九年级数学上册第2章一元二次方程达标测试卷作业课件北师大版

合集下载

北师大版九年级上册达标检测卷:第二章《一元二次方程》(含答案)

北师大版九年级上册达标检测卷:第二章《一元二次方程》(含答案)

达标检测卷:第二章《一元二次方程》时间:100分钟满分:100分班级:_______ 姓名:________得分:_______一.选择题(每题3分,共30分)1.若(m+2)x|m|+mx﹣1=0是关于x的一元二次方程,则()A.m=±2 B.m=2 C.m=﹣2 D.m≠±22.关于x的一元二次方程x2+(k﹣3)x+1﹣k=0根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定3.有5人患了流感,经过两轮传染后共有605人患流感,则第一轮后患流感的人数为()A.10 B.50 C.55 D.454.方程2x(x﹣5)=6(x﹣5)的根是()A.x=5 B.x=﹣5 C.x1=﹣5,x2=3 D.x1=5,x2=35.方程4x2=81﹣9x化成一般形式后,二次项的系数为4,它的一次项是()A.9 B.﹣9x C.9x D.﹣96.关于x的一元二次方程x2+bx﹣6=0的一个根为2,则b的值为()A.﹣2 B.2 C.﹣1 D.17.如图,把长40cm,宽30cm的长方形纸板剪掉2个小正方形和2个小长方形(阴影部分即剪掉部分),将剩余的部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为xcm (纸板的厚度忽略不计),若折成长方体盒子的表面积是950cm2,则x的值是()A.3cm B.4cm C.4.8cm D.5cm8.一元二次方程x2﹣ax+2=0的一根是1,则a的值是()A.3 B.﹣3 C.2 D.﹣29.天猫某店铺第2季度的总销售额为662万元,其中4月份的销售额是200万元,设5、6月份的平均增长率为x ,求此平均增长率可列方程为( )A .200(1+x )2=662B .200+200(1+x )2=662C .200+200(1+x )+200(1+x )2=662D .200+200x +200(1+x )2=66210.已知a ,b 是方程x 2+3x ﹣1=0的两根,则a 2b +ab 2+2的值是( )A .5B .6C .7D .8二.填空题(每题4分,共20分)11.已知x 1,x 2是一元二次方程x 2﹣4x ﹣7=0的两个实数根,则x 12+4x 1x 2+x 22的值是 .12.若关于x 的方程(a ﹣2)x 2+(2a ﹣3)x +a +1=0有两个不相等的实数根,则a 的取值范围是 .13.设a 2﹣3a +1=0,b 2﹣3b +1=0,且a ≠b ,则代数式+的值为 .14.已知m 是方程x 2﹣2018x +1=0的一个根,则代数式m 2﹣2017m ++3的值等于 .15.2018年我国新能源汽车保有量居世界前列,2016年和2018年我国新能源汽车保有量分别为51.7万辆和261万辆.设我国2016至2018年新能源汽车保有量年平均增长率为x ,根据题意,可列方程为 .三.解答题(每题10分,共50分)16.基本事实:“若ab =0,则a =0或b =0”.方程x 2﹣x ﹣6=0可通过因式分解化为(x ﹣3)(x +2)=0,由基本事实得x ﹣3=0或x +2=0,即方程的解为x =3或x =﹣2.(1)试利用上述基本事实,解方程:3x 2﹣x =0;(2)若实数m 、n 满足(m 2+n 2)(m 2+n 2﹣1)﹣6=0,求m 2+n 2的值.17.关于x的一元二次方程(m﹣2)x2﹣2x+1=0有实数根.(1)求m的取值范围;(2)当m为正整数时,取一个合适的值代入求出方程的解.18.方方同学在寒假社会调查实践活动中,对某罐头加工厂进行采访,获得了该厂去年的部分生产信息如下:①该厂一月份罐头加工量为a吨;②该厂三月份的加工量比一月份增长了44%;③该厂第一季度共加工罐头182吨;④该厂二月、三月加工量每月按相同的百分率增长;⑤该厂从四月份开始设备整修更新,加工量每月按相同的百分率开始下降;⑥六月份设备整修更新完毕,此月加工量为一月份的2.1倍,与五月份相比增长了46.68吨.利用以上信息求:(1)该厂第一季度加工量的月平均增长率;(2)该厂一月份的加工量a的值;(3)该厂第二季度的总加工量.19.某商店以每件40元的价格进了一批热销商品,出售价格经过两个月的调整,从每件50元上涨到每件72元,此时每月可售出188件商品.(1)求该商品平均每月的价格增长率;(2)因某些原因,商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降一元,每个月多卖出一件,设实际售价为x元,则x为多少元时商品每月的利润可达到4000元.20.如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发那么几秒后,PQ的长度等于cm?(2)在(1)中,△PQB的面积能否等于7cm2?请说明理由.参考答案一.选择题1.解:∵(m+2)x|m|+mx﹣1=0是关于x的一元二次方程,∴|m|=2,且m+2≠0,解得:m=2,故选:B.2.解:△=(k﹣3)2﹣4(1﹣k)=k2﹣6k+9﹣4+4k=k2﹣2k+5=(k﹣1)2+4,∴(k﹣1)2+4>0,即△>0,∴方程总有两个不相等的实数根.故选:A.3.解:设每轮传染中每人传染x人,依题意,得:5+5x+x(5+5x)=605,整理,得:x2+2x﹣120=0,解得:x1=10,x2=﹣12(不合题意,舍去),∴5+5x=55.故选:C.4.解:∵2x(x﹣5)﹣6(x﹣5)=0,∴(x﹣5)(2x﹣6)=0,则x﹣5=0或2x﹣6=0,解得x=5或x=3,故选:D.5.解:方程整理得:4x2+9x﹣81=0,则一次项是9x,故选:C.6.解:把x=2代入方程x2+bx﹣6=0得4+2b﹣6=0,解得b=1.故选:D.7.解:依题意,得:40×30﹣2x2﹣2x•(x+)=950,整理,得:x2+20x﹣125=0,解得:x1=5,x2=﹣25(不合题意,舍去).故选:D.8.解:把x=1代入方程x2﹣ax+2=0得1﹣a+2=0,解得a=3.故选:A.9.解:设利润平均每月的增长率为x,又知:第2季度的总销售额为662万元,其中4月份的销售额是200万元,所以,可列方程为:200+200(1+x)+200(1+x)2=662;故选:C.10.解:∵a,b是方程x2+3x﹣1=0的两根,∴a+b=﹣3,ab=﹣1,则原式=ab(a+b)+2=﹣1×(﹣3)+2=3+2=5,故选:A.二.填空题(共5小题)11.解:根据题意得x1+x2=4,x1x2=﹣7所以,x12+4x1x2+x22=(x1+x2)2+2x1x2=16﹣14=2故答案为2.12.解:∵关于x的一元二次方程(a﹣2)x2+2ax+a+1=0有两个不相等的实数根,∴,解得a<且a≠2.故a的取值范围是a<且a≠2.故答案为:a<且a≠2.13.解:∵a2﹣3a+1=0,b2﹣3b+1=0,且a≠b,∴a、b为一元二次方程x2﹣3x+1=0的两个不等实根,∴a+b=3,ab=1,∴+==3.故答案为:3.14.解:∵m是方程x2﹣2018x+1=0的一个根,∴m2﹣2018m+1=0,∴m2=2018m﹣1,m2+1=2018m,∴m2﹣2017m++3=2018m﹣1﹣2017m++3=m++2=+2=+2=2018+2=2020.故答案为2020.15.解:设我国2016至2018年新能源汽车保有量年平均增长率为x,根据题意,可列方程为:51.7(1+x)2=261,故答案为:51.7(1+x)2=261.三.解答题(共5小题)16.解:(1)由原方程,得x(3x﹣1)=0∴x=0或3x﹣1=0解得:x1=0,x2=;(2)t=m2+n2(t≥0),则由原方程,得t(t﹣1)﹣6=0.整理,得(t﹣3)(t+2)=0.所以t=3或t=﹣2(舍去).即m2+n2的值是3.17.解:(1)∵关于x 的一元二次方程(m ﹣2)x 2﹣2x +1=0有实数根, ∴△=(﹣2)2﹣4(m ﹣2)=4﹣4m +8=12﹣4m .∵12﹣4m ≥0,∴m ≤3,m ≠2.(2)∵m ≤3且m ≠2,∴m =1或3,∴当m =1时,原方程为﹣x 2﹣2x +1=0.x 1=﹣1﹣,x 2=﹣1+. 当m =3时,原方程为x 2﹣2x +1=0.x 1=x 2=1.18.解:(1)设该厂第一季度加工量的月平均增长率为x ,由题意得: a (1+x )2=(1+44%)a∴(1+x )2=1.44∴x 1=0.2=20%,x 2=﹣2.2(舍)答:该厂第一季度加工量的月平均增长率为20%.(2)由题意得:a +a (1+x )+a (1+x )2=182将x =20%代入得:a +a (1+20%)+a (1+20%)2=182解得a =50答:该厂一月份的加工量a 的值为50.(3)由题意可知,三月份加工量为:50(1+20%)2=72六月份加工量为:50×2.1=105(吨)五月份加工量为:105﹣46.68=58.32(吨)设四、五两个月的加工量下降的百分率为y ,由题意得:72(1﹣y )2=58.32解得:y 1=0.1=10%,y 2=1.9(舍)∴四、五两个月的加工量下降的百分率为10%∴72×(1﹣10%)+58.32+105=228.12(吨)答:该厂第二季度的总加工量为228.12吨.19.解:(1)设该商品平均每月的价格增长率为m ,依题意,得:50(1+m)2=72,解得:m1=0.2=20%,m2=﹣2.2(不合题意,舍去).答:该商品平均每月的价格增长率为20%.(2)依题意,得:(x﹣40)[188+(72﹣x)]=4000,整理,得:x2﹣300x+14400=0,解得:x1=60,x2=240.∵商家需尽快将这批商品售出,∴x=60.答:x为60元时商品每天的利润可达到4000元.20.(1)设x秒后,PQ=2BP=5﹣x BQ=2x∵BP2+BQ2=PQ2∴(5﹣x)2+(2x)2=(2)2解得:x1=3,x2=﹣1(舍去)∴3秒后,PQ的长度等于2;(2)△PQB的面积不能等于7cm2,原因如下:设t秒后,PB=5﹣t QB=2t又∵S△PQB=×BP×QB=7×(5﹣t)×2t=7∴t2﹣5t+7=0△=52﹣4×1×7=25﹣28=﹣3<0∴方程没有实数根∴△PQB的面积不能等于7cm2.。

(常考题)北师大版初中数学九年级数学上册第二单元《一元二次方程》测试(包含答案解析)(2)

(常考题)北师大版初中数学九年级数学上册第二单元《一元二次方程》测试(包含答案解析)(2)

