初一下学期数学几何题

合集下载

七年级下册数学应用问题和几何题100道

七年级下册数学应用问题和几何题100道

七年级下册数学应用问题和几何题100道第一部分:数学应用问题(50道)1. 某商店有100个苹果,每天卖出5个,问几天能卖完?2. 一本书的原价是80元,打6折后的价格是多少?3. 小明父亲的年龄是35岁,小明的年龄是他父亲的1/5,问小明几岁?4. 一个长方形的长度是10厘米,宽度是4厘米,计算它的面积和周长。

5. 爸爸给小明的压岁钱是200元,小明花了其中的1/4买了一本书,还剩多少钱?6. 小华每天早上骑自行车去学校,单程需要15分钟,问他来回一共要多长时间?7. 小红家离学校有3千米,她每天步行去学校,速度是每小时4千米,问她需要多长时间到达学校?8. 小明购买了一台电视机,原价是2000元,经过砍价后,他以8折的价格购买了它,他花了多少钱?9. 一家超市里面,水果有苹果、橙子和香蕉,苹果有24个,橙子是苹果的3/4,香蕉是橙子的2倍,问超市里面一共有多少个水果?10. 甲、乙两个人合作做一件工作,甲能独立完成这个工作需要6天,乙能独立完成这个工作需要8天,问他们合作完成这个工作需要多少天?...(依次类推)第二部分:几何题(50道)51. 把一个长方形切成4个同样大小的正方形,每个正方形的边长是10厘米,那么原来长方形的周长是多少?52. 一个正方形的边长是8厘米,计算它的面积和周长。

53. 一个圆的半径是5厘米,计算它的面积和周长。

54. 一条边长为12厘米的正三角形,计算它的周长。

55. 一个矩形的长是10厘米,宽是6厘米,计算它的面积和周长。

56. 一条边长为9厘米的正六边形,计算它的周长。

57. 一个长方体的长是5厘米,宽是3厘米,高是4厘米,计算它的体积和表面积。

58. 一个圆柱体的底面半径是3厘米,高是8厘米,计算它的体积和表面积。

59. 一个圆锥体的底面半径是6厘米,高是10厘米,计算它的体积和表面积。

60. 一个球的半径是7厘米,计算它的体积和表面积。

...(依次类推)本文档包含50道数学应用问题和50道几何题,帮助七年级学生进行数学应用和几何的练习。

七年级数学(下册)几何典型题

七年级数学(下册)几何典型题

七年级数学(下册)几何典型题1. 如图,AC 、BD 相交于点O ,∠A =ABC ,∠DBC =∠D ,BD 平分∠ABC ,点E 在BC 的延长线上。

(1) 求证:CD//AB;(2) 若∠D =38°,求∠ACE 的度数。

2. 如图,直线AB 、CD 相交于点O ,EO ⊥AB ,垂足为O 。

(1) 若∠EOC =35°,求∠EOD 的度数;(2) 若∠AOC+∠BOD =100°,求∠EOD 的度数。

3. 如图,在直角坐标系XOY 中,点A 、B 的坐标分别是A (-1,0),B (3,0),将线段AB 向上平移2个单位,再向右平移1个单位,得到线段DC ,点AB 的对就点分别是点D 、C ,连接AD 、BC.(1) 直接写出点C 、D 的坐标; (2) 求四边形ABCD 的面积;(3) 点P 为线段BC 上任意一点(与点B 、C 不重合),连接PD 、PO.求证:∠CDP+∠BOP=∠OPD.4. 如图,直接EF 分别与直线AB ,CD 相交于点P 和点Q ,PG 平分∠APQ, QH 平分∠DQP ,并且∠1=∠2,说出图中哪些直线平行。

5. 平面内的两条直线有相交和平行两种位置关系。

(1) 如图1,若AB//CD ,点P 在AB 、CD 内部,∠B =50°,∠D =30°,求∠BPD 的度数。

(2) 如图2,将点P 移到AB 、CD 外部,则∠BPD 、∠B 、∠D 之间有何数量关系?请写出你的结论并加以证6. 如图,方格纸中每个小方格都是长为1个单位的正方形,若学校位置坐标为A (1,2),解答以下问题。

(1) 请在图中建立适当的直角坐标系,并写出图书馆(B )的位置坐标。

(2) 若体育馆位置坐标为C (-3,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC ,求△ABC 的面积。

7. 如圖,CE ⊥AB 于E ,DF ⊥AB 于F ,AC ∥A CE FB8. 如图,在平面直角坐标系中,已知点A (-3,3),B (-5,1),C (-2,0),P (a,b )是△ABC 的边AC 上任意一点,△ABC 经过平移后得到△A ’B ’C ’,点P 的对应点为P ’(a+6,b-2). (1) 直接写出点C ’的坐标; (2) 在图中画出△A ’B ’C ’; (3) △AOA ’的面积。

初一数学几何图形练习题及答案20题

初一数学几何图形练习题及答案20题

初一数学几何图形练习题及答案20题1. 填空题:a. 正方形的对角线长度是________(1词)。

b. 两个互相垂直的角的和为________度(1词)。

2. 判断题(正确为T,错误为F):a. 直角三角形的两个直角边可以相等。

()b. 一个平行四边形的对角线相等。

()c. 所有的矩形都是正方形。

()d. 一个凸四边形的内角和为360度。

()3. 简答题:a. 请解释平行四边形的定义及性质。

(至少2句)b. 解释锐角、钝角和直角分别是什么角度范围。

(至少1句)4. 计算题:在下图中,ΔABC是个等边三角形,边长为4cm。

a. 请计算三角形ABC的周长。

(2词)b. 请计算三角形ABC的面积。

(2词)5. 应用题:桌子的形状为长方形,长为120cm,宽为80cm。

在桌子的边上画出一个同样形状的长方形,使得它的宽比原来的桌子短一半,长比原来的桌子长一半。

请计算这个新长方形的面积。

(2词)答案:1. a. 简答题b. 902. a. Fb. Tc. Fd. T3. a. 平行四边形是一个有四个边的四边形,且相对的两边是平行的。

其性质包括:对角线互相平分;相邻角互补;相对角相等。

b. 锐角是指小于90度的角;钝角是指大于90度小于180度的角;直角是指等于90度的角。

4. a. 12cmb. 4√3 cm²5. 1800 cm²通过以上20道初一数学几何图形练习题及答案的训练,可以帮助学生巩固和加深对于几何图形的理解和应用能力。

请同学们认真学习,并通过解答这些问题来提高自己的数学技能。

初一数学几何拓展试题及答案

初一数学几何拓展试题及答案

初一数学几何拓展试题及答案一、选择题1. 点A、B、C在同一直线上,点A在点B的左边,点C在点B的右边。

若AB=10cm,BC=15cm,那么AC的长度是多少?A. 5cmB. 25cmC. 35cmD. 20cm2. 在一个平面内,已知三角形ABC的三边长分别为a、b、c,且a+b>c,a-b<c。

根据三角形的三边关系,下列哪个条件是正确的?A. a=bB. a=cC. b=cD. a+c>b二、填空题1. 若一个角的度数是45°,那么它的补角是________度。

2. 已知一个直角三角形的两条直角边分别为3cm和4cm,那么它的斜边长是________cm。

三、解答题1. 在一个直角三角形中,已知两条直角边的长度分别为6cm和8cm,求这个三角形的周长。

2. 已知一个圆的半径为5cm,求这个圆的面积。

四、证明题1. 证明:在直角三角形中,斜边的中线等于斜边的一半。

答案:一、选择题1. D. 20cm(因为AC=AB+BC=10cm+15cm=25cm)2. D. a+c>b(根据三角形的三边关系定理)二、填空题1. 135度(因为补角是两个角的和为180度)2. 5cm(根据勾股定理,斜边长=√(3²+4²)=5cm)三、解答题1. 这个三角形的周长=6cm+8cm+10cm=24cm(根据勾股定理求出斜边长为10cm)2. 这个圆的面积=π×5²=25π cm²(圆的面积公式)四、证明题1. 证明:设直角三角形ABC中,∠C=90°,D为斜边AB的中点。

根据中线定理,CD=1/2AB。

因为∠C是直角,所以∠ACD=∠BCD=45°。

在直角三角形ACD中,由于∠ACD=45°,根据等腰直角三角形的性质,AD=CD。

因此,AD=1/2AB,即斜边的中线等于斜边的一半。

结束语:通过本试题的练习,同学们可以加深对几何基本概念和定理的理解,提高解题能力。

初一数学几何试题

初一数学几何试题

初一数学几何试题在初一的数学学习中,几何是一个重要的内容。

通过几何学习,我们可以更好地理解和应用数学知识。

下面是一些初一数学几何试题,帮助同学们巩固和加深对几何知识的理解。

题目一:简单几何形状辨认1. 下图中,哪个图形是一个正方形?(插入图片1:包含正方形、长方形、三角形、圆形的图形)2. 下列哪个图形是一个长方形?(插入图片2:包含正方形、长方形、三角形、圆形的图形)3. 下图中,哪个图形是一个等边三角形?(插入图片3:包含正方形、长方形、三角形、圆形的图形)题目二:几何形状的属性判断1. 一个正方形有多少条边?2. 一个长方形有多少条边?3. 一个等边三角形有多少条边?题目三:几何图形的分析与计算1. 下图中,如何计算出该三角形的面积?(插入图片4:包含一个三角形,顶点为A、B、C)2. 一个圆的直径等于10厘米,那么这个圆的半径是多少?3. 一个长方形的长是12厘米,宽是6厘米,计算出该长方形的周长。

题目四:几何图形的应用题1. 在下图中,如何画一条垂直于AB的线段?(插入图片5:包含一条直线段AB,要求画一条垂直于AB的线段)2. 一个正方形的周长是24厘米,求它的边长是多少?3. 一个长方形的周长是28厘米,长是6厘米,求它的宽。

