八年级数学上册(12.1 分式(第1课时))教案 (新版)冀教版 教案
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生经历分式的基本性质的探索验证过程.
做
一
做
1、当a=1,2时,分别求分式 的值.
2、当a为何值时,分式 有意义?
3、当a为何值时,分式 值为0?
4、练习3
评价反思
本节课的主要内容:
1、分式的概念
2、分式有(无)意义的条件.
3、运用分式的基本性质进行变形
对本节课知识进行梳理使学生对知识进一步深化
作业
类比分数得到分式有意义的条件,注重合情推理能力的培养
做
一
做
1、当x为何值时,下列分式有意义?
(1) (2)
2、当为何值时,上述分式值为0?
强调:分式值为0,满足的条件是:分子值为0且分母值不为0.
由简单到复杂,循序渐进,突破难点.
一起探究
学生计算回答1、2问.
分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于0的整式,分式的值不变.
三、教学目标
1.以描述实际问题中的数量关系为背景,抽象出分式的概念,知道分式的概念,明确分式与整式的区别,能用分式表示现实情景中的数量关系。
2.学生掌握分式是否有意义的条件,并能够正确判断一个分式有意义的条件和分式值为零时字母的取值。
3、理解并运用分式的基本性质进行变形.
四、重点、难点
重点:分式的概念、分式有意义的条件、分式值为零的条件,运用分式的基本性质进行变形。
类比分数知识得到分式概念.
例题解析
(1)想一想,下列各式中,哪些是整式,哪些是分式?
5x-7,3x2-1, , , , , ,
(2)自己试着举几个分式的例子.
进一步加强新概念的理解
辨析研讨
分式中,字母可以取任意实数吗?
不可以,因为分式中含有字母,而分母作为除式,不能为0,否则,分式就没有意义.例: 当x=5时,就没有意义
难点:能够正确判断一个分式有意义的条件和分式值为零时字母的取值
五 、教学设计
教学环节
教学活动设计
设计意图说明
创设问题情境
利用教科书“做一做”让同学们做在书上
教师可巡视同学们做的情况
由实际问题引入,体现数学来源于生活.
创设问题情境
同学们观察我们列出的几个式子,有什么新的发现?
像 这样的代数式同整式有很大不同,他们是以分数的形式出现的,他们不同于整式的一个大家族,我们把他们叫做分式。现在我们来研究分式.
二、学情分析
这一节内容对学生来说是全新,但八年级学生已经具有一定的独立思考和探究的能力。而且学生在小学已经学习了分数,因此学生可能会用学习分数的思维定势去认知、理解分式.但是在分式中,它的分母不是具体的数,而是抽象的含有字母的整式,会随着字母取值的变化而变化。让学生通过自己的探索、观察、交流,能够从分数的知识迁移到分式,总结出分式的定义。
习题1、2、3、4
板书设计
课后反思
说明
板书:分式
学生观察发现这些代数式不是我们学过的整式,产生认知冲突激发学习兴趣.
一起
探究
上面问题中出现了分式: ,它们与整式有什么不同?他们有什么共同特征?(分组讨论回答)
上面几个代数式的共同特征:Fra bibliotek(1)它们都由分子分母分数线构成.
(2)分母中都含有字母.
根据学生探究结果小结分式的概念:
整式A除以整式B,可以表示为 的形式,若整式B中含有字母,则称 为分式,其中A叫做分式的分子,B叫做分式的分母.
12.1分式(第1课时)
一、教材分析
本节课的主要内容有分式概念、分式与现实情境中的数量关系的表示及分式有无意义、值为零的条件。本节课是分式的起始课,它是在学习了整式、因式分解的基础上进行的,它是以分数知识为基础,类比引出分式的概念,把学生对“式”的认识由整式扩充到有理式。学好本节知识是为今后继续学习分式的性质、运算以及解分式方程的前提。
做
一
做
1、当a=1,2时,分别求分式 的值.
2、当a为何值时,分式 有意义?
3、当a为何值时,分式 值为0?
4、练习3
评价反思
本节课的主要内容:
1、分式的概念
2、分式有(无)意义的条件.
3、运用分式的基本性质进行变形
对本节课知识进行梳理使学生对知识进一步深化
作业
类比分数得到分式有意义的条件,注重合情推理能力的培养
做
一
做
1、当x为何值时,下列分式有意义?
(1) (2)
2、当为何值时,上述分式值为0?
强调:分式值为0,满足的条件是:分子值为0且分母值不为0.
由简单到复杂,循序渐进,突破难点.
一起探究
学生计算回答1、2问.
分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于0的整式,分式的值不变.
三、教学目标
1.以描述实际问题中的数量关系为背景,抽象出分式的概念,知道分式的概念,明确分式与整式的区别,能用分式表示现实情景中的数量关系。
2.学生掌握分式是否有意义的条件,并能够正确判断一个分式有意义的条件和分式值为零时字母的取值。
3、理解并运用分式的基本性质进行变形.
四、重点、难点
重点:分式的概念、分式有意义的条件、分式值为零的条件,运用分式的基本性质进行变形。
类比分数知识得到分式概念.
例题解析
(1)想一想,下列各式中,哪些是整式,哪些是分式?
5x-7,3x2-1, , , , , ,
(2)自己试着举几个分式的例子.
进一步加强新概念的理解
辨析研讨
分式中,字母可以取任意实数吗?
不可以,因为分式中含有字母,而分母作为除式,不能为0,否则,分式就没有意义.例: 当x=5时,就没有意义
难点:能够正确判断一个分式有意义的条件和分式值为零时字母的取值
五 、教学设计
教学环节
教学活动设计
设计意图说明
创设问题情境
利用教科书“做一做”让同学们做在书上
教师可巡视同学们做的情况
由实际问题引入,体现数学来源于生活.
创设问题情境
同学们观察我们列出的几个式子,有什么新的发现?
像 这样的代数式同整式有很大不同,他们是以分数的形式出现的,他们不同于整式的一个大家族,我们把他们叫做分式。现在我们来研究分式.
二、学情分析
这一节内容对学生来说是全新,但八年级学生已经具有一定的独立思考和探究的能力。而且学生在小学已经学习了分数,因此学生可能会用学习分数的思维定势去认知、理解分式.但是在分式中,它的分母不是具体的数,而是抽象的含有字母的整式,会随着字母取值的变化而变化。让学生通过自己的探索、观察、交流,能够从分数的知识迁移到分式,总结出分式的定义。
习题1、2、3、4
板书设计
课后反思
说明
板书:分式
学生观察发现这些代数式不是我们学过的整式,产生认知冲突激发学习兴趣.
一起
探究
上面问题中出现了分式: ,它们与整式有什么不同?他们有什么共同特征?(分组讨论回答)
上面几个代数式的共同特征:Fra bibliotek(1)它们都由分子分母分数线构成.
(2)分母中都含有字母.
根据学生探究结果小结分式的概念:
整式A除以整式B,可以表示为 的形式,若整式B中含有字母,则称 为分式,其中A叫做分式的分子,B叫做分式的分母.
12.1分式(第1课时)
一、教材分析
本节课的主要内容有分式概念、分式与现实情境中的数量关系的表示及分式有无意义、值为零的条件。本节课是分式的起始课,它是在学习了整式、因式分解的基础上进行的,它是以分数知识为基础,类比引出分式的概念,把学生对“式”的认识由整式扩充到有理式。学好本节知识是为今后继续学习分式的性质、运算以及解分式方程的前提。