matlab符号运算

合集下载

matlab中的数学符号与运算

matlab中的数学符号与运算

matlab中的数学符号与运算MATLAB(Matrix Laboratory)是一种用于数值计算和科学工程应用的高级编程语言和环境。

MATLAB中包含了丰富的数学符号和运算,用于进行矩阵操作、线性代数、微积分等数学计算。

以下是MATLAB中一些常见的数学符号和运算:1. 数学符号:-矩阵:MATLAB 中的基本数据类型是矩阵,可以使用方括号`[]` 来表示。

例如,`A = [1, 2; 3, 4]` 表示一个2x2的矩阵。

-向量:向量可以表示为一维矩阵,例如,`v = [1, 2, 3]` 表示一个包含3个元素的行向量。

-转置:使用单引号`'` 来进行转置操作。

例如,`A'` 表示矩阵A的转置。

-点乘和叉乘:点乘使用`.*`,叉乘使用`.*`。

例如,`A .* B` 表示矩阵A和B的对应元素相乘,`A * B` 表示矩阵A和B的矩阵乘法。

2. 数学运算:-基本算术运算:MATLAB支持基本的算术运算,如加法、减法、乘法和除法。

例如,`result = 2 + 3`。

-元素-wise 运算:MATLAB 支持元素-wise 的运算,即对矩阵或向量中的每个元素进行运算。

例如,`C = A .* B` 表示矩阵A和B的对应元素相乘。

-矩阵操作:MATLAB 提供了许多用于矩阵操作的函数,如`inv`(求逆矩阵)、`det`(求行列式)、`eig`(求特征值)等。

-积分和微分:MATLAB 提供了`int`(积分)和`diff`(微分)等函数,用于进行积分和微分运算。

-方程求解:MATLAB 提供了`solve` 函数,用于求解方程组。

这些是MATLAB中一些常见的数学符号和运算。

MATLAB 的强大之处在于它的矩阵操作能力,使得它非常适用于数学和工程领域的计算和建模。

如果你有特定的数学运算需求,可以查阅MATLAB 的官方文档或在线资源以获取详细信息。

MATLAB的符号运算V精简版

MATLAB的符号运算V精简版

ans=[2+y,4+y,6+y]
>> subs(f,x,[1:3]) >> subs(f,{x,y},{[1:3],[5:7]})
ans=[7 10 13]
>> subs(f,{x,y},{a+b,a-b}) >> subs(f,{x,y},{x+y,x-y})
Copyright © CUGB
2024/4/3
Matlab的符号运算
符号对象建立时可以附加属性: real、positive 和 unreal
>> x=sym('x','real') >> k=sym('k','positive') >> x=sym('x','unreal')
表明 x 是实的 表明 k 是正的 去掉 x 的附加属性
Copyright © CUGB 2024/4/3
Matlab的符号运算
符号表达式的建立
>> syms x >> f1=sin(x)+cos(x)
推荐!
>> f2=sym(’sin(x)+cos(x)’)
Copyright © CUGB 2024/4/3
Matlab的符号运算
相关函数
➢ findsym: 查找符号表达式中的符号变量
findsym(f) 按字母顺序列出符号表达式 f 中的所有自由变量 findsym(f,N) 列出 f 中距离 x 最近的 N 个自由变量(i,j 除外)
Matlab的符号运算
其它运算

MATLAB符号运算

MATLAB符号运算

MATLAB符号运算前⾔有时候,你可能会遇到较复杂的⽅程(组),希望⽤MATLAB来求解。

MATLAB的符号运算正好可⽤于求解⽅程(组)。

此外,它还有许多其他功能。

例如,展开和简化、因式分解以及微积分运算等。

MATLAB的符号运算虽然是数值运算的补充,但是它仍然是科学计算研究中不可替代的重要内容。

与数值运算相⽐,符号运算不需要预先对变量赋值,其运算结果以标准的符号形式表达。

⽐如说计算sin(π),数值运算的结果是1.2246e-16,符号运算的结果是0。

前者是近似的,后者是精确的。

正⽂MATLAB符号运算功能⾮常强⼤,本⽂只介绍⼤部分常⽤的符号运算功能。

注:本⽂代码的运⾏环境是MATLAB R2016b。

1. 创建符号数、符号变量和符号矩阵这⼀步骤是符号运算的第⼀步,后⾯的步骤都是在此基础上进⾏的。

%创建符号数 (只能⽤sym函数)s0 = 1 / sym(7) %符号数,不适合⼤型符号数s1 = sym('1/7') %符号数s2 = sym('3 + 4i') %符号复数%创建符号变量 (sym函数和syms函数都⾏)%--sym函数s3 = sym('x') %符号变量%--syms函数syms a b c %创建多个符号变量,值为本⾝syms(sym('[d e; e d]')) %⽤已存在的符号变量矩阵创建多个符号变量%创建符号矩阵 (sym函数和syms函数都⾏)s4 = sym('[2 5 6; 9 8 6]') %符号数矩阵s5 = sym('x', [2 3]) %符号变量矩阵,矩阵内的元素不会被创建为符号变量A = [a b c; c b a] %⽤已存在的符号变量创建符号变量矩阵% syms A B [2 3] %仅2017及以上版本⽀持,同时创建多个符号矩阵代码运⾏结果如下。

