人工智能考试复习
人工智能考试题及答案
人工智能考试题及答案一、选择题(每题2分,共20分)1. 人工智能的英文缩写是:A. AIB. IAC. IID. AII答案:A2. 下列哪项不是人工智能的主要分支?A. 机器学习B. 计算机视觉C. 神经网络D. 电子工程答案:D3. 深度学习是人工智能领域中的一种:A. 算法B. 编程语言C. 硬件D. 操作系统答案:A4. 以下哪个是人工智能的典型应用?A. 搜索引擎B. 电子邮件C. 社交网络D. 以上都是答案:D5. 以下哪个不是人工智能的关键技术?A. 自然语言处理B. 语音识别C. 量子计算D. 图像识别答案:C6. 人工智能之父是:A. 艾伦·图灵B. 约翰·麦卡锡C. 马文·明斯基D. 以上都是答案:B7. 人工智能中的“机器学习”主要指的是:A. 机器自己编写代码B. 机器通过经验改善性能C. 机器进行自我复制D. 机器执行预设任务答案:B8. 以下哪个不是人工智能的伦理问题?A. 数据隐私B. 自动化失业C. 机器歧视D. 机器自我意识答案:D9. 人工智能在医疗领域的应用不包括:A. 辅助诊断B. 药物研发C. 手术治疗D. 心理治疗答案:D10. 以下哪个是人工智能的发展趋势?A. 单一任务执行B. 通用人工智能C. 人工情感D. 人工意识答案:B二、简答题(每题10分,共30分)1. 请简述人工智能的定义及其主要应用领域。
答案:人工智能是指使机器模拟人类智能行为的科学,包括学习、推理、感知、语言理解和创造力等。
其主要应用领域包括医疗、教育、交通、金融、制造业等。
2. 描述一下人工智能在自动驾驶汽车中的应用。
答案:在自动驾驶汽车中,人工智能技术通过机器学习和计算机视觉等技术,使汽车能够识别道路、交通信号、行人和其他车辆,实现自动导航、避障和决策,提高驾驶安全性和效率。
3. 人工智能在教育领域的应用有哪些?答案:人工智能在教育领域的应用包括个性化学习推荐、智能辅导、自动评分、学习行为分析等,可以提高教学效率,实现个性化教学,促进学生全面发展。
人工智能复习试题和答案及解析
一、单选题1. 人工智能的目的是让机器能够( D ),以实现某些脑力劳动的机械化。
A. 具有完全的智能B. 和人脑一样考虑问题C. 完全代替人D. 模拟、延伸和扩展人的智能2. 下列关于人工智能的叙述不正确的有( C )。
A. 人工智能技术它与其他科学技术相结合极大地提高了应用技术的智能化水平。
B. 人工智能是科学技术发展的趋势。
C. 因为人工智能的系统研究是从上世纪五十年代才开始的,非常新,所以十分重要。
D. 人工智能有力地促进了社会的发展。
3. 自然语言理解是人工智能的重要应用领域,下面列举中的( C)不是它要实现的目标。
A. 理解别人讲的话。
B. 对自然语言表示的信息进行分析概括或编辑。
C. 欣赏音乐。
D. 机器翻译。
4. 下列不是知识表示法的是()。
A. 计算机表示法B. 谓词表示法C. 框架表示法D. 产生式规则表示法5. 关于“与/或”图表示知识的叙述,错误的有( D )。
A. 用“与/或”图表示知识方便使用程序设计语言表达,也便于计算机存储处理。
B. “与/或”图表示知识时一定同时有“与节点”和“或节点”。
C. “与/或”图能方便地表示陈述性知识和过程性知识。
D. 能用“与/或”图表示的知识不适宜用其他方法表示。
6. 一般来讲,下列语言属于人工智能语言的是( D )。
A. VJB. C#C. FoxproD. LISP7. 专家系统是一个复杂的智能软件,它处理的对象是用符号表示的知识,处理的过程是( C )的过程。
A. 思考B. 回溯C. 推理D. 递归8. 确定性知识是指(A )知识。
A. 可以精确表示的B. 正确的C. 在大学中学到的知识D. 能够解决问题的9. 下列关于不精确推理过程的叙述错误的是( B )。
A. 不精确推理过程是从不确定的事实出发B. 不精确推理过程最终能够推出确定的结论C. 不精确推理过程是运用不确定的知识D. 不精确推理过程最终推出不确定性的结论10. 我国学者吴文俊院士在人工智能的( A )领域作出了贡献。
人工智能复习资料整理(修正版-如发现计算错误请指出)
一、填空题(40分)1.人工智能的主要学派:(1)符号主义:又称逻辑主义、心理学派或计算机学派,其原理主要是为物理符号系统假设和有限合理性原理。
(2)连接主义:又称仿生学派或生理学派,其原理主要是为神经网络及神经网络间的连接机制与学习算法。
(3)行为主义:又称进化主义或控制论学派,其原理为控制论及感知-动作型控制系统。
2.人工智能三个基本问题:知识获取、知识推理、知识利用。
3.常用的知识表示方法包括:状态空间法、问题归纳法、谓词演算法、语义网络法、框架表示法、本体表示法、过程表示法和神经网络表示法。
4.机器学习分为:监督学习、无监督学习、强化学习。
5.遗传算法基本操作分为:选择、交叉和变异。
6.产生式系统的构成分为:规则库、综合数据库和推理机。
7.问题状态空间包含的三种说明集合分别为:初始状态集(S)、操作符集合(F)、以及目标状态集合(G)。
8.可信度方法中,不精确推理规则的一般形式为:IF E THEN H (CF(H,E)),其中(CF(H,E))是该规则的可信度,称为可信度因子或规则强度。
(1)当证据E的可信度CF(E)的取值范围与CF(H,E)相同,即-1 ≤ CF(E)≤ 1;(2)当证据以某种程度为真时,CF(E) > 0(3)当证据肯定为真时,CF(E) = 1(4)当证据以某种程度为假时,CF(E) < 0(5)当证据肯定为假时,CF(E) = -1(6)当证据一无所知时,CF(E) = 09.用产生式方法表示张和李是同学关系:(classmate,Zhang,Li)10.模糊集合表示,例如有一组数据:85,90,82,70,98,模糊集合表示为:11.自然语言理解过程的层次有:语音分析、句词分析、语义分析。
12.人工生命研究实例有:人工脑、计算机病毒、计算机进程、细胞自动机、人工核苷酸。
13.计算智能涉及神经计算、模糊计算、进化计算、粒群计算、自然计算、免疫计算和人工生命等研究领域。
人工智能师考试题及答案
