分〕如图,抛物线y=ax2﹣4x+c〔a≠0〕与反比例函数y=的图象相交于点B,且B点的横坐标为3,抛物线与y轴交于点C〔0,6〕,A是抛物线y=ax2﹣4x+c的顶点,P 点是x轴上一动点,当PA+PB最小时,P点的坐标为.三、计算题〔本大题共15分,请认真读题〕16.〔7.00分〕计算:〔〕﹣1+〔﹣1〕0+2sin45°+|﹣2|.17.〔8.00分〕先化简,再求值•+.〔其中x=1,y=2〕四、解答题〔此题共75分,请认真读题〕18.〔8.00分〕如图,在▱ABCD中,E,F分别是AD,BC上的点,且DE=BF,AC⊥EF.求证:四边形AECF是菱形.19.〔8.00分〕关于x的一元二次方程x2﹣2x+a=0的两实数根x1,x2满足x1x2+x1+x2>0,求a的取值范围.20.〔9.00分〕如下列图,在平面直角坐标系中,一次函数y=kx+b〔k≠0〕与反比例函数y=〔m≠0〕的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD=,且点B的坐标为〔n,﹣2〕.〔1〕求一次函数与反比例函效的解析式;〔2〕E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.21.〔10.00分〕如图,过⊙O外一点P作⊙O的切线PA切⊙O于点A,连接PO并延长,与⊙O交于C、D两点,M是半圆CD的中点,连接AM交CD于点N,连接AC、CM.〔1〕求证:CM2=MN•MA;〔2〕假设∠P=30°,PC=2,求CM的长.22.〔8.00分〕请阅读以下材料:向量=〔x1,x2〕,=〔x2,y2〕满足以下条件:①||=,=②⊗=||×||cosα〔角α的取值范围是0°<α<90°〕;③⊗=x1x2+y1y2利用上述所给条件解答问题:如:=〔1,〕,=〔﹣,3〕,求角α的大小;解:∵||===2,====2∴⊗=||×||cosα=2×2cosα=4cosα又∵⊗=x1x2+y1y2=l×〔﹣〕+×3=2∴4cosα=2∴cosα=,∴α=60°∴角α的值为60°.请仿照以上解答过程,完成以下问题:=〔1,0〕,=〔1,﹣1〕,求角α的大小.23.〔10.00分〕学习习近平总书记关于生态文明建立重要井话,结实树立“绿水青山就是金山银山〞的科学观,让环保理念深入到学校,某校张教师为了了解本班学生3月植树成活情况,对本班全体学生进展了调查,并将调查结果分为了三类:A好,B:中,C:差.请根据图中信息,解答以下问题:〔1〕求全班学生总人数;〔2〕将上面的条形统计图与扇形统计图补充完整;〔3〕张教师在班上随机抽取了4名学生,其中A类1人,B类2人,C类1人,假设再从这4人中随加抽取2人,请用画对状图或列表法求出全是B类学生的概率.0分〕如图,某测量小组为了测量山BC的高度,在地面A处测得山顶B的仰角45°,然后沿着坡度为=1:的坡面AD走了200米到达D处,此时在D处测得山顶B的仰角为60°,求山高BC〔结果保存根号〕.25.〔12.00分〕如图,抛物线y=ax2+x+4的对称轴是直线x=3,且与x轴相交于A,B两点〔B点在A点右侧〕与y轴交于C点.〔1〕求抛物线的解折式和A、B两点的坐标;〔2〕假设点P是抛物线上B、C两点之间的一个动点〔不与B、C重合〕,那么是否存在一点P,使△PBC的面积最大.假设存在,请求出△PBC的最大面积;假设不存在,试说明理由;〔3〕假设M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.参考答案与试题解析一、选择题〔每题只有一个正确选项,此题共10小题,每题4分,共40分〕1.〔4.00分〕﹣2×〔﹣5〕的值是〔〕A.﹣7 B.7 C.﹣10 D.10【解答】解:〔﹣2〕×〔﹣5〕=+2×5=10,应选:D.2.〔4.00分〕以下等式成立的是〔〕A.x2+3x2=3x4×10﹣3C.〔a3b2〕3=a9b6D.〔﹣a+b〕〔﹣a﹣b〕=b2﹣a2【解答】解:A、x2+3x2=3x2,故此选项错误;×10﹣4,故此选项错误;C、〔a3b2〕3=a9b6,正确;D、〔﹣a+b〕〔﹣a﹣b〕=a2﹣b2,故此选项错误;应选:C.3.〔4.00分〕二元一次方程组的解是〔〕A.B.C.D.【解答】解:,①+②得:3x=6,解得:x=2,把x=2代入①得:y=0,那么方程组的解为,应选:B.4.〔4.00分〕以下说法正确的选项是〔〕A.有两条边和一个角对应相等的两个三角形全等B.正方形既是轴对称图形又是中心对称图形C.矩形的对角线互相垂直平分D.六边形的内角和是540°【解答】解:A、有两条边和一个角对应相等的两个三角形全等,错误,必须是两边及其夹角分别对应相等的两个三角形全等;B、正方形既是轴对称图形又是中心对称图形,正确;C、矩形的对角线相等且互相平分,故此选项错误;D、六边形的内角和是720°,故此选项错误.应选:B.5.〔4.00分〕如图,5个完全一样的小正方体组成了一个几何体,那么这个几何体的主视图是〔〕A.B.C.D.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形,.应选:D.6.〔4.00分〕圆锥的母线长为6,将其侧面沿着一条母线展开后所得扇形的圆心角为120°,那么该扇形的面积是〔〕A.4πB.8πC.12π D.16π【解答】解:该扇形的面积==12π.应选:C.7.〔4.00分〕一次函数y1=kx+b〔k≠0〕与反比例函数y2=〔m≠0〕的图象如下列图,那么当y1>y2时,自变量x满足的条件是〔〕A.1<x<3 B.1≤x≤3 C.x>1 D.x<3【解答】解:当1<x<3时,y1>y2.应选:A.8.〔4.00分〕如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,假设AB=2,CD=1,那么BE的长是〔〕A.5 B.6 C.7 D.8【解答】解:∵半径OC垂直于弦AB,∴AD=DB=AB=,在Rt△AOD中,OA2=〔OC﹣CD〕2+AD2,即OA2=〔OA﹣1〕2+〔〕2,解得,OA=4∴OD=OC﹣CD=3,∵AO=OE,AD=DB,∴BE=2OD=6,应选:B.9.〔4.00分〕二次函数y=ax2+bx+c〔a≠0〕的图象如下列图,那么以下结论同时成立的是〔〕A.B.C.D.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴在直线x=1的右侧,∴x=﹣>1,∴b<0,b<﹣2a,即b+2a<0,∵抛物线与y轴交点在x轴下方,∴c<0,∴abc>0,∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,∵x=1时,y<0,∴a+b+c<0.应选:C.10.〔4.00分〕如图,在正方形ABCD中,AD=4,E,F分别是CD,BC上的一点,且∠EAF=45°,EC=1,将△ADE绕点A沿顺时针方向旋转90°后与△ABG重合,连接EF,过点B作BM∥AG,交AF于点M,那么以下结论:①DE+BF=EF,②BF=,③AF=,④S△MBF=中正确的选项是〔〕A.①②③B.②③④C.①③④D.①②④【解答】解:∵AG=AE,∠FAE=∠FAG=45°,AF=AF,∴△AFE≌△AFG,∴EF=FG,∵DE=BG,∴EF=FG=BG+FB=DE+BF,故①正确,∵BC=CD=AD=4,EC=1,∴DE=3,设BF=x,那么EF=x+3,CF=4﹣x,在Rt△ECF中,〔x+3〕2=〔4﹣x〕2+12,解得x=,∴BF=,AF==,故②正确,③错误,∵BM∥AG,∴△FBM∽△FGA,∴=〔〕2,∴S△FBM=,故④正确,应选:D.二、细心填一填〔本大题共5小题,每题4分,总分值20分,请把答案填在答題卷相应题号的横线上〕11.〔4.00分〕分解因式3a2﹣3b2= 3〔a+b〕〔a﹣b〕.【解答】解:3a2﹣3b2=3〔a2﹣b2〕=3〔a+b〕〔a﹣b〕.故答案是:3〔a+b〕〔a﹣b〕.12.〔4.00分〕一组数据:12,10,8,15,6,8.那么这组数据的中位数是9 .【解答】解:将数据从小到大重新排列为:6、8、8、10、12、15,所以这组数据的中位数为=9,故答案为:9.13.〔4.00分〕反比例函数y=〔k≠0〕的图象过点〔﹣1,2〕,那么当x>0时,y随x的增大而增大.【解答】解:把〔﹣1,2〕代入解析式y=,可得:k=﹣2,因为k=﹣2<0,所以当x>0时,y随x的增大而增大,故答案为:增大14.〔4.00分〕A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.假设设乙车的速度是x千米/小时,那么根据题意,可列方程﹣=.【解答】解:设乙车的速度是x千米/小时,那么根据题意,可列方程:﹣=.故答案为:﹣=.15.〔4.00分〕如图,抛物线y=ax2﹣4x+c〔a≠0〕与反比例函数y=的图象相交于点B,且B点的横坐标为3,抛物线与y轴交于点C〔0,6〕,A是抛物线y=ax2﹣4x+c的顶点,P 点是x轴上一动点,当P A+PB最小时,P点的坐标为〔,0〕.【解答】解:作点A关于x轴的对称点A′,连接A′B,那么A′B与x轴的交点即为所求,∵抛物线y=ax2﹣4x+c〔a≠0〕与反比例函数y=的图象相交于点B,且B点的横坐标为3,抛物线与y轴交于点C〔0,6〕,∴点B〔3,3〕,∴,解得,,∴y=x2﹣4x+6=〔x﹣2〕2+2,∴点A的坐标为〔2,2〕,∴点A′的坐标为〔2,﹣2〕,设过点A′〔2,﹣2〕和点B〔3,3〕的直线解析式为y=mx+n,,得,∴直线A′B的函数解析式为y=5x﹣12,令y=0,那么0=5x﹣12得x=,故答案为:〔,0〕.三、计算题〔本大题共15分,请认真读题〕16.〔7.00分〕计算:〔〕﹣1+〔﹣1〕0+2sin45°+|﹣2|.【解答】解:原式=3+1+2×+2﹣=4++2﹣=6.17.〔8.00分〕先化简,再求值•+.〔其中x=1,y=2〕【解答】解:当x=1,y=2时,原式=•+=+==﹣3四、解答题〔此题共75分,请认真读题〕18.〔8.00分〕如图,在▱ABCD中,E,F分别是AD,BC上的点,且DE=BF,AC⊥EF.求证:四边形AECF是菱形.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵DE=BF,∴AE=CF,∵AE∥CF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.19.〔8.00分〕关于x的一元二次方程x2﹣2x+a=0的两实数根x1,x2满足x1x2+x1+x2>0,求a的取值范围.【解答】解:∵该一元二次方程有两个实数根,∴△=〔﹣2〕2﹣4×1×a=4﹣4a≥0,解得:a≤1,由韦达定理可得x1x2=a,x1+x2=2,∵x1x2+x1+x2>0,∴a+2>0,解得:a>﹣2,∴﹣2<a≤1.20.〔9.00分〕如下列图,在平面直角坐标系中,一次函数y=kx+b〔k≠0〕与反比例函数y=〔m≠0〕的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD=,且点B的坐标为〔n,﹣2〕.〔1〕求一次函数与反比例函效的解析式;〔2〕E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.【解答】解:〔1〕∵一次函数y=kx+b与反比例函数y=图象交于A与B,且AD⊥x轴,∴∠ADO=90°,在Rt△ADO中,AD=4,sin∠AOD=,∴=,即AO=5,根据勾股定理得:DO==3,∴A〔﹣3,4〕,代入反比例解析式得:m=﹣12,即y=﹣,把B坐标代入得:n=6,即B〔6,﹣2〕,代入一次函数解析式得:,解得:,即y=﹣x+2;〔2〕当OE3=OE2=AO=5,即E2〔0,﹣5〕,E3〔0,5〕;当OA=AE1=5时,得到OE1=2AD=8,即E1〔0,8〕;当AE4=OE4时,由A〔﹣3,4〕,O〔0,0〕,得到直线AO解析式为y=﹣x,中点坐标为〔﹣1.5,2〕,∴AO垂直平分线方程为y﹣2=〔x+〕,令x=0,得到y=,即E4〔0,〕,综上,当点E〔0,8〕或〔0,5〕或〔0,﹣5〕或〔0,〕时,△AOE是等腰三角形.21.〔10.00分〕如图,过⊙O外一点P作⊙O的切线PA切⊙O于点A,连接PO并延长,与⊙O交于C、D两点,M是半圆CD的中点,连接AM交CD于点N,连接AC、CM.〔1〕求证:CM2=MN•MA;〔2〕假设∠P=30°,PC=2,求CM的长.【解答】解:〔1〕∵⊙O中,M点是半圆CD的中点,∴=,∴∠CAM=∠DCM,又∵∠CMA=∠NMC,∴△AMC∽△CMN,∴=,即CM2=MN•MA;〔2〕连接OA、DM,∵PA是⊙O的切线,∴∠PAO=90°,又∵∠P=30°,∴OA=PO=〔PC+CO〕,设⊙O的半径为r,∵PC=2,∴r=〔2+r〕,解得:r=2,又∵CD是直径,∴∠CMD=90°,∵CM=DM,∴△CMD是等腰直角三角形,∴在Rt△CMD中,由勾股定理得CM2+DM2=CD2,即2CM2=〔2r〕2=16,那么CM2=8,∴CM=2.22.〔8.00分〕请阅读以下材料:向量=〔x1,x2〕,=〔x2,y2〕满足以下条件:①||=,=②⊗=||×||cosα〔角α的取值范围是0°<α<90°〕;③⊗=x1x2+y1y2利用上述所给条件解答问题:如:=〔1,〕,=〔﹣,3〕,求角α的大小;解:∵||===2,====2∴⊗=||×||cosα=2×2cosα=4cosα又∵⊗=x1x2+y1y2=l×〔﹣〕+×3=2∴4cosα=2∴cosα=,∴α=60°∴角α的值为60°.请仿照以上解答过程,完成以下问题:=〔1,0〕,=〔1,﹣1〕,求角α的大小.【解答】解:∵||===1,===,∴⊗=||×||cosα=cosα又∵⊗=x1x2+y1y2=l×1+0×〔﹣1〕=1∴cosα=1∴cosα=,∴α=45°23.〔10.00分〕学习习近平总书记关于生态文明建立重要井话,结实树立“绿水青山就是金山银山〞的科学观,让环保理念深入到学校,某校张教师为了了解本班学生3月植树成活情况,对本班全体学生进展了调查,并将调查结果分为了三类:A好,B:中,C:差.请根据图中信息,解答以下问题:〔1〕求全班学生总人数;〔2〕将上面的条形统计图与扇形统计图补充完整;〔3〕张教师在班上随机抽取了4名学生,其中A类1人,B类2人,C类1人,假设再从这4人中随加抽取2人,请用画对状图或列表法求出全是B类学生的概率.【解答】解:〔1〕全班学生总人数为10÷25%=40〔人〕;〔2〕∵C类人数为40﹣〔10+24〕=6,∴C类所占百分比为×100%=15%,B类百分比为×100%=60%,补全图形如下:〔3〕列表如下:A B B CA BA BA CAB AB BB CBB AB BB CBC AC BC BC由表可知,共有12种等可能结果,其中全是B类的有2种情况,所以全是B类学生的概率为=.24.〔10.00分〕如图,某测量小组为了测量山BC的高度,在地面A处测得山顶B的仰角45°,然后沿着坡度为=1:的坡面AD走了200米到达D处,此时在D处测得山顶B的仰角为60°,求山高BC〔结果保存根号〕.【解答】解:作DF⊥AC于F.∵DF:AF=1:,AD=200米,∴tan∠DAF=,∴∠D AF=30°,∴DF=AD=×200=100,∵∠DEC=∠BCA=∠DFC=90°,∴四边形DECF是矩形,∴EC=BF=100〔米〕,∵∠BAC=45°,BC⊥AC,∴∠ABC=45°,∵∠BDE=60°,DE⊥BC,∴∠DBE=90°﹣∠BDE=90°﹣60°=30°,∴∠ABD=∠ABC﹣∠DBE=45°﹣30°=15°,∠BAD=∠BAC﹣∠1=45°﹣30°=15°,∴∠ABD=∠BAD,∴AD=BD=200米,在Rt△BDE中,sin∠BDE=,∴BE=BD•sin∠BDE=200×=100,∴BC=BE+EC=100+100〔米〕.25.〔12.00分〕如图,抛物线y=ax2+x+4的对称轴是直线x=3,且与x轴相交于A,B两点〔B点在A点右侧〕与y轴交于C点.〔1〕求抛物线的解折式和A、B两点的坐标;〔2〕假设点P是抛物线上B、C两点之间的一个动点〔不与B、C重合〕,那么是否存在一点P,使△PBC的面积最大.假设存在,请求出△PBC的最大面积;假设不存在,试说明理由;〔3〕假设M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.【解答】解:〔1〕∵抛物线y=ax2+x+4的对称轴是直线x=3,∴﹣=3,解得:a=﹣,∴抛物线的解析式为y=﹣x2+x+4.当y=0时,﹣x2+x+4=0,解得:x1=﹣2,x2=8,∴点A的坐标为〔﹣2,0〕,点B的坐标为〔8,0〕.〔2〕当x=0时,y=﹣x2+x+4=4,∴点C的坐标为〔0,4〕.设直线BC的解析式为y=kx+b〔k≠0〕.将B〔8,0〕、C〔0,4〕代入y=kx+b,,解得:,∴直线BC的解析式为y=﹣x+4.假设存在,设点P的坐标为〔x,﹣x2+x+4〕,过点P作PD∥y轴,交直线BC于点D,那么点D的坐标为〔x,﹣x+4〕,如下列图.∴PD=﹣x2+x+4﹣〔﹣x+4〕=﹣x2+2x,∴S△PBC=PD•OB=×8•〔﹣x2+2x〕=﹣x2+8x=﹣〔x﹣4〕2+16.∵﹣1<0,∴当x=4时,△PBC的面积最大,最大面积是16.∵0<x<8,∴存在点P,使△PBC的面积最大,最大面积是16.〔3〕设点M的坐标为〔m,﹣m2+m+4〕,那么点N的坐标为〔m,﹣m+4〕,∴MN=|﹣m2+m+4﹣〔﹣m+4〕|=|﹣m2+2m|.又∵MN=3,∴|﹣m2+2m|=3.当0<m<8时,有﹣m2+2m﹣3=0,解得:m1=2,m2=6,∴点P的坐标为〔2,6〕或〔6,4〕;当m<0或m>8时,有﹣m2+2m+3=0,解得:m3=4﹣2,m4=4+2,∴点P的坐标为〔4﹣2,﹣1〕或〔4+2,﹣﹣1〕.综上所述:M点的坐标为〔4﹣2,﹣1〕、〔2,6〕、〔6,4〕或〔4+2,﹣﹣1〕.如有侵权请联系告知删除,感谢你们的配合!。

