液力变矩器原理
液力变矩器的故障检测与维修
液力变矩器的故障检测与维修液力变矩器是一种常见的动力传动装置,在机械设备中起着很重要的作用。
然而,由于工作环境的影响和长期的使用,液力变矩器也会出现一些故障。
本文将介绍液力变矩器的故障检测与维修方法,以帮助读者更好地管理和维护液力变矩器。
一、液力变矩器的工作原理液力变矩器是利用液体在转速差的作用下转变机械转矩的动力传动装置。
它主要由泵轮、涡轮和导向叶轮组成,通过液体的动量传递和流体的摩擦转换,实现输入和输出轴的转速调节和转矩变化。
液力变矩器的工作原理可以简单归纳为以下几个阶段:1.泵轮的工作阶段:液力变矩器的输入轴带动泵轮旋转,泵轮中的叶片将液体从泵轮轴心向外投掷,产生高速旋转的液体流动。
2.涡轮的工作阶段:液体流动冲击涡轮叶片,使涡轮开始转动。
与此同时,液体流动将涡轮产生的转动动能传递到输出轴。
3.导向叶轮的工作阶段:导向叶轮起到调节流体流动方向和速度的作用。
它将液体流动重新定向,并将其重新投入到泵轮中,形成循环。
这种循环过程中,液体的流动和动能传递不断进行,使输入轴和输出轴之间实现转速和转矩的变化。
液力变矩器具有启动平缓、承载能力强等优点,广泛应用于大型机械设备中。
二、液力变矩器的故障检测当液力变矩器出现故障时,往往会导致设备运行不稳定或无法正常工作。
因此,及时检测和排除液力变矩器故障非常重要。
液力变矩器的常见故障有以下几种:1.液力变矩器的温度升高:液力变矩器在工作过程中会有一定的能量损耗,造成内部温度升高。
如果温度过高,会导致液力变矩器无法正常工作。
因此,及时检测液力变矩器的温度是否正常,并采取措施降低温度是非常重要的。
2.液力变矩器的漏油现象:液力变矩器在运行过程中如果出现漏油现象,则会导致液力变矩器的工作效率下降。
因此,检查液力变矩器的密封性能,及时排除漏油问题是关键。
3.液力变矩器的转速波动:液力变矩器在工作时,如果转速存在波动,会导致设备运行不稳定。
因此,及时检测液力变矩器的转速波动问题,并采取相应的措施进行修复是非常必要的。
液力变矩器原理
液力变矩器原理
液力变矩器是一种利用液流的转动动能转换为机械动能的装置。
液力变矩器的主要原理是利用携带动能的工作液体在叶轮和导向叶片之间产生流动,并通过液体的阻力来达到变矩的目的。
液力变矩器主要由泵、液力涡轮和导向叶片组成。
泵是液力变矩器的动力源,它通过转子和叶轮之间的传递力,将动力传输给工作液体。
液力涡轮是液力变矩器的传递装置,将来自泵的动能转化为液体的动能。
液力涡轮旋转起来,推动液体形成旋涡流动,然后经过导向叶片的引导,使液体重新进入泵来实现循环。
当液力变矩器处于空转状态时,工作液体从泵中的转子中吸入,然后经过泵的叶轮的动力传输给液力涡轮,液力涡轮开始旋转。
由于液体的阻力作用,液力涡轮的旋转速度较泵的旋转速度慢,形成了一种转速比。
当液力变矩器连接到负载上时,液力涡轮带动负载一起旋转,使液体在液力涡轮和导向叶片之间产生流动,并通过流动的液体来传递转矩。
转矩的大小取决于液体的流动量和液流的速度。
液力变矩器通过调节工作液体的流量和转速比来实现变矩的效果。
当负载较大时,液力变矩器会自动调整液流量和转速比,进而实现输出更大的转矩。
这使得液力变矩器在汽车、船舶、工程机械等领域中得到广泛应用。
液力变矩器的结构与工作原理
液力变矩器的结构与工作原理(一)液力变矩器的结构液力变矩器以液体作为介质,传递和增大来自发动机的扭矩液力变矩器由可转动的泵轮和涡轮,以及固定不动的导轮三元件构成。
各件用铝合金精密铸造或者用钢板冲压焊接而成。
泵轮与变矩器壳成一体。
用螺栓固定在飞轮上,涡轮通过从动轴与传动系各件相连。
