12学年第一学期7年级数学期末复习卷(6)
2018_2019学年七年级数学上学期期末复习检测试卷 (6)
2018-2019学年七年级数学上学期期末复习检测试卷一、选择题(每小题3分,共30分)1.(3分)绝对值最小的数是()A.0.000001 B.0 C.﹣0.000001 D.﹣1000002.(3分)下列各组中的单项式是同类项的是()A.2xy2和﹣y2x B.﹣m2np和﹣mn2C.﹣m2和﹣2m D.0.5a和﹣ b3.(3分)已知x=2是关于x的一元一次方程ax﹣2=0的解,则a的值为()A.0 B.﹣2 C.1 D.24.(3分)三棱锥有()个面.A.3 B.4 C.5 D.65.(3分)下列变形中错误的是()A.如果x=y,那么x+2=y+2 B.如果x=y,那么x﹣1=y﹣1C.如果x=3,那么xy=3y D.如果x2=3x,那么x=36.(3分)已知∠1=α<90°,则∠1的补角比∠1的余角大()度.A.αB.90°﹣αC.90 D.180°﹣2α7.(3分)小华在小凡的南偏东30°方位,则小凡在小华的()方位.A.南偏东60°B.北偏西30°C.南偏东30°D.北偏西60°8.(3分)将如图补充一个黑色小正方形,使它折叠后能围成一个正方体,下列补充正确的是()A. B.C.D.9.(3分)一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m2墙面,每名一级技工比二级技工一天多粉刷10m2墙面,设每个房间需要粉刷的墙面面积为xm2,则下列的方程正确的是()A.B.C. +10 D. +1010.(3分)如图,已知∠AOB=120°,∠COD在∠AOB内部且∠COD=60°.下列说法:①如果∠AOC=∠BOD,则图中有两对互补的角;②如果作OE平分∠BOC,则∠AOC=2∠DOE;③如果作OM平分∠AOC,且∠MON=90°,则ON平分∠BOD;④如果在∠AOB外部分别作∠AOC、∠BOD的余角∠AOP、∠BOQ,则=2,其中正确的有()个.A.1 B.2 C.3 D.4二、填空题(每小题3分,共18分)11.(3分)一个角为48°29′,则它的余角的大小为:.12.(3分)线段AB=2cm,延长AB至点C,使BC=2AB,则AC= cm.13.(3分)关于x的方程(a2﹣4)x2+ax+2x﹣1=0是一元一次方程,则a= .14.(3分)轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时,水面上一漂浮物顺水漂流20千米,则它漂浮了小时.15.(3分)已知x2﹣xy=﹣3,2xy﹣y2=﹣8,则整式2x2+4xy﹣3y2的值为.16.(3分)如图,已知直线l上两点A、B(点A在点B左边),且AB=10cm,在直线l上增加两点C、D(点C在点D左边),作线段AD点中点M、作线段BC点中点N;若线段MN=3cm,则线段CD=cm.三、解答题(本大题共72分)17.(10分)计算题(1)(﹣)÷(﹣4)×(﹣6)(2)﹣22÷(﹣4)﹣3×(﹣1)2﹣(﹣4)18.(6分)解方程:﹣1=.19.(8分)化简求值:2(3a2b﹣ab2)﹣3(2a2b﹣ab2+ab),其中a=,b=﹣220.(8分)盛盛同学到某高校游玩时,看到运动场的宣传栏中的部分信息(如表):盛盛同学结合学习的知识设计了如下问题,请你帮忙完成下列问题:(1)从表中可以看出,负一场积分,胜一场积分(2)某队在比完22场的前提下,胜场总积分能等于其负场总积分的2倍吗?请说明理由.21.(8分)已知直线l依次三点A、B、C,AB=6,BC=m,点M是AC点中点(1)如图,当m=4,求线段BM的长度(写清线段关系)(2)在直线l上一点D,CD=n<m,用m、n表示线段DM的长度.22.(10分)为了准备“迎新”汇演,七(1)班学生分成甲乙两队进行几天排练.其中甲队队长对乙队队长说:你们调5人来我们队,则我们的人数和你们的人数相同;乙队队长跟甲队队长说:你们调5人来我们队,则我们的人数是你们的人数的3倍.(1)请根据上述两位队长的交谈,求出七(1)班的学生人数;(2)为了增强演出的舞台效果,全部学生需要租赁演出服装,班主任到某服装租赁店了解到:多于20套、少于50套服装的,可供选择的收费方式如下:方式一:一套服装一天收取20元,另收总计80元的服装清洗费方式二:在一套服装一天收取20元的基础上九折,一套服装每天收取服装清洗费1元,另收每套服装磨损费5元(不按天计算)设租赁服装x天(x为整数),请你帮班主任参谋一下:选择哪种付费方式节省一些,并说明理由.23.(10分)如图1,平面内一定点A在直线MN的上方,点O为直线MN上一动点,作射线OA、OP、OA′,当点O在直线MN上运动时,始终保持∠MOP=90°、∠AOP=∠A′OP,将射线OA绕点O顺时针旋转60°得到射线OB(1)如图1,当点O运动到使点A在射线OP的左侧,若OB平分∠A′OP,求∠AOP的度数.(2)当点O运动到使点A在射线OP的左侧,∠AOM=3∠A′OB时,求的值.(3)当点O运动到某一时刻时,∠A′OB=150°,直接写出∠BOP= 度.24.(12分)如图,直线l上依次有三点A、B、C,且AB=8、BC=16,点P为射线AB上一动点,将线段AP进行翻折得到线段PA′(点A落在直线l上点A′处、线段AP上的所有点与线段PA′上的点对应)如图(1)若翻折后A′C=2,则翻折前线段AP=(2)若点P在线段BC上运动,点M为线段A′C的中点,求线段PM的长度;(3)若点P在射线BC上运动,点N为B′P的中点,点M为线段A′C的中点,设AP=x,用x表示A′M+PN.参考答案一、选择题(每小题3分,共30分)1.(3分)绝对值最小的数是()A.0.000001 B.0 C.﹣0.000001 D.﹣100000【分析】根据绝对值的意义,计算出各选项的绝对值,然后再比较大小即可.【解答】解:|0.000001|=0.000001,|0|=0,|﹣0.000001|=0.000001,|﹣100000|=100000,所以绝对值最小的数是0.故选:B.【点评】考查了有理数的大小比较,以及绝对值的意义,注意先运算出各项的绝对值.2.(3分)下列各组中的单项式是同类项的是()A.2xy2和﹣y2x B.﹣m2np和﹣mn2C.﹣m2和﹣2m D.0.5a和﹣ b【分析】根据同类项的定义对四个选项进行逐一分析即可.【解答】解:A、2xy2和﹣y2x符合同类项的定义,故本选项正确;B、﹣m2np和﹣mn2所含字母不同,相同字母的次数不同,不是同类项,故本选项错误;C、﹣m2和﹣2m所含相同字母的次数不同,不是同类项,故本选项错误;D、0.5a和﹣b所含字母不同,相同字母的次数不同,不是同类项,故本选项错误;故选:A.