脱硝-SNCR-SCR-简介
SNCR-SCR技术
第一部分、SNCR 技术 一、SNCR 技术1.1 SNCR 技术简介SNCR (Selective Non-Catalytic Reduction )即为选择性非催化还原法,是一种经济实用的NOx 脱除技术,SNCR 于20世纪70年代中期首先在日本的燃气、燃油电厂中得到应用,并逐步推广到欧盟和美国。
到目前为止,世界上燃煤电厂SNCR 工艺的总装机容量大约在2GW 以上。
其原理是以NH 3、尿素[CO(NH 2)2]等作为还原剂,在注入到锅炉之前雾化或者注入到锅炉中靠炉内的热量蒸发雾化。
在适宜的温度范围内,气相的氨或者尿素就会分解为NH 3和NH 2自由基,在特定的温度和氧存在的条件下,还原剂与NOx 的反应优于其他反应而进行。
1.2工艺优点及不足SNCR 具有工艺简单,操作便捷等优点。
SNCR 工艺可以方便地在现有装置上进行改装。
因为它不需要催化剂床层,而仅仅需要对还原剂的储存设备和喷射系统加以安装,因而初始投资相对于SCR 工艺来说要低得多,操作费用与SCR 工艺相当,但是受到反应温度、混合等因素的制约,脱硝效率不高,并存在氨逃逸问题,适用于对脱硝效率要求不高的工业项目。
二、SNCR 脱硝反应机理SNCR 是一种不用催化剂,在850-1100℃范围内还原NOx 的方法。
SNCR 技术是把还原剂如氨、尿素喷入炉膛温度为850-1100℃的区域,还原剂迅速热分解成NH 3并与烟气中的NOx 进行SNCR 反应生成N 2和H 2O 。
SNCR 工艺反应器为炉膛,因此,可通过对锅炉进行改造实现。
SNCR 反应物贮存和操作系统与SCR 系统比较相似,但氨和尿素的消耗量比SCR 工艺要多。
在炉膛850-1100℃这一狭窄的温度范围内,在无催化剂作用下,氨或尿素等氨基还原剂可选择性地还原烟气中的NOx ,基本上不与烟气中的O 2反应,主要反应为:还原剂迅速热解产生的NH 3,主要通过下面反应生成NH 2来还原NO :O H H OH NH 223+→+(1)当烟气中水蒸气含量很小或可忽略不计时,NH 2除了能由反应(1)生成,也可由下面反应生成:OH H N O NH 23+↔+ (2)NH 2在有效温度区,高度选择地与NO 反应,降低烟气中NO ,即使在氧化性气氛中也是如此。
(完整版)SNCR脱硝技术简介
SNCR脱硝技术简介烟气脱硝,是指把已生成的NO x还原为N2或者中和反应生成硝酸盐,从而脱除烟气中的NO X。
目前中国市场上常用的脱硝工艺包括了选择性非催化还原反应(SNCR)和选择性催化还原反应(SCR),以及以及在二者基础上发展起来的SNCR/SCR联合烟气脱硝技术。
SNCR技术广泛应用于电厂、水泥厂、垃圾焚烧厂、以及工业锅炉的烟气脱硝。
1.1 SNCR脱硝技术简介1.1.1 SNCR技术简介SNCR技术是在不采用催化剂的情况下,在炉膛内适宜温度处(温度为850~1100°C)喷入尿素溶液等氨基还原剂,与废气中的有害的NO x反应生成无害N2和H2O,从而去除烟气中氮氧化物。
1.1.2 SNCR原理在高温烟气(850~1100°C)和没有催化剂的情况下向炉内喷含有NH3基的还原剂,将烟气中的NO x还原成N2及H2O。
主要反应:()()900~1100C 3222900~1100C 32222900~1100C 222222900~1100C 22222224NH 4NO O 4N 6H O4NH 2NO O 3N 6H O2CO NH 4NO O 4N 4H O 2CO 2CO NH 2NO O 3N 4H O 2CO ︒︒︒︒++−−−−→+++−−−−→+++−−−−→++++−−−−→++1.1.3 技术特点(1)采用新型雾化还原剂喷射技术,还原剂分布均匀,有效覆盖率高,确保反应高效、充分。
(2)采用先进的CFD 和CKM 结合的优化设计,反应区域涡流混合效果好。
(3)智能化控制,高精度计量,氨利用率高,运行成本低。
(4)氨逃逸量≤8ppm ,腐蚀性小,副反应少。
(5)脱硝效率高,处理效果好。
(6)模块化设计,工艺系统简单,施工、运行管理方便。
(7)占地面积少,投资省。
1.2 SNCR 脱硝技术优点与其它脱硝技术相比,SNCR 技术具有以下优点:(1)脱硝效果令人满意:SNCR 技术应用在中小锅炉,尤其是不具备SCR 改造条件的老机组锅炉,对于链条炉,在优化运行时,其脱硝效率可达40%以上。
SCR和SNCR脱硝技术
SCR和SNCR脱硝技术SCR脱硝技术SCR装置运行原理如下:氨气作为脱硝剂被喷入高温烟气脱硝装置中,在催化剂的作用下将烟气中NOx 分解成为N2和H2O,其反应公式如下:催化剂4NO + 4NH3 +O2 →4N2 + 6H2O催化剂NO +NO2 + 2NH3 →2N2 + 3H2O一般通过使用适当的催化剂,上述反应可以在200 ℃~450 ℃的温度范围内有效进行, 在NH3 /NO = 1的情况下,可以达到80~90%的脱硝效率;烟气中的NOx 浓度通常是低的,但是烟气的体积相对很大,因此用在SCR装置的催化剂一定是高性能;因此用在这种条件下的催化剂一定满足燃煤锅炉高可靠性运行的要求;烟气脱硝技术特点SCR脱硝技术以其脱除效率高,适应当前环保要求而得到电力行业高度重视和广泛的应用; 在环保要求严格的发达国家例如德国,日本,美国,加拿大,荷兰,奥地利,瑞典,丹麦等国SCR 脱硝技术已经是应用最多、最成熟的技术之一;根据发达国家的经验, SCR脱硝技术必然会成为我国火力电站燃煤锅炉主要的脱硝技术并得到越来越广泛的应用;图1为SCR烟气脱硝系统典型工艺流程简图;SCR脱硝系统一般组成图1为SCR烟气脱硝系统典型工艺流程简图, SCR系统一般由氨的储存系统、氨与空气混合系统、氨气喷入系统、反应器系统、省煤器旁路、SCR旁路、检测控制系统等组成;液氨从液氨槽车由卸料压缩机送人液氨储槽,再经过蒸发槽蒸发为氨气后通过氨缓冲槽和输送管道进人锅炉区,通过与空气均匀混合后由分布导阀进入SCR反应器内部反应, SCR反应器设置于空气预热器前,氨气在SCR 反应器的上方,通过一种特殊的喷雾装置和烟气均匀分布混合,混合后烟气通过反应器内催化剂层进行还原反应;SCR系统设计技术参数主要有反应器入口NOx 浓度、反应温度、反应器内空间速度或还原剂的停留时间、NH3 /NOx 摩尔比、NH3 的逃逸量、SCR系统的脱硝效率等;氨储存、混合系统每个SCR反应器的氨储存系统由一个氨储存罐,一个氨气/空气混合器,两台用于氨稀释的空气压缩机一台备用和阀门,氨蒸发器等组成;氨储存罐可以容纳15天使用的无水氨,可充至85%的储罐体积,装有液面仪和温度显示仪;液氨汽化采用电加热的方式,同时保证氨气/空气混合器内的压力为350 kPa; NH3 