开关磁阻电机的工作原理
《开关磁阻电机》课件
05
结论
开关磁阻电机的总结
开关磁阻电机是一种基于磁阻原理的 电机,具有结构简单、可靠性高、调 速范围广等优点,被广泛应用于各种 工业领域。
开关磁阻电机的控制系统可以采用数 字化技术,实现快速、准确的控制, 提高电机的性能和稳定性。
开关磁阻电机通过改变电机的输入电 压或电流,可以方便地调节电机的转 速和转矩,从而实现精确的控制。
推动模块化设计和智能化控制,简化电机结构,提高系统的集成度 和智能化水平。
市场前景与预测
工业自动化
随着工业自动化程度的提高,开 关磁阻电机在工业领域的应用将
进一步扩大。
电动车与新能源
电动车和新能源市场的快速发展将 为开关磁阻电机提供广阔的应用空 间。
预测分析
根据市场需求和技术发展趋势,预 测开关磁阻电机未来的市场规模和 增长点。
洗衣机
在洗衣机中,开关磁阻电机作为驱动 元件,实现高效、低噪音的洗涤和脱 水。
04
开关磁阻电机的未来发展
技术创新与改进
高效能驱动控制技术
研究更先进的控制算法和策略,提高开关磁阻电机的驱动性能和 效率。
耐高温材料
研发能在高温环境下稳定运行的绝缘材料和磁性材料,提高电机的 可靠性和寿命。
模块化和智能化
优势
与传统的直流电机和交流电机相比,开关磁阻电机在性能和成本方面具有明显的 优势,能够满足各种应用场景的需求。此外,开关磁阻电机的控制方式灵活多样 ,可以实现精确的速度和位置控制。
02
开关磁阻电机的基本结构
定子结构
定子铁芯
通常采用硅钢片叠压而成,用于 产生磁场。
定子绕组
由多根漆包线绕制而成,连接至 控制器,用于产生旋转磁场。
转子结构
开关磁阻调速电机节能原理
开关磁阻调速电机节能原理开关磁阻调速电机是一种应用于工业和民用领域中的节能电动机,通过调节其磁场的大小和方向来调节其转速和输出功率。
本文将从开关磁阻调速电机的工作原理、节能机制和应用方向三个方面来详细介绍其相关知识。
一、开关磁阻调速电机的工作原理开关磁阻调速电机是一种异步电机,其转速控制是在转子回路中通过改变磁阻来实现的。
转子是由饼形磁性材料组成的,磁性材料的形状和结构可以改变磁路的磁阻。
转子上通过一个用于控制磁阻的磁阻器,通电时通过电极的信号来改变磁阻的大小和方向,从而调节转子的转速和输出功率。
具体来说,开关磁阻调速电机的转速调节是通过控制磁阻、定子电流和电源电压实现的。
在正常运行时,定子的电流和磁场是稳定的,其转速只有受到外力的影响才会发生改变。
当需要调节转速和输出功率时,通过控制磁阻的大小和方向来调节转速,其中磁阻的大小和方向是由外部电路控制的。
二、开关磁阻调速电机的节能机制开关磁阻调速电机的节能机制主要是通过控制磁阻来达到调节转速和输出功率的目的,从而达到节能的目的。
具体来说,其节能机制主要包括以下几个方面:1. 降低系统能耗:开关磁阻调速电机具有优秀的调速性能和调节范围,可以根据负载的需要来调整转速和输出功率,从而避免了传统机械式调速的能耗浪费。
2. 减少定子电流损耗:基于软启动和启停控制技术等节能模式,开关磁阻调速电机在正常工作时可以减少定子的电流损耗,从而减少了能耗。
3. 调整负载适配性:开关磁阻调速电机可以根据不同的负载变化动态调整其转速和输出功率,从而调整负载适配性,减少了能耗和误差。
三、开关磁阻调速电机的应用方向开关磁阻调速电机可以广泛应用于工业和民用领域,其中包括以下方面:1. 工业生产:开关磁阻调速电机广泛应用于机械设备、输送机、冷却塔、风机、泵、压缩机和阀门等工业场合中。
2. 社会生活:开关磁阻调速电机也广泛应用于家庭电器、供暖设备、空气净化器、吸尘器等社会生活场合中。
开关磁阻电机
由于电机靠磁阻工作,跟磁通方向无关,即跟电流方向无关,故在上面运行图中没有
标明磁力线的方向。
A、B、C各相线圈轮流通电视乎简单,实际情况要复杂些,线圈切断电源后产生的自
感电流不会立即消失,要提前关断电源进行续流;为加大力矩相邻相线圈有电流的时
间会有部分重合;调节电动机的转速、转矩也要调整开关时间,各相线圈开通与关断
3、步距角 b=r/m=360/(mNr)
