2011年中考数学模拟卷4
2011年中考模拟试卷数学试卷及答案(优质)
2011年中考数学模拟试卷 试题卷一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的, 请在答题卷中把正确选项的字母涂黑.注意可以用多种不同的方法来选取正确答案.1.我国在2009到2011三年中,各级政府投入医疗卫生领域资金达8500亿元人民币.将“8500亿元”用科学记数法表示为( ) A .9105.8⨯元B .10105.8⨯元C .11105.8⨯元D .12105.8⨯元2.下列运算正确的是()A .()b a b a +=+--B .a a a =-2333 C .01=+-aa D .323211=⎪⎭⎫⎝⎛÷- 3.有2名男生和2名女生,王老师要随机地、两两一对地排座位,一男一女排在一起的概率是( )A. 14B. 23C. 12D. 13 4.如图,一束光线与水平面成60°的角度照射地面,现在地面AB 上支放一个平面镜CD ,使这束光线经过平面镜反射后成水平光线,则平面镜CD 与地面AB 所成角∠DCB 的度数等于 ( ) A .30° B .45° C .50° D .60°5.抛物线y=-x 2+2x -2经过平移得到y=-x 2,平移方法是( )﹒A .向右平移1个单位,再向下平移1个单位B .向右平移1个单位,再向上平移1个单位C .向左平移1个单位,再向下平移1个单位D .向左平移1个单位,再向上平移1个单位6.如图下列四个几何体,它们各自的三视图(主视图、左视图、俯视图)中,有两个相同而另一个不同的几何体是(A. ①② B .②③C .②④ D . ③④ 7.如图,把⊙O 1向右平移8个单位长度得⊙O 2,两圆相交于A.B ,且O 1A⊥O 2A ,则图中阴影部分的面积是( )A.4π-8B. 8π-16C.16π-16D. 16π-32①正方体②圆柱③圆锥④球第4题第7题8.已知函数y=―t 3 ―2010|t|,则在平面直角坐标系中关于该函数图像的位置判断正确的是( )A .必在t 轴的上方B .必定与坐标轴相交C .必在y 轴的左侧D .整个图像都在第四象限9.如图,△ABC 的三边分别为a 、b 、c ,O 是△ABC 的外心,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,则OD ∶OE ∶OF = ( )A . a ∶b ∶cB . a 1∶b 1∶c 1C . cosA ∶cosB ∶cosCD . sinA ∶sinB ∶sinC 10.现在把一张正方形纸片按如图方式剪去一个半径为40 2 厘米的14 圆面后得到如图纸片,且该纸片所能剪出的最大圆形纸片刚好能与前面所剪的扇形纸片围成一圆锥表面,则该正方形纸片的边长约为( )厘米﹒(不计损耗、重叠,结果精确到1厘米,2 ≈1.41, 3 ≈1.73) A . 64 B . 67 C . 70 D . 73二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案. 11. 函数21-=x y 的自变量x 取值范围是 .12.右图为护城河改造前后河床的横断面示意图,将河床原竖直迎水面BC 改建为坡度1:0.5的迎水坡AB ,已知AB=4 5 米, 则河床面的宽减少了 米.(即求AC 的长)13.已知矩形OABC 的面积为3100,它的对角线OB 与双曲线x k y =相交于点D ,且OB ∶OD =5∶3,则k =__________.14.已知关于x 的函数y =(m -1)x 2+2x +m 图像与坐标轴有且只 有2个交点,则m =A B C O E F D 第9题ACB.5 = i 1:第12题第10题15.如图,直线y kx b =+经过(21)A ,,(12)B --,两点,则不等式122x kx b >+>-的解集为 .16.如图,图①是一块边长为1,周长记为P 1的正三角形纸板,2正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的21)后,得图③,④,…,记第n (n ≥3) 块纸板的周长为P n ,则P n -P n-1= .三. 全面答一(本题有8个小题, 共66分)解答应写出文字说明, 证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己能写出的解答写出一部分也可以.17.(本题满分6分)先化简,再求值:aa a a --÷--224)111(,其中a 是整数,且33<<-a 18.(本题满分6分)如图,在平面直角坐标系中,点A ,B ,C ,P 的坐标分别为(0,2),(3,2),(2,3),(1,1). (1)请在图中画出△A′B′C′,使得△A′B′C′与△ABC关于点P 成中心对称;(2)若一个二次函数的图像经过(1)中△A′B′C′的三个 顶点,求此二次函数的关系式;19. (本题满分6分) 如图,AB 为⊙O 的弦,C 为劣弧AB 的中点,(1)若⊙O 的半径为5,8AB =,求tan BAC ∠; (2)若DAC BAC ∠=∠,且点D 在⊙O 的外部,判断AD 与⊙O 的位置关系,并说明理由.20.(本题满分8分)某市为了解市民对已闭幕的某一博览会的总体印象,利用最新引进的“计18题19题…① ② ③ ④第16题算机辅助电话访问系统”(简称CATI 系统),采取电脑随机抽样的方式,对本市年龄在16~65岁之间的居民,进行了400个电话抽样调查.并根据每个年龄段的抽查人数和该年龄段对博览会总体印象感到满意的人数绘制了下面的图(1)和图(2)(部分)(1)被抽查的居民中,人数最多的年龄段是 岁;(2)已知被抽查的400人中有83%的人对博览会总体印象感到满意,请你求出31~40岁年龄段的满意人数,并补全图(2);(3)比较31~40岁和41~50岁这两个年龄段对博览会总体印象满意率的高低(四舍五入到1%).注:某年龄段的满意率=该年龄段满意人数÷该年龄段被抽查人数⨯100%.21.(本题满分8分)如图,AB//CD,∠ACD=72°﹒⑴用直尺和圆规作∠C 的平分线CE ,交AB 于E ,并在CD 上取一点F ,使AC =AF ,再连接AF ,交CE 于K ; (要求保留作图痕迹,不必写出作法)⑵依据现有条件,直接写出图中所有相似的三角形﹒ (图中不再增加字母和线段,不要求证明)﹒22.(本题满分10分)一列火车由A 市途经B 、C 两市到达D市.如图,其中A 、B 、C 三市在同一直线上,D 市在A 市的北偏东45°方向,在B 市的正北方向,在C 市的北偏西60°方向,C 市在A 市的北偏东75°方向.已知B 、D 两市相距100km .问该火车从A 市到D 市共行驶了多少路程?(保留根号)23.(本题满分10分)某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5 000元,少租A B C D第21题 第22题出商铺1间.(假设年租金的增加额均为5000元的整数倍)该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5 000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元? (3)275万元是否为最大年收益?若是,说明理由;若不是,请求出当每间的年租金定为多少万元时,达到最大年收益,最大是多少?24.(本题满分12分)如图,在菱形ABCD 中,AB=2cm ,∠BAD=60°,E 为CD 边中点,点P 从点A 开始沿AC方向以每秒的速度运动,同时,点Q 从点D 出发沿DB 方向以每秒1cm 的速度运动,当点P 到达点C 时,P ,Q 同时停止运动,设运动的时间为x 秒. (1)当点P 在线段AO 上运动时.①请用含x 的代数式表示OP 的长度; ②若记四边形PBEQ 的面积为y ,求y 关于x 的函数关系式(不要求写出自变量的取值范围); (2)显然,当x=0时,四边形PBEQ 即梯形ABED ,请问,当P 在线段AC 的其他位置时,以P ,B ,E ,Q 为顶点的四边形能否成为梯形?若能,求出所有满足条件的x 的值;若不能,请说明理由.2011年中考数学模拟试卷 参考答案C第24题一.仔细选一选(本题有10个小题,每小题3分,共30分.)二.认真填一填 (本题有6个小题, 每小题4分, 共24分.)11 x >2 12. 4 13. 12 ,14.15.16.三.全面答一答 (本题有8个小题, 共66分.) 17. (本题6分) 解:原式=2)2)(2()1(12+=+--⋅--a aa a a a a a ……… 3分 当a=-1时, …………….2分 原式= -1 …………….1分18. (本题6分) 解:(1)图略 ………… ………………………………3分(2)()()1212y x x =-+ ………… ……………………………3分19. (本题6分) (1)解: ∵AB 为⊙O 的弦,C 为劣弧AB 的中点,8AB = ∴OC AB ⊥于E ∴ 142AE AB == ……1分 又 ∵5AO = ∴3OE ==∴ 2CE OC OE =-= ……1分 在Rt △AEC 中,21tan 42EC BAC AE ∠=== ……1分 (2)AD 与⊙O 相切. ……1分 理由如下:∵OA OC = ∴C OAC ∠=∠∵由(1)知OC AB ⊥ ∴ ∠C+∠BAC =90°. ……1分 又∵BAC DAC ∠=∠ ∴90OAC DAC ∠+∠=︒ ……1分 ∴AD 与⊙O 相切.E20. (本题8分) (1) 被抽查的居民中,人数最多的年龄段是21~30岁…………2分(2)总体印象感到满意的人数共有83400332100⨯=(人)31~40岁年龄段总体印象感到满意的人数是332(5412653249)66-++++=(人) …………………………………2分图略…………………………………1分(3) 31~40岁年龄段被抽人数是2040080100⨯=(人)总体印象的满意率是66100%82.5%83%80⨯=≈………………………1分41~50岁被抽到的人数是1540060100⨯=人,满意人数是53人,总体印象的满意率是5388.3%88%60=≈………………………1分∴41~50岁年龄段比31~40岁年龄段对博览会总体印象的满意率高…………1分21. (本题8分)解:⑴CE作法正确得2分,F点作法正确得1分,K点标注正确得1分;⑵△CKF∽△ACF∽△EAK;△CAK∽△CEA(注:共4对相似三角形,每正确1对可各得1分)22. (本题10分)解:过点B分别作B E⊥CD于E,B F⊥AD于F.由题,∠BDE=60°,∠BCE=45°,∠BDF=45°,∠BAF=30°.