和烟气混合的均匀性和分散性是维持低NH3 逃逸水平的关键;为了保证烟气和氨气在烟道分散好、混合均匀,可以通过下面方式保证混合:在反应器前安装静态混合器;增加NH3 喷入的能量;增加喷点的数量和区域;改进喷射的分散性和方向;在NH3 喷入后的烟道中设置导流板;同时还应根据冷态流动模型试验结果和数学流动模型计算结果对喷氨系统的结构进行优化;喷氨系统喷氨系统根据锅炉负荷、反应器入口NOx 浓度、反应器出口NOx 浓度测量的反馈信号,控制氨的喷入量;反应器系统SCR反应器采用固定床形式,催化剂为模块放置;反应器内的催化剂层数取决于所需的催化剂反应表面积;典型的布置方式是布置二至三层催化剂层;在最上一层催化剂层的上面,是一层无催化剂的整流层,其作用是保证烟气进入催化剂层时分布均匀;通常,在第三层催化剂下面还有一层备用空间,以便在催化剂活性降低时加入第四层催化剂层;在反应器催化剂层间设置吹灰装置,定时吹灰,吹扫时间30~120分钟,每周1~2次;如有必要,还应进行反应器内部的定期清理;反应器下设有灰斗,与电厂排灰系统相连,定时排灰;省煤器和反应器旁路系统在省煤器前和反应器之间设置旁路,称之为省煤器旁路;当锅炉负荷降低,烟气流量减少,进入反应器的烟气温度低于要求值时,旁路开通,向反应器导入高温烟气,提高反应器内的温度;此外,在反应器入口和出口间装有一个大的旁路,称之为反应器旁路;反应器旁路的作用是:锅炉负荷降低时使用;例如开机和停机时使用,低负荷时使用和季节性使用;以防止低温造成催化剂中毒及催化剂污染;所有SCR系统旁路的插板门均要保证零泄露;催化剂催化剂是电厂SCR工艺的核心,它约占其投资的l/3;为了使电站安全、经济运行,对SCR工艺使用的催化剂应达到下列要求:———低温度时在较宽温度范围具有较高的活性———高选择性 SO2 向SO3 转换率和其他方面作用低即副反应少———对二氧化硫 SO2 、卤族酸HCl, HF和碱金属Na2O、K2O和重金属如As具有化学稳定性———克服强烈温度波动的稳定性———对于烟道压力损失小———寿命长、成本低理想的催化剂应具有以下优点: 1. 高活性; 2.抗中毒能力强; 3. 好的机械强度和耐磨损性; 4. 有合适的工作温度区间;SCR测量控制系统反应温度控制在一定温度范围内,随反应温度提高,NOx 脱除率急剧增加,脱硝率达到最大值时,温度继续升高会使NH3 氧化而使脱硝率下降; 反应温度过低,烟气脱硝反应不充分,易产生NH3 的逃逸;因此要对SCR系统入口烟气温度进行监测并通过调节省煤器旁路开度控制SCR 系统入口烟气温度氨量控制在NH3 /NOx 摩尔比小于1 时,随NH3 /NOx摩尔比增加,脱硝效率提高明显; NH3 投入量超过需要量, NH3 会造成二次污染, 一般控制NH3 /NOx 摩尔比在1. 0左右;NH3 的流量控制阀调节控制NH3 的流量,控制系统根据反应器入口NOx的浓度、烟气流量、反应器出口所要求NOx 的排放浓度和氨的逃逸浓度计算出氨的供给流量;为保证人身和设备安全,发生下列情况,氨气阀门自动关闭:低的烟气流量;高的氨气/空气比;催化剂入口烟气温度过高;催化剂入口烟气温度过低;没有来自锅炉的运行允许信号;启动急停开关;氨稀释空气流量控制氨稀释用空气流量在SCR 系统运行时被设定好,不再调整;两台空气压缩机,一台备用;当第1台空气压缩机输出气体压力低于设定值或发生故障时,第2台空气压缩机自动启动氨气蒸发器氨气蒸发器与储罐为一体化结构,加热器放置在无水氨的液体中,通过氨储罐内的压力控制加热器;当储罐内的压力低于设定压力时,加热器通电加热液氨;加热器过热则断电保护; SNCR脱硝技术SNCR脱硝技术是将NH3、尿素等还原剂喷入锅炉炉内与NOx进行选择性反应,不用催化剂,因此必须在高温区加入还原剂;还原剂喷入炉膛温度为850~1100℃的区域,迅速热分解成NH3,与烟气中的NOx反应生成N2和水,该技术以炉膛为反应器;SNCR烟气脱硝技术的脱硝效率一般为30%~80%,受锅炉结构尺寸影响很大;采用SNCR技术,目前的趋势是用尿素代替氨作为还原剂;1、技术原理在850~1100℃范围内,NH3或尿素还原NOx的主要反应为:NH3为还原剂4 NH3 + 4NO +O2 → 4N2 + 6H2O尿素为还原剂NO+CONH22 +1/2O2 → 2N2 + CO2 + H2O2、系统组成SNCR系统烟气脱硝过程是由下面四个基本过程完成:接收和储存还原剂;在锅炉合适位置注入稀释后的还原剂;还原剂的计量输出、与水混合稀释;还原剂与烟气混合进行脱硝反应;3、技术特点技术成熟可靠,还原剂有效利用率高系统运行稳定设备模块化,占地小,无副产品,无二次污染烟气脱硝系统构成4、脱硝系统基本流程和添加剂效果基于纯氨、氨水和尿素的溶液比如satamin和carbamin二次添加剂目前在很大程度上比较流行;通过选择性非催化还原法,氨基在800℃-1050℃时NO生成氮气和水蒸气:NH2+NO <=> H2O+N2当使用含氨化合物的水溶液时,化合物分解就会释放出氨气;换言之,只有在雾化流体蒸发后氨气才可以从含氨化合物中挥发出来;自由基之间的反应选择性并不是很强;因此充足的脱除添加剂还是必要的;图1显示了烟气温度950℃时化学配比因子NSR与NOx脱除量的关系;5、流程设计和装置描述燃料添加剂贮存加料装置Satamin添加剂是一种专利产品;根据锅炉大小和每年的燃料消耗量,Satamin添加剂一般以每桶200,500和1000公升桶装形式供给;对于大型装置,一般设置一个较大的储罐和加料控制器,Satamin和Carbamin是低氨水溶液;因而,在贮料箱的充料过程中,或万一贮料箱遭到破坏,在储存位置附近将不会有有毒气体逸出;储罐中放置一个夹层箱或贮存箱足够使用;如果设备放在室外,贮料箱要考虑伴热或保温,放液区要作防水处理;在充料过程中必须关闭雨水排水阀;罐车利用压缩气来卸液;当往NOx脱除车间输送脱除添加剂时,需要使用磁耦合泵和潜液泵;6、混合和分配系统还原剂用水稀释;可以使用自来水或井水来稀释Satamin和Carbamin还原剂;如果燃料中没有加入防止高低温腐蚀的添加剂,可以通过混合和分配系统加入注入系统稀释后还原剂的加料系统依赖于燃烧室的几何尺寸;带有单相喷嘴的水冷喷枪在锅炉的应用中非常成功;双相喷嘴使用压缩空气的喷枪适合于层燃锅炉;7、二次排放燃烧富硫燃料>%的S,温度小于350℃时,烟气中高的NH3浓度能够形成硫酸氨;和硫酸氢氨不一样,硫酸氨是一种无污染的副产物;在温度小于160℃时,硫酸氢氨的形成与烟气中SO3量和NH3量有关;硫酸氢氨容易导致换热器表面结垢腐蚀;但是,通过使用配制合理的脱除添加剂Satamin和Carbamin产品,就可以避免硫酸氢氨的形成;改进后的SNCR装置氨排放允许值依赖于锅炉大小,为5—30mg/m3;NOx脱除装置的设计是根据使用添加剂satamin和carbamin,该系统不影响锅炉效率;反应热量与稀释水蒸发热量相当;SNCR和SCR的区别SNCR 