【点评】本题考查的是同类项的定义,解答此题时要注意同类项必需满足以下条件:①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可;②同类项与系数的大小无关;③同类项与它们所含的字母顺序无关;④所有常数项都是同类项.3.(3分)已知x=2是关于x的一元一次方程ax﹣2=0的解,则a的值为()A.0 B.﹣2 C.1 D.2【分析】把x=2代入方程计算求出a的值,即可解答.【解答】解:把x=2代入ax﹣2=0得:解得:a=1,故选:C.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.(3分)三棱锥有()个面.A.3 B.4 C.5 D.6【分析】三棱锥的侧面由三个三角形围成,底面也是一个三角形,结合三棱锥的组成特征,可确定它棱的条数和面数.【解答】解:三棱锥有6条棱,有4个面.故选:B.【点评】本题考查了认识立体图形,几何体中,面与面相交成线,线与线相交成点.熟记常见立体图形的特征是解决此类问题的关键.5.(3分)下列变形中错误的是()A.如果x=y,那么x+2=y+2 B.如果x=y,那么x﹣1=y﹣1C.如果x=3,那么xy=3y D.如果x2=3x,那么x=3【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【解答】解:A、两边都加2,正确;B、两边都减1,正确;C、两边都乘以3,正确;D、如果x2=3x,那么x=3或0,错误;故选:D.【点评】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.6.(3分)已知∠1=α<90°,则∠1的补角比∠1的余角大()度.A.αB.90°﹣αC.90 D.180°﹣2α【分析】分别表示出α的补角和α的余角,然后可得出答案.【解答】解:α的补角=180°﹣α,α的余角=90°﹣α,故α的补角比α的余角大:180°﹣α﹣(90°﹣α)=90°.故∠1的补角比∠1的余角大90°,【点评】本题考查了余角和补角的知识,关键是掌握互余两角之和为90°,互补两角之和为180°.7.(3分)小华在小凡的南偏东30°方位,则小凡在小华的()方位.A.南偏东60°B.北偏西30°C.南偏东30°D.北偏西60°【分析】根据位置的相对性可知,小凡和小华的观测方向相反,角度相等,据此解答.【解答】解:小华在小凡的南偏东30°方位,那么小凡在小华的北偏西30°.故选:B.【点评】本题主要考查了方向角的定义,在叙述方向角时一定要注意以某个图形为参照物是本题的关键.8.(3分)将如图补充一个黑色小正方形,使它折叠后能围成一个正方体,下列补充正确的是()A.B.C.D.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:A、出现“U”字的,不能组成正方体,A错;B、以横行上的方格从上往下看:B选项组成正方体;C、由两个面重合,不能组成正方体,错误;D、四个方格形成的“田”字的,不能组成正方体,D错.故选:B.【点评】考查了展开图折叠成几何体,如没有空间观念,动手操作可很快得到答案.需记住正方体的展开图形式:一四一呈6种,一三二有3种,二二二与三三各1种,展开图共有11种.9.(3分)一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m2墙面,每名一级技工比二级技工一天多粉刷10m2墙面,设每个房间需要粉刷的墙面面积为xm2,则下列的方程正确的是()A.B.C. +10 D. +10【分析】设每个房间需要粉刷的墙面面积为xm2,根据“每名一级技工比二级技工一天多粉刷10m2墙面”,列方程即可.【解答】解:设每个房间需要粉刷的墙面面积为xm2,根据题意,得=+10.故选:D.【点评】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.10.(3分)如图,已知∠AOB=120°,∠COD在∠AOB内部且∠COD=60°.下列说法:①如果∠AOC=∠BOD,则图中有两对互补的角;②如果作OE平分∠BOC,则∠AOC=2∠DOE;③如果作OM平分∠AOC,且∠MON=90°,则ON平分∠BOD;④如果在∠AOB外部分别作∠AOC、∠BOD的余角∠AOP、∠BOQ,则=2,其中正确的有()个.A.1 B.2 C.3 D.4【分析】先求出∠AOC=∠BOD=30°,再根据互补的角的定义即可判断①正确;设∠AOC=x,根据角平分线定义以及角的和差定义求出∠DOE=x,即可判断②正确;设∠AOC=x,当ON在OM的右边时,可得∠DON=∠BON,ON平分∠BOD;当ON在OM的左边时,ON不是∠BOD的平分线,即可判断③错误;设∠AOC=x,根据角的和差定义可得∠AOP=90°﹣x,∠BOQ=30°+x,即可判断④正确.【解答】解:∵∠AOB=120°,∠COD=60°,∴∠AOC+∠BOD=∠AOB﹣∠COD=60°.①∵∠AOC=∠BOD,∠AOC+∠BOD=60°,∴∠AOC=∠BOD=30°,∴∠AOD=∠COB=90°,∴∠AOD+∠COB=180°,又∵∠AOB+∠COD=180°,∴图中有两对互补的角,故①正确;②设∠AOC=x,则∠BOD=60°﹣x,∴∠BOC=∠BOD+∠COD=60°﹣x+60°=120°﹣x.∵OE平分∠BOC,∴∠BOE=∠BOC=60°﹣x,∴∠DOE=∠BOE﹣∠BOD=(60°﹣x)﹣(60°﹣x)=x,∴∠AOC=2∠DOE,故②正确;③设∠AOC=x,则∠BOD=60°﹣x,∵OM平分∠AOC,∴∠COM=∠AOC=x.如果ON在OM的右边,那么∠DON=∠MON﹣∠COD﹣∠COM=90°﹣60°﹣x=30°﹣x,∴∠BON=∠BOD﹣∠DON=60°﹣x﹣(30°﹣x)=30°﹣x,∴∠DON=∠BON,∴ON平分∠BOD;如果ON在OM的左边,显然ON的反向延长线平分∠BOD,即ON不是∠BOD的平分线,故③错误;④设∠AOC=x,则∠BOD=60°﹣x,∠AOP=90°﹣x,∠BOQ=90°﹣(60°﹣x)=30°+x,∴∠AOP+∠BOQ=90°﹣x+30°+x=120°,∵∠COD=60°,∴=2,故④正确.故选:C.【点评】本题考查了余角和补角,角平分线定义以及角的计算,设∠AOC=x,用含x的代数式表示相关角度是解题的关键.二、填空题(每小题3分,共18分)11.(3分)一个角为48°29′,则它的余角的大小为:41°31′.【分析】根据余角的定义得出算式,求出即可.【解答】解:余角为90°﹣48°29′=41°31′,故答案为:41°31′.【点评】本题考查了余角和度、分秒之间的换算,能知道∠A的余角是90°﹣∠A是解此题的关键.12.(3分)线段AB=2cm,延长AB至点C,使BC=2AB,则AC= 6 cm.【分析】根据线段AB=2cm,BC=2AB,可求BC,再根据线段的和差关系可求AC的长.