人工智能师考试题及答案一、单项选择题(每题2分,共20分)1. 人工智能的英文缩写是:A. AIB. MLC. DLD. NN答案:A2. 以下哪个算法不是监督学习算法?A. 决策树B. 支持向量机C. 随机森林D. 遗传算法答案:D3. 在神经网络中,激活函数的作用是:A. 增加网络的深度B. 引入非线性C. 减少计算量D. 提高训练速度答案:B4. 以下哪个不是深度学习模型的特点?A. 需要大量数据B. 需要大量计算资源C. 模型参数较少D. 能够学习复杂的特征答案:C5. 卷积神经网络(CNN)主要用于处理:A. 文本数据B. 图像数据C. 音频数据D. 时间序列数据答案:B6. 强化学习中的“状态”指的是:A. 智能体当前所处的环境B. 智能体的决策C. 智能体的奖励D. 智能体的行动答案:A7. 以下哪个是无监督学习算法?A. 线性回归B. K-均值聚类C. 逻辑回归D. 决策树答案:B8. 在机器学习中,过拟合是指:A. 模型在训练集上表现很好,但在新数据上表现差B. 模型在训练集和新数据上表现都很好C. 模型在训练集上表现差D. 模型在新数据上表现很好答案:A9. 以下哪个是半监督学习算法?A. 支持向量机B. K-最近邻C. 自编码器D. 随机森林答案:C10. 以下哪个是迁移学习的应用场景?A. 从大量标注数据中训练模型B. 从少量标注数据中训练模型C. 从无标注数据中训练模型D. 从不同领域数据中训练模型答案:B二、多项选择题(每题3分,共15分)11. 以下哪些是人工智能的分支领域?A. 机器学习B. 自然语言处理C. 计算机视觉D. 数据库管理答案:A, B, C12. 以下哪些是深度学习模型的常见优化器?A. SGDB. AdamC. RMSpropD. 决策树答案:A, B, C13. 以下哪些是神经网络中的常见损失函数?A. 交叉熵损失B. 均方误差损失C. Hinge损失D. 绝对误差损失答案:A, B, C14. 以下哪些是强化学习中的基本概念?A. 状态B. 动作C. 奖励D. 惩罚答案:A, B, C15. 以下哪些是无监督学习的应用场景?A. 聚类B. 异常检测C. 降维D. 回归分析答案:A, B, C三、判断题(每题2分,共10分)16. 神经网络中的权重和偏置是模型的参数。
人工智能期末考试试题
人工智能期末考试试题一、选择题(每题2分,共20分)1. 人工智能的英文缩写是:A. AIB. IAC. IID. AII2. 以下哪个不是人工智能的分支领域?A. 机器学习B. 深度学习C. 量子计算D. 自然语言处理3. 神经网络的灵感来源于:A. 电子计算机B. 人脑神经结构C. 遗传算法D. 蜂群算法4. 下列哪项技术不属于机器学习算法?A. 决策树B. 支持向量机C. 遗传算法D. 逻辑回归5. 在人工智能领域,以下哪个概念与“深度学习”最不相关?A. 卷积神经网络B. 循环神经网络C. 专家系统D. 长短期记忆网络二、简答题(每题10分,共30分)1. 请简述人工智能与机器学习之间的关系。
2. 解释什么是监督学习和无监督学习,并给出一个实际应用的例子。
3. 描述深度学习在图像识别领域的应用。
三、论述题(每题25分,共50分)1. 论述人工智能在医疗领域的应用及其潜在的伦理问题。
2. 讨论人工智能对就业市场的影响,包括正面和负面的影响。
四、案例分析题(共30分)阅读以下案例:某公司开发了一款智能客服机器人,能够处理客户咨询和解决问题。
请分析该机器人可能面临的技术挑战,并提出解决方案。
五、编程题(共20分)编写一个简单的Python程序,实现一个基于决策树的分类器,对以下数据集进行分类:数据集:```特征1, 特征2, 类别1, 2, 正2, 1, 负3, 3, 正1, 1, 负```要求:- 使用sklearn库中的决策树分类器。
- 训练模型并预测新数据点 [2, 2] 的类别。
六、开放性问题(共10分)你认为人工智能在未来10年内将如何改变我们的日常生活?请给出你的观点和理由。
请注意:所有答案需根据题目要求,结合人工智能的相关知识进行回答。
【2024版】人工智能导论复习
可编辑修改精选全文完整版《人工智能导论》期末复习一、题型:填空题、简答题、计算题、论述题二、复习重点:第一章:1.什么是人工智能?人工智能的三种观点分别是什么?2.实现人工智能的技术路线是哪四种?3.人工智能要研究的三个主要问题是什么?4.人工智能有哪些主要研究领域?第二章:1.什么是知识?何谓知识表示?2.用谓词逻辑表示法表示猴子摘香蕉问题。
3.产生式系统推理机的推理形式有哪三种?4.产生式系统一般由哪三个基本部分组成?5.用语义网络表示:“苹果树枝繁叶茂,上结了很多苹果,有大的,也有小的,有红的,也有绿的” 。
6.用与 / 或树方法表示三阶Hanoi 塔问题。
第三章:1.推理的含义是什么?2.应用归结原理求解下列问题:任何兄弟都有同一个父亲, John 和Peter 是兄弟,且 John 的父亲是 David ,问 Peter 的父亲是谁?第四章:1.可信度方法:例 4.1 ,例 4.22.主观 Bayes 方法:例 4.8 ,例 4.93.证据理论中描述证据和结论的不确定性采用哪两个函数度量?第五章:1.什么叫搜索?搜索的两层含义是什么?2.用全局最佳优先搜索方法求解以下八数码问题。
3.用代价树的深度优先搜索求解下面的推销员旅行问题。
第六章:1.什么是机器学习?机器学习研究的目标是什么?研究机器学习的意义何在?2.机器学习有哪些主要学习策略?3.机器学习系统的基本模型包含哪四个基本环节?4.实例学习的含义是什么?它包含哪两个空间模型?对规则空间进行搜索的方法有几种?第七章:1.什么是自然语言理解?自然语言理解过程有哪些层次?各层次的功能如何?2.对汉语语料库加工的方法是什么?汉语自动分词的方法有哪些?其难点何在?第八章:1.什么是专家系统?它有哪些基本特点?一般专家系统由哪些基本部分构成?2.知识获取的主要任务是什么?3.有哪几类专家系统开发工具?各有什么特点?第九章:1.解答 B-P 学习算法的流程图,并说明其优缺点。
人工智能复习题汇总(附答案)
人工智能复习题汇总(附答案)一、选择题1.被誉为“人工智能之父”的科学家是(C )。