的反应剂采用炉膛内喷射,不需特殊预留空间;SNCR 不采用催化剂系统不存在压力损失且不会对下游设备造成影响;SNCR 和SCR 是目前烟气脱硝的常用技术,SNCR和SCR相比具有以下特点;第一,SNCR 和SCR 最大的不同在于脱硝过程中不使用催化剂,且不导致SO2 /SO3氧化,故造成空预器堵塞的机会非常小;第二,整个过程没有压力损失,因此不需提高引风机压头,特别是改造机组不需对引风机进行改造,既节省了投资又缩短了建设工期;第三,SNCR 所需设备占地面积小,且相对于SCR设备简单,施工量减少,缩短了工程实施时间,对于改造机组而言,在场地限制较大的情况下更便于工程实施;第四,SNCR 工艺整个还原过程在锅炉内部进行,不需要另外设立反应器;还原剂通过安装在锅炉墙壁上的喷嘴喷入烟气中;喷嘴布置在燃烧室和省煤器之间的过热器区域,锅炉的热量为反应提供了能量,使NOX在这里被还原;反应器、反应器支撑钢结构及其附属烟道的取消,降低了较大一部分投资,减少了大部分安装工作,而且更便于日后的检修、维护工作;下面对两种脱硝技术进行简单对比;1.脱硝效率、工程造价和运行费用低碳燃烧技术的脱硝效率约在25% ~40%,工程造价较低,运行费用较低; SNCR 技术的脱硝效率约在25% ~40%,工程造价低,运行费用中等; LNB +SNCR 技术脱硝效率约在40% ~70%,工程造价中等,运行费用中等; SCR 技术脱硝效率在80% ~90%,工程造价较高,运行费用中等;2.对系统的影响SCR 和SNCR 技术均可使用NH3或尿素作为还原剂,SCR 反应温度在320℃~400℃,SNCR 反应温度在850℃~1250℃;SCR 的喷射位置多选在省煤器与SCR反应器间烟道内,因其使用催化剂故易造成SO2 /SO3氧化,易生成NH4HSO4对下游的空预器造成堵塞,并且因为催化剂的存在使系统的压力损失增大;因催化剂的存在必须预留足够的空间架设支撑结构;SNCR 的反应剂采用炉膛内喷射,不需特殊预留空间;SNCR 不采用催化剂系统不存在压力损失且不会对下游设备造成影响;。
混合SNCRSCR烟气脱硝技术
混合SNCR/SCR烟气脱硝技术引言烟气中的氮氧化物(NOx)是一类对大气环境具有严重危害的化学物质。
煤炭和石油的燃烧过程中产生的NOx排放量高,对空气质量和人类健康造成威胁。
为了控制烟气中的NOx排放,研发了多种不同的脱硝技术。
其中混合SNCR/SCR烟气脱硝技术是一种高效且经济的方法。
本文将介绍混合SNCR/SCR烟气脱硝技术的原理、应用和优势。
混合SNCR/SCR烟气脱硝技术的原理混合SNCR/SCR烟气脱硝技术是一种结合了选择性催化还原(SCR)和选择性非催化还原(SNCR)的方法。
具体原理如下:1.SNCR:选择性非催化还原是利用还原剂(例如氨水、尿素溶液)在高温下与NOx反应生成氮气和水。
这种反应过程发生在燃烧室或锅炉的燃烧区域中,通过调节还原剂的喷射位置和流量,可以实现对烟气中NOx的脱硝效果。
2.SCR:选择性催化还原是利用SCR催化剂(通常为氨基催化剂)在低温下催化氨和NOx之间的反应。
这种反应需要在还原剂(氨水、尿素溶液)的存在下进行,并且必须在一定的温度范围内才能实现高效的脱硝效果。
SCR 催化剂通常被放置在锅炉尾部或烟囱内的催化反应器中,烟气经过催化剂层时,NOx与氨发生反应生成氮气和水。
混合SNCR/SCR烟气脱硝技术是将SNCR和SCR两种脱硝方法结合起来,既能在高温区域降低NOx排放,又能在低温区域进一步脱硝,达到更高的脱硝效率。
混合SNCR/SCR烟气脱硝技术的应用混合SNCR/SCR烟气脱硝技术主要应用于煤炭和石油燃烧等高温烟气脱硝领域。
以下是一些典型的应用案例:1.火电厂:混合SNCR/SCR烟气脱硝技术在火电厂的锅炉烟气处理中得到广泛应用。
通过在燃烧过程中添加适量的还原剂和催化剂,可以降低烟气中的NOx排放量,符合环保要求。
2.钢铁工业:钢铁生产过程中产生的高温烟气中含有大量的NOx,采用混合SNCR/SCR烟气脱硝技术可以有效地降低NOx排放,保护环境和工人的健康。
SNCR烟气脱硝工艺简介
SNCR烟气脱硝工艺简介1、工艺比较目前,烟气脱硝工艺技术主要有三类:SNCR、SCR和SNCR-SCR,三种技术性能比较见表1。
表1选择性还原脱硝技术性能比较2、SNCR工艺简介选择性非催化还原法(SNCR)烟气脱硝技术是目前主要的烟气脱硝技术之一。
在炉膛850〜1000℃这一狭窄的温度范围内、在无催化剂作用下,NH3或尿素等氨基还原剂可选择性地还原烟气中的NOx,基本上不与烟气中的02作用,据此发展了SNCR法。
在800〜1250℃范围内,NH3或尿素还原NOx的主要反应为:氨为还原剂4NH3 + 4NO + O2 - 4 N2 + 6H2O尿素为还原剂CO (NH2)2- 2 HN2 + CONH2 + NO - N2 + H2ONO + CO - N2 + CO2当温度过高时,部分氨还原剂就会被氧化而生成NO X, 发生副反应:4NH3+ 5O2- 4NO + 6H2OSNCR工艺是一种成熟的脱硝技术,在国内外均有广泛的应用。
尤其在小型的燃煤、燃油、垃圾焚烧、燃气机组或工业锅炉上,SNCR 具有其一定的优越性。
SNCR系统较为简单,可以根据机组运行状况灵活处理,不受机组燃料和负荷的变化而受影响,施工周期短,SNCR 对其他系统的运行(如空气预热器和除尘器)都不产生干扰及增加阻力。
同SCR 烟气脱硝技术相比,SNCR的投资与运行成本相对较低,没有额外的SO2/SO3转化率,非常适和老厂的脱硝改造。
若需进一步降低氮氧化物的浓度,可在尾部加设SCR反应器,形成SNCR-SCR 混合技术,只需加装少量的催化剂就可满足进一步的排放要求。
3、SNCR 的优点与其它脱硝技术相比,SNCR技术具有以下优点:1)脱硝效果令人满意:SNCR技术应用在大型煤粉锅炉上,长期现场应用一般能够达到30〜50%的脱硝率,在循环流化床锅炉上增设SNCR装置通常可达到60%以上的脱硝效率。
2)还原剂多样易得:SNCR技术中常用的还原剂,包括液氨、氨水、尿素等。
SCR与SNCR脱硝技术
SCR和SNCR脱硝技术SCR脱硝技术SCR装置运行原理如下:氨气作为脱硝剂被喷入高温烟气脱硝装置中,在催化剂的作用下将烟气中NOx 分解成为N2和H2O,其反应公式如下:催化剂4NO + 4NH3 +O2 →4N2 + 6H2O催化剂NO +NO2 + 2NH3 →2N2 + 3H2O一般通过使用适当的催化剂,上述反应可以在200 ℃~450 ℃的温度范围内有效进行, 在NH3 /NO = 1的情况下,可以达到80~90%的脱硝效率。