可以看到s5是⼀个2x3的符号变量矩阵,但矩阵内元素不会被创建成符号变量。

第3章 MATLAB的符号运算_微分方程求解_符号代数方程

第3章 MATLAB的符号运算_微分方程求解_符号代数方程
例:f=sym('a*x^2+b*2+c')
或syms a b c x
f='a*x^2+b*2+c'
9/46
数组、矩阵与符号矩阵(P51)
m1=sym('[ab bc cd ; de ef fg ; h l j]') m2=sym('[1 12;23 34]') 例:
– >>A=hilb(3) A= 1.0000 0.5000 0.3333 0.5000 0.3333 0.2500 0.3333 0.2500 0.2000
dx dx2
例6:已知函数
f
= x2 sin 2 y 求
df
df ,
d2 f ,
dx dy dxdy
例7:已知函数
f
=
xe y y2

ff ,
xy
见example3_12
23/46
df
例8:已知导函数
= ax 求原函数
dx
b
例9:已知导函数 f (x) = x2 求 f (x)dx a
例10:计算重积分I = 2 d a r2 sin dr ?
– 例:>>rho=1+sqrt(5)/2; >>sym(rho,’d’); ans= 2.1180339887498949025257388711907
11/46
符号对象转换为数值对象的函数double(), vpa() 1、double()
这种格式的功能是将符号常量转换为双精度数值 2、vpa()
创建符号对象与函数命令(P50)
1、函数命令sym()格式 格式1 s=sym(a)(a代表一个数字值、数值矩阵、数值表达式 格式2 s=sym(‘a’)(a代表一个字符串)

Matlab教学第四章 MATLAB符号运算(Symbolic)

Matlab教学第四章 MATLAB符号运算(Symbolic)

>> y=dsolve('Dy+2*x*y=x*exp(-x^2)','x') >> syms x; diff(y)+2*x*y - x*exp(-x^2)
f2=2*(u+2)
ans=14 ans=2*((a+2)+2) f3=2*x+2*y ans=6
符号矩阵
使用 sym 函数直接生成 >> A=sym('[1+x, sin(x); 5, exp(x)]') 将数值矩阵转化成符号矩阵 >> B=[2/3, sqrt(2); 5.2, log(3)]; >> C=sym(B) 符号矩阵中元素的引用和修改 >> A=sym('[1+x, sin(x); 5, exp(x)]'); >> A(1,2) % 引用 >> A(2,2)=sym('cos(x)') % 重新赋值
符号对象的基本运算
基本函数
三角函数与反三角函数、指数函数、对数函数等
sin、cos、tan、cot、sec、csc、… asin、acos、atan、acot、asec、 acsc、…
exp、log、log2、log10、sqrt abs、conj、real、imag
rank、det、inv、eig、lu、qr、svd
How 中记录的为简化过程中使用的方法。
f
2*cos(x)^2sin(x)^2
(x+1)*x*(x-1)
R
HOW
3*cos(x)^2-1 simplify
x^3-x combine(tri g)

matlab符号运算函数大全

matlab符号运算函数大全

3.1 算术符号操作命令+、-、*、.*、\、.\、/、./、^、.^、’、.’功能符号矩阵的算术操作用法如下:A+B、A-B 符号阵列的加法与减法。

若A与B为同型阵列时,A+B、A-B分别对对应分量进行加减;若A与B中至少有一个为标量,则把标量扩大为与另外一个同型的阵列,再按对应的分量进行加减。

A*B 符号矩阵乘法。

A*B为线性代数中定义的矩阵乘法。

按乘法定义要求必须有矩阵A的列数等于矩阵B的行数。

即:若A n*k*B k*m=(a ij)n*k.*(b ij)k*m=C n*m=(c ij)n*m,则,i=1,2,…,n;j=1,2,…,m。

或者至少有一个为标量时,方可进行乘法操作,否则将返回一出错信息。

A.*B 符号数组的乘法。

A.*B为按参量A与B对应的分量进行相乘。

A与B必须为同型阵列,或至少有一个为标量。

即:A n*m.*B n*m=(a ij)n*m.*(b ij)n*m=C n*m=(c ij)n*m,则c ij= a ij* b ij,i=1,2,…,n;j=1,2,…,m。

A\B 矩阵的左除法。

X=A\B为符号线性方程组A*X=B的解。

我们指出的是,A\B近似地等于inv(A)*B。

若X不存在或者不唯一,则产生一警告信息。

矩阵A可以是矩形矩阵(即非正方形矩阵),但此时要求方程组必须是相容的。

A.\B 数组的左除法。

A.\B为按对应的分量进行相除。

若A与B为同型阵列时,A n*m.\B n*m=(a ij)n*m.\(b ij)n*m=C n*m=(c ij)n*m,则c ij= a ij\ b ij,i=1,2,…,n;j=1,2,…,m。

