第二章 微处理器与系统构成原理

合集下载

第二章微型计算机基础知识

第二章微型计算机基础知识
第二章 微型计算机基础知识
教学目标:
1.了解基本的逻辑电路和逻辑代数。 2. 掌握微机中基本部件的符号及性能。 3.掌握总线的基本概念、作用及使用。 4.掌握控制字的概念及用法。 5. 掌握依照控制字读写存储器的过程。 6.掌握微机系统的组成与分类 7.掌握微机的外部结构和基本工作原理
教学重点: 1. 掌握微机中基本部件的符号及性能。 2.掌握总线的基本概念、作用及使用。 3.掌握控制字的概念及用法。 4. 掌握依照控制字读写存储器的过程。 5.掌握微机的外部结构和基本工作原理 教学难点: 1.总线的基本概念、作用及使用 2.掌握控制字的概念及用法。 3.掌握依照控制字读写存储器的过程。
1.功能强 2.可靠性强 3.价格低 4.适应性强
5.周期短、见效快
6.体积小、重量轻、耗电省
7.维护方便
四、微型计算机的性能指标 衡量一台微机性能的优劣,主要由它的 系统结构、硬件组成、系统总线、外部设 备以及软件配置等因素来决定。具体体现 在以下几个主要技术指标上。 1.字长 微机的字长是指微处理器内部一次可以 并行处理二进制代码的位数。它与微处理 器内部寄存器以及CPU内部数据总线宽度 一致,字长越长,所表示的数据精度就越 高。
(2)第二个控制字是: CpEpLmEr =0001 即Er=1,令ROM放出数据。 也就是说,当Er为高电平,R0中的8位 数据就被送到W总线上去。这样的动作 不需等待 时钟脉冲的同步讯号。 (3)第三个控制字是: CpEpLmEr=1000 即Cp=1,这是命令PC加1,所以PC=0001 这是在取数周期完了时,要求PC进一步 ,以便为下一条指令准备条件。
六、存储器的符号
1.只读存储器(ROM) 只存储固定程序的存储器,一旦写入 后,一般不能改变。即不能再写入新的 字节,而只能从中“读”出其所存储的内 容。 (1)通用的写法是m×nROM

微处理器原理与应用

微处理器原理与应用
指令级并行处理的关键技术包括分支 预测、指令调度和乱序执行等。这些 技术能够有效地提高处理器的指令级 并行度,从而提高处理器的性能。
流水线技术
流水线技术是一种将处理器划分为多个阶段,每个阶段执行处理器操作的一部分,从而实现并行处理的技术。通过流水线技 术,处理器可以在一个时钟周期内完成多个操作,提高了处理器的吞吐量。
计算机系统
计算机系统是微处理器应用的另一个重要领域,包括个人计算机、服务器、工作 站等。微处理器作为计算机系统的核心,负责执行指令、处理数据和控制外设等 任务。
计算机系统中的微处理器需要具备高性能、低功耗、可扩展性和可靠性等特点, 以满足不同应用场景的需求。
通信与网络
通信与网络是微处理器应用的又一重要领域,涉及到移动通 信、卫星通信、光纤通信、互联网等领域。微处理器在网络 设备中扮演着重要的角色,负责数据处理、路由控制和网络 安全等功能。
对未来微处理器的展望
1
随着人工智能、物联网等技术的快速发展,未来 微处理器的需求将进一步增加,性能要求也将更 高。
2
未来微处理器将更加注重能效比的提升,以适应 绿色环保的发展需求,同时不断缩小制程工艺尺 寸,提高集成度。
3
未来微处理器将更加智能化和个性化,具备更强 大的数据处理和学习能力,能够更好地满足人们 多样化的需求。
VS
人工智能与机器学习中的微处理器需 要具备高性能计算能力、低功耗、可 扩展性和灵活性等特点,以满足不断 变化的应用需求。
04 微处理器的性能优化
指令级并行处理
指令级并行处理是一种通过同时执行 多个指令来提高处理器性能的技术。 它利用了程序中的指令依赖性,将相 互独立的指令并行执行,从而加快了 程序的执行速度。
THANKS FOR WATCHING