以上是一些初一数学几何试题,希望能够帮助同学们巩固和加深对几何知识的理解。

通过解答这些试题,同学们可以提高对几何形状的辨认能力,了解几何图形的属性及其计算方法,并学会将几何知识应用于实际问题的求解中。

数学几何是一门需要思考和实践的学科,在学习中要注重动手实践,多做题目来巩固知识。

同时还需要培养观察力和逻辑思维能力,通过观察和思考来解决问题。

希望同学们能够善于运用几何知识,将它应用到日常生活和实际问题中,提高数学思维能力和解决问题的能力。

通过解答以上试题,相信同学们可以加深对初一数学几何知识的理解和掌握,为后续学习打下坚实的基础。

希望同学们能够继续努力学习,不断提高自己的数学水平。

初中七年级数学《平面直角坐标系中几何综合题》

初中七年级数学《平面直角坐标系中几何综合题》

七年级下学期期末备考之《平面直角坐标系中几何综合题》一.解答题(共17小题)1.(春•玉环县期中)如图在平面直角坐标系中,A(a,0),B(b,0),(﹣1,2).且|2a+b+1|+=0.(1)求a、b的值;(2)①在y轴的正半轴上存在一点M,使S△COM=S△ABC,求点M的坐标.(标注:三角形ABC的面积表示为S△ABC)②在坐标轴的其他位置是否存在点M,使S△COM=S△ABC仍成立?若存在,请直接写出符合条件的点M的坐标.2.(春•汕头校级期中)如图,在下面直角坐标系中,已知A(0,a),B(b,0),C(3,c)三点,其中a、b、c满足关系式:|a﹣2|+(b﹣3)2+=0.(1)求a、b、c的值;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在负整数m,使四边形ABOP的面积不小于△AOP面积的两倍?若存在,求出所有满足条件的点P的坐标,若不存在,请说明理由.3.(春•鄂城区期中)如图,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a、b满足a=+﹣1,现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC.(2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由.(3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)的值是否发生变化,并说明理由.4.(春•富顺县校级期末)在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2)(见图1),且|2a+b+1|+=0(1)求a、b的值;(2)①在x轴的正半轴上存在一点M,使△COM的面积=△ABC的面积,求出点M的坐标;②在坐标轴的其它位置是否存在点M,使△COM的面积=△ABC的面积仍然成立?若存在,请直接写出符合条件的点M的坐标;(3)如图2,过点C作CD⊥y轴交y轴于点D,点P为线段CD延长线上的一动点,连接OP,OE平分∠AOP,OF⊥OE.当点P运动时,的值是否会改变?若不变,求其值;若改变,说明理由.5.(春•泰兴市校级期末)已知:如图①,直线MN⊥直线PQ,垂足为O,点A在射线OP 上,点B在射线OQ上(A、B不与O点重合),点C在射线ON上且OC=2,过点C作直线l∥PQ,点D在点C的左边且CD=3.(1)直接写出△BCD的面积.(2)如图②,若AC⊥BC,作∠CBA的平分线交OC于E,交AC于F,求证:∠CEF=∠CFE.(3)如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA的延长线于点H,在点B运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.6.(春•江岸区期末)如图1,在平面直角坐标系中,A(a,0),B(b,3),C(4,0),且满足(a+b)2+|a﹣b+6|=0,线段AB交y轴于F点.(1)求点A、B的坐标.(2)点D为y轴正半轴上一点,若ED∥AB,且AM,DM分别平分∠CAB,∠ODE,如图2,求∠AMD的度数.(3)如图3,(也可以利用图1)①求点F的坐标;②点P为坐标轴上一点,若△ABP的三角形和△ABC的面积相等?若存在,求出P点坐标.7.(春•黄陂区期末)在直角坐标系中,已知点A、B的坐标是(a,0)(b,0),a,b满足方程组,c为y轴正半轴上一点,且S△ABC=6.(1)求A、B、C三点的坐标;(2)是否存在点P(t,t),使S△PAB=S△ABC?若存在,请求出P点坐标;若不存在,请说明理由;(3)若M是AC的中点,N是BC上一点,CN=2BN,连AN、BM相交于点D,求四边形CMDN的面积是.8.(春•海珠区期末)在平面直角坐标系中,点A(a,b)是第四象限内一点,AB⊥y轴于B,且B(0,b)是y轴负半轴上一点,b2=16,S△AOB=12.(1)求点A和点B的坐标;(2)如图1,点D为线段OA(端点除外)上某一点,过点D作AO垂线交x轴于E,交直线AB于F,∠EOD、∠AFD的平分线相交于N,求∠ONF的度数.(3)如图2,点D为线段OA(端点除外)上某一点,当点D在线段上运动时,过点D作直线EF交x轴正半轴于E,交直线AB于F,∠EOD,∠AFD的平分线相交于点N.若记∠ODF=α,请用α的式子表示∠ONF的大小,并说明理由.9.(春•黄梅县校级期中)如图,在下面的直角坐标系中,已知A(0,a),B(b,0),C(b,4)三点,其中a,b满足关系式.(1)求a,b的值;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标;若不存在,请说明理由.10.(春•通州区校级期中)在如图直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式+(b﹣3)2=0,(c﹣4)2≤0.(1)求a、b、c的值;(2)如果点P(m,n)在第二象限,四边形CBOP的面积为y,请你用含m,n的式子表示y;(3)如果点P在第二象限坐标轴的夹角平分线上,并且y=2S四边形CBOA,求P点的坐标.11.(春•鄂州校级期中)如图,A、B两点坐标分别为A(a,4),B(b,0),且a,b满足(a﹣2b+8)2+=0,E是y轴正半轴上一点.(1)求A、B两点坐标;(2)若C为y轴上一点且S△AOC=S△AOB,求C点的坐标;(3)过B作BD∥y轴,∠DBF=∠DBA,∠EOF=∠EOA,求∠F与∠A间的数量关系.12.(春•东湖区期中)如图,平面直角坐标系中A(﹣1,0),B(3,0),现同时将A、B 分别向上平移2个单位,再向右平移1个单位,分别得到A、B的对应点C、D,连接AC、BD(1)直接写出C、D的坐标:C D及四边形ABCD的面积:(2)在y轴负半轴上是否存在点M,连接MA、MB使得S△MAB>S四边形ABCD?若存在,求出M点纵坐标的取值范围;若不存在说明理由(3)点P为线段BD上一动点,连PC、PO,当点P在BD上移动(不含端点)现给出①的值不变,②的值不变,其中有且只有一个正确,请你找出这个结论并求其值.13.(春•台州月考)如图,在平面直角坐标系中,点A,B的坐标分别为A(0,α),B(b,α),且α、b满足(a﹣2)2+|b﹣4|=0,现同时将点A,B分别向下平移2个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABCD(2)在y轴上是否存在一点M,连接MC,MD,使S△MCD=S四边形ABDC?若存在这样一点,求出点M的坐标,若不存在,试说明理由.(3)点P是线段BD上的一个动点,连接PA,PO,当点P在BD上移动时(不与B,D重合)的值是否发生变化,并说明理由.14.(春•海安县月考)如图,在平面直角坐标系中,点A,B,C的坐标分别为(﹣1,0),(3,0),(0,2),图中的线段BD是由线段AC平移得到.(1)线段AC经过怎样的平移可得到线段BD,所得四边形是什么图形,并求出所得的四边形ABDC的面积S四边形ABDC;(2)在y轴上是否存在点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在,求出点P的坐标;若不存在,试说明理由;(3)点P是线段BD上的一个动点,连接PC、PO,当点P在BD上移动时(不与B,D重合)给出下列结论:①的值不变;②的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.15.(春•武汉月考)已知,在平面直角坐标系中,点A(0,m),点B(n,0),m、n满足(m﹣3)2=﹣;(1)求A、B的坐标;(2)如图1,E为第二象限内直线AB上一点,且满足S△AOE=S△AOB,求E的坐标.(3)如图2,平移线段BA至OC,B与O是对应点,A与C对应,连AC.E为BA的延长线上一动点,连EO.OF平分∠COE,AF平分∠EAC,OF交AF于F点.若∠ABO+∠OEB=α,请在图2中将图形补充完整,并求∠F(用含α的式子表示).16.(2013秋•江岸区校级月考)如图,已知点A(﹣m,n),B(0,m),且m、n满足+(n﹣5)2=0,点C在y轴上,将△ABC沿y轴折叠,使点A落在点D处.(1)写出D点坐标并求A、D两点间的距离;(2)若EF平分∠AED,若∠ACF﹣∠AEF=20°,求∠EFB的度数;(3)过点C作QH平行于AB交x轴于点H,点Q在HC的延长线上,AB交x轴于点R,CP、RP分别平分∠BCQ和∠ARX,当点C在y轴上运动时,∠CPR的度数是否发生变化?若不变,求其度数;若变化,求其变化范围.17.(2013春•武汉校级月考)如图,在平面直角坐标系中,点A,B的坐标分别为A(﹣1,0)、B(3,0).现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C、D,连接AC,BD.(1)直接写出点C、D的坐标,求四边形ABDC的面积S四边形ABDC;(2)在坐标轴上是否存在一点P,使S△PAC=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由.(3)如图3,在线段CO上取一点G,使OG=3CG,在线段OB上取一点F,使OF=2BF,CF与BG交于点H,求四边形OGHF的面积S四边形OGHF.。

初一下册几何证明题(完整版)

初一下册几何证明题(完整版)

初一下册几何证明题初一下册几何证明题第一篇:初一下册几何证明题初一下册几何证明题1.已知在三角形ab中,be,f分别是角平分线,d是ef中点,若d到三角形三边b,ab,a的距离分别为x,,z,求证:x=+z证明;过e点分别作ab,b上的高交ab,b于m,n点.过f点分别作a,b上的高交于p,q点.根据角平分线上的点到角的2边距离相等可以知道fq=fp,em=en.过d点做b上的高交b于o点.过d点作ab上的高交ab于h点,过d点作ab上的高交a于j点.则x=do,=h,z=dj.因为d是中点,角ane=角ahd=90度.所以hd平行me,me=2hd同理可证fp=2dj。

又因为fq=fp,em=en.fq=2dj,en=2hd。

又因为角fq,do,en都是90度,所以四边形fqne是直角梯形,而d是中点,所以2do=fq+en又因为fq=2dj,en=2hd。

所以do=hd+jd。

因为x=do,=h,z=dj.所以x=+z。

在正五边形abde中,m、n分别是de、ea上的点,bm与n相交于点o,若∠bon=108°,请问结论bm=n是否成立?若成立,请给予证明;若不成立,请说明理由。

当∠bon=108°时。

bm=n还成立证明;如图5连结bd、e.在△bi)和△de中∵b=d,∠bd=∠de=108°,d=de∴δbd≌δde∴bd=e,∠bd=∠ed,∠db=∠en∵∠de=∠de=108°,∴∠bdm=∠en∵∠ob+∠ed=108°,∠ob+∠od=108°∴∠mb=∠nd又∵∠db=∠ed=36°,∴∠dbm=∠en∴δbdm≌δne∴bm=n3.三角形ab中,ab=a,角a=58°,ab的垂直平分线交a与n,则角nb=3°因为ab=a,∠a=58°,所以∠b=61°,∠=61°。

初一数学几何图形试题

初一数学几何图形试题

初一数学几何图形试题1.如图是每个面上都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“国”字相对的面是()A.中B.钓C.鱼D.岛【答案】C【解析】易得“中”相对的面是“的”,“钓”相对的面是“岛”,从而可得“国”相对的面是“鱼”选C.2.把右图中的三棱柱展开,所得到的展开图是()【答案】B【解析】上、下两底面应在侧面展开图长方形的两侧的只有B,故选B.3.如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色.下列图形中,是该几何体的表面展开图的是()A.B.C.D.【答案】B【解析】选项A和C带图案的一个面是底面,不能折叠成原几何体的形式;选项B能折叠成原几何体的形式;选项D折叠后下面带三角形的面与原几何体中的位置不同.故选B.4.如图,圆柱体的表面展开后得到的平面图形是()A.B.C.D.【答案】B【解析】圆柱体的侧面展开后得到的平面图形是矩形,上下两底是两个圆,故选B.5.小丽制作了一个对面图案均相同的正方体礼品盒(如图所示),则这个正方体礼品盒的平面展开图可能是()A.B.C.D.【答案】A【解析】本题考查了正方体的展开与折叠.可以动手折叠看看,充分发挥空间想象能力解决也可以.故选A.6.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是()A.B.C.D.【答案】C【解析】A、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;B、剪去阴影部分后,无法组成长方体,故此选项不合题意;C、剪去阴影部分后,能组成长方体,故此选项正确;D、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;故选C.7.一个矩形绕着它的一边旋转一周,所得到的立体图形是__________.【答案】圆柱【解析】以矩形的一边所在直线为旋转轴,形成的旋转体叫做圆柱体.8.直角三角形的两直角边长分别为4cm,3cm,以其中一条直角边所在直线为轴旋转一周,得到的几何体的底面积是_______.【答案】9πcm2或16πcm2【解析】由题意知,以其中一条直角边所在直线为轴旋转一周所得几何体为圆锥,底面是圆,底面的半径为3或4cm,所以,底面面积为9πcm2或16πcm2.9.如图,观察图形,填空:包围着体的是________;面与面相交的地方形成________;线与线相交的地方是________.【答案】面;线;点【解析】根据图形可得:包围着体的是面;面与面相交的地方形成线;线与线相交的地方是点.10.如图所示的四幅平面图中,是三棱柱的表面展开图的有________.(只填序号)【答案】②③【解析】三棱柱的两底展开是三角形,侧面展开是三个矩形,故答案为②③.。