烟气中的NOx 浓度通常是低的,但是烟气的体积相对很大,因此用在SCR装置的催化剂一定是高性能。
因此用在这种条件下的催化剂一定满足燃煤锅炉高可靠性运行的要求。
烟气脱硝技术特点SCR脱硝技术以其脱除效率高,适应当前环保要求而得到电力行业高度重视和广泛的应用。
在环保要求严格的发达国家例如德国,日本,美国,加拿大,荷兰,奥地利,瑞典,丹麦等国SCR脱硝技术已经是应用最多、最成熟的技术之一。
根据发达国家的经验, SCR脱硝技术必然会成为我国火力电站燃煤锅炉主要的脱硝技术并得到越来越广泛的应用。
图1为SCR烟气脱硝系统典型工艺流程简图。
SCR脱硝系统一般组成图1为SCR烟气脱硝系统典型工艺流程简图, SCR系统一般由氨的储存系统、氨与空气混合系统、氨气喷入系统、反应器系统、省煤器旁路、SCR旁路、检测控制系统等组成。
液氨从液氨槽车由卸料压缩机送人液氨储槽,再经过蒸发槽蒸发为氨气后通过氨缓冲槽和输送管道进人锅炉区,通过与空气均匀混合后由分布导阀进入SCR反应器内部反应, SCR反应器设置于空气预热器前,氨气在SCR 反应器的上方,通过一种特殊的喷雾装置和烟气均匀分布混合,混合后烟气通过反应器内催化剂层进行还原反应。
SCR系统设计技术参数主要有反应器入口NOx 浓度、反应温度、反应器内空间速度或还原剂的停留时间、NH3 /NOx 摩尔比、NH3 的逃逸量、SCR系统的脱硝效率等。
SNCR-SCR组合脱硝技术工艺说明
SNCR-SCR组合脱硝技术工艺说明SNCR-SCR联合工艺,综合了SNCR与SCR的技术优势,扬长避短,在SNCR的基础上,与SCR相结合,可达到80%以上的脱硝效率,并降低运行费用,节省投资。
SNCR脱硝优点及原理SNCR(选择性非催化还原)烟气脱硝技术主要使用含氮的还原剂在850~1150℃温度范围喷入含NO的燃烧产物中,发生还原反应,脱除NO,生产氮气和水。
该技术以炉膛为反应器,目前使用的还原剂主要是尿素和氨水。
■ SNCR脱硝性能保证脱硝效率:40%~70%NH3逃逸率:<10ppm装置可用率:>97%■ SNCR脱硝技术原理(尿素为还原剂)4NO+2CO(NH2)2+O2=4N2+2CO2+4H2O■ SNCR脱硝系统组成SNCR脱硝系统主要包括尿素存储系统、尿素溶液配制系统、尿素溶液储存系统、溶液喷射系统和自动控制系统等。
SCR脱硝优点及原理SCR(选择性催化还原)脱硝技术是指在催化剂和氧气的存在下,在320℃~427℃温度范围下,还原剂(无水氨、氨水或尿素)有选择性地与烟气中的NOx反应生成无害的氮和水,从而去除烟气中的NOx,选择性是指还原剂NH3和烟气中的NOx发生还原反应,而不与烟气中的氧气发生反应。
■ SCR脱硝性能保证烟气阻力增加值:600~1000paNH2/NO2摩尔比:<1催化剂使用寿命:24000h脱硝效率:80%~90%NH3逃逸率:SO2→SO3转换率:<1%■ SCR脱硝技术原理4NO+4NH3+O2=4H2+6H2O4NH2+2NO2+O2=3N2+6H2O■ SCR脱硝系统组成SCR脱硝系统主要包括SCR反应器及辅助系统、还原剂储存及处理系统、氨注入系统、电控系统等。
SNCR-SCR组合脱硝优点及原理■ SNCR-SCR脱硝性能保证脱硝效率:≥80%NH3逃逸率:<3ppm烟气阻力增加值:≈220pa■ SNCR-SCR脱硝技术原理CO(NH2)2+2NO=2N2+CO2+2H2OCO(NH2)2+H2O=2NH2+CO2NO+NO2+2NH3=2N2+3H2O4NO+4NH3+O2=4H2+6H2O2NO2+4NH3+O2=3H2+6H2O■ SNCR-SCR脱硝系统组成SNCR-SCR脱硝系统主要包括还原剂存储与处理系统,SCR反应器及辅助系统、氨注入系统、电控系统等。
scr sncr脱硝原理
scr sncr脱硝原理
SCR(选择性催化还原)和SNCR(非选择性催化还原)脱硝技术是两种广泛应用的烟气脱硝方法。
它们利用还原剂将
烟气中的氮氧化物还原成氮气和水,从而实现氮氧化物的达
标排放。
SCR脱硝技术是通过在催化剂的作用下,将烟气在200~400度的温度区间进行催化还原反应。
这种技术的优点是脱硝效率高,一般在90%以上,且反应温度相对较低,对设备
材料的要求较低。
然而,SCR脱硝技术的主要缺点是投资和
运行成本相对较高,需要定期更换催化剂。
SNCR脱硝技术则是通过在炉内高温区(800~1050度区间)喷入还原剂,如氨或尿素,在高温下实现还原反应。
SNCR技术的优点是投资和运行成本较低,且无需昂贵的催化剂。
然而,SNCR技术的脱硝效率相对较低,一般在30%~60%之间,而且对温度和还原剂的喷入量要求较高。
综合来看,两种脱硝技术各有优缺点,需根据实际工况和排
放要求进行选择。
在实际应用中,还可以采用SCR和SNCR
相结合的“SNCR-SCR”技术,以达到更好的脱硝效果。
SCR和SNCR脱硝技术
SCR和SNCR兑硝技术scF rn硝技术SCF装置运行原理如下:氨气作为兑硝剂被喷入高温烟气兑硝装置中, 在催化剂的作用下将烟气中NOx 分解成为N2和H20其反应公式如下:催化剂?4N0 + 4NH3 +02—4N2 + 6H2O催化剂?N0 +N02 + 2NH3—2N2 + 3H20一般通过使用适当的催化剂,上述反应可以在200 C〜450 C的温度范围内有效进行,在NH3 /NO = 1的情况下,可以达到80〜90%勺脱硝效率。
?烟气中的NOx浓度通常是低的,但是烟气的体积相对很大,因此用在SCF装置的催化剂一定是高性能。
因此用在这种条件下的催化剂一定满足燃煤锅炉高可靠性运行的要求。
烟气脱硝技术特点?SCR脱硝技术以其脱除效率高,适应当前环保要求而得到电力行业高度重视和广泛的应用。
在环保要求严格的发达国家例如德国, 日本, 美国, 加拿大, 荷兰, 奥地利, 瑞典, 丹麦等国SCR 脱硝技术已经是应用最多、最成熟的技术之一。
根据发达国家的经验, SCR 脱硝技术必然会成为我国火力电站燃煤锅炉主要的脱硝技术并得到越来越广泛的应用。
图1为SCR烟气脱硝系统典型工艺流程简图SCRI兑硝系统一般组成?图1为SCR烟气脱硝系统典型工艺流程简图,SCR系统一般由氨的储存系统、氨与空气混合系统、氨气喷入系统、反应器系统、省煤器旁路、SCR旁路、检测控制系统等组成。
?液氨从液氨槽车由卸料压缩机送人液氨储槽, 再经过蒸发槽蒸发为氨气后通过氨缓冲槽和输送管道进人锅炉区,通过与空气均匀混合后由分布导阀进入SCF反应器内部反应,SCR反应器设置于空气预热器前,氨气在SCR反应器的上方,通过一种特殊的喷雾装置和烟气均匀分布混合, 混合后烟气通过反应器内催化剂层进行还原反应。