一、选择题1.若关于x 的一元二次方程(k ﹣1)x 2﹣2kx +k ﹣3=0有实数根,则k 的取值范围为( )A .k ≥0B .k ≥0且k ≠1C .k ≥34D .k ≥34且k ≠1 2.下列方程是关于x 的一元二次方程的是( )A .ax 2+bx +c =0B .211x x +=C .x 2+2x =y 2-1D .3(x +1)2=2(x +1) 3.一人携带变异新冠状病毒,经过两轮传染后共有121人感染,设每轮传染中平均一个人传染了x 个人,则可列方程( )A .()1121x x x ++=B .()11121x x ++=C .()21121x +=D .()1121x x += 4.下列方程中,没有实数根的是( )A .220x x --=B .210x x -+=C .2210x x -+=D .24x = 5.如图①,在矩形ABCD 中,AB >AD ,对角线AC ,BD 相交于点O ,动点P 由点A 出发,沿A→B→C 运动.设点P 的运动路程为x ,△AOP 的面积为y ,y 与x 的函数关系图象如图②所示,则AB 边的长为( )A .3B .4C .5D .66.我国古代数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载过一元二次方程(正根)的几何解法.以方程22350x x +-=即(2)35x x +=为例说明,记载的方法是:构造如图,大正方形的面积是2(2)x x ++.同时它又等于四个矩形的面积加上中间小正方形的面积,即24352⨯+,因此5x =.则在下面四个构图中,能正确说明方程23100x x --=解法的构图是( )A .B .C .D .7.用配方法解方程28110x x -+=的过程中,配方正确的是( )A .228(4)5x x -+-=B .228(4)31x x -+-=C .2(4)5x +=D .2(4)11x -=-8.关于x 的一元二次方程2x 2x m 0-+=无实数根,则实数m 的取值范围是( ) A .1m < B .m 1≥ C .1m D .1m9.下列说法不正确的是( )A .打开电视剧,电视里播放《小猪佩奇》是偶然事件B .了解一批灯泡的使用寿命,适合抽样调查C .一元二次方程2210x x -+=只有一个根D .甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是20.36S =甲,20.54S =乙,甲的射击成绩稳定 10.下列一元二次方程没有实数根的是( )A .2-20x =B .2-20x x =C .210x x ++=D .()()-1-30x x = 11.已知关于x 的方程2(21)(1)0kx k x k +++-=有实数根,则k 的取值范围为( ) A .18k ≥- B .18k >- C .18k ≥-且0k ≠ D .18k <- 12.一元二次方程2x =﹣3x 的根是( )A .x =﹣3B .x =0C .1x =0,2x =﹣3D .1x =0,2x =3二、填空题13.若关于x 的一元二次方程x 2﹣2kx +k 2﹣k +1=0有两个不相等的实数根,则实数k 的取值范围是_____.14.若关于x 的一元二次方程()22367120m x x m m -++-+=有一个根是0,那么m 的值为______.15.2021年元旦联欢会上,某班同学之间互赠新年贺卡,共赠贺卡190张,设全班有x 名同学则可列方程为________.16.如果关于x 的方程22(1)210x a x a -+++=有一个小于1的正数根,那么实数a 的取值范围是_______________.17.关于x 的一元二次方程2(3)10k x x -++=有实数根,则k 的最大整数值为________.18.已知1x ,2x 是方程2310x x --=的两个根,则2212x x +=____.19.一元二次方程2310x x -++=的根的判别式的值是______.20.响应国家号召打赢脱贫攻坚战,小明家利用信息技术开了一家网络商店,将家乡的土特产销往全国,今年6月份盈利24000元,8月份盈利34560元,求6月份到8月份盈利的月平均增长率.设6月份到8月份盈利的月平均增长率为x ,根据题意,可列方程为______ .三、解答题21.已知关于x 的一元二次方程(m ﹣3)x 2﹣6x +m 2﹣9=0的常数项为0,求m 的值及此方程的解.22.解方程:24120x x --=.23.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为15m 的住房墙,另外三边用27m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m 宽的门.(1)所围矩形猪舍的长,宽分别为多少米时,猪舍面积为296m ?(2)能否围面积为2100m 的矩形猪舍,若能,求出长和宽;若不能,请说明理由. 24.关于x 的方程()22210x x m ---=有实数根,且m 为非正整数.求m 的值及此时方程的根.25.某商家将进货单价40元的商品,按50元出售能卖出500件,已知这种商品每涨价0.4元,就会少销售4件,商家为了赚得8000元的利润,每件售价应定为多少? 26.已知关于x 的一元二次方程()2251310mx m x m --+-=. (1)求证:无论m 为任意实数,方程总有实数根.(2)如果这个方程的根的判别式的值等于1,求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据二次项系数不为0和△≥0列不等式组即可.解:根据关于x 的一元二次方程(k ﹣1)x 2﹣2kx +k ﹣3=0有实数根,列不等式组得,210(2)4(1)(3)0k k k k -≠⎧⎨----≥⎩, 解得,k ≥34且k ≠1, 故选:D .【点睛】 本题考查了一元二次方程根的判别式,解题关键是熟练运用根的判别式列不等式,注意:一元二次方程二次项系数不为0.2.D解析:D【分析】根据一元二次方程的定义解答,一元二次方程必须满足四个条件:未知数的最高次数是2,二次项系数不为0,是整式方程,含有一个未知数;【详解】A 、20ax bx c ++=当a=0时,不是一元二次方程,故A 错误;B 、2112x x+= ,不是整式方程,故B 错误; C 、2221x x y +=- ,含有两个未知数,故C 错误; D 、()()23121x x +=+ 是一元二次方程,故D 正确;故选:D .【点睛】本题考查了一元二次方程的概念,正确理解一元二次方程的概念是解题的关键. 3.C解析:C【分析】患变异新冠状病毒的人把病毒传染给别人,自己仍然患病,包括在总数中.设每轮传染中平均一个人传染了x 个人,则第一轮传染了x 个人,第二轮作为传染源的是(x+1)人,则传染x(x+1)人,根据共有121人感染列方程即可.【详解】解:设每轮传染中平均一个人传染了x 个人,依题意得1+x+x(1+x)=121,即(1+x)2=121,故选:C .【点睛】本题考查了一元二次方程的应用-传播问题,要注意的是患变异新冠状病毒的人把病毒传染给别人,自己仍然是患者,人数应该累加.4.B【分析】分别计算判别式△=b2-4ac,再根据计算结果判断根的情况即可找到没有实数根的方程.【详解】解:(1)∵a=1,b=-1,c=-2,∴△=b2-4ac=(-1)2-4×1×(-2)=9>0,∴方程有两个不相等的实数根;所以A选项不符合题意.(2)∵a=1,b=-1,c=1,∴△=b2-4ac=(-1)2-4×1×1=-3<0,∴方程没有实数根.所以B选项符合题意.(3)∵a=1,b=-2,c=1,∴△=b2-4ac=(-2)2-4×1×1=0,∴方程有两个相等的实数根;所以C选项不符合题意.(4)∵x2=4,∴可直接得到方程的解为2或-2,所以D选项不符合题意.故选:B.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5.D解析:D【分析】当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,结合图象可得△AOP 面积最大为6,得到AB与BC的积为24;当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为10,得到AB 与BC的和为10,构造关于AB的一元二方程可求解.【详解】解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP面积最大为6.∴12AB·12BC=6,即AB•BC=24.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为10,∴AB+BC=10.则BC=10-AB ,代入AB•BC=24,得AB 2-10AB+24=0,解得AB=4或6,因为AB >BC ,所以AB=6.故选:D .【点睛】本题主要考查动点问题的函数图象,解一元二次方程,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.6.C解析:C【分析】根据题意,画出方程x 2-3x-10=0,即x (x-3)=10的拼图过程,由面积之间的关系可得出答案.【详解】解:方程x 2-3x-10=0,即x (x-3)=10的拼图如图所示;中间小正方形的边长为x-(x-3)=3,其面积为9,大正方形的面积:(x+x-3)2=4x (x-3)+9=4×10+9=49,其边长为7,因此,C 选项所表示的图形符合题意,故选:C .【点睛】本题考查完全平方公式的几何背景,通过图形直观,得出面积之间的关系,并用代数式表示出来是解决问题的关键.7.A解析:A【分析】用配方法解方程即可.【详解】解:28110x x -+=,移项得,2811-=-x x ,配方得,228(4)1116x x -+-=-+,即228(4)5x x -+-=,故选:A .【点睛】本题考查了配方法解一元二次方程,能够熟练按照配方法的步骤进行解题是关键.8.D解析:D【分析】根据判别式的意义得到△=(-2)2-4m<0,然后解不等式即可.【详解】解:∵关于x的一元二次方程2x2x m0-+=无实数根,∴△=(-2)2-4m<0,解得m>1.故选:D.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.9.C解析:C【分析】根据必然事件和偶然事件,抽样调查和普查,一元二次方程跟的判别式和方差依次判断即可.【详解】解:A. 打开电视剧,电视里播放《小猪佩奇》是偶然事件,正确,不符合题意;B. 了解一批灯泡的使用寿命,适合抽样调查,正确,不符合题意;C. 一元二次方程2210x x-+=中,24440b ac∆=-=-=,有两个相等的实数根,故原说法错误,符合题意;D. 甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是20.36 S=甲,20.54S=乙,甲的射击成绩稳定,正确,不符合题意;故选:C.【点睛】本题考查必然事件和偶然事件,抽样调查和普查,一元二次方程跟的判别式和方差,注意当0∆=时,一元二次方程有两个相等的实数根.10.C解析:C【分析】直接利用根的判别式△=b2−4ac判断即可.【详解】解:A、△ =8>0,方程有两个不相等的实数根;B、△=4>0,,方程有两个不相等的实数根;C、△=−3<0,方程没有实数根;D、2430x x-+=,△=4>0,方程有两个不相等的实数根;故选:C.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.11.A解析:A【分析】由于k的取值不确定,故应分k=0(此时方程化简为一元一次方程)和k≠0(此时方程为二元一次方程)两种情况进行解答.【详解】解:当k=0时,x-1=0,解得:x=1;当k≠0时,此方程是一元二次方程,∵关于x的方程kx2+(2k+1)x+(k-1)=0有实根,∴△=(2k+1)2-4k×(k-1)≥0,解得18k≥-且k≠0,综上:k的取值范围是18 k≥-,故选A.【点睛】本题考查的是根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.同时解答此题时要注意分k=0和k≠0两种情况进行讨论.12.C解析:C【分析】移项,利用因式分解求解即可.【详解】解:∵2x=﹣3x,移项,得2x+3x=0,分解因式,得x(x+3)=0,∴x=0,或x+3=0,解得1x =0,2x =﹣3,故选:C .【点睛】本题考查了一元二次方程的解法,根据方程的特点,选择因式分解法求解是解题的关键.二、填空题13.k >1【分析】根据方程有两个不相等的实数根可得△=(2k )2﹣4(k2﹣k+1)>0求出k 的取值范围【详解】解:∵原方程有两个不相等的实数根∴△=b2﹣4ac =(2k )2﹣4(k2﹣k+1)=4k ﹣解析:k >1【分析】根据方程有两个不相等的实数根可得△=(2k )2﹣4(k 2﹣k +1)>0,求出k 的取值范围.【详解】解:∵原方程有两个不相等的实数根,∴△=b 2﹣4ac =(2k )2﹣4(k 2﹣k +1)=4k ﹣4>0,解得k >1;故答案为:k >1.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根与△=b 2﹣4ac 有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.14.4【分析】先把x=0代入(m-3)x2+6x+m2-7m+12=0得m2-7m+12=0再解关于m 的方程然后根据一元二次方程的定义确定满足条件的m 的值【详解】解:把x=0代入(m-3)x2+6x+m解析:4【分析】先把x=0代入(m-3)x 2+6x+m 2-7m+12=0得m 2-7m+12=0,再解关于m 的方程,然后根据一元二次方程的定义确定满足条件的m 的值.【详解】解:把x=0代入(m-3)x 2+6x+m 2-7m+12=0得m 2-7m+12=0,解得m 1=4,m 2=3,∵m-3≠0,即:m≠3∴m 的值为4.故答案为:4.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了一元二次方程的定义.15.x(x-1)=190【分析】根据题意x 名同学每个人送出(x-1)张贺卡由此列出方程【详解】由题意得故答案为:【点睛】此题考查一元二次方程的实际应用正确理解题意是解题的关键解析:x(x-1)=190【分析】根据题意x 名同学,每个人送出(x-1)张贺卡,由此列出方程.【详解】由题意得(1)190x x -=,故答案为:(1)190x x -=.【点睛】此题考查一元二次方程的实际应用,正确理解题意是解题的关键.16.<a<0【分析】先利用方程的求根公式表示出方程的两个根再利用有一个小于1的正数根这一条件确定a 的取值范围【详解】解:根据方程的求根公式可得:x==解得x1=1x2=2a+1∵x1=1∴小于1的正数根 解析:12-< a<0 【分析】 先利用方程的求根公式表示出方程的两个根,再利用“有一个小于1的正数根”这一条件确定a 的取值范围.【详解】解:根据方程的求根公式可得:()2+22+12a a a a ±=±, 解得x 1=1,x 2=2a+1∵x 1=1,∴小于1的正数根只能为2a+1,即0<2a+1<1, 解得12-< a<0. 故答案为:12-< a<0. 【点睛】 本题考查一元二次方程的根的分布与系数的关系,求解问题的关键是正确理解有且仅有一个小于1的正数根,将能将其转化为函数在(0,1)内仅有一个0点.17.2【分析】由方程有实数根得到根的判别式的值大于等于0求出不等式的解集得到k 的范围即可确定出k 的最大整数值【详解】∵x 的一元二次方程有实数根∴∴∵∴∴k 的最大整数值为2故答案为:2【点睛】本题考查了一【分析】由方程有实数根,得到根的判别式的值大于等于0,求出不等式的解集得到k 的范围,即可确定出k 的最大整数值.【详解】∵x 的一元二次方程有实数根,∴0∆≥,∴14(3)0k ∆=--≥,134k ≤, ∵30k -≠,∴3k ≠,∴k 的最大整数值为2.故答案为:2.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 18.11【分析】根据根与系数的关系得出x1+x2=3x1x2=-1再根据x12+x22=(x1+x2)2-2x1x2即可求出答案【详解】解:根据题意x1+x2=3x1x2=-1则x12+x22=(x1+解析:11【分析】根据根与系数的关系得出x 1+x 2=3,x 1x 2=-1,再根据x 12+x 22=(x 1+x 2)2-2x 1x 2即可求出答案.【详解】解:根据题意x 1+x 2=3,x 1x 2=-1,则x 12+x 22=(x 1+x 2)2-2x 1x 2=32-2×(-1)=11,故答案为:11.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2= b a -,x 1x 2= c a.将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法. 19.13【分析】根据△=b2-4ac 计算可得答案【详解】解:∵a=-1b=3c=1∴△=32-4×(-1)×1=13故答案为:13【点睛】本题主要考查根的判别式熟记判别式(△=b2-4ac )是解题关键解析:13【分析】根据△=b 2-4ac 计算可得答案.解:∵a=-1,b=3,c=1,∴△=32-4×(-1)×1=13,故答案为:13.【点睛】本题主要考查根的判别式,熟记判别式(△=b 2-4ac )是解题关键.20.【分析】设该商店从6月份到8月份每月盈利的平均增长率为x 根据该商店6月份及8月份的利润可得出关于x 的一元二次方程;【详解】设该商店从6月份到8月份每月盈利的平均增长率为x 故答案为:【点睛】本题考查了 解析:()224000134560x +=【分析】设该商店从6月份到8月份每月盈利的平均增长率为 x ,根据该商店6月份及8月份的利润,可得出关于 x 的一元二次方程;【详解】设该商店从6月份到8月份每月盈利的平均增长率为 x ()224000134560x +=故答案为:()224000134560x +=.【点睛】本题考查了一元二次方程的应用,解题的关键是:找准等量关系,正确列出一元二次方程. 三、解答题21.m =-3;x 1=0,x 2=−1.【分析】直接利用常数项为0,进而得出关于m 的等式,计算后可求出m 的值,利用所求m 的值则求出方程的解.【详解】解:由题意,得m 2−9=0,且m−3≠0,解得m =-3.当m =-3时,代入(m ﹣3)x 2﹣6x+m 2﹣9=0,得-6x 2-6x =0,-6x (x +1)=0解得x 1=0,x 2=−1.【点睛】此题主要考查了一元二次方程的一般形式以及一元二次方程的解法,掌握一元二次方程的定义及解法是解题的关键.22.122,6x x =-=.利用因式分解法求解即可.【详解】∵24120x x --=,∴(x 2)(6)0x +-=,∴122,6x x =-=,故原方程的根为122,6x x =-=.【点睛】本题考查了一元二次方程的解法,灵活选择因式分解法是解题的关键.23.(1)长为12m 、宽为8m ;(2)不能,理由见解析【分析】(1)设矩形猪舍垂直于住房墙一边长为xm ,根据矩形的面积公式建立方程求出其解即可.(2)根据题意列出方程x (27-2x+1)=100,根据方程的解的情况可得结果.【详解】解:(1)设矩形猪舍垂直于住房墙一边长为xm ,可以得出平行于墙的一边的长为(27-2x+1)m ,由题意得x (27-2x+1)=96,解得:x 1=6,x 2=8,当x=6时,27-2x+1=16>15(舍去),当x=8时,27-2x+1=12.答:所围矩形猪舍的长为12m 、宽为8m .(2)由题意得:x (27-2x+1)=100,化简得:-2x 2+28x-100=0,△=282-4×(-2)×(-100)=-16<0,故方程无解,∴不能围成面积为2100m 的矩形猪舍.【点睛】本题考查了列一元二次方程解实际问题的运用,矩形的面积公式的运用及一元二次方程的解法的运用,解答时寻找题目的等量关系是关键.24.0m =,121x x ==.【分析】根据一元二次方程有实数根可以判断△≥0,又根据m 为非正整数,可以判断0m =,进而求解即可;【详解】解:∵方程有实数根,∴()()224210m =-+-≥△. 解得:0m ≥.又∵ m 为非正整数,∴ 0m =.当0m =时,方程为2210x x -+=.此时方程的解为121x x ==.【点睛】本题考查了一元二次方程有实数根的情况,正确掌握解一元二次方程的方法是解题的关键;25.60元/件或80元/件.【分析】设售价应定为x 元/件,则每件的销售利润为(x-40)元,能卖出4500(50)0.4x ⎡⎤--⎢⎥⎣⎦件,根据总利润=每件的销售利润×销售数量,即可得出关于x 的一元二次方程,解之即可得出结论.【详解】解:设售价为每件x 元,则每件的销售利润为(x-40)元,依题意,得:4405005080000.()[()]4x x ---=, 整理得214048000x x -+=,解得:160x =,280x =,且符合题意,答:售价应定为60元/件或80元/件.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 26.(1)见解析;(2)m=2【分析】(1)先计算判别式的值得到△=2(51)8(31)m m m ---,配方得△=(m−1)2,再根据非负数的性质得到△≥0,然后根据判别式的意义即可得到结论.(2)利用判别式的定义得到△=224(31)8(31)1b ac m m -=---=,解m 的方程,再利用一元二次方程的定义确定m 的值,即可.【详解】(1)关于x 的一元二次方程()2251310mx m x m --+-=. ∵2224(51)8(31)(1)0b ac m m m m -=----≥=,∴无论m 为任何实数,方程总有实根;(2)由题意得,224(31)8(31)1b ac m m -=---=,解得10m =,22m =,而0m ≠,∴2m =.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.。