4、转矩方向与电流无关,但转矩存在脉动。
5、需要根据定、转子相对位置投入激励。不能像普通异步电机一样直接投
入电网运行,需要与控制器一同使用。
2.1.3 开关磁阻电动机的相数与结
构
N s 2km
相数与级数关系
N r N s 2k )
1、为了避免单边磁拉力,径向必须对称,所以双凸极的定子和转子齿槽数应
6)可控参数多,调速性能好 控制开关磁阻
电动机的主要运行参数和常用方法至少有
四种:相开通角,相关断角, 相电流幅值,相绕
组电压。
SRD特点:
7)效率高,损耗小 SRD系统是一种非
常高效的调速系统。
8)可通过机和电的统一协调设计满足
各种特殊使用要求 。
9)缺点:转矩脉动、振动、噪声 但可
通过特殊设计克服
一类型的电机。
开关磁阻电机发展历史
开关磁阻电机的最早文献却可追溯到1838年,英格兰学者
Davidson制造了一台用以推动蓄电池机车的驱动系统。
70年代左右,英国Leeds大学步进电机和磁阻电机研究小组首创了
一台现代开关磁阻电机的雏形。
1980年,Lawrenson及其同事在ICEM会议上,发表著名论文“开关
展了SRD系统的研究工作。
开关磁阻电机的反电动势
开关磁阻电机的反电动势一、磁阻电机简介磁阻电机是一种电动机的类型,也被称为细分步进电机。
其工作原理基于磁阻变化引起的转子转动。
磁阻电机结构简单,体积小,重量轻,控制精度高,因此被广泛应用于各种精密控制系统中。
二、磁阻电机的工作原理1.磁阻电机的内部构造磁阻电机由定子和转子两部分组成。
定子由绕组和铁芯构成,绕组上通有定向电流,产生磁场。
转子是一个可旋转的磁性构件,在定子磁场的作用下,转子会受到偏置力和扭矩的作用,使其旋转。
2.磁阻电机的工作原理磁阻电机的工作原理基于磁阻的变化。
当绕组通电时,产生的磁场会改变磁路的阻抗。
转子随着磁场变化而调整其位置,以便在任何给定时间内最大限度地降低磁路的阻抗。
通过同步转子位置和改变绕组电流,可以实现电机的转动。
三、磁阻电机的反电动势1.反电动势的定义反电动势是指当磁阻电机运行时,绕组产生的电势,其方向与通电电流相反。
反电动势的大小与绕组电流以及磁场的变化速率成正比。
2.反电动势的产生机理磁阻电机的转子在磁场中运动时,磁阻的变化会导致绕组中的感应电动势的产生。
这个感应电动势与磁阻的变化速率成正比。
当绕组产生电动势时,电流会发生变化,以满足转子的运动需求,使得反电动势产生。
3.反电动势的作用反电动势是磁阻电机的重要参数,它直接影响电机的性能。
反电动势的大小与转子转速成正比,因此可以通过测量反电动势来确定电机的转速。
此外,反电动势还可以用于控制电机的转矩和定位精度。
四、影响反电动势的因素1.绕组电流大小反电动势的大小与绕组电流成正比。
通常来说,电流越大,反电动势越大,从而使得电机产生更大的转矩。
2.磁场的变化速率反电动势的大小与磁场的变化速率成正比。
当磁场的变化速率较大时,反电动势也较大,从而使得电机具有更高的转速。
3.磁路的设计磁路的设计直接影响磁场的强度和分布情况,进而影响反电动势的大小。
合理的磁路设计可以使得磁场的变化速率更大,从而增加反电动势的大小。
五、应用领域与发展前景磁阻电机由于其结构简单、体积小、重量轻以及控制精度高等优点,被广泛应用于各种精密控制系统中,如数控机床、纺织机械、机器人等。
开关磁阻电动机原理
通过合理选择导Lm通in 角 α1使相电流在进入有效工
作段时就达到足够大的数值,这是开关磁阻电机 控制电磁转矩的主要办法。
(2)第二段
t1 t t2 (1 2 )
• 这段期间 L在不断增大,因而相绕组中出现了旋转电势压降,绕 组中电流不能继续直线上升,甚至可能出现下降。求得这段期 间电流关系式为:
近似为一梯形波。
图5-24 相绕组电感变化规律
转矩特性
• 当开关磁阻电机由图 5-23所示的电源供电时,如果
电动机匀速旋转,可得
Us
L
di dt
iR i(5r-1L5)
式中,等号右边第一项为平衡绕组中变压器电势的压降;
第二项为电阻压降;
第三项为旋转电势所引起的压降,它只有在