A. 明斯基B. 图灵C. 麦卡锡D. 冯.诺依曼2. AI的英文缩写是( B )A. Automatic IntelligenceB. Artificial IntelligenceC. Automatic InformationD. Artificial Information3. 下列那个不是子句的特点(D )A.子句间是没有合取词的(∧)B子句通过合取词连接句子(∧) C子句中可一有析取词(∨)D子句间是没有析取词的(∨)4. 下列不是命题的是(C )。
A.我上人工智能课B. 存在最大素数C.请勿随地大小便D. 这次考试我得了101分5. 搜索分为盲目搜索和(A )A启发式搜索B模糊搜索C精确搜索D大数据搜索6. 从全称判断推导出特称判断或单称判断的过程,即由一般性知识推出适合于某一具体情况的结论推理是( B )A. 归结推理B. 演绎推理C. 默认推理D. 单调推理7. 下面不属于人工智能研究基本内容的是(C )A. 机器感知B. 机器学习C. 自动化D. 机器思维8. S={P∨Q∨R, ┑Q∨R, Q, ┑R}其中, P 是纯文字,因此可将子句(A )从S中删去A. P∨Q∨RB. ┑Q∨RC. QD. ┑R9. 下列不属于框架中设置的常见槽的是(B )。
A. ISA槽B. if-then槽C. AKO槽D. Instance槽10. 常见的语意网络有(D )。
A. A-Member - of联系B. Composed–of联系C. have 联系D. 以上全是1.在深度优先搜索策略中,open表是(B )的数据结构A. 先进先出B. 先进后出C. 根据估价函数值重排D. 随机出2.归纳推理是(B )的推理A. 从一般到个别B. 从个别到一般C. 从个别到个别D. 从一般到一般3. 要想让机器具有智能,须让机器具有知识。
人工智能相关知识点考试题及答案
人工智能相关知识点考试题及答案一、单选题(每题2分,共20分)1. 人工智能的英文缩写是什么?A. AIB. MLC. NLPD. DL答案:A2. 下列哪个选项不是人工智能的主要应用领域?A. 自动驾驶B. 语音识别C. 机器翻译D. 会计审计答案:D3. 深度学习在人工智能中主要解决的问题是什么?A. 数据存储B. 特征提取C. 数据传输D. 数据加密答案:B4. 以下哪个算法不是机器学习算法?A. 决策树B. 支持向量机C. 神经网络D. 快速排序答案:D5. 下列哪个不是人工智能的核心技术?A. 机器学习B. 知识图谱C. 云计算D. 自然语言处理答案:C6. 人工智能的发展历程中,哪个阶段被称为“黄金时代”?A. 1950sB. 1960sC. 1970sD. 1980s答案:B7. 以下哪个是人工智能的伦理问题?A. 数据隐私B. 网络安全C. 系统稳定性D. 软件兼容性答案:A8. 以下哪个不是人工智能的发展趋势?A. 自主化B. 个性化C. 去中心化D. 集中化答案:D9. 人工智能的“感知”能力主要依赖于哪种技术?A. 机器学习B. 深度学习C. 神经网络D. 以上都是答案:D10. 下列哪个是人工智能的挑战?A. 算法复杂性B. 数据质量C. 计算资源D. 以上都是答案:D二、多选题(每题3分,共15分)1. 人工智能的主要应用领域包括哪些?A. 医疗健康B. 金融服务C. 教育D. 娱乐答案:ABCD2. 人工智能的核心技术包括哪些?A. 机器学习B. 深度学习C. 知识图谱D. 云计算答案:ABC3. 人工智能的伦理问题主要涉及哪些方面?A. 数据隐私B. 算法偏见C. 责任归属D. 就业影响答案:ABCD4. 人工智能的发展趋势包括哪些?A. 自主化B. 个性化C. 去中心化D. 集中化答案:ABC5. 人工智能面临的挑战包括哪些?A. 算法复杂性B. 数据质量C. 计算资源D. 伦理问题答案:ABCD三、判断题(每题1分,共10分)1. 人工智能可以完全替代人类工作。
人工智能基础知识考试
人工智能基础知识考试(答案见尾页)一、选择题1. 人工智能是什么时候开始进入公众视野的?A. 20世纪50年代B. 20世纪60年代C. 20世纪70年代D. 20世纪80年代2. 人工智能的主要研究内容包括哪些?A. 机器学习、自然语言处理、计算机视觉B. 机器学习、深度学习、神经网络C. 机器学习、数据挖掘、专家系统D. 机器学习、深度学习、自然语言处理3. 以下哪个选项不是人工智能的应用领域?A. 智能制造B. 人脸识别C. 手机解锁D. 风力发电4. 人工智能的发展阶段中,哪一个阶段的特点是机器具有类人的独立思考能力?A. 弱人工智能阶段B. 强人工智能阶段C. 超人工智能阶段D. 现代人工智能阶段5. 以下哪个因素对人工智能的发展影响最大?A. 计算能力的提升B. 数据量的增加C. 互联网的发展速度D. 人类对AI技术的关注度6. 在人工智能中,以下哪个术语代表的是机器学习的一种方法?A. 决策树B. 随机森林C. 支持向量机D. 神经网络7. 人工智能中的“阿尔法狗”是一款用于下棋的哪种类型的算法?A. 机器学习B. 深度学习C. 自然语言处理D. 计算机视觉8. 人工智能在医疗诊断中的应用最常见的类型是?A. 机器学习辅助诊断B. 深度学习辅助诊断C. 专家系统辅助诊断D. 基于规则的系统辅助诊断9. 以下哪个选项不是人工智能技术的基础理论?A. 概率论B. 机器学习C. 深度学习D. 大数据分析10. 人工智能的未来发展方向中,哪一个方向被认为是最具潜力的?A. 通用人工智能(AGI)B. 强人工智能C. 弱人工智能D. 超人工智能11. 人工智能(AI)的基本概念是什么?A. AI是一种模拟人类智能的技术和系统B. AI可以完全模拟人类的思考过程C. AI主要用于解决数学问题D. AI在某些领域可以替代人类工作12. 人工智能的主要研究内容包括哪些?A. 机器学习B. 自然语言处理C. 计算机视觉D. 专家系统13. 人工智能的发展历程可以分为几个阶段?A. 初级阶段B. 中级阶段C. 高级阶段D. 未来阶段14. 以下哪个不是AI应用领域之一?A. 智能制造B. 无人驾驶汽车C. 手机语音助手D. 网页游戏15. 机器学习中常用的算法有哪些?A. 决策树B. 支持向量机(SVM)C. 随机森林D. 神经网络16. 人工智能的伦理问题主要涉及哪些方面?A. 