《微机原理与接口技术》教案

《微机原理与接口技术》教案

《微机原理与接口技术》教案第一章:微机系统概述1.1 教学目标1. 了解微机系统的概念和发展历程。

2. 掌握微机系统的组成和各部分功能。

3. 理解微机系统的工作原理。

1.2 教学内容1. 微机系统的概念和发展历程。

2. 微机系统的组成:微处理器、存储器、输入输出接口等。

3. 微机系统的工作原理:指令执行过程、数据传输等。

1.3 教学方法1. 采用讲授法,讲解微机系统的概念和发展历程。

2. 采用案例分析法,分析微机系统的组成和各部分功能。

3. 采用实验演示法,展示微机系统的工作原理。

1.4 教学评价1. 课堂问答:了解学生对微机系统概念的掌握情况。

2. 课后作业:巩固学生对微机系统组成的理解。

3. 实验报告:评估学生对微机系统工作原理的掌握程度。

第二章:微处理器2.1 教学目标1. 了解微处理器的概念和结构。

2. 掌握微处理器的性能指标。

3. 理解微处理器的工作原理。

2.2 教学内容1. 微处理器的概念和结构:CPU、寄存器、运算器等。

2. 微处理器的性能指标:主频、缓存、指令集等。

3. 微处理器的工作原理:指令执行过程、数据运算等。

2.3 教学方法1. 采用讲授法,讲解微处理器的概念和结构。

2. 采用案例分析法,分析微处理器的性能指标。

3. 采用实验演示法,展示微处理器的工作原理。

2.4 教学评价1. 课堂问答:了解学生对微处理器概念的掌握情况。

2. 课后作业:巩固学生对微处理器性能指标的理解。

3. 实验报告:评估学生对微处理器工作原理的掌握程度。

第三章:存储器3.1 教学目标1. 了解存储器的概念和分类。

2. 掌握存储器的性能指标。

3. 理解存储器的工作原理。

3.2 教学内容1. 存储器的概念和分类:随机存储器、只读存储器等。

2. 存储器的性能指标:容量、速度、功耗等。

3. 存储器的工作原理:数据读写过程、存储器组织结构等。

3.3 教学方法1. 采用讲授法,讲解存储器的概念和分类。

2. 采用案例分析法,分析存储器的性能指标。

第2章微型计算机系统的组成及工作原理

第2章微型计算机系统的组成及工作原理

2.5.6 ISA总线的定义与应用
2. ISA总线的信号线定义 ——98芯插槽,包括地址线、数据线、控制线、时钟和电源线 (1)地址线:SA019和LA1723 (2)数据线:SD015 (3)控制线:AEN、BALE、 IOR 和 IOW、 SMEMR和 SMEMW
MEMR 和 MEMW、 MEM CS16 和 I/O CS16 、SBHE
2.1.2 微机系统的软件配置
系统软件、工具软件、应用软件、用户应用程序
.3 微机系统中的信息流与信息链
1. 微机系统中信息流与信息链的构成 信息流:存储器中的数据、程序代码;接口寄存器中的I/O数据、 状态、I/O命令 信息链:信息流在系统中流动的路径; 包括物理(硬件)环节和逻辑(软件)环节 2. 微机系统中信息流与信息链 ——早期微机系统/现代微机系统中的信息链 3. 研究信息流与信息链的意义 ——通过信息流从整体上认识微机体系结构和组成微机系统的各 部件之间的关系
2.5.7 现代微机总线技术的新特点
3. 总线桥 (1) 总线桥 ——总线转换器和控制器,是两种不同总线间的总线接口 内部包含兼容协议及总线信号和数据缓冲电路;把一条总线映 射到另一条总线上 北桥:连接CPU总线和PCI总线的桥 南桥:连接PCI总线和本地总线(如ISA)的桥 (2) PCI总线芯片组 ——实现总线桥功能的一组大规模集成专用电路 保持主板结构不变前提下,改变这些芯片组的设计,即可适应 不同微处理器的要求 4. 多级总线结构中接口与总线的连接
2.4 I/O设备与I/O设备接口
2.4.1 I/O设备及其接口的作用
1. I/O设备的作用 2. I/O设备接口的作用——连接与转换
2.4.2 I/O设备的类型及设备的逻辑概念

微处理器的原理与应用

微处理器的原理与应用

微处理器的原理与应用1. 引言微处理器(Microprocessor),又称CPU(Central Processing Unit),是计算机的核心部件,负责执行计算机指令并处理数据。

微处理器的原理及其应用广泛应用于现代计算机系统、嵌入式系统以及各类电子设备中。

本文将介绍微处理器的原理和应用,并探讨其在现代科技领域的重要性。

2. 微处理器的原理微处理器是由大量的晶体管组成的集成电路,通过电子信号的控制来实现数据的计算和处理。

微处理器的原理主要包括指令集架构、运算单元、控制单元和存储器等几个核心方面。

•指令集架构:微处理器通过指令集架构来定义其支持的指令和数据格式。

常见的指令集架构包括x86、ARM等,不同的架构对应不同的指令集和寄存器组织方式。

•运算单元:微处理器的运算单元负责执行算术和逻辑运算。

它包括算术逻辑单元(ALU)和浮点运算单元(FPU),能够完成加减乘除等基本运算。

•控制单元:微处理器的控制单元负责解析和执行指令序列。

它包括指令寄存器(IR)、程序计数器(PC)和指令解码器等组件,能够将指令翻译为对应的控制信号,驱动运算单元和存储器进行数据处理。

•存储器:存储器是微处理器的重要组成部分,包括随机存储器(RAM)和只读存储器(ROM)。

RAM用于存储数据和程序,而ROM中存储了微处理器的固件和指令集。

3. 微处理器的应用微处理器的应用已经渗透到各个领域,包括个人电脑、服务器、手机、智能家居、汽车等等。

下面将以几个典型的应用领域为例进行介绍。

3.1 个人电脑个人电脑(PC)是微处理器最常见的应用之一。

微处理器在个人电脑中扮演着核心的角色,负责执行和处理用户的指令和数据。

随着技术的发展,个人电脑的处理能力越来越强大,微处理器的性能也得到了持续的提升。

3.2 嵌入式系统嵌入式系统是指把微处理器嵌入到各种电子设备中,以实现特定功能的电子系统。

例如,智能手机、智能手表、家用电器等都使用了微处理器来实现各种功能。

第二章 计算机组成原理

第二章  计算机组成原理
部频率越高,CPU的处理速度就越快。 例如: P4 3.4GHz,800MHz外频(FSB)
时钟频率的发展:
400MHZ---533MHZ---800MHZ,即将达到1066MHZ [单选]用MHz来衡量计算机的性能,它指的是计算机__________。
ACM 图灵奖
1966年由ACM(美国计算机学会)创建,该奖有计 算机界的诺贝尔奖之称。
IEEE 计算机先驱奖
1980年由IEEE-CS(美国电气与电子工程师学会-计 算机学会)创建,是世界范围内计算机科学技术领域另 一个最重要的奖项,和图灵奖是互为补充的。
计算机的诞生与发展
对计算机的诞生发展做出重大贡献的两个人:
(a) NEC SX-6/64MB巨 型计算机外形
(b) 全球气温分布与 变化趋势图
计算机的分类
大型计算机(Mainframe)
运算速度快、存储容量大、通信联网功能完善、可靠性高、安 全性好、有丰富的系统软件和应用软件的计算机, CPU 通常有 4 、 8、16、32个甚至更多处理器。

功能: 为企业或政府的数据提供集中的存储、管理和处理,作为主服务 器(企业级服务器),在信息系统中起着核心作用。
内存储器
控制器CU RAM
外部存储器--硬盘 、软盘、光盘、磁带
外设
输入设备--键盘、鼠标器、扫描仪 输出设备--显示器、打印机、绘图仪 其他设备--调制解调器
计算机的组成
台 式 机
PC机的物理组成
机箱、显示器、键盘、鼠标器等
机箱内包含:
主板、硬盘、软驱、光驱、
电源、风扇等
主板上安装
CPU、芯片组、内存条、
第二章
计算机组成原理

微机原理第二章8086微处理器

微机原理第二章8086微处理器
▪ 表面上看来,微处理器的外部就是数量有限的输入输出 引脚。但是,正是依靠这些引脚与其它逻辑部件相连接, 才能组成多种型号的微型计算机系统。
▪ 这些引脚就是微处理器级总线。微处理器通过微处理器 级总线沟通与外部部件和设备之间的联系。这些总线及 其信号必须完成以下功能:
▪ (1)和存储器之间交换信息; ▪ (2)和I/O设备之间交换信息; ▪ (3)为了系统工作而接收和输出必要的信号,如输入
▪ 时钟信号输入端。19 CLK(输入) ▪ 8086和8088为5MHz。 ▪ 8086/8088的CLK信号必须由8284A时钟发生器产生。 ▪ 微处理器是在统一的时钟信号CLK控制下,按节拍进行
工作的。
2021/6/12
16
8086/8088微处理器——微处理器的引脚功能
▪ 工作方式控制线 33
指令执行示例
2021/6/12
1
第二章:8086/8088微处理器
1. 微处理器ห้องสมุดไป่ตู้结构 2. 微处理器的内部寄存器 3. 微处理器的引脚功能 4. 微处理器的存储器组织 5. 最大模式和最小模式 6. 微处理器的时序
2021/6/12
2
2021/6/12
▪ 存储器分段
▪ 由于CPU内部的寄存器都是16位的,为了
2021/6/12
7
第二章:8086/8088微处理器
1. 微处理器的结构 2. 微处理器的内部寄存器 3. 微处理器的引脚功能 4. 微处理器的存储器组织 5. 最大模式和最小模式 6. 微处理器的时序
2021/6/12
8
8086/8088微处理器——微处理器的引脚功能
▪ 一、微处理器的外部结构
时钟脉冲、复位信号、电源和接地等。