………………2分∴DE=50,…………………………………1分BE=1分CE=1分∴BC=1分∵BF=1分∴AB=…………………………………1分∴50394AB BC CD km++==.……………1分EF∴该火车从A 市到D市共行驶了(50394AB BC CD km ++==)km .………1分 23.(本题10分)解:(1)∵ 30 000÷5 000=6, ∴ 能租出24间. ……………2分 (2)设每间商铺的年租金增加x 万元,则 (30-5.0x )×(10+x )-(30-5.0x )×1-5.0x×0.5=275, ………2分 2 x 2-11x +5=0, ∴ x =5或0.5,∴ 每间商铺的年租金定为10.5万元或15万元. ……………2分 (3)275万元不是最大年收益 ……………1分 当每间商铺的年租金定为12.5万元或13万元. ……………2分 达到最大年收益,最大是285万元 ……………1分 24.(本题12分) . 解:(1)①由题意得∠BAO=30°,AC ⊥BD ∵AB=2 ∴OB=OD=1,∴……………2分②过点E 作EH ⊥BD ,则EH 为△COD 的中位线∴12EH OC ==∵DQ=x ∴BQ=2-x∴)323)(2(21x x S BPQ --⨯=∆ …………………………1分 23)2(21⨯-⨯=∆x S BEQ …………………………1分 ∴233431132+-=+=∆∆x x S S y BEQ BPQ …………………………2分 (2)能成为梯形,分三种情况:当PQ ∥BE 时,∠PQO=∠DBE=30°∴tan 30o OP OQ==即13x =- ∴x=25C注意事项 :1.请先填写班级、姓名、学号及试场号、座位号2.请保持答卷卷面清洁,不要折叠、破损。
2011年中考模拟数学试题卷40
2011年中考模拟数学试题卷考生须知:1. 本试卷分试题卷和答题卷两部分,满分120分, 考试时间100分钟.2. 答题时, 应该在答题纸指定位置填写学校,班级,姓名,不能使用计算器.3. 所有答案都必须做在答题纸标定的位置上,请务必注意试题序号和答题序号相对应.一、仔细选一选(本题有10个小题,每小题3分,共30分,下面每小题给出的四个选项中, 只有一个是正确的,请选出正确的选项. ) 1.已知32=a b ,则b a a +的值是( ▲ ) A .52 B . 53 C .23 D . 352.把二次函数y =3x 2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是 ( ▲ )A .y =3(x +2)2+1B .y =3(x +2)2-1C .y =3(x -2)2-1D .y =3(x -2)2+13.若在同圆中弧AB 是CD 的一半,那么弦AB 与弦CD 的一半的大小关系是( ▲ ) A 、AB>21CD B 、AB=21CD C 、AB<21CD D 、无法确定4.如图,MN ∥PQ ∥BC ,且AM =MP=PB ,则△ABC 被分成的三部分的面积比321::S S S ,为…( ▲ )A .1:1:1B .1:2:3C .1:3:5D .1:4:9 5.已知反比例函数2y x-=的图象上有两点A (1x ,1y ),B (2x ,2y ),且12x x <, 则12y y -的值是( ▲ )A .正数B .负数C .非正数D .不能确定6.下列命题是真命题的有( ▲ )个。
①过弦的中点的直线必过圆心;②相等的圆心角所对的弧相等;③弦的垂线平分弦所对的弧;④若圆的一弦长等于圆半径,则其所对的圆周角是30°;⑤三点可以确定一个圆; A . 1个 B .2个 C .0个 D .3个7.如图,AB 是⊙O 的直径,点D 、E 是半圆的三等分点,AE ,BD 的延长线交于点C 。
2011年中考模拟试卷数学卷
2011年中考模拟试卷数学卷考生须知:1. 本试卷满分120分, 考试时间100分钟.2. 答题前, 在答题纸上写姓名和准考证号.一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的. 注意可以用多种不同的方法来选取正确答案. 1. -3的倒数是( ) (A) -31 (B) 31(C) -3 (D) 3 2. 2011年3月5日上午9时,第十一届全国人民代表大会第四次会议在人民大会堂开幕,国务院总理温家宝在年度计划报告中指出,今年中央财政用于“三农”的投入拟安排9884.5亿元.将9884.5用科学记数法表示应为( )(A) 98.845⨯102(B) 0.98845⨯104(C) 9.8845⨯104(D) 9.8845⨯103。
3. 下列运算正确的是( )(A)6332x x x =+ (B)428x x x =÷ (C)mnn m x x x =⋅ (D)2045)(x x =-4. 函数y =x 的取值范围是( )(A) x ≤1. (B)x ≥-1. (C) x ≥1. (D)x ≤-1.5. 2010年11月13日,中国奥运冠军朱启南在亚运会男子10米气步枪决赛中,凭借最后3枪的出色发挥,以总成绩702.2环夺得冠军。
他在决赛中打出的10枪成绩(单位:环)是:10.4,9.6,10.4,10.1,10.2,10.7,10.2,10.5,10.7,10.4.则这组数据的中位数是( ) (A ) 10.7 (B ) 10.4 (C ) 10.3 (D ) 10.26. 小明用一个半径为5cm ,面积为15π2cm 的扇形纸片,制作成一个圆锥的侧面(接缝处不重叠),那么这个圆锥的底面半径为( )(A )3cm (B ) 4cm (C ) 5cm (D ) 15cm 7. 将直线y=2x ─4向右平移3个单位后,所得直线的表达式是(A) y=2x ─1 (B) y=2x ─7 (C) y=2x ─10 (D) y=2x+28. 在直角坐标系中,⊙O 的圆心在原点,半径为3,⊙A 的圆心A 的坐标为)1,3(-,半径为1,那么⊙O 与⊙A 的位置关系是( )A .内含B .内切C .相交D . 外切9.不透命的盒子里面装有五个分别标有数字1,2,3,4,5的乒乓球,这些球除数字之外,其他完全相同,一位学生随机地一次摸出两个球,两个球上的数字之和是偶数的概率是( )(A)2513 (B) 52 (C) 2516 (D) 107 10若},,,max{21n s s s 表示实数n s s s ,,,21 中的最大值.设),,(321a a a A =,⎪⎪⎪⎭⎫⎝⎛=321b b b B ,记}.,,max{332211b a b a b a B A =⊗设,1(-=x A )1,1+x ,⎪⎪⎪⎭⎫ ⎝⎛--=|1|21x x B ,若1-=⊗x B A ,则x 的取值范围为( )(A) 131≤≤-x (B) 211+≤≤x (C) 121≤≤-x (D) 311+≤≤x 二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案. 11. 分解因式:m 3-2m = 。
2011年中考数学模拟试题及答案
1 1 1数学模拟试题本试卷分第I 卷(选择题)和第U 卷(非选择题)两部分。
满分120分,考试用 时120分钟。
第I 卷(选择题共42分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答 题卡上。
2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动, 用橡皮擦干净后,再选涂其它答案,不能答在试卷上。
3. 考试结束,将本试卷和答题卡一并收回。
一、选择题(本大题共14小题,每小题3分,满分42分)在每小题所给的四个 选项中,只有 一项是符合题目要求的。
1. 9的算术平方根是 A . 3 B . -3C . - 3D . - 92 •今年初,惊闻海地发生地震,中国政府和人民在第一时间作出支援海地的决定:1月13日,中国红十字会向海地先期捐款 204959美元,用科学记数法表示并保留三个有效数字应为(B )3、下列运算正确的是()A . 3X 2-:X =2X B . (x 2)3=x 54. 对于数据:85,83,85,81,86.下列说法中正确的是(B )A .这组数据的中位数是 84B .这组数据的方差是 3.25A . 2.050 10B 52.05 10 C630.205 10 D . 205 103412X -X X 2 2 2D . 2x 3x =5xC •这组数据的平均数是 85D.这组数据的众数是865. 一个几何体的三视图如右图所示,这个几何体是( D )5.小明要给刚结识的朋友小林打电话,他只记住了电话号码的前5位的顺序,后3位是3,6,8三个数字的某一种排列顺序, 但具体顺序忘记了,那么小明第一次就拨通电话的概率是第5题图A. D.12111C9. 如图,三个天平的托盘中形状相同的物体质量相等.图⑴、图⑵所示的两个天平处于平衡状态,要使第三个天平也保持平衡,则需在它的右盘中放置(C ).A.3个球B.4个球C.5个球D.6个球亠 oAAAz -xcferriz X EDAZV \onAy 、 /II) (2)⑶10. 一次函数y =kx ■ k -2一定过定点( ) A.(-1,-2)B.(72)C.(1,2)D.(1,-2)13.在平面直角坐标系中,对于平面内任一点P a, b 若规定以下两种变换:① f(a,b)=(T ,七).如 f(1,2) =(-1,-2)6.已知,如图,AB 是O O 的直径,点 D,C 在O O 上,联结 ADBD DC AC,如果/ BAD=25,那么/ C 的度数是( )A. 75B. 65C. 60D. 507.如图折叠直角三角形纸片的直角,使点 C 落的点E 处.已知AB=8.3 , / B =30° ,则DE 的长A. 6B.4C. 4.3D. 2,3D在斜边AB 上 是(B )&已知一个圆锥的底面积是全面积的A. 60 oB. 90 oC.1201 ,那么这个圆锥的侧面展开图的圆心角是( 3o D.180 o11.如图,反比例函数 y = k 与O O 的一个交点为(2,1),则图中阴影部分的面积是( x3 A.-4B.二5 C.-二412.已知二次函数y =ax 2+bx+c 的图象如图所示,那么下列判断中不正确的是2B. b -4ac > 0C.2a+b> 0D.4a-2b+c<0O)A. abc > 0 (第12题图)18..小明最近的十次数学考试成绩(满分 150分)如下表所示14题图第u 卷(非选择题共78分)注意事项:1. 用钢笔或圆珠笔直接答在试卷上。
2011年中考模拟试卷数学卷及答案
2011年中考模拟试卷数学卷及答案
请同学们注意:
1、本试卷分试题卷和答题卷两部分,满分为120分,考试时间为100分钟;
2、所有答案都必须写在答题卷标定的位置上,务必题号对应。
一.仔细选一选(本题有10个小题,每小题3分,共30分)
1.下列运算正确的是( )