所有工作轮在装配后,形成断面为循环圆的环状体。
(二)液力变矩器的工作原理导涡泵液力变矩器工作原理可以用两台电风扇作形象描述,两风扇对置,一台通电转动,产生的气流可吹动不通电的风扇,如果给其添加一个管道这就成为了液力偶合器,它能传轴,并不增扭。
变矩器工作时,发动机带动泵轮转动,叶轮带动液流冲向涡轮,从而驱动涡轮转动,刚起动时扭矩最大,此时冲击力为F1,冲到涡轮的液流驱动涡轮后,由于叶片形状,冲向导轮,而导轮不动,冲击导轮的液流受到妨碍,可使涡轮受到反作用力F2,由于F1、F2 都作用于涡轮,所以使涡轮所受扭矩得到增大。
涡轮转速升高后,液流变向会冲击导轮叶背,而失去增扭,并有一定阻力。
所以现在所用导轮都使用单向离合器,使去冲击叶背时,导轮转过一个角度,使其继续增扭。
导轮下端装有单向离合器,可增大其变扭范围。
(三)锁止式变矩器是用液力来传递汽车动力的,而液压油的内部磨擦会造成一定的能量损失,因此传动效率较低。
为提高汽车的传动效率,减少燃油消耗,现代不少轿车的自动变速器采用一种带锁止离合器的综合式液力变矩器。
这种变矩器内有一个由液压油控制的锁止离合器。
锁止离合器的主动盘即为变矩器壳体,从动盘是一个可作轴向挪移的压盘,它通过花键套与涡轮连接(如图 2.3) .压盘背面(如图 2.3 右侧)的液压油与变矩器泵轮、涡轮中的液压油相通,保持一定的油压(该压力称为变矩器压力) ;压盘左侧(压盘与变矩器壳体之间) 的液压油通过变矩器输出轴中间的控制油道与阀板总成上的锁止控制阀相通。
锁止控制阀由自动变速器电脑通过锁止电磁阀来控制。
自动变速器电脑根据车速、节气门开度、发动机转速、变速器液压油温度、操纵手柄位置、控制模式等因素,按照设定的锁止控制程序向锁止电磁阀发出控制信号,控制锁止控制阀,以改变锁止离合器压盘两侧的油压,从而控制锁止离合器的工作。
《汽车传动系统维修》任务二 液力变矩器
ATF在工作的时候需要油泵提供一定的压力,而油泵一般是由液力变矩器壳体驱动的。同时由于
模块四 自动变速的构造与检修 任务二 液力变矩器
液变矩器的功用和组成
液力变矩器的工作原理
采用ATF传递动力,液力变矩器的动力传递柔和,且能防止传动系统过载。
二、液力变矩器的组成
如图4-11所示,液力变矩器通常由泵轮、涡轮和导轮三个元件组成,称为三元件液力变矩器。也 有的采用两个导轮,则称为四元件液力变矩器。
液力变矩器总成封在一个钢制壳体 (变矩器壳体)中,各工作轮用铝合金精 密铸造,或用钢板冲压焊接而成,内部充 满ATF。液力变矩器壳体通过螺栓与发动 机曲轴后端的飞轮连接,与发动机曲轴一 起旋转。泵轮位于液力变矩器的后部,与 变矩器壳体连在一起。涡轮位于泵轮前, 通过带花键的从动轴向后面的机械变速器 输出动力。导轮位于泵轮与涡轮之间,通 过单向离合器支承在固定套管上,使得导 轮只能单向旋转(顺时针旋转)。泵轮、 涡轮和导轮上都带有叶片,液力变矩器装 配好后形成环形内腔,其间充满ATF。
图4-14 油液在液力变矩器中的流向(导轮转动)
模块四 自动变速的构造与检修 任务二 液力变矩器
液力变矩器的功用和组成
液力变矩器的工作原理
综上所述可知: (1)液力变矩器导轮是变矩关键元件。 (2)与液力耦合器一样,液力变矩器中油液工作时同时存在绕工作轮轴线作旋转运动和沿循环圆 的轴面循环旋转运动。油液循环的流向为先经泵轮,再经涡轮和导轮,最后又回到泵轮的顺序,如此 反复循环。 (3)液力变矩器变矩效率随涡轮转速变化而变化。 ①当涡轮转速为零时,增矩值最大。涡轮输出转矩等于泵轮输入转矩与导轮反作用转矩之和。 ②随着涡轮转速由零逐渐增大,增矩值随之逐渐减小。 ③当涡轮转速达到某一值时,液力变矩器转化为液力耦合器,涡轮输出力矩等于泵轮输入力矩。 ④当涡轮转速进一步增大时,涡轮出口处液流冲击导轮叶片背面,此时液力变矩器涡轮输出力矩 小于泵轮输入力矩,其值等于泵轮输入力矩与导轮力矩之差。 ⑤当涡轮转速与泵轮转速同步,液力变矩器失去传递动力的功能。