初一下数学几何题10题

初一下数学几何题10题

初一下数学几何题10题
以下是10道初一下学期的数学几何题:
已知线段AB上有两点C和D,且AC=CD=DB。

若AB=12CM,求CD的长。

在三角形ABC中,AB=AC,D为BC上一点,且∠BAD=30°。

求证:∠ADC=75°。

已知∠AOB=90°,点C在∠AOB内部,且∠AOC=30°。

若OM平分∠AOC,求∠BOM的度数。

在平行四边形ABCD中,E、F分别为AB、CD上的中点,且EF与AC 相交于点G。

求证:AG=CG。

已知△ABC中,∠C=90°,AC=BC,D为AB上一点,且∠ADC=45°。

求证:AD=CD。

在矩形ABCD中,AB=6CM,BC=8CM。

若E为BC上一点,且AE=AB,求CE的长。

已知△ABC中,∠C=90°,D为AB的中点,DE⊥AB交BC于E。

求证:△BDE是等腰三角形。

在等腰梯形ABCD中,AD∥BC,AC⊥BD,AD=3CM,BC=7CM。

求梯形ABCD的面积。

已知△ABC中,AB=AC,D为BC上一点,且∠BAD=∠CAD。

求证:BD=CD。

已知平行四边形ABCD中,E、F分别为AB、CD上的点,且AE=CF。

求证:四边形AFCE是平行四边形。

这些题目涉及了线段、角度、三角形、平行四边形、等腰梯形等基础知识,旨在检验学生对初一下学期数学几何内容的掌握程度。

七下几何题总汇

七下几何题总汇

D
E
C
P
G
F
Q
A
B
13. 如图,已知在△ABC 内,∠BAC =60° ,∠C = 40° ,P、Q 分别在 BC、CA 上,并且 AP、 BQ 分别是∠BAC、∠ABC 的角平分线,求证: BQ + AQ = AB + BP .
A
B Q
P
C
4
14. 如图,在四边形 ABCD 中,∠B+∠ADC=180°,AB=AD,E、F 分别是 BC、CD 延长线
(2)如图②,如果四边形 ABCD 中,AB=AD,∠ABC 与∠ADC 互补,当 ∠EAF= 1 ∠BAD 2
时,EF 与 DF、BE 之间有怎样的数量关系?请写出结论并证明; (3)在(2)中,若 BC=4,DC=7,CF=2,求△CEF 的周长.
A
E
B
D
C
F 图1
A E
B D
F
C 图2
7
18. 如图,已知: AD 、 CE 分别是 ∆ABC 中 BC 、 AB 边上的高, AD 、 CE 交于点 G , BD = GD .
C
(2)求证:AE=CE+2EF.
E D F
A
B
12. 已知正方形 ABCD,点 P、Q 分别是边 AD、BC 上的两动点,将四边形 ABQP 沿 PQ 翻
折得到四边形 EFQP,点 E 在线段 CD 上,EF 交 BC 于 G,连结 AE.
求证:(1)EA 平分∠DEF; (2)EC+EG+GC=2AB.
几何练习题
1.已知:如图,AD 平分∠BAC,DE⊥AB 于 E,DF⊥AC 于 F,且 DB=DC,

七年级的几何题

七年级的几何题

七年级的几何题一、线段相关题目(5题)1. 已知线段AB = 8cm,点C在线段AB上,AC = 3cm,求BC的长。

- 解析:因为点C在线段AB上,BC = AB - AC。

已知AB = 8cm,AC = 3cm,所以BC = 8 - 3 = 5cm。

2. 线段AB被点C分成3:5两部分,若AC = 6cm,求AB的长。

- 解析:设AC = 3x,CB = 5x。

因为AC = 6cm,所以3x = 6,解得x = 2。

则AB=AC + CB = 3x+5x = 8x,把x = 2代入得AB = 8×2 = 16cm。

3. 已知线段AB = 12cm,在直线AB上有一点C,且BC = 4cm,求AC的长。

- 解析:分两种情况。

- 当点C在线段AB上时,AC = AB - BC。

因为AB = 12cm,BC = 4cm,所以AC = 12 - 4 = 8cm。

- 当点C在AB的延长线上时,AC = AB+BC。

所以AC = 12 + 4 = 16cm。

4. 点C是线段AB的中点,点D是线段BC的中点,若AB = 12cm,求AD的长。

- 解析:因为C是AB中点,所以AC = BC=(1)/(2)AB=(1)/(2)×12 = 6cm。

又因为D是BC中点,所以CD=(1)/(2)BC=(1)/(2)×6 = 3cm。

则AD = AC+CD = 6 + 3 =9cm。

5. 已知线段AB,延长AB到C,使BC=(1)/(3)AB,D为AC中点,若DC = 2cm,求AB的长。

- 解析:设AB = x,则BC=(1)/(3)x,AC = AB + BC=x+(1)/(3)x=(4)/(3)x。

因为D 为AC中点,DC=(1)/(2)AC,已知DC = 2cm,所以(1)/(2)×(4)/(3)x = 2,解得x = 3cm,即AB = 3cm。

二、角相关题目(5题)1. 已知∠AOB = 80°,∠BOC = 30°,求∠AOC的度数。

七年级下几何证明题(精选)

七年级下几何证明题(精选)

七年级下几何证明题(精选)第一篇:七年级下几何证明题(精选)七年级下几何证明题学了三角形的外角吗?(三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于和它不相邻的任何一个内角) 角ACD>角BAC>角AFE角ACD+角ACB=180度角BAC+角ABC+角ACB=180度所以角ACD=角BAC+角ABC所以角角ACD>角BAC同理:角BAC>角AFE所以角ACD>角BAC>角AFE解∶﹙1﹚连接AC∴五边形ACDEB的内角和为540°又∵∠ABE+∠BED+∠CDE=360°∴∠A+∠C=180°∴AB∥CD﹙2﹚过点D作AB的垂线DE∵∠CAD=∠BAD,∠C=∠AEDAD为公共边∴Rt△ACD≌Rt△AED∴AC=AE,CD=DE∵∠B=45°∠DEB=90°∴∠EDB=45°∴DE=BEAB=AE+BE=AC+CD﹙3﹚∵腰相等,顶角为120°∴两个底角为30°根据直角三角形中30°的角所对的边为斜边的一半∴腰长=2高=16﹙4﹚根据一条线段垂直平分线上的点到线段两个端点的距离相等∴该交点到三角形三个顶点的距离相等解∶﹙1﹚先连接AC∴五边形ACDEB的内角和为540°∵∠ABE+∠BED+∠CDE=360°∴∠A+∠C=180°∴就证明AB∥CD♂等鴏♀栐薳2010-05-3017:33(1)解:过E作FG∥AB∵FG∥AB∴∠ABE+∠FEB=180°又∵∠ABE+∠CDE+∠BED=360°∴∠FED+∠CDE=180°∴FG∥CD∴AB∥CD(2)解:作DE⊥AB于E∵AD平分∠CAB,CD垂直AC,DE垂直AB∴CD=DE,AC=AE又∵AC=CB,DE=EB,AC⊥CB,DE⊥EB∴∠ABC=∠EDB=45°∴DE=EB∴AB=AE+EB=AC+CD(3)16CM(4)3个顶点如图已知在四边形ABCD中,∠BAD为直角,AB=AD,G为AD 上一点,DE⊥BG交BG的延长线于E,DE的延长线与BA的延长线相交于点F。

(完整版)初一下册数学角度几何解析题以及练习题(附答案).doc

(完整版)初一下册数学角度几何解析题以及练习题(附答案).doc

七年级下册数学几何解析题以及练习题(附答案)9.(2011 ·扬州 ) 如图,C岛在A岛的北偏东60°方向,在B岛的北偏西 45°方向,则从C岛看 A、 B 两岛的视角∠ ACB=________.答案105°解析如图,∵ (60 °+∠CAB)+(45 °+∠ABC)=180°,∴∠CAB+∠ABC=75°,在△ ABC中,得∠ C=105°.12.如图所示,在△ABC中,∠ A=80°,∠ B=30°, CD平分∠ ACB, DE∥AC.(1)求∠ DEB的度数;(2)求∠ EDC的度数.解(1) 在△ABC中,∠A=80°,∠B=30°,∴∠ ACB=180°-∠ A-∠ B=70°.∵ DE∥AC,∴∠ DEB=∠ ACB=70°.(2)∵ CD平分∠ ACB,1∴∠ DCE=2∠ ACB=35°.∵∠ DEB=∠ DCE+∠ EDC,∴∠ EDC=70°-35°=35°.13.已知,如图,∠1=∠ 2,CF⊥AB于F,DE⊥AB于E,求证:FG∥BC.( 请将证明补充完整 )证明∵ CF⊥ AB, DE⊥ AB(已知),∴ ED∥FC() .∴∠ 1=∠BCF() .又∵∠ 1=∠ 2( 已知 ) ,1∴ FG ∥BC () .解 在同一平面内, 垂直于同一直线的两条直线互相平行;两直线平行, 同位角相等;内错角相等,两直线平行.14.如图,已知三角形ABC ,求证:∠ A +∠ B +∠ C =180°.分析:通过画平行线,将∠A 、∠B 、∠C 作等角代换,使各角之和恰为一平角,依辅助线不同而得多种证法,如下:证法 1:如图甲,延长 BC 到 D ,过 C 画 CE ∥ BA .∵BA ∥ CE ( 作图所知 ) ,∴∠ B =∠ 1,∠ A =∠ 2( 两直线平行,同位角、内错角相等) .又∵∠ BCD =∠ BCA +∠ 2+∠ 1=180°( 平角的定义 ) ,∴∠ A +∠ B +∠ ACB =180°( 等量代换 ) .如图乙,过 BC 上任一点 F ,画 FH ∥AC , FG ∥ AB ,这种添加辅助线的方法能证明∠A +∠B +∠C =180°吗?请你试一试.解 ∵ FH ∥AC ,∴∠ BHF =∠ A ,∠ 1=∠ C .∵ FG ∥AB ,∴∠ BHF =∠ 2,∠ 3=∠ B ,∴∠ 2=∠ A .∵∠ BFC =180°,∴∠ 1+∠ 2+∠ 3=180°,即∠ A +∠ B +∠ C =180°.15.(2010 ·玉溪 ) 平面内的两条直线有相交和平行两种位置关系.(1) 如图 a ,若 AB ∥ CD ,点 P 在 AB 、 CD 外部,则有∠ B =∠ BOD .又因∠ BOD 是△ POD的外角,故∠ BOD =∠ BPD +∠ D ,得∠ BPD =∠ B -∠ D . 将点 P 移到 AB 、CD 内部,如图 b ,以上结论是否成立?若成立,说明理由;若不成立,则∠、∠ 、∠ D 之BPD B间有何数量关系?请证明你的结论;(2) 在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点 Q,如图 c,则∠ BPD、∠ B、∠ D、∠ BQD之间有何数量关系?( 不需证明 )(3)根据 (2) 的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.解(1) 不成立,结论是∠BPD=∠B+∠D.延长 BP交 CD于点 E,∵ AB∥CD,∴∠ B=∠ BED.又∠ BPD=∠ BED+∠ D,∴∠ BPD=∠ B+∠ D.(2)结论:∠ BPD=∠ BQD+∠ B+∠ D.(3)设 AC与 BF交于点 G.由 (2) 的结论得:∠AGB=∠ A+∠ B+∠ E.又∵∠ AGB=∠ CGF,∠ CGF+∠ C+∠ D+∠ F=360°,∴∠ A+∠ B+∠ C+∠D+∠ E+∠ F=360°.A 14.把一副常用的三角板如图所示拼在一起,那么图中∠ADE是度. DEBC第 14 题2.如图,在△ ABC和△ ABD中,现给出如下三个论断:①AD=BC;②∠C=∠D;③∠1=∠2。

几何题初一数学

几何题初一数学

选择题:
下列哪个图形是轴对称图形?
A. 等腰三角形(正确答案)
B. 不等边三角形
C. 非矩形平行四边形
D. 不规则四边形
一条直线将一个平面分成几部分?
A. 1部分
B. 2部分(正确答案)
C. 3部分
D. 4部分
下列哪个性质是平行线的特征?
A. 相交于一点
B. 永远不相交(正确答案)
C. 长度相等
D. 有公共端点
两条直线相交,最多能形成几个角?
A. 2个
B. 3个
C. 4个(正确答案)
D. 5个
下列哪个工具可以用来测量角的大小?
A. 直尺
B. 量角器(正确答案)
C. 圆规
D. 三角板(虽然三角板上有角度,但通常不用于精确测量未知角)
一个角的补角是70°,这个角是多少度?
A. 20°
B. 70°
C. 110°(正确答案)
D. 180°
下列哪个图形不是多边形?
A. 三角形
B. 长方形
C. 圆形(正确答案)
D. 五边形
一个多边形的内角和是720°,这个多边形是几边形?
A. 四边形
B. 五边形(正确答案)
C. 六边形
D. 七边形
下列哪个性质是矩形特有的,而平行四边形不一定具有?
A. 对边平行
B. 对角相等
C. 四个角都是直角(正确答案)
D. 对角线互相平分。