若若A与B中至少有一个为标量,则把标量扩大为与另外一个同型的阵列,再按对应的分量进行操作。

A/B 矩阵的右除法。

X=B/A为符号线性方程组X*A=B的解。

我们指出的是,B/A粗略地等于B*inv(A)。

若X不存在或者不唯一,则产生一警告信息。

第八讲MATLAB符号计算

第八讲MATLAB符号计算

% 定义符号变量 % 定义数值变量
% 计算符号表达式值 % 计算数值表达式值
% 计算符号表达式值 % 计算数值表达式值
% 计算符号表达式值 % 计算数值表达式值
ans = 1/2*3^(1/2) ans = 0.8660 ans = 2*2^(1/2)
ans = 2.8284 ans =(3+2^(1/2))^(1/2) ans = 2.1010
(2)syms函数
syms函数的一般调用格式为:
syms var1 var2 … varn 函数定义符号变量var1,var2,…,varn等。用这 种格式定义符号变量时不要在变量名上加字符 分界符(‘),变量间用空格而不要用逗号分隔。
>> syms a b c d
❖ 符号计算的结果是符号或符号表达式,如果其 中的符号要用具体数值代替,可以用subs函数, 例如将A中的符号a以数值5代替,可以用
8.1 符号计算基础
MATLAB中符号计算函数是数值计算函数的重载, 符号计算工具箱采用的函数和数值计算的函数有一 部分同名,为得到准确的在线帮助,应该用 help sym/函数名 例如: help sym/inv
8.1.1 符号对象
1. 建立符号变量和符号常数 (1)sym函数
sym函数用来建立单个符号变量和符号表达式,例如, a=sym(‘a’) 建立符号变量a,此后,用户可以在表达式 中使用变量a进行各种运算。 >> rho = sym('(1+sqrt(5))/2')
8.3 符号积分
8.3.1不定积分
在MATLAB中,求不定积分的函数是int,其调 用格式为:int(f,x)
int 函数求函数 f 对变量 x 的不定积分。参数x可 以缺省,缺省原则与diff函数相同。

matlab符号运算

matlab符号运算

第2章符号运算- Presentation Transcript1.第二章符号运算o MA TLAB 的数学计算=数值计算+符号计算o其中符号计算是指使用未定义的符号变量进行运算,而数值计算不允许使用未定义的变量。

2. 1. 符号变量、符号表达式和符号方程的生成o使用sym 函数定义符号变量和符号表达式o使用syms 函数定义符号变量和符号表达式3. 2 、用syms 创建符号变量o使用syms 命令创建符号变量和符号表达式o语法:o syms(‘arg1’, ‘arg2’, …, 参数) % 把字符变量定义为o% 符号变量o syms arg1 arg2 …, 参数% 把字符变量定义为符号变量的简洁形o% 式o说明:syms 用来创建多个符号变量,这两种方式创建的符号对象是相同的。