【解答】解:∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.13.(3分)关于x的方程(a2﹣4)x2+ax+2x﹣1=0是一元一次方程,则a= 2 .【分析】利用一元一次方程的定义判断即可确定出a的值.【解答】解:∵关于x的方程(a2﹣4)x2+ax+2x﹣1=0是一元一次方程,∴a2﹣4=0,且a+2≠0,解得:a=2,故答案为:2【点评】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.14.(3分)轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时,水面上一漂浮物顺水漂流20千米,则它漂浮了10 小时.【分析】设轮船在静水中的速度为x千米/时,根据静水速度+水流速度=顺水速度,静水速度﹣水流速度=逆水速度,可得静水速度×2=顺水速度+逆水速度,依此列方程即可求解.然后根据漂流路程求得漂流时间.【解答】解:设轮船在静水中的速度为x千米/时,根据题意得2x=28+24,解得x=26.即:轮船在静水中的速度为26千米/时.所以漂浮时间为: =10(小时)故答案是:10.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.15.(3分)已知x2﹣xy=﹣3,2xy﹣y2=﹣8,则整式2x2+4xy﹣3y2的值为﹣30 .【分析】依据等式的性质得到2x2﹣2xy=﹣6,6xy﹣3y2=﹣24,然后将两式相加即可.【解答】解:∵x2﹣xy=﹣3,2xy﹣y2=﹣8,∴2x2﹣2xy=﹣6,6xy﹣3y2=﹣24,∴2x2+4xy﹣3y2=﹣6+(﹣24)=﹣30.故答案为:﹣30.【点评】本题主要考查的是求代数式的值,依据等式的性质求得2x2﹣2xy=﹣6,6xy﹣3y2=﹣24是解题的关键.16.(3分)如图,已知直线l上两点A、B(点A在点B左边),且AB=10cm,在直线l上增加两点C、D(点C在点D左边),作线段AD点中点M、作线段BC点中点N;若线段MN=3cm,则线段CD= 16或4 cm.【分析】分两种情况讨论,当点M在点N左侧,当点M在点N右侧,即可解答.【解答】解:如图,把直线l放到数轴上,让点A和原点重合,则点A对应的数为0,点B对应的数为10,点C对应的数为x,点D对应的数为y,∵线段AD的中点为M、线段BC的中点为N,∴点M对应的数为,点N对应的数为,(1)如图1,当点M在点N左侧时,MN==3,化简得:x﹣y=﹣4,由点C在点D左边可得:CD=y﹣x=4.(2)如图1,当点M在点N右侧时,MN==3=3,化简得:y﹣x=16,由点C在点D左边可得:CD=y﹣x=16.故答案为:16或4【点评】本题考查了两点间的距离,解决本题的关键是分类讨论.三、解答题(本大题共72分)17.(10分)计算题(1)(﹣)÷(﹣4)×(﹣6)(2)﹣22÷(﹣4)﹣3×(﹣1)2﹣(﹣4)【分析】(1)原式从左到右依次计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=﹣××6=﹣1;(2)原式=1﹣3+4=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.(6分)解方程:﹣1=.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母:3(x﹣2)﹣6=2(x+1),去括号:3x﹣6﹣6=2x+2,移项:3x﹣2x=2+6+6,合并同类项:x=14.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.19.(8分)化简求值:2(3a2b﹣ab2)﹣3(2a2b﹣ab2+ab),其中a=,b=﹣2【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=6a2b﹣2ab2﹣6a2b+3ab2﹣3ab=(6a2b﹣6a2b)+(﹣2ab2+3ab2)﹣3ab=ab2﹣3ab,当,b=﹣2时原式=ab2﹣3ab==2+3=5.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.(8分)盛盛同学到某高校游玩时,看到运动场的宣传栏中的部分信息(如表):盛盛同学结合学习的知识设计了如下问题,请你帮忙完成下列问题:(1)从表中可以看出,负一场积 1 分,胜一场积 2 分(2)某队在比完22场的前提下,胜场总积分能等于其负场总积分的2倍吗?请说明理由.【分析】(1)仔细观察表格中的数据发现规律并设出未知数列出一元一次方程求解即可;(2)根据题意列出一元一次方程求解即可得到答案.【解答】解(1)由题意可得,负一场积分为:22÷22=1(分),胜一场的积分为:(34﹣10×1)÷12=2(分),故答案为:1,2;(2)设胜x场,负22﹣x场,由题知 2x=2(22﹣x),解得x=11.答:胜场数为11场时,胜场的积分等于负场的2倍.【点评】本题考查了一元一次方程的应用,解题的关键是根据题目中的重点语句找到等量关系并列出方程求解.21.(8分)已知直线l依次三点A、B、C,AB=6,BC=m,点M是AC点中点(1)如图,当m=4,求线段BM的长度(写清线段关系)(2)在直线l上一点D,CD=n<m,用m、n表示线段DM的长度.【分析】(1)求出AC长,根据线段中点求出AM长,即可求出答案;(2)先求出AM和CM长,分为两种情况:当D在线段BC上时和当D在l上且在点C的右侧时,求出MD即可.【解答】解:(1)当m=4时,又∵AB=6,∴AC=4+6=10,又M为AC中点,∴AM=MC=5,∴BM=AB﹣AM,=6﹣5=1;(2)∵AB=6,BC=m,∵M为AC中点,∴,①当D在线段BC上时,CD=n,MD=MC﹣CD==;②当D在l上且在点C的右侧时,CD=n,∴=.【点评】本题考查了线段的中点和求两点之间的距离,能用x表示出各个线段的长度是解此题的关键,注意(2)要进行分类讨论.22.(10分)为了准备“迎新”汇演,七(1)班学生分成甲乙两队进行几天排练.其中甲队队长对乙队队长说:你们调5人来我们队,则我们的人数和你们的人数相同;乙队队长跟甲队队长说:你们调5人来我们队,则我们的人数是你们的人数的3倍.(1)请根据上述两位队长的交谈,求出七(1)班的学生人数;(2)为了增强演出的舞台效果,全部学生需要租赁演出服装,班主任到某服装租赁店了解到:多于20套、少于50套服装的,可供选择的收费方式如下:方式一:一套服装一天收取20元,另收总计80元的服装清洗费方式二:在一套服装一天收取20元的基础上九折,一套服装每天收取服装清洗费1元,另收每套服装磨损费5元(不按天计算)设租赁服装x天(x为整数),请你帮班主任参谋一下:选择哪种付费方式节省一些,并说明理由.