SCR系统设计技术参数主要有反应器入口NOx浓度、反应温度、反应器内空间速度或还原剂的停留时间、NH3 /NOx摩尔比、NH3的逃逸量、SCR系统的脱硝效率等。
SCR、SNCR、PNCR、臭氧脱硝技术比对
SCR、SNCR、PNCR、臭氧脱硝技术比对目前烟气脱硝技术可分为干法和湿法两大类,其中干法脱硝中的选择性催化还原(SCR)和选择性非催化还原(SNCR)技术是市场应用最广(约占60%烟气脱硝市场)、技术最成熟的脱硝技术。
其原理是向烟气中喷氨或尿素等含有NH¬3自由基的还原剂,在高温下直接(或催化剂的协同下)与烟气中的NOx发生氧化还原反应,把NOx还原成氮气和水。
但该技术也有其巨大的局限性,由于化学反应需要在高温下进行,而对于中小型锅炉以及工业锅炉来说,排烟温度远不能达到化学反应所需要的高温。
一、低温脱硝技术低温烟气脱硝技术以低温氧化技术(LoTOx)最为简单有效,由于烟气中的氮氧化物主要组成是NO(占95%),NO难溶于水,而高价态的NO2、N2O5等可溶于水生成HNO2和HNO3,溶解能力大大提高,很容易通过碱液喷淋等手段将其从烟气中脱出。
将烟气中的NO转化为高价态,需引入较强的氧化剂,在众多氧化剂中,臭氧是最环保清洁的强氧化剂,在高效转化NO至高价态的过程中不遗留任何二次污染物,另外不同于•OH、•HO2 等,工作环境恶劣,自由基存活时间非常短,能耗较高,O3的生存周期相对较长,将少量氧气或空气电离后产生O3,然后送入烟气中,可显著降低能耗。
新大陆臭氧脱硝技术比传统烟气脱硫脱硝工艺更适应环保日益严格的要求,通过特殊工艺控制脱硝反应过程,使碱液吸收反应的产物以固体形式存在,实现了气态污染物(氮氧化物)的固化处理,不产生二次污染。
采用臭氧的高级氧化技术不仅对NOX具有良好的脱除效果,而且对烟气中的其他有害污染物,比如重金属汞也有一定的去除能力;在低温下进行氧化吸收等脱硝过程,有利于锅炉的能源回收利用,降低工程施工难度。
利用国内现有较为成熟的湿法脱硫工艺并加以改进,使脱硫脱硝同时进行。
低温脱硝技术是今后脱硝技术的发展方向。
二、SCR(选择性催化还原)、SNCR(非选择性催化还原)两种技术1、SCR主要应用在大型锅炉等的烟气处理,脱硝率可达80%以上,但投资大,维护成本高,催化剂3年一换;SCR多为国外引进。
SCRSNCR联合脱除技术
SCR/SNCR联合脱除技术SCR/SNCR联合脱除技术是干法烟气脱硝技术中新兴发展起来的,它是结合了选择性催化还原烟气脱硝技术(SCR)技术高效、选择性非催化还原烟气脱硝技术(SNCR)技术投资省的特点而发展起来的一种新型工艺。
选择性催化还原法脱硝技术是指还原剂(NH3、尿素)在金属催化剂作用下,选择性地与NOx反应生成N2和H2O,而不是被O2所氧化,故称为“选择性”。
可以作为SCR反应还原剂的有NH3、CO、H2、还有甲烷、乙烯、丙烷、丙稀等。
选择性非催化还原法脱硝技术无需催化剂,选择的还原剂与SCR相同,也为NH3、氨水或尿素。
SNCR以还原剂在锅炉上方和水平烟道喷入,与烟气中的NOx有选择的反应生成无害的N2和H2O。
前者的优点是脱硝率可以大于80%,NH3消耗量最优化,而缺点是对设计要求较高;设计比较复杂;制造和运行成本较高。
后者的优点是改造投资成本较低,比较适合对现有锅炉的SNCR改造,缺点是氨耗量高;氨逃逸量较大;混合均匀的难度大;所以其脱硝率较低,只有50~60%。
SNCR/SCR混合烟气脱硝技术是把SNCR工艺的还原剂喷入炉膛技术同SCR工艺利用逃逸氨进行催化反应的技术结合起来,进一步脱除NOx。
该“联合工艺”于20世纪70年代首次在日本的一座燃油装置上进行试验,试验表明了该技术的可行性。
这些年,随着烟囱脱硝技术的发展,不少新型的烟囱脱硝技术被应用到生产中去,并且取得了非常不错的效果,同时再加上烟囱烟气脱硝技术一直在改革中不断的优化,性能和效果也在这改革中不断的提高,因此不少新的烟囱烟气脱硝技术已经被作为生产中正式使用的技术项目了。
它是把SNCR工艺和SCR进行有效结合,在保持和促进了两种工艺各自的优点的同时,利用彼此的优点抑制和克服了单一SCR造价高以及单一SNCR效率低的缺陷,SNCR与SCR两工艺相辅相成、取长补短、相得益彰。
SCR和SNCR
1、SCR烟气脱硝技术近几年来选择性催化还原烟气脱硝技术(SCR)发展较快,在欧洲和日本得到了广泛的应用,目前氨催化还原烟气脱硝技术是应用最多的技术。
1)SCR脱硝反应SCR脱硝系统是向催化剂上游的烟气中喷入氨气或其它合适的还原剂、利用催化剂将烟气中的NOX转化为氮气和水。
在通常的设计中,使用液态无水氨或氨水(氨的水溶液),无论以何种形式使用氨,首先使氨蒸发,然后氨和稀释空气或烟气混合,最后利用喷氨格栅将其喷入SCR反应器上游的烟气中。
在SCR反应器内,NO通过以下反应被还原:4NO+4NH3+O2→3N2+6H2O6NO+4NH3→5N2+6H2O当烟气中有氧气时,反应第一式优先进行,因此,氨消耗量与NO还原量有一对一的关系。
在锅炉的烟气中,NO2一般约占总的NOX浓度的5%,NO2参与的反应如下:2NO2+4NH3+O2→3N2+6H2O6NO2+8NH3→7N2+12H2O上面两个反应表明还原NO2比还原NO需要更多的氨。
在绝大多数锅炉的烟气中,NO2仅占NOX总量的一小部分,因此NO2的影响并不显著。
SCR系统NOX脱除效率通常很高,喷入到烟气中的氨几乎完全和NOX反应。
有一小部分氨不反应而是作为氨逃逸离开了反应器。
一般来说,对于新的催化剂,氨逃逸量很低。
但是,随着催化剂失活或者表面被飞灰覆盖或堵塞,氨逃逸量就会增加,为了维持需要的NOX脱除率,就必须增加反应器中NH3/NOX摩尔比。
当不能保证预先设定的脱硝效率和(或)氨逃逸量的性能标准时,就必须在反应器内添加或更换新的催化剂以恢复催化剂的活性和反应器性能。
从新催化剂开始使用到被更换这段时间称为催化剂寿命。
2)SCR系统组成及反应器布置SCR反应器在锅炉烟道中一般有三种不同的安装位置,即热段/高灰布置、热段/低灰和冷段布置。
(1)热段/高灰布置:反应器布置在空气预热器前温度为350℃左右的位置,此时烟气中所含有的全部飞灰和SO2均通过催化剂反应器,反应器的工作条件是在“不干净”的高尘烟气中。
scrsncr联合脱硝技术基本原理
SCRSNCR联合脱硝技术基本原理1. 引言SCRSNCR联合脱硝技术是一种用于减少二氧化氮(NOx)排放的先进方法。
本文将详细解释SCRSNCR联合脱硝技术的基本原理。
2. 脱硝技术背景二氧化氮(NOx)是一种主要的大气污染物,它对人体健康和环境造成严重影响。
因此,减少NOx排放对于环境保护至关重要。
脱硝技术是减少NOx排放的一种有效方法。
