排列组合公式(全)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合公式【1】2022年3月23日;第1页共2页
排列定义从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r个的无重排列。

排列的全体组成的集合用 P(n,r)表示。

排列的个数用P(n,r)表示。

当r=n时称为全排列。

一般不说可重即无重。

可重排列的相应记号为 P(n,r),P(n,r)。

组合定义从n个不同元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合。

组合的全体组成的集合用C(n,r)表示,组合的个数用C(n,r)表示,对应于可重组合
有记号C(n,r),C(n,r)。

一、排列组合部分是中学数学中的难点之一,原因在于
(1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;
(2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;
(3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;
(4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。

二、两个基本计数原理及应用
(1)加法原理和分类计数法
1.加法原理
2.加法原理的集合形式
3.分类的要求
每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)
(2)乘法原理和分步计数法
1.乘法原理
2.合理分步的要求
任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同
2022年3月23日;第2页共2页
例1:用1、2、3、4、5、6、7、8、9组成数字不重复的六位数
集合A为数字不重复的九位数的集合,S(A)=9!
集合B为数字不重复的六位数的集合。

把集合A分为子集的集合,规则为前6位数相同的元素构成一个子集。

显然各子集没有共
2022年3月23日;第3页共2页。

相关文档
最新文档