北师大版九年级数学上册《第二章 一元二次方程》章节测试卷-带答案

北师大版九年级数学上册《第二章 一元二次方程》章节测试卷-带答案

北师大版九年级数学上册《第二章 一元二次方程》章节测试卷-带答案知识点总结:①配方法和十字叉乘法求解一元二次方程{二次项系数为±1二次项系数不是±1配方法:(a±b)2=a2+b2±2ab十字叉乘法:化简成(x±a)(x±b)=0的形式,解得x=∓a或∓b②公式法求解一元二次方程公式法:x=−b±√b2−4ac2a③因式分解法求解一元二次方程因式分解法:{(a±b)2=a2+b2±2ab a2−b2=(a−b)(a+b)④一元二次方程的根与系数的关系关系:x1+x2=−ba ;x1∙x2=ca⑤应用一元一次方程应用题第二章一元二次方程测试1(拔高题)1、下列方程为一元二次方程,求a的取值范围或者具体值:①2ax2−2bx+a=4x2②(a−1)x|a|+1−2x−7=0③ax2+6x+1=0没有实数根2、已知一元二次方程x2+k+3=0有一个根为1,则k的值为.3、已知一元二次方程为5x2+x=0,其中二次项系数为,一次项系数为,常数项为,x1x2=,x1+x2=.x2+3x−2=0 的两根,则(x1−x2)2的值为.4、设x1与x2为一元二次方程−125、关于x的一元二次方程x2−(k−3)x−k+1=0根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.实数根的个数由k的值确定6、已知关于x的一元二次方程x2+2mx+m2−m=0的两实数根为x1,x2,且满足x1x2=2,则x1+x2的值为()A.4B.−4C.4或−2D.−4或27、配方法解方程x2+6x+9=23x2−2=5x8、公式法解方程(x−2)(3x−5)=19x2+6x+1=49、直接开平方法解方程2(x−1)2 −18=010、因式分解法解方程3x(x−1)=3(x+2)(1−x)3(4−x)2=x2−16(1−2x)(x−8)=8x−411、如图,在矩形ABCD 中,AB =10 cm ,AD =8 cm ,点P 从点A 出发沿AB 以2cm /s 的速度向点B 运动,同时点Q 从点B 出发沿BC 以1cm /s 的速度向点C 运动,点P 到达终点后,P ,Q 两点同时停止运动。

北师大版九年级数学上册《第二章一元二次方程》单元测试卷及答案

北师大版九年级数学上册《第二章一元二次方程》单元测试卷及答案

北师大版九年级数学上册《第二章一元二次方程》单元测试卷及答案时间:60分钟,满分:100分一、选择题(每题3分,共24分)1.下列方程中,是一元二次方程的是()A.x−1=0B.x2−x−1=0C.x2−y=0D.1x+x−1=02.一元二次方程x2−4x+1=0配方后,可化为()A.(x−2)2=3B.(x+2)2=3C.(x−2)2=4D.(x+2)2=43.若x=1是方程x2+mx+1=0的一个解,则m的值为()A.1 B.2 C.−1D.−24.方程x(x−2)=0的解是()A.0 B.2 C.−2D.0或25.若一元二次方程mx2+2x+1=0有实数解,则m的取值范围是()A.m≥-1 B.m≤1C.m≥-1且m≠0 D.m≤1且m≠06.下列一元二次方程中,有两个不相等的实数根的是()A.x2−2x+3=0B.x2+6x+9=0C.4x2=3x+2D.3x2−x+2=07.一次同学聚会,每两人之间互赠1件礼物,共有礼物30件.设x人参加聚会,则可列方程为()A.12x(x+1)=30B.12x(x−1)=30C.x(x+1)=30 D.x(x−1)=308.已知m,n是一元二次方程x2+x−2023=0的两个实数根,则代数式m2+2m+n的值等于()A.2020 B.2021 C.2022 D.2023二、填空题(每题4分,共20分)9.已知关于x的方程(m+2)x m2−2+3x−1=0为一元二次方程,则m的值是.10.用配方法解一元二次方程x2+4x−3=0,配方后的方程为(x+2)2=n,则n的值为.11.一个等腰三角形的底边长为10,腰长是一元二次方程x2−11x+30=0的一个根,则这个三角形的周长是.12.若m,n是一元二次方程x2−3x−1=0的两个根,则m+n+3mn的值为13.某超市销售一种饮料,平均每天可售出100箱,每箱利润12元,为了扩大销售,增加利润,超市准备适当降价,据测算,每箱每降价1元平均每天可多售出20箱,若要使每天销售饮料获利1440元,则每箱应降价元.三、计算题(共10分)14.解方程:(1)x2−8x−9=0;(2)x2−x−1=0.四、解答题(共46分)15.已知关于x的一元二次方程x2−(2m+1)x+m(m+1)=0.(1)求证:无论m取何值,方程总有两个不相等的实数根:(2)若该方程的一个根为1,求m的值及另一个根.16.已知关于x的一元二次方程x2−2x−m=0有实数根.(1)求m的取值范围;(2)若两实数根分别为x1和x2,且x12+x22=6,求m的值.17.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)若某天该商品每件降价3元,当天可获利多少元?(2)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?18.据某市车管部门统计,2020年底全市汽车拥有量为150万辆,而截至到2022年底,全市的汽车拥有量已达216万辆,假定汽车拥有量年平均增长率保持不变.(1)求年平均增长率;(2)如果不加控制,该市2024年底汽车拥有量将达多少万辆?参考答案1.B2.A3.D4.D5.D6.C7.D8.C9.210.711.2212.014.(1)解:x2−8x−9=0(x−9)(x+1)=0 x1=9,x2=−1;(2)解:x2−x−1=0x2−x=1x2−x+14=1+14x2−x+14=54(x−12)2=54x−12=±√52x1=√52+12=1+√52,x2=−√52+12=1−√52.15.(1)证明:由题意得=4m2+4m+1−4m2−4m=1>0∴无论m取何值,方程总有两个不相等的实数根:(2)解:∵关于x的一元二次方程x2−(2m+1)x+m(m+1)=0的一个根为1∴1−(2m+1)+m(m+1)=0∴m2−m=0解得m=0或m=1;当m=0时,原方程为x2−x=0,解得x=0或x=1;当m=1时,原方程为x2−3x+2=0,解得x=1或x=2;综上所述,当m=0时,方程的另一个根为x=0;当m=1时,方程的另一个根为x=2.16.(1)解:∵关于x的一元二次方程x2−2x−m=0有实数根∴△=b2﹣4ac=4+4m≥0解得:m≥﹣1;(2)解:∵x1和x2是方程x2−2x−m=0的两个实数根∵x1+x2=2,x1x2=﹣m∴x12+x22=(x1+x2)2﹣2x1•x2=6∴22+2m=617.(1)解:当天盈利:(50-3)×(30+2×3)=1692(元).答:若某天该商品每件降价3元,当天可获利1692元;(2)解:设每件商品降价x元根据题意,得:(50-x)(30+2x)=2000整理,得:x2−35x+250=0解得:x1=10,x2=25∵商城要尽快减少库存∴x=25.答:每件商品降价25元时,商场日盈利可达到2000元.18.(1)解:设该市汽车拥有量的年平均增长率为x.根据题意,得150(1+x)2=216.解得:x=0.2或x=﹣2.2(不合题意,舍去).∴年平均增长率为20%.(2)解:216(1+20%)2=311.04(万辆).答:如果不加控制,该市2024年底汽车拥有量将达311.04万辆.。

2022-2023学年北师大版九年级数学上册《第2章一元二次方程》单元达标测试题(附答案)

2022-2023学年北师大版九年级数学上册《第2章一元二次方程》单元达标测试题(附答案)