∥3套精选试卷∥遂宁市2017-2018单科质检数学试题

∥3套精选试卷∥遂宁市2017-2018单科质检数学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1【答案】B【解析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【详解】∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故选B.2.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A.B.C.D.【答案】C【解析】试题分析:由题意可得BQ=x.①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=12BP•BQ,解y=12•3x•x=232x;故A选项错误;②1<x≤2时,P点在CD边上,则△BPQ的面积=12BQ•BC,解y=12•x•3=32x;故B选项错误;③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积=12AP•BQ,解y=12•(9﹣3x)•x=29322x x;故D选项错误.故选C.考点:动点问题的函数图象.3.若a=10,则实数a在数轴上对应的点的大致位置是()A.点E B.点F C.点G D.点H【答案】C【解析】根据被开方数越大算术平方根越大,可得答案.【详解】解:∵9<10<16,∴3<10<4,∵a=10,∴3<a<4,故选:C.【点睛】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出3<10<4是解题关键.4.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则AG GF的值是()A.43B.54C.65D.76【答案】C【解析】如图作,FN∥AD,交AB于N,交BE于M.设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可.【详解】如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是矩形,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=32a,∴FM=52a,∵AE∥FM,∴36552AG AE aGF FM a===,故选C.【点睛】本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题型.5.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A.B.C.D.【答案】C【解析】首先看图可知,蓄水池的下部分比上部分的体积小,故h 与t 的关系变为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h 与时间t 之间的关系分为两段,先快后慢。