第二章 微处理器

第二章 微处理器
第 13 页
8086CPU的引脚 的引脚——控制总线 的引脚 控制总线
微 机 原 理 汇 编 接 口 技 术
BHE/S7
高8位数据允许/状态
ALE
地址锁存允许
MN/MX
最小/最大模式
DEN
数据允许
RD
读选通
DT/R
数据发送/接收
WR
写选通
READY
准备就绪
第 14 页
8086CPU的引脚 的引脚——控制总线 的引脚 控制总线
第 34 页
堆栈操作
微 机 原 理 汇 编 接 口 技 术
堆栈是按照“先进后出”原则组织的存储区域, 堆栈是按照“先进后出”原则组织的存储区域,堆栈的大小最大为 64KB 堆栈由堆栈段寄存器SS和堆栈指针寄存器 来寻址 堆栈由堆栈段寄存器 和堆栈指针寄存器SP来寻址,SS给出堆栈 和堆栈指针寄存器 来寻址, 给出堆栈 段的段基址, 指向当前栈顶 指向当前栈顶——段基址到栈顶的偏移量 段的段基址,SP指向当前栈顶 段基址到栈顶的偏移量 栈底为堆栈空间的高地址单元,栈顶为低地址单元。 栈底为堆栈空间的高地址单元,栈顶为低地址单元。 堆栈操作以字为单位。 堆栈操作以字为单位。 数据进栈,栈顶向低地址方向浮动,高位字节存入高地址单元, 数据进栈, 数据进栈 栈顶向低地址方向浮动,高位字节存入高地址单元, 低位字节存入低地址单元 数据出栈,栈顶向高地址方向浮动,低位字节弹到目的操作数 数据出栈, 数据出栈 栈顶向高地址方向浮动, 的低位, 的低位,高位字节弹到目的操作数的高位
外部8位数据总线 4 4字节指令队列 IO/M 准十六位CPU
8086
外部16位数据总线 6 6字节指令队列 M/IO 十六位CPU
第 16 页

第二章 计算机组成原理知识点

第二章 计算机组成原理知识点

第二章计算机组成原理2.1计算机的组成与分类2.1.1计算机的发展与作用作用:①速度快,通用性强②具有多种多样的信息处理能力,不仅能进行复杂的数学运算,而且能对图像,文字和声音等多种形式的信息进行获取,编辑,转换,存储,展现等处理③信息存储容量大,存取速度高④具有互联,互通和互操作的特性,计算机网络不仅能进行信息的交流与共享,还可借助网络上的其他计算机协同完成复杂的信息处理任务。

2.1.2 计算机的逻辑组成计算机系统由硬件和软件两部分组成。

硬件是计算机系统中所有实际物理装置的总称。

软件是指计算机中运行的各种程序及其处理的数据和相关的文档。

CPU,内存存储器,总线等构成计算机的“主机”输入/输出设备和外存储器称为“外设”承担系统软件和应用软件运行任务的处理器称为“中央处理器”使用多个CPU实现超高速计算的技术称为“并行处理”总线是用于在CPU,内存,外存和各种输入输出设备之间传输信息并协调它们工作的一种部件(含传输线和控制电路)计算机系统中的I/O设备一般都通过I/O接口与各自的控制器连接,然后由控制器与I/O总线相连2.1.3计算机的分类巨型机,大型机,服务器,个人计算机,嵌入式计算机微处理器(µP或MP),通常指使用单片大规模集成电路制成的,具有运算和控制功能的部件SOC:单个集成电路芯片中包含微处理器,存储器,输入/输出控制与接口电路,电子系统模拟电路,数字/模拟混合电路和无线通信使用的射频电路2.2 CPU的结构与原理2.2.1 CPU的作用与组成匈牙利数学家冯·诺依曼的“存储程序控制”原理CPU的根本任务是执行指令CPU的组成:寄存器组(用来临时存放参加运算的数据和运算得到的中间结果),运算器:也称算术逻辑部件(ALU),控制器:指令计数器(用来存放CPU正在执行的指令的地址)和指令寄存器(用来保存当前正在执行的指令)2.2.2 指令与指令系统指令是构成程序对的基本单位,采用二进制表示,指令由操作码和操作数地址组成,CPU所能执行的全部指令称为指令系统2.2.3 CPU的性能指标字长,主频,CPU总线速度,高速缓存的容量与结构,指令系统,逻辑结构,内核个数 TFLOPS(万亿条浮点指令/秒)MIPS(百万条定点指令/秒),MFLOPS(百万条浮点指令/秒)2.3 PC主机的组成2.3.1 主板,芯片组与BIOSCPU芯片和内存条分别通过主板上的CPU插座和存储器插槽安装在主板上,PC机常用外围设备通过扩充卡或I/O接口与主板相连,扩充卡借助卡上的印刷插头插在主板上的PCI总线插槽中主板上还有两块特别有用的集成电路:一块是闪烁存储我,其中存放的是BIOS,它是PC机软件中最基础的部分,没有它机器就无法启动,另一个集成电路芯片是CMOS存储器,其中存放者与计算机系统相关的一些参数(称为配置信息),包括当前的日期和时间,开机口令,已安装的光驱和硬盘的个数及类型等,CMOS 芯片是一种易失性存储器,它由主板上的电池供电,即使计算机关机后它也不会丢失所存储的信息芯片组由北桥芯片(MCH)和南桥芯片(ICH)组成,CPU时钟信号由芯片组提供芯片组还决定了主板上所能安装的内存最大容量,速度及可使用的内存条的类型每次机器加电时,CPU首先执行BIOS程序,它具有诊断计算机故障和加载操作系统并启动其运行的功能BIOS:加电自检程序,引导装入程序,CMOS设置程序,基本外围设备的驱动程序内存储器由称为存储器芯片的半导体集成电路组成,RAM目前多采用MOS型半导体集成电路芯片制成DRAM:电路简单,集成度高,功耗小,成本低SRAM:电路复杂,集成度低,功耗大,成本高每个存储单元都有一个地址,CPU按地址对存储器进行访问存储器的存取时间指的是从CPU给出存储器地址开始到存储器读出数据并送回到CPU所需要的时间解决主存速度慢的方法是:①采用cache存储器②改进存储器芯片的电路与工艺,并对DRAM的存储控制技术进行改进2.3.3 I/O总线与I/O接口CPU芯片与北桥芯片相互连接总线称为CPU总线(前端总线FSB),I/O设备控制器与CPU,存储器之间相互交换信息,传输数据的一组公用信号线称为I/O总线,总线上有三类信号:数据信号,地址信号和控制信号总线带宽(MB/S)=(数据线宽度/8)X总线工作频率(MHZ)X每个总线周期的传输次数PCI-E是PC机I/O总线的一种新标准,采用高速串行传输USB电源(5V,100mA~500Ma) USB3.0的电流是1A2.4常用输入设备扫描仪的性能指标:①扫描仪的光学分辨率:普通家用扫描仪分辨率在1600~3200dpi②色彩位数③扫描幅面④与主机的接口2.5 常用输出设备显示器的刷新频率越高,图像的稳定性越好,响应时间越小越好。