参数设置和前面的sym 命令相同,省略时符号表达式直接由各符号变量组成。

4.使用syms 函数定义符号变量和符号表达式▪>> syms a b c x▪>> f = a*x^2 + b*x + c▪ f =▪a*x^2 + b*x + c▪>> g=f^2+4*f-2▪g =▪(a*x^2+b*x+c)^2+4*a*x^2+4*b*x+4*c-2▪>>ex02015.符号方程的生成▪>> % 符号方程的生成▪>> % 使用sym 函数生成符号方程▪>> equation1='sin(x)+cos(x)=1'▪equation1 =▪sin(x)+cos(x)=1▪>>6. 2.2 符号形式与数值形式的转换o 1 、将符号形式转换为数值形式:o eval 与numerico例:a1='2*sqrt(5)+pi'o a1 =o2*sqrt(5)+pio b2=numeric(a2) % 转换为数值变量o b2 =o7.6137o b3=eval(a1)o b3 =o7.61377. 2.2 符号形式与数值形式的转换▪ 2 、数值形式转换为符号形式▪p=3.1416;▪q=sym(p)▪执行后屏幕显示:▪q=3927/1250▪numeric(q)▪屏幕显示:▪ans =▪ 3.14168. 2.2 符号形式与数值形式的转换3 、多项式与系数向量之间的转换3.1 sym2poly: 将多项式转化为对应的系数向量例:syms x p; p=x^3-4*x+5; sym2poly(p) 执行后屏幕显示:ans= 1 0 -4 5 9. 2.2 符号形式与数值形式的转换o 3 、多项式与系数向量之间的转换o 3.2 poly2sym: 将向量转化为对应的多项式o例o a=[1 0 -4 5];o poly2sym(a)o执行后屏幕显示o ans=o x^3-4*x+510. 3. 符号表达式( 符号函数) 的操作o(1) 符号表达式的四则运算o syms xo f=x^3-6*x^2+11*x-6;o g=(x-1)*(x-2)*(x-3);o h=x*(x*(x-6)+11)-6;o f+g-ho执行后输出:o ans =o x^3-6*x^2+11*x+(x-1)*(x-2)*(x-3)-x*(x*(x-6)+11)11.(1) 符号表达式的四则运算▪>> syms x y a b▪>> fun1=sin(x)+cos(y)▪fun1 =▪sin(x)+cos(y)▪>> fun2=a+b▪fun2 =▪a+b▪>> fun1+fun2▪sin(x)+cos(y)+a+b▪>>fun1*fun2▪ans =▪(sin(x)+cos(y))*(a+b)12.o(1) 将表达式中的括号进行展开: expando(2) 将表达式进行因式分解:factoro(3) 将一般的表达式变换为嵌套的形式:hornero(4) 将表达式按某一个变量的幂进行集项:collecto(5) 化简表达式:simplifyo(6) 化简表达式,使之成为书写长度最短的形式:simple13.o同一个数学函数的符号表达式的可以表示成三种形式,例如以下的f(x) 就可以分别表示为:o多项式形式的表达方式:o f(x)=x^3+6x^2+11x-6o因式形式的表达方式(factor) :o f(x)=(x-1)(x-2)(x-3)o嵌套形式的表达方式(horner) :o f(x)=x(x(x-6)+11)-614.集项-合并符号表达式的同类项o>> syms x y▪>> collect(x^2*y + y*x - x^2 - 2*x)▪ans =▪(y-1)*x^2+(y-2)*xo>> syms x y▪>> collect(x^2*y + y*x - x^2 - 2*x,y)▪ans =▪(x^2+x)*y-x^2-2*x15.符号多项式的嵌套(horner )▪>> syms x▪>> fun1=2*x^3+2*x^2-32*x+40▪fun1 =▪2*x^3+2*x^2-32*x+40▪>> horner(fun1)▪ans =▪40+(-32+(2+2*x)*x)*x▪>> fun2=x^3-6*x^2+11*x-6▪fun2 =▪x^3-6*x^2+11*x-6▪>> horner(fun2)▪ans =▪-6+(11+(-6+x)*x)*x16.符号表达式的化简(simplify)▪>> syms x▪>> fun1=(1/x+7/x^2+12/x+8)^(1/3)▪fun1 =▪(13/x+7/x^2+8)^(1/3)▪>> sfy1= simplify (fun1)▪sfy1 =▪((13*x+7+8*x^2)/x^2)^(1/3)▪>> sfy2= simple (sfy1)▪sfy2 =▪(13/x+7/x^2+8)^(1/3)17.subs 函数用于替换求值▪>> syms x y▪ f = x^2*y + 5*x*sqrt(y)▪ f =▪x^2*y+5*x*y^(1/2)▪>> subs(f, x, 3)▪ans =▪9*y+15*y^(1/2)▪>> subs(f, y, 3)▪ans =▪3*x^2+5*x*3^(1/2)▪>>subs(f,{x,y},{1,1})ex0202 ex0203 ex020418. 4 、反函数的运算(finverse )▪>> syms x y▪>> f = x^2+y▪ f =▪x^2+y▪>> finverse(f,y)▪ans =▪-x^2+y使用格式: 1 、g=finverse(f):f,g 均为单变量x 的符号函数; 2 、g=finverse(f,t) 返回值g 的自变量取为t ;19. 5 复合函数的运算(compose)▪>> syms x y z t u▪>> f = 1/(1 + x^2);▪>> g = sin(y);▪>> h = x^t;▪>> p = exp(-y/u) ;▪>> compose(f,g)▪ans =▪1/(1+sin(y)^2)▪>> compose(f,g,t)▪ans =▪1/(1+sin(t)^2)使用格式:Compose(f,g) % 返回当f=f(y) 和g=g(x) 时的复合函数f(g(x)) Compose(f,g,t) % 返回的复合函数以t 为自变量,即有f(g(t))20. 6 函数的极限、导数与积分o(1 )函数极限-limit 函数的使用o(2 )函数求导-diff 函数的使用o(3 )符号积分-int 函数的使用21.o符号极限(limit)假定符号表达式的极限存在,Symbolic Math Toolbox 提供了直接求表达式极限的函数limit ,函数limit 的基本用法如下表所示。

第三讲MATLAB的符号运算

第三讲MATLAB的符号运算
③符号计算指令的调用简单,和经典教科书公式相近。
④计算所需的时间较长。
• Symbolic Math Toolbox——符号运算工具包通过调用
Maple软件实现符号计算的。
• Maple软件——主要功能是符号运算,它占据符号软件
的主导地位。
2. 字符串与符号变量、符号常量
字符串对象 f = 'sin(x)+5x'
由符号变量构成的符号函数和 符号方程
• 符号表达式是由符号常量、符号变量、符号函
数运算符以及专用函数连接起来的符号对象。
• 包括:符号函数和符号方程。判断看带不带等
号。 例:syms x y z; f1=x*y/z;
f2=x^2+y^2+z^2; f3=f1/f2;
e1=sym('a*x^2+b*x+c')
factor(x^3-y^3)
• simplify( ) 该函数是一个强有力的具有
普遍意义的工具,它利用Maple化简规则 对表达式进行简化。
例:S=sym('[(x^2+5*x+6)/(x+2);sqrt(16)]')
simplify(S)
• simple( ) 用几种不同的算术简化规则对
符号表达式进行简化,使其用最少的字 符来表示。
行是自变量 x 的取值范围和常数 a 的值。
• 第四行只对 f 起作用,如求导、积分、简
化、提取分子和分母、倒数、反函数。
• 第五行是处理 f 和 a 的加减乘除等运算。
• 第六行前四个进行 f 和 g 之间的运算,后
三个分别是:求复合函数;把 f 传递给 ; swap是实现 f 和 g 功能的交换。