七年级下册数学几何题大全

七年级下册数学几何题大全

七年级下册数学几何题大全
七年级下册数学几何题是中学生在学习数学时需要经常练习的基
础性难题。

它们能够帮助学生们掌握计算、演绎以及图形思维的技能。

下面就来介绍一些七年级下册数学几何题:
(1)带标号的线段:这是一项常见的几何练习,要求学生们判
断线段长度,标记出从远到近的道路段号。

(2)三角形面积计算:要求学生根据给定的三个边长的面积,
利用三角公式计算三角形的面积。

(3)多边形和圆形:这是一项数学考试中的普遍几何题,要求
学生计算出一个多边形或圆形的周长,或者求出多边形或圆形的面积。

(4)正方体面积、体积计算:要求学生根据给定的边长,利用
立体几何公式计算出正方体的面积和体积。

(5)求三维图形体积:要求学生根据给定的三维坐标,求出三
维图形的体积。

(6)平面图形综合练习:这个练习十分有益,不仅能帮助学生
掌握平面几何知识,而且还能熟悉坐标系统,可以算出二维和三维图
形的面积等指标,便于学生在算术和几何的实践和应用中进行合理的
推理。

以上就是七年级下册数学几何题的一些典型例子,是中学生在学
习数学时必不可少的练习题目,可以帮助学生更好地掌握几何知识,
并且在抽象思维和应用能力上有所提高。

初一数学几何题(50题)经典1

初一数学几何题(50题)经典1

1.如图1,在△ABC中,∠B=90°,分别作其内角∠ACB与外角∠DAC的平分线,且两条角平分线所在的直线交于点E.(1)∠E=°;(2)分别作∠EAB与∠ECB的平分线,且两条角平分线交于点F.①依题意在图1中补全图形;②求∠AFC的度数;(3)在(2)的条件下,射线FM在∠AFC的内部且∠AFM=∠AFC,设EC与AB的交点为H,射线HN在∠AHC的内部且∠AHN=∠AHC,射线HN与FM交于点P,若∠FAH,∠FPH和∠FCH满足的数量关系为∠FCH=m∠FAH+n∠FPH,请直接写出m,n的值.2.直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B在射线OM 上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值;(2)如图2,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线相交于E、F,则∠EAF=°;在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.3.已知,在△ABC中,∠A=∠C,点F和E分别为射线CA和射线BC上一点,连接BF和FE,且∠BFE=∠FEB.(1)如图1,当点F在线段AC上时,若∠FBE=2∠ABF,则∠EFC与∠FBE的数量关系为.(2)如图2,当点F在CA延长线上时,探究∠EFC与∠FBA的数量关系,并说明理由.(3)如图3在(2)的条件下,过C作CH⊥AB于点H,CN平分∠BCH,CN交AB于N,由N作NM⊥NC交CF于M,若∠BFE=5∠FBA,MN∥FB时,求∠ABC 的度数.4.(Ⅰ)(1)问题引入如图①,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC=(用α表示);(2)拓展研究如图②,∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,试求∠BOC的度数(用α表示)(3)归纳猜想若BO、CO分别是△ABC的∠ABC、∠ACB的n等分线,它们交于点O,∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,则∠BOC=(用α表示).(Ⅱ)类比探索(1)特例思考如图③,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,求∠BOC的度数(用α表示).(2)一般猜想若BO、CO分别是△ABC的外角∠DBC、∠ECB的n等分线,它们交于点O,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,请猜想∠BOC=(用α表示).5.(1)如图①,把△ABC纸片沿DE折叠,使点A落在四边形BCED内部点A′的位置.试写出∠A与∠1+∠2之间的关系,并说明理由;(2)如果把△ABC纸片沿DE折叠,使点A落在四边形BCED外部点A′的位置,如图②所示.此时∠A与∠1、∠2之间存在什么样的关系?直接写出.(3)如果把四边形ABCD沿EF折叠,使点A、D分别落在四边形BCFE内部点A′、D′的位置,如图③所示.直接写出∠A′、∠D′、∠1与∠2之间的关系.6.已知BM、CN分别是△A1BC的两个外角的角平分线,BA2、CA2分别是∠A1BC 和∠A1CB的角平分线,如图①;BA3、CA3分别是∠A1BC和∠A1CB的三等分线(即∠A3BC=∠A1BC,∠A3CB=∠A1CB),如图②;依此画图,BA n、CA n分别是∠A1BC和∠A1CB的n等分线(即∠A n BC=∠A1BC,∠A n CB=∠A1CB),n≥2,且n为整数.(1)若∠A1=70°,求∠A2的度数;(2)设∠A1=α,请用α和n的代数式表示∠A n的大小,并写出表示的过程;(3)当n≥3时,请直接写出∠MBA n+∠NCA n与∠A n的数量关系.7.如图,在△ABC中,AD⊥BC,垂足为D,AE平分∠BAC,且∠ABC>∠C.求证:∠DAE=(∠ABC﹣∠C).8.如图,在△ABC中,AD,BD分别平分∠CAB和∠CBA,相交于点D.(1)如图1,过点D作DE∥AC,DF∥BC分别交AB于点E、F.①若∠EDF=80°,则∠C=;②若∠EDF=x°,证明:∠ADB=(90+)°.(2)如图2,若DE,BE分别平分∠ADB和∠ABD,且EF,BF分别平分∠BED和∠EBD,若∠BFE的度数是整数,求∠BFE至少是多少度?9.已知如图①,BP、CP分别是△ABC的外角∠CBD、∠BCE的角平分线,BQ、CQ分别是∠PBC、∠PCB的角平分线,BM、CN分别是∠PBD、∠PCE的角平分线,∠BAC=α.(1)当α=40°时,∠BPC=°,∠BQC=°;(2)当α=°时,BM∥CN;(3)如图②,当α=120°时,BM、CN所在直线交于点O,求∠BOC的度数;(4)在α>60°的条件下,直接写出∠BPC、∠BQC、∠BOC三角之间的数量关系:.10.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2=°;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间有何关系?(3)若点P在Rt△ABC斜边BA的延长线上运动(CE<CD),则∠α、∠1、∠2之间有何关系?猜想并说明理由.11.(1)如图①,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠ADC=40°,∠ABC=30°,求∠AEC的大小;(2)如图②,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=m°,∠ABC=n°,求∠AEC的大小;(3)如图③,∠BAD的平分线AE与∠BCD的平分线CE交于点E,则∠AEC与∠ADC、∠ABC之间是否仍存在某种等量关系?若存在,请写出你得结论,并给出证明;若不存在,请说明理由.12.(1)如图1,在平面直角坐标系xOy中,点A、B分别为x轴正半轴和y轴正半轴上的两个定点,点C为x轴上的一个动点(与点O,A不重合),分别作∠OBC和∠ACB的角平分线,两角平分线所在直线交于点E,直接问答∠BEC的度数及点C所在的相应位置.(2)如图2,在平面直角坐标系xOy中,△FGH的一个顶点F在y轴的负半轴上,射线FO平分∠GFH,过点H的直线MN交x轴于点M,满足∠MHF=∠GHN,过点H作HP⊥MN交x轴于点P,请探究∠MPH与∠G的数量关系,并写出简要证明思路.13.在△ABC中,点D为△ABC的三条内角平分线的交点,BE⊥AD于点E,(1)当∠BAC=80°,∠ACB=60°时,∠BDC=.∠DBE=.(2)当∠BAC=α,∠ACB=β时,用含有α的代数式表示∠BDC的度数,用含有β的代数式表示∠DBE的度数.(3)如图2,若AD平分∠BAC,CD和BD分别平分△ABC的外角∠CBM和∠BCN,BE⊥AD于点E,(2)中的两个结论是否发生变化?14.如图①,AD平分∠BAC,AE⊥BC,∠B=40°,∠C=60°(1)求∠DAE的度数;(2)如图②,若把“AE⊥BC”变成“点F在DA的延长线上,FE⊥BC”,其他条件不变,求∠DFE的度数;(3)如图③,若把“AE⊥BC”变成“AE平分∠BEC”,其他条件不变,∠DAE的大小是否变化,并请说明理由.15.如图,AF平分∠BAC,DF平分∠BDC,求证:∠AFD=(∠H+∠BGC).16.如图,已知CD是△ABC的角平分线,E是BC上的点,∠B=60°,∠ACE=∠CAE=20°.求∠CDE的度数.17.如图,△ABC中,BD平分∠ABC交AC于D,CE平分∠ACB交AB于E,CE 与BD交于F,连接AF并延长交BC于H,过F作FG⊥BC于G.(1)若∠ABC=45°,∠ACB=65°,求∠HFG的度数;(2)根据(1)中的规律探索∠ABC、∠ACB与∠HFG之间的关系;(3)试探究∠BFH与∠CFG的大小关系,并说明理由.18.如图1,在△ABC中,∠A=60°,∠CBM,∠BCN是△ABC的外角,∠CBM,∠BCN的平分线BD,CD交于点D.(1)求∠BDC的度数;(2)在图1中,过点D作DE⊥BD,垂足为点D,过点B作BF∥DE交DC的延长线于点F(如图2),求证:BF是∠ABC的平分线.19.老师给了小胖同学这样一个问题:如图1,△ABC中,BE是∠ABC的平分线,点D是BC延长线上一点,2∠D=∠ACB,若∠BAC=60°,求∠BED小胖通过探究发现,过点C作CM∥AD(如图2),交BE于点M,将∠BED转移至∠BMC处,结合题目已知条件进而得到CM为∠ACB的平分线,在△ABC中求出∠BMC,从而得出∠BED.(1)请按照小胖的分析,完成此题的解答:(2)参考小胖同学思考问题的方法,解决下面问题:如图3,在△ABC中,点D是AC延长线上的一点,过点D作DE∥BC,DG平分∠ADE,BG平分∠ABC,DG与BG交于点G,若∠A=m°,求∠G的度数(用含m的式子表示)20.△ABC的三条角平分线相交于点I,过点I作DI⊥IC,交AC于点D.(1)如图1,求证:∠AIB=∠ADI;(2)如图2,延长BI,交外角∠ACE的平分线于点F.①判断DI与CF的位置关系,并说明理由;②若∠BAC=70°,求∠F的度数.21.如图1,已知△ABC,射线CM∥AB,点D是射线CM上的动点,连接AD.(1)如图2,若∠ACB=∠ABC,∠CAD的平分线与BC的延长线交于点E.①若∠BAC=40°,AD∥BC,则∠AEC的度数为;②在点D运动的过程中,探索∠AEC和∠ADC之间的数量关系;(2)若∠ACB=n∠ABC,∠CAD内部的射线AE与BC的延长线交于点E,∠CAE=n ∠EAD,那么∠AEC和∠ADC之间的数量关系为.22.如图,在△ABC中,点D为∠ABC的平分线BD上一点,连接AD,过点D 作EF∥BC交AB于点E,交AC于点F.(1)如图1,若AD⊥BD于点D,∠BEF=130°,求∠BAD的度数;(2)如图2,若∠ABC=α,∠BDA=β,求∠FAD+∠C的度数(用含α和β的代数式表示).23.如图,直线m与直线n互相垂直,垂足为O,A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动.(1)若∠BAO和∠ABO的平分线相交于点P,在点A、B的运动过程中,∠APB 的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(2)若△ABO的两个外角的平分线AQ、BQ相交于点Q,AP的延长线交QB的延长线于点C,在点A、B的运动过程中,∠Q和∠C的大小是否会发生变化?若不发生变化,请求出∠Q和∠C的度数;若发生变化,请说明理由.24.如图1,在△ABC中,∠ABC的平分线与∠ACB的平分线交于点D.我们可以得到一个一般性的结论∠BDC=90°+∠A.请应用这一结论,解决下面的问题.(1)如图2,过点D任意作直线MN,分别交AB和AC于点M和N,求∠MDB+∠NDC的度数(用含∠A的代数式表示).(2)如图3,当过点D直线MN与AB的交点仍在线段AB上,而与AC的交点在AC的延长线上时,∠MDB、∠NDC、∠A三者之间存在怎样的数量关系?