2024年四川省遂宁市中考数学试题+答案详解

2024年四川省遂宁市中考数学试题+答案详解

2024年四川省遂宁市中考数学试题+答案详解(试题部分)试卷满分150分 考试时间120分钟注意事项:1.答题前,考生务必将自己的学校、姓名、准考证号用0.5毫米的黑色墨迹签字笔填写在答题卡上,并检查条形码粘贴是否正确.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号;回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1. 下列各数中,无理数是( )A.-2B.12C.D. 02. 古代中国诸多技艺均领先世界.榫卯结构就是其中之一,榫卯是在两个木构件上所采用的一种凹凸结合的连接方式.凸出部分叫榫(或榫头),凹进部分叫卯(或榫眼、榫槽),榫和卯咬合,起到连接作用,右图是某个部件“榫”的实物图,它的主视图是( )A. B. C. D.3. 中国某汽车公司坚持“技术为王,创新为本”的发展理念,凭借研发实力和创新的发展模式在电池、电子、乘用车、商用车和轨道交通等多个领域发挥着举足轻重的作用.2024年第一季度,该公司以62万辆的销售成绩稳居新能源汽车销量榜榜首,市场占有率高达19.4%.将销售数据用科学记数法表示为( ) A. 60.6210⨯B. 66.210⨯C. 56.210´D. 56210⨯4. 下列运算结果正确的是( )A. 321a a −=B. 236a a a ⋅=C. ()44a a −=− D. ()()2339a a a +−=−5. 不等式组32212x x x −<+⎧⎨≥⎩的解集在数轴上表示为( )A.B.C.D.6. 佩佩在“黄娥古镇”研学时学习扎染技术,得到了一个内角和为1080︒的正多边形图案,这个正多边形的每个外角为( ) A. 36︒ B. 40︒C. 45︒D. 60︒7. 分式方程2111mx x =−−−的解为正数,则m 的取值范围( ) A. 3m >− B. 3m >−且2m ≠− C. 3m <D. 3m <且2m ≠−8. 工人师傅在检查排污管道时发现淤泥堆积.如图所示,排污管道的横截面是直径为2米的圆,为预估淤泥量,测得淤泥横截面(图中阴影部分)宽AB 为1米,请计算出淤泥横截面的面积( )A.1π64−B.1π62−C.2π3− D.11π64− 9. 如图1,ABC 与111A B C △满足1A A ∠=∠,11AC AC =,11BC B C =,1C C ∠≠∠,我们称这样的两个三角形为“伪全等三角形”如图2,在ABC 中,AB AC =,点,D E 在线段BC 上,且BE CD =,则图中共有“伪全等三角形”( )A. 1对B. 2对C. 3对D. 4对10. 如图,已知抛物线2y ax bx c =++(a 、b 、c 为常数,且0a ≠)的对称轴为直线=1x −,且该抛物线与x 轴交于点()1,0A ,与y 轴的交点B 在()0,2−,()0,3−之间(不含端点),则下列结论正确的有多少个( )①0abc >; ②930a b c −+≥; ③213a <<; ④若方程21ax bx c x +=++两根为(),m n m n <,则31m n −<<<. A. 1B. 2C. 3D. 4二、填空题(本大题共5个小题,每小题4分,共20分)11. 分解因式:4ab a +=______. 12. 反比例函数1k y x−=的图象在第一、三象限,则点()3k −,在第______象限. 13. 体育老师要在甲和乙两人中选择1人参加篮球投篮大赛,下表是两人5次训练成绩,从稳定的角度考虑,老师应该选______参加比赛.14. 在等边ABC 三边上分别取点D E F 、、,使得AD BE CF ==,连结三点得到DEF ,易得ADF BED CFE ≌≌,设1ABC S =△,则13A EF D D F S S =−△△如图①当12AD AB =时,111344DEF S =−⨯=△如图②当13AD AB =时,211393DEF S =−⨯=△ 如图③当AD 1AB 4=时,37131616DEF S =−⨯=△ …… 直接写出,当110AD AB =时,DEF S =△______. 15. 如图,在正方形纸片ABCD 中,E 是AB 边的中点,将正方形纸片沿EC 折叠,点B 落在点P 处,延长CP 交AD 于点Q ,连结AP 并延长交CD 于点F .给出以下结论:①AEP △为等腰三角形;②F 为CD的中点;③:2:3AP PF =;④3cos 4DCQ ∠=.其中正确结论是______.(填序号)三、解答题(本大题共10个小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤)16. 计算:11sin4512021−⎛⎫︒++ ⎪⎝⎭. 17. 先化简:2121121x x x x −⎛⎫−÷ ⎪−−+⎝⎭,再从1,2,3中选择一个合适的数作为x 的值代入求值. 18. 康康在学习了矩形定义及判定定理1后,继续探究其它判定定理. (1)实践与操作①任意作两条相交的直线,交点记为O ;②以点O 为圆心,适当长为半径画弧,在两条直线上分别截取相等的四条线段OA OB OC OD 、、、; ③顺次连结所得的四点得到四边形ABCD .于是可以直接..判定四边形ABCD 是平行四边形,则该判定定理是:______. (2)猜想与证明通过和同伴交流,他们一致认为四边形ABCD 是矩形,于是猜想得到了矩形的另外一种判定方法:对角线相等的平行四边形是矩形.并写出了以下已知、求证,请你完成证明过程.已知:如图,四边形ABCD 是平行四边形,AC BD =.求证:四边形ABCD 是矩形.19. 小明的书桌上有一个L 型台灯,灯柱AB 高40cm ,他发现当灯带BC 与水平线BM 夹角为9︒时(图1),灯带的直射宽(),DE BD BC CE BC ⊥⊥为35cm ,但此时灯的直射宽度不够,当他把灯带调整到与水平线夹角为30︒时(图2),直射宽度刚好合适,求此时台灯最高点C 到桌面的距离.(结果保留1位小数)(sin90.16,cos90.99,tan90.16≈≈≈︒︒︒)20. 某酒店有A B 、两种客房、其中A 种24间,B 种20间.若全部入住,一天营业额为7200元;若A B 、两种客房均有10间入住,一天营业额为3200元.(1)求AB 、两种客房每间定价分别是多少元? (2)酒店对A 种客房调研发现:如果客房不调价,房间可全部住满;如果每个房间定价每增加10元,就会有一个房间空闲;当A 种客房每间定价为多少元时,A 种客房一天的营业额W 最大,最大营业额为多少元?21. 已知关于x 的一元二次方程()2210x m x m −++−=.(1)求证:无论m 取何值,方程都有两个不相等的实数根;(2)如果方程的两个实数根为12,x x ,且2212129x x x x +−=,求m 的值.22. 遂宁市作为全国旅游城市,有众多著名景点,为了解“五一”假期同学们的出游情况,某实践探究小组对部分同学假期旅游地做了调查,以下是调查报告的部分内容,请完善报告:数据分析及运用(1)本次被抽样调查的学生总人数为______,扇形统计图中,m 古镇”对应圆心角的度数是______; (2)请补全条形统计图;(3)该学校总人数为1800人,请你估计该学校学生“五一”假期未出游的人数;23. 如图,一次函数()10y kx b k =+≠的图象与反比例函数()20y m x=≠的图象相交于()()1,3,1A B n −,两点.(1)求一次函数和反比例函数的表达式;(2)根据图象直接写出12y y >时,x 的取值范围;(3)过点B 作直线OB ,交反比例函数图象于点C ,连结AC ,求ABC 的面积. 24. 如图,AB 是O 的直径,AC 是一条弦,点D 是AC 的中点,DN AB ⊥于点E ,交AC 于点F ,连结DB 交AC 于点G .(1)求证:AF DF =;(2)延长GD 至点M ,使DM DG =,连接AM . ①求证:AM 是O 的切线;②若6DG =,5DF =,求O 的半径.25. 二次函数()20y ax bx c a =++≠的图象与x 轴分别交于点()()1,03,0A B −,,与y 轴交于点()0,3C −,P Q ,为抛物线上的两点.(1)求二次函数的表达式;(2)当P C ,两点关于抛物线对轴对称,OPQ △是以点P 为直角顶点的直角三角形时,求点Q 的坐标; (3)设P 的横坐标为m ,Q 的横坐标为1m +,试探究:OPQ △的面积S 是否存在最小值,若存在,请求出最小值,若不存在,请说明理由.2024年四川省遂宁市中考数学试题+答案详解(答案详解)试卷满分150分 考试时间120分钟注意事项:1.答题前,考生务必将自己的学校、姓名、准考证号用0.5毫米的黑色墨迹签字笔填写在答题卡上,并检查条形码粘贴是否正确.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号;回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1. 下列各数中,无理数是( )A. 2−B.12C.D. 0【答案】C 【解析】【分析】本题考查了无理数的概念,根据无限不循环小数为无理数即可求解,解答本题的关键是掌握无理数的三种形式:1、开方开不尽的数, 2、无限不循环小数,3、含有π的数.【详解】解: 2−,12,0 故选:C .2. 古代中国诸多技艺均领先世界.榫卯结构就是其中之一,榫卯是在两个木构件上所采用的一种凹凸结合的连接方式.凸出部分叫榫(或榫头),凹进部分叫卯(或榫眼、榫槽),榫和卯咬合,起到连接作用,右图是某个部件“榫”的实物图,它的主视图是( )A. B. C. D.【答案】A 【解析】【分析】本题考查了三视图,根据从正面看到的图形即可求解,掌握三视图的画法是解题的关键.【详解】解:由实物图可知,从从正面看到的图形是,故选:A .3. 中国某汽车公司坚持“技术为王,创新为本”的发展理念,凭借研发实力和创新的发展模式在电池、电子、乘用车、商用车和轨道交通等多个领域发挥着举足轻重的作用.2024年第一季度,该公司以62万辆的销售成绩稳居新能源汽车销量榜榜首,市场占有率高达19.4%.将销售数据用科学记数法表示为( ) A. 60.6210⨯ B. 66.210⨯C. 56.210´D. 56210⨯【答案】C 【解析】【分析】此题考查了科学记数法的表示方法,根据科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数即可求解,解题的关键要正确确定a 的值以及n 的值.【详解】解:62万56.210=⨯, 故选:C .4. 下列运算结果正确的是( ) A. 321a a −= B. 236a a a ⋅=C. ()44a a −=− D. ()()2339a a a +−=−【答案】D 【解析】【分析】本题考查了整式的运算,根据合并同类项法则、同底数幂的乘法、积的乘方运算、平方差公式分别运算即可判断求解,掌握整式的运算法则是解题的关键. 【详解】解:A 、32a a a −=,该选项错误,不合题意;B 、235a a a ⋅=,该选项错误,不合题意;C 、()44a a −=,该选项错误,不合题意;D 、()()2339a a a +−=−,该选项正确,符合题意;5. 不等式组32212x x x −<+⎧⎨≥⎩的解集在数轴上表示为( ) A.B. C.D.【答案】B【解析】 【分析】本题考查了在数轴上表示不等式组的解集,先求出不等式组的解集,再根据解集在数轴上表示出来即可判断求解,正确求出一元一次不等式组的解集是解题的关键.【详解】解:32212x x x −<+⎧⎨≥⎩①②,由①得,3x <,由②得,2x ≥,∴不等式组的解集为23x ≤<,∴不等式组的解集在数轴上表示为,故选:B .6. 佩佩在“黄娥古镇”研学时学习扎染技术,得到了一个内角和为1080︒的正多边形图案,这个正多边形的每个外角为( )A. 36︒B. 40︒C. 45︒D. 60︒ 【答案】C【解析】【分析】本题考查了正多边形的外角,设这个正多边形的边数为n ,先根据内角和求出正多边形的边数,再用外角和360︒除以边数即可求解,掌握正多边形的性质是解题的关键.【详解】解:设这个正多边形的边数为n ,则()21801080n −⨯︒=︒,∴8n =,∴这个正多边形的每个外角为360845︒÷=︒,7. 分式方程2111m x x =−−−的解为正数,则m 的取值范围( ) A. 3m >−B. 3m >−且2m ≠−C. 3m <D. 3m <且2m ≠− 【答案】B【解析】【分析】本题考查了解分式方程及分式方程的解,先解分式方程,求出分式方程的解,再根据分式方程解的情况解答即可求解,正确求出分式方程的解是解题的关键.【详解】解:方程两边同时乘以1x −得,21x m =−−,解得3x m =+, ∵分式方程2111m x x =−−−的解为正数, ∴30m +>,∴3m >−,又∵1x ≠,即31m +≠,∴2m ≠−,∴m 的取值范围为3m >−且2m ≠−,故选:B .8. 工人师傅在检查排污管道时发现淤泥堆积.如图所示,排污管道的横截面是直径为2米的圆,为预估淤泥量,测得淤泥横截面(图中阴影部分)宽AB 为1米,请计算出淤泥横截面的面积( )A. 1π64−B. 1π62−C. 2π3−D. 11π64− 【答案】A【解析】【分析】本题考查了垂径定理,勾股定理,等边三角形的判定和性质,求不规则图形的面积,过点O 作OD AB ⊥于D ,由垂径定理得11m 22AD BD AB ===,由勾股定理得m 2OD =,又根据圆的直径为2米可得OA OB AB ==,得到AOB 为等边三角形,即得60AOB ∠=︒,再根据淤泥横截面的面积AOB AOB S S =−扇形即可求解,掌握垂径定理及扇形面积计算公式是解题的关键.【详解】解:过点O 作OD AB ⊥于D ,则11m 22AD BD AB ===,90ADO ∠=︒,∵圆的直径为2米,∴1m OA OB ==,∴在Rt AOD 中,m 2OD ===, ∵OA OB AB ==,∴AOB 为等边三角形,∴60AOB ∠=︒,∴淤泥横截面的面积2260π1111πm 36026AOB AOB S S⎛⨯=−=−⨯= ⎝⎭扇形, 故选:A .9. 如图1,ABC 与111A B C △满足1A A ∠=∠,11AC AC =,11BC BC =,1C C ∠≠∠,我们称这样的两个三角形为“伪全等三角形”如图2,在ABC 中,AB AC =,点,DE 在线段BC 上,且BE CD =,则图中共有“伪全等三角形”( )A. 1对B. 2对C. 3对D. 4对【答案】D【解析】【分析】本题考查了新定义,等边对等角,根据“伪全等三角形”的定义可得两个三角形的两边相等,一个角相等,且这个角不是夹角,据此分析判断,即可求解.【详解】解:∵AB AC =,∴B C ∠=∠,在ABD △和ABE 中,,,B B AB AB AD AE ∠=∠==,在,ACE ACD △△中,,,C C AC AC AE AD ∠=∠==,在,ABD ACD △△中,,,B C AB AC AD AD ∠=∠==,在,ACE ABE 中,,,B C AE AE AC AB ∠=∠==综上所述,共有4对“伪全等三角形”,故选:D .10. 如图,已知抛物线2y ax bx c =++(a 、b 、c 为常数,且0a ≠)的对称轴为直线=1x −,且该抛物线与x 轴交于点()1,0A ,与y 轴的交点B 在()0,2−,()0,3−之间(不含端点),则下列结论正确的有多少个( )①0abc >;②930a b c −+≥; ③213a <<; ④若方程21ax bx c x +=++两根为(),m n m n <,则31m n −<<<.A. 1B. 2C. 3D. 4【答案】B【解析】【分析】本题主要考查二次函数和一次函数的性质,根据题干可得0a >,20b a =>,32c −<<−,即可判断①错误;根据对称轴和一个交点求得另一个交点为()3,0−,即可判断②错误;将c 和b 用a 表示,即可得到332a −<−<−,即可判断③正确;结合抛物线2y ax bx c =++和直线1y x =+与x 轴得交点,即可判断④正确.【详解】解:由图可知0a >,∵抛物线2y ax bx c =++的对称轴为直线=1x −,且该抛物线与x 轴交于点()1,0A , ∴12b x a=−=−,0a b c ++=, 则20b a =>,∵抛物线2y ax bx c =++与y 轴的交点B 在()0,2−,()0,3−之间,∴32c −<<−,则<0abc ,故①错误;设抛物线与x 轴另一个交点(),0x ,∵对称轴为直线=1x −,且该抛物线与x 轴交于点()1,0A ,∴()111x −−=−−,解得3x =−,则930a b c −+=,故②错误;∵32c −<<−,0a b c ++=,20b a =>,∴332a −<−<−,解得213a <<,故③正确; 根据抛物线2y ax bx c =++与x 轴交于点()1,0A 和()3,0−,直线1y x =+过点()1,0−和()0,1,如图,方程21ax bx c x +=++两根为,m n 满足31m n −<<<,故④正确;故选:B .二、填空题(本大题共5个小题,每小题4分,共20分)11. 分解因式:4ab a +=______.【答案】()4a b +【解析】【分析】本题主要考查了提公因式分解因式,提公因式a 即可解答.【详解】解:()44ab a a b +=+故答案为:()4a b +12. 反比例函数1k y x −=的图象在第一、三象限,则点()3k −,在第______象限. 【答案】四##4【解析】【分析】本题考查了反比例函数的性质,点所在的象限,根据反比例函数的性质得出1k >,进而即可求解. 【详解】解:∵反比例函数1k y x −=的图象在第一、三象限, ∴10k −>∴1k >∴点()3k −,在第四象限,故答案为:四.13. 