第三章 MATLAB符号运算

第三章 MATLAB符号运算

第3章 MATLAB符号计算符号计算则是可以对未赋值的符号对象(可以是常数、变量、表达式)进行运算和处理。

MATLAB具有符号数学工具箱(Symbolic Math Toolbox),将符号运算结合到MATLAB的数值运算环境。

符号数学工具箱是建立在Maple软件基础上的。

3.1 符号表达式的建立3.1.1 创建符号变量和表达式Symbolic Math Toolbox规定在进行符号计算时,首先要定义基本的符号对象然后才能进行符号运算。

创建符号变量和符号表达式可以使用sym和syms命令。

1. 使用sym命令创建符号变量和表达式语法:sym(‘变量’,参数) %把变量定义为符号对象2.使用syms命令创建符号变量和符号表达式语法:syms(‘arg1’, ‘arg2’, …,参数) %把字符变量定义为符号变量syms arg1 arg2 …,参数%把字符变量定义为符号变量的简洁形式说明:syms用来创建多个符号变量,这两种方式创建的符号对象是相同的。

参数设置和前面的sym命令相同,省略时符号表达式直接由各符号变量组成。

说明:参数用来设置限定符号变量的数学特性,可以选择为’positive’、’real’和’unreal’,’positive’表示为“正、实”符号变量,’real’表示为“实”符号变量,’unreal’表示为“非实”符号变量。

如果不限定则参数可省略。

【例3.1】创建符号变量,用参数设置其特性。

>> syms x y real %创建实数符号变量>> z=x+i*y; %创建z为复数符号变量>>real(z) %复数z的实部是实数xans =x【例3.2】创建符号表达式。

>> f1=sym('a*x^2+b*x+c')f1 =a*x^2+b*x+c【例3.3】使用syms命令创建符号变量和符号表达式。

>> syms a b c x %创建多个符号变量>>f2=a*x^2+b*x+c %创建符号表达式f2 =a*x^2+b*x+c3.1.2符号表达式的代数运算符号运算与数值运算的区别主要有以下几点:▪传统的数值型运算因为要受到计算机所保留的有效位数的限制,它的内部表示法总是采用计算机硬件提供的8位浮点表示法,因此每一次运算都会有一定的截断误差,重复的多次数值运算就可能会造成很大的累积误差。

第5章_Matlab符号运算

第5章_Matlab符号运算

再通过命令 sym 可直接将数值矩阵转换为符号矩阵 S=sym(M) 如果数值矩阵的元素为小数,则函数 sym()采用有理分式表示。如果元素是无理数,用 符号浮点数表示。 A=[sin(1) cos(2)] sym(A) [例 3] 用类似创建普通数值矩阵的方法创建符号矩阵 syms a b c d e f g h A=[a b;c d],B=[e f;g h] 对符号矩阵的操作同第 2 章讲的相同。 5.2 符号算术运算 Matlab 的符号算术运算主要是针对符号对象的加减、乘除运算,其运算法则和运算符 号同第 2 章介绍的数值运算相同, 其不同点在于参与运算的对象和运算所得结果是符号的而 非数值的。 5.2.1 符号对象的加减 若符号矩阵 A、B 为同型矩阵时,对应元素相加减;若 A、B 中至少有一个为标量,则 把标量扩大为数组,其大小与相加的另一数组同型,再按相对应的元素进行加减。 [例 1] 求两个符号表达式的和与差 f=2x2+3x-5 g=x2-x+7 syms x fx=2*x^2+3*x-5 sym('') gx=x^2-x+7 fx+gx fx-gx [例 2] 求两个符号矩阵的加减运算 syms a b c d e f g h A=[a b;c d],B=[e f;g h] A+B,A-B,a+A 5.2.2 符号对象的乘除 符号矩阵乘除:A*B、A/B,符号数组乘除:A.*B、A./B [例 1] 符号矩阵与数组的乘除示例 syms a b c d e f g h A=[a b;c d] B=[e f;g h] A.*B,A./B,A.\B A*B,A/B,A\B syms a11 a12 a21 a22 b1 b2 A=[a11 a12;a21 a22] B=[b1 b2]