专升本《微机原理》

专升本《微机原理》

专升本《微机原理》微机原理是计算机专业的一门重要课程,旨在培养学生对微机原理的理论与实践知识。

本文将从微机原理的基本概念、微机系统的组成、微处理器的工作原理以及微机系统的应用四个方面进行论述。

首先,微机原理是指计算机硬件系统中微处理器和微型计算机组成的基本原理。

微机原理包括两个层次,一是微机硬件系统基本组成和工作原理,二是微型计算机的结构和设计原理。

微机的基本概念包括硬件和软件两个方面。

硬件包括主机系统和外部设备两个部分,主机系统由中央处理器(CPU)、存储器(RAM和ROM)以及系统总线组成,外部设备包括输入设备、输出设备和存储设备等。

软件包括系统软件和应用软件,系统软件包括操作系统和公用软件,应用软件是用户根据自己的需要进行选择和安装的。

其次,微机系统的组成是指微机硬件系统中各部分组成的方式和相互连接的方式。

微机硬件系统由中央处理器、存储器(RAM和ROM)、输入输出接口和系统总线等部分组成。

中央处理器是微机的核心,负责指令的执行和数据的处理。

存储器是用于存放程序和数据的地方,其中RAM是随机存储器,用于临时存储数据和程序,ROM是只读存储器,用于存放固化程序。

输入输出接口是微机与外部设备之间进行数据交换的接口,可以通过接口将用户输入的数据传输到微机内部,也可以将微机内部的数据传输到外部设备上。

系统总线是微机内部各个部件之间进行数据传输和通信的通道,包括地址总线、数据总线和控制总线。

再次,微处理器是微机硬件系统中最重要的部件,也是微机原理中最核心的内容之一、微处理器是一个集成电路芯片,包括控制单元和算术逻辑单元两个部分。

控制单元负责控制微机执行指令的操作,通过时钟信号驱动指令的执行。

算术逻辑单元负责执行算术和逻辑运算,对数据进行加减乘除等操作。

微处理器的工作原理是通过时钟信号和时序控制来实现的,时钟信号是微处理器内部的节拍信号,用于同步各个部件的工作。

时序控制是通过控制单元的指令译码和执行来实现的。

《微机原理与接口技术》 (张凡 盛珣华 戴胜华 著) 清华大学出版社 北方交通大学出版社 课后答案

《微机原理与接口技术》 (张凡 盛珣华 戴胜华 著) 清华大学出版社 北方交通大学出版社 课后答案

第二章微处理器及其结构2-7 什么是逻辑地址? 什么是物理地址? 在实地址方式下,如何求存储器的物理地址? 设一个16字的数据区,它的起始地址为70A0H:DDF6(段基址:偏移地址).写出这个数据区的首字单元和末字单元的物理地址.解:1). 实模式下,逻辑地址由段基址和偏移地址组成.物理地址是真正的存储单元的地址.2). 物理地址=段基址*16 + 偏移地址3). 首字单元地址:70A0H*16 +DDF6H = 70A00H + DDF6H = 7E7F6H末字单元地址:7E7F6H + (16-1)*2 = 7E7F6H + 1EH = 7E814H注意:相邻两个存储单元可构成一个字长为16位的字,在对准字时,用偶地址表示字的地址.1EH1CH 2H20H16H14H18H4H1AH10H0H12HEHCH8HAH6H第三章指令系统3-6 分别指出下列指令中源操作数和目标操作数的寻址方式. 若是存储器寻址,用表达式表示EA=?(1)AND AX, 00FFH(2)ADD BX, [00FFH](3)MOV AX, [BX+10H](4)ADD AX, [ESI*8](5)SUB [BP][SI], AX(6)MOV AX, [BX+DI+20H](7)CMP [SI], AX(8)OR AX, DX(9)MOV EAX, [ESI][EDI*2](10)PUSH DS解:(1)立即数寻址(2)直接寻址EA=00FFH(3)基址寻址EA=(BX)+10(4)比例间址EA=ESI*8(5)基址加间址寻址EA=(BP)+(SI)(6)带位移的基址加间址寻址EA=(BX)+(DI)+20H(7)间址寻址EA=(SI)(8)寄存器寻址(9)基址加比例间址寻址EA=(ESI)+(EDI)*2(10)寄存器寻址注意:◆16位寻址: BX和BP作为基址寄存器.BX以DS作为默认段寄存器,BP以SS为默认段寄存器.SI和DI作为间址寄存器. 默认DS为段寄存器◆32位寻址: 8个32位通用寄存器均可作为基址寄存器,其中ESP,EBP以SS为默认段寄存器,其余均以DS为默认段寄存器.除ESP外的其它7个寄存器均可作间址寄存器,EBP默认SS作段基址寄存器,其它以DS作段基址寄存器3-7 32位微机工作在实地址模式下, 已知(DS) = 1000和(SS) = 2000H, (SI) =007FH, (BX) = 0040H, (BP) = 0016H, 变量TABLE的偏移地址为0100H. 指出下列指令中源操作数的寻址方式,求它的有效地址(EA)和物理地址(PA).(1)MOV AX, [1234H](2)MOV AX, TABLE(3)MOV AX, [BX+100H](4)MOV AX, TABLE[BP][SI]解:(1)直接寻址EA=1234H PA=(DS)*16 + EA = 11234H(2)直接寻址EA=(TABLE)=0100H PA=(DS)*16+EA=10100H(3)基址寻址EA=(BX)+100H=0140H PA=(DS)*16+EA=10140H(4)带位移的基址加间址寻址EA=(BP)+(SI)+TABLE=0195H PA=(SS)*16+EA=20195H注意: 当基址寄存器和间址寄存器默认的段寄存器不同时,一般规定,由基址寄存器来决定默认的段寄存器为段基址寄存器. 这里BP为基址寄存器,所以默认SS为段基址寄存器.3-8 指出下列指令的错误,并加以改正.