A. B. C. D.
2.在函数中,自变量x的取值范围是( )
A. B. C. le; D. ge;
3.我国在2009到2011三年中,各级政府投入医疗卫生领域资金达8500亿元人民币.将”8500亿元”用科学记数法表示为( )
A. 元
B. 元
C. 元
D. 元
4.某住宅小区六月份1日至6日每天用水量变化情况如折线图所示,那么这6天的平均用水量是( )
A.30吨
B. 31 吨
C.32吨
D.33吨
5. 如图,已知⊙O的两条弦AC,BD相交于点E,
ang;A=75o,ang;C=45o,
那么sinang;AEB的值为( )
A. B. C. D.
2011年中考模拟试卷数学卷及答案完整版下载。
2011年灌南清华园中考模拟试卷数学卷4
2011年灌南清华园中考模拟试卷数学卷考生须知:1.本试卷满分120分, 考试时间100分钟.2.答题前, 在答题纸上写姓名和准考证号.3.必须在答题纸的对应答题位置上答题,写在其他地方无效. 答题方式详见答题纸上的说明.34)6,A.这组数据的中位数是10,众数是9 B.这组数据的中位数是9.5 C.这组数据的方差是4 D.这组数据的平均数P满足9<P<107.如图,已知直线1l∥2l∥3l∥4l,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则sinα=().(改编)ABCDαA 1l3l2l4lA.21 B. 55 C. 25 D.552 8.下列命题中,正确的命题有:( ) (原创)① 平分一条弦(不是直径)的直径一定垂直于弦; ②函数2y x=-中,y 随x 的增大而增大; ③夹在平行线间的线段长度相等;////9、A 10、A 3Pn P 1B 为为二 11.蒙牛乳业生产的有益活菌酸牛奶饮品,每100ml 含有300亿个活菌因子,则一瓶规格为340ml 的优益活菌型乳酸饮品含有 个活菌因子(用科学技术法表示)。
(原创)12.若一元二次方程x 2+bx+c=0解为x 1=3,x 2= -4,则分解因式x 2+bx+c= 。
(原创) 13.如图所示,当半径为30cm 的圆轮转动过120°角时,传送带上的A 物体平移的距离为 cm.(原创)14. 如图, 90,=∠∆ACB ABC Rt 中,DE 过点C ,且DE//AB ,若50=∠ACD ,则∠A= ,∠B= . (原创)15.16.点A 、的半径为三. 17.(M,请18. (角为α不写画法,保留作图痕迹.在图中标注m 、n 、α、E 、F 、G )(原创)19. (本题满分6分)已知反比例函数y =8m x-(m 为常数)的图象经过点A (-1,6).(1)求m的值;(2)如图9,过点A作直线AC与函数y=8mx-的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐标.(改编)108分及以上为优秀,请你预计用这份模拟卷考试优秀22. (本小题满分10分)阅读理解:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用实数加法表示为3+(2-)=1.若坐标平面上的点作如下平移:沿x 轴方向平移的数量为a (向右为正,向左为负,平移a 个单位),沿y 轴方向平移的数量为b (向上为正,向下为负,平移b 个单位),则把有序数对{a ,b }叫做这一平移的“平移量”;“平移量”{a ,b }与“平移量”{c ,d }的加法运算法则为}{}{}{d b c a d c b a ++=+,,,. 解决问题:(1)计算:{3,1}+{1,2};{1,2}+{3,1}.(2)①动点P 从坐标原点O 出发,先按照“平移量”{3,1}平移到A,再按照“平移量” {1,2}平移到B ;若先把动点P 按照“平移量”{1,2}平移到C ,再按照“平移量” 5),C的函已知:直线12y x =+与y 轴交于A ,与x 轴交于D ,抛物线2y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0).(1)求抛物线的解析式;(2)动点P 在x 轴上移动,当△PAE 是直角三角形时,求点P 的坐标. (3)在抛物线的对称轴上找一点M ,使||AM MC -的值最大,求出点M 的坐标.(改编)一.二.三.17.(M÷N÷【涉及知识点】分式化简实数计算。
上海市奉贤区2011年4月中考数学模拟试卷
第6题图第3题图ABF C DEO上海市奉贤区2011年4月中考模拟数学试卷2011.4一、选择题:(本大题共6题,每题4分,满分24分) 1.计算32a a ⋅的结果是( )A .5a ;B .6a ;C .8a ;D .9a .2.下列运算不正确的是()A .2(2=; B=; C=D=3.如图,直线CD 是线段AB 的垂直平分线,P 为直线CD 上的一点,已知线段PA =5, 那么线段PB 的长度为( )A .3 ;B .4 ;C .5 ;D .6.4.小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x 张,根据题意,下面所列方程正确的是( )A .48)12(5=-+x x ;B .48)12(5=-+x x ;C .48)5(12=-+x x ;D .48)12(5=-+x x . 5.某种彩票的中奖机会是1%,下列说法正确的是( )A .买1张这种彩票一定不会中奖;B .买100张这种彩票一定会中奖;C .买1张这种彩票可能会中奖;D .买100张这种彩票一定有99张彩票不会中奖. 6.如图,正方形ABCD 中,E 为AB 的中点,AF ⊥DE 于点O ,那么DOAO 等于( ) A .352 ; B .31; C .32; D .21.二、填空题:(本大题共12题,每题4分,满分48分)7.截止到2010年10月31日,上海世博园共接待游客73 080 000人, 用科学记数法表示是 人. 8.函数13y x =-中,自变量x 的取值范围是.9. 2=的根是 .10.在直角坐标系中,点)2-2(,A 与点)12(,-B 之间的距离=AB .第12题图第18题图11.已知反比例函数xm y 2-=的图象如图所示,那么m 的取值范围是 .12.如图,l 1表示某摩托厂一天的销售收入与摩托车销售量之间的关系;l 2表示 该摩托厂一天的销售成本与销售量之间的关系。
2011年数学中考模拟试卷及答案
命题人:张晓云2011年数学模拟试卷一、选择题(每小题3分,共30分) 1.下列四个数中,小于0的是( )(A )-2. (B )0. (C )1. (D )3. 2.下列运算正确的是 ( )A .523a a a =+ B .632a a a =⋅ C .22))((b a b a b a -=-+ D.222)(b a b a +=+3.右边的几何体是由五个大小相同的正方体组成的,它的正视图为( )4.两圆的半径分别为2和5,圆心距为7,则这两圆的位置关系为( )(A )外离. (B )外切. (C )相交. (D )内切. 5. 二次函数2)1(2+-=x y 的最小值是( ) (A )2 (B )1 (C )-1 (D )-2 6.下列命题中不成立...的是( ) A .矩形的对角线相等 B .三边对应相等的两个三角形全等 C .两个相似三角形面积的比等于其相似比的平方D .一组对边平行,另一组对边相等的四边形一定是平行四边形7.下列四个点中,有三个点在同一反比例函数xky =的图象上,则不在这个函数图象上的点是 ( ) A .(5,1) B .(-1,5) C .(35,3) D .(-3,35-)8.已知圆锥的底面半径为5cm ,侧面积为65πcm 2,设圆锥的母线与高的夹角为θ(如图5)所示),则sin θ的值为( ) (A )125 (B )135 (C )1310 (D )13129.如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BE =( ) A .2B .3C.D.10. 如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回.点P 在运动过程中速度大小不变.则以点A 为圆心,线段AP 长为半径的圆的面积S 与点P 的运动时间t 之间的函数图象大致为( )(第2题)二、填空题(每小题3分,共30分)11.新建的北京奥运会体育场——“鸟巢”能容纳91000位观众,将91000用科学记数法表示为 .12.分解因式241a -= . 13.当x = 时,分式1x x+没有意义. 14.如图,AB //CD ,CE 平分∠ACD ,若∠1=250,那么∠2的度数是 . 15.在一个不透明的袋子中有2个黑球、3个白球,它们除 颜色外其他均相同.充分摇匀后,先摸出1个球不放回,再摸 出1个球,那么两个球都是黑球的概率为 . 16如图,沿倾斜角为30︒的山坡植树,要求相邻两棵树的水 平距离AC 为2m ,那么相邻两棵树的斜坡距离AB 为 m 。
2011年中考数学模拟卷及答案
中考数学模拟试卷四中一、选择题(每小题3分,共计30分)1、「的值是()A. —2B. 2C. 4D. —42、下列计算中,正确的是()A. = a a3 =a3C.屮一「=FD.(-ab)3= a2b23、若一个多边形的每个外角都等于45°,则它的边数是()A. 11B. 10C. 9D. 84、方程* 1的根为()A. x = lB. x = 0C. Xi-O^x^ -1D. x:-0,x2 --15、把一个小球以20m/s的速度竖直向上弹出,它在空中的高度h (m与时间t (S)满足关系:人加当..时,小球的运动时间为()A. 20sB. 2sC (2^2 + 2)sD (2屈一2)s6、某校有一个两层楼的餐厅,甲、乙、丙三名学生各自随机选择其中的某个楼层的餐厅用餐,则甲、乙、丙三名学生在同一个楼层餐厅用餐的概率为()A 1 D 3 1 3A、 B C、D、一4 4 8 87、下列各图中,是中心对称图形的是()8、图中的图象(折线OBCD)描述的是一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(km)和行驶时间t(h)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120km②汽车在行驶途中停留了0.5h ;SO, 一血③汽车在整个行驶过程中的平均速度为^ ;④汽车出发后3~4.5h之间行驶的速度在逐渐减少。
其中正确的说法共有()A. 1个B. 2个C. 3个D. 4个9、某装修公司到建材市场买同样一种多边形的地砖密铺地面,在以下四种地砖中,该公司不能买()A、正三角形地砖B正方形地砖C正五边形地砖D、正六边形地砖10、如图,矩形ABC(11)与矩形CDEF全等,点B, C, D在同一条直线上,△ APE的顶点P在线段BD上移动,使厶APE为直角三角形的点P的个数是()A. 5B. 4C. 3D. 2A”、填空题(每小题3分,共计30 分)11、2007年中国月球探测工程的“嫦娥一号”卫星发射升空飞向月球。
2011年中考数学最新模拟试题4
