电调衰减器设计指导
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电调衰减器设计指导
可以用三个二极管来代替电路中的固定电阻,构造一个可变衰减器,不过,这样会导致网络中的不对称,从而导致产生一个相当复杂的偏压网络。
用两个PIN二极管来代替其中的串联电阻可以获得几个性能方面的好处。
首先,由于串联二极管具有容性电抗而使网络与其它部分相隔离,用两个二极管代替一个电阻可以提高最大衰减值或在一定衰减值的条件下使频率上限翻倍。
其二,代替串联电阻的两个二极管是180度反接的,这样就抑制了偶数次信号畸变的产生。
其三,由此而得到的衰减器网络是对称的,从而可以大大简化偏压网络。
电源电压V+是一固定电压,Vc是控制网络衰减的可变电压,用两个二极管代替电阻的唯一缺点是可能会增加介入损耗。
四元二极管pi
型衰减器需要一个恒定的电压V+和一个可变的控制电压Vc。
对于1.25V的V+,可变控制电压的范围为0V到大约5V。
电压V+的值代表了回程损耗与控制电压范围之间的一个折衷,更低的V+可以降低回程电压,但同时也会使控制电压的工作范围缩小。
本文中介绍的衰减器是在8mm厚的RF4型印刷电路()上实现的。
RF4具有良好的机械稳定性和耐久性,成本低,但其损耗大,难于控制,而且介质系数与工作频率密切相关。
另一方面,玻璃纤维增强型聚四氟乙烯(PTEE)PCB 材料具有良好的高频特性,但是相对昂贵一些,机械稳定性也比较差,不适合于某些表面贴装工艺。
选用针对高频工作要求进行了优化的PCB基底材料可以改善高频性能,各种测量参数对频率的依赖程度受
到与HSMP-3816二极管四元组、PCB、其它元件及连接器相关的寄生效应的影响。
将PIN二极管用做衰减元件时,PIN二极管具有比等效的GaAs MESFETs更高的线性度,通过使用具有厚I层及低介质张弛频率(fdr)的多个PIN二极管就可以将信号畸变减小到最低程度。
在Avago公司PIN二极管产品线中HSMP-381x系列产品的I层最厚。
在低衰减状态,大部分RF能量仅仅是从输入端传输到输出端而已。
不过在高衰减状态,更多的RF能量被倾入衰减器,会使信号失真度上升。
当Vc接近0时,几乎没有电流流过两个串联的二极管,它们接近于零偏压状态,其结电容将随RF电压同步变化,幸运的是,由于两个二极管是反向串联的,所以可以抑制由受RF调制的电容所产生的某些失真或畸变。
由于封装的两个反串二极管具有完全互相匹配的特性,因此可以得到最佳的失真抑制能力。
Pi衰减器的相位偏移随衰减值而变化。
总的相位偏移接近90度,在三个相隔较远的工作频率点(100、900和1800 MHz)测试时此相位偏移表现相当稳定。
图1所示为π衰减电路的示意电路图。
图2的左边为π衰减器的PCB布局,右边为元件布置。
表1中给出了所需要的元件(包括四元二极管)。
图3、4、5给出的成品π衰减器测试性能的样本。
增加通过串联二极管的电流可以降低衰减下限。
将控制电压保持在最大值5V,减小电阻R3的阻值就可以增大偏移电压,这可以通过给阻断RF的电阻R3(表2)串联一个表面贴装铁酸盐珠状电感而实现。
在整个频率范围内,与传统的瓷芯多层片状电感相比,这种铁酸盐珠状电感具有更高的阻抗。
图6给出了低衰减下限衰减电路的示意图,图7中给出了在Vc=5V的条件下与标准衰减电路的比较结果。
为了建立π衰减器的性能模型以便于进一步分析,安捷伦?司的高级设计系统(ADS)计算机辅助工程(CAE)软件为工程师们提供了模拟四元二极管π衰减器性能的技术支持范例。
相应文件可以从
.的Agilent Eesof知识中心的“Examples”部分下载。
另外,包含在高频建模工具APLAC CAE软件包()中的PIN二极管模型也可以预测在给定正向偏移的条件下RF阻值。
图8的左边给出了HSMP-3816 PIN二极管的APLAC模型,将APLAC
模型与SOT-25等效电路模型(图8右边)结合在一起,就可以使设计人员在模拟过程中研究分析封装的寄生效应。