体育老师要在甲和乙两人中选择1人参加篮球投篮大赛,下表是两人5次训练成绩,从稳定的角度考虑,老师应该选______参加比赛.【答案】甲【解析】【分析】本题考查了方差,分别求出甲乙的方差即可判断求解,掌握方差计算公式是解题的关键.【详解】解:甲的平均数为8879885++++=, ∴()()()()()22222288887898880.45S −+−+−+−+−==甲,乙的平均数为6979985++++=, ∴()()()()()2222226898789898 1.65S −+−+−+−+−==乙,∵22S S <甲乙, ∴甲成绩更稳定,∴应选甲参加比赛,故答案为:甲.14. 在等边ABC 三边上分别取点D E F 、、,使得AD BE CF ==,连结三点得到DEF ,易得ADF BED CFE ≌≌,设1ABC S =△,则13A EF D D F S S =−△△如图①当12AD AB =时,111344DEF S =−⨯=△ 如图②当13AD AB =时,211393DEF S =−⨯=△ 如图③当AD 1AB 4=时,37131616DEF S =−⨯=△ …… 直接写出,当110AD AB =时,DEF S =△______. 【答案】73100##0.73 【解析】【分析】本题主要考查数字规律性问题,首先根据已知求得比例为n 时,22213313DEFn n n S n n−−+=−⨯=△,代入10n =即可. 【详解】解:根据题意可得,当1AD AB n =时,22213313DEF n n n S n n−−+=−⨯=△,则当110AD AB =时,221031037310100DEF S −⨯+==△, 故答案为:73100. 15. 如图,在正方形纸片ABCD 中,E 是AB 边的中点,将正方形纸片沿EC 折叠,点B 落在点P 处,延长CP 交AD 于点Q ,连结AP 并延长交CD 于点F .给出以下结论:①AEP △为等腰三角形;②F 为CD 的中点;③:2:3AP PF =;④3cos 4DCQ ∠=.其中正确结论是______.(填序号)【答案】①②③【解析】【分析】设正方形的边长为2a ,1=2=∠∠α,根据折叠的性质得出EA EP =,根据中点的性质得出AE EB =,即可判断①,证明四边形AECF 是平行四边形,即可判断②,求得tan 42BP AP ∠==,设AP x =,则2BP x =,勾股定理得出5AP a =,进而判断③,进而求得AQ ,DQ ,勾股定理求得CQ ,进而根据余弦的定义,即可判断④,即可求解.【详解】解:如图所示,∵E 为AB 的中点,∴AE EB =设正方形的边长为2a ,则AE EB a ==∵折叠,∴12,BP EC ∠=∠⊥,EP EB a ==∴EA EP =∴AEP △是等腰三角形,故①正确;设1=2=∠∠α,∴1802AEP α∠=︒−∴34α∠=∠=∴23∠∠=∴AF EC ∥又∵AE FC ∥∴四边形AECF 是平行四边形,∴CF AE a ==,∴CF FD =a =,即F 是CD 的中点,故②正确;∵BP EC ⊥,AF EC ∥∴BP AF ⊥在Rt ADF 中,AF ===, ∵2tan tan 12BC a BE a α=∠=== ∴tan 42BP AP∠== 设AP x =,则2BP x =,∴2AB a ==∴x =∴AP =,PF ==, ∴:2:3AP PF =,故③正确;连接EQ ,如图所示,∵90QAE ∠=︒,90QPE EPC EBC ∠=∠=∠=︒,AE EP =又EQ EQ =∴AEQ PEQ ≌∴AQ PQ =又∵EA EP =∴EQ AP ⊥∴90AQE AEQ ∠+∠=︒又∵490AEQ ∠+∠=︒∴4AQE α∠=∠=∵tan 2α= ∴2AE AQ= ∴2a AQ = ∴13222QD a a a =−= 在Rt QDC中,52QC a === ∴332cos 552a DQ DCQ QC a ∠===,故④不正确 故答案为:①②③.【点睛】本题考查了正方形与折叠问题,解直角三角形,全等三角形的性质与判定,勾股定理,熟练掌握以上知识是解题的关键.三、解答题(本大题共10个小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤)16. 计算:11sin4512021−⎛⎫︒++ ⎪⎝⎭. 【答案】2024 【解析】【分析】此题主要考查了实数运算及二次根式的运算,直接利用负整数指数幂的性质、特殊角的三角函数值、绝对值的性质、算术平方根分别化简得出答案,正确化简各数是解题关键.【详解】解:11sin4512021−⎛⎫︒− ⎪⎝⎭12202122=+−++ 2024=.17. 先化简:2121121x x x x −⎛⎫−÷ ⎪−−+⎝⎭,再从1,2,3中选择一个合适的数作为x 的值代入求值. 【答案】1x −;2 【解析】【分析】本题考查了分式化简求值;先根据分式的加减计算括号内的,同时将除法转化为乘法,再根据分式的性质化简,最后根据分式有意义的条件,将字母的值代入求解. 【详解】解: 2121121x x x x −⎛⎫−÷ ⎪−−+⎝⎭ ()2111·12x x x x −−−=−− 1x =−∵1,2x ≠∴当3x =时,原式312=−=18. 康康在学习了矩形定义及判定定理1后,继续探究其它判定定理. (1)实践与操作①任意作两条相交的直线,交点记为O ;②以点O 为圆心,适当长为半径画弧,在两条直线上分别截取相等的四条线段OA OB OC OD 、、、; ③顺次连结所得的四点得到四边形ABCD .于是可以直接..判定四边形ABCD 是平行四边形,则该判定定理是:______. (2)猜想与证明通过和同伴交流,他们一致认为四边形ABCD 是矩形,于是猜想得到了矩形的另外一种判定方法:对角线相等的平行四边形是矩形.并写出了以下已知、求证,请你完成证明过程.已知:如图,四边形ABCD 是平行四边形,AC BD =.求证:四边形ABCD 是矩形.【答案】(1)对角线互相平分的四边形是平行四边形 (2)证明见解析 【解析】【分析】(1)由作图结合对角线互相平分的四边形是平行四边形可得答案;(2)先证明180ABC BCD ∠+∠=︒,再证明ABC DCB △≌△,可得90ABC DCB ∠=∠=︒,从而可得结论. 【小问1详解】解:由作图可得:OA OC =,OB OD =, ∴四边形ABCD 是平行四边形,该判定定理是:对角线互相平分的四边形是平行四边形; 【小问2详解】∵四边形ABCD 是平行四边形, ∴AB CD ∥,AB CD =, ∴180ABC BCD ∠+∠=︒, ∵AC BD =,BC CB =, ∴ABC DCB △≌△, ∴90ABC DCB ∠=∠=︒, ∴四边形ABCD 是矩形.【点睛】本题考查的是平行四边形的判定与性质,矩形的判定,全等三角形的判定与性质,掌握平行四边形与矩形的判定方法是关键.19. 小明的书桌上有一个L 型台灯,灯柱AB 高40cm ,他发现当灯带BC 与水平线BM 夹角为9︒时(图1),灯带的直射宽(),DE BD BC CE BC ⊥⊥为35cm ,但此时灯的直射宽度不够,当他把灯带调整到与水平线夹角为30︒时(图2),直射宽度刚好合适,求此时台灯最高点C 到桌面的距离.(结果保留1位小数)(sin90.16,cos90.99,tan90.16≈≈≈︒︒︒)【答案】此时台灯最高点C 到桌面的距离为57.3cm 【解析】【分析】本题考查了解直角三角形的应用;在图1中,cos9BC BM =⋅︒,在图2中求得CN ,进而根据灯柱AB 高40cm ,点C 到桌面的距离为AB CN +,即可求解. 【详解】解:如图所示,过点B 作BM AE ∥交CE 于点M ,在图1中,DE BM ∥ ∵,BD BC CE BC ⊥⊥ ∴BD CE ∥∴四边形BDEM 是平行四边形, ∴35BM DE ==在Rt BMC △中,cos9BC BM =⋅︒ 在图2中,过点C 作CN BM ⊥于点N ,∴1sin 30cos9sin 30350.9917.3cm 2CN BC BM =︒=⋅︒⋅︒=⨯⨯≈ ∵灯柱AB 高40cm , 点C 到桌面的距离为AB CN+=4017.357.3cm +=答:此时台灯最高点C 到桌面的距离为57.3cm .20. 某酒店有A B 、两种客房、其中A 种24间,B 种20间.若全部入住,一天营业额为7200元;若A B 、两种客房均有10间入住,一天营业额为3200元. (1)求A B 、两种客房每间定价分别是多少元?(2)酒店对A 种客房调研发现:如果客房不调价,房间可全部住满;如果每个房间定价每增加10元,就会有一个房间空闲;当A 种客房每间定价为多少元时,A 种客房一天的营业额W 最大,最大营业额为多少元?【答案】(1)A 种客房每间定价为200元,B 种客房每间定价为为120元;(2)当A 种客房每间定价为220元时,A 种客房一天的营业额W 最大,最大营业额为4840元. 【解析】【分析】(1)设A 种客房每间定价为x 元,B 种客房每间定价为为y 元,根据题意,列出方程组即可求解;(2)设A 种客房每间定价为a 元,根据题意,列出W 与a 的二次函数解析式,根据二次函数的性质即可求解;本题考查了二元一次方程组的应用,二次函数的应用,根据题意,正确列出二元一次方程组和二次函数解析式是解题的关键. 【小问1详解】解:设A 种客房每间定价为x 元,B 种客房每间定价为为y 元,由题意可得,2420720010103200x y x y +=⎧⎨+=⎩,解得200120x y =⎧⎨=⎩,答:A 种客房每间定价为200元,B 种客房每间定价为为120元; 【小问2详解】解:设A 种客房每间定价为a 元, 则()222001124442204840101010a W a a a a −⎛⎫=−=−+=−−+ ⎪⎝⎭,∵1010−<, ∴当220a =时,W 取最大值,4840W =最大值元,答:当A 种客房每间定价为220元时,A 种客房一天的营业额W 最大,最大营业额为4840元. 21. 已知关于x 的一元二次方程()2210x m x m −++−=.(1)求证:无论m 取何值,方程都有两个不相等的实数根;(2)如果方程的两个实数根为12,x x ,且2212129x x x x +−=,求m 的值.【答案】(1)证明见解析; (2)11m =或22m =−. 【解析】【分析】本题主要考查了一元二次方程根的判别式,根与系数的关系,解一元二次方程,掌握一元二次方程根的判别式是解题的关键.(1)根据根的判别式证明0∆>恒成立即可;(2)由题意可得,122x x m +=+,121⋅=−x x m ,进行变形后代入即可求解. 【小问1详解】证明:()()22Δ24118m m m ⎡⎤=−+−⨯⨯−=+⎣⎦, ∵无论m 取何值,280m +>,恒成立,∴无论m 取何值,方程都有两个不相等的实数根. 【小问2详解】解:∵12,x x 是方程()2210x m x m −++−=的两个实数根,∴122x x m +=+,121⋅=−x x m ,∴()()()22221212121232319x x x x x x x x m m +−=+−=+−−=,解得:11m =或22m =−.22. 遂宁市作为全国旅游城市,有众多著名景点,为了解“五一”假期同学们的出游情况,某实践探究小组对部分同学假期旅游地做了调查,以下是调查报告的部分内容,请完善报告:数据分析及运用(1)本次被抽样调查的学生总人数为______,扇形统计图中,m古镇”对应圆心角的度数是______;(2)请补全条形统计图;(3)该学校总人数为1800人,请你估计该学校学生“五一”假期未出游的人数;【答案】(1)100,10,72︒;(2)见解析;(3)144;(4)1 4【解析】【分析】本题考查了条形统计图与扇形统计图信息关联,样本估计总体,列表法求概率;(1)根据F组的人数除以占比,即可得出总人数,进而求得C组的人数,得出m的值,根据B的占比乘以360︒,即可得出对应圆心角的度数;(2)根据C组的人数补全统条形计图,(3)用1800乘以E组的占比,即可求解.(4)用列表法求概率,即可求解.【详解】解:(1)本次被抽样调查的学生总人数为3010030%=, C 组的人数为:10012202083010−−−−−=,∴10%100%10%100m =⨯=, ∴10m =B :龙凤古镇”对应圆心角的度数是2036072100⨯︒=︒ 故答案为:100,10,72︒.(2)根据(1)可得C 组人数为10人,补全统计图,如图所示,(3)解:81800144100⨯= 答:请你估计该学校学生“五一”假期未出游的人数为144人; (4)列表如下,共有16种等可能结果,其中他们选择同一景点的情形有4种, ∴他们选择同一景点的概率为41164= 23. 如图,一次函数()10y kx b k =+≠的图象与反比例函数()20my m x=≠的图象相交于()()1,3,1A B n −,两点.(1)求一次函数和反比例函数的表达式;(2)根据图象直接写出12y y >时,x 的取值范围;(3)过点B 作直线OB ,交反比例函数图象于点C ,连结AC ,求ABC 的面积. 【答案】(1)反比例函数表达式为23y x=,一次函数表达式为12y x =+ (2)30x −<<或1x > (3)8 【解析】【分析】(1)利用待定系数法即可求解; (2)根据函数图象即可求解;(3)如图,设直线12y x =+与y 轴相交于点D ,过点A 作AM x ⊥轴于点M ,过点C 作CN x ⊥轴于点N ,求出点D 坐标,再根据关于原点对称的点的坐标特征求出点C 坐标,根据ABCBODCONADOM AMNC SSS S S=++−梯形梯形计算即可求解;本题考查了一次函数与反比例函数的交点问题,反比例函数的性质,利用待定系数法求出函数解析式是解题的关键. 【小问1详解】 解:把()1,3A 代入2m y x =得,31m =, ∴3m =,∴反比例函数表达式为23y x=, 把(),1B n −代入23y x =得,31n−=, ∴3n =−, ∴()3,1B −−,把()1,3A 、()3,1B −−代入1y kx b =+得,313k bk b =+⎧⎨−=−+⎩, 解得12k b =⎧⎨=⎩, ∴一次函数表达式为12y x =+; 【小问2详解】解:由图象可得,当12y y >时,x 的取值范围为30x −<<或1x >; 【小问3详解】解:如图,设直线12y x =+与y 轴相交于点D ,过点A 作AM x ⊥轴于点M ,过点C 作CN x ⊥轴于点N ,则()0,2D ,∴2OD =,∵点B C 、关于原点对称, ∴()3,1C ,∴312MN =−=,1CN =,3ON = ∴ABCBODCONADOM AMNC SSS S S=++−梯形梯形()()111123231132312222=⨯⨯+⨯+⨯+⨯+⨯−⨯⨯ 8=,即ABC 的面积为8. 24. 如图,AB 是O 的直径,AC 是一条弦,点D 是AC 的中点,DN AB ⊥于点E ,交AC 于点F ,连结DB 交AC 于点G .(1)求证:AF DF =;(2)延长GD 至点M ,使DM DG =,连接AM . ①求证:AM 是O 的切线;②若6DG =,5DF =,求O 的半径.【答案】(1)证明见解析 (2)①证明见解析,②O 的半径为203. 【解析】【分析】(1)如图,连接AD ,证明AD CD =,可得ABD CAD ∠=∠,证明AN AD =,可得ADN ABD ∠=∠,进一步可得结论;(2)①证明90ADB ADM ∠=︒=∠,可得AD 是MG 的垂直平分线,可得AM AG =,M AGD GAB B ∠=∠=∠+∠,MAD GAD ∠=∠,而GAD B ∠=∠,可得MAD B ∠=∠,进一步可得结论;②证明DE AM ∥,可得GDF GMA ∽,求解10AM =,8AD ==,结合8tan 610AD AB ABM MD AM ∠====,可得答案. 【小问1详解】 证明:如图,连接AD ,∵点D 是AC 的中点, ∴AD CD =,∴ABD CAD ∠=∠,∵DN AB ⊥,AB 为O 的直径, ∴AN AD =,∴ADN ABD ∠=∠,∴ADN CAD ∠=∠,∴AF DF =.【小问2详解】证明:①∵AB 为O 的直径,∴90ADB ADM ∠=︒=∠,∴90B BAD ∠+∠=︒,∵DM DG =,∴AD 是MG 的垂直平分线,∴AM AG =,∴M AGD GAB B ∠=∠=∠+∠,MAD GAD ∠=∠,而GAD B ∠=∠,∴MAD B ∠=∠,∴90MAD BAD B BAD ∠+∠=∠+∠=︒,∴90BAM ∠=︒,∵AB 为O 的直径, ∴AM 是O 的切线;②∵6DG =,∴6DM DG ==,∵DN AB ⊥,90MAB ∠=︒,∴DE AM ∥,∴GDF GMA ∽, ∴612DG DF GM AM ==, ∵5DF =,∴10AM =,∴8AD ==,∴8tan 610AD AB AB M MD AM ∠====, ∴804063AB ==, ∴O 的半径为203. 【点睛】本题考查的是圆周角定理的应用,弧与圆心角之间的关系,切线的判定与性质,相似三角形的判定与性质,锐角三角函数的应用,做出合适的辅助线是解本题的关键.25. 二次函数()20y ax bx c a =++≠的图象与x 轴分别交于点()()1,03,0A B −,,与y 轴交于点()0,3C −,P Q ,为抛物线上的两点.(1)求二次函数的表达式;(2)当P C ,两点关于抛物线对轴对称,OPQ △是以点P 为直角顶点的直角三角形时,求点Q 的坐标; (3)设P 的横坐标为m ,Q 的横坐标为1m +,试探究:OPQ △的面积S 是否存在最小值,若存在,请求出最小值,若不存在,请说明理由.【答案】(1)2=23y x x −−(2)235,39Q ⎛⎫− ⎪⎝⎭ (3)存在,最小值为118【解析】 【分析】本题考查了二次函数的综合题,待定系数法求函数解析式,勾股定理,已知两点坐标表示两点距离,二次函数最值,熟练掌握知识点,正确添加辅助线是解题的关键.(1)用待定系数法求解即可;。