2022-2023学年北师大版九年级数学上册《第2章一元二次方程》单元达标测试题(附答案)一.选择题(共8小题,满分40分)1.下列方程是一元二次方程的是()A.x(x+3)=0B.x2﹣4y=0C.x2﹣=5D.ax2+bx+c=0(a、b、c为常数)2.若关于x的一元二次方程ax2+bx+5=0(a≠0)的一个解是x=1,则2021﹣a﹣b的值是()A.2016B.2020C.2025D.20263.若关于x的一元二次方程(m+1)x2+3x+m2﹣1=0的一个实数根为0,则m等于()A.1B.±1C.﹣1D.04.若关于x的一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根,且满足4a﹣2b+c =0,则()A.b=a B.c=2a C.a(x+2)2=0D.﹣a(x﹣2)2=0 5.用配方法解方程x2+8x+9=0,配方后可得()A.(x+8)2=73B.(x+4)2=25C.(x+8)2=55D.(x+4)2=7 6.如图,某学校计划在一块长12米,宽9米的矩形空地修建两块形状大小相同的矩形种植园,它们的面积之和为60平方米,两块种植园之间及周边留有宽度相等的人行通道,若设人行通道的宽度为x米,则可以列出关于x的方程()A.x2﹣17x﹣16=0B.2x2+17x﹣16=0C.2x2﹣17x﹣16=0D.2x2﹣17x+16=07.已知一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,则方程a(x+m﹣2)2+n=0(a≠0)的两根分别为()A.1,5B.﹣1,3C.﹣3,1D.﹣1,58.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则其中正确的()A.只有①②B.只有①②④C.①②③④D.只有①②③二.填空题(共8小题,满分40分)9.如果关于x的方程(m﹣3)﹣x+3=0是一元二次方程,那么m的值为.10.一元二次方程x2﹣x=0的解是.11.若关于x的一元二次方程(k﹣2)x2+4x+2=0有实数根,则k的取值范围是.12.若a是方程x2+x﹣1=0的根,则代数式2022﹣3a2﹣3a的值是.13.某地区加大教育投入,2020年投入教育经费2000万元,以后每年逐步增长,预计2022年,教育经费投入为2420万元,则年平均增长率为.14.已知等腰三角形三边分别为a、b、4,且a、b是关于x的一元二次方程x2﹣12x+m+2=0的两个根,则m的值是.15.2021年端午节期间,合肥某食品专卖店准备了一批粽子,每盒利润为50元,平均每天可卖300盒,经过调查发现每降价1元,可多销售10盒,为了尽快减少库存,决定采取降价措施,专卖店要想平均每天盈利16000元,设每盒粽子降价x元,可列方程.16.如图,△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从A点开始沿AB向B点以1cm/s的速度移动,点Q从B点开始沿BC边向C点以2cm/s的速度移动.如果P、Q分别从A、B同时出发,经过秒钟△PQB的面积等于△ABC面积的.三.解答题(共5小题,满分40分)17.解方程:(1)3x2﹣1=4x;(2)(x+4)2=5(x+4).18.已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:方程恒有两个不相等的实数根.(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的面积.19.x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两个实数根,若满足|x1﹣x2|=1,则此类方程称为“差根方程”.根据“差根方程”的定义,解决下列问题:(1)通过计算,判断下列方程是否是“差根方程”:①x2﹣4x﹣5=0;②2x2﹣2x+1=0;(2)已知关于x的方程x2+2ax=0是“差根方程”,求a的值;(3)若关于x的方程ax2+bx+1=0(a,b是常数,a>0)是“差根方程”,请探索a与b 之间的数量关系式.20.疫情肆虐,万众一心.由于医疗物资极度匮乏,许多工厂都积极宣布生产医疗物资以应对疫情.某工厂及时引进了1条口罩生产线生产口罩,开工第一天生产300万个,第三天生产432万个,若每天生产口罩的个数增长的百分率相同,请解答下列问题:(1)每天增长的百分率是多少?(2)经调查发现,一条生产线最大产能是900万个/天,如果每增加1条生产线,每条生产线的最大产能将减少30万个/天.现该厂要保证每天生产口罩3900万个,在增加产能同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?21.“阳光玫瑰”葡萄品种是广受各地消费者的青睐的优质新品种,在我国西部区域广泛种植,某葡萄种植基地2018年种植“阳光玫瑰”100亩,到2020年“阳光玫瑰”的种植面积达到256亩.(1)求该基地这两年“阳光玫瑰”种植面积的平均年增长率.(2)市场调查发现,当“阳光玫瑰”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出45千克.①若降价x(0≤x≤20)元,每天能售出多少千克?(用x的代数式表示)②为了推广宣传,基地决定降价促销,同时尽量减少库存,已知该基地“阳光玫瑰”的平均成本价为10元/千克,若要销售“阳光玫瑰”每天获利2125元,则售价应降低多少元?参考答案一.选择题(共8小题,满分40分)1.解:A、x(x+3)=0,是一元二次方程,符合题意;B、x2﹣4y=0,含有两个未知数,最高次数是2,不是一元二次方程,不符合题意;C、x2﹣=5,不是整式方程,不是一元二次方程,不符合题意;D、ax2+bx+c=0(a、b、c为常数),一次项系数可以为任意数,二次项系数一定不能为0,此方程才为一元二次方程,但题目中并没给出这个条件,故此方程不一定是一元二次方程,不符合题意;故选:A.2.解:把x=1代入方程ax2+bx+5=0得a+b+5=0,所以a+b=﹣5,所以2021﹣a﹣b=2021﹣(a+b)=2021+5=2026.故选:D.3.解:把x=0代入(m+1)x2+3x+m2﹣1=0,得m2﹣1=0,解得m1=﹣1,m2=1,而m+1≠0,即m≠﹣1.所以m=1.故选:A.4.解:∵一元二次方程ax2+bx+c=0(a≠0)满足4a﹣2b+c=0,∴x=﹣2是方程ax2+bx+c=0的解,又∵有两个相等的实数根,∴a(x+2)2=0(a≠0).故选:C.5.解:x2+8x+9=0,x2+8x=﹣9,x2+8x+16=﹣9+16,(x+4)2=7,故选:D.6.解:设人行道的宽度为x米,根据题意得,(12﹣3x)(9﹣2x)=60,化简整理得,2x2﹣17x+16=0.故选:D.7.解:∵一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,∴方程a(x+m﹣2)2+n=0(a≠0)中x﹣2=﹣3或x﹣2=1,解得:x=﹣1或3,即方程a(x+m﹣2)2+n=0(a≠0)的两根分别为﹣1和3,故选:B.8.解:①若a+b+c=0,则x=1是方程ax2+bx+c=0的解,由一元二次方程的实数根与判别式的关系可知Δ=b2﹣4ac≥0,故①正确;②∵方程ax2+c=0有两个不相等的实根,∴Δ=0﹣4ac>0,∴﹣4ac>0,则方程ax2+bx+c=0的判别式Δ=b2﹣4ac>0,∴方程ax2+bx+c=0必有两个不相等的实根,故②正确;③∵c是方程ax2+bx+c=0的一个根,则ac2+bc+c=0,∴c(ac+b+1)=0若c=0,等式仍然成立,但ac+b+1=0不一定成立,故③不正确;④若x0是一元二次方程ax2+bx+c=0的根,则由求根公式可得:x0=或x0=∴2ax0+b=或2ax0+b=﹣∴故④正确.故选:B.二.填空题(共8小题,满分40分)9.解:由题意得:m2﹣7=2,且m﹣3≠0,解得:m=﹣3,故答案为:﹣3.10.解:x2﹣x=0,x(x﹣1)=0,∴x=0或x﹣1=0,∴x1=0,x2=1,故答案为:x1=0,x2=1.11.解:∵关于x的一元二次方程(k﹣2)x2+4x+2=0有实数根,∴△≥0且k﹣2≠0,即42﹣4(k﹣2)×2≥0且k﹣2≠0解得k≤4且k≠2.故答案为:k≤4且k≠2.12.解:把x=a代入x2+x﹣1=0,得a2+a﹣1=0,解得a2+a=1,所以2022﹣3a2﹣3a=2022﹣3(a2+a)=2022﹣3=2019.故答案是:2019.13.解:设年平均增长率为x,根据题意得:2000(1+x)2=2420,解得:x=0.1=10%,或x=﹣2.1(不合题意舍去).即:年平均增长率为10%.故答案是:10%.14.解:当a=4时,∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴4+b=12,∴b=8,而4+4=8,不符合题意;当b=4时,∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴4+a=12,而4+4=8,不符合题意;当a=b时,∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴12=a+b,解得a=b=6,∴m+2=36,∴m=34,故m的值为34,故答案为34.15.解:设每盒粽子降价x元,则每盒的利润为(50﹣x)元,平均每天可卖(300+10x)盒,依题意得:(50﹣x)(300+10x)=16000,故答案为:(50﹣x)(300+10x)=16000.16.解:根据题意,知BP=AB﹣AP=6﹣t,BQ=2t.∵△PQB的面积等于△ABC面积的,则根据三角形的面积公式,得PB•BQ=××6×8,2t(6﹣t)=18,(t﹣3)2=0,解得t=3.故经过3秒钟△PQB的面积等于△ABC面积的.故答案是:3.三.解答题(共5小题,满分40分)17.解:(1)3x2﹣4x﹣1=0,∵a=3,b=﹣4,c=﹣1,∴Δ=b2﹣4ac=(﹣4)2﹣4×3×(﹣1)=16+12=28>0.∴x==,∴x1=,x2=.(2)(x+4)2=5(x+4),(x+4)2﹣5(x+4)=0,(x+4)(x+4﹣5)=0,∴x+4=0或x﹣1=0,∴x1=﹣4,x2=1.18.(1)证明:∵Δ=(m+2)2﹣4(2m﹣1)=(m﹣2)2+4,∴在实数范围内,m无论取何值,(m﹣2)2+4>0,即Δ>0,∴关于x的方程x2﹣(m+2)x+(2m﹣1)=0恒有两个不相等的实数根;(2)解:根据题意,得12﹣1×(m+2)+(2m﹣1)=0,解得,m=2,则方程的另一根为:m+2﹣1=2+1=3;①当该直角三角形的两直角边是1、3时,该直角三角形的面积为=;②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为2;则该直角三角形的面积为=;综上,该直角三角形的面积为或.19.解:(1)①设x1,x2是一元二次方程x2﹣4x﹣5=0的两个实数根,∴x1+x2=4,x1•x2=﹣5,∴|x1﹣x2|===6,∴方程x2﹣4x﹣5=0不是差根方程;②设x1,x2是一元二次方程2x2﹣2x+1=0的两个实数根,∴x1+x2=,x1•x2=,∴|x1﹣x2|===1,∴方程2x2﹣2x+1=0是差根方程;(2)x2+2ax=0,因式分解得:x(x+2a)=0,解得:x1=0,x2=﹣2a,∵关于x的方程x2+2ax=0是“差根方程”,∴2a=±1,即a=±;(3)设x1,x2是一元二次方程ax2+bx+1=0(a,b是常数,a>0)的两个实数根,∴x1+x2=﹣,x1•x2=,∵关于x的方程ax2+bx+1=0(a,b是常数,a>0)是“差根方程”,∴|x1﹣x2|=1,∴|x1﹣x2|==1,即=1,∴b2=a2+4a.20.解:(1)设每天增长的百分率是x,依题意得:300(1+x)2=432,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:每天增长的百分率是20%.(2)设应该增加y条生产线,则每条生产线的最大产能为(900﹣30y)万个/天,依题意得:(900﹣30y)(1+y)=3900,整理得:y2﹣29y+100=0,解得:y1=4,y2=25.又∵要节省投入,∴y=4.答:应该增加4条生产线.21.解:(1)设该基地这两年“阳光玫瑰”种植面积的平均增长率为y,依题意,得:100(1+y)2=256,解得:y1=0.6=60%,y2=﹣2.6(不合题意,舍去).答:该基地这两年“阳光玫瑰”种植面积的平均增长率为60%.(2)①设售价应降低x元,则每天可售出(200+45x)千克;②依题意,得:(20﹣10﹣x)(200+45x)=2125,整理,得:9x2﹣50x+25=0,解得:x1=5,x2=.∵要尽量减少库存,∴x=5.答:售价应降低5元.。