液力变矩器结构与原理
受力分析ห้องสมุดไป่ตู้
受力分析
液力变矩器结论
3.输出转矩——随着涡轮转速的变化而变化。 a.涡轮转速低时(nw=0),nB>nw,液体流向导轮正面,涡轮 转矩大于泵轮转矩,MD>0,MW=MB+MD, b.随着涡轮转速的升高(nw>0),接近0.85nB时,涡轮出口 处工作油流向与导轮叶片相切,涡轮转矩等于泵轮转矩, MD=0,Mw=MB(耦合点) c.涡轮转速继续升高,涡轮出口处工作油冲击导轮叶片背面, 此时涡轮转矩小于泵轮输入转矩,MD<0,Mw=MB-MD
d.当涡轮转速与泵轮转速( nB=nw )时,不再传递扭矩, Mw=0
泵轮内的工作油在离心力的作用下,由泵轮叶片外缘冲 向涡轮,并沿涡轮叶片流向导轮,再经导轮叶片流回泵 轮叶片内缘,形成循环的工作油。
②在液体循环流动过程中,导轮给涡轮一个反作用力矩,
从而使涡轮输出力矩不同于泵轮输入力矩,具有“变矩” 功能。
③导轮的作用:改变涡轮的输出力矩。
液力变矩器
涡流、环流、循环圆
液力变矩器的组成
2.组成:主要由泵轮、涡轮、导轮组成
液力变矩器的实物图
液力变矩器的剖视图
液力变矩器的组成—泵轮
①泵轮
使发动机机械能 液体能量
液力变矩器的组成—涡轮
②涡轮
将液体能量 机械能 涡轮轴上
液力变矩器的组成—导轮
③导轮 通过改变工作 油的方向而起变 矩作用
液力变矩器
涡轮
导轮
泵轮
液力变矩器—工作原理 ①发动机运转时带动液力变矩器的壳体和泵轮一同旋转,
《液力变矩器》课件
03
液力变矩器的设计
Chapter
设计原则与要求
功能性原则
确保液力变矩器能够实现预期的功能,如传 递扭矩、变速等。
可靠性原则
设计应保证液力变矩器的稳定性和耐用性, 能够承受各种工况和环境条件。
经济性原则
在满足性能要求的前提下,尽量降低制造成 本和维护成本。
,形成各零部件的精确形状。
热处理
04 对部分零部件进行热处理,提
高其机械性能。
装配与调试
05 将各零部件组装成完整的液力
变矩器,并进行性能调试。
表面处理
06 对液力变矩器进行涂装、防锈
等表面处理,以提高其耐久性 和外观质量。
关键制造工艺技术
精密铸造技术
用于制造液力变矩器的某些复杂形状的零部 件,如涡轮、导轮等。
液力变矩器的种类与特点
种类
根据工作原理和结构特点,液力变矩 器可分为单级、双级和多级变矩器。
特点
液力变矩器具有优良的自动变速和变 矩能力,能够吸收振动、缓和冲击、 承受过载和防止突然停车等优点。
液力变矩器的应用领域
01
汽车工业
用于汽车的自动变速器和无级变 速器,实现汽车的平稳起步、加 速和减速。
智能化设计
将传感器和控制系统集成到液 力变矩器中,实现对其工作状
态的实时监测和自动控制。
04
液力变矩器的制造工艺
Chapter
制造工艺流程
材料准备
01 根据液力变矩器的设计要求,
准备所需的各种原材料,如铸 件、锻件、板材等。
毛坯制备
02 对原材料进行加工,形成液力
变矩器的毛坯。
机械加工
自动变速器的液力变矩器的作用及工作原理
自动变速器的液力变矩器的作用及工作原
理
自动变速器是现代汽车中常见的一种变速器,它的液力变矩器是其中的重要组成部分。
液力变矩器是一种利用液体传递动力的装置,它可以将发动机的动力传递到变速器中,从而实现汽车的变速。
液力变矩器的工作原理是基于液体的流动和压力变化。