数据隐私B. 偏见和歧视C. 安全性D. 责任归属17. 人工智能在未来可能带来的社会影响包括哪些方面?A. 就业市场变化B. 教育体系改革C. 法律法规调整D. 公共卫生管理18. 以下哪个因素对AI模型的性能有很大影响?A. 硬件设备B. 软件开发框架C. 数据质量D. 人工智能算法19. 在AI领域,什么是“深度学习”?A. 一种特定的AI技术B. 一种基于神经网络的算法C. 一种通过大量数据训练模型的方法D. 一种模拟人类大脑的工作原理20. 以下哪个选项描述了AI技术的未来发展?A. AI将完全超越人类的智能B. AI将与人类智能融合,共同发展C. AI将在某些领域取代人类的工作D. AI将不再需要人工干预21. 人工智能(AI)是指什么?A. 一种模拟人类智能的技术和系统B. 一种计算机编程技术C. 一种生物神经系统D. 一种无线通信技术22. 人工智能的基本组成包括哪些?A. 硬件B. 软件C. 数据D. 以上所有23. 以下哪个选项不是人工智能的主要研究领域?A. 机器学习B. 自然语言处理C. 计算机视觉D. 物联网24. 人工智能的发展可以分为几个阶段?A. 初级阶段B. 中级阶段C. 高级阶段D. 专家阶段25. 以下哪个不是人工智能的应用场景?A. 智能客服B. 无人驾驶汽车C. 手机语音助手D. 手工制作一件艺术品26. 机器学习是一种什么技术?A. 使计算机能够自行学习和改进的技术B. 通过编写代码来训练计算机的技术C. 通过输入数据来训练计算机的技术D. 通过软件接口来操作计算机的技术27. 在人工智能中,以下哪个术语指的是对数据进行预处理的过程?A. 模型训练B. 特征工程C. 模型评估D. 模型部署28. 人工智能的哪一项技术可以用于识别图像中的物体?A. 机器学习B. 计算机视觉C. 自然语言处理D. 语音识别29. 人工智能在哪些行业中得到了广泛应用?A. 医疗保健B. 金融C. 教育D. 所有以上行业30. 以下哪个因素是人工智能发展的主要驱动力?A. 计算能力的提高B. 数据量的增加C. 人类对智能的追求D. 以上所有因素31. 人工智能是什么?A. 一种计算机科学分支,研究如何使计算机模拟人类智能B. 一种计算机编程技术,用于实现自动化和智能化C. 一种生物神经系统,用于处理信息D. 一种实时数据处理系统,用于预测未来事件32. 人工智能的基本组成部分包括哪些?A. 神经网络B. 机器学习算法C. 自然语言处理D. 计算机视觉33. 人工智能的发展历程可以分为几个阶段?A. 早期研究(1950s-1960s)B. 黄金时代(1970s-1980s)C. 冬季时代(1990s-2000s)D. 复兴时期(2010s至今)34. 以下哪个不是人工智能的应用领域?A. 医疗诊断B. 金融风险评估C. 无人驾驶汽车D. 智能制造35. 机器学习中常用的算法有哪些?A. 决策树B. 支持向量机C. 随机森林D. 神经网络36. 人工智能的伦理问题主要涉及哪些方面?A. 数据隐私B. 偏见和歧视C. 安全性和可控性D. 人机关系37. 人工智能的发展对于就业市场有什么影响?A. 会导致大量失业B. 会创造新的职业机会C. 会使某些职业变得不再必要D. 会提高工作效率和生产力38. 在人工智能中,深度学习是一种?A. 机器学习的方法B. 深度神经网络C. 一种特定的算法D. 一种数据处理技术39. 人工智能在哪些领域中具有潜力?A. 教育B. 能源C. 环境保护D. 交通40. 以下哪个因素对人工智能的发展最为关键?A. 计算能力B. 数据C. 算法D. 人才二、问答题1. 什么是人工智能?请简述其发展历程。
2024年华为人工智能方向HCIA考试复习题库(含答案)
2024年华为人工智能方向HCIA考试复习题库(含答案)一、单选题1.以下哪—项不属于MindSpore全场景部署和协同的关键特性?A、统一模型R带来一致性的部署体验。
B、端云协同FederalMetaLearning打破端云界限,多设备协同模型。
C、数据+计算整图到Ascend芯片。
D、软硬协同的图优化技术屏蔽场景差异。
参考答案:C2.在对抗生成网络当中,带有标签的数据应该被放在哪里?A、作为生成模型的输出值B、作为判别模型的输入值C、作为判别模型的输出值D、作为生成模型的输入值参考答案:B3.下列属性中TensorFlow2.0不支持创建tensor的方法是?A、zerosB、fillC、createD、constant参考答案:C4.以下哪一项是HiAI3.0相对于2.0提升的特点?A、单设备B、分布式C、多设备D、端云协同参考答案:B5.以下哪个不是MindSpore中Tensor常见的操作?A、asnumpy()B、dim()C、for()D、size()参考答案:C6.优化器是训练神经网络的重要组成部分,使用优化器的目的不包含以下哪项:A、加快算法收敛速度B、减少手工参数的设置难度C、避过过拟合问题D、避过局部极值参考答案:C7.K折交叉验证是指将测试数据集划分成K个子数据集。
A、TRUEB、FALSE参考答案:B8.机器学习是深度学习的一部分。
人工智能也是深度学习的一部分。
A、TrueB、False参考答案:B9.在神经网络中,我们是通过以下哪个方法在训练网络的时候更新参数,从而最小化损失函数的?A、正向传播算法B、池化计算C、卷积计算D、反向传播算法参考答案:D10.以下不属于TensorFlow2.0的特点是?A、多核CPU加速B、分布式C、多语言D、多平台参考答案:A11.以下关于机器学习中分类模型与回归模型的说法,哪一项说法是正确的?A、对回归问题和分类问题的评价,最常用的指标都是准确率和召回率B、输出变量为有限个离散变量的预测问题是回归问题,输出变量为连续变量的预测问题是分类问题C、回归问题知分类问题都有可能发生过拟合D、逻辑回归是一种典型的回归模型参考答案:C12.ModelArts平台中的数据管理中不支持视频数据格式。
人工智能考试复习重点
厂盲目搜索状态空间「广度优先搜索深度优先搜索有界深度优先搜索代价树的广度优先搜索1-代价树的深度优先搜索1.人工智能研究途径有:(1)符号主义(Symbolicism )基于物理符号系统假设和有限合理性原理的人工智能学派。