2020年北师大版九年级上册第2章一元二次方程达标测试卷 含答案

2020年北师大版九年级上册第2章一元二次方程达标测试卷    含答案

2020年北师大版九年级上册第2章达标测试卷题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.若关于x的方程ax2+3x+1=0是一元二次方程,则a满足的条件是()A.a≤B.a>0C.a≠0D.a≤2.将一元二次方程5x2﹣1=4x化成一般形式后,二次项的系数和一次项系数分别是()A.5,﹣1B.5,4C.5,﹣4D.5,13.用配方法解方程x2﹣6x+1=0,方程应变形为()A.(x﹣3)2=8B.(x﹣3)2=10C.(x﹣6)2=10D.(x﹣6)2=8 4.若a是方程x2﹣x﹣1=0的一个根,则﹣a3+2a+2020的值为()A.2020B.﹣2020C.2019D.﹣20195.下列方程中,没有实数根的是()A.x2﹣2x﹣3=0B.(x﹣5)(x+2)=0C.x2﹣x+1=0D.x2=16.关于x的一元二次方程x2+(a2﹣3a)x+a=0的两个实数根互为倒数,则a的值为()A.﹣3B.0C.1D.﹣3 或07.已知m、n是方程x2﹣x﹣1=0的两个解,若m>n,则m的值应在()A.0和1之间B.1和1.5之间C.1.5和2之间D.2和3之间8.参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛110场,设参加比赛的球队有x支,根据题意,下面列出的方程正确的是()A.x(x+1)=110B.x(x﹣1)=110C.x(x+1)=110D.x(x﹣1)=1109.对于任何实数m、n,多项式m2+n2﹣6m﹣10n+36的值总是()A.非负数B.0C.大于2D.不小于210.若x1是方程ax2﹣2x﹣c=0(a≠0)的一个根,设p=(ax1﹣1)2,q=ac+1.5,则p 与q的大小关系为()A.p<q B.p=q C.p>q D.不能确定二.填空题(共6小题,满分18分,每小题3分)11.下列方程中,①x2=0;②x2=y+4;③ax2+2x﹣3=0(其中a是常数);④x(2x﹣3)=2x(x﹣1);⑤(x2+3)=x,一定是一元二次方程的有(填序号).12.将方程2x2﹣5x=1﹣3x化为一般形式是.13.方程(x﹣5)2=4的解为.14.已知关于x的方程x2﹣mx+1=0的一个根为1,那么m的值是.15.已知关于x的一元二次方程(m+2)x2﹣3x+1=0有实数根,则m的取值范围是.16.如图是一张长12cm,宽10cm的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积是24cm2的有盖的长方体铁盒.则剪去的正方形的边长为cm.三.解答题(共7小题,满分52分)17.(8分)解一元二次方程:(1)x2+2x=29;(2)2x2﹣x﹣1=0.18.(6分)如果关于x的方程(m﹣2)x2﹣5x=4是一元二次方程,试判断关于y的方程y2﹣my+m=1根的情况,并说明理由.19.(6分)某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次,若进馆人次的月平均增长率相同.求进馆人次的月平均增长率.20.(7分)在实数范围内,对于任意实数m、n(m≠0)规定一种新运算:m⊗n=m n+mn ﹣3,例如:3⊗2=32+3×2﹣3=12.(1)计算:(﹣2)⊗(﹣1);(2)若x⊗1=﹣27,求x的值;(3)若(﹣y)⊗2的最小值为a,求a的值.21.(7分)已知关于x的一元二次方程x2+(2m﹣1)x+m2﹣=0有两个不相等的实数根x1,x2.(1)若m为正整数,求m的值;(2)在(1)的条件下,求代数式(x12+x1)(x12+x22)的值.22.(9分)“疫情”期间,李晨在家制作一种工艺品,并通过网络平台进行线上销售.经过一段时间后发现:当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,设该商品的售价为x元/件(20≤x≤40).(1)请用含售价x(元/件)的代数式表示每天能售出该工艺品的件数;(2)已知每件工艺品需要20元成本,每天销售该工艺品的纯利润为900元.①求该商品的售价;②为了支持“抗疫”行动,李晨决定每销售一件该工艺品便通过网络平台自动向某救助基金会捐款0.5元,求李晨每天通过销售该工艺品捐款的数额.23.(9分)[阅读材料]把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.配方法在代数式求值、解方程、最值问题中都有着广泛的应用.例如:①用配方法因式分解:a2+6a+8.原式=a2+6a+9﹣1=(a+3)2﹣1=(a+3﹣1)(a+3+1)=(a+2)(a+4)②求x2+6x+11的最小值.解:x2+6x+11=x2+6x+9+2=(x+3)2+2;由于(x+3)2≥0,所以(x+3)2+2≥2,即x2+6x+11的最小值为2.请根据上述材料解决下列问题:(1)在横线上添上一个常数项使之成为完全平方式:a2+4a+;(2)用配方法因式分解:a2﹣12a+35;(3)用配方法因式分解:x4+4;(4)求4x2+4x+3的最小值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:∵关于x的方程ax2+3x+1=0是一元二次方程,∴a≠0,故选:C.2.解:5x2﹣1=4x,5x2﹣4x﹣1=0,二次项的系数和一次项系数分别是5、﹣4,故选:C.3.解:∵x2﹣6x+1=0,∴x2﹣6x+9=8,∴(x﹣3)2=8,故选:A.4.解:∵a是方程x2﹣x﹣1=0的一个根,∴a2﹣a﹣1=0,∴a2﹣1=a,﹣a2+a=﹣1,∴﹣a3+2a+2020=﹣a(a2﹣1)+a+2020=﹣a2+a+2020=2019.故选:C.5.解:A.方程x2﹣2x﹣3=0中△=(﹣2)2﹣4×1×(﹣3)=16>0,有两个不相等的实数根,不符合题意;B.方程(x﹣5)(x+2)=0的两根分别为x1=5,x2=﹣2,不符合题意;C.方程x2﹣x+1=0中△=(﹣1)2﹣4×1×1=﹣3<0,没有实数根,符合题意;D.方程x2=1的两根分别为x1=1,x2=﹣1,不符合题意;故选:C.6.解:∵关于x的一元二次方程x2+(a2﹣3a)x+a=0的两个实数根互为倒数,∴x1•x2=a=1,则a的值为1.故选:C.7.解:∵a=1,b=﹣1,c=﹣1,∴x==.∵m、n是方程x2﹣x﹣1=0的两个解,且m>n,∴m=.∵2<<3,∴=1.5<m<=2.故选:C.8.解:设有x个队参赛,则x(x﹣1)=110.故选:D.9.解:m2+n2﹣6m﹣10n+36=m2﹣6m+9+n2﹣10n+25+2=(m﹣3)2+(n﹣5)2+2,∵(m﹣3)2≥0,(n﹣5)2≥0,∴(m﹣3)2+(n﹣5)2+2≥2,∴多项式m2+n2﹣6m﹣10n+36的值总是不小于2,故选:D.10.解:∵x1是方程ax2﹣2x﹣c=0(a≠0)的一个根,∴ax12﹣2x1=c,则p﹣q=(ax1﹣1)2﹣(ac+1.5)=a2x12﹣2ax1+1﹣ac﹣1.5=a(ax12﹣2x1)﹣ac﹣0.5=ac﹣ac﹣0.5=﹣0.5,∴p﹣q<0,∴p<q.故选:A.二.填空题(共6小题,满分18分,每小题3分)11.解:①x2=0是一元二次方程;②x2=y+4,含有两个未知数x、y,不是一元二次方程;③ax2+2x﹣3=0(其中a是常数),a=0时不是一元二次方程;④x(2x﹣3)=2x(x﹣1),整理后是一元一次方程;⑤(x2+3)=x是一元二次方程;一定是一元二次方程的有①⑤.故答案为:①⑤.12.解:2x2﹣5x=1﹣3x,2x2﹣5x﹣1+3x=0,2x2﹣2x﹣1=0,故答案为:2x2﹣2x﹣1=0.13.解:(x﹣5)2=4,开方得:x﹣5=±2,解得:x1=7,x2=3,故答案为x1=7,x2=3.14.解:当x=1时,方程x2﹣mx+1=0为12﹣m+1=0,即2﹣m=0,解得m=2,故答案为:2.15.解:∵关于x的一元二次方程(m+2)x2﹣3x+1=0有实数根,∴△=(﹣3)2﹣4×(m+2)×1≥0且m+2≠0,解得m≤且m≠﹣2.故答案为:m≤且m≠﹣2.16.解:设底面长为acm,宽为bcm,正方形的边长为xcm,根据题意得:,解得a=10﹣2x,b=6﹣x,代入ab=24中,得:(10﹣2x)(6﹣x)=24,整理得:x2﹣11x+18=0,解得x=2或x=9(舍去),答;剪去的正方形的边长为2cm.故答案为:2.三.解答题(共7小题,满分52分)17.解:(1)∵x2+2x=29,∴x2+2x+1=29+1,即(x+1)2=30,则x+1=±,∴x1=﹣1+,x2=﹣1﹣;(2)∵a=2,b=﹣,c=﹣1,∴△=(﹣)2﹣4×2×(﹣1)=10>0,则x=,即x1=,x2=.18.解:关于y的方程y2﹣my+m=1有两个不相等的实数根,理由如下:∵关于x的方程(m﹣2)x2﹣5x=4是一元二次方程,∴m﹣2≠0,∴m≠2.在方程y2﹣my+m=1中,a=1,b=﹣m,c=m﹣1,∴△=b2﹣4ac=(﹣m)2﹣4×1×(m﹣1)=m2﹣4m+4=(m﹣2)2,∵m≠2,∴(m﹣2)2>0,即△>0,∴关于y的方程y2﹣my+m=1有两个不相等的实数根.19.解:设进馆人次的月平均增长率为x,则由题意得:128+128(1+x)+128(1+x)2=608化简得:4x2+12x﹣7=0∴(2x﹣1)(2x+7)=0,∴x=0.5=50%或x=﹣3.5(舍)答:进馆人次的月平均增长率为50%.20.解:(1)(﹣2)⊗(﹣1)=(﹣2)﹣1+(﹣2)×(﹣1)﹣3=;(2)由题意得x⊗1=x+x﹣3=﹣27,解得x=﹣12;(3)(﹣y)⊗2=y2﹣2y﹣3=(y﹣1)2﹣4,∵(y﹣1)2﹣4的最小值为﹣4,∴a的值为﹣4.21.解:(1)∵方程x2+(2m﹣1)x+m2﹣=0有两个不相等的实数根,∴△=(2m﹣1)2﹣4(m2﹣)=﹣4m﹣11>0,解得:m<2.∵m为正整数,∴m=1,答:m的值为1;(2)∵m=1,∴x2+x+﹣=0,∴x1+x2=﹣1,x1x2=﹣,∴(x12+x1)(x12+x22)=﹣[(x1+x2)2﹣2x1x2]=.22.解:(1)∵该商品的售价为x元/件(20≤x≤40),且当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,∴每天能售出该工艺品的件数为60+3(40﹣x)=(180﹣3x)件.(2)①依题意,得:(x﹣20)(180﹣3x)=900,整理,得:x2﹣80x+1500=0,解得:x1=30,x2=50(不合题意,舍去).答:该商品的售价为30元/件.②0.5×(180﹣3×30)=45(元).答:李晨每天通过销售该工艺品捐款的数额为45元.23.解:(1)a2+4a+4=(a+2)2,故答案为:4;(2)a2﹣12a+35=a2﹣12a+36﹣1=(a﹣6)2﹣1=(a﹣6+1)(a﹣6﹣1)=(a﹣5)(a﹣7);(3)x4+4=x4+4+4x2﹣4x2=(x2+2)2﹣4x2=(x2+2+2x)(x2+2﹣2x);(4)4x2+4x+3=4x2+4x+1+2=(2x+1)2+2,∵(2x+1)2≥0,∴(2x+1)2+2≥2,∴4x2+4x+3的最小值为2.。

九年级数学上册第二章《一元二次方程》测试卷-北师大版(含答案)

九年级数学上册第二章《一元二次方程》测试卷-北师大版(含答案)

九年级数学上册第二章《一元二次方程》测试卷-北师大版(含答案)(满分120分)一、选择题(每题3分,共30分)1.方程(x+1)(x-1)=0的根是()A. x1=x²=1B. x1= x²=-1C. x1=1,x²=-1D. x1=1,x²=02.一元二次方程x²-2x-5 =0用配方法解可变形为()A. (x+1)2=6B. (x+2)2=9C. (x-1)2=6D. (x-2)2=93.方程x²-2x+3 =0的根的情况是:()A.有两个相等的实数根7B.无实C.有两个不相等的实数根D.只有一个实根4.关于x的一元二次方程(a-1)x²+x+a2-1 =0有一个根为0,则a的值为()A.1B.-1C.+1D.05.一个等腰三角形的两边是方程x²-6x+8=0的两根,则这个三角形的周长为()A.8B.10 DBC.8或10D. 66.方程x-2x+m=0有两个相等的实数解,则m的值为()A.1B.-1C.2D. -27.以1,3为根的一元二次方程是.()A. x²+4x+3=0B. x²-4x+3=0C. x²+4x-3=0D. -x²+4x+3=08.两个连续偶数的积为120,若设较小的偶数为x,则可列方程()A. x(x+1)=120B. x(x+2)=120C. x(x-1)=120D. x(x-2)=1209.一个长方形的长比宽多1,面积为12,则长方形的宽为()A.3B.4C.523D.610.在某次会议中,每两人都握了一次手,共握手10次,设有x人参加会议,则可列方程为()A. x(x+1)=10B. x(x-1)= 10C. 12(x+1)=10D. 12(x-1)=10二、填空题(每题4分,共28分)11.方程x²=1的解为。

12. 已知m和n是方程3x²-6x-9=0的两根,则m +n= .13.已知代数式x²与2x-1的值相等,则x的值为.14.如果关于x的一元二次方程x²+2x-m=0没有实根,那么m的取值范围是.15.若关于x的方程x²+mx-3=0有一个根为2,则m的值为.16. 一个长方形的周长为8,面积为4,设宽为x,则可列方程为.17.已知关于x的一元二次方程x²+(2m-1)x+m²=0有两个实数根x1和x2,且x1+x2+ x1x2=1,出m的值为.三、解答题(一)(每题6分,共18分)18.解方程:(1)x²-4x+3=0;(2)2x²-3x-1 =0;(3)(x+4)2 =2(x +4).19.已知x=-1是方程x2+mx-5=0的一个根,求m的值及方程的另一根.20.如图,在长为10m,宽为8m的矩形试验田上修建两条宽度相等且互相垂直的道路,要使种植面积(空白部分)为63m2,求道路的宽.四、解答题(二)(每题8分,共24分)21.已知关于x的一元二次方程x2+(m+1)x+m=0.(1)当m=0时,求方程的解;(2)当m=1时,求方程的解.22.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动,第一天收到捐款1000元,第三天收到捐款1440元(1)如果第二天第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?23.已知关于x的一元二次方程(x-2)(x-3)=p2.求证:无论p取何值,方程总有两个不相等的实数根五、解答题(三)(每题10分,共20分)24.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?25.设等腰三角形的三条边分别为3,m,n,已知m,n是关于x的方程x²-4x+k=0的两个根,求k的值.参考答案一、1.C 2.C 3.B 4.B 5.B 6. A 7.B 8.B 9.A 10.D二、11. X1=1,x2=-1 12.2 13. 114.m< -1 15. -1 216.x(4-x) =4 17.0三、18.解:(1)x2 -4x+4= -3+4 (x-2)2=1x-2=土1x1=1 +2=3x2=-1+2=1(2)∵ a=2,b= -3,c= -1△=b2 -4ac=( -3)2-4x2x( -1)=9+8= 17∴x24317 b b ac-±-±x1 =3174x2317=4(3)(x+4)(x+4-2) =0(x +4)(x+2) =0X1=-4x2=-2.19.解:把x= -1代人方程x2 +mx-5 =0则:(-1)2-m-5=0- m=4m= -4把m= -4代人x2 +mx-5=0则:x2 -4x-5=0X2 -4x+4=5 +4(x-2)2 =9x-2=土3x1 =3+2=5x2= -3+2= -1∴m的值为-4,方程的另一根为520.解:设道路寬x m.根据题意,得(10-x)(8-x) =63x2 -18x +80= 63(x-9)2 =64x-9=土8x 1=8 +9=17(不合题意,舍去)x2 = -8+9=1∴道路宽1m四、21.解:(1)当m=0时,x2 +(m+1)x+m=0 x2 +x+0=0x(x+1) =0∴x=0或x+1 =0∴x1 =0,x2=-1(2)当m=1时,x2 +(m+1)x+m=0X2+(1 +1)x+1=0x2 +2x+1 =0(x+1)2 =0∴x1=x2=-122.解:(1)设捐款增长率为x,依题意,得1 000(1 +x)2=1 440(1 +x)2=1.441 +x= +1.2x= ±1.2-1∴x1 =1.2-1 =0.2 = 20%x2= -1.2-1= -2.2(不合题意,舍去)答:捐款增长率为20%(2)1440x(1 +20%) =1 728元答:第四天该单位能收到1728元捐款。

北师大版九年级上册数学第2章《一元二次方程》单元测试卷(含答案)

北师大版九年级上册数学第2章《一元二次方程》单元测试卷(含答案)