【分析】(1)设甲队有x人,则乙队有x+10人,由题意列方程得x+10+5=3(x﹣5),解答即可;(2)方式一:根据题意可列方程:40×20x+80=800x+80,方式二:根据题意可列方程:(20×0.9+1)×40•x+40×5=760x+200,当x=3时,选方式一,方式二均可,当0<x<3选方式一,当x>3时,选方式二;【解答】解:(1)设甲队有x人,则乙队有x+10人由题知x+10+5=3(x﹣5)∴甲队有15人,乙队有25人15+25=40(人)故七(1)班共有40人(2)方式一:40×20x+80=800x+80方式二:(20×0.9+1)×40•x+40×5=760x+200800x+80=760x=200,可得x=3∴若x=3时,选方式一,方式二均可若0<x<3选方式一若x>3时,选方式二【点评】本题主要考查了一元一次方程的运用,读懂题意是解题的关键.23.(10分)如图1,平面内一定点A在直线MN的上方,点O为直线MN上一动点,作射线OA、OP、OA′,当点O在直线MN上运动时,始终保持∠MOP=90°、∠AOP=∠A′OP,将射线OA绕点O顺时针旋转60°得到射线OB(1)如图1,当点O运动到使点A在射线OP的左侧,若OB平分∠A′OP,求∠AOP的度数.(2)当点O运动到使点A在射线OP的左侧,∠AOM=3∠A′OB时,求的值.(3)当点O运动到某一时刻时,∠A′OB=150°,直接写出∠BOP= 105或135 度.【分析】(1)设∠A′OB=∠POB=x,表示∠AOP=2x,∠BOP=x,由∠AOB=60°列方程为:x+2x=60,可得x的值,从而求出结论;(2)分两种情况讨论,①当点O运动到使点A在射线OP的左侧,②当点O运动到使A在射线OP的左侧,但是射线OB在∠POA′外部时,分别求的值即可;(3))①如图3,当∠A′OB=150°时,可得:∠A'OA=∠A'OB﹣∠AOB=150°﹣60°=90°,因为∠AOP=∠A'OP,所以∠AOP=45°,∠BOP=60°+45°=105°;②如图4,当∠A′OB=150°时,可得:∠A'OA=360°﹣150°﹣60°=150°,因为∠AOP=∠A'OP,所以∠AOP=75,∠BOP=60°+75°=135°;【解答】(本题10分)解:(1)∵OB平分∠A′OP,∴设∠A′OB=∠POB=x,∵∠AOP=∠A′OP,∴∠AOP=2x,∵∠AOB=60°,∴x+2x=60,∴x=20°,∴∠AOP=2x=40°;(2)①当点O运动到使点A在射线OP的左侧∵∠AOM=3∠A′OB∴设∠A′OB=x,∠AOM=3x∵OP⊥M∴∠AON=180°﹣3x∠AOP=90°﹣3x∴∵∠AOP=∠A′OP∴∠AOP=∠A′OP=∴OP⊥MN∴∴∴②当点O运动到使A在射线OP的左侧,但是射线OB在∠POA′外部时∵∠AOM=3∠A′OB设∠A′OB=x,∠AOM=3x∴∠AOP=∠A′OP=∴OP⊥MN∴3x+=90∴x=24°∴(3)①如图3,当∠A′OB=150°时,由图可得:∠A'OA=∠A'OB﹣∠AOB=150°﹣60°=90°∵∠AOP=∠A'OP∴∠AOP=45°∴∠BOP=60°+45°=105°②如图4,当∠A′OB=150°时,由图可得:∠A'OA=360°﹣150°﹣60°=150°∵∠AOP=∠A'OP∴∠AOP=75°∴∠BOP=60°+75°=135°故答案为:105°或135°【点评】本题主要考查了角的运算,学会灵活处理问题,注意分类讨论不同的情况.24.(12分)如图,直线l上依次有三点A、B、C,且AB=8、BC=16,点P为射线AB上一动点,将线段AP进行翻折得到线段PA′(点A落在直线l上点A′处、线段AP上的所有点与线段PA′上的点对应)如图(1)若翻折后A′C=2,则翻折前线段AP= 11(2)若点P在线段BC上运动,点M为线段A′C的中点,求线段PM的长度;(3)若点P在射线BC上运动,点N为B′P的中点,点M为线段A′C的中点,设AP=x,用x表示A′M+PN.【分析】(1)先根据线段的和差关系求出AC,进一步得到AA′,再根据翻折的定义即可求解;(2)分①当A′在线段BC上,②当A′在l上且在C的右侧,进行讨论即可求解;(3)分①当8<x<12,此时,A′在C的左侧,②当x>12 此时,A′在C的右侧,③当x>24时,点C落在C’,进行讨论即可求解.【解答】解:(1)AC=AB+BC=8+16=24,AA′=AC﹣A′C=24﹣2=22,AP=22÷2=11.故答案为:11;(2)①当A′在线段BC上,由题知PA=PA′,∵M为AC中点,∴MA′=MC,∴PM=PA′+A′M====12;②当A′在l上且在C的右侧,∵M为A′C中点,∴MA′=MC,∴PM=PA′﹣A′M====12,综上:PM=12;(3)①当8<x<12,此时,A′在C的左侧,PB’=PB=x﹣8,∵N为BP中点,∴,∵A′C=24﹣2x,∵M为A′C中点,∴,∴=;②当x>12,此时,A′在C的右侧,PB′=PB=x﹣8,,A′C=2x﹣24∵M为A′C中点,∴,∴=;③当x>24时,点C落在C’,不予考虑(考虑了则M为A′C’中点,得),∴.【点评】本题考查了两点之间的距离的应用,分类讨论的思想是解此题的关键.。
2023-2024年人教版七年级上册数学期末试题(含简单答案)
14.关于 x 的方程 2x 3 3m 和 2x 1 5 有相同的解,则 m 的值是
.
15.某车间有 22 名工人,每人每天可以生产 12 个螺钉或 20 个螺母,1 个螺钉需要配 2
个螺母,为使每天生产的螺钉和螺母刚好配套,应安排
人生产螺钉.
16.一个小正方体的六个面分别标有数字1, 2 , 3 , 4 , 5 , 6 .将它按如图所示的方 式顺时针滚动,每滚动 90 算一次,则滚动第 2023次时,小正方体朝下一面标有的数字
1 A.
4
B. 1 4
C.4
D. 4
5.小明同学在解方程 5x 1 mx 3 时,把数字 m 看错了,解得 x 4 ,则该同学把 m 3
看成了( )
A.3
B. 128 9
C.8
D. 8
6.如图是一个正方体的表面展开图,则在原正方体中,相对两个面上的数字之和的最
小值是( )
A.5
B.6
C.7
9.计算: 3 2 2 .
C.170
D.189
10.若 a 2 b 32 0 ,则 ba 的值为 .
11.多项式 x2 y 2x4 y xy3 2 y 是
次
项式.
12.若 x 2 , y 8 ,且 x y 则 x y =
13.规定如下两种运算: x y 2xy 1; x y x 2 y 1.例如: 2 3 2 2 3 1 13; 2 3 2 2 3 1 7 .若 a (4 5) 的值为 79,则 a
22.已知: A x 1 y 2 , B x y 1 . 2
(1)化简 2A B ; (2)若 3y 4x 的值为 4,求 A B 的值;
(3)当 y 3 时, 4A 2 A B 5 ,求 x 的值.