(2)联结/连接主义(Connectionism )基于神经元及神经元之间的网络联结机制来模拟和实现人工智能。
(3)行为主义(Actionism )基于控制论和“感知一一动作”型控制系统的人工智能学派P. S:知识和推理是人工智能的核心,学习是人工智能的关键。
命题是能表达判断并具有确定真值的陈述句。
人工智能的研究内容一一机器思维,机器感知,决策与行为,其目的即实现人的智能!人工智能研究的基本内容是机器感知、机器思维、机器学习、机器行为、智能系统及智能计算机的构造技术。
2•人工智能的研究途径主要有以符号处理为核心的方法、以网络连接为主的连接机制方法及系统集成。
3•人工智能的研究领域主要有专家系统、机器学习、模式识别、自然语言理解、自动定理证明、自动程序设计、机器人学、博弈、智能决策支持系统、人工神经网络等。
2•人工智能研究方法:采集,预处理,推理,机器学习和反馈。
3•知识的特性:相对正确性,知识来自于人们对客观世界运动规律的正确认识,是从感性认识上升成为理性认识的高级思维劳动过程的结晶,故相应于一定的客观环境与条件下,知识无疑是正确的。
然而当客观环境与条件发生改变时,知识的正确性就要接受检验,必要时就要对原来的认识加以修正或补充,以至全部更新而取而代之。
不确定性,如前所述,知识由若干信息关联的结构组成。
但是,其中有的信息是精确的,有的信息却是不精确的。
这样,则由该信息结构形成的知识也有了确定或不确定的特征。
可表示性与可利用性,可发展性。
知识的可利用性使得计算机或智能机器能利用知识成为现实;而知识的机器可学习、可表示性使得人工智能不断得以进步与发展成为必然。
4•产生式的基本形式:产生式通常用于表示具有因果关系的知识,其基本形式是:P—Q 或者If P Then Q [Else S]其中,P是前件,用于指出该产生式是否可用的条件。
人工智能相关知识点考试题及答案
人工智能相关知识点考试题及答案一、单项选择题(每题2分,共10分)1. 人工智能的英文缩写是?A. AIB. MLC. DLD. NLP答案:A2. 以下哪个不是机器学习的主要应用领域?A. 语音识别B. 图像识别C. 自然语言处理D. 量子计算答案:D3. 神经网络的灵感来源于哪个生物结构?A. 神经元B. 心脏C. 肝脏D. 骨骼答案:A4. 下列哪项技术不属于深度学习?A. 卷积神经网络B. 循环神经网络C. 决策树D. 长短期记忆网络答案:C5. 人工智能的“图灵测试”是由谁提出的?A. 艾伦·图灵B. 马文·闵斯基C. 约翰·麦卡锡D. 艾伦·纽厄尔答案:A二、多项选择题(每题3分,共15分)1. 人工智能研究的主要内容包括哪些?A. 机器学习B. 自动推理C. 知识表示D. 机器视觉E. 语音识别答案:ABCDE2. 下列哪些属于人工智能的典型应用?A. 智能客服B. 无人驾驶汽车C. 智能家居D. 电子游戏E. 医疗诊断答案:ABCDE3. 深度学习在以下哪些领域有显著应用?A. 语音识别B. 图像识别C. 自然语言处理D. 游戏AIE. 推荐系统答案:ABCDE4. 人工智能的伦理问题包括哪些?A. 数据隐私B. 算法偏见C. 工作替代D. 决策透明度E. 责任归属答案:ABCDE5. 人工智能的发展历程中,哪些事件具有里程碑意义?A. 艾伦·图灵提出图灵测试B. 达特茅斯会议C. 深蓝战胜国际象棋冠军D. 谷歌AlphaGo战胜围棋冠军E. IBM Watson在医疗领域应用答案:ABCDE三、判断题(每题1分,共10分)1. 人工智能的发展依赖于大数据。
(对)2. 机器学习是人工智能的一个子集。
(对)3. 深度学习是机器学习的一个子集。
(对)4. 人工智能可以完全替代人类工作。
(错)5. 人工智能的发展不会引发伦理问题。
(错)6. 神经网络是由多个神经元组成的。
人工智能考试题及答案
人工智能考试题及答案一、单选题(每题2分,共20分)1. 人工智能的英文缩写是:A. AIB. IAC. IID. AII答案:A2. 下列哪个选项不是人工智能的典型应用?A. 自动驾驶B. 语音识别C. 人工服务D. 人工呼吸答案:D3. 人工智能之父是:A. 艾伦·图灵B. 马文·明斯基C. 约翰·麦卡锡D. 艾伦·纽厄尔答案:C4. 下列哪个算法不是机器学习算法?A. 决策树B. 支持向量机C. 深度学习D. 快速排序答案:D5. 神经网络中,神经元的连接权重通常通过什么方法进行优化?A. 遗传算法B. 反向传播C. 模拟退火D. 贪心算法答案:B6. 以下哪个不是深度学习中的常见层类型?A. 卷积层B. 池化层C. 激活层D. 循环层答案:D7. 以下哪个是强化学习的关键组成部分?A. 状态B. 奖励C. 动作D. 所有选项答案:D8. 人工智能的三大支柱不包括:A. 数据B. 算法C. 计算能力D. 硬件答案:D9. 下列哪个是自然语言处理的常见任务?A. 机器翻译B. 图像识别C. 语音合成D. 视频分析答案:A10. 以下哪个不是人工智能的伦理问题?A. 数据隐私B. 算法偏见C. 机器取代人类工作D. 机器自我复制答案:D二、多选题(每题3分,共15分)1. 人工智能可以应用于以下哪些领域?A. 医疗健康B. 金融服务C. 教育D. 娱乐答案:A, B, C, D2. 以下哪些技术可以用于增强人工智能的决策能力?A. 机器学习B. 深度学习C. 知识图谱D. 规则引擎答案:A, B, C3. 人工智能在发展过程中面临的挑战包括:A. 技术难题B. 伦理问题C. 法律限制D. 社会接受度答案:A, B, C, D4. 以下哪些是人工智能的常见算法类型?A. 监督学习B. 无监督学习C. 强化学习D. 遗传算法答案:A, B, C, D5. 人工智能在自然语言处理中可以完成的任务包括:A. 文本分类B. 情感分析C. 语音识别D. 机器翻译答案:A, B, C, D三、判断题(每题1分,共10分)1. 人工智能可以完全取代人类进行所有工作。
人工智能与机器学习考试