北师大版九年级上册数学第2章《一元二次方程》单元测试卷时间:100分钟满分:100分班级:_______ 姓名:________得分:_______一.选择题(每题3分,共30分)1.在4(x﹣1)(x+2)=5,x2+y2=1,5x2﹣10=0,2x2+8x=0,=x2+3中,是一元二次方程的个数为()A.2个B.3个C.4个D.5个2.一元二次方程x2=2x的解是()A.x=0 B.x=2 C.x1=0,x2=2 D.无实数解3.等腰三角形三边长分别为a、b、4,且a、b是关于x的一元二次方程x2﹣12x+k+2=0的两根,则k的值为()A.30 B.34或30 C.36或30 D.344.已知2+是关于x的方程x2﹣4x+c=0的一个根,则方程的另一个根与c的值是()A.2﹣,1 B.﹣6﹣,15﹣8C.﹣2,﹣1 D.2+,7+45.某商品的价格为100元,连续两次降x%后的价格是81元,则x为()A.9 B.10 C.19 D.86.若一元二次方程x2﹣(a+1)x+a=0的两个实数根分别是b、2,则b﹣a=()A.﹣1 B.1 C.3 D.﹣47.为执行“均衡教育”政策,某区2018年投入教育经费7000万元,预计到2020年投入2.317亿元,若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.7000(1+x2)=23170B.7000+7000(1+x)+7000(1+x)2=23170C.7000(1+x)2=23170D.7000+7000(1+x)+7000(1+x)2=23178.某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干和小分支的总数是91,设每个枝干长出x小分支,列方程为()A.(1+x)2=91 B.1+x+x2=91 C.(1+x)x=91 D.1+x+2x=91 9.已知关于x的一元二次方程ax2+bx+c=0(ac≠0)的两实根分别是x1=,x2=(P ≠3),若关于x的一元二次方程cy2+by+a=0的两实根分别为y1和y2,则y1+y2的值()A.+p B.3+p C.3+D.10.我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1.若我们规定一个新数“i”,使其满足i2=﹣1(即方程x2=﹣1有一个根为i).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2×i=(﹣1)×i=﹣i,i4=(i2)2=(﹣1)2=1,从而对任意正整数n,我们可以得到i4n+1=i4n×i=(i4)n×i=i,i4n+2=﹣1,i4n+3=﹣i,i4n=1.那么i+i2+i3+i4+…+i2012+i2013+…+i2019的值为()A.0 B.1 C.﹣1 D.i二.填空题(每题4分,共20分)11.方程(x﹣3)2=4的解是.12.若实数a、b满足a2+ab+b2=1,且t=ab﹣a2﹣b2,则t的取值范围是.13.若关于x的方程(1﹣m2)x2+2mx﹣1=0的所有根都是比1小的正实数,则实数m 的取值范围是.14.白云航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有个飞机场.15.已知t是实数,若a,b是关于x的一元二次方程x2﹣2x+t﹣1=0的两个非负实根,则(a2﹣1)(b2﹣1)的最小值是.。

北师大版九年级数学上“第二章 一元二次方程”达标检测试卷

北师大版九年级数学上“第二章 一元二次方程”达标检测试卷

26、 (10 分)在一次数学兴趣小组的活动课上,师生有下面一段对话,请你阅读完后再解 答问题. 老师:同学们,今天我们探索如下方程的解法:
( x 2 x) 2 8( x 2 x) 再合并同类项,行吗? 老师:这样,原方程可整理为 x 4 2 x 3 7 x 2 8x 12 0 ,次数变成了 4,用现在的 知识无法解答.同学们再观察,看看这个方程有什么特点? 学生乙:老师,我发现方程中 ( x 2 x) 是整体出现的,最好不去括号. 老师:很好,如果我们把 x 2 x 看成一个整体,用 y 表示,即 x 2 x y ,那么原方 程就变为 y 2 8 y 12 0 . 全体学生:(同学们都特别高兴)这不是我们最熟悉的一元二次方程吗! 老师:大家都善于观察和思考,太棒了!可以解得一元二次方程 y 2 8 y 12 0 的 根是 y1 6,y2 2 . 那么就有 x 2 x 6 或 x 2 x 2 . 学生丙:对啦!再解这两个方程,可得原方程的根 x1 3,x2 2,x3 2,x4 1. 呵,有这么多根啊! 老师:同学们,通常我们把这种方法叫做换元法,在这里,使用它的最大好处在于 降低了原方程的次数,这是一种重要的转化方法. 全班学生:换元法真神奇! 现在,请你用换元法解分式方程: (
x 2 x ) 3( ) 10 0 . x 1 x 1
北师大版九年级数学上“第二章 一元二次方程”达标检测试卷
(时间:90 分钟 姓名: 学号: 满分:100 分) 得分: .
一、 选择题(本大题共 10 小题,每小题 2 分,共 20 分.)
1、 下列方程中是关于 x 的一元二次方程的是 A. x 2
1 0; 2x 2
( B. ( x 1)( x 2) 1; D. 2 x 2 xy y 2 0 ; (

2022-2023学年北师大版九年级上册数学第2章 一元二次方程 单元测试卷含答案

2022-2023学年北师大版九年级上册数学第2章 一元二次方程 单元测试卷含答案

2022-2023学年北师大版九年级上册数学第2章一元二次方程单元测试卷一.选择题(共10小题,满分30分)1.下列是关于x的一元二次方程的是()A.x2﹣=2021B.x(x+6)=0C.a2x﹣5=0D.4x﹣x3=22.一元二次方程(4x+1)(2x﹣3)=5x2+1化成一般式后a,b,c的值为()A.3,﹣10,﹣4B.3,﹣12,﹣2C.8,﹣10,﹣2D.8,﹣12,4 3.若关于x的一元二次方程ax2+bx+1=0的一个解是x=1,则2021+a+b=()A.2020B.2021C.2022D.20234.如果关于x的方程(x﹣9)2=m+4可以用直接开平方法求解,那么m的取值范围是()A.m>3B.m≥3C.m>﹣4D.m≥﹣45.用配方法解一元二次方程2x2﹣2x﹣1=0,下列配方正确的是()A.B.C.D.6.一元二次方程x2+4x﹣8=0的解是()A.x1=2+2,x2=2﹣2B.x1=2+2,x2=2﹣2C.x1=﹣2+2,x2=﹣2﹣2D.x1=﹣2+2,x2=﹣2﹣27.一元二次方程(x﹣5)(x+2)=0的解是()A.5B.﹣2C.﹣5或2D.5或﹣28.甲、乙、丙三人共同探究代数式﹣2x2+4x+2的情况,三人的说法如下:甲:只有当x=0时,代数式﹣2x2+4x+2的值为2;乙:当x取大于2的实数时,代数式﹣2x2+4x+2的值随x的增大而减小;丙:无论x取何值时,代数式﹣2x2+4x+2的值都不可能大于4.下列判断正确的是()A.甲对,乙对B.甲对,丙对C.甲错,丙对D.乙错,丙错9.设a,b是方程x2+x﹣2019=0的两个实数根,则a+b+ab的值为()A.2018B.﹣2018C.2020D.﹣202010.一元二次方程2x2﹣5x+1=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定二.填空题(共10小题,满分30分)11.某医药厂两年前生产1t某种药品的成本是5000元,随着生产技术的进步,现在生产1t 该种药品的成本是3000元.设该种药品生产成本的年平均下降率为x,列出方程.12.一元二次方程(2x+3)(x﹣1)=1的解为.13.将一个容积为360cm3的包装盒剪开铺平,纸样如图所示.利用容积列出图中x(cm)满足的一元二次方程:(不必化简).14.某商品原价每件75元,两次降价后每件48元,则平均每次的降价百分率是.15.若x1、x2是一元二次方程x2+9x﹣8=0的两个根,则x1+x2的值是.16.若关于x的一元二次方程(k+2)x2﹣2x﹣1=0有实数根,则实数k的取值范围是.17.已知方程2x2+bx+c=0的两根为2和﹣2,分解因式2x2+bx+c=.18.已知x2﹣6x+5=(x﹣1)2+a(x﹣1)+b,则a=,b=.19.在等式(□+5)2=49中,□内的数等于.20.关于x的一元二次方程(m﹣3)x2+m2x=9x+5化为一般形式后不含一次项,则m的值为.三.解答题(共6小题,满分90分)21.在学习了乘法公式“(a±b)2=a2±2ab+b2”的应用后,李老师提出问题:求代数式﹣x2+2x+2的最大值.同学们经过探索、合作交流,最后得到如下的解法:解:﹣x2+2x+2=﹣(x2﹣2x+12﹣12)+2=﹣(x﹣1)2+3∵﹣(x﹣1)2≤0,∴﹣(x﹣1)2+3≤3.当﹣(x﹣1)2=0时,﹣(x﹣1)2+3的值最大,最大值为3.∴﹣x2+2x+2的最大值是3.请你根据上述方法,解答下列问题:(1)求代数式﹣y2﹣6y+2的最大值.(2)求代数式﹣2a2+8a﹣3的最大值.(3)若x2﹣3x+y﹣10=0,求y﹣x的最大值.22.已知关于x的方程x2﹣(k+2)x+2k=0.(1)求证:无论k为何值,方程总有实数根;(2)若等腰三角形一腰长为5,另外两边长度为该方程的两根,求等腰三角形的周长.23.按要求解方程:(1)直接开平方法:4(t﹣3)2=9(2t﹣3)2;(2)配方法:2x2﹣7x﹣4=0;(3)公式法:3x2+5(2x+1)=0;(4)因式分解法:3(x﹣5)2=2(5﹣x);(5)因式分解法:abx2﹣(a2+b2)x+ab=0(ab≠0);(6)用配方法求最值:6x2﹣x﹣12.24.已知:如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB 边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,当Q到达点C时,点Q、P同时停止移动.(1)如果点P,Q分别从点A,B同时出发,那么几秒后,△PBQ的面积为4cm2?(2)如果点P,Q分别从点A,B同时出发,那么几秒后,PQ的长度为5cm?25.对于任意一个三位数k,如果k满足各个数位上的数字都不为零,且十位上的数字的平方等于百位上的数字与个位上的数字之积的4倍,那么称这个数为“喜鹊数”.例如:k =169,因为62=4×1×9,所以169是“喜鹊数”.(1)已知一个“喜鹊数”k =100a +10b +c (1≤a 、b 、c ≤9,其中a ,b ,c 为正整数),请直接写出a ,b ,c 所满足的关系式 ;判断241 “喜鹊数”(填“是”或“不是”),并写出一个“喜鹊数” ;(2)利用(1)中“喜鹊数”k 中的a ,b ,c 构造两个一元二次方程ax 2+bx +c =0①与cx 2+bx +a =0②,若x =m 是方程①的一个根,x =n 是方程②的一个根,求m 与n 满足的关系式;(3)在(2)中条件下,且m +n =﹣2,请直接写出满足条件的所有k 的值. 26.阅读材料,解答问题:材料1为了解方程(x 2)2﹣13x 2+36=0,如果我们把x 2看作一个整体,然后设y =x 2,则原方程可化为y 2﹣13y +36=0,经过运算,原方程的解为x 1,2=±2,x 3,4=±3.我们把以上这种解决问题的方法通常叫做换元法.材料2已知实数m ,n 满足m 2﹣m ﹣1=0,n 2﹣n ﹣1=0,且m ≠n ,显然m ,n 是方程x 2﹣x ﹣1=0的两个不相等的实数根,由韦达定理可知m +n =1,mn =﹣1.根据上述材料,解决以下问题:(1)直接应用:方程x 4﹣5x 2+6=0的解为 ;(2)间接应用:已知实数a ,b 满足:2a 4﹣7a 2+1=0,2b 4﹣7b 2+1=0且a ≠b ,求a 4+b 4的值; (3)拓展应用:已知实数x ,y 满足: +=7,n 2﹣n =7且n >0,求+n 2的值.参考答案与试题解析一.选择题(共10小题,满分30分)1.解:A.x2﹣=2021是分式方程,故本选项不合题意;B.x(x+6)=0是关于x的一元二次方程,故本选项符合题意;C.当a=0时,不是一元二次方程,故本选项不合题意;D.未知数是最高次数是3,不是一元二次方程,故本选项不合题意;故选:B.2.解:(4x+1)(2x﹣3)=5x2+1,去括号得:8x2﹣10x﹣3=5x2+1,移项合并同类项得:3x2﹣10x﹣4=0,a=3,b=﹣10,c=﹣4,故选:A.3.解:把x=1代入方程ax2+bx+1=0得a+b+1=0,所以a+b=﹣1,所以2021+a+b=2021﹣1=2020.故选:A.4.解:由题意得:m+4≥0,∴m≥﹣4,故选:D.5.解:方程2x2﹣2x﹣1=0,整理得:x2﹣x=,配方得:x2﹣x+=,即(x﹣)2=.故选:C.6.解:∵a=1,b=4,c=﹣8,∴Δ=42﹣4×1×(﹣8)=48>0,则x===﹣2±2,∴x1=﹣2+2,x2=﹣2﹣2,故选:D.7.解:方程(x﹣5)(x+2)=0,所以x﹣5=0或x+2=0,解得:x=5或x=﹣2.故选:D.8.解:甲:∵﹣2x2+4x+2=2,∴﹣2x2+4x=0,∴﹣2x(x﹣2)=0,∴x1=0,x2=2,故甲同学的说法不符合题意;乙:∵﹣2x2+4x+2=﹣2(x2﹣2x)+2=﹣2(x2﹣2x+1﹣1)+2=﹣2(x﹣1)2+2+2=﹣2(x﹣1)2+4,∴当x>2时,代数式﹣2x2+4x+2的值随x的增大而减小,故乙同学的说法符合题意;丙:∵(x﹣1)2≥0,∴﹣2(x﹣1)2≤0,∴﹣2(x﹣1)2+4≤4,∴无论x取何值时,代数式﹣2x2+4x+2的值都不可能大于4,故丙同学的说法符合题意;故选:C.9.解:根据题意得a+b=﹣1,ab=﹣2019,所以a+b+ab=﹣1﹣2019=﹣2020.故选:D.10.解:∵Δ=(﹣5)2﹣4×2×1=25﹣8=17>0,∴一元二次方程2x2﹣5x+1=0有两个不相等的实数根,故选:C.二.填空题(共10小题,满分30分)11.解:依题意得:5000(1﹣x)2=3000.故答案为:5000(1﹣x)2=3000.12.解:(2x+3)(x﹣1)=1,化为一般形式得:2x2+x﹣4=0,Δ=12﹣4×2×(﹣4)=33,∴x=,∴x1=,x2=,故答案为:x1=,x2=.13.解:由题意可得:长方体的高为:15cm,宽为:(20﹣2x)÷2(cm),则根据题意,列出关于x的方程为:15x(10﹣x)=360.故答案为:15x(10﹣x)=360.14.解:设平均每次的降价百分率是x,依题意得:75(1﹣x)2=48,解得:x1=0.2=20%,x2=1.8(不符合题意,舍去),∴平均每次的降价百分率为20%.故答案为:20%.15.解:∵x1、x2是一元二次方程x2+9x﹣8=0的两个根,∴x1+x2=﹣9,故答案为:﹣9.16.解:根据题意得k+2≠0且Δ=(﹣2)2﹣4(k+2)×(﹣1)≥0,解得k≥﹣3且k≠﹣2,所以实数k的取值范围是k≥﹣3且k≠﹣2.故答案为:k≥﹣3且k≠﹣2.17.解:∵方程2x2+bx+c=0的两根为2和﹣2,∴2x2+bx+c=2(x+2)(x﹣2),故答案为:2(x+2)(x﹣2).18.解:∵x2﹣6x+5=(x﹣1)2+a(x﹣1)+b,∴x2﹣6x+5=x2﹣2x+1+ax﹣a+b,∴x2﹣6x+5=x2+(a﹣2)x+1﹣a+b,∴a﹣2=﹣6,1﹣a+b=5,∴a=﹣4,b=0,故答案为:﹣4,0.19.解:设□内的数为x,则等式(□+5)2=49即为(x+5)2=49,两边开平方得,x+5=7或x+5=﹣7,解得,x=2或﹣12.即□内的数等于2或﹣12.故答案为:2或﹣12.20.解:(m﹣3)x2+m2x=9x+5,(m﹣3)x2+m2x﹣9x﹣5=0,(m﹣3)x2+(m2﹣9)x﹣5=0,∵一元二次方程(m﹣3)x2+m2x=9x+5化为一般形式后不含一次项,∴m﹣3≠0且m2﹣9=0,解得:m=﹣3,故答案为:﹣3.三.解答题(共6小题,满分90分)21.解:(1)﹣y2﹣6y+2=﹣(y+3)2+11,∵﹣(y+3)2≤0,∴﹣(y+3)2+11≤11.∴﹣y2﹣6y+2的最大值是11.(2)﹣2a2+8a﹣3=﹣2(a2﹣4a+4﹣4)﹣3=﹣2(a﹣2)2+5,∵﹣2(a﹣2)2≤0,∴﹣2(a﹣2)2+5≤5.∴﹣2a2+8a﹣3的最大值是5.(3)∵x2﹣3x+y﹣10=0,∴y﹣x=﹣x2+2x+10=﹣(x﹣1)2+11,∵﹣(x﹣1)2≤0,∴﹣(x﹣1)2+11≤11.∴y﹣x的最大值是11.22.(1)证明:Δ=[﹣(k+2)]2﹣4×2k=(k﹣2)2,∵(k﹣2)2≥0,即△≥0,∴无论k取任何实数值,方程总有实数根;(2)解:∵等腰三角形一腰长为5,∴另外一边长度为5,∴方程x2﹣(k+2)x+2k=0一个根为5,∴25﹣5(k+2)+2k=0,解得k=5,∴方程为x2﹣(5+2)x+2×5=0,∴(x﹣5)(x﹣2)=0,解得x1=5,x2=2,故△ABC的周长=5+5+2=12.23.解:(1)4(t﹣3)2=9(2t﹣3)2开方得:2(t﹣3)=±3(2t﹣3),∴2(t﹣3)=3(2t﹣3)或2(t﹣3)=﹣3(2t﹣3),∴;(2)2x2﹣7x﹣4=0,方程两边同时除以2得:,,,,,∴;(3)3x2+5(2x+1)=0,方程整理为一般式为:3x2+10x+5=0,∴a=3,b=10,c=5,∴b2﹣4ac=102﹣4×3×5=40,∴,∴;(4)3(x﹣5)2=2(5﹣x),方程变形为:3(x﹣5)2+2(x﹣5)=0,∴(x﹣5)[3(x﹣5)+2]=0,∴(x﹣5)(3x﹣13)=0,∴;(5)abx2﹣(a2+b2)x+ab=0(ax﹣b)(bx﹣a)=0,∵ab≠0,∴a≠0,b≠0,∴;(6)6x2﹣x﹣12=,∴当时,原式有最小值.24.解:当运动时间为ts时,AP=tcm,BP=(5﹣t)cm,BQ=2tcm.(1)依题意得:(5﹣t)×2t=4,整理得:t2﹣5t+4=0,解得:t1=1,t2=4,当t=1时,2t=2×1=2<7,符合题意;当t=4时,2t=2×4=8>7,不符合题意,舍去.答:1s后,△PBQ的面积为4cm2.(2)依题意得:(5﹣t)2+(2t)2=25,整理得:t2﹣2t=0,解得:t1=0(不符合题意,舍去),t2=2.答:2s后,PQ的长度为5cm.25.解:(1)∵k=100a+10b+c是喜鹊数,∴b2=4ac,即b2﹣4ac=0;∵42=16,4×2×1=8,16≠8,∴241不是喜鹊数;∵各个数位上的数字都不为零,百位上的数字与个位上的数字之积的4倍,∴十位上的数字的平方最小为4,∵22=4,4×1×1=4,∴最小的“喜鹊数”是121.故答案为:b2﹣4ac=0;不是;121.(2)∵x=m是一元二次方程ax2+bx+c=0的一个根,x=n是一元二次方程cx2+bx+a=0的一个根,∴am2+bm+c=0,cn2+bn+a=0,将cn2+bn+a=0两边同除以n2得:a()2+b()+c=0,∴将m、看成是方程ax2+bx+c的两个根,∵b2﹣4ac=0,∴方程ax2+bx+c有两个相等的实数根,∴m=,即mn=1;故答案为:mn=1.(3)∵m+n=﹣2,mn=1,∴m=﹣1,n=﹣1,∴a﹣b+c=0,∴b=a+c,∵b2=4ac,∴(a+c)2=4ac,解得:a=c,∴满足条件的所有k的值为121,242,363,484.故答案为:121,242,363,484.26.解:(1)令y=x2,则有y2﹣5y+6=0,∴(y﹣2)(y﹣3)=0,∴y1=2,y2=3,∴x2=2或3,∴x1=,x2=﹣,x3=,x4=﹣;故答案为:x1=,x2=﹣,x3=,x4=﹣;(2)∵a≠b,∴a2≠b2或a2=b2,当a2≠b2时,令a2=m,b2=n.∴m≠n,则2m2﹣7m+1=0,2n2﹣7n+1=0,∴m,n是方程2x2﹣7x+1=0的两个不相等的实数根,∴,此时a4+b4=m2+n2=(m+n)2﹣2mn=.②当a2=b2(a=﹣b)时,a2=b2=,此时a4+b4=2a4=2(a2)2=,综上所述,a4+b4=或.(3)令=a,﹣n=b,则a2+a﹣7=0,b2+b﹣7=0,∵n>0,∴≠﹣n,即a≠b,∴a,b是方程x2+x﹣7=0的两个不相等的实数根,∴,故+n2=a2+b2=(a+b)2﹣2ab=15.。