说明你的理由.(3)如图4,当过点D直线MN与AB的交点在线段AB的延长线上,而与AC 的交点在线段AC上时,(2)问中∠MDB、∠NDC、∠A三者之间的数量关系是否仍然成立?若成立,请说明你的理由;若不成立,请给出∠MDB、∠NDC、∠A三者之间的数量关系,并说明你的理由.25.△ABC中,三个内角的平分线交于点O,过点O作OD⊥OB,交边BC于点D.(1)如图1,猜想∠AOC与∠ODC的关系,并说明你的理由;(2)如图2,作∠ABC外角∠ABE的平分线交CO的延长线于点F.①求证:BF∥OD;②若∠F=35°,求∠BAC的度数.一.解答题(共25小题)1.如图1,在△ABC中,∠B=90°,分别作其内角∠ACB与外角∠DAC的平分线,且两条角平分线所在的直线交于点E.(1)∠E=45°;(2)分别作∠EAB与∠ECB的平分线,且两条角平分线交于点F.①依题意在图1中补全图形;②求∠AFC的度数;(3)在(2)的条件下,射线FM在∠AFC的内部且∠AFM=∠AFC,设EC与AB的交点为H,射线HN在∠AHC的内部且∠AHN=∠AHC,射线HN与FM交于点P,若∠FAH,∠FPH和∠FCH满足的数量关系为∠FCH=m∠FAH+n∠FPH,请直接写出m,n的值.【解答】解:(1)如图1,∵EA平分∠DAC,EC平分∠ACB,∴∠CAF=∠DAC,∠ACE=∠ACB,设∠CAF=x,∠ACE=y,∵∠B=90°,∴∠ACB+∠BAC=90°,∴2y+180﹣2x=90,x﹣y=45,∵∠CAF=∠E+∠ACE,∴∠E=∠CAF﹣∠ACE=x﹣y=45°,故答案为:45;(2)①如图2所示,②如图2,∵CF平分∠ECB,∴∠ECF=y,∵∠E+∠EAF=∠F+∠ECF,∴45°+∠EAF=∠F+y ①,同理可得:∠E+∠EAB=∠B+∠ECB,∴45°+2∠EAF=90°+y,∴∠EAF=②,把②代入①得:45°+=∠F+y,∴∠F=67.5°,即∠AFC=67.5°;(3)如图3,设∠FAH=α,∵AF平分∠EAB,∴∠FAH=∠EAF=α,∵∠AFM=∠AFC=×67.5°=22.5°,∵∠E+∠EAF=∠AFC+∠FCH,∴45+α=67.4+∠FCH,∴∠FCH=α﹣22.5①,∵∠AHN=∠AHC=(∠B+∠BCH)=(90+2∠FCH)=30+∠FCH,∵∠FAH+∠AFM=∠AHN+∠FPH,∴α+22.5=30+∠FCH+∠FPH,②把①代入②得:∠FPH=,∵∠FCH=m∠FAH+n∠FPH,α﹣22.5=mα+n,解得:m=2,n=﹣3.2.直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B在射线OM 上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值;(2)如图2,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线相交于E、F,则∠EAF=90°;在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.【解答】解:(1)∠AEB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AE、BE分别是∠BAO和∠ABO角的平分线,∴∠BAE=∠OAB,∠ABE=∠ABO,∴∠BAE+∠ABE=(∠OAB+∠ABO)=×90°=45°,∴∠AEB=135°;(2)∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAO=∠BAO,∠FAO=∠GAO,∴∠EAF=(∠BAO+∠GAO)=×180°=90°.故答案为:90;∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ﹣∠EAO=(∠BOQ﹣∠BAO)=∠ABO,即∠ABO=2∠E,在△AEF中,∵有一个角是另一个角的3倍,故分四种情况讨论:①∠EAF=3∠E,∠E=30°,则∠ABO=60°;②∠EAF=3∠F,∠E=60°,∠ABO=120°(舍去);③∠F=3∠E,∠E=22.5°,∠ABO=45°;④∠E=3∠F,∠E=67.5°,∠ABO=135°(舍去).∴∠ABO为60°或45°.3.已知,在△ABC中,∠A=∠C,点F和E分别为射线CA和射线BC上一点,连接BF和FE,且∠BFE=∠FEB.(1)如图1,当点F在线段AC上时,若∠FBE=2∠ABF,则∠EFC与∠FBE的数量关系为∠ABF=2∠EFC.(2)如图2,当点F在CA延长线上时,探究∠EFC与∠FBA的数量关系,并说明理由.(3)如图3在(2)的条件下,过C作CH⊥AB于点H,CN平分∠BCH,CN交AB于N,由N作NM⊥NC交CF于M,若∠BFE=5∠FBA,MN∥FB时,求∠ABC 的度数.【解答】解:(1)如图1中,设∠EFC=z,∠ABF=x,∠A=∠C=y,∵BE=BF,∵∠BEF=∠BFE,∠BEF=y+z,∴∠BFE=y+z,∵∠BFC=∠A+∠ABF,∴y+z+z=x+y,∴x=2z,∴∠ABF=2∠EFC.故答案为∠ABF=2∠EFC.(2)结论:∠ABF=2∠EFC.理由;如图2中,设∠EFC=z,∠ABF=x,∠BAC=∠BCA=y,∵∠BAC=∠ABF+∠BFA,∠ACB=∠EFC+∠E,∴∠BFA=y﹣x,∠E=y﹣z,∵∠E=∠BFE,∴y﹣x+z=y﹣z,∴x=2z,∴∠ABF=2∠EFC.(3)如图3中,设∠EFC=x,则∠ABF=2x,∵∠BFE=5∠ABF,∴∠E=∠BFE=10x,∵MN∥BF,∴∠MNA=∠ABF=2x,∵∠ANM+∠ANC=90°,∠ANC+∠NCH=90°,∴∠HCN=∠ANM=∠BCN=2x,∴∠BCH=4x,∠CBH=90°﹣4x,在△BEF中,∵∠EBF+∠E+∠BFE=180°,∴2x+90°﹣4x+10x+10x=180°,∴x=5,∴∠ABC=90°﹣4x=70°.4.(Ⅰ)(1)问题引入如图①,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC=90°+∠α(用α表示);(2)拓展研究如图②,∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,试求∠BOC的度数120°+∠α(用α表示)(3)归纳猜想若BO、CO分别是△ABC的∠ABC、∠ACB的n等分线,它们交于点O,∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,则∠BOC=(用α表示).(Ⅱ)类比探索(1)特例思考如图③,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,求∠BOC的度数(用α表示).(2)一般猜想若BO、CO分别是△ABC的外角∠DBC、∠ECB的n等分线,它们交于点O,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,请猜想∠BOC=(用α表示).【解答】解:(Ⅰ)(1)如图①,∵点O是∠ABC和∠ACB平分线的交点,∴∠CBO=∠ABC,∠BCO=∠ACB,而∠A=α,∴∠BOC=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=180°﹣(180°﹣∠α)=180°﹣90°+∠α=90°+∠α,故答案为:90°+∠α;(2)如图②,∵∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,∴∠BOC=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=180°﹣(180°﹣∠α)=180°﹣60°+∠α=120°+∠α,故答案为:120°+∠α;(3)∵∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,∴∠BOC=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=180°﹣(180°﹣∠α)=180°﹣×180°+∠α=,故答案为:;(Ⅱ)(1)如图③,∵∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,∴∠BOC=180°﹣(∠DBC+∠ECB)=180°﹣[360°﹣(∠ABC+∠ACB)]=180°﹣[360°﹣(180°﹣∠A)]=180°﹣(180°+∠α)=180°﹣60°﹣∠α=120°﹣∠α;(2)∵∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,∴∠BOC=180°﹣(∠DBC+∠ECB)=180°﹣[360°﹣(∠ABC+∠ACB)]=180°﹣[360°﹣(180°﹣∠A)]=180°﹣(180°+∠α)=,故答案为:.5.(1)如图①,把△ABC纸片沿DE折叠,使点A落在四边形BCED内部点A′的位置.试写出∠A与∠1+∠2之间的关系,并说明理由;(2)如果把△ABC纸片沿DE折叠,使点A落在四边形BCED外部点A′的位置,如图②所示.此时∠A与∠1、∠2之间存在什么样的关系?直接写出2∠A=∠1﹣∠2.(3)如果把四边形ABCD沿EF折叠,使点A、D分别落在四边形BCFE内部点A′、D′的位置,如图③所示.直接写出∠A′、∠D′、∠1与∠2之间的关系2(∠A'+∠D')=∠1+∠2+360°.【解答】解:(1)如图,根据翻折的性质,∠3=(180﹣∠1),∠4=(180﹣∠2),∵∠A+∠3+∠4=180°,∴∠A+(180﹣∠1)+(180﹣∠2)=180°,整理得,2∠A=∠1+∠2;(2)根据翻折的性质,∠3=(180﹣∠1),∠4=(180+∠2),∵∠A+∠3+∠4=180°,∴∠A+(180﹣∠1)+(180+∠2)=180°,整理得,2∠A=∠1﹣∠2;(3)根据翻折的性质,∠3=(180﹣∠1),∠4=(180﹣∠2),∵∠A+∠D+∠3+∠4=360°,∴∠A+∠D+(180﹣∠1)+(180﹣∠2)=360°,整理得,2(∠A+∠D)=∠1+∠2+360°,即2(∠A'+∠D')=∠1+∠2+360°.6.已知BM、CN分别是△A1BC的两个外角的角平分线,BA2、CA2分别是∠A1BC和∠A1CB的角平分线,如图①;BA3、CA3分别是∠A1BC和∠A1CB的三等分线(即∠A3BC=∠A1BC,∠A3CB=∠A1CB),如图②;依此画图,BA n、CA n分别是∠A1BC和∠A1CB的n等分线(即∠A n BC=∠A1BC,∠A n CB=∠A1CB),n≥2,且n为整数.(1)若∠A1=70°,求∠A2的度数;(2)设∠A1=α,请用α和n的代数式表示∠A n的大小,并写出表示的过程;(3)当n≥3时,请直接写出∠MBA n+∠NCA n与∠A n的数量关系.【解答】解:(1)∵∠A1=70°,∴∠A1BC+∠A1CB=180°﹣70°=110°,∵BA2、CA2分别是∠A1BC和∠A1CB的角平分线,∴∠A2BC+∠A2CB=×110°=55°,∴∠A2=180°﹣55°=125°.(2)在△A1BC中,∠A1BC+∠A1CB=180°﹣α,∵∠A n BC=∠A1BC,∠A n CB=∠A1CB,∴∠A n BC+∠A n CB=(∠A1BC+∠A1CB)=(180°﹣α),∴∠A n=180°﹣(∠A n BC+∠A n CB)=180°﹣(180°﹣α);(3)2(∠MBA n+∠NCA n)+(n﹣2)∠A n=180°n.理由:如图②,∵BM、CN分别是△A1BC的两个外角的角平分线,∴∠MBE=∠A1BE=(180°﹣∠A1BC),∠NCF=∠A1CF=(180°﹣∠A1CB),∴∠MBA n+∠NCA n=360°﹣(∠MBE+∠NCF)﹣(∠A n BC+∠A n CB)=360°﹣(180°﹣∠A1BC)﹣(180°﹣∠A1CB)﹣(180°﹣∠A n)=(∠A1BC+∠A1CB)+∠A n=(180°﹣∠A1)+∠A n由(2)可得,∠A n=180°﹣(180°﹣∠A1),∴∠A1=n∠A n﹣180°n+180°,∴∠MBA n+∠NCA n=(180°﹣n∠A n+180°n﹣180°)+∠A n=90°n﹣∠A n∴2(∠MBA n+∠NCA n)+(n﹣2)∠A n=180°n.7.如图,在△ABC中,AD⊥BC,垂足为D,AE平分∠BAC,且∠ABC>∠C.