(1)MOV DS, 100(2)MOV 1020H, DX(3)SUB [1000H], [SI](4)PUSH AL(5)IN AL, [80H](6)MOV DS, ES(7)JMP BX(8)SHR DX, 4(9)OUT 380H, AX(10)ADD AL, BX(11)POP CS(12)MOV CL, 3300H解:(1)立即数不能直接传送到段寄存器中去应改为: MOV AX, 100MOV DS, AX(2)立即数只能出现在源操作数位置应改为: MOV DX,1020H(3)源操作数和目标操作数不能同时为寄存器寻址应改为: MOV AX, [1000H]SUB AX, [SI](4)PUSH指令不能操作8位数据应改为: PUSH AX(5)[80H ]不是端口IN AL ,80H应改为: IN AL, 80H(6)两个段寄存器之间不能直接传送应改为: MOV AX, ESMOV DS,AX(7)对(8)移位次数超过1的时候,要把移位次数放入CL中应改为: MOV CL, 4SHR DX, CL(9)端口地址大于255时,要把地址放入DX中应改为: MOV DX, 380HOUT DX, AX(10)源操作数和目标操作数不匹配应改为: ADD AX, BX(11)POP指令只能使用在存储器或通用寄存器可改为: POP AX(12)源操作数和目标操作数不匹配应改为: MOV CX, 3300H3-9 已知: (DS) = 091DH, (SS) = 1E4AH, (AX) = 1234H, (BX) = 0024H, (CX) = 5678H, (BP) = 0024H, (SI) = 0012H, (DI) = 0032H, [09226H] = 00F6H, [09228H] = 1E40H, [1E4F6H] = 091DH. 试求下列各指令单独执行后的结果.(1)MOV CL, 20H[BX][SI] ; (CL) = ?(2)MOV [BP][DI], CX ; [IE4F6H] = ?(3)LEA BX, 20H[BX][SI] : (BX) = ?MOV AX, 2[BX] : (AX) = ?(4)LDS SI, [BX][DI]MOV [SI], BX ; (SI]) = ?(5)XCHG CX, 32H[BX] ; (AX) = ?XCHG 20[BX][SI], AX ; [09226H] = ?解:(1)(CL) = 00F6H(2)[IE4F6H] = 5678H(3)(BX) = 0056H(AX) = 1E40H(4)(SI)= 0024H(5)(AX) = 5678H[09226H] = 1234H3-10 已知(AL) = 0C4H, DATA单元中内容为5AH, 写出下列每条指令单独执行后的结果(ODITSZAPC:0---xxux0)(1)AND AL, DATA(2)OR AL, DATA(3)XOR AL, DATA(4)NOT DATA(5)AND AL, 0FH(6)OR AL, 1H(7)XOR AL, 0FFH(8)TEST AL, 80H解:(1)(AL)= 40H CF=0,OF=0,SF=0,ZF=0,PF=0,AF无定义(2)(AL)= DEH CF=0,OF=0,SF=1,ZF=0,PF=1,AF无定义(3)(AL)= 9EH CF=0,OF=0,SF=1,ZF=0,PF=0,AF无定义(4)(AL)= A5H 不影响任何标志位(5)(AL)= 04H CF=0,OF=0,SF=0,ZF=0,PF=0,AF无定义(6)(AL)= C5H CF=0,OF=0,SF=1,ZF=0,PF=1,AF无定义(7)(AL)= 3BH CF=0,OF=0,SF=0,ZF=0,PF=0,AF无定义(8)(AL)不变=0C4H CF=0,OF=0,SF=1,ZF=0,PF=0,AF无定义3-12 (AL)=8EH,(BL)=72H,执行以下指令后,标志位OF、SF、ZF、AF、PF和CF的值是什么?(1)ADD AL,BL(2)AND BL,AL(3)CMP AL,BL(4)SHL AL,1解:(1)OF=0,SF=0,ZF=1,AF=1,PF=1,CF=1(2)OF=0,SF=0,ZF=0,AF=(未定义),PF=0,CF=0(3)OF=1,SF=0,ZF=0,AF=0,PF=0,CF=0(4)OF=1,SF=0,ZF=0,AF=(未定义),PF=0,CF=13-15 试用CMP指令和无条件指令实现以下判断(1)AX和CX中的内容均为无符号数①(AX)>(CX)则转至BIGGER标号执行②(AX)<(CX)则转至LESS标号执行(2)BX和DX中的内容均为有符号数①(BX)>(DX)则转至BIGGER标号执行②(BX)<(DX)则转至LESS标号执行解:(1)CMP AX,CXJA BIGGERJB LESS(2)CMP BX,DXJG BIGGERJL LESS第四章汇编语言程序设计4-9 试用伪指令编写一数据段与下面程序等效。

PLC系统构成和工作原理

PLC系统构成和工作原理

执行机构所需的信号,输出电路也应与控制器隔离。
二、I/O单元 接线方式
COM
X0 X1 X2 X3
共 点 式
输入输出只有一个公共端子
X4
X5
X6 X7
第二章 可编程序控制器的系统构成和工作原理
2.1.1.3 输入输出单元
二 、 I/O单元 接线方式
COM1
Y0 Y1 COM2 Y2
分 组 式
输入输出端子分为若干个组, 每组共用一个公共端子。
1.编程语言 1)梯形图
• 梯形图是一种图形编程语言,是面向过程的一 种“自然语言”,它沿用继电器的触点线圈和 串并联等术语及图形符号,同时增加了一些继 电—接触器控制系统没有的特殊功能符号。 • 梯形图语言比较形象、直观,对于熟悉继电器 控制线路的电气技术人员来说,很容易接受, 且不需要学习专门的计算机知识,所以是PLC应 用中最基本最普遍的编程语言。 • 梯形图只能用图形编程器直接编程。图2-8(a) 是一个起保停程序的梯形图。 X1 X2 Y1 Y1
(二)、软件知识: 可编程控制器的软件系统
• 可编程控制器是微型计算机在工业控制领域的重 要应用,其软件系统可以分为系统程序和用户程 序两大类。 • 系统程序即可编程控制器的操作系统,它是由 PLC生产厂家编制的,用于控制PLC本身的运行, 对用户是不透明的。 • 系统程序通常包含三个部分: • (1)系统管理程序。 • (2)用户指令解释程序。 • (3)标准程序模块和系统调用。
在现场控制中,干扰侵入PLC的主要途径之一是 通过电源,因此设计合理的电源是PLC可靠运 行的必要条件 。
5 、编程器
编程器用于用户程序的输入、编辑、调试和监视, 可以通过键盘调用和显示PLC的一些内部继电 器状态和系统参数。它经过编程器接口与CPU 联系,完成人机对话。它一般都具有下列5种 功能: 编辑功能 编程功能 监视功能 检查功能 命令功能 编程器还具有与EPROM写入器、打印机、盒式录 音机等外围设备通信的功能。