电感随转子位置而变时才存在,其方向与电感随转子
设:定子绕组为m相,定子齿数 Ns=2m,转子齿数为Nr。
当定子绕组换流通电一次时,转子转过一个转子齿距。
这样定子需切换通电 Nr次转子才转过一周,故电机转
速 n(r/min)与相绕组电压的开关频率 f之间的关系为
(5-10) n 60 f
Nr
f Nrn 60
(5-11)
给定子相绕组供电的功率变换器输出电流脉动频率
间在 1/4周期左右,再加上续流时间,整个 通电过程中相绕组有可能均处在电感随转角 而增长的环境中,电流能有效地产生电磁转 矩。
双四 拍 运 行(每相通电1/2周期)
• 缺点:
▪ 电流产生转矩的有效性将降低,而电流在绕组中的损耗 却随着通流时间的增长而增加。
▪ 此外,在双四拍工作方式下由于有两相同时通电,电机 磁路饱和加剧,会进一步降低电机的输出转矩,影响运 行的效果及性能。
开关磁阻电机控制原理
开关磁阻电机控制原理首先,让我们来了解SRM的工作原理。
SRM由铁心、定子和转子组成,其中定子是由若干个相间的线圈组成,而转子则是由多个齿隙组成。
当施加电流到定子线圈时,线圈产生磁场并吸引转子上的磁极,使得转子转动。
与其他类型的电机相比,SRM没有永磁体,因此其转子结构更简单。
1. 电流控制(Current Control):SRM的电流控制是通过施加电流来控制电机的转矩和速度。
首先需要测量电机的位置和速度,以便根据实际情况调整电流。
通常使用位置传感器(如霍尔传感器)来测量转子位置,然后通过计算得到电机的速度。
基于这些测量结果,控制器可以确定如何调整电流的大小和方向,以实现所需的转矩和速度。
在电流控制过程中,还需要考虑到电机的特性和限制。
例如,如果电流过大,可能会导致电机过热或损坏。
因此,控制器需要根据电机的额定电流和温度来限制电流的大小。
此外,还需要考虑到电机的响应时间,以确保电流调整的快速性和准确性。
2. 位置控制(Position Control):SRM的位置控制是用于确定和保持转子的精确位置。
在SRM中,转子的位置是由电流和磁场之间的相对位置决定的。
通常使用位置传感器(如霍尔传感器或编码器)来测量转子位置,并将这些位置信息传递给控制器。
控制器使用这些位置信息来调整电流的大小和方向,以将转子移动到所需的位置。
在位置控制过程中,控制器需要根据转子的位置误差来决定调整电流的方向和大小。
通常使用位置反馈控制算法(如PID控制)来实现这一目标。
控制器将位置误差和其他参数(如转子惯性、负载和电机特性)纳入考虑,并根据算法的要求来调整电流。
在实际应用中,位置控制通常需要考虑到转子位置的精确性以及抗干扰和鲁棒性等问题。
总结起来,开关磁阻电机的控制原理主要包括电流控制和位置控制两个方面。
电流控制用于调整电机的转矩和速度,而位置控制用于确定和保持转子的精确位置。
控制器根据电机的特性和限制,使用合适的控制算法来实现所需的控制效果。
开关磁阻电机
CREATE TOGETHER
DOCS
谢谢观看
THANK YOU FOR WATCHING
开关磁阻电机的工作原理
SRM的工作原理
• 电磁感应原理:转子绕组切割磁力线产生感应电动势 • 磁阻变化原理:定子凸极与转子凸极相对位置变化导致 磁阻变化 • 扭矩产生:磁阻变化产生电磁扭矩,驱动转子旋转
SRM的运转过程
• 启动阶段:电流通过定子绕组产生磁场,转子开始旋转 • 运行阶段:转子转速增加,磁阻变化减小,电流逐渐减 小 • 停止阶段:转子停止旋转,磁阻变化消失,电流降至零
应用领域的拓展
• 新能源汽车:提高电动汽车性能,降低能耗 • 家用电器:提高家用电器性能,降低能耗 • 工业自动化:提高生产效率,降低能耗
技术水平的提升
• 高性能电机的研究与应用:提高电机性能 • 新型控制策略的研究与应用:提高控制精度和响应速度 • 高性能驱动电路的研究与应用:提高驱动效率和可靠性
开关磁阻电机的技术发展趋势
高性能材料的应用
• 高磁能永磁材料:提高电机磁能密度 • 高强度绝缘材料:提高电机绝缘性能 • 高导热材料:提高电机散热性能
高性能电机设计