湖北省武汉市部分学校2023-2024学年第一学期七年级期末考试数学试卷(word版含答案)
2023-2024学年度第一学期七年级期末调研考试数 学 试 卷亲爱的同学,在答题前,请认真阅读下面的注意事项:1. 本试卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分组成,三大题,24小题,全卷共6页,考试时间120分钟,满分120分.2. 试卷选择题及非选择题答案均写在答题卡上,写在试卷上无效.预祝你取得优异成绩!第Ⅰ卷(选择题 共30分)一、选择题(每小题3分,共30分)本题共10小题,每小题均给出A ,B ,C ,D 四个选项,有且只有一个答案是正确的,请将正确答案的代号填在答题卡上,填在试题卷上无效.1.数轴上表示的点在原点的左侧,距离原点( )个单位长度.(A )0(B )1(C )2(D )32.下列立体图形,其中圆柱体是( ).(A ) (B ) (C ) (D )3.下列计算正确的是( ).(A ) (B ) (C )(D )4.如图,学校A 在小红家B 南偏西25°的方向上,点C 表示超市所在的位置,∠ABC =90°,则超市C 在小红家B 的( ).(A )南偏东65°的方向上 (B )南偏东55°的方向上(C )北偏东65°的方向上 (D )北偏东55°的方向上5.若是关于x 的一元一次方程,则k 的值不可能是( ).(A )(B )0 (C )2 (D )6.如图,OB 平分∠AOC ,下列结论错误的是( ).3-532a a -=-32a a a -+=232a a a -=235a b ab+=()210k x -+=1-2-D东(A )∠AOB =∠BOC (B )∠COD +∠AOC =∠BOD (C )∠AOD -∠BOC =∠BOD (D )∠BOC +∠AOD =2∠BOD 7.下列变形正确的是( ).(A )若,则 (B )若,则(C )若,则(D )若,则8.我国古代数学著作《增删算法统宗》中记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托”.其大意为:有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设竿子的长为尺,依题意可列方程为( ).(A ) (B ) (C )(D )9.如图,点C ,D 在线段上AB ,O 为AB 上方一点,∠OAB =90°,连接OC ,OD ,OB ,下列结论:①图中互余的角有3对;②图中共有线段10条;③图中共有8个锐角;④若AC =CD =5,BD =3,P 为线段AB 上一点,则点P 到点A,C ,D ,B 的距离之和最小为18.其中正确的说法有( ).(A )①②④(B )③④ (C )①②③ (D )①③④10.如图,张老师要在足够大的磁性黑板上展示数张形状、大小均相同的长方形作业,将这些作业排成一个长方形(作业不完全重合).现需要在每张作业的四个角落都放上磁性贴,如果作业有角落相邻,那么相邻的角落共享一枚磁性贴(例如,4张作业可用9枚磁性贴固定在磁性黑板上).若有25枚磁性贴可供选用,则最多可以展示( )张作业.(A )12(B )14(C )15(D )1612a b =11a b -=+12a b +-=3a b =+a b =22a c b c -=-a b =11a b c c =--x ()15252x x +=-()1552x x +=-1552x x +=-()1552x x -=+(第9题)OD C BA第Ⅱ卷(非选择题 共90分)二、填空题(每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11.冬季某一天的温差是3℃,这天最低气温是-2℃,最高气温是℃.12.如图,正方体纸盒上相对两个面上的数互为相反数,则正方体纸盒六个面上的数中,最小的是.13.已知m ,n 为正整数,若多项式合并同类项后只有两项,则的值为.14.数轴上点A 表示的数为,点B ,C 表示的数分别为,,若点B 为线段AC的中点,则的值为.15.如图,P的边BC 上一点,将∠ABP ,∠DCP 分别沿AP ,DP 向上折叠,点B 落在点处,点C 恰好落在AD 边上的处,.下列说法:①∠BPD=135°;②;③若平分,则;④若,则.其中一定正确的结论有(填序号即可).16.从如图1(边长为a )的正方形纸片上剪去两个相同的小长方形,得到如图2的图案(横向、纵向的宽度均为b ),再将剪下的两个小长方形拼成一个新长方形(如图3),若,则图3中新长方形的周长为.三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.(本题8分)计算:(1); (2).232123m n a b a b a b --+m n +1-35m -1m +m B 'C 'B PD α'∠=22.52APC α'∠=︒+PC 'APB '∠15α=︒108APD B PC ''∠+∠=︒9α=︒23a b -=902832'︒-︒()()321113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭(第15题)P C /B /DBCA18.(本题8分)解方程:(1);(2).19.(本题8分)先化简,再求值.已知,其中,,.20.(本题8分)根据图中的信息解答下面的问题(单位:cm ).(1)放入一个大球水面升高_____cm ,放入一个小球水面升高_____cm ;(2)若放入大球、小球共8个后水面高度为27 cm ,大球、小球各放入多少个?21.(本题8分)对于有理数a ,b 满足,我们称使等式成立的一对有理数a ,b为“相伴有理数对”,记为(a ,b ).如(,2)满足:;(2,)满足:;所以数对(,2),(2,)都是“相伴有理数对”.(1)数对(,1),(1,0)中,是“相伴有理数对”是________;(2)若(,3)是“相伴有理数对”,求x 的值;(3)若(,)是“相伴有理数对”,则的值为 .的312x x -=+121132x x +--=()()22222322a b ab a b ab a b ab ⎡⎤-+---⎣⎦1a =2b =-1a b ab -=+3-32321--=-⨯+131122133-=⨯+3-131-21x -m n ()1372n mn mn m n ⎡⎤-+-+⎣⎦的3放入体积相同的22.(本题10分)某校组织趣味数学知识竞赛,共设20道选择题,各题分值相同.下表记录了4位参赛者的答题及得分情况.参赛者答题总数答对题数答错题数总得分A 20200100B 2019193C 1714364D1311251(1)从上表可以看出:答对1题得 分,答错1题得 分,未作答1题得 分;(2)参赛者E 完成18道答题得69分,他答对了多少道题?(3)参赛者F 得了67分,请直接写出他答对题;答错题;未作答题.23.(本题10分)如图,已知∠COD =∠AOB=,射线OM 平分∠COD ,ON 平分∠AOD .(1)如图1,若OC 与OB 重合,,请补全图形并直接写出∠MON 的度数为 °;(2)如图2,若∠MON=55°,求∠AOC 的度数;(3)若,将∠COD 从图1的位置以每秒5°的速度绕点O 逆时针方向旋转一周,经过秒能使∠MON=45°(直接写出结果).12α20α=︒25α=︒图1ODB (C )A图2NBM AODC备用图ABO24.(本题12分)数轴上A ,B 三个点表示的数分别是a ,b ,且满足,动点P 从点A 出发,以每秒3个单位长度的速度向右移动秒.(1)直接写出a = ,b = ;(2)如图1,若M 为PA 的中点,N 为PB 的中点,试判断在P 点运动的过程中,线段MN的长度是否发生变化,请说明理由;(3)对于数轴上的点P ,Q ,给出如下定义:记点P 到点A 的距离为m ,点Q 到P的距离为n ,如果,那么称点Q 是点P 的“关联点”.