MATLAB基础教程 第5章 符号运算

MATLAB基础教程 第5章 符号运算

第五章 符号运算
5.1 符号运算基础
2. 符号表达式的转换
(2)expand:该函数用于符号表达式的展开。其操作对象可以是多种类型,如多项 式、三角函数、指数函数等。
例5-6 符号表达式的展开。 >>syms x y; >>f=(x+y)^3; >>expand(f) ans= x^3+3*x^2*y+3*x*y^2+y^3 >>expand(sin(x+y)) ans= sin(x)*cos(y)+cos(x)*sin(y) >>expand(exp(x+y)) ans= exp(x)*exp(y)
第五章 符号运算
5.1 符号运算基础
例5-2 符号运算和数值运算之间的差别 >>sym(2)/sym(5) ans= 2/5 >>2/5+1/3 ans=0.7333 >>sym(2)/sym(5)+sym(1)/sym(3) ans= 11/15 >>double(sym(2)/sym(5)+sym(1)/sym(3)) ans= 0.7333 由上例可以看出,当进行数值运算时,得到的结果为double型数据;采用符号进 行运算时,输出的结果为分数形式。
第五章 符号运算
5.1 符号运算基础
2. 符号表达式的转换
(4)simplify:该函数实现表达式的化简。 例5-8 simplify函数的应用。 >>simplify(sin(x)^2+cos(x)^2) ans= 1 >>syms a b c; >>simplify(exp(c*log(sqrt(a+b)))) ans= (a+b)^(1/2*c) >>S=[(x^2+5*x+6)/(x+2),sqrt(16)]; >>R=simplify(S) R= [3+x, 4]

基础篇-第3章-符号运算

基础篇-第3章-符号运算


3.1.4 符号运算中的运算符

MATLAB中为符号运算提供了多种多样的运算符,如表3-2所示 表3-2 符号运算中的运算符
符号 + .* * ^ .^ \ / .\ ./ kron , ; 符号用途说明 加 减 点乘 矩阵相乘 矩阵求幂 点幂 左除 右除 点左除 点右除 张量积 分隔符 (a)写在表达式后面时运算后不显示计算结果 (b)在创建矩阵的语句中指示一行元素的结束,例如m=[x y z;i j k] 创建向量的表达式分隔符,如x=a:b:c a(:,j)表示j列的所有行元素;a(i,:)表示i行的所有列元素 创建数组、向量、矩阵或字符串(字母型)

>> [n,d]=numden(k)


n=
[3, 2*x+1] [4, 3*x+4] d=


[ 2,3]
[x^2,1] 这个表达式k是符号数组,numden返回两个新数组n和d,其中n是分子数组,d是分母 数组。如果采用s=numden(f)形式,numden仅把分子返回到变量s中。



findsym(x+i*y-j*z,3)
syms x a y z b; %定义5个符号变量 %定义两个符号表达式 s1=3*x+y;s2=a*y+b


findsym(s1)
findsym(s2,2) syms x y; s=2*x+3*y; findsym(s) ans = x, y

>>


【例3-2】创建符号变量,求复数表达式z=x+i*y的共轭复数
>> x=sym('x','real'); >> y=x+i*y; >> x=sym('x','real'); >> y=sym('y','real'); >> z=x+i*y; >> conj(z)

第三章:MATLAB的符号运算

第三章:MATLAB的符号运算

注1:即使利用clear语句删除x,并不能改变MuPAD内存中对x的限制设 定,再引入变量x是,仍然带有这一设定。
注2:sym x clear 只改变x的限定,并没有删除和改变x的值。
例:求 3x2 5x 1 0的解
>> clear >> syms x >> solve(3*x^2+5*x+1) ans =
>> y=solve(f) y= -(b + (b^2 - 4*a*c)^(1/2))/(2*a) -(b - (b^2 - 4*a*c)^(1/2))/(2*a)
>> y=solve(f,a) y= -(c + b*x)/x^2
符号表达式 符号表达式有两种不同的生成方式: 1、直接由sym函数生成 如: f=sym(‘2*sin(x)+5*cos(x)’) 这样的表达式称为串型表达式。 2、利用符号变量经符号运算生成 如: syms x y f=sin(x)+2*cos(y)
- 13^(1/2)/6 - 5/6 13^(1/2)/6 - 5/6
>> assume(x>=-5/6) >> solve(3*x^2+5*x+1)
ans = 13^(1/2)/6 - 5/6
例:求方程
x3
475 5 x 0 的根 100 2
求第一象限的根
>> syms x 'clear' >> assume(real(x)>=0) >> assumeAlso(imag(x)>=0) >> solve(x^3+475*x/100+5/2) ans = (79^(1/2)*i)/4 + 1/4

Matlab教学第四章MATLAB符号运算(Symbolic)

Matlab教学第四章MATLAB符号运算(Symbolic)