• 优化磁路设计:提高电机效率和扭矩 • 优化绕组设计:降低铜损,提高效率 • 优化轴承设计:提高电机运行稳定性
开关磁阻电机的研究热点与挑战
研究热点
• 新型控制策略:提高控制精度和响应速度 • 高性能驱动电路:提高驱动效率和可靠性 • 高性能材料的研究与应用:提高电机性能
挑战
• 高效率与高性能的平衡:提高电机效率,同时保持高性能 • 控制策略的优化:实现精确控制,提高系统性能 • 制造工艺的改进:提高电机制造工艺水平,降低成本
开关磁阻电机的未来展望
《开关磁阻电机》课件
电动汽车的驱动系统需要能够提供更高的扭矩和功率,同时还要具备较 高的可靠性和效率。开关磁阻电机能够满足这些要求,因此在一些高端 电动汽车中得到了应用。
在工业领域的应用
工业领域是开关磁阻电机的重要应用领 域之一,特别是在需要高扭矩、高可靠
性、高效率和高寿命的场合。
发展
开关磁阻电机在发展过程中不断改进和优化,以提高效率、降低成本、减小体积和重量等方面取得显著进展。目 前,开关磁阻电机已经在工业自动化、电动车、家用电器等领域得到广泛应用。
特点与优势
特点
开关磁阻电机具有结构简单、成本低、可靠性高、效率高、调速范围宽等优点。
开关磁阻电机具有更高的能效和可靠性,适 用于需要频繁启动、制动和调速的场合。此外,开关磁阻电机的控制系统简单, 维护方便,适用于各种恶劣环境。
开关磁阻电机的设计、制造和控制系 统已经得到了很大的发展,但仍存在 一些挑战和问题需要进一步研究和解 决。
对未来研究的展望
随着技术的不断进步和应用需求的不断提高,开关磁阻电 机的性能和功能需要进一步优化和完善。
未来的研究将更加注重开关磁阻电机的智能化、高效化、 小型化和轻量化等方面的研究,以适应更加复杂和多变的 应用场景。
在工业领域中,开关磁阻电机主要用于 驱动各种机械设备,如压缩机、泵、风 机、传送带等。由于其高效、可靠、维 护成本低等优点,开关磁阻电机在工业
领域中得到了广泛应用。
在工业自动化和智能制造领域,开关磁 阻电机的高效性和可靠性也得到了广泛 应用,如机器人关节驱动、自动化生产
线等。
在家用电器领域的应用
家用电器是开关磁阻电机的重要应用领域之一,特别是在需要高效、低噪音、低 维护成本的家电产品中。
开关磁阻电动机原理演示文稿
α 图5-26 不同 1 时相电流波形
(3)第三段 t2tt3(2 3)
在反向电压-Us的作 用 下 绕 组 磁 链 开 始 线
性 下 降,电 流 也 逐 渐 减小。
由于在这一区间仍是 L/,续0流电流仍产生电
动转矩,说明在这一阶段电机中的磁场储能有一 部分转化为有用的机械能从电机轴上输出,而另 一部分转化为电能回馈给了电容器。
i Ust
Lk
r
Lt
(5-1(9i)0)
式中
LKLmi n L(11)
这时的电流主要用于产生电磁转矩,因此这一段电流的大小直 接影响电动机的出力。
从5-19可以看出, 开关磁阻电机的 负载电流与许多 参数有关,其中 属于可控的因素 是导通角α1,不 同 α1的可能形成
不同的电流波形。 如图 5-26所示。
设:定子绕组为m相,定子齿数 Ns=2m,转子齿数为Nr。
当定子绕组换流通电一次时,转子转过一个转子齿
距。这样定子需切换通电 Nr次转子才转过一周,故电
机转速 n(r/min)与相绕组电压的开关频率 f之间的关系
为
f
n 60
Nr
(5-10)
f Nrn 60
(5-11)
给定子相绕组供电的功率变换器输出电流脉动频率
当定、转子齿中心线不重合、磁导不为最大时,磁 场就会产生磁拉力,形成磁阻转矩,使转子转到磁 导最大的位置。
当向定子各相绕组中依次通入电流时,电机转子将 一步一步地沿着通电相序相反的方向转动。
如果改变定子各相的通电次序,电机将改变转向。 但相电流通流方向的改变是不会影响转子的转向的。
转速的计算
由于开关磁阻电机的转矩是靠定、转子的凸极效应产生,与绕组中 所通电流极性无关,因此每相绕组中通入的可以是单方向的电流(脉 冲),无须交变。这样不但可使控制每相电流的功率开关元件数量减 少一半,而且可以避免一般电压型逆变器中最危险的上、下桥臂元 件直通的故障,不但显著降低控制装置的成本,而且大大提高了系 统的安全可靠性。