2.第二章 8086系统结构

2.第二章 8086系统结构

总线接口部件BIU SI:(Source Index):SI含有源地址意思,产 生有效地址或实际地址的偏移量。 总线接口部件BIU内部设 有四个16位段地址寄存器: DI:(Destination Index):DI含有目的意思, 代码段寄存器CS、数据段寄 产生有效地址或实际地址的偏移量。 存器DS、堆栈段寄存器SS和 播 音 附加段寄存器ES,一个16位 : 指令指针寄存器IP,一个6字 16位字利用了9位。 标志分两类: 节指令队列缓冲器,20位地 状态标志(6位):反映刚刚完成的操作结果情况。 址加法器和总线控制电路。
志(结果低8 CLC(复位), 位1的个数 CMC(求反)。 为偶数 PF=1) 。
15
14
13
12
11
10
9
8
3
2
1
0
OF DF IF TF
SF ZF
AF
PF
CF
DF:方向标志 .DF=1使串 操作按减地址进行,DF=0按 增地址进行。指令: CLD(复位), STD(置位).
TF:陷阱标志或单步操作标志 IF:中断允许 标志 图 2-6 8086CPU标志寄存器 目录
通用寄存器(数据寄存器) : AX 累加器 BX 基址寄存器 CX 计数寄存器 DX 数据寄存器
SP BP SI DI
IP
地址指针和变址寄存器: SP 堆栈指针寄存器 BP 基址指针寄存器 SI 源变址寄存器 控制寄存器: DI 目的变址寄存器 IP 指令指针寄存器
FLAGS
CS DS SS ES
段寄存器: CS 代码段寄存器 DS 数据段寄存器 SS 堆栈段寄存器 ES 附加段寄存器
EU 总线 忙
执行1 忙
执行2 忙

微处理器系统原理应用与开发

微处理器系统原理应用与开发

微处理器系统原理应用与开发微处理器系统是由微处理器、存储器、输入输出接口以及其他辅助设备构成的一种计算机系统。

它具有计算能力强、体积小、功耗低等特点,在现代电子产品中得到广泛应用。

微处理器系统的原理、应用与开发是现代计算机科学与技术的重要研究领域,下面将从这三个方面进行分析。

微处理器系统的原理主要涉及到微处理器的结构和工作原理。

微处理器是计算机的核心部件,它负责执行计算机指令、管理数据和控制各种外部设备的接口。

微处理器的结构包括算术逻辑单元(ALU)、控制单元(CU)、寄存器和总线。

ALU负责进行各种算术和逻辑运算,CU负责解析和执行指令,寄存器用于存储数据和指令,总线用于连接各个部件和传输数据。

微处理器通过时钟信号控制各个部件的操作和协调。

微处理器根据指令的类型和操作码执行不同的任务,包括加减乘除、逻辑运算、数据存取和控制流程等。

微处理器系统的原理研究对于提高微处理器的性能和可靠性具有重要意义。

微处理器系统的应用广泛涉及到各个行业和领域。

微处理器已经成为现代电子产品的核心部件,包括计算机、手机、平板电脑、智能家居、工业自动化等等。

在计算机行业中,微处理器是计算机的核心,它决定了计算机的性能和功能。

在移动通信领域,微处理器被广泛应用于手机和平板电脑中,实现了移动通信的功能和服务。

在智能家居领域,微处理器被用于控制各种家庭设备和系统,实现了智能化的家庭生活。

在工业自动化领域,微处理器被用于控制各种生产设备和机器人,提高了工业生产的效率和质量。

微处理器系统的应用研究对于推动技术创新和产业发展具有重要意义。

微处理器系统的开发主要包括硬件设计和软件编程两个方面。

硬件设计涉及到微处理器的电路设计、系统集成和测试验证等方面。

在微处理器的电路设计中,需要考虑电路的时序、功耗、可靠性等因素,通过逻辑门、寄存器、时钟等组件将电路连接在一起。

在系统集成中,需要将微处理器连接到其他部件和外围设备,并进行各种接口协议的设计和实现。

(汇总)微机原理课件.ppt

(汇总)微机原理课件.ppt
微机系统利用3组总线,即数据总线DB、地址总线AB 和控制总线CB分别传送指令及指令执行过程中相关的数据、 地址信息和控制信息。
最新.
5
2.1.3 总线
(1 数据总线是在CPU、存储器或I/O端口等部件之间传递
数据的通道,每次传送一个“计算机字长”,其宽度(根数) 通常与计算机的字长一致。数据总线的传输是双向的。 (2
解:∵ 0ABH=10101011B= -85D 0FFH=11111111B= -1D ∴0ABH+0FFH=10101011B+11111111B = (1)10101010B= -86D
结果没有超出-128~127范围, CF=1,OF=0。 求下例中各状态标志的值: 1.
则 SF= 0, ZF= 0, PF= 0, CF最=新0. , OF=0, AF= 0
最新.
2
2.1.1微型计算机基本结构
最新.
3
2.1.2 微处理器CPU 微处理器简称CPU,是用来实现运算和控制功能的部
件,是整个微型计算机的核心,由运算器、控制器和寄存 器组3部分组成。CPU
1) 指明将要执行指令所在存储单元的地址,取出指令并
2) 3) 传送数据,包括在CPU内部传送数据以及与外界交换
最新.
7
2.2 8086微处理器的功能结构
8086是Intel系列的16位微处理器,是80x86系列微机
1)制造工艺:采用具有高速运算性能的HMOS工艺制成。 2)芯片集成度:芯片上集成有2.9万个晶体管,用单一的 +5V电源和40 3)时钟频率:5~10MHz,最快的指令执行时间0.4μs。4) 字长:16位8088为准16 5 6)内存容量:20位地址可寻址1MB 7)端口地址:16位I/O地址可寻址64KB 8)中断功能:可处理内部软件中断和外部硬件中断,中断 源可多达25个。

NEW02_第二章_微处理器_part2

NEW02_第二章_微处理器_part2

微机原理与接口
Pentium性能简介
Pentium通往外部存储器的数据总线为64位, CPU内部主要寄存器的宽度仍然为32位,那么 Pentium、Pentium(P54C)应该是32位微处理器 。外部64位数据总线(D63-D0)每次可同时传输8 字节的二进制信息,若选用主总线时钟频率66MHz 计算,即存储器总线的时钟频率也为66MHz,则 Pentium与主存储器交换数据的速率可为528MB/S 。
微机原理与接口
Pentium CPU原理结构图
微机原理与接口
2.6.1 Pentium的原理结构
二、原理结构 在Pentium CPU中,总线接口部件实现 CPU与系统总线之间的连接,其中包括64位 双向的数据线、32位地址线和所有的控制信 号线,具有锁存与缓冲等功能,总线接口部 件实现CPU与外设之间的信息交换,并产生 相应的各类总线周期。
··· ·· ··
微机原理与接口
从上述程序可以看出,许多分支转移指令 转向每个分支的机会不是均等的,而且大多数 分支转移指令排列在循环程序段中,除了一次 跳出循环体之外,其余转移的目标地址均在循 环体内。因此,分支转移指令的转移目标地址 是可以预测的,预测的依据就是前一次转移目 标地址的状况,即根据历史状态预测下一次转 移的目标地址。预测的准确率不可能为100%, 但是对于某些转移指令预测的准确率却非常高。