符号计算可以给出完全正确的封闭解,或任意精度的数
值解(封闭解不存在时)。
符号计算指令的调用比较简单,与数学教科书上的公式相近。
符号计算所需的运行时间相对较长。
Matlab 符号运算举例
求一元二次方程 ax2 + bx + c = 0 的根 >> solve('a*x^2+b*x+c=0') 求的根 f (x) = (cos x)2 的一次导数 >> x=sym('x'); >> diff(cos(x)^2) 计算 f (x) = x2 在区间 [a, b] 上的定积分
>> syms a b x; >> int(x^2,a,b)
符号对象与符号表达式
在进行符号运算时,必须先定义基本的符号对象,可以是符号常量、符号变 量、符号表达式等。符号对象是一种数据结构。
含有符号对象的表达式称为符号表达式,Matlab 在内部把符号表达式表示 成字符串,以与数字变量或运算相区别。
syms a b c
符号表达式的建立
符号表达式的建立:
建立符号表达式通常有以下2种方法: (1) 用 sym 函数直接建立符号表达式。 (2) 使用已经定义的符号变量组成符号表达式。
例: >>
y=sym('sin(x)+cos(x)')
>> x=sym('x'); >> y=sin(x)+cos(x) >> syms x; >> y=sin(x)+cos(x)
六类常见符号运算
因式分解、展开、合并、简化及通分等 计算极限 计算导数 计算积分 符号求和 代数方程和微分方程求解
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MATLAB程序设计教程(9)——MATLAB符号计算<!--[if !supportEmptyParas]--> by:ysuncn(欢迎转载,请注明原创信息)第9章MATLAB符号计算9.1 符号对象9.2 符号微积分9.3 级数9.4 符号方程求解<!--[if !supportEmptyParas]--> <!--[endif]-->9.1 符号对象9.1.1 建立符号对象1.建立符号变量和符号常量MATLAB提供了两个建立符号对象的函数:sym和syms,两个函数的用法不同。

(1) sym函数sym函数用来建立单个符号量,一般调用格式为:符号量名=sym('符号字符串')该函数可以建立一个符号量,符号字符串可以是常量、变量、函数或表达式。

应用sym函数还可以定义符号常量,使用符号常量进行代数运算时和数值常量进行的运算不同。

下面的命令用于比较符号常量与数值常量在代数运算时的差别。

<!--[if !supportEmptyParas]-->(2) syms函数函数sym一次只能定义一个符号变量,使用不方便。

MATLAB提供了另一个函数syms,一次可以定义多个符号变量。

syms函数的一般调用格式为:syms 符号变量名1 符号变量名2 … 符号变量名n用这种格式定义符号变量时不要在变量名上加字符串分界符(‘),变量间用空格而不要用逗号分隔。

<!--[if !supportEmptyParas]-->2.建立符号表达式含有符号对象的表达式称为符号表达式。

建立符号表达式有以下3种方法:(1)利用单引号来生成符号表达式。

(2)用sym函数建立符号表达式。

(3) 使用已经定义的符号变量组成符号表达式。

<!--[if !supportEmptyParas]--> <!--[endif]-->9.1.2 符号表达式运算1.符号表达式的四则运算符号表达式的加、减、乘、除运算可分别由函数symadd、symsub、symmul和symdiv来实现,幂运算可以由sympow来实现。

2.符号表达式的提取分子和分母运算如果符号表达式是一个有理分式或可以展开为有理分式,可利用numden函数来提取符号表达式中的分子或分母。

其一般调用格式为:[n,d]=numden(s)该函数提取符号表达式s的分子和分母,分别将它们存放在n与d中。

<!--[if !supportEmptyParas]-->3.符号表达式的因式分解与展开MATLAB提供了符号表达式的因式分解与展开的函数,函数的调用格式为:factor(s):对符号表达式s分解因式。

expand(s):对符号表达式s进行展开。

collect(s):对符号表达式s合并同类项。

collect(s,v):对符号表达式s按变量v合并同类项。

<!--[if !supportEmptyParas]-->4.符号表达式的化简MATLAB提供的对符号表达式化简的函数有:simplify(s):应用函数规则对s进行化简。

simple(s):调用MATLAB的其他函数对表达式进行综合化简,并显示化简过程。

<!--[if !supportEmptyParas]-->5.符号表达式与数值表达式之间的转换利用函数sym可以将数值表达式变换成它的符号表达式。

函数numeric或eval可以将符号表达式变换成数值表达式。

<!--[if !supportEmptyParas]-->9.1.3 符号表达式中变量的确定MATLAB中的符号可以表示符号变量和符号常量。

findsym可以帮助用户查找一个符号表达式中的的符号变量。

该函数的调用格式为:findsym(s,n)函数返回符号表达式s中的n个符号变量,若没有指定n,则返回s中的全部符号变量。

<!--[if !supportEmptyParas]--> <!--[endif]-->9.1.4 符号矩阵符号矩阵也是一种符号表达式,所以前面介绍的符号表达式运算都可以在矩阵意义下进行。

但应注意这些函数作用于符号矩阵时,是分别作用于矩阵的每一个元素。

由于符号矩阵是一个矩阵,所以符号矩阵还能进行有关矩阵的运算。

MA TLAB还有一些专用于符号矩阵的函数,这些函数作用于单个的数据无意义。

例如transpose(s):返回s矩阵的转置矩阵。

determ(s):返回s矩阵的行列式值。

其实,曾介绍过的许多应用于数值矩阵的函数,如diag、triu、tril、inv、det、rank、eig等,也可直接应用于符号矩阵。

<!--[if !supportEmptyParas]--> <!--[endif]-->9.2 符号微积分9.2.1 符号极限limit函数的调用格式为:(1) limit(f,x,a):求符号函数f(x)的极限值。