第2章开关磁阻电机
高可靠性
开关磁阻电机结构简单、无刷、 无接触,因此具有较高的可靠性 和耐久性,适用于智能家居和物 联网领域中的长时间连续工作需 求。
05
未来发展趋势与挑战
高性能材料研究进展
高温超导材料
提高电机效率和功率密度,降低热损耗。
纳米复合材料
增强电机绝缘性能和机械强度,提高电机可靠性 。
稀土永磁材料
提升电机转矩密度和调速范围,实现高性能化。
与交流异步电机比较
开关磁阻电机的效率高于交流异步电机,且调速范围更宽。此外,开关磁阻电机在低速时 具有更大的转矩输出能力。
与永磁同步电机比较
开关磁阻电机无需永磁体,因此成本更低。同时,在高速运转时,开关磁阻电机的效率高 于永磁同步电机。然而,永磁同步电机在低速时具有更高的转矩密度和更好的调速性能。
02
静态特性测试方法
空载特性测试
01
在电机空载状态下,测量电机的电压、电流和转速等参数,绘
制空载特性曲线。
负载特性测试
02
给电机加上负载,测量电机的电压、电流、转速和输出转矩等
参数,绘制负载特性曲线。
磁化特性测试
03
测量电机在不同磁化状态下的磁通密度和磁场强度等参数,了
解电机的磁化特性。
动态特性评估指标
磁阻转矩控制
过流/过温保护
通过调整电流波形和开通角,实现磁 阻转矩的精确控制,提高电机效率。
实时监测电流和温度等参数,当超过 设定阈值时及时采取保护措施,确保 电机安全运行。
转子位置检测
采用霍尔传感器或编码器等方式,实 时检测转子位置,为控制算法提供准 确数据。
软硬件设计与实现
01
硬件设计
包括主控制器选型、功率变换器设计、传感器选型和接口电路设计等,
开关磁阻电机的原理及其控制系统
开关磁阻电机的原理及其控制系统开关磁阻电机80年代初随着电力电子、微电脑和控制理论的迅速发展而发展起来的一种新型调速驱动系统。
具有结构简单、运行可靠、成本低、效率高等突出优点,目前已成为交流电机调速系统、直流电机调速系统、无刷直流电机调速系统的强有力的竞争者。
一、开关磁阻电机的工作原理开关磁阻电机的工作原理遵循磁磁阻最小原理,即磁通总是要沿着磁阻最小路径闭合。
因此,它的结构原则是转子旋转时磁路的磁阻要有尽可能大的变化。
所以开关磁阻电动机采用凸极定子和凸极转子的双凸极结构,并且定转子极数不同。
开关磁阻电机的定子和转子都是凸极式齿槽结构。
定、转子铁芯均由硅钢片冲成一定形状的齿槽,然后叠压而成,其定、转子冲片的结构如图1所示。
图1:开关磁阻电机定、转子结构图图1所示为12/8极三相开关磁阻电动机,S1. S2是电子开关,VD1, VD2是二极管,是直流电源。
电机定子和转子呈凸极形状,极数互不相等,转子由叠片构成,定子绕组可根据需要采用串联、并联或串并联结合的形式在相应的极上得到径向磁场,转子带有位置检测器以提供转子位置信号,使定子绕组按一定的顺序通断,保持电机的连续运行。
电机磁阻随着转子磁极与定子磁极的中心线对准或错开而变化,因为电感与磁阻成反比,当转子磁极在定子磁极中心线位置时,相绕组电感最大,当转子极间中心线对准定子磁极中心线时,相绕组电感最小。
当定子A相磁极轴线OA与转子磁极轴线O1不重合时,开关S1, S2合上,A相绕组通电,电动机内建立起以OA为轴线的径向磁场,磁通通过定子扼、定子极、气隙、转子极、转子扼等处闭合。
通过气隙的磁力线是弯曲的,此时磁路的磁导小于定、转子磁极轴线重合时的磁导,因此,转子将受到气隙中弯曲磁力线的切向磁拉力产生的转矩的作用,使转子逆时针方向转动,转子磁极的轴线O1向定子A相磁极轴线OA趋近。
当OA和O1轴线重合时,转子己达到平衡位置,即当A相定、转子极对极时,切向磁拉力消失。
开关磁阻电机的原理和控制系统方案
开关磁阻电机的原理及其控制系统开关磁阻电机80年代初随着电力电子、微电脑和控制理论的迅速发展而发展起来的一种新型调速驱动系统。
具有结构简单、运行可靠、成本低、效率高等突出优点,目前已成为交流电机调速系统、直流电机调速系统、无刷直流电机调速系统的强有力的竞争者。
