高考数学提分技巧有哪些
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学提分技巧有哪些
高考数学提分技巧有哪些?为提升数学成绩犯难的考生可以看看,下面由小编为你准备了“高考数学提分技巧有哪些”,仅供参考,持续关注本站将可以持续获取更多的内容资讯!
高考数学提分技巧有哪些【一】
一、课内重视听讲,课后及时复习
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。
二、适当多做题,养成良好的解题习惯
要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。
三、调整心态,正确对待考试
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮
我的自豪感。
高考数学提分方法技巧有哪些【二】
一、要弄清楚概念公式,稳固基础
在学习数学的过程当中,同学们一定要注重对基础知识的巩固,特别是一些公式、概念和原理,这些都能够更有效的运用到各题型当中,许多大题也都是要依靠基础知识来进行拓展考查的。所以建议同学们在平时学习中就要理清概念之间的关系,学会分类整理去理解分析。
二、善于发现题目间的内在联系,学会融会贯通
做题中同学们不难发现有些数学题当中都有一定的内在联系,但是切忌因为对一些题有熟悉的感觉,就想当然的认为解题思路是相同的,要学会仔细审题,发现其中的解题规律,学会比较相似题之间的实质。
三、对于学习过程中所发现的错题要加以记录
在学习的过程当中发现错误其实是有利于自己复习进度的推动,错误的发现能够让自己及时的修补,小编建议同学们在题中遇到困难时,一定要将这类易错题记录下来,学会分析错误的原因,注重理解,在往后反复的多加练习,能够有效避免日后再次犯错。
四、切忌题海战术,要学会巧做题
想要让数学有所突破,就要注重做题,但是注重做题并不代表同学们要一头扎进题海战术当中,做题多不代表就可以提高效率稳固基础知识,做题讲究的是能否巧做题。这就要求同学们在做题当中要选择一些有针对性的,思路方法比较特别的的题来进行训练。小编指出同学们倘若可以在做题中注重技巧,就能够有效的掌握更好的解题方法,提高自己的解题速度。
高考数学提分方法技巧有哪些【三】
技巧一:提前进入角色
高考前一个晚上要睡足八个小时,早晨最好吃些清淡的早餐,带齐一切高考用具,如笔、橡皮、作图工具、身分证、准考证等,提前半小时到达高考考区,一方面可以消除新异刺激,稳定情绪,从容进
场,另一方面也留有时间提前进入角色让大脑开始简单的数学活动。回忆一下高考数学常用公式,有助于高考数学超常发挥。
技巧二:情绪要自控
最易导致高考心理紧张、焦虑和恐惧的是入场后与答卷前的临战阶段,此间保持心态平衡的方法有三种
①转移注意法:
把注意力转移到对你感兴趣的事情上或滑稽事情的回忆中。
②自我安慰法:
如我经过的考试多了,没什么了不起等。
③抑制思维法:
闭目而坐,气贯丹田,四肢放松,深呼吸,慢吐气,如此进行到高考发卷时。
技巧三:摸透题情
刚拿到高考数学试卷,不要匆匆作答,可先从头到尾通览全卷,通览全卷是克服前面难题做不出,后面易题没时间做的有效措施,也从根本上防止了漏做题,从高考数学卷面上获取最多的信息,为实施正确的解题策略作准备,顺利解答那些一眼看得出结论的简单选择或填空题,这样可以使紧张的情绪立即稳定,使高考数学能够超常发挥。拓展阅读:高考数学公式总结必背
1、函数的单调性
(1)设x1、x2[a,b],x1x2那么
f(x1)f(x2)0f(x)在[a,b]上是增函数;
f(x1)f(x2)0f(x)在[a,b]上是减函数。
(2)设函数yf(x)在某个区间内可导,若f(x)0,则f(x)为增函数;若f(x)0,则f(x)为减函数。
2、函数的奇偶性
对于定义域内任意的x,都有f(-x)=f(x),则f(x)是偶函数; 对于定义域内任意的x,都有f(x)f(x),则f(x)是奇函数。奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
3、判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根
4、两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-
B)=(ctgActgB+1)/(ctgB-ctgA)
5、倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
6、抛物线
抛物线:y=ax*+bx+c就是y等于ax的平方加上bx再加上c。
a>0时,抛物线开口向上;a<0时抛物线开口向下;c=0时抛物线经过原点;b=0时抛物线对称轴为y轴。
顶点式y=a(x+h)*+k就是y等于a乘以(x+h)的平方+k,-h是顶点坐标的x,k是顶点坐标的y,一般用于求最大值与最小值。
抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)。
准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程:y^2=2pxy^2=-2pxx^2=2pyx^2=-2py。