液力变矩器由三个主要部分组成:泵轮、涡轮和液力耦合器。
泵轮由发动机驱动,它会将液体推向涡轮。
涡轮与泵轮相对应,它会将液体转化为动力,从而驱动汽车的轮胎。
液力耦合器则是将泵轮和涡轮连接在一起的装置,它可以将发动机的动力传递到涡轮中。
液力变矩器的作用是将发动机的动力转化为变速器所需的动力。
当汽车启动时,发动机会产生大量的扭矩,但是轮胎需要的扭矩并不是很大。
液力变矩器可以将发动机的扭矩转化为轮胎所需的扭矩,从而使汽车可以平稳地启动。
当汽车行驶时,液力变矩器可以根据车速的变化自动调整泵轮和涡轮之间的液体流量,从而实现汽车的变速。
液力变矩器的优点是可以实现平稳的启动和变速,同时也可以减少发动机的磨损和噪音。
但是它也存在一些缺点,比如液体的摩擦会导致能量的损失,从而影响汽车的燃油经济性。
此外,液力变矩器也容易受到高温和过度磨损的影响,需要定期维护和更换。
液力变矩器是自动变速器中不可或缺的一部分,它可以实现汽车的平稳启动和变速,从而提高驾驶的舒适性和安全性。
对于汽车的维护和保养,液力变矩器也是需要重视的一部分。
液力变矩器的工作原理
液力变矩器的工作原理
液力变矩器是一种利用液体流体动力学原理来传递扭矩的传动装置。
它由涡轮、泵轮和导向器组成。
液力变矩器中的液体是主要的工作介质,液体既起到了传递动力的作用,又能起到传递扭矩和变速的作用。
当发动机启动时,液体被泵轮蓄积和压入导向器,并进一步将液体流向涡轮。
涡轮和泵轮是通过液体的流动来连接的,液体经过涡轮后重新返回到泵轮,经过反复的流动循环。
当发动机的转速增加时,液体靠近涡轮叶片的压力也会增加,推动涡轮转动并传递动力。
涡轮的转动将扭矩传递到液力变矩器输出轴上,在驱动车辆或机械设备中起到传递动力的作用。
液力变矩器的一个重要特点是具有流体传动的连续性,它能够根据发动机的负载和转速的变化,自动调节液体的流动以适应不同的工况。
在低负载和低转速情况下,液体通过导向器的流动能够产生较大的扭矩;而在高负载和高转速情况下,液体的流动受到阻碍,扭矩相应减小。
液力变矩器的优点包括启动平稳、传递扭矩能力大、无级变速以及减震作用等。
然而,由于液体的切向流动和摩擦损耗等原因,液力变矩器也存在一定的能量损失。
因此,在一些高效率要求的应用中,液力变矩器常常需要与其他传动系统结合使用,如自动变速器或离合器等,以提高整体传动效率。
简述液力变矩器的工作过程
简述液力变矩器的工作过程
液力变矩器是一种利用液体动能传递动力的装置,主要应用于汽车、工程机械等领域。
下面我们将从液力变矩器的结构、工作原理、
优缺点等方面进行全面介绍。
液力变矩器的结构主要包括驱动轮、承载轮、泵轮和涡轮四部分。
其中,驱动轮与发动机相连,泵轮与驱动轮相连,承载轮与变速器相连,涡轮则处于泵轮和承载轮之间。
整个结构呈环状,利用液体作为
中介物,将驱动轮产生的动力传递到承载轮上,起到变矩和变速的作用。
液力变矩器的工作原理如下:当发动机启动时,驱动轮开始转动,将动力传递到泵轮上。
泵轮的转动产生强大的离心力,在转速稳定时,将液体向涡轮中心部位喷出,形成旋转的涡流。
涡轮受到液流的冲击,开始旋转,并将旋转的能量传递给承载轮,从而推动汽车前进。
在汽车加速过程中,发动机转速逐渐增加,涡轮扭矩也相应增加,通过变速器可以改变承载轮的转速和扭矩,从而使汽车实现加速或减
速变换。
在低速行驶和急刹车等情况下,液力变矩器的转速调整能力
较弱,会产生较大的能量损失,影响汽车的燃油经济性。
液力变矩器的优缺点如下:液力变矩器具有传动平稳、起步顺畅、负载适应性好等优点,可以承受瞬间高扭矩的冲击,保护发动机和变
速器。
但是液力变矩器的能量传递效率不高,会产生一定的热能损失,同时也会使驾驶者感到汽车响应稍慢,加速度较小。