人工智能与机器学习考试(答案见尾页)一、选择题1. 人工智能的核心技术包括哪些?A. 神经网络B. 深度学习C. 自然语言处理D. 计算机视觉E. 专家系统2. 机器学习中常用的算法有哪些?A. 决策树B. 支持向量机C. 随机森林D. 神经网络E. K-均值聚类3. 人工智能和机器学习在哪些领域有广泛应用?A. 医疗健康B. 金融C. 自动驾驶D. 教育E. 工业制造4. 什么是人工智能?A. 计算机系统B. 人类智能C. 计算机模拟人类智能的技术D. 计算机编程E. 机器自主学习的技术5. 机器学习中,什么是过拟合?A. 训练集的数据太多B. 训练集的数据太少C. 模型过于复杂,学习到训练集之外的数据D. 模型过于简单,无法捕捉数据特征E. 训练数据包含了错误的标签6. 在人工智能中,什么是深度学习?A. 一种特定的神经网络算法B. 一种机器学习的方法C. 一种模拟人脑处理信息的方式D. 一种通过大量数据进行训练的方法E. 一种数据处理技术7. 人工智能和机器学习的关系是什么?A. 人工智能是机器学习的子集B. 机器学习是人工智能的子集C. 两者相互独立D. 两者互相促进E. 两者没有直接关系8. 什么是强化学习?A. 一种基于奖励机制的机器学习方法B. 一种基于监督学习的机器学习方法C. 一种通过与环境交互进行学习的机器学习方法D. 一种通过大量数据进行训练的方法E. 一种通过计算概率进行决策的方法9. 在人工智能中,什么是自然语言处理(NLP)?A. 计算机理解人类语言的技术B. 计算机生成人类语言的技术C. 计算机理解和生成人类语言的技术D. 计算机处理和分析人类语言数据的技术E. 计算机模拟人类语言交流的技术10. 人工智能和机器学习在未来的发展趋势是什么?A. 更加智能化B. 更加广泛的应用C. 更加复杂的技术D. 更加注重隐私和安全E. 更加依赖于人类专家的知识11. 人工智能(AI)和机器学习(ML)之间的关系是什么?A. AI 是 ML 的子集。
《人工智能相关知识点考试》考试试题(含答案解析)
《人工智能相关知识点考试》考试试题(含答案解析)一、单选题1、人工智能的英文缩写是?A、AIB、IRC、ARD、VR正确答案:A答案解析:答案:A。
人工智能(Artificial Intelligence)通常缩写为AI。
2、以下哪项不是机器学习的常见类型?A、非监督学习B、强化学习C、混合学习D、监督学习正确答案:C答案解析:答案:C。
混合学习不是标准的机器学习分类,常见的有监督、非监督和强化学习。
3、哪种算法常用于识别图像中的物体?A、决策树B、线性回归C、卷积神经网络(CNN)D、K-均值聚类正确答案:C答案解析:答案:C。
卷积神经网络(CNN)特别擅长处理图像识别任务。
4、人工智能在医疗领域的应用不包括?A、手术机器人B、自动驾驶汽车C、药物研发加速D、病理诊断辅助正确答案:B答案解析:答案:B。
自动驾驶汽车属于交通领域的应用,非医疗领域。
5、什么是“深度学习”?A、仅限于浅层数据的学习技术B、一种快速学习方法C、基于多层神经网络的学习模型D、不需要大量数据的学习方式正确答案:C答案解析:答案:C。
深度学习利用多层神经网络对复杂数据进行建模和分析。
6、下列哪项不属于自然语言处理(NLP)的应用?A、文本情感分析B、图像内容描述生成C、语音识别软件D、智能客服聊天机器人正确答案:B答案解析:答案:C。
图像内容描述生成属于计算机视觉领域,而非NLP。
7、在自然语言处理中,词语嵌入(Word Embedding)的主要目的是什么?A、将词汇转化为数值向量,以便于计算和理解语义关系B、转换文本为图像形式C、实现文本的语法检查D、提取文本的关键句子正确答案:A答案解析:答案:A。
词语嵌入通过将每个词映射到一个高维空间中的向量,帮助模型理解词语之间的语义和语法关系。
8、以下哪项是人工智能伦理中的重要考虑因素?A、人工智能责任归属B、数据隐私保护C、以上都是D、算法偏见消除正确答案:C答案解析:答案:C。
人工智能复习题集及答案
人工智能复习题集及答案在此提供一份人工智能复习题集及答案,帮助大家巩固相关知识。
请注意,以下题目并非出自真实考试,仅供复习之用。
一、选择题(每题2分,共30分)1. 人工智能(AI)是指:A. 人类的智能表现B. 计算机的智能表现C. 机器具有的类似人类智能的能力D. 机器的高速计算能力2. 下列哪个不属于人工智能的应用领域?A. 自动驾驶B. 语音识别C. 股票交易D. 图像识别3. 以下哪个算法被认为是人工智能的"父亲"?A. 卷积神经网络(CNN)B. 决策树(Decision Tree)C. 逻辑回归(Logistic Regression)D. 感知机(Perceptron)4. 人工智能的发展受到计算能力和以下哪个因素的制约?A. 数据量B. 算法复杂度C. 硬件性能D. 领域专家5. 在机器学习中,监督学习是指:A. 给模型提供明确的输入和输出标签B. 让模型自行学习数据的模式C. 通过奖励和惩罚教导模型D. 在模型训练过程中提供实时反馈6. 以下哪个不是强化学习中的组成部分?A. 环境B. 代理(Agent)C. 奖励信号(Reward Signal)D. 训练数据7. 在自然语言处理中,词嵌入(Word Embedding)用于:A. 将文本转化为离散的词汇序列B. 将文本转化为连续向量表示C. 生成语法正确的句子D. 实现机器翻译功能8. AlphaGo是一款成功击败人类围棋大师的人工智能程序,其核心技术是:A. 深度强化学习B. 迁移学习C. 遗传算法D. 逻辑推理9. 机器学习中的交叉验证是用来评估模型的:A. 泛化能力B. 训练速度C. 拟合程度D. 特征选择能力10. 在图像识别中,卷积神经网络(CNN)的核心操作是:A. 卷积B. 加法运算C. 乘法运算D. 激活函数二、填空题(每题2分,共20分)11. 人工智能的发展密切相关的一个领域是__________。
人工智能 考试复习
模拟试题( 模拟试题(续)
8.非单调推理的提出是由于 。 (A)知识不完全 (B)逻辑要求 (C)数据过多 (D)知识不确定 9.使用遗传算法求解问题的基本操作是 。 复制、 (A)矩阵运算 (B)复制、杂交和变异 (C)算数运算 (D)逻辑运算 10.以 感知-动作” 10.以“感知-动作”模式为基础的人工智能研究 学派是 。 (A)符号主义 (A)符号主义 (B)连接主义 (B)连接主义 (C)行为主义 (C)行为主义 (D)逻辑主义 (D)逻辑主义