四川省遂宁市中考数学试题(word版-含解析)

四川省遂宁市中考数学试题(word版-含解析)

考点: 线段垂直平分线的性质. 分析: 首先根据 MN 是线段 AB 的垂直平分线,可得 AN=BN,然后根据△BCN 的周长是 7cm,以及 AN+NC=AC,求出 BC 的长为多少即可. 解答: 解:∵MN 是线段 AB 的垂直平分线, ∴AN=BN, ∵△BCN 的周长是 7cm, ∴BN+NC+BC=7(cm) , ∴AN+NC+BC=7(cm) , ∵AN+NC=AC, ∴AC+BC=7(cm) , 又∵AC=4cm,
义务教育基础课程初中教学资料
祝福您及家人身体健康、万事如意、阖家欢乐!祝福您及家人身体健康、万事如意、阖家欢乐!祝福您及家人身体健康、万事如意、阖家欢乐!祝福您及家人身体健康、万事如意、阖家欢乐!祝福您及家人身体健康、万事如意、阖家欢乐!祝福您及家人身体健康、万事如意、阖家欢乐!祝福您及家人身体健康、万事如意、阖家欢乐!祝福您及家人身体健康、万事如意、阖家欢乐!祝福您及家人身体健康、万事如意、阖家欢乐!
1
A.
B.
C.
D.
考点: 简单组合体的三视图. 分析: 根据俯视图是从上边看的到的视图,可得答案. 解答: 解:从上边看左边一个小正方形,右边一个小正方形,故 B 符合题意; 故选:B. 点评: 本题考查了简单组合体的三视图,从上边看的到的视图是俯视图. 4. (4 分) (2015•遂宁)一个不透明的布袋中,放有 3 个白球,5 个红球,它们除颜色外完 全相同,从中随机摸取 1 个,摸到红球的概率是( )
故选:C. 点评: 本题考查了有理数的减法,解决本题的关键是熟记有理数的减法法则. 2.下列运算正确的是( ) A.a•a3=a3 B.2(a﹣b)=2a﹣b C.(a3)2=a5 D.a2﹣2a2=﹣a2