①若m =1,直接写出点P 的“关联点”Q 在数轴上对应的数为 ;②若,试求的值.数学参考答案一、选择题:题号12345678910答案DCBACDCBAD二、填空题:11.1; 12.; 13.6或4; 14.2;15.①②③④;16.12.(说明:13题对一空2分,15题1~2个正确都给1分,3个正确2分)第10题提示:①若所有作业展示成一排,则:……1,最多11张作业;()2620a b ++-=t 2n m -==2BQ BP t 3-()252211-÷=图1备用图②若所有作业展示成两排,则:……1,最多张作业;③若所有作业展示成三排,则:……1,最多张作业;④若所有作业展示成四排,则:……1,最多张作业; ⑤若所有作业展示成五排,则:……1,最多张作业…… 故最多可展示16张作业.第15题提示:依题意,∠BPC=45°,即∠BPD=135°;②因为,,所以;③依题意,,则;④由,又∠BPC=45°,,即∠BPC++45°=108°,所以.第16题提示:新长方形长为:,宽为:,因为,所以新长方形长为:.三、解答题:17.(1)原式=, ……3分= ;……4分(2)原式, ……6分……7分. ……8分18.(1),……3分解得; ……4分(2)去分母,得 ……6分()25337-÷=7214⨯=()25445-÷=5315⨯=()25554-÷=4416⨯=()25663-÷=3515⨯=B PD α'∠=()113567.522APB B PD α'∠=︒-∠=︒-22.52APC α'∠=︒+22.5452APC B PC αα'''∠=∠=︒+=︒-15α=︒108APD B PC ''∠+∠=︒67.5APB α∠=︒-67.52APB α∠=︒-9α=︒a b -3a b -23a b -=()()23424312a b a b a b -+-=-=⨯=89602832''︒-︒6128'︒()111723=--⨯⨯-716=-+16=23x =32x =22636x x +-+=……7分解得 . ……8分19.化简得,……3分=, ……5分=……6分……8分20.(1)2.5,1.5; ……4分(2)设放入大球个,依题意列方程,, ……6分解得;8-5=5. 答:放入大球3个,小球5个.……8分21.(1)(1,0);……3分(2)依题意列方程得,……5分解得; ……6分(3). ……8分22.(1)5,,0;……3分(2)依题意,设参赛者E 答对了道题,依题意列方程得:,……5分解得,,……6分答:设参赛者E 答对了15道题;……7分(3)15,4,1. ……10分23.(1)20°;(正确画图1分)……4分(2)∵OM 平分∠COD ,ON 平分∠AOD ,∠COD =∠AOB=,41x -=14x =-222223222a b ab a b ab a b ab ⎡⎤-+--+⎣⎦2222a b ab a b ⎡⎤-+⎣⎦22ab -()22128-⨯⨯-=-x ()2.5 1.582712x x +-=-3x =()2133211x x --=-+12x =-12-2-x ()521869x x ⨯--=15x =12α∴∠COM =∠DOM =,∠AON =∠DON , ……5分又∠MON=55°,∴∠CON =∠MON -∠COM =, ……6分∴∠AON =∠DON =,……7分∴∠AOC =∠AON+∠CON=+=;……8分(3)8或44……10分依题意∠AON =∠DON ,∠COM =∠DOM =,又∠MON=45°,①如图1,∠CON =∠MON -∠COM =32.5°,∴∠AON =∠DON =45°+12.5°=57.5°,∴∠BON =57.5°-50°=7.5°,∴旋转过的角度∠BOC =∠BON+∠CON =32.5°+7.5°=40°,(秒);②如图2,∴∠AON =∠DON=∠MON -∠DOM =45°-12.5°=32.5°,∴∠BOC =∠COD+∠DON +∠AON+∠AOB =140°,∴旋转过的角度为:360°-140°=220°,(秒).24.(1),2;……2分(2)依题意,AB=8,AP=3t ,,∵M 为PA 的中点,N 为PB 的中点,2α552α︒-552α︒+552α︒+552α︒-110︒12.5︒4058÷=220544÷=6-()23683BP t t =--=-DOM CNBA图1COA BNMD图2,,①如图1,当点P 在AB 之间时,,; ……4分②如图2,当点P 在AB 延长线上时,,;综上所述,线段MN 的长度保持不变. ……6分(说明:学生用绝对值方程分类讨论相应给分)(3)①或;……8分②依题意,,点P 表示的数为,又,即点Q 到P 的距离为,Ⅰ当点Q 在P 的左侧时,点Q 表示的数为; ……9分,,由得,,解得或; ……10分Ⅱ当点Q 在P 的右侧时,点Q 表示的数为;……11分,,由得,, 解得;1322t MP AM AP ===118322PN BN BP t ===-83BP t =-()3183422t MN MP BN t =+=+-=38BP t =-()3138422t MN MP NP t =-=--=2-8-3m t =36t -2n m -=232n m t =+=+()36328t t --+=-10BQ =()23683BP t t =--=-=2BQ BP 28310t -=1t =133t =()363264t t t -++=-()26466BQ t t =--=-()23683BP t t =--=-=2BQ BP 66283t t -=-116t =图1图2七年级数学试卷第11页 (共6页)综上所述,、或. ……12分1t =133t =116t =。
2020-2021学年华东师大 版七年级上册数学期末复习试卷(有答案)
2020-2021学年华东师大新版七年级上册数学期末复习试卷一.选择题(共10小题,满分30分,每小题3分)1.﹣3的相反数为()A.﹣3B.﹣C.D.32.国家主席习近平提出“金山银山,不如绿水青山”,国家环保部大力治理环境污染,空气质量明显好转,将惠及13.75亿中国人,这个数字用科学记数法表示为()A.13.75×106B.13.75×105C.1.375×108D.1.375×109 3.单项式﹣的系数和次数是()A.系数是,次数是3B.系数是﹣;,次数是5C.系数是﹣,次数是3D.系数是5,次数是﹣4.某大楼地上共有12层,地下共有4层.某人乘电梯从地下2层升至地上9层,电梯一共升了()A.7层B.8层C.9层D.10层5.如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥6.下列各式中,正确的是()A.x2y﹣2x2y=﹣x2y B.2a+3b=5abC.7ab﹣3ab=4D.a3+a2=a57.下列5个数中:2,1.0010001,,0,﹣π,有理数的个数是()A.2B.3C.4D.58.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80°B.90°C.100°D.102°9.若x=3n+1,y=3×9n﹣2,则用x的代数式表示y是()A.y=3(x﹣1)2﹣2B.y=3x2﹣2C.y=x3﹣2D.y=(x﹣1)2﹣210.已知a+2b=5,则代数式3(2a﹣3b)﹣4(a﹣3b+1)+b的值为()A.14B.10C.6D.不能确定二.填空题(共5小题,满分15分,每小题3分)11.比较大小:﹣﹣(填“<”或“>”).12.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2=°.13.