一、开关磁阻电机的工作原理开关磁阻电机的工作原理遵循磁磁阻最小原理,即磁通总是要沿着磁阻最小路径闭合。
因此,它的结构原则是转子旋转时磁路的磁阻要有尽可能大的变化。
所以开关磁阻电动机采用凸极定子和凸极转子的双凸极结构,并且定转子极数不同。
开关磁阻电机的定子和转子都是凸极式齿槽结构。
定、转子铁芯均由硅钢片冲成一定形状的齿槽,然后叠压而成,其定、转子冲片的结构如图1所示。
图1:开关磁阻电机定、转子结构图图1所示为12/8极三相开关磁阻电动机,S1. S2是电子开关,VD1, VD2是二极管,是直流电源。
电机定子和转子呈凸极形状,极数互不相等,转子由叠片构成,定子绕组可根据需要采用串联、并联或串并联结合的形式在相应的极上得到径向磁场,转子带有位置检测器以提供转子位置信号,使定子绕组按一定的顺序通断,保持电机的连续运行。
电机磁阻随着转子磁极与定子磁极的中心线对准或错开而变化,因为电感与磁阻成反比,当转子磁极在定子磁极中心线位置时,相绕组电感最大,当转子极间中心线对准定子磁极中心线时,相绕组电感最小。
当定子A相磁极轴线OA与转子磁极轴线O1不重合时,开关S1, S2合上,A 相绕组通电,电动机内建立起以OA为轴线的径向磁场,磁通通过定子扼、定子极、气隙、转子极、转子扼等处闭合。
通过气隙的磁力线是弯曲的,此时磁路的磁导小于定、转子磁极轴线重合时的磁导,因此,转子将受到气隙中弯曲磁力线的切向磁拉力产生的转矩的作用,使转子逆时针方向转动,转子磁极的轴线O1向定子A相磁极轴线OA趋近。
当OA和O1轴线重合时,转子己达到平衡位置,即当A相定、转子极对极时,切向磁拉力消失。
开关磁阻电动机原理
4
精选课件
电力电子与电机系统控制研究所
图5-22 开关磁阻电动机的基本结构
5
精选课件
电力电子与电机系统控制研究所
工作机理
开关磁阻电机的工作机理与磁阻(反应)式步进电动机 一样,基于磁通总是沿磁导最大的路径闭合的原理。
当定、转子齿中心线不重合、磁导不为最大时,磁 场就会产生磁拉力,形成磁阻转矩,使转子转到磁 导最大的位置。
当向定子各相绕组中依次通入电流时,电机转子将 一步一步地沿着通电相序相反的方向转动。
如果改变定子各相的通电次序,电机将改变转向。 但相电流通流方向的改变是不会影响转子的转向的。
6
精选课件
电力电子与电机系统控制研究所
转速的计算
设:定子绕组为m相,定子齿数 Ns=2m,转子齿数为Nr。
当定子绕组换流通电一次时,转子转过一个转子齿
作段时就达到足够大的数值,这是开关磁阻电机 控制电磁转矩的主要办法。
16
精选课件
电力电子与电机系统控制研究所
(2)第二段 t1 t t2(12)
这段期间 L在不断增大,因而相绕组中出现了旋转电势压降,绕 组中电流不能继续直线上升,甚至可能出现下降。求得这段期 间电流关系式为:
i Ust
Lk r Lt
电感随转子位置 θ的变化 规律 L(θ)将如图 5-24所示,
近似为一梯形波。
图5-24 相绕组电感变化规律
11
精选课件
电力电子与电机系统控制研究所
转矩特性
当开关磁阻电机由图 5-23所示的电源供电时,如果 电动机匀速旋转,可得 Us Ld d tiiR i( 5r- 1L5)
式中,等号右边第一项为平衡绕组中变压器电势的压降;
开关磁阻电动机原理课件
设定实验条件
确定实验参数,如输入电压、电 流、转速等。
实验结果分析与性能评估
性能参数分析
根据实验数据,分析开关磁阻电 动机的各项性能参数,如转矩、 效率、噪音等。
性能曲线绘制
根据实验数据绘制性能曲线,直 观展示开关磁阻电动机的性能变 化趋势。
01 02 03 04
对比分析
将实验结果与其他电机或类似实 验进行对比,评估开关磁阻电动 机的优势和不足。
开关磁阻电动机的发展趋势
1 2 3
高效节能技术的提升
随着环保和节能意识的增强,开关磁阻电动机在 高效节能技术方面将得到进一步提升。
智能化控制
随着人工智能和物联网技术的发展,开关磁阻电 动机将实现智能化控制,提高运行效率和稳定性 。
多样化应用
开关磁阻电动机在工业、汽车、航空航天等领域 的应用将进一步扩大,满足不同领域的需求。