即计算当变量x趋近于常数a时,f(x)函数的极限值。

(2) limit(f,a):求符号函数f(x)的极限值。

由于没有指定符号函数f(x)的自变量,则使用该格式时,符号函数f(x)的变量为函数findsym(f)确定的默认自变量,即变量x趋近于a。

<!--[if !supportEmptyParas]--> <!--[endif]-->(3) limit(f):求符号函数f(x)的极限值。

符号函数f(x)的变量为函数findsym(f)确定的默认变量;没有指定变量的目标值时,系统默认变量趋近于0,即a=0的情况。

(4) limit(f,x,a,'right'):求符号函数f的极限值。

'right'表示变量x从右边趋近于a。

(5) limit(f,x,a,‘left’):求符号函数f的极限值。

‘left’表示变量x从左边趋近于a。

<!--[if !supportEmptyParas]--> <!--[endif]-->例9-1 求下列极限。

极限1:syms a m x;f=(x*(exp(sin(x))+1)-2*(exp(tan(x))-1))/(x+a);limit(f,x,a)(1/2*a*exp(sin(a))+1/2*a-exp(tan(a))+1)/a极限2:syms x t;limit((1+2*t/x)^(3*x),x,inf)ans =exp(6*t)<!--[if !supportEmptyParas]--> <!--[endif]-->极限3:syms x;f=x*(sqrt(x^2+1)-x);limit(f,x,inf,'left')ans =1/2极限4:syms x;f=(sqrt(x)-sqrt(2)-sqrt(x-2))/sqrt(x*x-4); limit(f,x,2,'right')-1/2<!--[if !supportEmptyParas]--> <!--[endif]-->9.2.2 符号导数diff函数用于对符号表达式求导数。

该函数的一般调用格式为:diff(s):没有指定变量和导数阶数,则系统按findsym函数指示的默认变量对符号表达式s求一阶导数。

diff(s,'v'):以v为自变量,对符号表达式s求一阶导数。

diff(s,n):按findsym函数指示的默认变量对符号表达式s求n阶导数,n为正整数。

diff(s,'v',n):以v为自变量,对符号表达式s求n阶导数。

例9-2 求下列函数的导数。

<!--[if !supportEmptyParas]--> <!--[endif]-->9.2.3 符号积分符号积分由函数int来实现。

该函数的一般调用格式为:int(s):没有指定积分变量和积分阶数时,系统按findsym函数指示的默认变量对被积函数或符号表达式s求不定积分。

int(s,v):以v为自变量,对被积函数或符号表达式s求不定积分。

int(s,v,a,b):求定积分运算。

a,b分别表示定积分的下限和上限。

该函数求被积函数在区间[a,b]上的定积分。

a和b可以是两个具体的数,也可以是一个符号表达式,还可以是无穷(inf)。

当函数f关于变量x在闭区间[a,b]上可积时,函数返回一个定积分结果。

当a,b中有一个是inf时,函数返回一个广义积分。

当a,b中有一个符号表达式时,函数返回一个符号函数。

例9-3 求下列积分。

<!--[if !supportEmptyParas]--> <!--[endif]-->9.2.4 积分变换常见的积分变换有傅立叶变换、拉普拉斯变换和Z变换。

1.傅立叶(Fourier)变换在MATLAB中,进行傅立叶变换的函数是:fourier(f,x,t):求函数f(x)的傅立叶像函数F(t)。

ifourier(F,t,x):求傅立叶像函数F(t)的原函数f(x)。

例9-4 求函数y=的傅立叶变换及其逆变换。

<!--[if !supportEmptyParas]--> <!--[endif]-->2.拉普拉斯(Laplace)变换在MATLAB中,进行拉普拉斯变换的函数是:laplace(fx,x,t):求函数f(x)的拉普拉斯像函数F(t)。

ilaplace(Fw,t,x):求拉普拉斯像函数F(t)的原函数f(x)。

例9-5 计算y=x3的拉普拉斯变换及其逆变换。

<!--[if !supportEmptyParas]--> <!--[endif]-->3.Z变换当函数f(x)呈现为一个离散的数列f(n)时,对数列f(n)进行z变换的MA TLAB函数是:ztrans(fn,n,z):求fn的Z变换像函数F(z)。

iztrans(Fz,z,n):求Fz的z变换原函数f(n)。

例9-6 求数列fn=e-2n的Z变换及其逆变换。

<!--[if !supportEmptyParas]--> <!--[endif]-->9.3 级数9.3.1 级数符号求和求无穷级数的和需要符号表达式求和函数symsum,其调用格式为:symsum(s,v,n,m)其中s表示一个级数的通项,是一个符号表达式。

v是求和变量,v省略时使用系统的默认变量。

n和m是求和的开始项和末项。

例9-7 求下列级数之和。

<!--[if !supportEmptyParas]--> <!--[endif]-->9.3.2 函数的泰勒级数MATLAB提供了taylor函数将函数展开为幂级数,其调用格式为:taylor(f,v,n,a)该函数将函数f按变量v展开为泰勒级数,展开到第n项(即变量v的n-1次幂)为止,n的缺省值为6。

相关文档
最新文档