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体有个.14.已知a表示一个一位数,b表示一个两位数,把a放到b的左边组成一个三位数,则这个三位数可以表示为.15.如图,用围棋子按某种规律摆成的一行“七”字,按照这种规律,第n个“七”字中的围棋子有个.三.解答题(共8小题,满分75分)16.计算题:(1)﹣23﹣[﹣0.2÷×(﹣2)2﹣|﹣5|];(2)(﹣+﹣)÷(﹣).17.化简求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=3,y=﹣.18.阅读与计算:出租车司机小李某天上午营运时是在太原迎泽公园门口出发,沿东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接送八位乘客的行车里程(单位:km)如下:﹣3,+6,﹣2,+1,﹣5,﹣2,+9,﹣6.(1)将最后一位乘客送到目的地时,小李在什么位置?(2)将第几位乘客送到目的地时,小李离迎泽公园门口最远?(3)若汽车消耗天然气量为0.2m3/km,这天上午小李接送乘客,出租车共消耗天然气多少立方米?(4)若出租车起步价为5元,起步里程为3km(包括3km),超过部分每千米1.2元,问小李这天上午共得车费多少元?19.育杰中学七年级一班3名教师决定带领本班a名学生利用假期去某地旅游.甲旅行社的收费标准为:教师全价,学生半价;乙旅行社的收费标准为:不管老师还是学生一律八折优惠,这两家旅行社的全价都是每人500元.(1)请分别用含a的式子表示三名教师和a名学生选择这两家旅行社所需的费用;(2)当a=55时,选择哪一家旅行社更合算?20.如图,点C是AB上一点,点D是AC的中点,若AB=12,BD=7,求CB的长.21.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=72°,OF⊥CD,垂足为O,求∠EOF的度数.22.如图,已知直线AB∥CD,直线MN分别交AB、CD于M、N两点,若ME、NF分别是∠AMN、∠DNM的角平分线,试说明:ME∥NF解:∵AB∥CD,(已知)∴∠AMN=∠DNM()∵ME、NF分别是∠AMN、∠DNM的角平分线,(已知)∴∠EMN=∠AMN,∠FNM=∠DNM(角平分线的定义)∴∠EMN=∠FNM(等量代换)∴ME∥NF()由此我们可以得出一个结论:两条平行线被第三条直线所截,一对角的平分线互相.23.阅读并填空问题:在一条直线上有A,B,C,D四个点,那么这条直线上总共有多少条线段?要解决这个问题,我们可以这样考虑,以A为端点的线段有AB,AC,AD3条,同样以B为端点,以C为端点,以D为端点的线段也各有3条,这样共有4个3,即4×3=12(条),但AB和BA是同一条线段,即每一条线段重复一次,所以一共有条线段.那么,如果在一条直线上有5个点,则这条直线上共有条线段.如果在一条直线上有n 个点,那么这条直线上共有条线段.知识迁移:如果在一个锐角∠AOB内部画2条射线OC,OD,那么这个图形中总共有个角,若在∠AOB内画n条射线,则总共有个角.学以致用:一段铁路上共有5个火车端,若一列客车往返过程中,必须停靠每个车站,则铁路局需为这段线路准备种不同的车票.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:﹣3的相反数是3.故选:D.2.解:13.75亿这个数字用科学记数法表示为1.375×109.故选:D.3.解:单项式﹣的系数和次数是:﹣,5.故选:B.4.解:根据题意得:9﹣(﹣2)﹣1=10,则某人乘电梯从地下2层升至地上9层,电梯一共升了10层,故选:D.5.解:观察图形可知,这个几何体是三棱柱.故选:A.6.解:A、x2y﹣2x2y=﹣x2y,故A正确;B、不是同类项,不能进一步计算,故B错误;C、7ab﹣3ab=4ab,故C错误;D、a3+a2=a5,不是同类项,故D错误.故选:A.7.解:有理数有2,1.0010001,,0,共4个.故选:C.8.解:∵AB∥CD,∴∠A=∠3=40°,∵∠1=120°,∴∠2=∠1﹣∠A=80°,故选:A.9.解:∵x=3n+1,y=3×9n﹣2=3×32n﹣2,∴y=3(x﹣1)2﹣2.故选:A.10.解:∵a+2b=5,∴原式=6a﹣9b﹣4a+12b﹣4+b=2a+4b﹣4=2(a+2b)﹣4=10﹣4=6,故选:C.二.填空题(共5小题,满分15分,每小题3分)11.解:|﹣|=,|﹣|=,﹣,故答案为:>.12.解:∵将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,∠1=27°,∴∠4=90°﹣30°﹣27°=33°,∵AD∥BC,∴∠3=∠4=33°,∴∠2=180°﹣90°﹣33°=57°,故答案为:57°.13.解:由主视图与左视图可以在俯视图上标注数字为:主视图有三列,每列的方块数分别是:2,1,1,左视图有两列,每列的方块数分别是:1,2,俯视图有三列,每列的方块数分别是:2,1,2,∴总个数为1+2+1+1+1=6个.故答案为6.14.解:这个三位数可以表示为100a+b.故答案是:100a+b.15.解:∵第1个图形有1+4×1+2=7个棋子,第2个图形有1+4×2+3=12个棋子,第3个图形有1+4×3+4=17个棋子,…∴第n个“七”字中的棋子个数是:1+4n+(n+1)=5n+2.故答案为:5n+2.三.解答题(共8小题,满分75分)16.解:(1)=﹣8﹣(﹣××4﹣5)=﹣8﹣(﹣1﹣5)=﹣8+6=﹣2;(2)===9﹣8+6=7.17.解:原式=3x2y﹣(2xy2﹣2xy+3x2y+xy)+3xy2,=3x2y﹣2xy2+2xy﹣3x2y﹣xy+3xy2,=xy2+xy,当中x=3,y=﹣时,原式=3×+3×(﹣)=﹣1=﹣.18.解:(1)﹣3+6﹣2+1﹣5﹣2+9﹣6=﹣2km,答:将最后一位乘客送到目的地时,小李在迎泽公园门口西边2km处.(2)|﹣3|=3,|﹣3+6|=3,|﹣3+6﹣2|=1,|﹣3+6﹣2+1|=2,|﹣3+6﹣2+1﹣5|=3,|﹣3+6﹣2+1﹣5﹣2|=5,|﹣3+6﹣2+1﹣5﹣2+9|=4,|﹣3+6﹣2+1﹣5﹣2+9﹣6|=2.∵5>4>3=3=3>2=2>1,∴将第6位乘客送到目的地时,小李离迎泽公园门口最远.(3)(|﹣3|+|6|+|﹣2|+|1|+|﹣5|+|﹣2|+|9|+|﹣6|)×0.2=6.8m3答:这天上午小李接送乘客,出租车共消耗天然气6.8立方米.(4)[(6+5+9+6)﹣3×4]×1.2+8×5=56.8元,答:小李这天上午共得车费56.8元.19.解:(1)根据题意得:甲旅行社费用:(250a+1500)元;乙旅行社费用:(400a+1200)元;(2)当a=55时,250a+1500=15250,400a+1200=23200,∵15250<23200,∴选择甲旅行社更合算.20.解:∵AB=12,BD=7,∴AD=AB﹣BD=12﹣7=5.∵点D是AC的中点,∴AC=2AD=2×5=10.∴CB=AB﹣AC=12﹣10=2.21.解:∵直线AB和CD相交于点O,∴∠BOD=∠AOC=72°,∵OF⊥CD,∴∠BOF=90°﹣72°=18°,∵OE平分∠BOD,∴∠BOE=∠BOD=36°,∴∠EOF=36°+18°=54°.22.解:∵AB∥CD,(已知),∴∠AMN=∠DNM(两直线平行,内错角相等),∵ME、NF分别是∠AMN、∠DNM的角平分线(已知),∴∠EMN=∠AMN,∠FNM=∠DNM(角平分线的定义),∴∠EMN=∠FNM(等量代换),∴ME∥NF(内错角相等,两直线平行),由此我们可以得出一个结论:两条平行线被第三条直线所截,一对内错角的平分线互相平行,故答案为:两直线平行,内错角相等,,,内错角相等,两直线平行,内错,平行.23.解:问题:如果在一条直线上有5个点,则这条直线上共有=10条线段.如果在一条直线上有n个点,那么这条直线上共有条线段.;知识迁移:在∠AOB内部画2条射线OC,OD,则图中有6个不同的角,在∠AOB内部画n条射线OC,OD,OE,…,则图中有1+2+3+…+n+(n+1)=个不同的角;学以致用:5个火车站共有线段条数×5×4=10,需要车票的种数:10×2=20(种).故答案为:10,,6,,20.。