模拟试题( 模拟试题(续)
16分 五.计算与化简(每小题8分,共16分) 计算与化简(每小题8 1.设有下列规则 R1:IF E1 THEN H (0.8) R1: R2: IF E2 THEN H (0.9) R3: IF E3 AND E4 THEN E1 (0.8) R4: IF E5 THEN E2 (0.5) 并已知证据的可信度为CF(E3)=0.8, 并已知证据的可信度为CF(E3)=0.8, CF(E4)=0.5,CF(E5)=0.6, CF(E4)=0.5,CF(E5)=0.6, 试计算推理结论H的可信度CF( 试计算推理结论H的可信度CF(H)。
模拟试题( 模拟试题(续)
2、化下列逻辑表达式为不含存在量词的前 束性。 束性。
( x)( y){( z)[P(z)∧∽Q(x,z)]->R(x,y)} z)[P(z)∧∽ ∧∽Q(x,z)]3、化简以下事实表达式(用在基于规则的 化简以下事实表达式(
正向演绎中),并画出相应的与或图。 正向演绎中),并画出相应的与或图。 ),并画出相应的与或图
总复习
模拟试题 各章知识点串讲
模拟试题
一、选择(每题2分,共20分) 20分 选择(每题2 1.人工智能的目的是让机器能够 ,以实现某些脑力 劳动的机械化。 劳动的机械化。 (A)具有智能 (B)和人一样工作 (C)完全代替人的大脑 模拟、 (D)模拟、延伸和扩展人的智能 2.自然语言理解是人工智能的重要应用领域,下面列举 自然语言理解是人工智能的重要应用领域, 不是它要实现的目标。 中的 不是它要实现的目标。 (A)理解别人讲的话 (B)对自然语言表示的信息进行分析概括或编辑 (C)欣赏音乐 (D)机器翻译
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人工智能第一章1、智能(intelligence )人的智能是他们理解和学习事物的能力,或者说,智能是思考和理解能力而不是本能做事能力。
2、人工智能(学科)人工智能研究者们认为:人工智能(学科)是计算机科学中涉及研究、设计和应用智能机器的一个分支。
它的近期主要目标在于研究用机器来模仿和执行人脑的某些智力功能,并开发相关理论和技术。
3、人工智能(能力)人工智能(能力)是智能机器所执行的通常与人类智能有关的智能行为,这些智能行为涉及学习、感知、思考、理解、识别、判断、推理、证明、通信、设计、规划、行动和问题求解等活动。
4、人工智能:就是用人工的方法在机器上实现的智能,或者说,是人们使用机器模拟人类的智能。
5、人工智能的主要学派:符号主义:又称逻辑主义、心理学派或计算机学派,其原理主要为物理符号系统(即符号操作系统)假设和有限合理性原理。
代表人物有纽厄尔、肖、西蒙和尼尔逊等。
连接主义:又称仿生学派或生理学派,其原理主要为神经网络及神经网络间的连接机制与学习算法。
行为主义:又称进化主义或控制论学派,其原理为控制论及感知—动作模式控制系统。
6、人类认知活动具有不同的层次,它可以与计算机的层次相比较,见图人类 计算机认知活动的最高层级是思维策略,中间一层是初级信息处理,最低层级是生理过程,即中枢神经系统、神经元和大脑的活动,与此相对应的是计算机程序、语言和硬件。
研究认知过程的主要任务是探求高层次思维决策与初级信息处理的关系,并用计算机程序来模拟人的思维策略水平,而用计算机语言模拟人的初级信息处理过程。
7、人工智能研究目标为:1、更好的理解人类智能,通过编写程序来模仿和检验的关人类智能的理论。
2、创造有用和程序,该程序能够执行一般需要人类专家才能实现的任务。
一般来说,人工智能的研究目标又可分为近期研究目标和远期研究目标两种。
两者具有不可分割的关系,一方面,近期目标的实现为远期目标研究做好理论和技术准备,打下了必要的基础,并增强人们实现远期目标的信心。
另一方面,远期目标则为近期目标指明了方向,强化了近期研究目标的战略地位。
8、人工智能研究的基本内容:(1)认知建模;(2)知识表示;(3)知识推理;(4)知识应用;(5)机器感知;(6)机器思维;(7)机器学习;(8)机器行为(9)智能系统构建9、人工智能研究的主要方法:(1)、功能模拟法(2)、结构模拟法(3)、行为模拟法(4)、集成模拟法10、人工智能研究和应用领域:(考4个)(1)计算智能(2)专家系统(3)机器学习(4)机器视觉(5)神经网络第二章1、人工智能课程三大内容:知识表示;知识推理;知识应用。
2、知识表示方法:(选择题)9种重点掌握这4种:状态空间法,谓词演算法,产生表示法,语义网络法(重点),问题归约法、框架表示、面向对象表示、剧本表示和过程表示。
3、状态空间法状态空间法三要点:①状态:表示问题求解法中每一步问题状况的数据结构;②算符:把问题从一种状态变换为另一种状态的手段;③状态空间方法:基于解答空间的问题表示和求解方法,它是以状态与算符为基础来表示和求解问题的。
(看p31的图)4有圆弧的表示“与”,无圆弧的表示“或”或节点:只要解决某个问题就可以解决其父辈问题的节点集合,如图中(M\N\H).与节点:只有解决所有子问题,才能解决其父辈问题的节点八集合,如图中(B,C)和(D,E,F)各个节点之间用一段小圆弧连接标记。
5、谓词归约法(1)连词A、合取:就是用连词(∧)把几个公式连接起来而构成的公式。
相当于“与”B、析取:就是用连词(∨)把几个公式连接起来而构成的公式。
相当与“或”C、蕴涵:(→)表示“如果….那么”的语句。
D、非:表示否定,用符号(~,)表示。
(2)量词A、全称量词:若一个原子公式P(x),对于所有可能变量x都具有T值,则用()表示。
B、存在量词:若一个原子公式P(x),至少有一个变元x,可使P(x)为T值,则用()P(x)表示。
6、置换与合一(1)置换例表达式P[x,f(y),B]的4个置换为s1={z/x,w/y}(出现x和y的地方,分别z和w替换,下同)s2={A/y}s3={q(z)/x,A/y}s4={c/x,A/y}用Es来表示一个表达式E 用置换s所得到的表达式的置换。