3. SCRSNCR联合脱硝技术概述SCRSNCR联合脱硝技术是一种将选择性催化还原(SCR)和非选择性催化还原(SNCR)两种脱硝技术结合起来的方法。
它能够在较低的温度下有效地降低NOx排放。
4. SCR脱硝技术原理SCR脱硝技术基于氨气(NH3)与NOx反应生成氮气(N2)和水(H2O)的化学反应。
SCR脱硝技术需要使用催化剂,常用的催化剂是钒钛催化剂。
SCR脱硝反应的化学方程式如下:4NO + 4NH3 + O2 → 4N2 + 6H2O在SCR脱硝过程中,NOx和NH3在催化剂的作用下发生反应,生成无害的氮气和水。
SCR脱硝技术适用于高温条件下,一般要求烟气温度在200-400摄氏度。
5. SNCR脱硝技术原理SNCR脱硝技术是一种非选择性的脱硝方法,它利用氨气在高温下与NOx发生反应。
SNCR脱硝技术不需要催化剂,适用于较高的烟气温度,一般要求烟气温度在800-1100摄氏度。
SNCR脱硝反应的化学方程式如下:4NO + 4NH3 + O2 → 4N2 + 6H2OSNCR脱硝技术的关键是控制氨气和烟气的混合比例和温度,以确保足够的反应时间和适当的反应条件。
6. SCRSNCR联合脱硝技术原理SCRSNCR联合脱硝技术将SCR和SNCR两种脱硝技术结合起来,充分利用它们各自的优点。
在SCRSNCR联合脱硝技术中,首先使用SNCR脱硝技术对烟气进行预处理。
在高温下,通过向烟气中注入适量的氨气,使其与NOx反应生成氮气和水。
这一步骤可以降低烟气温度,为后续的SCR脱硝提供更合适的条件。
scr脱硝成分
SCR脱硝成分一、SCR脱硝简介1.1 SCR脱硝原理SCR脱硝(Selective Catalytic Reduction)是一种常用的尾气处理技术,用于降低柴油发动机和燃煤电厂等燃烧设备产生的氮氧化物(NOx)排放。
其原理是通过在尾气中注入尿素溶液(也称为尿素水溶液或尿素SCR溶液),在催化剂的作用下将尿素分解成氨气(NH3),然后与尾气中的NOx反应生成无害的氮气(N2)和水蒸气(H2O)。
1.2 SCR脱硝应用领域SCR脱硝技术广泛应用于燃煤电厂、石油化工厂、钢铁厂等工业领域,以及柴油发动机等内燃机动力系统。
它能够有效降低尾气中的NOx排放,减少对大气环境的污染,符合环保要求。
二、SCR脱硝成分2.1 SCR脱硝催化剂SCR脱硝催化剂是SCR系统中的核心组成部分,它能够促进尿素溶液中的氨气与尾气中的NOx反应,实现脱硝效果。
常用的SCR催化剂主要有钒钛催化剂、钼铝催化剂和铁铬催化剂等。
•钒钛催化剂:钒钛催化剂具有较高的催化活性和良好的耐高温性能,适用于高温SCR脱硝系统。
•钼铝催化剂:钼铝催化剂具有较低的催化活性和较好的耐硫性能,适用于低温SCR脱硝系统。
•铁铬催化剂:铁铬催化剂具有较高的催化活性和较好的耐腐蚀性能,适用于高温高硫环境下的SCR脱硝系统。
2.2 SCR脱硝剂SCR脱硝剂是指SCR系统中用于生成氨气的尿素溶液。
尿素溶液是由尿素和去离子水按一定比例调配而成的,其主要成分是尿素(NH2CONH2)和水(H2O)。
在SCR脱硝过程中,尿素溶液会经过尿素泵、尿素喷射器等装置,喷入催化剂前的尾气流道中,与高温尾气发生化学反应,生成氨气。
2.3 SCR脱硝辅助剂SCR脱硝辅助剂是指在SCR系统中用于改善催化剂性能和提高脱硝效率的辅助物质。
常见的SCR脱硝辅助剂有氨气(NH3)、氨水(NH4OH)、尿素溶液添加剂等。
•氨气:氨气是SCR脱硝过程中重要的辅助剂,它可以直接与尾气中的NOx反应生成无害物质,提高脱硝效率。
烟气脱硝方法中scr和sncr的原理
烟气脱硝方法中scr和sncr的原理
SCR (Selective Catalytic Reduction,选择性催化还原)和SNCR (Selective Non-Catalytic Reduction,选择性非催化还原)都是烟气脱硝技术。
它们都是通过将还原剂与烟气中的氮氧化物接触使其发生化学反应,将氮氧化物还原为氮气和水蒸气,从而达到脱硝的目的。
具体来说:
1. SCR原理
SCR技术是一种基于化学反应的烟气脱硝技术,其主要原理是在高温下使用氨水或尿素等还原剂与烟气中的氮氧化物进行接触,利用催化剂将NOx还原为无害的N2和H2O。
SCR过程中主要有以下两个步骤:
2NO+2NH3+O2→2N2+3H2O(反应1)
4NO+4NH3+O2→4N2+6H2O(反应2)
SCR脱硝的优点是脱硝效率高,可以达到90%以上,而且适用于各种烟气排放情况,对于含有NOx的烟气,SCR技术都能够有效应对。
2. SNCR原理
SNCR技术是一种基于温度和空气动力学的烟气脱硝技术,其主要原理是在高温的烟气中注入还原剂,通过高温下的化学还原反应使氮氧化物发生还原反应,从而达到脱硝的目的。
SNCR反应的基础是NOx在高温下与NH3发生还原反应,通
过控制还原剂的注入位置和量来达到最佳的脱硝效果。
NO+NH3→N2+H2O(反应3)
SNCR脱硝技术的优点是适用范围广,成本低,但脱硝效率较低,通常只能到达50%~70%,而且需考虑还原剂的逃逸问题,对于高温、高浓度的烟气脱硝效果不如SCR技术。
脱硝技术介绍(SCR和SNCR)
选择性催化还原法(SCR)
SCR系统工艺流程-液氨
选择性催化还原法(SCR)
液氨储罐
氨蒸发槽
氨气缓冲罐
蒸发器内部结构
氨稀释槽
选择性催化还原法(SCR)
SCR系统工艺流程-尿素
选择性催化还原法(SCR)
采用尿素为还原剂的制氨系统有水解和 热解两种方式
选择性催化还原法(SCR)
SCR脱硝实例
选择性催化还原法(SCR)
选择性催化还原法(SCR)
SCR工艺系统-吹灰器
催化剂表面的积灰
选择性催化还原法(SCR)
蒸汽吹灰器-耙式吹灰器
选择性催化还原法(SCR)
声波吹灰器
选择性催化还原法(SCR)
蒸汽吹灰器和声波吹灰器比较
项目 吹灰器本体 管道和附件
运行成本
声波吹灰器
蒸汽吹灰器
进口产品价格高
中等
需要安装直径为50mm的压缩空气气管。 需要直径较大的带保温层的高压蒸
常用脱硝技术
选择性催化 还原法 (SCR)
选择性非 催化还 原法
(SNCR)
SCR与 SNCR结合
小型脱硝 脱硫一体
化设备
选择性催化还原法(SCR)
选择性催化还原法(SCR)
利用还原剂在催化剂的作用下,有选择性的与烟气 中的NOX反应,生成氮气和水,从而脱出烟气中的NOX。
SCR系统特点: 结构较复杂,运行方便; 运动设备少,可靠性高; 无副产品,消耗催化剂; 脱硝效率高,80-90%; 投资高
NO再燃烧
烃生成物 CH, CH2
NOx
氨类(NH3, NH2,
N2O
NH,N)
NOx
还原气氛 氧化气氛
SCR、SNCR、SNCR4.0脱硝技术优缺点
SCR、SNCR、SNCR4。