求证:∠DAE=(∠ABC﹣∠C).【解答】证明:∵AD⊥BC,∴∠D=90°,∵∠ABC是△ABD的外角,∴∠DAB=∠ABC﹣∠D=∠ABC﹣90°,∵AE平分∠BAC,∴∠BAE=∠BAC,在△ABC中,∠BAC=180°﹣∠ABC﹣∠C,∴∠BAE=90°﹣∠ABC﹣∠C,∵∠DAE=∠DAB+∠BAE,∴∠DAE=∠ABC﹣90°+90°﹣∠ABC﹣∠C=∠ABC﹣∠C,即:∠DAE=(∠ABC﹣∠C).8.如图,在△ABC中,AD,BD分别平分∠CAB和∠CBA,相交于点D.(1)如图1,过点D作DE∥AC,DF∥BC分别交AB于点E、F.①若∠EDF=80°,则∠C=80°;②若∠EDF=x°,证明:∠ADB=(90+)°.(2)如图2,若DE,BE分别平分∠ADB和∠ABD,且EF,BF分别平分∠BED和∠EBD,若∠BFE的度数是整数,求∠BFE至少是多少度?【解答】解:(1)∵∠EDF=80°,∴∠DEF+∠EDF=180°﹣80°=100°,∵DE∥AC,∴∠BED=∠BAC,同理得:∠EFD=∠ABC,∴∠ABC+∠BAC=∠DEF+∠EDF=100°,∴∠C=80°故答案为:80°;②∵∠EDF=x°,∴∠DEF+∠EFD=180°﹣x°,∵DE∥AC,∴∠BED=∠BAC,∵AD平分∠BAC,∴∠BAC=2∠BAD,∴∠DEF=2∠BAD,同理得:∠EFD=2∠ABD,∴∠BAD+∠ABD=,∴∠ADB=180°﹣∠ABD﹣∠BAD=180°﹣=90°+=(90+)°;(2)∵∠BED+∠EBD=180°﹣∠BDE,∵EF,BF分别平分∠BED和∠EBD,∴∠BEF=∠BED,∠EBF=∠EBD,∴∠BEF+∠EBF=(∠BED+∠EBD)=(180°﹣∠BDE),∴(180°﹣∠BDE)=180°﹣∠BFE,∠BFE=90°+∠BDE①,同理得:∠ADB=90°+∠C,∵DE平分∠ADB,∴∠BDE=∠ADB=45°+∠C②,把②代入①得:∠BFE=90°+∠BDE=90°+(45°+∠C),=112.5°+,∵∠BFE的度数是整数,当∠C=4°时,∠BFE=113°.答:∠BFE至少是113度.9.已知如图①,BP、CP分别是△ABC的外角∠CBD、∠BCE的角平分线,BQ、CQ分别是∠PBC、∠PCB的角平分线,BM、CN分别是∠PBD、∠PCE的角平分线,∠BAC=α.(1)当α=40°时,∠BPC=70°,∠BQC=125°;(2)当α=60°时,BM∥CN;(3)如图②,当α=120°时,BM、CN所在直线交于点O,求∠BOC的度数;(4)在α>60°的条件下,直接写出∠BPC、∠BQC、∠BOC三角之间的数量关系:∠BPC+∠BQC+∠BOC=180°.【解答】解:(1)∵∠DBC=∠A+∠ACB,∠BCE=∠A+∠ABC,∴∠DBC+∠BCE=180°+∠A=220°,∵BP、CP分别是△ABC的外角∠CBD、∠BCE的角平分线,∴∠CBP+∠BCP=(∠DBC+∠BCE)=110°,∴∠BPC=180°﹣110°=70°,∵BQ、CQ分别是∠PBC、∠PCB的角平分线,∴∠QBC=∠PBC,∠QCB=∠PCB,∴∠QBC+∠QCB=55°,∴∠BQC=180°﹣55°=125°;(2)∵BM∥CN,∴∠MBC+∠NCB=180°,∵BM、CN分别是∠PBD、∠PCE的角平分线,∠BAC=α,∴(∠DBC+∠BCE)=180°,即(180°+α)=180°,解得α=60°;(3)∵α=120°,∴∠MBC+∠NCB=(∠DBC+∠BCE)=(180°+α)=225°,∴∠BOC=225°﹣180°=45°;(4)∵α>60°,∠BPC=90°﹣α、∠BQC=135°﹣α、∠BOC=α﹣45°.∠BPC、∠BQC、∠BOC三角之间的数量关系:∠BPC+∠BQC+∠BOC=(90°﹣α)+(135°﹣α)+(α﹣45°)=180°.故答案为:70,125;60;∠BPC+∠BQC+∠BOC=180°.10.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2=140°;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间有何关系?(3)若点P在Rt△ABC斜边BA的延长线上运动(CE<CD),则∠α、∠1、∠2之间有何关系?猜想并说明理由.【解答】解:(1)如图,连接PC,由三角形的外角性质,∠1=∠PCD+∠CPD,∠2=∠PCE+∠CPE,∴∠1+∠2=∠PCD+∠CPD+∠PCE+∠CPE=∠DPE+∠C,∵∠DPE=∠α=50°,∠C=90°,∴∠1+∠2=50°+90°=140°,故答案为:140°;(2)连接PC,由三角形的外角性质,∠1=∠PCD+∠CPD,∠2=∠PCE+∠CPE,∴∠1+∠2=∠PCD+∠CPD+∠PCE+∠CPE=∠DPE+∠C,∵∠C=90°,∠DPE=∠α,∴∠1+∠2=90°+∠α;(3)如图1,由三角形的外角性质,∠2=∠C+∠1+∠α,∴∠2﹣∠1=90°+∠α;如图2,∠α=0°,∠2=∠1+90°;如图3,∠2=∠1﹣∠α+∠C,∴∠1﹣∠2=∠α﹣90°.11.(1)如图①,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠ADC=40°,∠ABC=30°,求∠AEC的大小;(2)如图②,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=m°,∠ABC=n°,求∠AEC的大小;(3)如图③,∠BAD的平分线AE与∠BCD的平分线CE交于点E,则∠AEC与∠ADC、∠ABC之间是否仍存在某种等量关系?若存在,请写出你得结论,并给出证明;若不存在,请说明理由.【解答】解:(1)∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB∴∠D+∠B=2∠E,∴∠E=(∠D+∠B),∵∠ADC=40°,∠ABC=30°,∴∠AEC=×(40°+30°)=35°;(2)∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB∴∠D+∠B=2∠E,∴∠E=(∠D+∠B),∵∠ADC=m°,∠ABC=n°,∴∠AEC=;(3)延长BC交AD于点F,∵∠BFD=∠B+∠BAD,∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D,∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠E+∠ECB=∠B+∠EAB,∴∠E=∠B+∠EAB﹣∠ECB=∠B+∠BAE﹣∠BCD=∠B+∠BAE﹣(∠B+∠BAD+∠D)=(∠B﹣∠D),即∠AEC=.12.(1)如图1,在平面直角坐标系xOy中,点A、B分别为x轴正半轴和y轴正半轴上的两个定点,点C为x轴上的一个动点(与点O,A不重合),分别作∠OBC和∠ACB的角平分线,两角平分线所在直线交于点E,直接问答∠BEC的度数及点C所在的相应位置.(2)如图2,在平面直角坐标系xOy中,△FGH的一个顶点F在y轴的负半轴上,射线FO平分∠GFH,过点H的直线MN交x轴于点M,满足∠MHF=∠GHN,过点H作HP⊥MN交x轴于点P,请探究∠MPH与∠G的数量关系,并写出简要证明思路.【解答】解:(1)分三种情况:①如图①,当点C在x轴负半轴上时,由题意可知:∠1+∠2+∠3+∠4=90°,∵BE、CE分别平分∠OBC与∠ACB,∴∠2∠1+2∠3=90°,∴∠1+∠3=45°,∴∠BEC=135°,即当点C在x轴负半轴上时,∠BEC=135°;②如图②所示,当点C在OA的延长线上时,与情况(1)同法可得:∠BEC=135°;③如图③所示,当点C在线段OA上(且与点O,A不重合)时,∵∠1+∠2=∠3+∠4+90°,∴2∠1=2∠4+90°,∴∠1=∠4+45°,∠1﹣∠4=45°,即∠BEC=45°,故当点C在线段OA上(且与点O,A不重合)时,∠BEC=45°;(2)∠MPH与∠G的数量关系为:∠MPH=∠G.如图2,∵∠MHF=∠GHN,HP⊥MN,∴∠FHE=∠GHE,即EH平分∠GHF,又∵FE平分∠GFH,∴△FEH中,∠FEF=180°﹣∠EHF﹣∠EFH=180°﹣(∠GHF﹣∠GFH)=180°﹣(180°﹣∠G)=90°+∠G,∵∠FEH是△EOP的外角,∴∠FEH=∠EOP+∠MPH=90°+∠MPH,∴90°+∠G=90°+∠MPH,即∠MPH=∠G.13.在△ABC中,点D为△ABC的三条内角平分线的交点,BE⊥AD于点E,(1)当∠BAC=80°,∠ACB=60°时,∠BDC=130°.∠DBE=30°.(2)当∠BAC=α,∠ACB=β时,用含有α的代数式表示∠BDC的度数,用含有β的代数式表示∠DBE的度数.(3)如图2,若AD平分∠BAC,CD和BD分别平分△ABC的外角∠CBM和∠BCN,BE⊥AD于点E,(2)中的两个结论是否发生变化?【解答】解:(1)∵∠BAC=80°,∠ACB=60°,∴∠ABC=40°,∵点D为△ABC的三条内角平分线的交点,∴∠ABD=20°,∠BAD=∠CAD=40°,∠ACD=30°,∴∠BDC=∠BDE+∠CDE=(∠ABD+∠BAD)+(∠ACD+∠CAD)=(20°+40°)+(30°+40°)=130°,∵∠BDE=60°,BE⊥AD,∴∠DBE=90°﹣60°=30°;故答案为:130°,30°;(2)∵∠BAC+∠CBA+∠ACB=180°,∠BAC=α∴∠CBA+∠ACB=180°﹣∠BAC=180°﹣α∵DB平分∠ABC,DC平分∠ACB,∴∠DBC+∠DCB=(∠CBA+∠ACB)=(180°﹣α),∴△BCD中,∠BDC=180°﹣(∠DBC+∠DCB)=180°﹣(180°﹣α)=90°+α;∵∠BAC=α,∠ACB=β,∴∠ABC=180°﹣α﹣β,∵DB平分∠ABC,AD平分∠BAC,∴∠ABD=∠ABC=(180°﹣α﹣β),∠BAD=α,∵∠BDE是△ABD的外角,∴∠BDE=∠ABD+∠BAD=(180°﹣α﹣β)+α=90°﹣β,∵BE⊥AD,∴∠DBE=90°﹣∠BDE=90°﹣(90°﹣β)=β;(3)若AD平分∠BAC,CD分别平分△ABC的外角∠CBM和∠BCN,BE⊥AD于点E,则(2)中的两个结论发生变化.理由:∵∠BAC+∠CBA+∠ACB=180°,∠BAC=α,∴∠CBA+∠ACB=180°﹣∠BAC=180°﹣α,∵∠MBC+∠ABC=180°,∠NCB+∠ACB=180°,∴∠MBC+∠NGB=360°﹣∠ABC﹣∠ACB=360°﹣(180°﹣α)=180°+α,∵BD,CD分别平分△ABC的外角∠CBM和∠BCN,∴∠DBC=∠MBC,∠DCB=∠NCB,∴∠DBC+∠DCB=∠MBC+∠NCB=(180°+α)=90°+α,∵∠BDC+∠DBC+∠DCB=180°,∴∠BDC=180°﹣(∠DBC+∠DCB)=180°﹣(90°+α)=90°﹣α,∵∠BAC=α,∠ACB=β,∵∠MBC是△ABC的外角,∴∠MBC=α+β,∵BD平分∠MBC,∴∠MBD=∠MBC=(α+β),∵∠MBD是△ABD的外角,AD平分∠BAC,∴∠BAD=α,∠MBD=∠BAD+∠ADB,∵BE⊥AD,∴Rt△BDE中,∠DBE=90°﹣∠ADB=90°﹣(∠MBD﹣∠BAD)=90°﹣∠MBD+∠BAD=90°﹣(α+β)+α=90°﹣β.故结论发生变化.14.如图①,AD平分∠BAC,AE⊥BC,∠B=40°,∠C=60°(1)求∠DAE的度数;(2)如图②,若把“AE⊥BC”变成“点F在DA的延长线上,FE⊥BC”,其他条件不变,求∠DFE的度数;(3)如图③,若把“AE⊥BC”变成“AE平分∠BEC”,其他条件不变,∠DAE的大小是否变化,并请说明理由.【解答】解:(1)∵∠B=40°,∠C=60°,∴∠BAC=80°,∵AD平分∠BAC,∴∠BAD=∠CAD=40°,∴∠ADE=∠B+∠BAD=80°,∵AE⊥BC,∴∠AEB=90°,∴∠DAE=90°﹣∠ADE=10°;(2)∵∠B=40°,∠C=60°,∴∠BAC=80°,∵AD平分∠BAC,∴∠BAD=∠CAD=40°,∴∠ADE=∠B+∠BAD=80°,∵FE⊥BC,∴∠FEB=90°,∴∠DFE=90°﹣∠ADE=10°;(3)结论:∠DAE的度数大小不变.