2022-2023学年上学期七年级数学期末复习冲刺卷(06)
2022-2023学年上学期七年级数学期末复习冲刺卷(06)(考试时间:120分钟试卷满分:120分)一、选择题(本题共10小题,每小题3分,共30分)。
1.下列各对数,互为相反数的一对是()A.3与﹣B.2与﹣3C.﹣3与3D.3与2.有理数a、b在数轴上的对应点的位置如图所示,则化简|a+b|的结果正确的是()A.a+b B.a﹣b C.﹣a+b D.﹣a﹣b3.已知﹣x3y2与3y2x n是同类项,则n的值为()A.2B.3C.5D.2或34.下列式子中,正确的是()A.﹣1+2=﹣1B.﹣2×(﹣3)=﹣6 C.(﹣1)2=2D.3÷(﹣)=﹣95.下列图形通过折叠能围成一个三棱柱的是()A.B.C.D.6.如图是一个小正方体的表面展开图,把展开图折叠成小正方体后,有“开”字一面的相对面上的字是()A.我B.爱C.教D.育7.如图,是一副特制的三角板,用它们可以画出一些特殊角.在下列选项中,不能画出的角度是()A.18°B.55°C.63°D.117°8.一个两位数的个位数字是x,十位数字是y,这个两位数可表示为()A.xy B.x+y C.x+10y D.10x+y9.将一件商品按进价提高30%后标价,又以九折优惠卖出,结果每件仍获利34元,这件商品的进价是多少元?若设这种商品每件的进价是x元,那么所列方程为()A.30%(1+90%)x=34B.x﹣90%(1+30%)x=34C.90%(1+30%)x﹣x=34D.90%(1﹣30%)x﹣x=3410.如图1是AD∥BC的一张纸条,按图1→图2→图3,把这一纸条先沿EF折叠并压平,再沿BF折叠并压平,若图3中∠CFE=24°,则图2中∠AEF的度数为()A.120°B.108°C.112°D.114°二、填空题(本题共7题,每小题4分,共28分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012学年第一学期青中中学期末练习卷6
2012.12
班级 学号 姓名 成绩 一 .选择题(每小题3分,共12分)
1.下列方程中是分式方程的是…………………………………………( ).
(A )1
10
2x +=; (B )1
3
2
x x =+; (C )
111
3
2
x x +-+=; (D )21x y +=.
2.能用公式法分解因式的是( ) A .2224a ab b -+ B .
2
2
40.019
m n -
C .22a b --
D . 233x y x --
3.下列说法中正确的是 ( ) ① 中心对称图形肯定是旋转对称图形
② 关于某一直线对称的两个图形叫做轴对称图形
③ 圆有无数条对称轴,它的每一条直径都是它的对称轴
④ 平行四边形是中心对称图形,它只有一个对称中心,就是两条对角线的交点 ⑤ 等边三角形既是中心对称,又是轴对称
A 、①②④
B 、③④
C 、①③⑤
D 、①④ 4. 如图所示,先将图沿着它自己的右边缘翻折,再绕着右下角的一个端点按顺时针方向旋转180°,之后所得到的图形是
( )
二.填空题(每小题2分,共30分)
5.用代数式表示x 的倒数与y 的平方的和 ; 6. 因式分解:=-2
2
94b a 7. 用科学记数法表示:0.000312-= ;
8. 下列各式a
π,1
1x +,1
5,x+y ,22
a b
a b --,-3x 2,0•中,是分式的有___________;是整式的有___________; 9.
()
1
4
22
=
-+a a
10. 若2=m
a ,4=n
a 则=+n
m a
3 ;
11. 把()2
2
3y x ay
+化成不含分母的形式 ,把1212--b a 化成不含负整
数指数幂的形式 ;
12. 当x 时,分式53-x x
有意义。
13. 一个角的对称轴是这个角的
14. 将等腰直角三角形的三角板,绕着它的一个锐角顶点旋转后它的直角顶点落到原斜边所在的直线上, 那么最小的旋转角是________. 15. 正五边形有____________条对称轴
16. 如果将一个四边形ABCD 向上平移3个单位长度得到四边形1111D C B A ,点1D 是点D 的对应点,则线段=1DD .
17. 小强站在镜子前,从镜子中看到对面墙上挂着的电只子表的示数是15:01则此时的实际时刻是 。
18. 正方形是一个旋转对称图形,它至少旋转_______度后,能与自身重合.
19. 若20)63(2)3(----x x 有意义,那么x 的取值范围是 。
20. 写出一个是轴对称图形,但不是中心对称的图形 。
三.简答题(计算前2题5分后2题6分,共22分;因式分解每题5分,解方程6分) 21.计算:2221()3()23x y x y x ⎡⎤
-+-÷⎢⎥⎣⎦
22.计算:3
2
2
11x x x x x +÷⋅-
23.计算:2
3
8()()23b ax a ax
b
b
÷-
⨯
24.计算:0
2
1
1
313276312⎪⎭
⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-⋅⎪
⎭⎫
⎝⎛---
25.因式分解:()()832322
2-+-+x x x x 26.解方程:
2
2
2
5
421
23
43
x x x x x -
=
-+-++
四.作图题(5+5+6)
27.画出△A 1B 1C 1 ,使它与△ABC 28、画出△ABC 绕点O 逆时针旋转90°
关于直线l 成轴对称。
后的图形
29.如图,A B C ∆经过一次平移到△DFE 的位置,请回答下列问题:
(1)点C 的对应点是点____, B C =_______;=∠B
(2)联结C E ,那么平移的方向就是________的方向,平移的距离就是线段_______的长度 (3)联结A D 、BF 、B E ,与线段C E 相等的线段有_____________. 五.应用题(7分)
30.某班学生到距离学校16千米的植物园参观,一部分学生骑自行车先走,40分钟后其余学生乘汽车出发,结果同时到达,已知汽车速度是自行车的3倍,求两种车的速度。
答案:
1. B
2. B
3. D
4. A
5.
21y x
+ 6.(2a+3b )(2a-3b) 7. -3.124
10
-⨯ 8.. 1
1x +,
2
2
a b
a b --;1
5,x+y ,,-3x 2
,0,a
π•. 9. a-2 10. 32 11. b
a
y x ay 2,
)
(32
2
2
-+ 12. 3
5≠
x
13.角平分线所在的直线 14. ︒45 15. 5 16. 3 17. 10:21 18. ︒90 19. 2≠x 且
3≠x 20.等边三角形 21. 2x-y 22.
x
-11 23.
3
2
6x
a 24.
4
7 25. (x+4)(x-1)(x+1)(x+2)
26. x=13 27. 略 28.略 29. (1)E ,EF F ∠(2)C E ,C E (3)A D ,BF 30. 自行车的速度是16千米/小时,汽车的速度是48千米/小时。
l
C
B
A
A
C
D
E
F。