U、V流水线中整数指令流水线均由5段组成。分别 为预取指令(PF)、指令译码(D1)、地址生成( D2)、指令执行(EX)和结果写回(WB)。
由于采用了指令流水线作业,每条指令流水线可以 在1个时钟周期内执行一条指令。因此,最佳情况 下一个时钟周期内可以执行两条整数指令。
微机原理与接口

微处理器系统原理与应用

微处理器系统原理与应用
嵌入式系统广泛应用于工业控制、智能家居、医疗设备、汽车电子等领域。微处理 器作为嵌入式系统的“大脑”,负责接收、处理和发送各种信号,实现设备的自动 化和智能化。
计算机系统结构
计算机系统结构是计算机科学的一个 重要分支,主要研究计算机硬件和软 件的组成、设计和实现。微处理器作 为计算机系统的核心部件,是计算机 系统结构的重要组成部分。
功耗、成本等因素。
设计合理的存储器层次 结构,包括高速缓存、 主存和辅助存储器等。
输入输出接口
设计合适的输入输出接 口,以满足与外部设备
的通信需求。
总线设计
设计高效的总线结构, 实现微处理器与各模块
之间的数据传输。
软件设计
操作系统
选择或设计适用于微处理器的操作系统,管 理硬件资源、调度任务等。
调试工具
VS
微处理器的发展推动了计算机系统结 构的不断演进。随着技术的进步,微 处理器的性能不断提高,功能越来越 强大,使得计算机系统的性能和功能 也得到了极大的提升。
人工智能与机器学习
人工智能和机器学习是当前计算机科学领域最热门的研究方向之一,它们的目标是让计算机能够像人 类一样具有智能和学习能力。微处理器作为人工智能和机器学习应用的硬件基础,发挥着至关重要的 作用。
微处理器的发展历程
01
1970年代初,微处理器诞生,如Intel 4004,主要用于计算器和控制 器。
02
1980年代,随着8位和16位微处理器的出现,微处理器开始广泛应用 于家用电器、工业控制等领域。
03
1990年代,32位微处理器逐渐成为主流,如Intel Pentium系列,广 泛应用于个人计算机和服务器。
04
进入21世纪,64位微处理器和多核处理器成为趋势,广泛应用于高 性能计算、云计算等领域。