0脱硝技术对比现今烟气脱硝技术可分为干法和湿法两大类,其中干法脱硝中的选择性催化还原(SCR)和选择性非催化还原(SNCR)技术是市场应用最广(约占60%烟气脱硝市场)、技术最成熟的脱硝技术。
SCR脱硝技术即选择性催化剂还原法,是向催化剂上游的烟气中喷入氨气或其它合适的还原剂、利用催化剂将烟气中的NOX转化为氮气和水。
SNCR脱硝技术即选择性非催化还原技术,是一种不用催化剂,在850~1100℃的温度范围内,将含氨基的还原剂(如氨水,尿素溶液等)喷入炉内,将烟气中的NOx还原脱除,生成氮气和水的清洁脱硝技术。
SNCR和SCR脱硝技术相比较的优缺点:1.SCR使用催化剂,SNCR不使用催化剂.2.SNCR参加反应的还原剂除了可以使用氨以外,还可以用尿素。
而SCR烟气温度比较低,尿素必须制成氨后才能喷入烟气中。
3。
SNCR因为没有催化剂,对温度要求严格,温度过低,NOx转化率低;温度过高,NH3则容易被氧化为NOx,抵消了NH3的脱除效率;一方面,降低了脱硝效率,另外一方面,增加了还原剂的用量和成本.4。
SNCR由于反应温度窗的缘故,反应时间以及喷氨点的设置以及切换受锅炉炉膛和/或受热面布置的限制.5.为了满足反应温度的要求,喷氨控制的要求很高。
喷氨控制成了SNCR的技术关键,也是限制SNCR脱硝效率和运行的稳定性,可靠性的最大障碍。
6。
SNCR氨的泄漏量大,不仅污染大气,而且在燃烧含硫燃料时,由于有(NH4)2SO4形成,会使空气预热器堵塞。
,而SCR控制在2~5ppm。
7。
SNCR由于反应温度窗以及漏氨的限制,脱硝效率较一般为30~50%,对于大型电站锅炉,脱硝效率一般低于40%。
而SCR的脱硝效率在技术上几乎没有上限,只是从性价比上考虑,国外一般性能保证值为90%。
8.SCR在催化剂的作用下,部分SO2会转化成SO3,而SNCR没有这个问题。
SNCR4。
0泰北氨基复合脱硝设备是一种新型脱硝技术,它的工作原理是在炉膛内喷入固体脱硝还原剂,该还原剂在炉中迅速分解,与烟气中的二氧化氮反应生成氮气和水,不与烟气中的氧气发生作用.SNCR4。
scr和sncr脱硝原理
scr和sncr脱硝原理小伙伴们!今天咱们来唠唠SCR和SNCR这俩脱硝的事儿。
这脱硝啊,在环保领域可是相当重要的呢。
咱先说说SNCR脱硝原理吧。
SNCR的全名叫选择性非催化还原法。
想象一下啊,在一个大大的锅炉里面,燃烧产生了好多氮氧化物呢,就像一群调皮捣蛋的小坏蛋。
这时候呢,SNCR就像是一个带着神奇魔法药水的小天使飞进去了。
这个魔法药水啊,就是还原剂,常见的像尿素或者氨水溶液。
这个还原剂呢,就像是一个个勇敢的小战士。
它们被喷到温度比较高的区域,大概850 - 1100℃这个范围哦。
在这个高温的战场上,还原剂就开始和氮氧化物进行一场激烈的“战斗”。
氮氧化物里的氮原子和还原剂里的氮原子就开始重新组合,就像小朋友们交换玩具一样。
然后呢,氮氧化物就被还原成了氮气和水。
氮气可是大气里本来就有的,很友好的一种气体,水就更不用说啦,无害又可爱。
这个过程啊,就像是一场神奇的魔法表演,在高温这个特殊的舞台上,把有害的氮氧化物变成了无害的东西。
再来说说SCR脱硝原理啦。
SCR是选择性催化还原法。
这SCR就更酷啦,它也有还原剂,不过呢,它还有一个超厉害的“助手”,那就是催化剂。
这就好比一个超级英雄有了一个超能力的伙伴一样。
这个过程一般在比较低一点的温度下进行,大概300 - 400℃。
还原剂和氮氧化物一起进入到这个有催化剂的区域。
这个催化剂啊,就像是一个超级智慧的指挥家。
它指挥着还原剂和氮氧化物按照特定的方式反应。
还原剂和氮氧化物在催化剂的引导下,就像是听话的小绵羊,乖乖地进行反应,最后也是把氮氧化物变成氮气和水。
这个催化剂可不得了,它能让反应进行得更快更高效,就像给汽车加了一个超级加速器一样。
你看啊,SCR和SNCR虽然都是脱硝,但是它们的方式还是有点区别的呢。
SNCR就像是一个比较简单直接的勇士,靠着高温这个天然的条件去和氮氧化物战斗。
而SCR呢,就像是一个有高科技装备(催化剂)的战士,在相对低一点的温度下,也能把脱硝这个任务完成得很好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选择性催化还原选择性催化还原法(Selective Catalytic Reduction,SCR)的原理是在催化剂作用下,还原剂NH3在相对较低的温度下将NO和NO2还原成N2,而几乎不发生NH3的氧化反应,从而提高了N2的选择性,减少了NH3的消耗。
其中主要反应如下:4NH3+6NO=5N2+6H2O8NH3+6NO2=7N2+12H2O4NH3+3O2=2N2+6H2O4NH3+5O2=4NO+6H2O2NH3可逆生成N2+3H2SCR系统由氨供应系统、氨气/空气喷射系统、催化反应系统以及控制系统等组成,为避免烟气再加热消耗能量,一般将SCR反应器置于省煤器后、空气预热器之前,即高尘段布置。
氨气在加入空气预热器前的水平管道上加入,与烟气混合。
催化反应系统是SCR 工艺的核心,设有NH3的喷嘴和粉煤灰的吹扫装置,烟气顺着烟道进入装载了催化剂的SCR 反应器,在催化剂的表面发生NH3催化还原成N2。
催化剂是整个SCR系统关键,催化剂的设计和选择是由烟气条件、组分来确定的,影响其设计的三个相互作用的因素是NOx脱除率、NH3的逃逸率和催化剂体积。
目前普遍使用的是商用钒系催化剂,如V2O5/TiO2和V2O5-WO3/TiO2。
在形式上主要有板式、蜂窝式和波纹板式三种。
该工艺于20 世纪70年代末首先在日本开发成功,80 年代以后,欧洲和美国相继投入工业应用。
在NH3/NO x的摩尔比为1时,NO x的脱除率可达90%,NH3的逃逸量控制在5 mg/L以下。
由于技术的成熟和高的脱硝率,SCR法现已在世界范围内成为大型工业锅炉烟气脱硝的主流工艺。
截至2010年底,我国已投运的烟气脱硝机组容量超过2亿kW,约占煤电机组容量的28%,其中SCR机组占95% 。
柴油机所产生的微粒(PM)和氮氧化物(NOx)是排放中两种最主要的污染物。
从目前降低汽车尾气排放的技术途径来看,要达到欧Ⅳ排放标准,一般不再从发动机本身的结构方面采取措施,通常是采取排气后处理的方式来降低污染物的排放量,而尿素-SCR 选择性催化还原法是最具现实意义的方法,它能把发动机尾气中的NOx减少50%以上。
SCR技术的优点:增加升功率降低热损耗(Low heat rejection)对比欧三产品,发动机结构没有改变对比欧三产品,燃油经济性得到改善机油更换周期更长(Low soot)尿素的成本低升级至欧五的能力SNCRSNCR(选择性非催化还原)。