2017年中考数学试卷两套合集四附答案解析

2017年中考数学试卷两套合集四附答案解析

2017年中考数学试卷两套合集四附答案解析中考数学试卷一.仔细选一选(本题有10小题,每题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.是一个()A.整数 B.分数 C.有理数D.无理数2.下列计算正确的是()A.的平方根为±8 B.的算术平方根为8C.的立方根为2 D.的立方根为±23.小明想用图形1通过作图变换得到图形2,下列这些变化中不可行的是()A.轴对称变换B.平移变换 C.旋转变换 D.中心对称变换4.下列各式计算正确的有()A.(p5q4)÷(2p3q)=2p2q3B.(﹣a+5)(﹣a﹣5)=﹣a2﹣25C.D.5.如果圆内接四边形ABCD的对角线交点恰好是该圆的圆心,则四边形ABCD一定是()A.平行四边形B.矩形 C.菱形 D.正方形6.已知a﹣b=1,则a2﹣b2﹣2b的值为()A.1 B.2 C.3 D.47.某种数码产品原价每只400元,经过连续两次降价后,现在每只售价为256元,则平均每次降价的百分率为()A.20% B.80% C.180% D.20%或180%8.为了有效保护环境,某居委会倡议居民将生活垃圾进行可回收的、不可回收的和有害的分类投放,一天,小林把垃圾分装在三个袋中,则他任意投放垃圾,把三个袋子都放错位的概率是()A.B.C.D.9.一个多边形的内角中,锐角的个数最多有()A.3个B.4个C.5个D.6个10.已知抛物线y=a(x﹣m)2+n的顶点为A,与y轴的交点为B,若直线AB的解析式为y=﹣2x+b,点A,B关于原点的对称点分别为A′,B′,且四边形ABA′B′为矩形,则下列关于m,n,b的关系式正确的是()A.5m=4b B.4m=5b C.5n=3b D.3n=5b二、认真填一填(本题有6个小题,每小题4分,共24分)11.数据1,5,2,1,5,4的中位数是,方差为.12.把代数式4a2b﹣3b2(4a﹣3b)进行因式分解得:.13.函数y=x2﹣2x﹣3,当y<0时,x的取值范围为;当﹣1<x<2时,y的取值范围为.14.已知弦AB与CD交于点E,弧的度数比弧的度数大20°,若∠CEB=m°,则∠CAB= (用关于m的代数式表示).15.正方形ABCD的边长为acm,E、F分别是BC、CD的中点,连接BF、DE,则图中阴影部分的面积是 cm2.16.如图,△ABC中,∠ACB=90°,BC=6cm,AC=8cm,动点P从A出发,以2cm/s的速度沿△ABC 的边按A→B→C→A的顺序运动一周,则点P出发s时,△BCP为等腰三角形.三、全面答一答(本题有7小题,共66分,)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.先化简,再求值:÷(x+2﹣),其中x满足x(x2﹣4)=0.18.为了深化我省义务教育课程改革,某校积极开展本校课程建设,计划成立“科普观察”、“架子鼓”、“足球”、“摄影”等多个社团,要求每个学生都自主选择其中一个社团.为此,随机调查了本校七、八、九年级部分学生选择社团的意向,并将调查结果绘制成如图统计表(不完整):某校被调查学生选择社团意向统计表架子鼓科普观察足球摄影其他选择意向所占30% a b 10% c百分比根据统计图表中的信息,解答下列问题:(1)求架子鼓和摄影社团的人数及a,b的值;(2)将条形统计图补充完整;(3)若该校共有1200名学生,试估计全校选择“科普观察”社团的学生人数.Array19.某政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯,物价部门规定,这种护眼台灯的销售单价不得高于32元.销售过程中发现,月销售量y(件)与销售单价x(元)之间的关系可看作一次函数:y=﹣10x+n.(1)当销售单价x定为25元时,李明每月获得利润w为1250元,求n的值;(2)当销售单价定为多少元时,每月可获得最大利润?并求最大利润是多少?20.如图,矩形ABCD中,AB=1,BC=2,BC在x轴上,一次函数y=kx﹣2的图象经过点A、C,并与y轴交于点E,反比例函数y=的图象经过点A.(1)点E的坐标是;(2)求反比例函数的解析式;(3)求当一次函数的值小于反比例函数的值时,x的取值范围.21.如图,已知⊙O的直径AB与弦CD互相垂直,垂足为点E.⊙O的切线BF与弦AD的延长线相交于点F,且AD=3,cos∠BCD=.(1)求证:CD∥BF;(2)求⊙O的半径;(3)求弦CD的长.22.如图,已知tan∠EOF=2,点C在射线OF上,OC=12.点M是∠EOF内一点,MC⊥OF于点C,MC=4.在射线CF上取一点A,连结AM并延长交射线OE于点B,作BD⊥OF于点D.(1)当AC的长度为多少时,△AMC和△BOD相似;(2)当点M恰好是线段AB中点时,试判断△AOB的形状,并说明理由;(3)连结BC.当S△AMC=S△BOC时,求AC的长.23.关于x的函数y=2mx2+(1﹣m)x﹣1﹣m(m是实数),探索发现了以下四条结论:①函数图象与坐标轴总有三个不同的交点;②当m=﹣3时,函数图象的顶点坐标是(,);③当m>0时,函数图象截x轴所得的线段长度大于;④当m≠0时,函数图象总经过两个定点.请你判断四条结论的真假,并说明理由.参考答案与试题解析一.仔细选一选(本题有10小题,每题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.是一个()A.整数 B.分数 C.有理数D.无理数【考点】无理数.【分析】根据无理数的定义即可作答.【解答】解:∵是一个无限不循环小数,∴是一个无理数.故选D.【点评】本题考查了无理数的定义:无限不循环小数为无理数.初中范围内学习的无理数有三类:①π类,如2π,等;②开方开不尽的数,如,等;③虽有规律但是无限不循环的数,如0.1010010001…,等.2.下列计算正确的是()A.的平方根为±8 B.的算术平方根为8C.的立方根为2 D.的立方根为±2【考点】立方根;平方根;算术平方根.【分析】依据平方根、算术平方根、立方根的性质求解即可.【解答】解:A、=8,8的平方根为±2,故A错误;B、=8,8的算术平方根为2,故B错误;C、=8,8的立方根为2,故C正确;D、=8,8的立方根为2,故D错误.故选:C.【点评】本题主要考查的是立方根、平方根、算术平方根的性质,熟练掌握相关知识是解题的关键.3.小明想用图形1通过作图变换得到图形2,下列这些变化中不可行的是()A.轴对称变换B.平移变换 C.旋转变换 D.中心对称变换【考点】几何变换的类型.【分析】根据轴对称变换、平移变换、旋转变换和中心对称变换的概念进行判断即可.【解答】解:连接AB,作线段AB的垂直平分线,垂足为O,∴图形1以直线l为对称轴通过轴对称变换得到图形2,A可行;图形1以O为旋转中心,旋转180°得到图形2,C、D可行;故选:B.【点评】本题考查的是几何变换的类型,掌握轴对称变换、平移变换、旋转变换和中心对称变换的概念是解题的关键.4.下列各式计算正确的有()A.(p5q4)÷(2p3q)=2p2q3B.(﹣a+5)(﹣a﹣5)=﹣a2﹣25C.D.【考点】分式的加减法;平方差公式;整式的除法.【分析】根据单项式的除法、平方差公式以及分式的加减法进行计算即可.【解答】解:A、(p5q4)÷(2p3q)=p2q3,故错误;B、(﹣a+5)(﹣a﹣5)=a2﹣25,故错误;C、+=,故错误;D、正确;故选D.【点评】本题考查了分式的加减、平方差公式以及分式的加减,掌握运算法则是解题的关键.5.如果圆内接四边形ABCD的对角线交点恰好是该圆的圆心,则四边形ABCD一定是()A.平行四边形B.矩形 C.菱形 D.正方形【考点】圆内接四边形的性质.【分析】由圆内接四边形ABCD的对角线交点恰好是该圆的圆心,根据直径所对的圆周角是直角,可求得四边形ABCD的四个内角都是直角,即可判定四边形ABCD一定是矩形.【解答】解:∵圆内接四边形ABCD的对角线交点恰好是该圆的圆心,∴∠A=∠B=∠C=∠D=90°,∴四边形ABCD一定是矩形.故选B.【点评】此题考查了矩形的判定以及圆的内接四边形的性质.注意直径所对的圆周角是直角定理的应用是解此题的关键.6.已知a﹣b=1,则a2﹣b2﹣2b的值为()A.1 B.2 C.3 D.4【考点】完全平方公式.【分析】由已知得a=b+1,代入所求代数式,利用完全平方公式计算.【解答】解:∵a﹣b=1,∴a=b+1,∴a2﹣b2﹣2b=(b+1)2﹣b2﹣2b=b2+2b+1﹣b2﹣2b=1.故选:A.【点评】本题考查了完全平方公式的运用.关键是利用换元法消去所求代数式中的a.7.某种数码产品原价每只400元,经过连续两次降价后,现在每只售价为256元,则平均每次降价的百分率为()A.20% B.80% C.180% D.20%或180%【考点】一元二次方程的应用.【分析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=256,把相应数值代入即可求解.【解答】解:设平均每次降价的百分率为x,根据题意得:400(1﹣x)2=256解得:x=20%或x=1.8(舍去),故选A.【点评】考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.8.为了有效保护环境,某居委会倡议居民将生活垃圾进行可回收的、不可回收的和有害的分类投放,一天,小林把垃圾分装在三个袋中,则他任意投放垃圾,把三个袋子都放错位的概率是()A.B.C.D.【考点】列表法与树状图法.【专题】计算题.【分析】(装可回收的、不可回收的和有害的垃圾的三个袋分别用A、B、C表示,陈放可回收的、不可回收的和有害的垃圾的地方分别为a、b、c)画树状图展示所用6种等可能的结果数,再找出把三个袋子都放错位的结果数,然后根据概率公式求解.【解答】解:(装可回收的、不可回收的和有害的垃圾的三个袋分别用A、B、C表示,陈放可回收的、不可回收的和有害的垃圾的地方分别为a、b、c)画树状图:共有6种等可能的结果数,其中他任意投放垃圾,把三个袋子都放错位的结果数为2,所以他任意投放垃圾,把三个袋子都放错位的概率==.故选C.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.9.一个多边形的内角中,锐角的个数最多有()A.3个B.4个C.5个D.6个【考点】多边形内角与外角.【分析】利用多边形的外角和是360度即可求出答案.【解答】解:因为多边形的外角和是360度,在外角中最多有三个钝角,如果超过三个则和一定大于360度,多边形的内角与相邻的外角互为邻补角,则外角中最多有三个钝角时,内角中就最多有3个锐角.故选A.【点评】本题考查了多边形的内角问题.由于内角和不是定值,不容易考虑,而外角和是360度不变,因而内角的问题可以转化为外角的问题进行考虑.10.已知抛物线y=a(x﹣m)2+n的顶点为A,与y轴的交点为B,若直线AB的解析式为y=﹣2x+b,点A,B关于原点的对称点分别为A′,B′,且四边形ABA′B′为矩形,则下列关于m,n,b的关系式正确的是()A.5m=4b B.4m=5b C.5n=3b D.3n=5b【考点】二次函数的性质;一次函数图象上点的坐标特征.【分析】根据题意可知:A(m,n),B(0,b),所以B′的坐标为(0,﹣b),由题意可知:四边形ABA′B′为矩形,所以对角线AA′=BB′.【解答】解:由题意可知:A(m,n),B(0,b),∵点A,B关于原点的对称点分别为A′,B′,∴BB′=|2b|,∵四边形ABA′B′为矩形,∴AA′=BB′,∵OA2=m2+n2,∵AA′2=4OA2=4(m2+n2),∴4(m2+n2)=4b2,把(m,n)代入y=﹣2x+b,∴n=﹣2m+b,∴b2=m2+(﹣2m+b)2,化简可得:5m=4b,故选(A)【点评】本题考查了二次函数的性质,涉及矩形的性质,二次函数的性质,完全平方差公式,综合程度较高.二、认真填一填(本题有6个小题,每小题4分,共24分)11.数据1,5,2,1,5,4的中位数是 3 ,方差为 3 .【考点】方差;中位数.【专题】推理填空题.【分析】首先将这组数据按照从小到大的顺序排列,则中间两个数据的平均数就是这组数据的中位数;然后根据方差的含义和求法,求出数据1,5,2,1,5,4的方差是多少即可.【解答】解:∵数据1,5,2,1,5,4按照从小到大的顺序排列是:1,1,2,4,5,5,∴数据1,5,2,1,5,4的中位数是:(2+4)÷2=6÷2=3∵数据1,5,2,1,5,4的平均数是:(1+5+2+1+5+4)÷6=18÷6=3∴数据1,5,2,1,5,4的方差是:×[(1﹣3)2+(5﹣3)2+(2﹣3)2+(1﹣3)2+(5﹣3)2+(4﹣3)2]=×[4+4+1+4+4+1]=×18=3故答案为:3,3.【点评】此题主要考查了中位数、方差的含义和求法,要熟练掌握.12.把代数式4a2b﹣3b2(4a﹣3b)进行因式分解得:b(2a﹣3b)2.【考点】提公因式法与公式法的综合运用.【专题】计算题;因式分解.【分析】原式去括号整理后,提取b,再利用完全平方公式分解即可.【解答】解:原式=4a2b﹣12ab2+9b3=b(4a2﹣12ab+9b2)=b(2a﹣3b)2,故答案为:b(2a﹣3b)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.函数y=x2﹣2x﹣3,当y<0时,x的取值范围为﹣1<x<3 ;当﹣1<x<2时,y的取值范围为﹣4<y<0 .【考点】抛物线与x轴的交点.【分析】根据函数解析式可以确定图象与x轴的交点是(﹣1,0),(3,0),又当y<0时,图象在x轴的下方,由此可以确定x的取值范围,结合函数解析式求出y的取值范围.【解答】解:当y=0时,即x2﹣2x﹣3=0,∴x1=﹣1,x2=3,∴图象与x轴的交点是(﹣1,0),(3,0),当y<0时,图象在x轴的下方,此时﹣1<x<3.当﹣1<x<2时,y的取值范围为:﹣4<y<0,故答案为:﹣1<x<3,﹣4<y<0.【点评】本题主要考查了抛物线与x轴的交点问题,解答此题的关键是求出图象与x轴的交点,然后由图象找出当y<0时,自变量x的范围,锻炼了学生数形结合的思想方法.14.已知弦AB与CD交于点E,弧的度数比弧的度数大20°,若∠CEB=m°,则∠CAB=(用关于m的代数式表示).【考点】圆心角、弧、弦的关系.【分析】由弧BC与AD的度数之差为20°,根据圆周角定理,可得∠CAB﹣∠C=×20°=10°,又由∠CEB=60°,可得∠CAB+∠C=60°,继而求得答案.【解答】解:∵弧BC与AD的度数之差为20°,∴∠CAB﹣∠C=×20°=10°,∵∠CEB=∠CAB+∠C=m°,∴∠CAB=.故答案为:.【点评】此题考查了圆周角定理以及三角形外角的性质.此题难度不大,注意掌握方程思想与数形结合思想的应用.15.正方形ABCD的边长为acm,E、F分别是BC、CD的中点,连接BF、DE,则图中阴影部分的面积是 cm2.【考点】正方形的性质.【专题】几何图形问题.【分析】连接BD,可看出阴影部分的面积等于正方形的面积+一个三角形的面积,用相似求出三角形的面积,阴影部分的面积可证.【解答】解:连接BD,EF.∵阴影部分的面积=△ABD的面积+△BDG的面积(G为BF与DE的交点),∴△ABD的面积=正方形ABCD的面积=a2.∵△BCD中EF为中位线,∴EF∥BD,EF=BD,∴△GEF∽△GBD,∴DG=2GE,∴△BDE的面积=△BCD的面积.∴△BDG的面积=△BDE的面积=△BCD的面积=•a2=a2.∴阴影部分的面积=a2+a2=a2.故答案为: a2.【点评】本题考查正方形的性质,正方形的四个边长相等,关键是连接BD,把阴影部分分成两部分计算.16.如图,△ABC中,∠ACB=90°,BC=6cm,AC=8cm,动点P从A出发,以2cm/s的速度沿△ABC 的边按A→B→C→A的顺序运动一周,则点P出发2或2.5或11或1.4 s时,△BCP为等腰三角形.【考点】勾股定理;等腰三角形的判定.【专题】动点型.【分析】根据∠ACB=90°,BC=6cm,AC=8cm,利用勾股定理求出AB的长,①当点P在AB边上时;②当点P在BC边上时,不存在△BCP;③点P在AC边上时;利用P点的运动速度求出时间即可,注意分类讨论.【解答】解;∵△ABC中,∠ACB=90°,BC=6cm,AC=8cm,∴AB===10(cm),①当点P在AB边上时,当BP=BC=6cm时,∴AP=AB﹣BP=10﹣6=4,∵动点P从A出发,以2cm/s的速度沿AB移动,4÷2=2,∴点P出发2s时,△BCP为等腰三角形;当PC=PB时,P为斜边AB的中点,此时AP=BP=PC=5cm,5÷2=2.5,∴点P出发2.5s时,△BCP为等腰三角形;当BC=PC时,过点C作CD⊥AB于点D,如图1所示:则△BCD∽△BAC,∴=,即,解得:BD=3.6,∴BP=2BD=7.2,∴AP=10﹣7.2=2.8,2.8÷2=1.4,∴点P出发1.4s时,△BCP为等腰三角形;②当点P在BC边上时,不存在△BCP;③点P在AC边上时,CP=CB=6,AB+BC+CP=10+6+6=22,22×2=11,∴点P出发11s时,△BCP为等腰三角形.综上所述:点P出发2s或2.5s或11s或1.4s时,△BCP为等腰三角形;故答案为:2或2.5或11或1.4.【点评】此题主要考查勾股定理和等腰三角形的判定,解答此题的关键是首先根据勾股定理求出AB 的长,然后再利用等腰三角形的性质去判定.三、全面答一答(本题有7小题,共66分,)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.先化简,再求值:÷(x+2﹣),其中x满足x(x2﹣4)=0.【考点】分式的化简求值.【专题】计算题.【分析】先把括号内通分和把除法运算化为乘法运算,再把分子分母因式分解,约分得到原式,接着解x(x2﹣4)=0,然后利用分式有意义的条件确定x的值,再把x的值代入计算即可.【解答】解:原式=÷=•==,解x(x2﹣4)=0得x=0或x=2或x=﹣2,因为x≠0且x≠2,所以x=﹣2,当x=﹣2时,原式==﹣.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.18.为了深化我省义务教育课程改革,某校积极开展本校课程建设,计划成立“科普观察”、“架子鼓”、“足球”、“摄影”等多个社团,要求每个学生都自主选择其中一个社团.为此,随机调查了本校七、八、九年级部分学生选择社团的意向,并将调查结果绘制成如图统计表(不完整):某校被调查学生选择社团意向统计表架子鼓科普观察足球摄影其他选择意向所占30% a b 10% c百分比根据统计图表中的信息,解答下列问题:(1)求架子鼓和摄影社团的人数及a,b的值;(2)将条形统计图补充完整;(3)若该校共有1200名学生,试估计全校选择“科普观察”社团的学生人数.【考点】条形统计图;用样本估计总体;统计表.【分析】(1)根据统计图和表格中的数据可以求得本次抽查的人数,从而可以解答本题;(2)根据(1)中求得的架子鼓和摄影社团的人数,可以将条形统计图补充完整;(3)根据统计图和表格中的数据可以估计全校选择“科普观察”社团的学生人数.【解答】解:(1)由图可得,本次抽查的学生有:(70+40+10)÷(1﹣30%﹣10%)=120÷60%=200(人),∴架子鼓的人数为:200×30%=60,摄影社团的人数为:200×10%=20,a=,b=,即架子鼓的人数为60,摄影社团的人数为20,a的值是35%,b的值是20%;(2)由(1)知架子鼓的人数为60,摄影社团的人数为20,故补全的条形统计图如右图所示;(3)由题意可得,1200×35%=420(人),即全校选择“科普观察”社团的学生人数是420.【点评】本题考查条形统计图、统计表、用样本股及总体,解题的关键是明确题意,利用数形结合的思想解答.19.某政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯,物价部门规定,这种护眼台灯的销售单价不得高于32元.销售过程中发现,月销售量y(件)与销售单价x(元)之间的关系可看作一次函数:y=﹣10x+n.(1)当销售单价x定为25元时,李明每月获得利润w为1250元,求n的值;(2)当销售单价定为多少元时,每月可获得最大利润?并求最大利润是多少?【考点】二次函数的应用;一元二次方程的应用.【分析】(1)根据题意可以列出相应的方程,得到n的值,本题得以解决;(2)根据题意可以得到w与x的函数关系式,然后化为顶点式即可解答本题.【解答】解:(1)由题意可得,(25﹣20)(﹣10×25+n)=1250,解得,n=500,即n的值是500;(2)w=(x﹣20)(﹣10x+500)=﹣10x2+700x﹣10000=﹣10(x﹣35)2+2250,∴x=35时,w取得最大值,此时w=2250,即当销售单价定为35元时,每月可获得最大利润,最大利润是2250元.【点评】本题考查二次函数的应用、一元二次方程的应用,解题的关键是明确题意,找出所求问题需要的条件.20.如图,矩形ABCD中,AB=1,BC=2,BC在x轴上,一次函数y=kx﹣2的图象经过点A、C,并与y轴交于点E,反比例函数y=的图象经过点A.(1)点E的坐标是(0,﹣2);(2)求反比例函数的解析式;(3)求当一次函数的值小于反比例函数的值时,x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)一次函数y=kx﹣2中代入x=0求得y的值,即可求得点E的坐标;(2)利用△ACD∽△CEO求得点A的坐标后代入反比例函数的解析式,即可求得反比例函数的解析式;(3)首先确定两个函数的交点坐标,然后结合图象确定x的取值范围即可.【解答】解:(1)一次函数y=kx﹣2中令x=0得y=﹣2,所以E(0,﹣2);(2)∵∠OCE=∠ACB,∴Rt△OCE∽Rt△BCA,∴=,即=,解得OC=4,∴C点坐标为(4,0);(2)把C(4,0)代入y=kx﹣2得4k﹣2=0,解得k=,∴一次函数解析式为y=x﹣2;∵OC=4,∴A点坐标为(6,1),把A(6,1)代入y=得m=6×1=6,∴反比例函数解析式为y=;(3)令解得,∴另一个交点(﹣2,﹣3),∴观察图象得:当x<﹣2或 0<x<6时次函数的值小于反比例函数的值.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.21.如图,已知⊙O的直径AB与弦CD互相垂直,垂足为点E.⊙O的切线BF与弦AD的延长线相交于点F,且AD=3,cos∠BCD=.(1)求证:CD∥BF;(2)求⊙O的半径;(3)求弦CD的长.【考点】切线的性质;勾股定理;垂径定理;圆周角定理;解直角三角形.【专题】证明题.【分析】(1)由BF是⊙O的切线得到AB⊥BF,而AB⊥CD,由此即可证明CD∥BF;(2)连接BD,由AB是直径得到∠ADB=90°,而∠BCD=∠BAD,cos∠BCD=,所以cos∠BAD=,然后利用三角函数即可求出⊙O的半径;(3)由于cos∠DAE=,而AD=3,由此求出AE,接着利用勾股定理可以求出ED,也就求出了CD.【解答】(1)证明:∵BF是⊙O的切线,∴AB⊥BF,∵AB⊥CD,∴CD∥BF;(2)解:连接BD,∵AB是直径,∴∠ADB=90°,∵∠BCD=∠BAD,cos∠BCD=,∴cos∠BAD=,又∵AD=3,∴AB=4,∴⊙O的半径为2;(3)解:∵∠BCD=∠DAE,∴cos∠BCD=cos∠DAE=,AD=3,∴AE=ADcos∠DAE=3×=,∴ED=,∴CD=2ED=.【点评】本题考查了圆的切线性质,及解直角三角形的知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.22.如图,已知tan∠EOF=2,点C在射线OF上,OC=12.点M是∠EOF内一点,MC⊥OF于点C,MC=4.在射线CF上取一点A,连结AM并延长交射线OE于点B,作BD⊥OF于点D.(1)当AC的长度为多少时,△AMC和△BOD相似;(2)当点M恰好是线段AB中点时,试判断△AOB的形状,并说明理由;(3)连结BC.当S△AMC=S△BOC时,求AC的长.【考点】相似三角形的判定与性质.【分析】(1)由于∠MCA=∠BDO=Rt∠,所以△AMC和△BOD相似时分两种情况:①△AMC∽△BOD;②△AMC∽△OBD.则两种情况都可以根据相似三角形对应边的比相等及tan∠EOF=2列出关于AC的方程,解方程即可求出AC的长度;(2)先由MC∥BD,得出△AMC∽△ABD,根据相似三角形对应边的比相等及三角形中位线的性质求出BD=2MC=8,OD=4,CD=8,AC=CD=8,再利用SAS证明△AMC≌△BOD,得到∠CAM=∠DBO,根据平行线的性质及三角形内角和定理求出∠ABO=90°,进而得出△ABO为直角三角形;(3)设OD=a,根据tan∠EOF=2得出BD=2a,由三角形的面积公式求出S△AMC=2AC,S△BOC=12a,根据S=S△BOC,得到AC=6a.由△AMC∽△ABD,根据相似三角形对应边的比相等列出关于a的方程,解方△AMC程求出a的值,进而得出AC的长.【解答】解:(1)∵∠MCA=∠BDO=Rt∠,∴△AMC和△BOD中,C与D是对应点,∴△AMC和△BOD相似时分两种情况:①当△AMC∽△BOD时, =tan∠EOF=2,∵MC=4,∴=2,解得AC=8;②当△AMC∽△OBD时, =tan∠EOF=2,∵MC=4,∴=2,解得AC=2.故当AC的长度为2或8时,△AMC和△BOD相似;(2)△ABO为直角三角形.理由如下:∵MC∥BD,∴△AMC∽△ABD,∴,∠AMC=∠ABD,∵M为AB中点,∴C为AD中点,BD=2MC=8.∵tan∠EOF=2,∴OD=4,∴CD=OC﹣OD=8,∴AC=CD=8.在△AMC与△BOD中,,∴△AMC≌△BOD(SAS),∴∠CAM=∠DBO,∴∠ABO=∠ABD+∠DBO=∠AMC+∠CAM=90°,∴△ABO为直角三角形;(3)连结BC,设OD=a,则BD=2a.∵S△AMC=S△BOC,S△AMC=•AC•MC=2AC,S△BOC=•OC•BD=12a,∴2AC=12a,∴AC=6a.∵△AMC∽△ABD,∴,即,解得a1=3,a2=﹣(舍去),∴AC=6×3=18.【点评】本题主要考查了相似三角形的判定与性质,锐角三角函数的定义,三角形的面积,三角形中位线定理,综合性较强,有一定难度.进行分类讨论是解决第一问的关键.23.关于x的函数y=2mx2+(1﹣m)x﹣1﹣m(m是实数),探索发现了以下四条结论:①函数图象与坐标轴总有三个不同的交点;②当m=﹣3时,函数图象的顶点坐标是(,);③当m>0时,函数图象截x轴所得的线段长度大于;④当m≠0时,函数图象总经过两个定点.请你判断四条结论的真假,并说明理由.【考点】二次函数的性质;抛物线与x轴的交点.【分析】①通过反例即可判断;②把m=﹣3代入,然后化成顶点式即可判断;③求得与x轴的交点,进而求得|x1﹣x2|的值,即可判断;④由y=2mx2+(1﹣m)x﹣1﹣m=(2x2﹣x﹣1)m+x﹣1,可知当2x2﹣x﹣1=0时,y的值与m无关,此时x1=1,x2=﹣,当x1=1,y=0;当x2=﹣时,y2=﹣,从而判定函数图象总经过两个定点(1,0),(﹣,﹣).【解答】解:①假命题;当m=0时,y=x﹣1为一次函数与坐标轴只有两个交点,②真命题;当m=﹣3时,y=﹣6x2+4x+2=﹣6(x﹣)2+,∴顶点坐标是(,),③真命题;当m>0时,由y=0得:△=(1﹣m)2﹣4×2m(﹣1﹣m)=(3m+1)2,∴x=,∴x1=1,x2=﹣﹣,∴|x1﹣x2|=+>,∴函数图象截x轴所得的线段长度大于;④真命题;当m≠0时,y=2mx2+(1﹣m)x﹣1﹣m=(2x2﹣x﹣1)m+x﹣1,当2x2﹣x﹣1=0时,y的值与m无关此时x1=1,x2=﹣,当x1=1,y=0;当x2=﹣时,y2=﹣,∴函数图象总经过两个定点(1,0),(﹣,﹣).【点评】本题考查了二次函数的性质,抛物线与二次函数的交点,熟练掌握二次函数的性质是解题的关键.中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中.只有一项符合题目要求.1.在数﹣3,2,0,3中,大小在﹣1和2之间的数是()A.﹣3 B.2 C.0 D.32.已知一个单项式的系数是2,次数是3,则这个单项式可以是()A.﹣2xy2B.3x2C.2xy3D.2x33.的算术平方根是()A.2 B.±2 C.D.±4.下面四个几何体中,俯视图为四边形的是()A.B.C.D.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.为了考察一批电视机的使用寿命,从中任意抽取了10台进行实验,在这个问题中样本是()A.抽取的10台电视机B.这一批电视机的使用寿命C.10D.抽取的10台电视机的使用寿命7.一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y与x的函数图象大致是()A.B.C.D.8.下列运算正确的是()A.()﹣1=﹣ B.6×107=6000000C.(2a)2=2a2D.a3•a2=a59.如图,四边形ABCD是⊙O的内接四边形,若∠DAB=60°,则∠BCD的度数是()A.60° B.90° C.100°D.120°10.在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上.已知正方形A1B1C1D1的边长为1,∠C1B1O=30°,B1C1∥B2C2∥B3C3…则正方形A2016B2016C2016D2016的边长是()A.B.C.D.二、填空题:本大题共5小题,每小题3分,共l5分.11.分解因式:2a2﹣4a+2= .12.设x1、x2是一元二次方程x2﹣5x﹣1=0的两实数根,则x12+x22的值为.13.在函数y=+中,自变量x的取值范围是.14.若m1,m2,…,m2016是从0,1,2这三个数中取值的一列数,若m1+m2+…+m2016=1526(m1﹣1)2+(m2﹣1)2+…+(m2016﹣1)2=1510,则在m1,m2,…,m2016中,取值为2的个数为.15.如图,一次函数的图象与x轴、y轴分别相交于点A、B,将△AOB沿直线AB翻折,得△ACB.若C(,),则该一次函数的解析式为.。