第二章_微型计算机基础

第二章_微型计算机基础
例:Intel 8088/8086、PIII、P4、Celeron
CPU的位数是指能同时处理的二进制数据的位数, 有4位、8位、16位、32位、64位之分,位数越多 处理能力越强。
7
主机硬件系统之二:存储器
存储器是存放程序和数据的记忆装置,分为内存 和外存。
内存:ROM、RAM,用来存放当前正在执行的 程序和正在处理的数据。
8086的流水线操作
8086CPU流水线的实现 BIU不断地从存储器取指令送入指令队列IPQ,EU不 地从IPQ取出指令执行 EU和BIU构成了一个简单的2段流水线 指令预取队列IPQ是实现流水线操作的关键(类似于 工厂流水线的传送带)
新型CPU将一条指令划分成更多的阶段,以便可以同时执 行更多的指令 例如,PIII为14个段,P4为20个段(超标量流水线)
CPU送到AB上的20位的地址称为物理地址。
34
物理地址:数据交换时CPU使用的实际地址
物理地址
存储器的操作完全基 于物理地址。 ➢问题: 8086的内部总线和内 部寄存器均为16位, 如何生成20位地址? ➢解决:存储器分段
. . 60000H F0H 60001H 12H 60002H 1BH 60003H 08H 60004H . . .
10
存储器相关概念3:内存储器的分类
读写存储器(RAM)
可读可写 易失性,临时存放程序和数据 RAM又分静态RAM和动态RAM,即SRAM、DRAM
只读存储器(ROM)
工作时只能读 非易失性,永久或半永久性存放信息
11
主机硬件系统之三:输入输出接口
I/O接口是指主机与外设的交接部分,位于系统 总线和外设之间,是主机和外设联系的桥梁。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、8086微处理器的结构
8086的总线周期
时钟周期(T状态):CPU的基本时间计量单位,它由计 算机的主频决定,是主频的倒数。 例 如 : 8086 的 主 频 是 5MHz , 则 它 的 时 钟 周 期 为 200ns(1ns=10-9s) 。 总线周期(机器周期):CPU通过总线与存储器或I/O接口
电源线Vcc和地线GND
Vcc接+5V电源;两条地线接地。
二、8086微处理器的引脚功能和工作模式
最小模式
24-31引脚功能
(1)M//IO (Memory/Input and Output) 存储器/输入 输出控制信号,三态输出。若为高电平,表示是存储器访 问,若为低电平,表示是输入/输出设备访问。当DMA操 作时,此线浮空。 (2) ALE(Address Latch Enable) 地址锁存允许信号,输 出,高电平有效,作为地址锁存器8282/8283的地址锁存 信号。 (3) /DEN(Data Enable) 数据允许信号,三态输出,低 电平有效。作为数据总线缓冲器8286/8287的控制信号,在 DMA方式下浮空。
8086一个最基本的总线周期由4个时钟周期组成 ,分别用 T1,T2,T3,T4四个状态表示。 (1)T1:CPU往数据总线上发出地址信息 (2)T2:地址信息撤销 (3)T3:总线上出现数据 (4)T4:总线周期结束 (5)TW:等待状态:数据未就绪。
总线周期
T1 T2 T3 TW T4
二、8086微处理器的引脚功能和工作模式
一、8086微处理器的结构
说明
(1)指令队列缓冲器:在执行指令的同时,将取下一条指 令,并放入指令队列缓冲器中。CPU执行完一条指令后,可 以接着执行下一条指令(流水线技术),提高CPU效率。当 指令队列空出两个字节时,BIU自动执行一次取指周期,将 新指令送入指令队列缓冲器。
(2)地址加法器:产生20位地址。CPU内无论是段地址寄
加系统数据总线的驱动能力,这时,可选用两片8286或 74LS245作为总线收发器。
二、8086微处理器的引脚功能和工作模式
8086CPU
最 小 模 式 下 的 典 型 配 置
二、8086微处理器的引脚功能和工作模式
二、8086微处理器的引脚功能和工作模式
二、8086微处理器的引脚功能和工作模式
一、8086微处理器的结构
基本组成: (3)四个专用寄存器:地址指针寄存器/2+变址寄存器/2 地址指针寄存器 SP—堆栈指针寄存器 BP —基址指针寄存器 变址寄存器 DI —目的变址寄存器 SI —源变址寄存器 (4)数据暂存寄存器 协助ALU完成运算,暂存参加运算的数据。 (5)执行部件的控制电路 从总线接口的指令队列取出指令操作码,通过译码 电路分析,发出相应的控制命令,控制ALU数据流向。
一、8086微处理器的结构
总线接口单元(BIU)
功能:负责与存储器、I/O接口之间传送信息。 基本组成: (1)四个段地址寄存器:主要用于存放段基址 CS—16位代码段寄存器; DS—16位数据段寄存器; ES—16位附加段寄存器; SS—16位堆栈段寄存器。 (2)16位指令指针寄存器IP 存放下一条要取的指令的偏移地址 自动加一 注意用户程序不能直接访问IP。 (3) 20位的地址加法器。 (4)六字节的指令队列缓冲器。
8284时钟发生器
+5V
14.31818MHZ
RESET 0 RES READY CLK 等待电路 RDY1 OSC PCLK 14.318MHZ
二、8086微处理器的引脚功能和工作模式
(7) HLDA(Hold Acknowledge) 总线保持应答信号,输 出,高电平有效。如果微处理器响应HOLD信号让出总线, 就在当前总线周期完成时,从HLDA线上发出一个应答信号, 且同时使具有三态功能的地址/数据总线和控制总线处于 浮空,让出总线控制权。 (8)/INTA (Interrupt Acknowledge) 中断响应信号,输出, 低电平有效。微处理器对外设中断请求作出响应时,发出 两个连续有效的负脉冲信号,第一个负脉冲通知外设中断 请求已经得到允许,第二个负脉冲期间,由外设送出中断 类型码,使微处理器得到有关该中断请求的详尽信息,以 便处理器能够提供相应的中断服务。
源和一个时钟,时钟频率为5MHz 。 8088:内部与8086兼容,也是一个16位微处理器,只是 外部数据总线为8位,所以称为准16位微处理器。它具有包 括乘法和除法的16位运算指令,所以能处理16位数据,还能
处理8位数据。8088有20根地址线,所以可寻址的地址空间
达1M字节。
一、8086微处理器的结构
第二章 微处理器与 系统构成原理
主讲:姚玉峰
哈工大(威海)机器人研究所
微机原理及软硬件接口技术
本章内容
8086微处理器的结构 引脚功能和工作模式
8086微处理的操作时序
一、8086微处理器的结构
8086:Intel系列的16位微处理器,16条数据线、20条地
址线,可寻址范围220=1MB,8086工作时,只要一个 5V 电
存器还是偏移量都是16位的,通过地址加法器产生20位地址。
一、8086微处理器的结构
执行单元(EU)
功能:负责指令的执行 (1)从指令队列中取出指令; (2)对指令进行译码,发出相应的控制信号; (3)接收由总线接口送来的数据或发送数据至接口; (4)进行算术逻辑运算。 基本组成: (1)ALU:进行算术和逻辑运算;计算存储单元16位偏 移地址; (2)四个通用寄存器AX、BX、CX、DX。 四个通用寄存器都是16位,可作两个8位来使用。
1
1
0
1从偶Biblioteka 址单元开始,在低8位数据总线上进行字节传送
无效
S7:8086中无定义。在T2、T3、TW和T4状态时输出。
二、8086微处理器的引脚功能和工作模式
(2)、CLK:主时钟信号,输入。8086的时钟信号占空比为33.3% (1/3周期为高电平,2/3周期为低电平)频率为5MHZ。 (3)、RESET:复位信号,输入,高电平有效。RESET信号至少要 保持4个时钟周期。复位时:标志寄存器、IP、DS、SS、ES为0, CS=FFFFH,复位后CPU从FFFF0H处开始 执行。 (4)、NMI:不可屏蔽中断请求信号,输入,上升沿触发。该请求 信号不受IF状态的影响,也不能用软件屏蔽,一旦该信号有效,则执行 完当前指令后立即响应中断。 (5)、INTR:可屏蔽中断请求信号,输入,高电平有效。当INTR=1, 表示外设向CPU发出中断请求,CPU在当前指令周期的最后一个T状态 去采样该信号,若此时,IF=1,CPU响应中断,执行中断服务程序。 (6)、/RD读信号,三态输出,低电平有效。/RD=0,表示当前CPU 正在对存储器或I/O端口进行读操作。
进行一次数据传输所需的时间。
指令周期:执行一条指令所需要的时间。
一、8086微处理器的结构
总线周期、总线周期、时钟周期的关系
总线周期 指令周期 T4 T2 T3 总线周期
T1
…… 总线周期 CLK T3 Tw T4 时钟周期 …… 时钟周期 时钟周期 …… 时钟周期 Tw叫等待周期
一、8086微处理器的结构
二、8086微处理器的引脚功能和工作模式
(7)、READY:准备就绪信号,输入,高电平有效。READY=1, 表示CPU访问的存储器或IO端口已准备好传送数据。若CPU在总线周期 T3的前沿(下降沿)检测到READY=0,表示未准备好,CPU自动插入 一个或多个等待状态Tw,直到READY=1为止。 (8)、/TEST:测试信号,输入,低电平有效。当CPU执行WAIT指 令时,每隔5个时钟周期对/TEST进行一次测试,若/TEST=1,继续等待, 直到/TEST=0。 (9) 、MN//MX:工作模式选择信号,输入。MN//MX=1,表示CPU 工作在最小模式系统;MN//MX=0,表示CPU工作在最大模式系统。
二、8086微处理器的引脚功能和工作模式
(4) DT//R(Data Transmit/Receive) 数据收发控制信号, 三态输出。在使用8286/8287时,作为数据传送方向控制 信号,高电平时进行数据发送,低电平时进行数据接收。 DMA方式下浮空。 (5) /WR(Write) 写控制信号,三态输出,低电平有效, 表示微处理器在对存储器或是I/O进行写操作。在DMA方 式下,被置为浮空。 (6) HOLD(Hold Request) 总线保持请求信号,输入, 高电平有效。当总线上其它设备需要占用总线时,通过该 引脚向微处理器发送一个高电平请求信号。
一、8086微处理器的结构
(6)标志寄存器:16位寄存器,其中有7位未用。
一、8086微处理器的结构
8086CPU执行程序的操作过程
(1)总线接口部件形成20位的地址,并将此地址送至程序 存储器指定单元,从该单元取出指令字节,依次放入指令队 列中; (2)每当8086的指令队列中有2个空字节(8088指令队列中 有1个空字节时),总线接口部件就会自动取指令至队列中; (3)执行部件从总线接口的指令队列首取出指令代码,执 行该指令; (4)当队列已满,执行部件不要求总线接口部件去访问内 存或I/O设备,则总线接口部件进入空闲状态; (5)执行转移指令、调用指令、返回指令时,先清空队列 内容,再将要执行的指令放入队列中。
二、8086微处理器的引脚功能和工作模式
典型配置 在8086的最小模式中,硬件连接上有如下几个特点: (1)MN//MX 引脚接+5V,决定了8086工作在最小模式。 (2)有一片8284A,作为时钟发生器。 (3)有三片8282或74LS373,用来作为地址锁存器。
(4)当系统中所连接的存储器和外设比较多时,需要增
二、8086微处理器的引脚功能和工作模式
相关文档
最新文档