中考数学摸底考试试卷数学试卷(满分:150分 时间:120分钟)一、选择题(本题共10小题,每小题4分,共40分)每小题的4个答案中,只有一个答案符合题意,请你将选出的正确答案填在下面的表格内。
1.下列计算结果为负数的是( )A . (-3)0B .-(-3)C .―|-3|D .(-3)-22.如图所示,直线l 与直线a ,b 相交,且a ∥b ,∠1=800,则∠2的度数是( )A .600 B.800 C.1000 D.12003.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7 (平方毫米),这个数用科学记数法表示为( )A .7×10-6B .0.7×10-6 C .7×10-7 D .70×10-84.分解因式:3x ―22x +x =( )A . x2(x ―2)+1B . x(x2―2x)+xC . x(x2―2x +1)D .x(x -1)25.不等式2x -7<5-2x 的正整数解有( )A .1个B . 2个C .3个D . 4个 6.如图,点D 、E 、F 是线段BC 的四等分点,点A 在BC 外,连人数环7 6 3 2 1 5 6 7 8 9 10 第8题图第9题图0 2 -xy第2题图 第6题图l接AB 、AD 、AE 、AF 、AC ,若AB = AC , 则图中的全等三角形共有( )A. 2对B. 3对C. 4对D. 5对7.甲、乙两名学生进行射击练习,两人在相同条件下各射靶5次,射击成绩统计如下:命中环数(单位:环) 789 10甲命中相应环数的次数2 2 0 1 乙命中相应环数的次数1 3 1 0)A .甲比乙高B .甲、乙一样C .乙比甲高D .不能确定8.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是( ) A .7,7 B .8,7.5 C .7,7.5 D .8,6.59.已知一次函数y kx b =+的图象如图所示,当1x <时,y 的取值范围是( ) A .20y -<< B .40y -<< C .2y <- D .4y <-10.对于反比例函数2y x=,下列说法不正确的是( )A .点(21)--,在它的图象上 B .它的图象在第一、三象限 C .当0x >时,y 随x 的增大而增大 D .当0x <时,y 随x 的增大而减小二、填空题(本题共4小题,每小题5分,共20分)11.在函数25-=x y 中,自变量x 的取值范围是 。
42011年中考模拟试卷 数学卷
2011年中考模拟试卷 数学卷考生须知:1.本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟。
2.答题时,应该在答题卷指定位置内写明校名,姓名和准考证号。
3.所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应。
4.考试结束后,上交试题卷和答题卷试题卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母填在答题卷中相应的格子内. 注意可以用多种不同的方法来选取正确答案. 1. 如果)0(1≠-=b ba,那么a ,b 两个实数一定是( ) 【原创】 A. 一正一负 B. 相等的数 C.互为相反数 D.互为倒数2. 下列调查适合普查的是( ) 【原创】 A .调查2011年3月份市场上西湖龙井茶的质量B .了解萧山电视台188热线的收视率情况C .网上调查萧山人民的生活幸福指数D .了解全班同学身体健康状况3. 函数,一次函数和正比例函数之间的包含关系是( ) 【原创】4. 已知下列命题:①同位角相等;②若a>b>0,则11a b<;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x 2-2x 与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等。
从中任选一个命题是真命题的概率为( ) 【改编】 A.15 B. 25 C.35 D.455. 已知点A (x ,y )在函数2x y -=的图象上,那么点A 应在平面直角坐标系中的( )A.x 轴上B. y 轴上C. .x 轴正半轴上D.原点 【原创】6. 我校数学教研组有25名教师,将他们的年龄分成3组,在24~36岁组内有8名教师,那么这个小组的频率是( ) 【原创】7. ( )8. 如图是某几何体的三视图及相关数据,则判断正确的是( ) 【改编】 A . a >c B .b >c C .4a 2+b 2=c 2D .a 2+b 2=c 29. 如图,在菱形ABCD 和菱形BEFG 中,点A 、B 、E 在同一直线上,P 是线段DF 的中点,连结PG ,PC 。
2011~2012中考数学模拟试卷(4)
2011~2012中考数学模拟试卷(4) 姓名 班级一、选择题1.下列四个图形中,既是轴对称图形,又是中心对称图形是 …… ( )① ② ③ ④A .①②B .①③C .①④D .②③2.下列运算中,计算结果正确的是 …… ( )A .123=-x xB .2x x x =⋅C .2222x x x =+D .()224aa -=- 3.在实数23-,0πA .1个B .2个C .3个D .4个 …… ( ) 4. 如图,数轴上点A 、B 分别表示实数a 、b ,则下列四个数中最大的数是 …… ( )A .aB .bC .1aD .1b5.下列调查中,适宜采用全面调查(普查)方式的是 …… ( )A .调查一批新型节能灯泡的使用寿命B .调查长江流域的水污染情况C .调查重庆市初中学生的视力情况D .为保证“神舟7号”的成功发射,对其零部件进行检查6.如果两圆的半径分别为2和1,圆心距为3…… ( )7.用两个完全相同的直角三角形不能拼成下列图形的是 …… ( )A .平行四边形B .矩形C .等腰三角形D .梯形8.已知菱形的边长为a ,其中的一个内角为60度,则它的面积是 …… ( ) 21.2A a 24B 24C 22D 9. 如下图,从一个直径为2的圆形铁皮中剪下一个圆心角为60°的扇形ABC ,将剪下来的扇形围成一个圆锥,则圆锥的底面圆半径为A .13 B . C . 33 D . 43 …… ( )10.已知二次函数)0(2≠++=a c bx ax y 的图象如上图所示,有下列5个结论:① 0>abc ;② c a b +<;③ 024>++c b a ;④ b c 32<;⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结二、填空题11.-3的相反数是______,-31的倒数是_______,16的平方根是_________. 12.实数范围内分解因式:32x x -= .13.函数y =x 的取值范围是___________________. 14.从2112--,,,这四个数中任取两个不同的数作为一次函数y kx b =+的系数k b ,,所得一次函数y kx b =+的图象不经过第四象限的概率是 .15.点D 、E 分别在等边ABC ∆的边AB 、BC 上,将BDE ∆沿直线DE 翻折,使点B 落在B 1处,DB 1、EB 1分别交边AC 于点F 、G .若80ADF ∠=︒,则CGE ∠= .16. 如上图,⊙O 中,OA ⊥BC ,60AOB ∠=︒,则sin ADC ∠= .17.如图,DE 是ABC ∆的中位线,M 是DE 的中点,那么NDM NBCS S ∆∆= . 18.如上图,CD 是⊙O 的直径,弦AB ⊥CD ,垂足为点M ,20AB =,分别以CM 、DM 为直径作两个大小不同的⊙O 1和⊙O 2,则图中阴影部分的面积为 (结果保留π).三、解答题19)11212-÷ 20.解不等式组3521212x x x x -<⎧⎪⎨-≤+⎪⎩21.化简2221112444x x x x ⎛⎫--÷ ⎪+--+⎝⎭,再选择一个适当的数代入求值.AB C D E F G B 1C22.解方程:3(2)22x x x x--=-23.如图,已知直线x y 2-=经过点P (2-,a ),点P 关于y 轴的对称点P ′在反比例函数x k y =(0≠k )的图象上.(1)求a 的值;(2)直接写出点P ′的坐标;(3)求反比例函数的解析式.24.已知:如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE AF =. (1)求证:BE DF =;(2)连接AC 交EF 于点O ,延长OC 至点G ,使OG OA =,连接EG 、FG .判断四边形AEGF 是什么特殊四边形?并证明你的结论.xk A G25.综合实践课上,小明所在小组要测量护城河的宽度。
2011年中考数学模拟卷(含详细答案)
2011年中考数学模拟试卷题号 一 二 三总 分 19 20 21 22 23 24 25 得分注意事项:本试题满分150分,考试时间120分钟;一、选择题:本大题8个小题,每小题3分,共24分.在每小题给出的四个选项中只有一个是正确的,请把正确选项的标号填在题后面的括号内.1. 北京国家体育场“鸟巢”建筑面积达25.8万平方米,用科学记数法表示应为 ( )A .24108.25m ⨯B .25108.25m ⨯C .251058.2m ⨯D . 261058.2m ⨯ 2.计算23(2)a -的结果为 ( ) A .68a -B .52a -C .58a -D .66a -3.如图所示,已知直线AB CD ∥,125C ∠=°,45A ∠=°,则E ∠的度数为( ) A .70° B .80° C .90° D .100°4.某百货商场的女装专柜对上周女装的销售情况进行了统计,销售情况如下表所示:颜色 黄色 绿色 白色 紫色 红色 数量(件)10018022080550百货商场经理根据上周销售情况的统计表,决定本周多进一些红色的女装,可用来解释这一现象的统计知识是 ( )A.方差 B.平均数 C.众数 D.中位数 5.已知二元一次方程组2423m n m n -=⎧⎨-=⎩,,则m n +的值是 ( )A .1B .0C .2-D .1-6.如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么 ( ) A .0k >,0b > B .0k >,0b < C .0k <,0b > D .0k <,0b < 7.如图,一个空间几何体的主视图和左视图都是边长为1的正三角形,俯视图是一个圆,那么这个几何体的侧面积是 ( ) A .4π B .π42 C .π22 D .2π得分 评卷人Oyx 1x =(30)A ,EAB C D45°125°3题图7题图8.如图所示是二次函数2y ax bx c =++图象的一部分,图象过A 点(3,0), 二次函数图象对称轴为1x =,给出四个结论:①24b ac >;②0bc <;③20a b +=;④0a b c ++=,其中正确结论是 ( ) A .②④ B .①③ C .②③ D .①④二、填空题:本大题共8个小题,每小题4分,共32分,请把答案填在题中横线上。
上海市静安区2011年4月中考数学模拟试卷