于是,可得到P[x,f(y),B]的4个置换的例,如下:P[x,f(y),B]s1=P[z,f(w),B]P[x,f(y),B]s2=P[x,f(A),B]P[x,f(y),B]s3=P[q(z),f(A),B]P[x,f(y),B]s4=P[c,f(A),B](2)合一例表达式集{P[x,f(y),B],P[x,f(B),B]}的合一者为s={A/x,B/y}因为 P[x,f(y),B]s=P[x,f(B),B]s=P[A,f(B),B]即s使表达式成为单一形式 P[A,f(B),B]7、产生式的基本形式(1)产生式规则是一种因果关系或推理关系,通常形式如下:IF P THEN Q (如果P则Q) 或者P→Q其中,P称为条件、前向或产生式的左边,Q称为操作、结果或产生式的右边。
其还可以是“如果P被满足,则可推出结论Q,或应该执行操作Q”。
(2)产生式推理如果已有产生式规则 P→Q并且观察到P,或者知识库中已p,则可得得到结论Q,或执行操作Q。
这种推理的一个关键之处是如何有效解决规则匹配的冲突问题。
8、二元语义网络的表示(1)语义网络的组成:词法部分;结构部分;过程部分;语义部分。
例,所有的燕子(SWALLOW)都是鸟(BIRD)。
建立两个节点SWALLOW和 BIRD,分别表示燕子和鸟。
两个节点以“是一个”(ISA)链相连,如图一,如果再希望表示小燕(XIAOYAN)是一只燕子,那么,只需要在语义网络上增加一个节点(XIAOYAN)和一根ISA链。
如图二图一 ISA,图二除了按分类学对物体进行分类以外,人们通常需要表示有关物体性质的知识。
假设希望表示小燕子有一个巢(NEST)这个事实,那么,可用所有权连(OWNS)连到表示是小燕子的巢的节点巢-1(NEST-1)。
巢-1是巢中的一个,即NEST节点表示物体的各类,而NEST-1表示这种物体中的一个例子。
如下图ISA(2)语义网络中的推理过程主要有两种:继承和匹配。
(3)3种继承过程:①值继承;②“如果需要”继承;③“默认”继承。
值继承:除了ISA链以外,另外还有一种AKO(是某种)链也可被用于语义网络中的描述或特性的继承。
AKO是A-KIND-OF的缩写。
BIRDSWALLOWBIRDSWALLOWXIAOYANNEST-1 NEST参考P50第三章1、盲目搜索(无信息搜索):图搜索策略、宽度优先搜索、深度优先搜索、等代价搜索。
2、宽度优先搜索和深度优先搜索的优缺点:并作图(简答题)宽度优先搜索:这种搜索是从上到下逐层进行的,在对下一层的任一节点进行搜索之前,必须先搜索完上层的所有节点。
它是图搜索一般过程的特殊情况,实际是将OPEN表作为“先进先出”的队列进行操作。
并能够保证在搜索树种找到一条通向目标节点的最短途径;这颗搜索树提供了所有存在的路径(缺点:如果没有路径存在,那么对有限图来说,该算法失败退出;对于无限图来说,则永远不会终止。
)深度优先搜索:首先扩展最新产生的(即最深的)节点,深度相等的节点可以任意排序。
其中起始节点(即根节点)的深度为0,任何其他节点的深度等于其父辈节点深度加上1。
深度优先搜索可能会使搜索过程沿着无益的路径扩展下去,造成路径太长,即使应用了深度界限来避免该问题,但所求得的解答路径并不一定就是最短路径。
启发式搜索:(盲目搜索的不足:效率低,耗费过多的计算空间与时间)(1)启发式搜索策略:用估价函数(evaluation function)来估算节点希望程度(promise)(2)有序搜索;(3)A*算法3、新的智能搜索算法:遗传算法、模拟退火算法和免疫算法4、遗传算法是仿真和自然选择机理,通过人工方式所构造的一类搜索法,从某种程度上来说遗传算法是对生物进化过程的数学方式仿真。
遗传算法的基本原理:A、编码与译码:将问题结构变换为位串形式编码表示的过程叫编码;反之,将位串形式编码表示变换为原问题结构的过程叫译码。
位串形式编码表示称为染色体或个体。
B、适应度函数:为了体现个体的适应能力,引入了对问题中的每一个个体都能进行度量的函数,称为适应度函数。
C、遗传操作:主要有三种(选择、交叉、变异)选择操作也叫复制操作,根据个体的适应度函数值所度量的优劣程度决定它在下一代是被淘汰还是被遗传。
交叉操作:它的简单方式是将被选择出的两个个体P1和P2作为父母个体,将两者的部分码值进行交换。
变异操作:它的简单方式是改变数码串的某个位置上的数码。
D、控制参数(交叉概率取~之间的值,变异概率取~之间的值,种群规模为30~100)。
5、模拟退火算法的来源:模拟退火算法来源于固体退火原理,将固体加热至充分高的温度,再让其徐徐冷却,加温时,固体内部粒子随温度的升高而变为无序状态,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。
6、模拟退火算法分解为三个部分:解空间、目标函数、初始解第四章1、谓词演算公式可以化成一个子句集的变换过程步骤:(1)消去蕴涵符号(2)减少否定符号辖域(3)对变量标准化(4)消去存在量词(5)化为前束形(6)把母式化为合取范式(7)消去全称量词(8)消去连词符号^(9)更换变量名称2、(题4—4)基于规则的演绎系统和产生式系统,均有两种推理方式:正向推理和逆向推理正向推理:从if部分向then部分推理的过程,它是从事实或状况向目标或动作进行操作的。
逆向推理:从then部分向if部分推理的过程,它是从目标或动作向事实或状况进行操作的。
3、规则演绎系统:(1)正向规则演绎系统(2)逆向规则演绎系统(3)双向规则演绎系统4、产生式系统的推理方式分为(按搜索方向):(1)正向推理(2)反向推理(3)双向推理5、定性推理:是从物理系统(包括自然系统和人造系统)的结构描述出发,以定性方法研究系统的结构、行为、功能以及它们之间的因果关系等,目的是预测系统的行为并给出合理的解释。
6、不确定性推理:在推理过程中所使用的知识、证据等有不确定性。
第五章1、学习系统的基本结构(填图题或解答题)环境向系统的学习的部分提供某些信息,学习部分利用这些信息修改知识库,以增进系统执行部分完成任务的效能,执行部分根据知识库完成任务,同时把获得的信息反馈给学习部分。
2、机器学习常见的几种学习方法:(简答题,4个以上)(1)机械学习;(2)基于解释的学习;(3)基于事例的学习;(4)基于概念的学习;(5)基于类比的学习;(6)基于决策树的归纳学习;(7)强化学习。