【全国区级联考】四川省遂宁市市城区2017届九年级上学期教学水平监测数学试题(解析版)

【全国区级联考】四川省遂宁市市城区2017届九年级上学期教学水平监测数学试题(解析版)

遂宁市市城区初中2017级第五学期教学水平监测数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

总分150分。

考试时间120分钟。

第Ⅰ卷(选择题,满分60分)注意事项:1.答第I卷前,考生务必将自己的姓名、考号、考试科目用铅笔涂写在机读卡上;2.1—20小题选出答案后,用2B铅笔把机读卡上对应的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试卷上;3.考试结束后,将第I卷的机读卡和第Ⅱ卷的答题卡一并交回。

一、选择题 (每小题3分,共60分)1. 下列根式中,属于最简二次根式的是()A. B. C. D.【答案】B【解析】试题解析:A、被开方数含能开得尽方的因数或因式,故A错误;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故B正确;C、被开方数含分母,故C错误;D、被开方数含能开得尽方的因数或因式,故D错误.故选B.【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2. 下列计算正确的是()A. B. C. D.【答案】C【解析】试题分析:根据合并同类二次根式,可知不能计算,故不正确;根据二次根式的除法,可知=,故不正确;根据二次根式的性质,可知,故正确;根据最简二次根式的概念,可知,故不正确.故选:C.3. 已知,则2xy的值为()A. -15B. 15C. -D.【答案】A...【解析】试题分析:根据题意可得:,解得x=,所以y=-3,所以2xy=2××(-3)=-15,故选:A.考点:二次根式有意义的条件.4. 若是一元二次方程,则的值为()A. B. 2 C. -2 D. 以上都不对【答案】C【解析】试题解析:根据题意得:,解得:m=-2.故选C.5. 方程经过配方后,其结果正确的是()A. B. C. D.【答案】C【解析】试题分析:根据配方法的意义,可知在方程的两边同时加减一次项系数的一半的平方,可知,即,配方为.故选:C.点睛:此题主要考查了配方法,解题关键是明确一次项的系数,然后在方程的两边同时加减一次项系数的一半的平方,即可求解.6. 设是方程的两根,则的值是()A. 2B. -2C.D.【答案】A【解析】试题解析:∵,是方程的两根,根据一元二次方程根与系数的关系得:+=2故选A.7. 关于的方程有两个不相等的实数根,则的取值范围是()A. B. C. D.【答案】A【解析】试题解析:∵关于x的方程x2+2x-1=0有两个不相等的实数根,∴△=(2)2-4×1×(-1)=4k+4>0,解得:k>-1.∵k≥0,∴k的取值范围为:k≥0.故选A.8. 若,且,则的值是()A. 14B. 42C. 7D.【答案】D【解析】试题分析:设a=5k,则b=7k,c=8k,又3a-2b+c=3,则15k-14k+8k=3,得k=,即a=,b=,c=,所以2a+4b-3c=.故选D.考点:比例的性质.9. 如图,在△ABC中,M,N分别是边AB,AC的中点,则△AMN的面积与四边形MBCN的面积比为()A. B. C. D.【答案】B【解析】试题解析:∵M,N分别是边AB,AC的中点,∴MN是△ABC的中位线,∴MN∥BC,且MN=BC,∴△AMN∽△ABC,∴,∴△AMN的面积与四边形MBCN的面积比为1:3.故选B.【点睛】本题考查了相似三角形的判定与性质,解答本题的关键是得出MN是△ABC的中位线,判断△AMN ∽△ABC,要掌握相似三角形的面积比等于相似比平方.10. 如图,在正△A BC中,D,E分别在AC,AB上,且,AE=BE,则有()A. △AED∽△ABCB. △ADB∽△BEDC. △BCD∽△ABCD. △AED∽△CBD【答案】D【解析】试题分析:因为△ABC是正三角形,所以∠A=∠C=60°,可设AD=a,则AC=3a,而AB=AC =BC=3a,所以AE=BE=a,所以==,又==,所以=,∠A=∠C =60°,故△AED∽△CBD,故选:D.考点:1.等边三角形的性质2.相似三角形的判定.11. 下列图形中不是位似图形的是()A. B. C. D. ...【答案】C【解析】试题解析:对应顶点的连线相交于一点的两个相似多边形叫位似图形.根据位似图形的概念,A、B、D三个图形中的两个图形都是位似图形;C中的两个图形不符合位似图形的概念,对应顶点不能相交于一点,故不是位似图形.故选C.【点睛】此题主要考查了位似图形,注意位似与相似既有联系又有区别,相似仅要求两个图形形状完全相同;而位似是在相似的基础上要求对应点的连线相交于一点.12. 在平面直角坐标系中,已知点O(0,0),A(2,4).将线段OA沿轴向左平移2个单位,记点O,A的对应点分别为点O1,A1,则点O1,A1的坐标分别是()A. (0,0),(2,4)B. (0,0),(0,4)C. (2,0),(4,4)D. (-2,0),(0,4)【答案】D【解析】试题解析:线段OA沿x轴向左平移2个单位,只须让原来的横坐标都减2,纵坐标不变即可.∴新横坐标分别为0-2=-2,2-2=0,即新坐标为(-2,0),(0,4).【点睛】本题考查图形的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.13. 如图,P是Rt△ABC的斜边BC上异于端点B,C的点,过P点作直线截△ABC,使截得的三角形与△ABC 相似,满足这样条件的直线共有()A. 1条B. 2条C. 3条D. 4条【答案】C【解析】试题分析:因为截得的三角形与△ABC相似,而截得的三角形与原三角形已有一个公共角,所以只要再作一个直角就可以.如图,过点M作AB的垂线,或作AC的垂线,或作BC的垂线,所得三角形都满足题意.即满足条件的直线共有三条.故选C.考点:相似三角形的判定.14. 在△ABC中,,, 那么的值是()A. B. C. D.【答案】B【解析】试题分析:根据题意,可知tanA==,设BC=x,则AC=3x,根据勾股定理可求得AB=,可得sinA==.故选:B15. 如图,在△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=3,BC=4,则AD的长为()A. B. C. D.【答案】B【解析】试题解析:∵Rt△ABC中,∠ABC=90°,AB=3,BC=4,∴AC=,...∵DE垂直平分AC,垂足为O,∴OA=AC=,∠AOD=∠B=90°,∵AD∥BC,∴∠A=∠C,∴△AOD∽△CBA,∴,即,解得AD=.故选B.16. 化简:-的结果是()A. B.C. D.【答案】C【解析】Y AJGQESR:∵1-sin52°>0,1-tan52°<0,∴=1-sin52°-tan52°+1=2-sin52°-tan52°.故选C.【点睛】本题考查的是二次根式的化简,掌握二次根式的性质和正弦、正切的增减性是解题的关键.17. 如图,先锋村准备在坡角为的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为()A. mB. mC. mD. m【答案】B【解析】由平行线的性质及解直角三角形的知识,得,∴米.故选B.18. 在菱形ABCD中,则的值是()A. B. 2 C. D.【答案】B【解析】试题解析:∵DE⊥AB,cos A=,AE=3,∴,解得:AD=5,则DE=,∵四边形ABCD是菱形,∴AD=AB=5,...∴tan∠DBE=.故选B.19. 下列说法正确的是()A. “明天降雨的概率是80%”表示明天有80%的时间都在降雨B. “抛一枚硬币正面朝上的概率为”表示每抛2次就有一次正面朝上C. “彩票中奖的概率为1%”表示买100张彩票肯定会中奖D. “抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在附近【答案】D【解析】试题分析:因为“明天降雨的概率是80%”表示明天降雨的可能性有80%,所以A错误;因为“抛一枚硬币正面朝上的概率为50%”表示每抛两次就有一次正面朝上的可能,所以B错误;因为“彩票中奖的概率为1%”表示表示买100张彩票中奖的可能性是1次,所以C错误;因为“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在附近,所以D正确;故选:D.考点:简单事件的概率.20. 二次函数,当x取值为时,有最大值,则的取值范围为()A. t≤0B. 0≤t≤3C. t≥3D. 以上都不对【答案】C【解析】试题解析:∵y=-x2+6x-7=-(x-3)2+2,当t≤3≤t+2时,即1≤t≤3时,y随x的增大而增大,不符合题意.当3≥t+2时,即t≤1时,y max =-(t-1)2+2,与y max=-(t-3)2+2矛盾.当3≤t,即t≥3时,y max =-(t-3)2+2与题设相等,故t的取值范围t≥3,故选C.【点睛】本题考查了二次函数的最值,难度较大,关键是判断出当x≥3时,y随x的增大而减小,由此此解二、填空题(每小题3分,共15分)21. 在二次根式,中的取值范围是____.【答案】<1【解析】试题解析:若二次根式有意义,则<0,解得x<1.【点睛】本题考查二次根式及分式有意义的条件;用到的知识点为:二次根式有意义,被开方数为非负数;分式有意义,分母不为0.22. 如果2 +是方程的一个根,那么c的值是____.【答案】4...【解析】试题解析:把2+代入方程中可得(2+)2-c(2+)+1=0,解得c=4.【点睛】直接根据方程的解的定义把c的值代入方程求解即可.主要考查了方程的解的定义和无理数的运算,在运算过程中要注意分母有理化.23. 如图,电灯P在横杆AB的上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离是3m,则P到 AB的距离是____m.【答案】1【解析】试题分析:根据AB∥CD,易得,△PAB∽△PCD,根据相似三角形对应高之比等于对应边之比,列出方程求解即可.考点:1.相似三角形的应用.2.中心投影.24. 已知,则=____.【答案】【解析】试题解析:∵sin2α+cos2α=1,∴(sinα+cosα)2-2sinα•cosα=1,∵sinα+cosα=,∴sinα•cosα=.25. 如图,抛物线的对称轴为直线,与轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①;②方程的两个根是;③;④当时,的取值范围是;⑤当时,随增大而增大;其中结论正确有____.【答案】①②⑤【解析】试题解析:∵抛物线与x轴有2个交点,∴b2-4ac>0,所以①正确;∵抛物线的对称轴为直线x=1,而点(-1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=-1,x2=3,所以②正确;∵x=-=1,即b=-2a,而x=-1时,y=0,即a-b+c=0,∴a+2a+c=0,所以③错误;∵抛物线与x轴的两点坐标为(-1,0),(3,0),∴当-1<x<3时,y>0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确....【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c );抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x 轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.三、解答题(本题共9个小题,共75分)26. 计算:.【答案】8【解析】试题分析:先将所给的公式的值化简计算,然后合并同类二次根式即可.试题解析:4cos30°﹣|﹣2|+()0﹣+(﹣)﹣2===8.考点:实数的计算.27. 解方程:.【答案】试题解析:原式可化为:(x-3)(x-3+4x)=0∴x-3=0或5x-3=0解得x1=3,x2=.考点:解一元二次方程-因式分解法.28. 已知关于的方程.(1)求证:方程有两个不相等的实数根.(2)当为何值时,方程的两根互为相反数?并求出此时方程的解.【答案】(1)证明见解析;(2),【解析】试题分析:(1)先计算出△=(m+2)2﹣4(2m﹣1),变形得到△=(m﹣2)2+4,由于(m﹣2)2≥0,则△>0,然后根据△的意义得到方程有两个不相等的实数根;(2)利用根与系数的关系得到x1+x2=0,即m+2=0,解得m=﹣2,则原方程化为x2﹣5=0,然后利用直接开平方法求解.(1)证明:△=(m+2)2﹣4(2m﹣1)=m2﹣4m+8=(m﹣2)2+4,∵(m﹣2)2≥0,∴(m﹣2)2+4>0,即△>0,所以方程有两个不相等的实数根;...(2)设方程的两个根为x1,x2,由题意得:x1+x2=0,即m+2=0,解得m=﹣2,当m=﹣2时,方程两根互为相反数,当m=﹣2时,原方程为x2﹣5=0,解得:x1=﹣,x2=.考点:根的判别式;根与系数的关系.29. 如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,AD=,AE=3,求AF的长.【答案】(1)证明见解析;(2)AF的长为【解析】试题分析:(1)、根据平行四边形的性质得出∠ADF=∠CED,∠B+∠C=180°,结合∠AFE+∠AFD=180°,∠AFE=∠B,得出∠AFD=∠C,从而得出三角形相似;(2)、根据勾股定理得出DE 的长度,然后根据△ADF和△DEC相似得出答案.试题解析:(1)、∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠ADF=∠CED,∠B+∠C=180°;∵∠AFE+∠AFD=180°,∠AFE=∠B,∴∠AFD=∠C,∴△ADF∽△DEC;(2)、∵CD=AB=4,AE⊥BC,∴AE⊥AD;在Rt△ADE中,DE=,∵△ADF∽△DEC,∴;∴,解得AF=.考点:三角形相似30. 已知:如图,在山脚的C处测得山顶A的仰角为,沿着坡角为的斜坡前进400米到D处(即,米),测得山顶A的仰角为,求山的高度AB.【答案】山的高度AB为米.【解析】试题分析:首先根据题意分析图形;作DE⊥AB于E,作DF⊥BC于F,构造两个直角三角形,分别求解可得DF与EA的值,再利用图形关系,进而可求出答案.试题解析:作DE⊥AB于E,作DF⊥BC于F,在RtΔCDF中,==200(米)=(米)在中,,设DE=米,∴(米)在矩形DEBF中,BE=DF=200米,在,...∴AB=BC,即:∴x=200,∴米.31. 一个不透明的口袋中装有4个完全相同的小球,分别标有数字1,2,3,4,另外有一个可以自由旋转的圆盘,被分成面积相等的3个扇形区域,分别标有数字1,2,3(如图所示).(1)从口袋中摸出一个小球,所摸球上的数字大于2的概率为;(2)小龙和小东想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于5,那么小龙去;否则小东去.你认为游戏公平吗?请用树状图或列表法说明理由.【答案】(1);(2)列表见解析,游戏公平,理由见解析.【解析】试题分析:(1)因为口袋中有4个小球,大于2的有两个分别是3,4,由此可求出其概率.(2)游戏公平,分别求出题目各自获胜的概率,比较概率是否相等,即可判定游戏是否公平.解:(1)∵的口袋中装有4个完全相同的小球,分别标有数字1,2,3,4,∴从口袋中摸出一个小球,所摸球上的数字大于2的概率为;故答案为:;(2)游戏公平.列举所有等可能的结果12个:1 2 3 41 2 3 4 52 3 4 5 63 4 5 6 7∴所摸球上的数字与圆盘上转出数字之和小于5的概率为P=,∴游戏公平.考点:游戏公平性;概率公式;列表法与树状图法.32. 在北京2008年第29届奥运会前夕,某超市在销售中发现:奥运会吉祥物—“福娃”平均每天可售出20套,每件盈利40元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