上海市静安区2011年4月中考模拟数学试卷2011.41.下列各数中与213-相等的是 ( )(A )3 (B )3- (C )33 (D )33- 2.不等式组⎩⎨⎧>-->1,2x x 的解集是 ( )(A )2->x (B )1->x (C )1-<x (D )12-<<-x 3.下列问题中,两个变量成反比例的是 ( )(A )长方形的周长确定,它的长与宽; (B )长方形的长确定,它的周长与宽; (C )长方形的面积确定,它的长与宽; (D )长方形的长确定,它的面积与宽. 4.一支篮球队准备购买10双运动鞋,各种尺码统计如下表:则这10双运动鞋尺码的众数和中位数分别为( )(A )26厘米,26厘米 (B )26.5厘米,26.5厘米 (C )26.5厘米,26厘米 (D )26厘米,26.5厘米 5.三角形的重心是三角形的( )(A )三条中线的交点 (B )三条角平分线的交点 (C )三边垂直平分线的交点 (D )三条高所在直线的交点 6.下列图形中,可能是中心对称图形的是( )二、填空题:(本大题共12题,每题4分,满分48分) 7.计算:|21|20-+= . 8.化简:=+-a a a1. 9.如果关于x 的方程0)12(22=+--m x m x 有两个实数根,那么m 的取值范围是 . 10. 将二元二次方程0562=+-x xy x 化为二个一次方程为 . 11.如果函数kxy =(k 为常数)的图像经过点(–1,–2),那么y 随着x 的增大而 . 12. 如果02)1()1(2=-+-+x x , 那么=+1x .13.在一个袋中,装有四个除数字外其它完全相同的小球,球面上分别标有1、2、3、4这四个数字,从中随机摸出两个球,球面数字的和为奇数的概率是 .14.为了了解某校九年级学生的身体素质情况,在该校九年级随机抽取50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出频数分布直方图(如图,每组数据可含最小值,不含最大值),如果在一分钟内跳绳次数少于120次的为不合格,那么可以估计该校九年级300名学生中跳绳不合格的人数为 .15.正五边形每个外角的度数是 .16.在△ABC 中,点D 在边BC 上,BD =2CD ,==,,那么= .17.已知⊙1O 与⊙2O 两圆内含,321=O O ,⊙1O 的半径为5,那么⊙2O 的半径r 的取值范围是- .18.在△ABC 中,∠C=90°,AC=4,BC=2,△ABC 绕着点C 旋转后, 点B 落在AC 边上的点B ’,点A落在点A ’,那么tan ∠AA ’B ’的值为 . 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 化简:yx y yx x-++,并求当y x 3=时的值.20.(本题满分10分) 解方程:122432=++-x x .21.(本题满分10分,第(1)小题满分3分,第(2)小题满分7分)已知:如图,在梯形ABCD 中,DC ∥AB ,AD =BC ,BD 平分∠ABC ,∠A =60°. 求:(1)求∠CDB 的度数;(第14题图)(2)当AD =2时,求对角线BD 的长和梯形ABCD 的面积.22.(本题满分10分第(1)小题满分8分,第(2)小题满分2分)A 、B 两城间的公路长为450千米,甲、乙两车同时从A 城出发沿这一公路驶向B 城,甲车到达B 城1小时后沿原路返回.如图是它们离A城的路程y (千米)与行驶时间 x (小时)之间的函数图像.(1)求甲车返回过程中y 与x 之间的函数解析式,并写出函数的定义域;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)已知:如图,在□ABCD 中,点E 、F 分别是AB 、CD 的中点,CE 、AF 与对角线BD 分别相交于点G 、H .(1) 求证:DH=HG=BG ;(2) 如果AD ⊥BD ,求证:四边形EGFH24.(本题满分12分,第(1)小题满分3分,第(2)小题满分9分)如图, 二次函数22++=bx ax y 的图像与x 轴、y 轴的交点分别为A 、B ,点C 在这个二次函数的图像上,且∠ABC =90º,∠CAB =∠BAO ,21tan =∠BAO . (1)求点A 的坐标;(第21题图)(第23题图)(2)求这个二次函数的解析式.25.(本题满分14分,第(1)小题满分6分,第(2)小题满分5分,第(3)小题满分3分)如图,在半径为5的⊙O 中,点A 、B 在⊙O 上,∠AOB =90º,点C 是上的一个动点,AC 与OB 的延长线相交于点D ,设AC =x ,BD =y .(1) 求y 关于x 的函数解析式,并写出它的定义域;(2) 如果⊙1O 与⊙O 相交于点A 、C ,且⊙1O 与⊙O 的圆心距为2,当BD =31OB 时,求⊙1O 的半径; (3) 是否存在点C ,使得△DCB ∽△DOC ?如果存在,请证明;如果不存在,请简要说明理由.静安区质量调研九年级数学试卷参考答案及评分标准2011.4.14 一、选择题:(本大题共6题,每题4分,满分24分) 1.C ; 2.D ; 3.C ; 4.B ; 5.A ; 6.D . 二.填空题:(本大题共12题,满分48分)7.2; 8.12-a a ; 9.41≤m ; 10.056,0=+-=y x x ; 11.增大; 12.2;13.32; 14.72; 15.72; 16.b a 3231+; 17.820><<r r 或; 18.31.三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分)19.解:原式=yx y xy yx xy x -++--……………………………………………………………(5分)=yx yx -+……………………………………………………………………………(2分) 当y x 3=时,原式=32131333+=-+=-+yy y y .………………………………(3分)20.解:4)2(232-=-+x x ,……………………………………………………………(3分)(第25题图)(第24题图)0322=--x x ,………………………………………………………………………(2分)0)3)(1(=-+x x ,……………………………………………………………………(2分)3,121=-=x x .………………………………………………………………………(2分)经检验:1-=x ,3=x 都是原方程的根.………………………………………(1分) 所以原方程的根是3,121=-=x x .21. 解:(1) ∵在梯形ABCD 中,DC ∥AB ,AD =BC ,∠A =60°,∴∠CBA =∠A =60º. ………………………………………………………………(1分)∵BD 平分∠ABC ,∴∠CDB =∠ABD =21∠CBA=30º,………………………(2分) (2)在△ACD 中,∵∠ADB =180º–∠A –∠ABD=90º.……………………………(1分)∴BD=AD tan ⋅A =2tan60º=23.…………………………………………………(1分) 过点D 作DH ⊥AB ,垂足为H ,……………………………………………………(1分) ∴AH =AD sin ⋅A =2sin60º=3.……………………………………………………(1分) ∵∠CDB =∠CBD =21∠CBD =30º,∴DC =BC =AD =2. …………………………(1分) ∵AB =2AD =4, ………………………………………………………………………(1分)∴333)24(21)(21=+=⋅+=DH CD AB S ABCD 梯形.…………………………(1分) 22.解:(1)设甲车返回过程中y 与x 之间的函数解析式b kx y +=,……………………(1分)∵图像过(5,450),(10,0)两点,………………………………………………(1分) ∴⎩⎨⎧=+=+.010,4505b k b k ……………………………………………………………………(2分) 解得⎩⎨⎧=-=.900,90b k ………………………………………………………………………(2分)∴90090+-=x y .……………………………………………………………………(1分) 函数的定义域为5≤x ≤10.……………………………………………………………(1分)2)当6=x 时,360900690=+⨯-=y ,………………………………………………(1分) 606360==乙v (千米/小时). ………………………………………………………(1分) 23.证明:(1)∵四边形ABCD 是平行四边形,∴AB //CD ,AB =CD .…………………(1分)∵点E 、F 分别是AB 、CD 的中点,∴21===CD DF AB DF HB DH .…………………………………………………………(2分) ∴DH =BD 31.………………………………………………………………………(1分)同理:BG =BD 31.…………………………………………………………………(1分)∴DH =HG =GB =BD 31.……………………………………………………………(1分)(2)联结EF ,交BD 于点O .…………………………………………………………(1分)∵AB //CD ,AB =CD ,点E 、F 分别是AB 、CD 的中点,∴12121====AB CDBE DF BO OD EO FO .…………………………………………………(1分) ∴FO =EO ,DO =BO .………………………………………………………………(1分) ∵DH =GB ,∴OH =OG .∴四边形EGFH 是平行四边形.……………………(1分) ∵点E 、O 分别是AB 、BD 的中点,∴OE //AD .∵AD ⊥BD ,∴EF ⊥GH .…………………………………………………………(1分) ∴□HEGF 是菱形.………………………………………………………………(1分)24.解:(1)二次函数22++=bx ax y 的图像y 轴的交点为B (0,2),………………(1分) 在Rt △AOB 中,∵OB =2,21tan ==∠OA OB BAO ,………………………………(1分) ∴OA =4,∴点A 的坐标(4,0).…………………………………………………(1分) (2)过点C 作CD ⊥y 轴,垂足为D ,…………………………………………………(1分)∵∠CDB =∠ABC =∠AOB =90º,∴∠CBD =180º–∠ABC –∠ABO =90º–∠ABO =∠BAO .………………………(1分) ∴△CDB ∽△BOA ,…………………………………………………………………(1分)∵∠CAB =∠BAO ,∴21tan tan =∠=∠=BAO CAB AB CB ,………………………(1分) ∴21===AB CB OA BD OB CD .……………………………………………………………(1分)∴OC =1,BD =2,∴OD =4.∴C (1,4).