在电动车领域,开关磁阻电动 机是理想的动力源之一,具有 高效、节能、环保等优点。
02
开关磁阻电动机的工作原理
Chapter
定子结构与工作原理
定子结构
开关磁阻电动机的定子主要包括凸极和绕组,凸极 由导磁性良好的硅钢片叠成,绕组由漆包线绕制而 成。
工作原理
开关磁阻电动机是通过改变绕组中电流的方向和大 小,来改变磁场的方向和强度,从而驱动转子旋转 。
开关磁阻电动机的未来发展方向
优化设计
未来开关磁阻电动机的设计将更 加注重材料、结构和制造工艺的
优化,提高其性能和可靠性。
容错控制技术
为提高开关磁阻电动机的可靠性和 稳定性,未来将进一步开发容错控 制技术,使其在故障情况下仍能保 持稳定运行。
绿色环保
未来的开关磁阻电动机将更加注重 环保和节能,采用低噪声、低能耗 、环保型材料和制造工艺,满足绿 色环保要求。
三相开关磁阻电动机工作原理
三相开关磁阻电动机工作原理三相开关磁阻电动机是一种新型的电动机,它是通过改变电机转子中磁阻的位置和大小,来实现转子的运转。
下面将详细介绍三相开关磁阻电动机的工作原理。
1.磁阻电动机的基本结构三相开关磁阻电动机由定子和转子两部分组成。
定子上布置有三相绕组分别为a、b、c,两相之间相差120度,且依次排列。
转子则由若干个感应极和磁阻极组成,磁阻极和感应极交替排列。
当电源接通时,定子绕组中产生旋转磁场,由于转子上的磁阻极和感应极交替排列,磁阻极被旋转磁场作用后就会移动到感应极的位置上,同时改变转子的磁阻和电感,从而使磁阻极受到电磁力的作用,实现转子运转。
2.工作原理三相开关磁阻电动机的工作原理可以分为两个阶段。
第一阶段:定子电流呈正弦波,定子中的交变电流在绕组中产生旋转磁场,磁场的北和南极相互排列,交替周转。
第二阶段:当转子上的磁阻极与磁场的北极对齐时,三相开关磁阻电动机中的定子绕组中产生一个瞬态电流,从而改变磁阻极的磁场方向以及电感,使得磁阻极受到电磁力的作用,使得转子开始旋转。
第三阶段:当转子旋转到达最大速度时,磁阻极又与磁场的南极对齐,定子绕组中再次产生一个瞬态电流,从而将磁阻极向另一侧移动。
第四阶段:当转子继续旋转一定角度时,由于电流方向的变化,磁阻极又会和磁场的北极对齐,从而重复第二阶段和第三阶段的运动,实现了转子的连续旋转。
3.优点和应用三相开关磁阻电动机具有转矩平稳、无电火花、低噪音、高效率、抗干扰能力强等优点,因此广泛应用于家用电器、电动工具、自行车电机等领域。
此外,三相开关磁阻电动机的技术和研发能力也是当前电动机行业的热门话题,未来发展前景广阔。
总之,三相开关磁阻电动机在磁阻控制、电动传动领域优势明显,因此具有很高的发展潜力和应用前景。
希望更多的人们能够关注并支持这种新型电动机的发展。
开关磁阻电机工作原理及其驱动系统
开关磁阻电机工作原理及其驱动系统开关磁阻电机Switched Reluctance Drivesystem, SRD开关磁阻电机驱动系统(Switched Reluctance Drive system, SRD)具有一些很有特色的优点:电机结构简单、坚固、维护方便甚至免维护,起动及低速时转矩大、电流小;高速恒功率区范围宽、性能好,在宽广转速和功率范围内都具有高输出和高效率而且有很好的容错能力。
这使得SR电机驱动系统在家用电器、通用工业、伺服与调速系统、牵引电机、高转速电机、航空航天等领域得到广泛应用。
SR电机是一种机电能量转换装置。
根据可逆原理,SR电机和传统电机一样,它既可将电能转换为机械能——电动运行,在这方面的理论趋于成熟;也可将机械能转换为电能——发电运行,其内部的能量转换关系不能简单看成是SR电动机的逆过程。
开关磁阻电机的发展概况和发展趋势“开关磁阻电机(Switched reluctance motor)”一词源见于美国学者S.A.Nasarl969年所撰论文,它描述了这种电机的两个基本特征:①开关性——电机必须工作在一种连续的开关模式,这是为什么在各种新型功率半导体器件可以获得后这种电机才得以发展的主要原因;②磁阻性——它是真正的磁阻电机,定、转子具有可变磁阻磁路,更确切地说,是一种双凸极电机。