综上所述,液力变矩器作为一种传统的汽车动力传动装置,具有
其独特的优缺点,在不断发展的汽车工业中仍然具有一定的应用前景。
《工程机械设计》第4章-液力变矩器
速称为标定功率和标定转速(也称额定全功率和额定转速)。 标定功率和标定转速是根据内燃机工作特性、使用特点、
寿命和可靠性等各种要求确定的。我国1973年颁布的国家 标准《内燃机台架试验方法》规定,内燃机功率标定分为 下列四级:
4.3.4 液力变矩器与发动机的共同工作特性
4.3.4 液力变矩器与发动机的共同工作特性
相同的内燃机与不同类型液力变矩器匹配或不同内燃机与同 一液力变矩器相匹配时,液力变矩器涡轮轴的平均输出功率 最大,平均单位燃油消耗量最小的匹配是最合理的。
目前常见的匹配原则有以下三种。
4.3.4 液力变矩器与发动机的共同工作特性
4.3.4 液力变矩器与发动机的共同工作特性
采用液力传动的机械不仅与所用的发动机、变矩器、变速箱 和工作装置、行走装置等的性能(特别是牵引性能和燃料经 济性)有关,而且与它们共同工作特性有关。
共同工作与匹配有着不同的含义,前者只研究连接在一起的 工作情况,后者则研究共同工作时应采用怎样的配合才能获 得理想的性能(工作机的优异工作性能)。
3)12h功率:允许内燃机连续运转12h的最大有效功率(包括在超过 12h功率10%的情况下连续运转1h,为最大功率的77%~80%),适用 于在一个工作日中保持不变负荷工作的内燃机(如工程机械、发电机及 农用拖拉机所用的内燃机)。
4)持续功率:允许内燃机长期连续运转的最大有效功率,适用于长期 以恒定负荷工作的内燃机(如长期排灌用或船用内燃机)。
4.3.4 液力变矩器与发动机的共同工作特性
4.3.4 液力变矩器与发动机的共同工作特性
4.3.4 液力变矩器与发动机的共同工作特性
4.3.4 液力变矩器与发动机的共同工作特性
《液力变矩器》课件
工作范围
总结词
工作范围描述了液力变矩器在不同转速和扭 矩下的工作状态。
详细描述
工作范围是指液力变矩器能够适应的转速和 扭矩范围。了解工作范围对于选择合适的液 力变矩器以及正确使用和维护变矩器至关重 要。在实际应用中,需要根据具体的工作条 件和需求来确定适合的工作范围。
油液特性
总结词
油液特性对液力变矩器的性能和寿命具有重要影响。
特点
变速器需要具备高精度、高稳定性和耐久性等特点,以确保车辆的 行驶安全和舒适性。
油液及冷却系统
01
作用
油液及冷却系统的主要作用是为液力变矩器提供润滑和冷却,确保其正
常运转。
02 03
工作原理
油液在循环流动过程中,通过与变矩器内部的零件接触,带走热量并润 滑零件表面。同时,冷却系统通过循环冷却水将热量传递给散热器,以 保持液力变矩器的正常工作温度。
《液力变矩器》PPT课件
• 液力变矩器概述 • 液力变矩器的结构与组成 • 液力变矩器的工作流程 • 液力变矩器的性能参数 • 液力变矩器的维护与保养 • 液力变矩器的未来发展与展望
01
液力变矩器概述
定义与工作原理
定义
液力变矩器是一种能量转换装置,它可以将发动机的机械能转换为液体的动能 和势能,再传递给变速器。
液力变矩器运转异常
01
检查液力变矩器的输入和输出轴是否正常,检查油液的清洁度
和油位是否正常。
油温过高
02
检查液力变矩器的散热系统是否正常,检查油液的循环是否顺
畅。
油压异常
03
检查液压系统的压力传感器是否正常,检查油泵和溢流阀的工
作状态。
06
液力变矩器的未来发展与展望
液力变矩器定义、工作原理和应用
P T M TnT Ki(i)P B M BnB源自BMB nB 2D5
B(i)
K M T MB