…………………………………………(1分)∵点A 、C 在二次函数22++=bx ax y 的图像上,∴⎩⎨⎧++=++=,24,24160b a b a …………………………………………………………………(1分)∴⎪⎪⎩⎪⎪⎨⎧=-=.617,65b a …………………………………………………………………………(1分)∴二次函数解析式为2617652++-=x x y .………………………………………(1分)25.解:(1)过⊙O 的圆心作OE ⊥AC ,垂足为E ,………………………………………(1分)∴AE =x AC 2121=,OE =2224125x AE AO -=-.…………………………(1分)∵∠DEO =∠AOB =90º,∴∠D =90º–∠EOD =∠AOE ,∴△ODE ∽△AOE .………(1分) ∴AE AO OE OD =,∵OD =5+y ,∴25412552x x y =-+.………………………………(1分)∴y 关于x 的函数解析式为:xxx y 510052--=.……………………………(1分)定义域为:250<<x .………………………………………………………(1分)(2)当BD =31OB 时,35=y ,x x x 51005352--=.…………………………………(1分)∴6=x .……………………………………………………………………………(2分) ∴AE =321=x ,OE =43522=-. 当点1O 在线段OE 上时,211=-=OO OE E O ,1332222211=+=+=AE E O A O .…………………………………………(1分)当点1O 在线段EO 的延长线上时,611=+=OO OE E O ,5336222211=+=+=AE E O A O .…………………………………………(1分)1O 的半径为13或53.(3)存在,当点C 为AB 的中点时,△DCB ∽△DOC .…………………………………(1分)证明如下:∵当点C 为AB BOC=∠AOC=21∠AOB=45º,又∵OA=OC=OB ,∴∠OCA=∠OCB =︒=︒-5.67245180, ∴∠DCB =180º–∠OCA –∠OCB=45º.…………………………………………(1分) ∴∠DCB =∠BOC .又∵∠D =∠D ,∴△DCB ∽△DOC .………………………(1分) ∴存在点C ,使得△DCB ∽△DOC .。
2011年中考数学最新模拟试题4
中考数学摸底考试试卷数学试卷(满分:150分时间:120分钟)题号-一- -二二三四五六七八总分得分一、选择题(本题共10小题,每小题4分,共40分)每小题的4个答案中,只有一个答案符合题意,请你将选出的正确答案填在下面的表格内。
题号12345678910答案3•随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7 (平方毫米),这个数用科学记数法表示为()2 2 2 2A . x (x —2)+ 1B . x(x —2x) + x C. x(x —2x+ 1) D . x(x —1)5. 不等式2x—7 V 5—2x的正整数解有( )A . 1个B . 2个C. 3个D. 4个6. 如图,点D E、F是线段BC的四等分点,点A在BC外,连接AB AD AE AF、AC,若AB = AC,则图中的全等三角形共有()第6题图7. 甲、乙两名学生进行射击练习,两人在相同条件下各射靶5次,射击成绩统计如下:命中环数(单位:环)78910得分评卷人A . (-3)02.如图所示,直线A . 600B. - (—3) C3 | D. (—3)I与直线a, b相交,且a // b,Z仁80°,则/ 2的度数是(B.80 0C.1000A . 7 X10 B. 0.7 X0 D. 70 XI04.分解因式: 3 2x —2X + x =( )C. 4对—7C. 7 X10—6—6—8A. 2 D. 5对乙命中相应环数的次数131 0从射击成绩的平均数评价甲、乙两人的射击水平,则( )A .甲比乙高B .甲、乙一样C .乙比甲高D .不能确定&某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数11.在函数八匕中,自变量x 的取值范围是13.若二次函数 y 二ax 2 -3x • a 2 -1的图象过原点,那么 a 的值是14. 要了解全市中考生的数学成绩在某一范围内的学生所占比例的大小, ________ (填“平均数” “方差”或“频率分布”)。
北京四中2011中考数学全真模拟试题(4)及答案.doc
中考数学全真模拟试题(4) 第Ⅰ卷 (机读卷 共32分)一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑. 1.5-的相反数是( )A .5B .5-C .15 D .15- 2.在第十一届全国人民代表大会第二次会议上,温家宝总理在政府报告中指出:2008年我国粮食连续五年增产,总产量为52850万吨,创历史最高水平.将52850用科学记数法表示应为( )A .528510⨯B .352.8510⨯ C .35.28510⨯ D .45.28510⨯ 3.五边形的内角和是( )A .180°B .360°C .540°D .720° 4)A .29,28B .31,29C .26,30D .25,315.若两圆的半径分别是2cm 和5cm ,圆心距为3cm ,则这两圆的位置关系是( ) A .外离 B .相交 C .外切 D .内切 6.如图,有4张形状、大小、质地均相同的卡片,正面分别写有一个实数,背面完全相同.现将这4张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出卡片正面的实数是无理数的概率是A .12B .14C .34D .17.已知:2222233+=⨯,2333388+=⨯,244441515+=⨯,255552424+=⨯,…,若 21010b ba a+=⨯符合前面式子的规律,则a b +的值为( )A .179B .140C .109D .210 8.将一正方体纸盒沿下右图所示的粗实线剪开,展开成平面图,其展开图的形状为( ).0.16—32A .B .C .D .第Ⅱ卷 (非机读卷 共88分)二、填空题(共4道小题,每小题4分,共16分) 9.在函数y =x 的取值范围是______________.10.如图,点A 、B 、C 是⊙O 上三点,∠C 为20°,则∠AOB 的度数 为__________°.11.分解因式:2242x x ++=____________________.12.如图,小正方形方格的边长为1cm ,则AB ⌒的长为___________cm .三、解答题(共5道小题,共25分) 13.(本小题满分5分)计算:1012sin 60(2009)2-⎛⎫+- ⎪⎝⎭.14.(本小题满分5分)解不等式组()2035148x x x -<⎧⎪⎨+-⎪⎩≥,15.(本小题满分5分)已知:如图,AB ∥DE ,∠A =∠D ,且BE =CF , 求证:∠ACB =∠F . 16.(本小题满分5分)先化简,再求值:2314223a a a a +-⎛⎫+÷⎪--⎝⎭,其中2410a a -+=. AOBA B C DFA OCBCBDA图1图2AD 'BC17.(本小题满分5分)如图,反比例函数ky x=的图象与一次函数y mx b =+的图象交于(13)A ,,(1)B n -,两点.求反比例函数与一次函数的解析式.四、解答题(共2道小题,共10分) 18.(本小题满分5分)如图1,矩形纸片ABCD 中,AB =4,BC =43,将矩形纸片沿对角线AC 向下翻折,点D 落在点D ’处,联结B D ’,如图2,求线段BD ’ 的长.19.(本小题满分5分)如图,点D 是⊙O 直径CA 的延长线上一点,点B 在⊙O 上,且AB =AD =AO . (1)求证:BD 是⊙O 的切线;(2)若点E 是劣弧BC 上一点,弦AE 与BC 相交于点F ,且CF =9,cos ∠BF A =32,求EF 的长.图1A CE DB五、解答题(本题满分5分)20.某校学生会准备调查本校初中三年级同学每天(除课间操外)课外锻炼的平均时间.(1)确定调查方式时,①甲同学说:“我到1班去调查全体同学”;②乙同学说:“我到体育场上去询问参加锻炼的同学”;③丙同学说:“我到初中三年级每个班去随机调查一定数量的同学”.上面同学说的三种调查方式中最为合理的是___________(填写序号); (2)他们采用了最为合理的调查方式收集数据,并绘制出如图1所示的条形统计图和如图2所示的扇形统计图,请将图1补充完整;(3)若该校初中三年级共有240名同学,则其中每天(除课间操外)课外锻炼平均时间不大于20分钟的人数约为__________人. (注:图2中相邻两虚线形成的圆心角为30°)六、解答题(共2道小题,共10分) 21.(本小题满分5分)列方程或方程组解应用题:2008年5月12日14时28分在我国四川省汶川地区发生了里氏8.0级强烈地震,灾情牵动全国人民的心.“一方有难、八方支援”,某厂计划加工1500顶帐篷支援灾区,在加工了300顶帐篷后,由于情况紧急,该厂又增加了人员进行生产,将工作效率提高到原来的1.5倍,结果提前4天完成任务.问该厂原来每天加工多少顶帐篷.22.(本小题满分5分)把两个三角形按如图1放置,其中90ACB DEC ==︒∠∠, 45A =︒∠,30D =︒∠,且6AB =,7DC =.把△DCE 绕点C 顺时针旋转15°得到△D 1CE 1,如图2,这时AB 与 CD 1相交于点O ,与D 1E 1相交于点F .(1)求1ACD ∠的度数;(2)求线段AD 1的长;(3)若把△D 1CE 1绕点C 顺时针再旋转30°得到△D 2CE 2,这时点B 在△D 2CE 2的内部、外部、还是边上?请说明理由.BACD 1OF七、解答题(本题满分7分)23.如图1,在ABC △中,ACB ∠为锐角,点D 为射线BC 上一点,联结AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB AC =,90BAC =∠,①当点D 在线段BC 上时(与点B 不重合),如图2,线段CF BD 、所在直线的位置关系为 __________ ,线段CF BD 、的数量关系为 ;②当点D 在线段BC 的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB AC ≠,BAC ∠是锐角,点D 在线段BC 上,当ACB ∠满足什么条件时,CF BC ⊥(点C F 、不重合),并说明理由.八、解答题(本题满分7分)24. 如图,在平面直角坐标系中,直线1(0)2y x b b =-+>分别交x 轴、y 轴于A B 、两点.点(40)C ,、(80)D ,,以CD 为一边在x 轴上方作矩形CDEF ,且:1:2C F CD =.设矩形CDEF 与ABO △重叠部分的面积为S . (1)求点E 、F 的坐标;(2)当b 值由小到大变化时,求S 与b 的函数关系式; (3)若在直线1(0)2y x b b =-+>上存在点Q ,使OQC ∠等于90,请直接..