理由:∵AE平分∠BEC,∴∠AEB=∠AEC,∴∠C+∠CAE=∠B+∠BAE,∵∠CAE=∠CAD﹣∠DAE,∠BAE=∠BAD+∠DAE,∴∠C+∠CAD﹣∠DAE=∠B+∠BAD+∠DAE,∵AD平分∠BAC,∴∠BAD=∠CAD,∴2∠DAE=∠C﹣∠B=20°,∴∠DAE=10°.15.如图,AF平分∠BAC,DF平分∠BDC,求证:∠AFD=(∠H+∠BGC).【解答】证明:延长AF交DH于E点.由三角形外角定理得:∠AFD=∠FDE+∠FED=∠FDE+∠H+∠HAE,∵AF平分∠BAC,DF平分∠BDC,∴∠AFD=∠BDC+∠BAC+∠H,∵∠BGC=∠BDC+∠ACD=∠BDC+∠BAC+∠H,∴(∠BGC+∠H)=(∠BDC+∠BAC+∠H+∠H)=∠BDC+∠BAC+∠H=∠AFD.16.如图,已知CD是△ABC的角平分线,E是BC上的点,∠B=60°,∠ACE=∠CAE=20°.求∠CDE的度数.【解答】解:∵∠B=60°,∠ACE=∠CAE=20°,∴∠BAC=100°,∠BAE=80°,AE=CE,设为1,在△ABE中,由正弦定理得BE=,∵CD是△ABC的角平分线,∴====,∴∠CDE=∠ACD=10°.17.如图,△ABC中,BD平分∠ABC交AC于D,CE平分∠ACB交AB于E,CE 与BD交于F,连接AF并延长交BC于H,过F作FG⊥BC于G.(1)若∠ABC=45°,∠ACB=65°,求∠HFG的度数;(2)根据(1)中的规律探索∠ABC、∠ACB与∠HFG之间的关系;(3)试探究∠BFH与∠CFG的大小关系,并说明理由.【解答】解:(1)∵BD平分∠ABC,CE平分∠ACB,∴AH平分∠BAC,∵∠ABC=45°,∠ACB=65°,∴∠BAC=180°﹣45°﹣65°=70°,∠BAH=∠BAC=35°,∴∠AHG=∠ABC+∠BAH=45°+35°=80°,∵FG⊥BC,∴∠FGH=90°,∴∠HFG=90°﹣80°=10°;(2)∵BD平分∠ABC,CE平分∠ACB,∴AH平分∠BAC,∵∠BAC=180°﹣(∠ABC+∠ACB),∠BAH=∠BAC=90°﹣(∠ABC+∠ACB),∴∠AHG=∠ABC+∠BAH=∠ABC+90°﹣(∠ABC+∠ACB)=90°+(∠ABC﹣∠ACB),∴∠FGH=90°,∴∠HFG=90°﹣[90°+(∠ABC﹣∠ACB)]=∠ACB﹣∠ABC;(3)∠BFH=∠CFG,理由是:∵∠BFH=∠BAC+∠ABC=(180°﹣∠ABC﹣∠ACB)+∠ABC=90°﹣∠ACB;∠CFG=180°﹣90°﹣∠ACB=90°﹣∠ACB,∴∠BFH=∠CFG18.如图1,在△ABC中,∠A=60°,∠CBM,∠BCN是△ABC的外角,∠CBM,∠BCN的平分线BD,CD交于点D.(1)求∠BDC的度数;(2)在图1中,过点D作DE⊥BD,垂足为点D,过点B作BF∥DE交DC的延长线于点F(如图2),求证:BF是∠ABC的平分线.【解答】解:(1)∵△ABC中,∠A=60°,∴∠ABC+∠ACB=120°,又∵∠ABM=∠ACN=180°,∴∠CBM+∠BCN=360°﹣120°=240°,又∵∠CBM,∠BCN的平分线BD,CD交于点D,∴∠CBD=∠CBM,∠BCD=∠BCN,∴△BCD中,∠DBC+∠BCD=(∠CBM+∠BCN)=×240°=120°,∴∠D=180°﹣120°=60°;(2)如图2,∵DE⊥BD,BF∥DE,∴∠DBF=180°﹣90°=90°,即∠2+∠3=90°,∴∠1+∠4=90°,又∵∠3=∠4,∴∠1=∠2,∴BF是∠ABC的平分线.19.老师给了小胖同学这样一个问题:如图1,△ABC中,BE是∠ABC的平分线,点D是BC延长线上一点,2∠D=∠ACB,若∠BAC=60°,求∠BED小胖通过探究发现,过点C作CM∥AD(如图2),交BE于点M,将∠BED转移至∠BMC处,结合题目已知条件进而得到CM为∠ACB的平分线,在△ABC中求出∠BMC,从而得出∠BED.(1)请按照小胖的分析,完成此题的解答:(2)参考小胖同学思考问题的方法,解决下面问题:如图3,在△ABC中,点D是AC延长线上的一点,过点D作DE∥BC,DG平分∠ADE,BG平分∠ABC,DG与BG交于点G,若∠A=m°,求∠G的度数(用含m的式子表示)【解答】(1)证明:如图1,过点C作CM∥AD,交BE于点M,∴∠BED=∠BMC,∠DAC=∠ACM,∠BCM=∠D,∵∠ACB=2∠D,∴∠BCM=∠ACM=∠ACB∵BE是∠ABC的平分线∴∠MBC=∠ABC∴∠BED=∠BMC=180°﹣(∠MBC+∠MCB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠BAC)=180°﹣×(180°﹣60)=120°;(2)如图2,延长BC交DG于点M∵BG平分∠ABC,DG平分∠ADE∴∠GBM=∠ABC,∠GDE=∠ADE∵DE∥BC∴∠ACM=∠ADE∠BMD=∠GDE=∠ADE=∠ACM=(∠A+∠ABC)=∠A+∠GBM在△BGM中,∠G=∠BMD﹣∠GBM=∠A+∠GBM﹣∠GBM=∠A=m.20.△ABC的三条角平分线相交于点I,过点I作DI⊥IC,交AC于点D.(1)如图1,求证:∠AIB=∠ADI;(2)如图2,延长BI,交外角∠ACE的平分线于点F.①判断DI与CF的位置关系,并说明理由;②若∠BAC=70°,求∠F的度数.【解答】(1)证明:∵AI、BI分别平分∠BAC,∠ABC,∴∠BAI=∠BAC,∠ABI=∠ABC,∴∠BAI+∠ABI=(∠BAC+∠ABC)=(180°﹣∠ACB)=90°﹣∠ACB,∴在△ABI中,∠AIB=180°﹣(∠BAI+∠ABI)=180°﹣(90°﹣∠ACB)=90°+∠ACB,∵CI平分∠ACB,∴∠DCI=∠ACB,∵DI⊥IC,∴∠DIC=90°,∴∠ADI=∠DIC+∠DCI=90°+∠ACB,∴∠AIB=∠ADI.(2)①解:结论:DI∥CF.理由:∵∠IDC=90°﹣∠DCI=90°﹣∠ACB,∵CF平分∠ACE,∴∠ACF=∠ACE=(180°﹣∠ACB)=90°﹣∠ACB,∴∠IDC=∠ACF,∴DI∥CF.②解:∵∠ACE=∠ABC+∠BAC,∴∠ACE﹣∠ABC=∠BAC=70°,∵∠FCE=∠FBC+∠F,∴∠F=∠FCE﹣∠FBC,∵∠FCE=∠ACE,∠FBC=∠ABC,∴∠F=∠ACE﹣∠ABC=(∠ACE﹣∠ABC)=35°21.如图1,已知△ABC,射线CM∥AB,点D是射线CM上的动点,连接AD.(1)如图2,若∠ACB=∠ABC,∠CAD的平分线与BC的延长线交于点E.①若∠BAC=40°,AD∥BC,则∠AEC的度数为35°;②在点D运动的过程中,探索∠AEC和∠ADC之间的数量关系;(2)若∠ACB=n∠ABC,∠CAD内部的射线AE与BC的延长线交于点E,∠CAE=n ∠EAD,那么∠AEC和∠ADC之间的数量关系为∠AEC=∠ADC.【解答】解:(1)①如图2,∵∠BAC=40°,∴∠ACB+∠ABC=180°﹣40°=140°,∵∠ACB=∠ABC,∴∠ACB=70°,∵AD∥BC,∴∠DAC=∠ACB=70°,∵AE平分∠DAC,∴∠DAE=∠DAC=×70°=35°,∵AD∥BC,∴∠AEC=∠DAE=35°,故答案为:35°;②∠ADC=2∠AEC,理由是:设∠CAE=x,∠BAC=y,则∠EAD=x,∠ABC=,∵AB∥CM,∴∠ACM=∠BAC=y,∴∠ADC=180﹣2x﹣y,△ABE中,∠AEC=180﹣x﹣y﹣=90﹣x﹣,∴∠ADC=2∠AEC;(2)∠AEC=∠ADC,理由是:如图3,设∠ABC=x,∠EAD=y,则∠ACB=nx,∠CAE=ny,△ACE中,∠AEC=nx﹣ny=n(x﹣y),∴x﹣y=,△ABC中,∠BAC=180﹣nx﹣x,∵AB∥CM,∴∠ACD=∠BAC=180﹣nx﹣x,△ADC中,∠ADC=180﹣ny﹣y﹣(180﹣nx﹣x)=﹣ny﹣y+nx+x=n(x﹣y)+(x ﹣y)=(x﹣y)(n+1),∴x﹣y=∠ADC,∴∠AEC=∠ADC,∴∠AEC=∠ADC.故答案为:∠AEC=∠ADC.22.如图,在△ABC中,点D为∠ABC的平分线BD上一点,连接AD,过点D 作EF∥BC交AB于点E,交AC于点F.(1)如图1,若AD⊥BD于点D,∠BEF=130°,求∠BAD的度数;(2)如图2,若∠ABC=α,∠BDA=β,求∠FAD+∠C的度数(用含α和β的代数式表示).【解答】解:(1)∵EF∥BC,∠BEF=130°,∴∠EBC=50°,∠AEF=50°,又∵BD平分∠EBC,∴∠EBD=∠BDE=∠DBC=25°,又∵∠BDA=90°,∴∠EDA=65°,∴∠BAD=65°;(2)如图2,过点A作AG∥BC,则∠BDA=∠DBC+∠DAG=∠DBC+∠FAD+∠FAG=∠DBC+∠FAD+∠C=β,则∠FAD+∠C=β﹣∠DBC=β﹣∠ABC=β﹣α.23.如图,直线m与直线n互相垂直,垂足为O,A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动.(1)若∠BAO和∠ABO的平分线相交于点P,在点A、B的运动过程中,∠APB 的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(2)若△ABO的两个外角的平分线AQ、BQ相交于点Q,AP的延长线交QB的延长线于点C,在点A、B的运动过程中,∠Q和∠C的大小是否会发生变化?若不发生变化,请求出∠Q和∠C的度数;若发生变化,请说明理由.【解答】解:(1)不变化.理由:∵AP和BP分别是∠BAO和∠ABO的平分线,∠AOB=90°,∴∠APB=180°﹣(∠OAB+∠ABO)=180°﹣×90°=135°;(2)都不变.理由:∵AQ和BQ分别是∠BAO的邻补角和∠ABO的邻补角的平分线,AP和BP分别是∠BAO和∠ABO的平分线,∴∠CAQ=∠QBP=90°,又∠APB=135°,∴∠Q=45°,∴∠C=45°.24.如图1,在△ABC中,∠ABC的平分线与∠ACB的平分线交于点D.我们可以得到一个一般性的结论∠BDC=90°+∠A.请应用这一结论,解决下面的问题.(1)如图2,过点D任意作直线MN,分别交AB和AC于点M和N,求∠MDB+∠NDC的度数(用含∠A的代数式表示).(2)如图3,当过点D直线MN与AB的交点仍在线段AB上,而与AC的交点在AC的延长线上时,∠MDB、∠NDC、∠A三者之间存在怎样的数量关系?说明你的理由.(3)如图4,当过点D直线MN与AB的交点在线段AB的延长线上,而与AC 的交点在线段AC上时,(2)问中∠MDB、∠NDC、∠A三者之间的数量关系是否仍然成立?若成立,请说明你的理由;若不成立,请给出∠MDB、∠NDC、∠A三者之间的数量关系,并说明你的理由.【解答】解:(1)∵∠MDB+∠NDC+∠BDC=180°,∴∠MDB+∠NDC=180°﹣∠BDC.∵∠BDC=90°+∠A,∴∠MDB+∠NDC=180°﹣(90°+∠A)=90°﹣∠A.(2)∠MDB﹣∠NDC=90°﹣∠A,理由如下:∵∠MDB+∠BDN=180°,∠BDN=∠BDC+∠NDC,∴∠MDB+∠BDC﹣∠NDC=180°.∴∠MDB+90°+∠A﹣∠NDC=180°,∴∠MDB﹣∠NDC=90°﹣∠A.(3)∠NDC﹣∠BDM=90°﹣∠A,理由如下:∵∠MDC+∠NDC=180°,∠BDC=∠BDM+∠MDC,∴∠BDC﹣∠BDM+∠NDC=180°.∵∠BDC=90°+∠A,∴90°+∠A﹣∠BDM+∠NDC=180°,∴∠NDC﹣∠BDM=90°﹣∠A.25.△ABC中,三个内角的平分线交于点O,过点O作OD⊥OB,交边BC于点D.(1)如图1,猜想∠AOC与∠ODC的关系,并说明你的理由;(2)如图2,作∠ABC外角∠ABE的平分线交CO的延长线于点F.①求证:BF∥OD;②若∠F=35°,求∠BAC的度数.【解答】解:(1)∠AOC=∠ODC,理由:∵三个内角的平分线交于点O,∴∠OAC+∠OCA=(∠BAC+∠BCA)=(180°﹣∠ABC),∴∠AOC=180°﹣(∠OAC+∠OCA)=90°+∠ABC=90°+∠OBC,∵OD⊥OB,∴∠BOD=90°,∴∠ODC=90°+∠OBD,∴∠AOC=∠ODC;(2)①∵BF平分∠ABE,∴∠EBF=∠ABE=(180°﹣∠ABC)=90°﹣∠DBO,∵∠ODB=90°﹣∠OBD,∴∠FBE=∠ODB,∴BF∥OD;②∵BF平分∠ABE,∴∠FBE=∠ABE=(∠BAC+∠ACB),∵三个内角的平分线交于点O,∴∠FCB=∠ACB,∵∠F=∠FBE﹣∠BCF=(∠BAC+∠ACB)﹣∠ACB=∠BAC,∵∠F=35°,∴∠BAC=2∠F=70°.。