英文名称 selective non-catalytic reduction选择性非催化还原是指无催化剂的作用下,在适合脱硝反应的“温度窗口”内喷入还原剂将烟气中的氮氧化物还原为无害的氮气和水。
该技术一般采用炉内喷氨、尿素或氢氨酸作为还原剂还原 NOx 。
还原剂只和烟气中的NOx反应,一般不与氧反应,该技术不采用催化剂,所以这种方法被称为选择性非催化还原法(SNCR)。
由于该工艺不用催化剂,因此必须在高温区加入还原剂。
还原剂喷入炉膛温度为850 ~ 1100℃ 的区域,迅速热分解成 NH3,与烟气中的NOx反应生成N2和水。
采用氨作为还原剂的SNCR称为De NOx法,尿素为还原剂的为 NOxOUT 法。
采用NH3作为还原剂,在温度为900℃~1 100℃的范围内,还原NOx的化学反应方程式主要为:4NH3 + 4NO+ O2 →4N2 +6H2O4NH3 + 2NO+ 2O2 →3N2 +6H2O8NH3 + 6NO2 →7N2 +12H2O而采用尿素作为还原剂还原NOx的主要化学反应为:(NH4 )2CO→2NH2 + CONH2 + NO→N2 + H2OCO + NO→N2 + CO2SNCR常用于锅炉炉膛,将NOx排放量降至大约200mg/Nm3。
用炉内SNCR 系统的还原剂制备、稀释、喷射、控制系统的基础上,加装烟气尾部脱硝装置(SCR),组成SNCR/SCR联合脱硝工艺。
氮氧化物排放标准吨熟料氮氧化物排放多少千克才是控制氮氧化物的关键在国家经济和环保发展需要的前提下,结合水泥工业与其他重化工业的国情,适当考虑不同地区经济发展程度、环境允许容量和水泥企业剩余服役期限的差异,通过科学综合的方法,有关领域充分研讨协调,寻求最佳的、可操作的、分阶段的实施方案,建立在线检测、第三者核查、奖惩分明的长效机制。
显然,这是一项涉及社会各方面因素的、较复杂的系统工程,需要精心组织和领导,更需要决策层的视野和智慧。
建议尽快组织修订水泥工业氮氧化物排放标准,要提出修订到什么程度、如何保障有效实施、体现全民的最大利益、促进各行业的共同合理发展等,供主管部门最终决策、颁布实施。
目前,有来自各界的各种想法和说法,各抒己见完全正常,但媒体报道不应偏颇。
比如,有报道称我国水泥厂的环保排放全都不合格。
事实上,我国新型干法水泥厂绝大多数均已全面符合现行国家排放标准。
只是假设将现行氮氧化物排放标准由800mg/m3改为300mg/m3,那么现在的水泥厂在这一指标上就可能全都不合格了。
水泥行业虽然已在酝酿氮氧化物减排问题,但并未料到标准会如此严格。
因而,直觉反映可能考虑行业运行成本和利润因素较多。
修订标准本身就是一项科学的、综合协调权衡的课题,完全可以用科学精神和方法来妥善解决问题,必要时肯定应该以大局为重。
水泥工业付出一定的代价也是履行社会责任必须承担的义务,义不容辞,理所当然。
另一方面,国家是否可以像对待火力发电厂氮氧化物减排一样给予水泥厂适当的脱硝激励政策,引导各行业实现共同可持续发展。
至于我国水泥工业氮氧化物排放标准修订到多少为宜,建议借鉴参考欧盟和德日美发达国家的标准(欧盟500mg/m3~800mg/m3,约吨熟料氮氧化物排放0.8kg~1.28kg;德国200mg/m3~400mg/m3,约吨熟料氮氧化物排放0.32kg~0.64kg;日本300mg/m3~600mg/m3,约吨熟料氮氧化物排放0.48kg~0.96kg;美国400mg/m3~700mg/m3,约吨熟料氮氧化物排放0.64kg~1.12kg)酌情而定,分地区分阶段实施为宜。
其实,在水泥生产中,吨熟料氮氧化物排放多少千克,这项限值才是控制氮氧化物排放总量的关键所在近日,环保部网站消息显示,副部长张力军在考察调研时表示,环保部正在研究的水泥行业氮氧化物排放标准"将会很严格"。
看来,水泥行业氮氧化物减排已势在必行,由于新的排放标准尚未出台,业界对此的猜测与分析一直就未停止过。
环保部污染物排放总量控制司司长刘炳江日前发表署名文章指出,2011年4项主要污染物预计会出现"三降一升",其中氮氧化物排放量仍呈快速增长趋势。
与此同时,我国今年污染减排任务是,同去年相比,二氧化硫、化学需氧量排放量分别减少2%,氨氮排放量减少1.5%,氮氧化物排放量为零增长。
这意味着,全年污染减排的任务依然艰巨。
据了解,环保部在2012年将花更大力气抓好氨氮、氮氧化物两项新的指标减排;丰富和完善减排政策,进一步完善脱硫电价,研究农业源和机动车减排财政激励政策;同时,要加大考核问责力度。
环保部数据显示,去年前三季度,化学需氧量、二氧化硫排放量继续下降,预计全年下降比例为2%左右,超过减排1.5%的目标。
但是,氨氮排放量仅下降0.9%,氮氧化物排放量反而上升7.2%,而这两项的目标均为实现减排1.5%。
如今,水泥行业在"十二五"第一年氮氧化物不降反升,在今年年初引起了各方的的评论。
然而,其中不少业内人士不仅关注了水泥行业该如何减排氮氧化物,而且对于提高水泥行业氮氧化物排放新标准,可能会对水泥行业带来的影响,进行了一些思考和分析。
江苏科行集团常务副总经理陈学功在《数字水泥网》上表示,中国需要出台一个较为严格的标准来应对国际上的环保压力。
另外,在PM2.5中,污染气体成分(如二氧化硫、氮氧化物、碳氢化合物等)中氮氧化物占的比重是很大的。
所以脱硝就成了环保的关键问题。
陈学功预测标准出台的时间,就在今年二季度末。
另外由于国家向各地方政府下达了减排任务,地方政府为了完成指标,只能向企业施压,目前各地方标准也正在陆续出台。
现在,广东省已规定,从今年1月1日起,珠三角(肇庆、惠州有部分区域除外)新建生产线和现有生产线执行500毫克/标准立方米的标准,余下区域则于2014年起开始实施新标准。
陈学功还透露,杭州水泥企业的氮氧化物排放标准为150毫克/标准立方米。
不过,中国水泥协会秘书长孔祥忠表示,目前,环保部正在研究水泥行业新的氮氧化物排放标准,研究方案包括300毫克/标准立方米和400毫克/标准立方米两种。
业内人士强调,当前国内新型干法水泥窑的氮氧化物排放标准普遍在800毫克/标准立方米。
新标准一旦确定,将意味着史上最严厉氮氧化物排放标准出台,这将大幅削减水泥企业的利润水平。
记者了解到,目前,国内每吨水泥的生产成本约180元-250元,新的氮氧化物排放标准修订后,加上水泥脱硝设备投入,每吨水泥成本将增加20元-40元。
对此,《中国环境报》也发表署名文章称,毋庸置疑的是,提高排放标准,企业短期内肯定要付出一定成本代价。
原因是制定一个企业不需要付出太多努力就能够满足的标准,不仅对减排没有多少意义,对促进企业成长进步也没有多少帮助。
而适当提高标准,特别是制定能让企业"跳起脚能够到"的标准,有利于促使企业通过技术改造,提高发展水平,并减少污染物排放,实现经济效益与环境效益双赢。