写出b 的取值范围.图1图2C图3E九、解答题(本题满分8分) 25.已知抛物线223y x bx c =-++与x 轴交于不同的两点()10A x ,和()20B x ,,与y 轴交于点C ,且12x x ,是方程2230x x --=的两个根(12x x <).(1)求抛物线的解析式;(2)过点A 作AD ∥CB 交抛物线于点D ,求四边形ACBD 的面积; (3)如果P 是线段AC 上的一个动点(不与点A 、C 重合),过点P 作平行于x 轴的直线l 交BC 于点Q ,那么在x 轴上是否存在点R ,使得△PQR 为等腰直角三角形?若存在,求出点R 的坐标;若不存在,请说明理由.中考数学模拟试题(4)答案及评分参考一、选择题(共8道小题,每小题4分,共32分)1.A ; 2.D ; 3.C ; 4.B ; 5.D ; 6.B ; 7.C ; 8.A . 二、填空题(共4道小题,每小题4分,共16分)9.x ≥1; 10.40; 11.()221x +; 12. 三、解答题(共5道小题,共25分)13.解:1012sin 60(2009)2-⎛⎫+- ⎪⎝⎭14.()2035148x x x -<⎧⎪⎨+-⎪⎩≥, ①,②212=+-+…………4分 解:解不等式①,得x >2; 2分3=-5分 解不等式②,得1x -≥; 4分在数轴上表示不等式①、②的解集,∴原不等式组的解集为x >2. 5分15.证明: ∵AB ∥DE ,∴∠B =∠DEF , 1分∵BE =CF , ∴BE +CE =CF +CE ,即BC =EF , 2分 ∵∠A =∠D ,∴△ABC ≌△DEF . 4分 ∴∠ACB =∠F . 5分16.解:2314223a a a a +-⎛⎫+÷ ⎪--⎝⎭2314223a a a a +-⎛⎫=-÷⎪--⎝⎭22423a a a +-=÷-………2分 ()()23222a a a a +=⋅-+-2344a a =-+ 4分∵2410a a -+= ∴241a a -=-当241a a -=-时, 原式3114==-+. 5分17.解:(1)∵点A (13),在反比例函数ky x =的图象上,∴3k =, …………………1分∴反比例函数的解析式为3y x =, 2分∵点B (1)n -,在反比例函数3y x=的图象上,∴31n=-,∴3n =-, 3分O 1423BD 'A 图2图1ADBCE∴点B 的坐标为(31)--,,∵点A 、点B 在一次函数y mx b =+的图象上.∴331m b m b +=⎧⎨-+=-⎩,∴12m b =⎧⎨=⎩∴一次函数的解析式为2y x =+5分四、解答题(共2个小题,共10分) 18.解:设AD ’交BC 于O ,方法一:过点B 作BE ⊥AD ’于E , 矩形ABCD 中,∵AD ∥BC ,AD =BC , ∠B =∠D =∠BAD =90°, 在Rt △ABC 中,∵ta n∠BAC=BC AB == ∴∠BAC =60°,∴∠DAC =90°—∠BAC =30°,……………………………2分∵将△ACD 沿对角线AC 向下翻折,得到△ACD ’,∴AD’=AD =BC =1=∠DAC =30°, ∴∠4=∠BAC —∠1=30°,又在Rt △ABE 中,∠AEB =90°,∴BE =2, ……………………………………4分∴AE=D’E =AD’—AE =∴AE =D’E ,即BE 垂直平分AD’,∴BD ’=AB =4. ……………………………5分 方法二:矩形ABCD 中,∵AD ∥BC ,AD =BC ,∠B =∠D =90°,∴∠ACB =∠DAC , 在Rt △ABC 中,∵ta n∠BAC=BC AB == ∴∠BAC =60°,∴∠ACB =90°—∠BAC =30°,……………………………2分∵将△ACD 沿对角线AC 向下翻折,得到△ACD ’, ∴AD =AD’=BC ,∠1=∠DAC =∠ACB =30°, ∴OA =OC ,∴OD ’=OB ,∴∠2=∠3,∵∠BOA =∠1+∠ACB =60°, ∠2+∠3=∠BOA , ∴∠2=12∠BOA =30°,…………………………………………………………4分 ∵∠4=∠BAC —∠1=30°,∴∠2=∠4,∴BD ’=AB =4. …………………5分19.(1)证明:联结BO ,……………………………1分 方法一:∵AB =AD ,∴∠D =∠ABD ,∵AB =AO ,∴∠ABO =∠AOB ,………………2分 又在△OBD 中,∠D +∠DOB +∠ABO +∠ABD∴∠OBD =90°,即BD ⊥BO ,∴BD 是⊙O 的切线. 3分方法二:∵AB =AO ,BO =AO ,∴AB =AO =BO ,∴△ABO 为等边三角形,∴∠BAO =∠ABO =60°, ∵AB =AD ,∴∠D =∠ABD ,又∠D +∠ABD =∠BAO =60°,∴∠ABD =30°, …………………2分∴∠OBD =∠ABD +∠ABO =90°,即BD ⊥BO , ∴BD 是⊙O 的切线. ……………………………………………………3分方法三:∵ AB =AD =AO ,∴点O 、B 、D 在以OD 为直径的⊙A 上 …………2分∴∠OBD =90°,即BD ⊥BO , ∴BD 是⊙O 的切线. ……………………………………………………3分(2)解:∵∠C =∠E ,∠CAF =∠EBF ,∴△ACF ∽△BEF , …………………… 4分 ∵AC 是⊙O 的直径,∴∠ABC =90°,在Rt △BF A 中,cos ∠BF A =32=AF BF ,∴32==AF BF CF EF ,又∵CF =9,∴EF =6.…………………5分五、解答题(本题满分5分) 20.解:(1)③,……………………1分(2)图1补充完整, ……3分 (3)220. …………………5分六、解答题(共2个小题,共10分)21.解:设该厂原来每天加工x 顶帐篷,则工作效率提高后每天加工1.5x 顶帐篷. 1分根据题意,得1500300150030041.5x x---=, 3分解这个方程,得100x =, 4分 经检验:100x =是原方程的解.答:该厂原来每天加工100顶帐篷. 5分22.解:(1)如图1,由题意可知:∠BCE 1=15°,∵∠D 1CE 1=60°,∴∠D 1CB =∠D 1CE 1—∠D 1CB =45°, 又∠ACB =90°,∴∠ACD 1=∠ACB —∠D 1CB =45°. 1分 (2)由(1)知,∠ACD 1=45°,又∠CAB =45°,∴∠AOD 1=∠CAB +∠ACD 1=45°∴OC ⊥AB , ∵∠BAC =45°,∠ABC =90°—∠BAC =45°, ∴∠ABC =∠BAC ,∴AC =BC ,∴OC =12AB =OA =3,∴OD 1=CD 1—OC =4, 在R t △AOD 1中,∠5=90°,AD 15.3分(3)点B 在△D 2CE 2内部. 4分理由如下:设BC (或延长线)交D 2E 2于点P ,则∠PCE 2=15°+30°=45°.在R t △PCE 2中,可求CP12CE 2=2,B图1AE 1CD 1OFG D E FA在R t △ABC 中,可求BC =<BC <CP ,………5分 ∴点B 在△D 2CE 2内部.七、解答题(本题满分7分) 23.(1)①垂直,相等;………………………………………………………………………1分②当点D 在BC 的延长线上时①的结论仍成立.…………………………………2分 由正方形ADEF 得 AD =AF ,∠DAF =90º. ∵∠BAC =90º,∴∠DAF =∠BAC , ∴∠DAB =∠F AC ,又AB =AC ,∴△DAB ≌△F AC , ∴CF =BD , ∠ACF =∠ABD . ∵∠BAC =90º, AB =AC ,∴∠ABC =45º,∴∠ACF =45º,∴∠BCF =∠ACB +∠ACF =90º. 即 CF ⊥BD . ……………………………………………………………………5分(2)当∠ACB =45º时,CF ⊥BD (如图).……………………………………………6分 理由:过点A 作AG ⊥AC 交CB 或CB 的延长线于点G ,则∠GAC =90º,∵∠ACB =45°,∠AGC =90°—∠ACB =45°, ∴∠ACB =∠AGC ,∴AC =AG ,∵点D 在线段BC 上,∴点D 在线段GC 上,由(1)①可知CF ⊥BD . …………………………………………………………7分八、解答题(本题满分7分)24. 解:(1)∵(40)C ,,(80)D ,,∴4CD =,∵矩形CDEF 中,12CF CD =,∴2CF DE ==, ∵点E 、F 在第一象限,∴(8)E ,2,(4)F ,2.………………………1分 (2)由题意,可知(2)A b ,0,(0)B b ,,在R t △ABO 中,ta n ∠BAO =12OA OB =,①当0<b ≤2时,如图1,0S =.……………………………………………2分 ②当2<b ≤4时,如图2,设AB 交CF 于G ,24AC b =-, 在R t △AGC 中,∵ta n ∠BAO =12GC AC =,∴2CG b =-. ∴()()12422S b b =--,即244S b b =-+,……………………………4分③当4<b ≤6时,如图3,设AB 交EF 于G ,交ED 于H ,28AD b =-, 在R t △ADH 中,∵ta n ∠BAO =12DH AD =,∴4DH b =-,6EH b =-, 在矩形CDEF 中,∵CD ∥EF ,∴∠EGH =∠BAO , 在R t △EGH 中,∵ta n ∠EGH =12EH EG =,∴122EG b =-, ∴()()12412262S b b =⨯---,即21228S b b =-+-,……………5分 ④当b >6时,如图4,8S =.………………………………………………6分(3)0b <1+. ………………………………………………………7分九、解答题(本题满分8分)解:(1)解方程2230x x --=,得123x x ==-1,.………………1分∴点()0A -1,,点()0B 3,.∴()()221110213302b c b c ⎧-⨯-+⋅-+=⎪⎪⎨⎪-⨯+⋅+=⎪⎩解,得432b c ⎧=⎪⎨⎪=⎩ ∴抛物线的解析式为224233y x x =-++. 2分 (2)∵抛物线与y 轴交于点C .∴点C 的坐标为(0,2).又点()0B 3,,可求直线BC 的解析式为223y x =-+. ∵AD ∥CB ,∴设直线AD 的解析式为23y x b '=-+. 又点()0A -1,,∴23b '=-,直线AD 的解析式为2233y x =--. 解2242332233y x x y x ⎧=-++⎪⎪⎨⎪=--⎪⎩,得211241,1003x x y y =⎧=-⎧⎪⎨⎨==-⎩⎪⎩,∴点D 的坐标为(4,103-). 4分 过点D 作DD ’⊥x 轴于D ’, DD ’=103,则又AB =4. ∴四边形ACBD 的面积S =12AB •OC +12AB •DD ’=2103 5分 (3)假设存在满足条件的点R ,设直线l 交y 轴于点E (0,m ),∵点P 不与点A 、C 重合,∴0< m <2,∵点()0A -1,,点()0,2C , ∴可求直线AC 的解析式为22y x =+,∴点112P m m ⎛⎫- ⎪⎝⎭,. ∵直线BC 的解析式为223y x =-+,∴点332Q m m ⎛⎫-+ ⎪⎝⎭,. ∴24PQ m =-+.在△PQR 中,①当RQ 为底时,过点P 作PR 1⊥x 轴于点R 1,则∠R 1PQ =90°,PQ =PR 1=m . ∴24m m -+=,解得43m =,∴点1433P ⎛⎫- ⎪⎝⎭,, ∴点R 1坐标为(13-,0). 6分 ②当RP 为底时,过点Q 作Q R 2⊥x 轴于点R 2,同理可求,点R 2坐标为(1,0). 7分③当PQ 为底时,取PQ 中点S ,过S 作SR 3⊥PQ 交x 轴于点R 3,则PR 3=QR 3,∠PR 3Q =90°.∴PQ =2R 3S =2m .∴242m m -+=,解,得1m =, ∴点112P ⎛⎫- ⎪⎝⎭,,点312Q ⎛⎫ ⎪⎝⎭,,可求点R 3坐标为(12,0). …………………8分 经检验,点R 1,点R 2,点R 3都满足条件. 综上所述,存在满足条件的点R ,它们分别是R 1(13-,0),R 2(1,0)和点R 3(12,0).。