北师大版九年级上册数学 第二章《一元二次方程》单元测试卷(含答案)

北师大版九年级上册数学 第二章《一元二次方程》单元测试卷(含答案)

北师大版九年级上册数学第二章《一元二次方程》单元测试卷时间:100分钟满分:100分班级:_______ 姓名:________得分:_______一.选择题(每题3分,共30分)1.下列方程是一元二次方程的是()A.x2+=0 B.5x2﹣6y﹣3=0 C.ax2﹣x+2=0 D.x2﹣5x=2 2.在下列方程中,以3,﹣4为根的一元二次方程是()A.x2﹣x﹣12=0 B.x2+x﹣12=0 C.x2﹣x+12=0 D.x2+x+12=0 3.下列方程中,没有实数根的是()A.2x2﹣5x+2=0 B.x2﹣3x+4=0 C.x2﹣2x+1=0 D.x2﹣2x﹣2=0 4.若m是方程x2﹣2x﹣1=0的根,则1+2m﹣m2的值为()A.0 B.1 C.﹣1 D.25.已知关于x的一元二次方程x2﹣(k+1)x﹣6=0的一个根是2,则此方程的另一个根和k的值分别是()A.3和2 B.3和﹣2 C.﹣3和﹣2 D.﹣2和3 6.不论x、y为什么实数,代数式x2+y2+2x﹣4y+9的值()A.总不小于4 B.总不小于9C.可为任何实数D.可能为负数7.如图,等边△ABC中,D在射线BA上,以CD为一边,向右上方作等边△EDC.若BC、CD的长为方程x2﹣15x+7m=0的两根,当m取符合题意的最大整数时,则不同位置的D点共有()A.1个B.2个C.3个D.4个8.近日“知感冒,防流感﹣﹣全民科普公益行”活动在武汉拉开帷幕,已知有1个人患了流感,经过两轮传染后共有169个人患了流感,每轮传染中平均一个人传染m人,则m 的值为()A.10 B.11 C.12 D.139.若x1,x2是一元二次方程x2+6=5x的两个根,则x1+x2+x1x2的值是()A.1 B.11 C.﹣11 D.﹣110.某商店销售富硒农产品,今年1月开始盈利,2月份盈利240000元,4月份盈利290400元,且从2月份到4月份,每月盈利的平均增长率相同,则每月盈利的平均增长率是()A.8% B.9% C.10% D.11%二.填空题(每题4分,共20分)11.若一元二次方程x2﹣mx﹣6=0的一个根为﹣2,则m的值为.12.已知2是关于x的方程x2﹣2mx+3m=0的一个根,且这个方程的两个根恰好是等腰△ABC的两条边长,则△ABC的周长为.13.设a,b是一元二次方程x2﹣x﹣1=0的两根,则3a3+4b+的值为.14.已知实数a,b是方程x2﹣x﹣1=0的两根,则+的值为.15.如图,在宽为4m、长为6m的矩形花坛上铺设两条同样宽的石子路,余下部分种植花卉,若种植花卉的面积15m2,则铺设的石子路的宽应为m.三.解答题(每题10分,共50分)16.解方程(1)x2﹣6x=﹣2(2)(2x﹣1)2﹣9x2=017.国庆期间电影《我和我的祖国》上映,在全国范围内掀起了观影狂潮.小王一行5人相约观影,由于票源紧张,只好选择3人去A影院,余下2人去B影院,已知A影院的票价比B影院的每张便宜5元,5张影票的总价格为310元.(1)求A影院《我和我的祖国》的电影票为多少钱一张;(2)次日,A影院《我和我的祖国》的票价与前一日保持不变,观影人数为4000人.B 影院为吸引客源将《我和我的祖国》票价调整为比A影院的票价低a%但不低于50元,结果B影院当天的观影人数比A影院的观影人数多了2a%,经统计,当日A、B两个影院《我和我的祖国》的票房总收入为505200元,求a的值.18.阅读材料:选取二次三项式ax2+bx+c(a≠0)中两项,配成完全平方式的过程叫配方,配方的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.例如:①选取二次项和一次项配方:x2﹣4x+2=(x﹣2)2﹣2②选取二次项和常数项配方:x2﹣4x+2=+(2﹣4)x,或③选取一次项和常数项配方:请根据阅读材料解决下列问题:(1)比照上面的例子,将二次三项式x2﹣4x+9配成完全平方式(直接写出两种形式);(2)将x4+x2y2+y4分解因式;(3)已知a、b、c是△ABC的三边长,且满足a2+2b2+c2﹣2b(a+c)=0,试判断此三角形的形状.19.已知关于x的一元二次方程x2+(2m﹣1)x+m2﹣=0有两个不相等的实数根x1,x2.(1)若m为正整数,求m的值;(2)在(1)的条件下,求代数式(x12+x1)(x12+x22)的值.20.某超市为微波炉生产厂代销A型微波炉,售价是每台700元,每台可获利润40%.(1)超市销售一台A型微波炉可获利多少元?(2)2019年元旦,超市决定降价销售该微波炉,已知若按原价销售,每天可销售10台,若每台每降价5元,每天可多销1台,同时超市和微波炉生产厂协商,使现有微波炉的成本价,每台减少20元,但生产厂商要求超市尽量增加销售,这样,2019元旦当天超市销售A型微波炉共获利3600元,求超市在元旦当天销售A型微波炉的价格.参考答案一.选择题1.解:A、x2+=0,不是一元二次方程,不合题意;B、5x2﹣6y﹣3=0,含有两个未知数,不合题意;C、ax2﹣x+2=0,a有可能等于0,故此选项不合题意;D、x2﹣5x=2,是一元二次方程,符合题意;故选:D.2.解:设原方程为:x2+bx+c=0,∵该方程的根为:3,﹣4,则﹣b=3+(﹣4),解得:b=1,c=3×(﹣4)=﹣12,即原方程为:x2+x﹣12=0,故选:B.3.解:A、△=(﹣5)2﹣4×2×2=9>0,所以方程有两个不相等的两个实数根,所以A 选项错误;B、△=(﹣3)2﹣4×1×4=﹣7<0,所以方程没有实数根,所以B选项正确;C、△=(﹣2)2﹣4×1×1=0,所以方程有两个相等的两个实数根,所以C选项错误;D、△=(﹣2)2﹣4×1×(﹣2)=12>0,所以方程有两个不相等的两个实数根,所以D选项错误.故选:B.4.解:∵m是方程x2﹣2x﹣1=0的根,∴m2﹣2m﹣1=0,∴﹣m2+2m=﹣1,∴1+2m﹣m2=1﹣1=0.故选:A.5.解:将x=2代入原方程,得:22﹣2(k+1)﹣6=0,∴k=﹣2.方程的另一根为=﹣3.故选:C.6.解:x2+y2+2x﹣4y+9=(x2+2x+1)+(y2﹣4y+4)+4=(x+1)2+(y﹣2)2+4∵(x+1)2≥0,(y﹣2)2≥0,∴x2+y2+2x﹣4y+9≥4,即不论x、y为什么实数,代数式x2+y2+2x﹣4y+9的值总不小于4.故选:A.7.解:由题意,得225﹣28m≥0,解得:m≤.∵m为最大的整数,∴m=8.∴x2﹣15x+56=0,∴x1=7,x2=8.当BC=7时,CD=8,∴点D在BA的延长线上,如图1.当BC=8时,CD=7,∴点D在线段BA上,有两种情况,如图2,在D和D′的位置.∴综上所述,不同D点的位置有3个.故选:C.8.解:依题意,得:1+m+m(m+1)=169,解得:m1=12,m2=﹣14(不合题意,舍去).故选:C.9.解:由原方程,得x2﹣5x+6=0,∴x1+x2=5,x1•x2=6,∴x1+x2+x1x2=5+6=11;故选:B.10.解:设该商店的每月盈利的平均增长率为x,根据题意得:240000(1+x)2=290400,解得:x1=10%,x2=﹣2.1(舍去).故选:C.二.填空题(共5小题)11.解:根据题意,将x=﹣2代入方程x2﹣mx﹣6=0,得:4+4m﹣6=0,解得:m=,故答案是:.12.解:把x=2代入x2﹣2mx+3m=0得4﹣4m+3m=0,解得m=4,方程化为x2﹣8x+12=0,(x﹣2)(x﹣6)=0,x﹣2=0或x﹣6=0,所以x1=2,x2=6,因为2+2=4<6,所以等腰△ABC的腰长为6,底边长为2,所以等腰△ABC的周长为6+6=2=14.故答案为14.13.解:∵a是一元二次方程x2﹣x﹣1=0的解,∴a2﹣a﹣1=0,即a2=a+1,∴a3=a(a+1)=a2+a.∵a,b是一元二次方程x2﹣x﹣1=0的两根,∴a+b=1,ab=﹣1,∴3a3+4b+=3a2+3a+4b+2(﹣b)2=2a2+2b2+4(a+b)+a2﹣a=2(a+b)2﹣4ab+4(a+b)+a2﹣a=2+4+4+1=11.故答案为:11.14.解:根据题意得a+b=1,ab=﹣1,所以+==﹣1.故答案为﹣1.15.解:设铺设的石子路的宽应为x米,由题意得:(4﹣x)(6﹣x)=15,解得:x1=1,x2=9(不合题意,舍去)故答案为:1.三.解答题(共5小题)16.解:(1)∵x2﹣6x=﹣2,∴x2﹣6x+9=﹣2+9,即(x﹣3)2=7,则x﹣3=±,∴x1=3+,x2=3﹣;(2)∵(2x﹣1)2﹣9x2=0,∴(2x﹣1+3x)(2x﹣1﹣3x)=0,即(5x﹣1)(﹣x﹣1)=0,则5x﹣1=0或﹣x﹣1=0,解得x1=0.2,x2=﹣1.17.解:(1)设A影院《我和我的祖国》的电影票为x元一张,由题意得:3x+2(x+5)=310∴3x+2x=300∴x=60答:A影院《我和我的祖国》的电影票为60元一张;(2)由题意得:60×4000+60(1﹣a%)×4000(1+2a%)=505200化简得:2400(1﹣a%)(1+2a%)=2652设a%=t,则方程可化为:2t2﹣t+0.105=0解得:t1=15%,t2=35%∵当t1=15%时,60×(1﹣15%)=51>50;当t2=35%时,60×(1﹣35%)=39<50,故t1=15%符合题意,t2=35%不符合题意;∴当t1=15%时,a=15.答:a的值为15.18.解:(1)选取二次项和一次项配方:x2﹣4x+9=(x﹣2)2+5选取二次项和常数项配方:x2﹣4x+9=(x﹣3)2+2x;(2)x4+x2y2+y4=x4+2x2y2+y4﹣x2y2=(x2+y2)2﹣x2y2=(x2+y2+xy)(x2+y2﹣xy)(3)∵a2+2b2+c2﹣2b(a+c)=0∴a2+2b2+c2﹣2ba﹣2bc=0∴(a﹣b)2+(b﹣c)2=0∴a﹣b=0,b﹣c=0∴a=b,b=c∴a=b=c∴此三角形为等边三角形.19.解:(1)∵方程x2+(2m﹣1)x+m2﹣=0有两个不相等的实数根,∴△=(2m﹣1)2﹣4(m2﹣)=﹣4m﹣11>0,解得:m<2.∵m为正整数,∴m=1,答:m的值为1;(2)∵m=1,∴x2+x+﹣=0,∴x1+x2=﹣1,x1x2=﹣,∴(x12+x1)(x12+x22)=﹣[(x1+x2)2﹣2x1x2]=.20.解:(1)设超市销售一台A型微波炉可获利x元,依题意,得:(700﹣x)×40%=x,解得:x=200.答:超市销售一台A型微波炉可获利200元.(2)设每台微波炉降价5y元,则每天可销售(10+y)台,每台获利为(200+20﹣5y)元,依题意,得:(200+20﹣5y)(10+y)=3600,整理,得:y2﹣34y+280=0,解得:y1=14,y2=20.∵为了尽量增加销售量,∴y=20,∴700﹣5y=600.答:超市在元旦当天销售A型微波炉的价格为600元.。