开关磁阻电机的概念实际非常久远,可以追溯到19世纪称为“电磁发动机”的发明,这也是现代步进电机的先驱。
在美国,这种电机常常被称为“可变磁阻电机(variable reluctance motor, VR电机)”一词, 但是VR电机也是步进电机的一种形式,容易引起混淆。
有时人们也用“无刷磁阻电机(Brushless reluctance motor)”一词,以强调这种电机的无刷性。
“电子换向磁阻电机(Electronically commutated reluctance motor)”一词也曾采用,从工作原理来看,甚至比“开关磁阻”的说法更准确—些,但也容易与电子换向的水磁直流电机相混淆。
开关磁阻电机的原理及其控制系统
开关磁阻电机的原理及其控制系统开关磁阻电机80年代初随着电力电子、微电脑和控制理论的迅速发展而发展起来的一种新型调速驱动系统。
具有结构简单、运行可靠、成本低、效率高等突出优点,目前已成为交流电机调速系统、直流电机调速系统、无刷直流电机调速系统的强有力的竞争者。
一、开关磁阻电机的工作原理开关磁阻电机的工作原理遵循磁磁阻最小原理,即磁通总是要沿着磁阻最小路径闭合。
因此,它的结构原则是转子旋转时磁路的磁阻要有尽可能大的变化。
所以开关磁阻电动机采用凸极定子和凸极转子的双凸极结构,并且定转子极数不同。
开关磁阻电机的定子和转子都是凸极式齿槽结构。
定、转子铁芯均由硅钢片冲成一定形状的齿槽,然后叠压而成,其定、转子冲片的结构如图1所示。
图1:开关磁阻电机定、转子结构图图1所示为12/8极三相开关磁阻电动机,S1. S2是电子开关,VD1, VD2是二极管,是直流电源。
电机定子和转子呈凸极形状,极数互不相等,转子由叠片构成,定子绕组可根据需要采用串联、并联或串并联结合的形式在相应的极上得到径向磁场,转子带有位置检测器以提供转子位置信号,使定子绕组按一定的顺序通断,保持电机的连续运行。
电机磁阻随着转子磁极与定子磁极的中心线对准或错开而变化,因为电感与磁阻成反比,当转子磁极在定子磁极中心线位置时,相绕组电感最大,当转子极间中心线对准定子磁极中心线时,相绕组电感最小。
当定子A相磁极轴线OA与转子磁极轴线O1不重合时,开关S1, S2合上,A相绕组通电,电动机内建立起以OA为轴线的径向磁场,磁通通过定子扼、定子极、气隙、转子极、转子扼等处闭合。
通过气隙的磁力线是弯曲的,此时磁路的磁导小于定、转子磁极轴线重合时的磁导,因此,转子将受到气隙中弯曲磁力线的切向磁拉力产生的转矩的作用,使转子逆时针方向转动,转子磁极的轴线O1向定子A相磁极轴线OA趋近。
当OA和O1轴线重合时,转子己达到平衡位置,即当A相定、转子极对极时,切向磁拉力消失。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开关磁阻电机的工作原理
开关磁阻电机是一种能够快速启停和反转的电动机,它的工作原理基于磁阻的变化。
下面是开关磁阻电机的工作原理的详细解释:
1. 结构:开关磁阻电机由定子和转子组成。
定子上有多个绕组,每个绕组之间通过磁阻作为连接。
转子上也有绕组,与定子的绕组相连。
2. 动作原理:当电流通过定子的绕组时,会在绕组中产生一个磁场。
当转子中的绕组与定子绕组的磁场相互作用时,转子会受到一个力矩的作用,使其转动。
3. 磁场调节:开关磁阻电机通过改变传感器绕组中的电流方向来改变磁场的方向。
改变磁场的方向可以改变转子所受到的力矩的方向,从而实现电机的启动、停止和反转。
4. 工作过程:当需要启动电机时,通过改变传感器绕组中的电流方向,改变磁场的方向,使转子受到力矩的作用开始转动。
当需要停止电机时,改变电流方向,使磁场的方向与转动方向相反,转子受到的力矩变为阻碍转动的力矩,从而停止电机的转动。
当需要反转电机时,改变电流方向,使磁场的方向与原来相反,从而改变转子受到的力矩方向,使电机反向转动。
总之,开关磁阻电机的工作原理是通过改变磁场的方向来实现电机的启动、停止和反转,从而能够快速调节和控制电机的运转状态。