因此,液力变矩器的原始特性能够确切地表达一系列不
同转速、不同尺寸而几何相似的液力变矩器的基本性能。在
液力变矩器的原始特性上,可列出以下表征液力变矩器工作
性能的特性参数:
14
K 0 ——零速工况i 0 时的变矩系数; B 0 ——零速工况i 0 时的泵轮力矩系数;
B
MB
nB 2 D5
B(i)
(4-4)
T
MT
nB 2D5
T(i)
(4-5)
泵轮力矩系数 B 的物理意义是:当 D 1m,n B 1
r/min及油液重度 1 N/m3时,液力变矩器泵轮上的力矩。
它基本上与液力变矩器的大小、转速的快慢和工作液体的
密度无关,因此用它来比较液力变矩器的容量, 的量B 纲
液力变矩器的组成的演示
2
4.1 液力变矩器的工作原理
23
4
5
图4-1 液
力变矩器的轴
1
面流线图
液力变矩器工作原理的演示
1-输入轴 2-涡轮 3-导轮 4-泵轮 5-输出轴
3
第二讲液力变矩器的构造及原理
第二讲:液力变矩器的构造及原理(一)液力变矩器的构造(如图所示):(1)驱动轮(2)罩壳(3)涡轮(4)变矩器壳(5)泵轮(6)过桥轮(7)导轮座(8)油封座(9)接盘(10)输出轴(11)导轮接盘(12)导轮(13)回油泵(14)主动轮(15)滤清器(16)放油堵(17)涡轮接盘(18)挡板(19)支撑盘。
变矩器常见的结构型式有:(1)正转型(又称1﹑2﹑3型)和反转型(又称132型)。
变矩器的泵轮1﹑涡轮2﹑导轮3在液体循环圆中的排列顺序不同,有的变矩器,泵轮1把油打到涡轮2上,经导轮3再回到泵轮1。
泵轮和涡轮的旋转方向相同。
这种结构叫`正转'型,或叫`1﹑2﹑3'型;另一种是泵轮1把油打到导轮3上,经涡轮2再反回泵轮1,泵轮和涡轮的旋转方向相反。
这种结构叫`反转'型,或叫`1﹑3﹑2'型。
(2)级数:液力变矩器的级数,是指安置在泵轮与导轮之间,或导轮与导轮之间,而且是刚性连结的涡轮叶片的栅数。
有些结构的涡轮虽然是两个,甚至两个以上,但并非安装在泵轮与导轮之间,或导轮与导轮之间,或涡轮的叶栅组并非刚性连接,则仍为单级变矩器。
(3)相数:根据变矩器的泵论﹑涡轮﹑导轮相互配合作用,所能组成的不同工况的种类数就是变矩器的`相'数。
(4)元件数:变矩器是由泵轮﹑涡轮﹑导轮组成的。
这些轮统称为`元件'。
但各种轮数不一定是每样一个。
有的变矩器可能有两个导轮或两个涡轮,各种轮的总数就叫作`元件数'。
(二)液力变矩器的安装与拆卸:(1)液力变矩器组件的拆卸将2个垫块(由钢铁制成,高约300mm)放在车体前方;慢慢开动车体,待车体登上垫后踏住制动器,利用松土机作用使车体后部浮起,将车体定置在垫块上。
将变速箱内的油放尽。
拆去变速箱下护板。
液力变矩器内的油放出。
将变矩器上方的驾驶室底板拆去,将减速踏板连杆从踏板分离。
拆卸液力变矩器入口U形螺栓管夹,再拆卸调节阀组件。
将液压变矩器油温计布线从传感器卸下。
拆卸液力变矩器通气管。
液力变矩器结构与原理课件
电动化与智能化
随着电动汽车的普及,液力变矩器也面临着电动化与智能 化的挑战。需要与电动汽车的动力系统相匹配,同时也需 要融入智能化的控制策略。
液力变矩器的新型技术与挑战
新型材料
为了提高液力变矩器的性能和使用寿命,新型材料如高强度合金、陶瓷等被引入到液力变矩器的制造中。
先进制造技术
采用先进的制造技术,如3D打印、精密铸造等,能够提高液力变矩器的制造精度和效率,降低成本。
扭矩调节
通过调节液力变矩器内部 的液体流量和叶片角度, 可以实现扭矩的调节。
液力变矩器的效率与特性
效率定义 效率影响因素
特性曲线 高效区域
液力变矩器的效率是指输出功率与输入功率之比,反映了液力 变矩器的能量转换效率。