2011中考模拟试卷数学4
2011年镇前中学基础测试(四) 班级 座号 姓名 成绩一、选择题(本大题共10小题,每小题4分,共40分)1.在数轴上表示2-的点离开原点的距离等于( ) A .2 B .2- C .2± D .42.下列运算正确的是( ) A 、39±= B 、33-=- C 、39-=- D 、932=-3.在一次青年歌手大奖赛上,七位评委为某位歌手打出的分数如下:9.5, 9.4, 9.6, 9.9, 9.3, 9.7,9.0,去掉一个最高分和一个最低分后,所剩数据的平均数是( ) A .9.2 B .9.3 C .9.4 D .9.54.国家体育场“鸟巢”建筑面积达25.8万平方米,将25.8万平方米用科学记数法(四舍五入保留2个有效数字)表示约为( ) A .42610⨯平方米B .42.610⨯平方米C .52.610⨯平方米D .62.610⨯平方米5. 在平面直角坐标系中,函数1y x =-+的图象经过( )A .一、二、三象限B .二、三、四象限C .一、三、四象限D .一、二、四象限 6.要调查某校九年级550名学生周日的睡眠时间,下列调查对象选取最合适的是( ) A .选取该校一个班级的学生 B .选取该校50名男生C .选取该校50名女生D .随机选取该校50名九年级学生 7.图1所示的几何体的主视图是( )8.如图,在梯形ABCD 中,AB //DC ,∠D =90o,AD =DC =4,AB =1,F 为AD 的中点, 则点F 到BC 的距离是( )A .2B .4C .8D .19.如图,已知O ⊙的半径6OA =,90AOB ∠=°,则AOB ∠所对的弧AB 的长为( )A .2πB .3πC .6πD .12π 10.如图,在平面直角坐标系中,以O (0,0),A (1,1),B (3,0)为顶点, 构造平行四边形,下列各点中不能..作为平行四边形顶点坐标的是( ) A .(-3,1) B .(4,1) C .(-2,1) D .(2,-1) 二、填空题(本大题共8小题,每小题3分,共24分) 11.在函数131y x =-中,自变量x 的取值范围是 12.因式分解:32a ab -______________ 13.请写出一个是轴对称,但不是中心对称的几何图形名称:14.甲、乙、丙三名射击手的20次测试的平均成绩都是8环,方差分别是20.4S =甲(环2),23.2S =乙(环2),21.6S =丙(环2),则成绩比较稳定的是 .(填“甲”“乙”“丙”中的一个)15.如图,A ⊙,B ⊙的半径分别为1cm ,2cm ,圆心距AB 为5cm .如果A ⊙由图示位置沿直线AB 向右平移3cm ,则此时该圆与B ⊙的位置关系是_____________.A .B .C .D .2个白球和n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸45,则n =__________. 17.如图1,D 、E 分别是AB 、AC 的中点,则:ADE ABC S S =△△ .18.刘谦的魔术表演风靡全国,小王也学起了刘谦,利用电脑设计了一个程序:当输入实数对(x ,y )时,会得到一个新的实数21x y +-.例如输入(2,5)时,就会得到实数8(22+5-1=8).若输入实数对(m ,2)时,得到实数3,则m =三、解答题(本大题共4小题,共36分)19.(8分)不等式组⎪⎩⎪⎨⎧≤<-15112x x x 20.(8分)解分式方程1211x x =+-21.(10分)某蔬菜基地的圆弧形蔬菜大棚的剖面如图(2)所示,已知AB =16m ,半径OA =10m ,求CD 的高22.(10分)江涛同学统计了他家10月份的电话清单,按通话时间画出直方图,从左到右分别为一、二、三、四组.如图8所示.(1)他家这个月总的通话次数为_________次,通话时间的中位数落在第_________组内; (2)求通话时间不足10分钟的通话次数占总通话次数的百分率.(结果保留两个有效数字)通话时间(分)20 图8(注:每组内只含最小值,不含最大值)① ②。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年中考数学模拟卷4
一、选择题:(本大题共6题,每题4分,满分24分) 1.计算:3
2
a a ÷的结果是( )
A .5
a ; B .6
a ; C .a ; D .32
a .
2.下列方程中,无实数根的方程是………………………………………………( ) (A )2320x x -+=; (B )22(3)2x x -+=;
(C )
01
2
=--x
x x ; (D )x x -=+2. 3.在函数y =2x 、x
y 2
=、22x y =的图像中,具有沿某条直线翻折,直线两旁的部分能够
互相重合的性质的图像有………………………………………………………………( ).
(A )0个 (B )1个 (C )2个 (D )3个
4.下列判断中错误的是………………………………………( ) (A )有两角和一边对应相等的两个三角形全等; (B )有两边和一角对应相等的两个三角形全等;
(C )有两边和其中一边上的中线对应相等的两个三角形全等; (D )有一边对应相等的两个等边三角形全等.
5.已知b a m 323-=,a b n 4
121+=,那么n m
4- 等于 ( )
A.b a 382- B.b a 344- C.b a 342- D.b a 3
84-
6.下列图形中,是旋转对称图形,但不是中心对称图形的是( )
(A )等腰梯形; (B )等边三角形; (C )平行四边形; (D )直角梯形.
二、填空题(4’×12=48’)
7.分解因式:=-92x 。
8.不等式 33
7
132-<+x x 的解集是_______ ;
9.用换元法解分式方程
23202x x x x ---=-时,如果设2
x y x
-=,则原方程可化为关于y 的整式方程是_________________________.
10. 已知一次函数21y x =+,则函数值y 随自变量x 的增大而 .( “增大”或“减小”). 11.在一个暗箱里放入除颜色外其它都相同的3个红球和11个黄球,搅拌均匀后随机任取一个球,取到是红球的概率是 . 12. 将二元二次方程169622=+-y xy x 化为二个二元一次方程为 .
13. 二次函数221y x x =+-的图像的顶点坐标是 . 14.某人在高为48米的塔上看到停在地面上的一辆汽车的俯角为60º,那么这辆汽车到塔底的距离为 . 15.如图,在长方体ABCD —EFGH 中,与平面ADHE 和平面CDHG 都
平行的棱为 .
16. 如果两个相似三角形的面积比是1:4,那么它们对应的角平分线比是 . 17. 如下图,把矩形纸条ABCD 沿EF 、GH 同时折叠,B 、C 两点恰好落在AD 边的P 点处,若90FPH =
∠,8PF =,6PH =,则矩形ABCD 的边BC 长为 .
第15题图
18. 已知平行四边形ABCD 中,点E 是BC 的中点,在直线BA 上截取2BF AF =,EF 交
BD 于点G ,则
GB
GD
= . 三、解答题:(本大题共7题,满分78分)
19 .计算:2012327
223)
()()(-+--- 20.解方程组:⎩⎨⎧=+=-12
22
xy x y x
21.机器人“海宝”在某圆形区域表演“按指令行走”,如图5所示,“海宝”从圆心O 出发,先沿北偏西67.4°方向行走13米至点A 处,再沿正南方向行走14米至点B 处,最后沿正东方向行走至点C 处,点B 、C 都在圆O 上.
(1)求弦BC 的长; (2)求圆O 的半径长.
(本题参考数据:sin 67.4° = 1213 ,cos 67.4° = 513 ,tan 67.4° = 12
5
22.上海市某中学组织全校3200名学生进行了“世博”相关知识竞赛.为了解本次知识竞赛的成绩情况,从中随机抽取了部分学生的成绩(得分取正整数,满分为100分),并绘制了如图的频数分布表和频数分布直方图.
(2)上述学生成绩的中位数落在哪一组范围内? 3 200名学生中约有
图5
/分
23.已知:如图,在△ABC 中,AD ⊥BC ,垂足为点D ,BE ⊥AC ,垂足为点E ,M 为AB 边的中点,联结ME 、MD 、ED 。
(1)求证:△MED 为等腰三角形;
(2)求证:∠EMD =2∠DAC .
24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分)
已知:如图六,抛物线的顶点为点D ,与y 轴相交于点A ,直线y =ax +3与y 轴也交于点A ,矩形ABCO 的顶点B 在此抛物线上,矩形面积为12.
(1)求该抛物线的对称轴;
(2)⊙P 是经过A 、B 两点的一个动圆,当⊙P 与y
相交,且在y 轴上两交点的距离为4时,求圆心P (3)若线段DO 与AB 交于点E ,以点 D 、A 、E 的三角形是否有可能与以点D 、O 、A 如果有可能,请求出点D 请说明理由.
C
25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)
在等腰梯形ABCD 中,AD //BC ,AD =3,AB =CD =4,BC =5,∠B 的平分线交DC 于点E ,交AD 的延长线于点F 。
(1)如图(1),若∠C 的平分线交BE 于点G ,写出图中所有的相似三角形(不必证明); (2)在(1)的条件下求BG 的长; (3)若点P 为BE 上动点,以点P 为圆心,BP 为半径的⊙P 与线段BC 交于点Q (如图(2)),请直接写出当BP 取什么范围内值时,①点A 在⊙P 内;②点A 在⊙P 内而点E 在⊙P 外。
A B
C D E
F G 图(1)
F 图(2)。