人教版初一数学几何图形练习题

人教版初一数学几何图形练习题

人教版初一数学几何图形练习题一、选择题(共4小题)1.图中的平面展开图是下面名称几何体的展开图,则立体图形与平面展开图不相符的是A.B.C.D.2.如图所示的几何体,从上面看到的平面图形是A.B.C.D.3.如图,如果把一个圆锥的侧面沿图示中的线剪开,则得到的图形是A.三角形B.圆C.圆弧4.一个正方体的平面展开图如图所示,折叠后可折成的图形是第1页(共4页)D.扇形A.B.C.D.二、填空题(共3小题)5.下列各图是几何体的表面展开图,请写出对应的几何体的名称.6.如图所示是由若干个大小相同的小正方体所搭成的几何体从三个方向看到的图形,则搭成这个几XXX的小正方体的个数是个.7.从棱长为的正方体毛坯的一角,挖去一个棱长为的小正方体,得到一个如图所示的零件,则这个零件的表面积为.第2页(共4页)三、解答题(共3小题)8.图中的平面睁开图折叠成正方体后,相劈面上的两个数之和为,求的值.9.如图,几何体是由若干棱长为的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),观察该图,探究其中的规律.(1)第个多少体中只有个面涂色的小立方体共有个.第个多少体中只有个面涂色的小立方体共有个.(2)求出第(3)求出前个几何体中只有个面涂色的小立方体的块数.个多少体中只有个面涂色的小立方体的块数的和.10.如图是一个几何体的平面展开图.(1)这个多少体是.(2)求这个多少体的体积.(取)第3页(共4页)谜底第一部分1.A2.B3.D4.D【解析】从上面看到的平面图形是两个同心圆.第二部分5.圆锥,三棱锥,圆柱6.【剖析】多少体漫衍情形以下列图所示:则小正方体的个数为7.第三部分8.(个).。

.9.(1);..【解析】这个零件的表面积与原正方体的表面积相同,为【剖析】观察图形可得第个多少体中最底层的个角的小立方体只有个面涂色;第个多少体中只有个面涂色的小立方体共有图②中,只有个面涂色的小立方体共有图③中,只有个面涂色的小立方体共有。

初一几何题

初一几何题

1、在三角形ABC中,若角A大于角B,则下列结论正确的是:A. 边BC大于边ACB. 边AC大于边BCC. 边AB大于边BC,但小于边ACD. 边AB、AC、BC的长度关系无法确定(答案:B)2、下列说法中,正确的是:A. 两条直线被第三条直线所截,内错角相等B. 直线外一点到这条直线的垂线段,叫做点到直线的距离C. 若a平行于b,b平行于c,则a平行于cD. 相等的角是对顶角(答案:C)3、下列关于平行线的性质,说法错误的是:A. 两直线平行,同位角相等B. 两直线平行,内错角相等C. 两直线平行,同旁内角互补D. 两直线平行,同旁内角相等(答案:D)4、在三角形ABC中,若角A等于角B,则三角形ABC是:A. 直角三角形B. 等腰三角形C. 等边三角形D. 锐角三角形(答案:B)5、下列说法中,错误的是:A. 直角三角形的两个锐角互余B. 三角形的外角和等于360度C. 三角形的一个外角等于和它不相邻的两个内角的和D. 三角形的角平分线、中线和高都是线段(答案:D)6、下列关于垂直平分线的性质,说法正确的是:A. 垂直平分线是一条射线B. 垂直平分线是一条直线C. 线段垂直平分线上的点到线段两端点的距离相等D. 到线段两端点距离相等的点在线段的垂直平分线上,但不一定在线段上(答案:C)7、在三角形ABC中,若AB=AC,且角B等于角C,则三角形ABC是:A. 直角三角形B. 等腰三角形C. 等边三角形D. 等腰直角三角形(答案:C)8、下列关于角的说法中,正确的是:A. 角的大小与边的长短有关B. 角的和、差、倍、分结果不一定是角C. 角平分线上的点到角两边的距离相等D. 两条直线相交,形成的四个角中,只有两个是锐角(答案:C)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1,如果1∠和2∠互余,1∠和3∠互为补角,2∠和3∠的和等于周角的3
1
,求这
三个角的度数。

2,如图CD EF AB ////,EG 平分BEF ∠,
o D BED B 192=∠+∠+∠,o D B 24=∠-∠,求GEF ∠的度数
3,如图若FD//BE ,求321∠-∠+∠的度数
4,如图已知AOC C ∠=∠,OC 平分AOD ∠,OE OC ⊥o C 63=∠求D ∠,BOF ∠的度数
5,已知如图EC FG DB ////,若o ABD 60=∠,
o ACE 36=∠AP 平分BAC ∠求PAG ∠的度数
6,已知如图DE AC //,FE DC //,CD 平分BCA ∠,那么EF 平分BED ∠吗?为什么?
7,如果DE//BC 那么B A AED ∠+∠=∠吗?为什么?
8,能否根据条件o EDC BCD ABC 360=∠+∠+∠判断ED AB //?理由是什么? 9,EF CD AB ////,DE CB //,则B ∠与E ∠的关系是什么?
10直线b a //,直线L 与a ,b 相交,o x )252(1-=∠,()o
x -=∠1752,求1∠,2
∠的度数
11,已知,三角形比是4:3:2且最大边与最小边之差是6,求三边的长。

12(1)已知三角形三边长分别是4,5,6-x,求x 的取值范围 (2)已知三角形三边长分别是m ,m-1,m+1,求m 的取值范围
13,线段a ,b ,c 的长都是正整数,且c b a ≤≤如果c=5以线段a ,b ,c 为边可以组成几个三角形?分别写出他们的边长
14,(1)在ABC ∆中,已知AD 是角平分线,AE 是高,若o B 42=∠,o C 66=∠,求DAE ∠的度数。

(2)在ABC ∠中,已知AD 是角平分线,AE 是高,C B ∠>∠求证
)(21
B C DAE ∠-∠=∠
15,在ABC ∆中,o B 70=∠,2:3:=∠∠BCA BAC ,AD CD ⊥垂足为D 且
o ACD 35=∠,求BAE ∠的度数
16,正五角星ABCDE 中,求E D C B A ∠+∠+∠+∠+∠的值。

17,已知AC ,BD 交与O ,BE ,CE 分别平分ACD ABD ∠∠,且交与E ,
o A 50=∠o D 44=∠,求E ∠的度数。

18,已知BC A 1∆中o A 641=∠,2BA 平分BC A 1∠,2CA 平分CE A 1∠,2BA ,2CA 相
第三题
第四题
A
第五题
第六题
B
第八题
E
A
B
E
3
B E
交于
2
A,
3
BA平分BC
A
2
∠,
3
CA平分CE
A
2

3
BA,
3
CA相交于
3
A依次类推,(1)2
A
∠的值,(2)
5
A
∠的值。

19,三条线段能够成三角形条件是:任意两条线段的长度和大于第三条线段长
度,现有长为144cm的铁丝。

要结成n小段(n>2),没断的长度不小于1cm,如
果其中任意三小段都不能拼成三角形,则n的最大值是多少?
20,已知ADE
ABC∆

∆,且o
CAD10
=
∠,o
D
B25
=

=
∠,DFB
∠和DGB
∠的度数。

21,已知AB=AC,AD=AE,2
1∠
=
∠,求证AEB
ABC∆


22o
ACE90
=
∠,AC=CE,B为AE上的一点,CB
ED⊥于D,CB
AF⊥交CB的延长线于F,求证:AF=CD
第十五题
E
第22题
第23题
23,已知AB=CD,BC=DA,E,F为AC上的两个点,且AE=CF,求证BF//DE
24,AD,BC交于D,AD
BE⊥于E,BC
DF⊥于F且AO=CO,BE=DF,求证
AB=CD
25,中AB=AC,o
BAC90
=
∠分别过BC做过A点的直线的垂线,垂足为D,E,求证DE=BD+CE
26,在ABC
∆中D是BC的中点,AB
DE⊥于E,AC
DF⊥于F且DE=DF,求证AB=AC
27,如图,AB=AD,AC=AE,2
1∠
=
∠,猜想3
1∠
∠与的大小关系,并证明你的猜想。

28,已知等腰直角三角形ABC,o
A90
=
∠,D为边AB的中心点过A点作CD,的垂线交边BC于E,连接DE,求证,BDE
ADC∠
=

29,正方形ABCD连接对角线AC,P是AC上一点,连接BP过P点做PQ
BP⊥角DC与Q证明BP=PQ
30,已知如图,o
ABC15
=
∠o
DBC45
=
∠o
ACD15
=
∠,o
DCB30
=
∠,证明ABD

为等边三角形。

31,已知2
1∠
=
∠,o
DEC90
=
∠,BC
AB⊥求证AD+BC=CD
B
Q
B
32,已知如图,OC平分AOB
∠,P为OC上一点,OA
PD⊥于D,
o
PFO
PEO180
-

+
∠,求证:OE+OF=2OD。

33,已知如图,E,D分别是AB,AC上的点,BCD

∠与
EBC的平分线交于点M,BED
∠,EDC
∠的平分线交于点N,那么A,M,N三点能否在同一条直线上?给出判断并证明你的结论。

34,已知如图已知ABC
∆和CED
∆都是等边三角形,证明FCG
∆为等边三角形35,等腰三角形一腰上的中线把该三角形周长分为13.5,11.5两个部分求这个等腰三角形的腰长和底长。

36,已知ABC
∆为等腰三角形,AB=AC,AB
GD⊥,AC
BE⊥,AC
DF⊥,证明BE=GF+GD
37.,在四边形ABCD中,BC>DC,AD=DC,BD平分ABC
∆,求证,o
BCD
BAD180
=

+

38,已知,AB=AC,AD=AE,证明AD平分BAC

39,已知如图,ABC
∆的外角CBD
∠和BCE
∠的平分线相较于点F,DE
AF⊥,求证ADE
∆是等腰三角形。

40,如图已知ABC
∆为等边三角形过C点做一条直线交BA的延长线与D过D做直线交BC与E,DE=DC证明AD=BE
41,如图正方形ABCD,E是BC上一点,F是上一点连接AE,AF使o
EAF45
=
∠,证明BE+DF=EF
42,如图17在中,D是BC的中点,E,F分别AB,AC上的点,且 ,求证:BE+CF>EF
E
第32题
O B
第34题
B
第36题
C
B
第39题
D
第40题
B第41题
C
A
F
第42题
B。

相关文档
最新文档