液力变矩器的效率受多种因素影响,包括液体黏性、叶片角度 、转速比等。
液力变矩器的特性曲线描述了其输入输出扭矩、转速比和效率 之间的关系,为液力变矩器的选型和匹配提供依据。
在特性曲线上存在高效区域,液力变矩器在该区域内工作时效 率较高,应优先考虑工作在该区域。
04 液力变矩器的应用与发展
液力变矩器在自动变速器中的应用
自动变速核心
液力变矩器是自动变速器中的核 心部件,通过液体的动量传递来 实现发动机与变速器之间的无级
变速。
平稳性与效率
液力变矩器能够吸收发动机的扭 矩振动,提供平稳的输出。同时 ,其内部叶轮的设计也影响着变
03
设计与优化
泵轮的设计需要考虑与涡轮的匹配,以实现高效的扭矩传递和变矩效果
,同时泵轮的叶片形状、数量和角度等参数也需要经过优化,以减少液
压损失和提高效率。
涡轮
结构组成
涡轮是液力变矩器的输出元件,由涡轮轴、径向叶片和轮毂组成。
液力变矩器工作原理
液力变矩器工作原理
液力变矩器是一种利用液体传动力和转矩的装置。
它的工作原理主要有以下几个方面:
1. 回转运动:液力变矩器内部由两个相互嵌套的螺旋桨组成,一个称为泵轮,另一个称为涡轮。
泵轮和涡轮之间有一个密封的螺纹连接。
当发动机输出动力传递到泵轮时,泵轮会以高速旋转,将工作液体(通常是液体)分散到涡轮周围的密封螺纹空间中。
2. 工作液体传动力:当工作液体进入螺纹空间后,由于泵轮的旋转动力,工作液体会形成离心力,使其产生高速运动。
这种高速运动形成的动能会传递给涡轮上,使涡轮也以相对高速旋转。
3. 转矩传递:通过涡轮的高速旋转,液体会迫使涡轮与驱动轴相互连接,并将转动力传递给驱动轴。
这样一来,液力变矩器就可以实现将发动机的动力传递到车辆的驱动轴上。
4. 变矩效应:液力变矩器还具有自动变矩的特性。
在低速行驶或启动时,液力变矩器的工作液体会产生充分的转矩,使车辆具备足够的起步动力。
而在高速行驶时,液力变矩器的工作液体会流经特殊设计的螺纹空间,减小转矩传递的能力,从而减小发动机的负载。
总体来说,液力变矩器利用液体的运动和动能传递的原理,实
现了发动机动力的传递和转矩的变化,提高了车辆的行驶性能和平稳性。
液力变矩器耦合工作点
液力变矩器耦合工作点液力变矩器是一种常用的动力传递装置,它通过液压传动实现动力输出,被广泛应用于各种机械设备中。
液力变矩器的耦合工作点是指在运行过程中,液力变矩器内部传动装置所处的工作状态。
本文将通过对液力变矩器耦合工作点进行详细分析,探讨其对传动性能的影响及调节方法,以期为工程技术人员提供参考。
1. 液力变矩器的基本原理及结构液力变矩器是由泵轮、涡轮和导向轮等基本部件组成的液压传动装置。
其工作原理是通过液压传动将发动机动力传递给涡轮,由涡轮再传递给传动轴,实现动力输出。
在液力变矩器内部,泵轮受到发动机动力的驱动,产生旋转动能,涡轮受到泵轮传递的动能,产生转动力,并通过液力作用在导向轮上产生反作用力,使传递轴输出动力。
2. 液力变矩器的耦合工作点及其影响因素液力变矩器的耦合工作点是指在运行状态下,液力变矩器内各传动装置之间的相互作用状态。
液力变矩器的耦合工作点主要受到以下因素的影响:(1)转速比:液力变矩器内泵轮和涡轮的转速比是影响工作点的重要因素。
转速比的大小直接影响涡轮受到的旋转动能,从而影响动力输出的大小和稳定性。
(2)油液粘度:油液粘度是影响液力变矩器工作点的重要因素。
油液粘度的大小直接影响涡轮的转动力大小和转速,从而影响液力变矩器的输出效果。
(3)液力变矩器的液压参数:如液力变矩器的油液流量、入口压力等参数的变化都会对液力变矩器的工作点产生影响。
3. 液力变矩器耦合工作点调节方法在实际工程中,液力变矩器的耦合工作点的调节对于传动效率和稳定性具有重要意义。