第2章一元二次方程+解答题能力达标测评++2022-2023学年北师大版九年级数学上册+

第2章一元二次方程+解答题能力达标测评++2022-2023学年北师大版九年级数学上册+

2022-2023学年北师大版九年级数学上册《第2章一元二次方程》解答题能力达标测评(附答案)(共20小题,每小题6分,满分120分)1.解方程:(1)x2﹣3x+1=0;(2)(x+3)(x﹣1)=5.2.若关于x的方程(m+1)x|m|+1+x﹣3=0是一元二次方程,求m的值.3.已知关于x的一元二次方程kx2﹣4x+1=0有实数解,求k的非负整数解,并求出k取最大整数解时方程的根.4.解方程:(1)x2﹣x﹣=0;(2)x(x﹣4)=8﹣2x.5.阅读下面的解答过程,求y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4≥4,∵(y+2)2≥0即(y+2)2的最小值为0,∴y2+4y+8的最小值为4.仿照上面的解答过程,(1)求m2+2m+4的最小值;(2)求4﹣x2+2x的最大值.6.解一元二次方程:(x﹣3)2=2(x﹣3).7.已知a2+b2+c2﹣ab﹣3b﹣2c+4=0,求2a+3b+4c的值.8.已知关于x的方程(m2﹣1)x2﹣3(3m﹣1)x+18=0有两个正整数根(m是正整数).△ABC的三边a、b、c满足,m2+a2m﹣8a=0,m2+b2m﹣8b=0.求:(1)m的值;(2)△ABC的面积.9.如图,在长为50m、宽为38m的矩形地面内的四周修筑同样宽的道路,余下的铺上草坪.要使草坪的面积为1260m2,道路的宽应为多少?10.北京冬奥会开幕日的前期,某特许零售店“冰墩墩”的销售日益火爆.据统计,该店2021年10月的销量为3万件,2021年12月的销量为3.63万件.(1)求该店“冰墩墩”销量的月平均增长率;(2)假设该店“冰墩墩”销量的月平均增长率保持不变,则2022年1月“冰墩墩”的销量有没有超过4万件?请利用计算说明.11.已知关于x的一元二次方程x2﹣2x﹣3m2=0.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根分别为α,β,且α+2β=5,求m的值.12.将一个式子或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法.这种方法常常被用到式子的恒等变形中,以挖掘题目中的隐含条件,是解题的有力手段之一.例如,求代数式x2+2x+3的最小值解:原式=x2+2x+1+2=(x+1)2+2.∵(x+1)2≥0,∴(x+1)2+2≥2.∴当x=﹣1时,x2+2x+3的最小值是2.(1)请仿照上面的方法求代数式x2+6x﹣1的最小值.(2)已知△ABC的三边a,b,c满足a2﹣6b=﹣14,b2﹣8c=﹣23,c2﹣4a=8.求△ABC的周长.13.某大型果品批发商场经销一种高档坚果,原价每千克64元,连续两次降价后每千克49元.(1)若每次下降的百分率相同,求每次下降的百分率;(2)若该坚果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少40千克.现该商场要保证销售该坚果每天盈利4500元,且要减少库存,那么每千克应涨价多少元?14.某区各街道居民积极响应“创文明社区”活动,据了解,某街道居民人口共有7.5万人,街道划分为A,B两个社区,B社区居民人口数量不超过A社区居民人口数量的2倍.(1)求A社区居民人口至少有多少万人?(2)街道工作人员调查A,B两个社区居民对“社会主义核心价值观”知晓情况发现:A社区有1.2万人知晓,B社区有1万人知晓,为了提高知晓率,街道工作人员用了两个月的时间加强宣传,A社区的知晓人数平均月增长率为m%,B社区的知晓人数第一个月增长了m%,第二个月增长了2m%,两个月后,街道居民的知晓率达到76%,求m的值.15.如图,在长方形ABCD中,AB=6cm,AD=2cm,点P以2cm/s的速度从顶点A出发,沿折线A﹣B﹣C向点C运动,同时点Q以1cm/s的速度从顶点C出发,沿CD向点D 运动,当其中一个动点到达终点时,另一点也随之停止运动.(1)两动点运动几秒时,四边形PBCQ的面积是长方形ABCD面积的?(2)是否存在某一时刻,使得点P与点Q之间的距离为cm?若存在,求出该时刻;若不存在,请说明理由.16.如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,经过几秒,使△PBQ的面积等于8cm2?(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C 点出发以2cm/s的速度移动,P,Q同时出发,问几秒后,△PBQ的面积为1cm2?17.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知a2+6ab+10b2+2b+1=0,求a﹣b的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣6b+11=0,求△ABC的周长;(3)已知x+y=2,xy﹣z2﹣4z=5,求xyz的值.18.附加题:(如果你的全卷得分不足150分,则本题的得分将计入总分,但计入总分后全卷不得超过150分)(1)解方程x(x﹣1)=2.有学生给出如下解法:∵x(x﹣1)=2=1×2=(﹣1)×(﹣2),∴或或或解上面第一、四方程组,无解;解第二、三方程组,得x=2或x=﹣1.∴x=2或x=﹣1.请问:这个解法对吗?试说明你的理由.(2)在平面几何中,我们可以证明:周长一定的多边形中,正多边形面积最大.使用上边的事实,解答下面的问题:用长度分别为2,3,4,5,6(单位:cm)的五根木棒围成一个三角形(允许连接,但不允许折断),求能够围成的三角形的最大面积.19.阅读并解答:①方程x2﹣2x+1=0的根是x1=x2=1,则有x1+x2=2,x1x2=1.②方程2x2﹣x﹣2=0的根是x1=,x2=,则有x1+x2=,x1x2=﹣1.③方程3x2+4x﹣7=0的根是x1=﹣,x2=1,则有x1+x2=﹣,x1x2=﹣.(1)根据以上①②③请你猜想:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根为x1,x2,那么x1,x2与系数a、b、c有什么关系?请写出你的猜想并证明你的猜想;(2)利用你的猜想结论,解决下面的问题:已知关于x的方程x2+(2k+1)x+k2﹣2=0有实数根x1,x2,且x12+x22=11,求k的值.20.利用完全平方公式(a+b)2=a2+2ab+b2和(a﹣b)2=a2﹣2ab+b2的特点可以解决很多数学问题.下面给出两个例子:例1.分解因式:x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)例2.求代数式2x2﹣4x﹣6的最小值:2x2﹣4x﹣6=2(x2﹣2x)﹣6=2(x2﹣2x+1﹣1)﹣6=2[(x﹣1)2﹣1]﹣6=2(x﹣1)2﹣8又∵2(x﹣1)2≥0∴当x=1时,代数式2x2﹣4x﹣6有最小值,最小值是﹣8.仔细阅读上面例题,模仿解决下列问题:(1)分解因式:m2﹣6m﹣7;(2)当x、y为何值时,多项式2x2+y2﹣8x+6y+20有最小值?并求出这个最小值;(3)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2=8a+6b﹣25,求△ABC 周长的最大值.参考答案1.解:(1)x2﹣3x+1=0,∵△=b2﹣4ac=9﹣4=5,∴x=,=,∴x1=,x2=;(2)(x+3)(x﹣1)=5,方程整理得,x2+2x﹣8=0,(x﹣2)(x+4)=0,x﹣2=0或x+4=0,解得x1=2,x2=﹣4.2.解:∵关于x的方程(m+1)x|m|+1+x﹣3=0是一元二次方程,∴,解得m=1.3.解:根据题意的:△≥0且k≠0,Δ=16﹣4k≥0,解得:k≤4,∴k的非负整数解为:k=1,2,3,4,当k=4时,方程为:4x2﹣4x+1=0,(2x﹣1)2=0,x1=x2=.4.解:(1)x2﹣x﹣=0;a=1,b=﹣,c=﹣,∴b2﹣4ac=(﹣)2﹣4×1×(﹣)=4>0,∴x===,∴该方程的解为:,.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档