准考证号:遂宁市2017年初中毕业生学业考试数学试卷【说明】全卷分为第Ⅰ卷和第Ⅱ卷,第Ⅰ卷1-2页,第Ⅱ卷3-10页。

考试时间120分钟,满分150分。

考试结束后,第Ⅱ卷和答题卡按规定装袋上交。

第Ⅰ卷(选择题 共40分)注意事项:1.答第Ⅰ卷前,考生务必将自己的学校、姓名、准考证号、考试科目填涂在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡 皮擦干净后,再选涂其他答案,不能答在试题卷上。

3.考试结束后,本试卷由考场统一收回,集中管理。

一、选择题:本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求 1.-2的相反数A .-2B .2C .2±D .-2 2.下列分式是最简分式的A.b a a 232 B .a a a 32- C .22b a b a ++ D .222ba ab a -- 3.下列运算错误的是A .235a a a ⋅=B .347()m m =C .3363282c b a bc a =)( D .624m m m ÷= 4.一幅扑克牌(不含大小王),任意抽取一张,抽中方块的概率是 A .21 B .521 C .31 D .415.函数31--=x x y 的自变量x 的取值范围是 A .1x > B .1x >且3x ≠ C .1≥x D. 1≥x 且3x ≠6.点(-2,3)关于原点对称的点的坐标是A .(2,3)B .(-2,-3)C .(2,-3)D .(-3,2) 7.如图:等腰梯形ABCD 中 ,AD ∥BC ,AB=DC , AD=3,AB=4,∠B=60︒,则梯形的面积是 A.310 B.320 C.346+ D.3812+ 8.计算2sin30︒-sin 245︒+cot60︒的结果A.3321+ B.3321+ C.23+ D.23-1+ 9.如图:△ABC 中,DE ∥BC ,AD:DB=1:2,下列选项正确的是A .DE:BC=1:2B .AE:AC=1:3C .BD:AB=1:3D .S DE A ∆:S ABC ∆=1:4( 第9题) (第10题)10.如图:在△ABC 中,∠ACB=90°,CD ⊥AB 于点D ,下列说法中正确的个数是①CD AB BC AC ⋅=⋅ ②DB AD AC ⋅=2③BA BD BC ⋅=2 ④DB AD CD ⋅=2A .1个B .2个C .3个D .4个CBEDABDAC绝密★启用前【考试时间:2017年6月14日上午9:00—11:00】遂宁市2017年初中毕业生学业考试数学试卷第Ⅱ卷(非选择题 共110分)注意事项:1.第Ⅱ卷共8页,用钢笔或中性笔直接答在试卷上。

(需要作图请用铅笔) 2.答卷前将密封线内的项目填写清楚。

11.地球绕太阳每小时转过的路程约为110000千米。

请用科学记数法表示为: 千米。

12.若1x 、2x 是方程0522=--x x 的两根,则=++222121x x x x 。

13.下列命题①不相交的直线是平行线;②同位角相等;③矩形的对角线相等且互相平分;④平行四边形既是中心对称图形又是轴对称图形;⑤同圆中同弦所对的圆周角相等。

其中错误的序号是 。

14.如图:在⊙O 中︒=∠=∠60BDC ACB,32=AC则⊙O 的周长是 。

15.阅读下列文字与例题将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法。

例如:⑴am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b) =(a+b)(m+n) ⑵2x -2y -y 2-1=)12(22++-y y x二、填空题:本大题共5个小题,每小题4分,共20分,把答案填在题中的横线上。

=22)1(+-y x =(1)(1)x y x y ++--试用上述方法分解因式=++++222b bc ac ab a 。

16.解方程:38)12(-=+x x x17.已知:平行四边形ABCD 中,过对角线AC 中点O 的直线EF 交AD 于F ,BC 于E 。

求证:BE=DF18.计算:232-13-8-)()(++π三、(本大题共3小题,每小题8 分,共24分)19.在“我爱家乡”的主题活动中,某数学兴趣小组决定测量灵泉寺观音塔DC 的高度(如图)。

在广场A 处用测角仪测得塔顶D 的仰角是45°,沿AC 方向前进15米在B 处测得塔顶D 的仰角是60°,测角仪高1.5米。

求塔高DC (保留3个有效数字) (41412⋅≈ 73213⋅≈)20.一场特大暴雨造成遂渝高速公路某一路段被严重破坏。

为抢修一段120米长的高速公路,施工队每天比原计划多修5米,结果提前4天完成抢修任务。

问原计划每天抢修多少米?四、(本大题共3小题,每小题9分,共27分)A B CE F G D21.2017年遂宁市将承办四川省运动会。

明星队和沱牌队在集训期内进行了五场比赛,将比赛成绩进行统计后,绘制成如图①、图②的统计图。

⑴在图②中画出表示沱牌队在集训期内这五场比赛的成绩变化情况的折线统计图; ⑵请你分别计算明星队和沱牌队这五场比赛的平均分; ⑶就五场比赛,分别计算两队成绩的极差;⑷如果从明星与沱牌中选派一支参加省运会,根据上述统计情况,从平均分、折线走势、获胜场数和极差四个方面进行简要分析,请你决策选派哪支球队参加更能取得好的成绩?场次(场)图① 图②明星和沱牌比赛成绩折线统计图场次(场)60五四22.已知AB 是⊙O 的直径,弦AC 平分BAD ∠,AD ⊥CD 于D ,BE ⊥CD 于E 。

求证:⑴CD 是⊙O 的切线;⑵BE AD CD ⋅=2五、(本大题2个小题,每小题9分,共18分)23.平面直角坐标系中,直线AB交x轴于点A,交y轴于点B且与反比例函数图像分别交于C、D两点,过点C作CM x轴于M,AO=6,BO=3,CM=5。

求直线AB的解析式和反比例函数解析式。

24.在同一平面内有n 条直线,任何两条不平行,任何三条不共点。

当n=1时,如图⑴,一条直线将一个平面分成两个部分; 当n=2时,如图⑵,两条直线将一个平面分成四个部分;则:当n=3时,三条直线将一个平面分成 部分;当n=4时,四条直线将一个平面分成 部分; 若n 条直线将一个平面分成n a 个部分, n+1条直线将一个平面分成1+n a 个部分。

试探索n a 、1+n a 、n 之间的关系。

六、(本大题2个小题,第24题8分,第25题13分, 共21分)25.如图:抛物线m ax ax y +-=42与x 轴交于A 、B 两点,点A 的坐标是(1,0),与y 轴交于点C 。

⑴求抛物线的对称轴和点B 的坐标;⑵过点C 作CP ⊥对称轴于点P ,连结BC 交对称轴于点D ,连结AC 、BP ,且BCP BPD ∠=∠,求抛物线的解析式;⑶在⑵的条件下,设抛物线的顶点为G ,连结BG 、CG 、求∆BCG 的面积。

遂宁市2017年初中毕业生学业考试数学试卷参考答案及评分意见第Ⅰ卷 选择题(40分)一、选择题(本大题共10个小题,每小题4分,共40分)1.B 2.C 3.B 4.D 5.D 6.C 7.A 8.B 9.B 10.C第Ⅱ卷 非选择题(110分)二、填空题(本大题共5个小题,每小题4分,共20分)11.1.1510⨯ 12.9 13.①②④⑤ 14.π4 15.))(c b a b a +++( 三、解方程(本大题共3个小题,每小题8分,共24分) 16.38)12(-=+x x x解:去括号,得:3822-=+x x x …………………2′ 移项,得:03822=+-+x x x ′合并同类项,得:03722=+-x x …………………4′ ∴ 012=-x 或 03=-x ∴ 211=x 32=x …………………8′ 17.证明:∵ 四边形ABCD 是平行四边形∴ AD ∥BC AD=BC …………………2′∴ ∠AOF=∠OCE …………………3′ ∵ 点O 是AC 的中点∴ OC=OA …………………4′ ∴ ∆AOF ≅∆COE (ASA ) …………………6′∴ AF=CE …………………7′ ∴ BE=FD …………………8′ 说明:本题还有其它解法,若正确得分。

180-3π++()解:原式=2112--++ …………………4′ =2+1-1+2 …………………6′ =2+2 …………………8′ 四、(本大题共3个小题,每小题9分,共27分)19.解:设DG=x 米,由题意EG=x 米,则FG=(x-15)米 …………………2′ 在Rt ∆DFG 中 tan6015-=︒x x…………………3′ 3153-=x x 315)13(=-x 13315-=x …………………5′==35.49 …………………7′∴ 塔高DC=35.49+1.5 =36.99≈37.0 …………………9′ 说明:本题还有其它解法,若正确得分。

20.解:原计划每天抢修x 米,则实际每天抢修(x+5)米,根据题意,得:………1′45120-120=+x x …………………5′015052=-+x x∴ 101=x 152-=x …………………7′ 经检验:101=x , 152-=x 都是原方程的解。

但152-=x 不符合实际情况(舍去) …………………8′ 答:原计划每天抢修10米。

…………………9′说明:本题还可列其它方程,合理得分。

21.⑴…………………2′⑵51=明星x (82+84+94+92+98) =51⨯450=90(分) …………………3′51=沱牌x (105+95+82+88+80) =51⨯450=90(分) …………………4′⑶ 明星队极差: 98-82=16(分) …………………5′ 沱牌队极差:105-80=25(分) …………………6′⑷ 从平均分来看,两队的平均分相同;从折线走趋来看,明星队呈上升趋势,沱牌队呈下降趋势;从获胜场数来看,明星队胜3场,沱牌队胜2场;从极差来看,明星队极差16分,沱牌队极差25分。

综合以上因素应派明星队参赛,更能取得好的成绩。

……9′ 说明:第四问中不阐述理由,直接说明选派队伍,可直接得分。

五、(本大题共2个小题,每小题9分,共18分) 22.⑴连结OC …………………1′ ∴ ∠OAC=∠OCA ∵ AC 平分∠BAC ∴ ∠DAC=∠OAC∴ ∠OCA=∠DAC …………………2′ ∴ AD ∥OC ∵ AD ⊥CD∴ OC ⊥CD …………………3′ ∴ CD 是⊙的切线 …………………4′⑵ 连结BC ,延长AC 交BE 的延长线于M …………………5′ ∵ AD ⊥DE BE ⊥DE ∴ AD ∥BE∴ ∠M=∠DAC ∵ ∠DAC=∠BAM ∴ ∠BAM=∠M∴ BA=BM …………………6′ ∵ AB 是直径 ∴ ∠ACB=90︒∴ AC=MC又 ∵ ∠M=∠DAC ∠D=∠CEM AC=MC ∴ MCE DAC ∆≅∆∴ DC=EC …………………7′ (若用平行线分线段成比例定理证明,正确得分) ∴ ∠DAC=∠BCE ∠ADC=∠CEB∴ ∆ADC ~∆CEB …………………8′∴BECDCE AD = ∴ BE AD CD CE ⋅=⋅∴ BE AD CD ⋅=2…………………9′ 说明:本题还有其它证法,若正确合理得分。

相关文档
最新文档