为了获得更好的传动效果,需要对液力变矩器耦合工作点进行适当调节。
常见的调节方法包括:(1)调节液力变矩器内部的导向轮叶片角度:通过调整导向轮叶片角度,可以改变液力变矩器内部的动能转换效率,从而调节工作点。
(2)改变液力变矩器的工作油液流量:增加或减小液力变矩器内部的工作油液流量,可以改变液压传动的工作状态,从而调节工作点。
(3)调整液力变矩器内部的泵轮和涡轮的转速比:通过改变泵轮和涡轮的转速比,可以改变涡轮受到的旋转动能大小,从而影响工作点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 目前地下铲运机中,大多数采用柴油机, 与三相交流电动机作为动力装置,由于柴 油机的扭矩适应性与电动机的过载能力较 小,不能满足铲运机经常过载与载荷频繁 变化的要求,需加装液力变矩器。
主要特点
• 自动适应性能;当外载荷变大时,变矩器 能自动增大牵引力,同时车辆减速,以克 服增大的外载荷。保证了发动机在额定工 况下工作,避免了因外载荷的突变而熄火。 • 吸震性能;变矩器的三个叶轮之间不是刚 性连接,工作介质是液体,可以吸收外载 荷的震动与冲击,这是液力变矩器的滤波 性能和过载保护性能。 • 提高舒适性;车辆启动平稳,可实现无级 变速,可减少档位。
导轮
泵轮
液力变矩器结构
锁止离合器 泵轮和变矩器外壳 与发动机曲轴固定连接, 与发动机曲轴固定连接, 随发动机转动; 随发动机转动;涡轮和 从动轴与变速器输入轴 固定连接;导轮通过自 固定连接;导轮通过自 由轮(单向离合器) 由轮(单向离合器)与 变速器外壳连接; 变速器外壳连接;变矩 器内部充满液压油。 器内部充满液压油。 变矩器外壳(主) 变矩器外壳( 泵轮 从动轴 自由轮
单向离合器
导轮 涡轮 涡流方向(循环圆) 涡流方向(循环圆) 液力变速流动的液压油通过 起步时, 涡轮叶片后反冲导轮正面, 涡轮叶片后反冲导轮正面,欲使导轮 向相反方向转动, 向相反方向转动,但导轮被自由轮 单向离合器)锁死而固定不动, (单向离合器)锁死而固定不动,正 是对固定不动的导轮的反冲力, 是对固定不动的导轮的反冲力,才使 涡轮获得很大的转矩。 涡轮获得很大的转矩。这一过程称为 变矩过程。 变矩过程。 随着涡轮转速的上升, 随着涡轮转速的上升,涡轮与泵 轮之间的转速差减小, 轮之间的转速差减小,涡轮转矩相对 减小,当转速差接近为“ 减小,当转速差接近为“0” 时,液 压油通过涡轮叶片后反冲导轮反面使 导轮转动,转动方向与涡轮方向相同。 导轮转动,转动方向与涡轮方向相同。 这一过程称为耦合过程 耦合过程。 这一过程称为耦合过程。 涡轮 液压油流 动回路
动力传递
• 发动机的动力从曲轴输出→传递给变矩器 后,分两路:一路经过泵轮→涡轮→涡轮 轴→主动齿轮→被动齿轮→输出轴,另一 路经过泵轮→泵轮轮毂→油泵主动齿轮→ 油泵被动齿轮→三个油泵 • 此三个油泵为工作、转向、制动冷却系统 提供动力
液流流向
液力变矩器
功用:利用液压油的流动来传递扭矩,将曲轴 功用:利用液压油的流动来传递扭矩, 输出的动力传给变速器, 输出的动力传给变速器,特点是既能传递转矩又能 增大转矩。 增大转矩。
分类
• 安涡轮数量分类:单级、二级、三级涡轮 变矩器 • 按轴面液流在涡轮中的流动方向:离心涡 轮变矩器、轴流涡轮变矩器、向心涡轮变 矩器【图】
分类
• 按能否实现耦合工况:综合式变矩器(在 耦合工况后,导轮开始转动,变矩器变成 耦合器),普通型变矩器(导轮始终固定 不变) • 按“相”分为:单相变矩器、多相变矩器。 “相”是变矩器具有几种不同工作状态的 数目。